
A National University Transportation Center sponsored by the U.S. Department 
of Transportation’s Research and Innovative Technology Administration 

OREGON 
TRANSPORTATION 
RESEARCH AND  
EDUCATION CONSORTIUM OTREC 

FINAL REPORT 

 Practical Approximations 
to Quantify the Impact of 

Time Windows and Delivery 
Sizes on VMT Multi-stop 

Tours 
 
 

OTREC-RR-09-07  
October 2009 



 
 

 



 
 

PRACTICAL APPROXIMATIONS TO QUANTIFY THE 
IMPACT OF TIME WINDOWS AND DELIVERY SIZES 

ON VMT MULTI-STOP TOURS 
 

Report Type 
 

OTREC-RR-09-07 
 

by 
 

Miguel Figliozzi, Assistant Professor 
Department of Civil & Environmental Engineering 

Portland State University 
 

for 
 

 

 
P.O. Box 751 

Portland, OR 97207 
 
 

October 2009 
 





i 
 

Technical Report Documentation Page 
1.  Report No. 

OTREC-RR-09-07 
 

2.  Government Accession No. 
 
 

3.  Recipient’s Catalog No. 
 
 

4.  Title and Subtitle 
Practical Approximations to Quantify the Impact of Time Windows and Delivery Sizes on VMT 
Multi-stop Tours 
 

5.  Report Date 
April 2009 

 6.  Performing Organization Code 
 

7.  Author(s) 
Miguel Figliozzi 
 

8.  Performing Organization Report No. 
 

9.  Performing Organization Name and Address 
Portland State University 
Civil and Environmental Engineering  
P.O. Box 751 
Portland, OR, 97207 
 

10.  Work Unit No.  (TRAIS) 
 

11.  Contract or Grant No. 
 

12.  Sponsoring Agency Name and Address 
 
Oregon Transportation Research 
and Education Consortium (OTREC) 
P.O. Box 751  
Portland, Oregon 97207 

13.  Type of Report and Period Covered 
 

14.  Sponsoring Agency Code 
 

15.  Supplementary Notes 
 
 
 

16.  Abstract 
This paper studies approximations to the average length of Vehicle Routing Problems (VRP). The approximations are valuable for strategic and 
planning analysis of transportation and logistics problems. The research focus is on VRP with varying number of customers, demands, and 
locations. This modeling environment can be used in transport and logistics models that deal with a distribution center serving an area with daily 
variations in the demand. The routes are calculated daily based on what freight is available. New approximations and experimental settings are 
introduced. Average distance travelled is estimated as a function of the number of customers served and the number of routes needed. 
Approximations are tested in instances with different customer spatial distributions, demand levels, number of customers, and time windows, 
Regression results indicate that the proposed approximations can reasonably predict the average length of VRP problems in randomly generated 
problems and real urban networks.  

17.  Key Words  
Vehicle Routing Problem, Distance Estimation, Simulated Experiments, Case 
Study 

 
 

18.  Distribution Statement 
No restrictions.  Copies available from OTREC: 
www.otrec.us 
 

19.  Security Classification (of this report) 
 
Unclassified 

20. Security Classification (of this page) 
 
Unclassified 

21.  No. of Pages 
 
42 

22.  Price 
 
 





iii 
 

ACKNOWLEDGEMENTS 
 
The author gratefully acknowledges the Oregon Transportation Research and Education 
Consortium (OTREC) for sponsoring this project. This work was also supported by the 
Department of Civil and Environmental Engineering in the Maseeh College of Engineering and 
Computer Science at Portland State University. The author also is thankful to the reviewers and 
editors for their helpful comments and suggestions, and to research assistant Ryan Conrad for his 
work in preparing the final report. Any errors or omissions are the sole responsibility of the 
author.  

 

 
DISCLAIMER 

 
The contents of this report reflect the views of the author, who is solely responsible for the facts 
and the accuracy of the material and information presented herein. This document is 
disseminated under the sponsorship of the U.S. Department of Transportation University 
Transportation Centers Program in the interest of information exchange. The U.S. Government 
assumes no liability for the contents or use thereof. The contents do not necessarily reflect the 
official views of the U.S. Government. This report does not constitute a standard, specification, 
or regulation. 





v 
 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY .......................................................................................................... 1 
1.0 INTRODUCTION............................................................................................................. 3 
2.0 LITERATURE REVIEW ................................................................................................ 5 
3.0 FORMULATION OF VRP APPROXIMATIONS........................................................ 9 

3.1 PROPOSED FORMULAS FOR APPROXIMATING VRP DISTANCES WHEN THE 
NUMBER OF ROUTES IS KNOWN ................................................................................ 9 

3.1.1 Approximations of VRP distances without time windows ......................................... 9 
3.1.2 Naïve approximations of VRP distances with time-window constraints.................. 10 

3.2 CHARACTERIZING THE IMPACTS OF TIME-WINDOW CONSTRAINTS ............ 11 
3.3 APPROXIMATING VRP DISTANCES WHEN THE NUMBER OF ROUTES IS 

UNKNOWN AND WITH THE ADDITION OF TIME WINDOWS ............................. 15 
4.0 EXPERIMENTAL SETTING ....................................................................................... 19 
5.0 ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS ........................ 23 

5.1 COMPUTATIONAL RESULTS: MODELS WITHOUT TIME-WINDOW 
CONSTRAINTS (CVRP) ................................................................................................. 23 

5.2 COMPUTATIONAL RESULTS FOR TIME WINDOW-CONSTRAINED MODELS . 24 
5.2.1 Results of naïve approximations of VRP distances .................................................. 24 
5.2.2 Results of VRP approximations when the number of routes is unknown ................ 29 

5.3 DISTANCE COMPONENT ANALYSIS ........................................................................ 31 
5.4 REAL-LIFE APPLICATION ........................................................................................... 33 

6.0 CONCLUSION ............................................................................................................... 37 
7.0 REFERENCES ................................................................................................................ 39 
8.0 APPENDIX ...................................................................................................................... 41 
 

 
LIST OF TABLES 

 
Table 4-1: Demand Factors ........................................................................................................... 20 
Table 5-1: Comparison of models 1 to 6 with centrally located and corner depots (no time 

windows) ............................................................................................................................... 24 
Table 5-2: Approximation Quality by Problem Class (Pooled data) ............................................ 25 
Table 5-3: Comparison of models 1 to 12 with centrally located and corner depots and time 

window constraints ............................................................................................................... 26 
Table 5-4: Comparison of Model 11 and adjusted Model 14 approximation quality for corner and 

centrally located depots ......................................................................................................... 27 
Table 5-5: Comparison of Model 14 and adjusted Model 15 approximation for corner and 

centrally located depots ......................................................................................................... 27 
Table 5-6: Regression Parameters by Problem Type (Model 14) ................................................. 28 
Table 5-7 Statistics of customer distributions by problem type ................................................... 28 
Table 5-8: Demand Factors ........................................................................................................... 29 



vi 
 

Table 5-9. Average Probability ( )νsP−1  ..................................................................................... 30 
Table 5-10. Estimated Regression Coefficients by Problem Class ............................................... 30 
Table 5-11. Approximation Quality by Problem Class (Pooled data) .......................................... 30 
Table 5-12. Average Approximation Quality by Problem Class (By Distribution) ..................... 30 
Table 5-13: Real-life network distance and time estimation (Model 4) ....................................... 35 
 
 

LIST OF FIGURES 
 
Figure 5-1: TSP and VRP Fractions of Connecting Distance....................................................... 32 
Figure 5-2:  Relative Location of the Port of Sydney and Delivery Industrial Areas .................. 33 
Figure 5-3 Euclidian Distance vs. Shortest Time Distance among Suburban Customers and 

Depot Customers ................................................................................................................... 34 
Figure 5-4: Distance Traveled and Time Driven .......................................................................... 35 



 

1 
 

EXECUTIVE SUMMARY 

Despite the growing implementation of customer-responsive and made-to-order supply chains, 
the impact of variations on the number of customer requests and demands and the impacts of 
time-window constraints on the average vehicle routing problem (VRP) distance traveled have 
not yet been studied in the literature. Previous research has focused on the estimation of 
distances for either the traveling salesman problems (TSP) or the capacitated vehicle routing 
problems (CVRP). The purpose of this research was to determine how well a given formula 
approximates the average VRP distance for n actual customers given N potential customers and a 
variable customer demand (locations, demands, time-windows, etc.) in a service area.  

The research provides a parsimonious approach with theoretical justification for the impacts of 
time windows to develop progressively more descriptive linear regression formulas for the 
average VRP distance. A total of 15 formulas are proposed and tested using the well-known 56 
Solomon benchmark problems with varying numbers of customers, variable customer demands, 
and with and without time-window constraints. One of the regression models is then tested on 
actual customer distribution data from a freight forwarding company based in Sydney, Australia, 
and serving customers in the local suburb of Bankstown. 

The statistical results obtained from the analysis of the Solomon problem instances and the 
Bankstown data show very high R2 values and low mean absolute error (MPE and MAPE) for all 
models tested, with improvement in these values as models were made increasingly descriptive. 
Descriptive statistics for all regression predictors also were very statically significant beyond a 
99% confidence level. The research results are widely applicable for strategic planning and 
analysis of transportation and logistics problems with varying customer demands and constraints, 
including cases where the number of routes is not known a priori. 
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1.0 INTRODUCTION 

In many logistics problems it is necessary to estimate the distance that a fleet of vehicles travels 
to meet a set of customer demands. Traveled distance is not only an important element of 
carriers’ variable costs but it is also a key input in tactical and strategic models to solve problems 
such as facility location, fleet sizing, and network design. The transportation decisions associated 
with high-value, high time-sensitive products are the most demanding activities in terms of 
transport service requirements and usually require service within hard time windows (Figliozzi, 
2006). Time windows also are a key constraint for JIT1 production systems as well as emergency 
repair work and express (courier) delivery services. Time windows have a significant impact on 
decreasing the efficiency of routes, reducing service areas, and significantly increasing distance 
travelled (Figliozzi, 2007).   

Despite the growing implementation of customer-responsive and made-to-order supply chains, 
the impact of variations on the number of customer requests and demands on average VRP 
distance traveled has not yet been studied in the literature. The existing body of literature has 
mostly focused on the estimation of distances for either the traveling salesman problems (TSP) 
or the capacitated vehicle routing problems (CVRP)2. All experimental studies have focused on 
the approximation of the length of specific TSP or VRP instances (i.e., given an a priori known 
set of customer demands, how well a given formula approximates the real distance of one 
specific instance). 

This research has a different objective such that given N potential customers and a variable 
customer demand (locations, demands, time-windows, etc.) in a service area, this study explores 
how well a given formula approximates the average distance of VRP solutions for n actual 
customers and different levels of routing constraints. An intuitive and parsimonious 
mathematical framework to estimate average distances in VRP problems with hard time-window 
constraints is first provided. Subsequent to this, the ubiquitous case of a depot or distribution 
center (DC) serving up to N potential customers in the facility’s delivery region is examined.  

In many practical situations, not all potential customers request a visit on the same day. Thus, in 
practice, n may be significantly smaller than N. There also may be a significant variation in the 
number of customers visited per day of the week, such as on early weekdays vs. weekends. The 
amount to be delivered or picked up also may vary on a daily basis (e.g., from one to several 
pallets), as might additional requirements such as time-window constraints. The daily customer 
demand is known a night in advance, hence each daily route and sequence of customers depends 
on what freight is available on a particular day for delivery or pick-up. Although there is 
variability in the amount and characteristics of the day-to-day demand, the VRP problem 
analyzed in this paper is neither dynamic nor stochastic since all the information related to the 
customers’ demands is known before the vehicles leave the depot or distribution center. The 
                                                 
1 JIT stands for Just in Time, a make-to-order form of production that minimizes inventory on hand and relies on 
frequent and time-sensitive deliveries. 
2 Henceforth, the acronyms TSP, VRP and CVRP will be used in this paper 
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routes are designed daily and the number of routes and distance needed depends on the available 
freight.  

The paper is organized as follows: Section 2.0 provides a literature review; Section 3.0 presents 
asymptotic results for the VRP and expressions to estimate the additional number of routes due 
to time-window constraints as well as justification for the approximation formulas to be tested; 
Section 4.0 describes the experimental design; the experimental results are analyzed and 
discussed in Section 5.0, along with an analysis of a real-world application; lastly, concluding 
comments are provided in Section 6.0. 
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2.0 LITERATURE REVIEW 

There exists an extensive body of TSP- and VRP-related literature in operations research and 
transportation journals. The goal of this section is not to present a review of TSP and VRP 
solution methods, but to focus on the literature that deals with the estimation of distances in TSP 
and VRP problems (it seems redundant to include “problems” since TSP and VRP both end with 
that word). Comprehensive reviews of solution methods for TSP and VRP problems (see earlier 
comment) are found in Gutin and Punnen [1] and Toth and Vigo [2], respectively. 

A seminal contribution to estimate the length of a shortest closed path or tour through a set of 
points was established by Beardwood et al. (1959). These authors demonstrated that for a set nV  
with n points distributed in an area A  the length of the TSP tour through the whole set 
asymptotically converges, with a probability of one, to a constant k  multiplied by the square root 
of the number of points and the area, i.e. nAk when n →∞  such that 

( ) nAkVTSP n ≈ . 
 

(2.1)

The asymptotic validity of this formula for TSP problems was experimentally tested by Ong and 
Huang (1989) using a nearest neighbor and exchange improvement heuristics. With an Euclidian 
metric and a uniform distribution of customers the constant term in equation (2.1) has been 
estimated at 0.765k =  (Stein, 1978). For reasonably compact and convex areas, the limit 
provided by Beardwood et al. converges rapidly (Larson and Odoni, 1981). Jaillet (1988) 
estimated the constant 0.97k =  for a Manhattan metric.  

Approximations to the length of CVRP were first published in the late 1960s and early 1970s 
(Webb, 1968, Christofides and Eilon, 1969, Eilon et al., 1971). Webb studied the correlation 
between route distance and customer-depot distances. Eilon et al. (1971) proposed several 
approximations to the length of the CVRP based on the shape and area of delivery, the average 
distance between customers and the depot, the capacity of the vehicle in terms of the number of 
customers that can be served per vehicle, and the area of a rectangular delivery region.  

Daganzo (1984) proposed a simple and intuitive formula for the CVRP when the depot is not 
necessarily located in the area that contains the customers: 

2 / 0.57 2 0.57) ))n r n C r mnA nACVRP(V ≈ + += . (2.2)

( )nCVRP V is the total distance of the CVRP serving n customers, the average distance between 
the customers and the depot is r ,  and the maximum number of customers that can be served per 
vehicle is C. Hence, the number of routes m  is known a priori and can be calculated as /n C .  
Daganzo’s approximation can be interpreted as having: (a) a term related to the distance between 
the depot and customers and (b) a term related to the distance between customers. The 
coefficients of Daganzo’s approximation were derived assuming 6C >  and 24N C> . Daganzo’s 
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approximation works better in elongated areas as the routes were formed following the “strip” 
strategy. Robuste et al. (2004) tested Daganzo’s approximation using simulations and elliptical 
areas; they propose adjustments based on area shape, vehicle capacity, and number of customers. 
A dissertation produced by Erera (2000) extended the  usage of continuous approximations to 
estimate the distance of detours and routes in stochastic version of the CVRP.  

Daganzo (1987a, 1987b) provides another analytical model of the VRP with time-window 
constraints. Daganzo divides a day into time periods or bins of equal length and then clusters 
customers in rectangles. Each customer is then placed in a balanced time period or bin, 
consistent with his or her time window; this allows a simplification of the problem as individual 
customer time-window characteristics are now associated with a time period. Using this time 
bin-cluster, first-route second approach, Daganzo analyzes main routing tradeoffs and determines 
that distance traveled is a function of the square root of the number of time periods and that 
lower distances are possible when routes are allowed to overlap. Different approximations are 
provided if the dominant constraint is either vehicle capacity or route duration. Although 
Daganzo’s formulas are useful and intuitive they are not easily applied to estimate VRP distance 
since his approach does not guarantee feasibility. Unfortunately, no systematic method or general 
expression for clustering and determining the number of periods that guarantees balanced periods 
and feasible routes is provided. 

Chien (1992) carried out simulations and linear regressions to test the accuracy of different 
models to estimate the length of TSP. Chien tested rectangular areas with eight different 
length/width ratios ranging from 1 to 8 and circular sectors with eight different central angles 
ranging from 45 to 360 degrees. Exact solutions to solve the TSP problems were used and the 
size of the problems is five to 30 customers. The depot was always located at the origin, the left-
lower corner of the rectangular areas. Chien randomly generated test problems and, using linear 
regressions, found the best fitting parameters. The mean absolute percentage error (MAPE) was 
the benchmark to compare specifications. Chien finds that for the best model 

( ) nRrVTSP n 67.01.2 +≈ , (2.3)

the lowest MAPE is equal to 6.9% with an R2 value of 0.99. In equation (2.3) ( )nTSP V is the 
total distance of the TSP problem serving n customers. The area of the smallest rectangle that 
covers the customers is denoted R. The use of R instead of the total area A containing all 
customers may not be convenient for planning purposes when there may be many possible 
subsets of customers that are not known a priori. Chien also estimated the previous models for 
each of the 16 different regions; R2 and MAPE statistics are reported for each type of region and 
model. The estimated parameters change according to the shape of the region.  

Kwon et al. (1995) also carried out simulations and linear regressions, but they also used neural 
networks to identify better approximations. To test the accuracy of different models, they tested 
TSP problems in rectangular areas with eight length/width ratios ranging from 1 to 8. Models 
were estimated with the depot being located at the origin and at the middle of the rectangle. The 
sizes of the problems range from 10 to 80 customers. Kwon et al. (1995) proposed 
approximations that make use of the geometric information proportioned by the ratio 
length/width of the rectangle (the shape factor S); length and width are defined in such a way that 
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the ratio is always larger or equal to 1. The results obtained for the depot located at the origin are 
as follows: 

( ) ( ) ( )[ ] nAnSnVTSP n 111.110011.083.0 +++−≈  

99.02 =R  

71.3=MAPE  

(2.4)

( ) ( ) ( )[ ] nAnSnrVTSP n 190.010008.077.041.0 +++−+≈  

99.02 =R  

61.3=MAPE  

(2.5)

Accounting for the shape of the area improves accuracy, although this is at the expense of adding 
one and two extra terms in the last two expressions, respectively. Rd is defined as the area of the 
smallest rectangle that covers the customer and the depot. With the depot located at the center of 
the rectangle, the results obtained are as follows: 

( ) ( ) ( )[ ] dn nRnSnVTSP 134.110016.087.0 +++−≈  

99.02 =R  

88.3=MAPE  

(2.6)

( ) ( ) ( )[ ] dn nRnSnrVTSP 197.010012.079.015.1 +++−+≈  

99.02 =R  

70.3=MAPE  

(2.7)

It can be observed that MAPE slightly increases when the depot is located at the center of the 
rectangle. Kwon et al. (1995) also used neural networks to find a model that better predicts TSP 
length. They concluded that the capability of neural networks to find “hidden” relationships 
provides a slight advantage against regression models. However, the models are less 
parsimonious and the terms harder to interpret in geometric terms.  

The literature review indicates that previous research efforts have concentrated on the estimation 
of distances for TSP and CVRP instances that lack time-window constraints. To the best of this 
author’s knowledge, there is no published research that estimates the impact of time windows 
and varying levels of customer demand on average VRP distances. 
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3.0 FORMULATION OF VRP APPROXIMATIONS  

3.1 PROPOSED FORMULAS FOR APPROXIMATING VRP 
DISTANCES WHEN THE NUMBER OF ROUTES IS KNOWN 

3.1.1 Approximations of VRP distances without time windows 

The total distance travelled can be broken down into: (1) a distance between the depot and 
customers, herein denoted a “connecting distance,” and (2) a distance between different 
customers, herein denoted as “local or tour distance.” As the number of routes increases, the 
local distance tends to decrease whereas the connecting distance increases. The intuition behind 
these distance changes is evident after analyzing the variations in the corresponding number of 
links. Given n customers and m routes, there is a relationship between the number of links that 
connect the depot and the first/last customer of each route and the number of local inter-customer 
links. Any solution to a TSP with n customers uses 1n +  links, where 1n −  links are local and 2 
links are connecting.  If capacity and/or window constraints are added, the resulting VRP has 

1m ≥  routes.  In general, for m routes and n customers any solution to a VRP uses n m+  links.  
In general, for any given n and m the number of connecting links is 2m  and the number of local 
links is mn − .  

This research tests several approximations or models to estimate the average VRP distances. The 
first two approximations use only information about the number of customers served and the 
number of routes needed. Model 1 is based on Daganzo’s theoretical expression. The second 
approximation (Model 2) incorporates the tradeoff between connecting and local links. The 
approximation models tested are: 

Model 1: ( ) rmAnkVVRP l
n 2+≈  

Model 2: ( ) rmAn
n

mnkVVRP l
n 2+

−
≈        

Model 3: ( ) mkAnkVVRP ml
n +≈      

Model 4: ( ) mkAn
n

mnkVVRP ml
n +

−
≈  

Model 5: ( ) mknAkAnkVVRP mbl
n ++≈  

Model 6: ( ) mknAkAn
n

mnkVVRP mbl
n ++

−
≈  
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The parameters kl, km, and kb are estimated by linear regression. The following is a summary of 
the practical significance of these parameters: In Model 1 and Model 2, the number of routes, m, 
is given and only the parameter kl has to be estimated (i.e., only the local distance factor is 
estimated). In Model 3 and Model 4, the parameter km is included, which estimates the 
connecting distance and captures increases in connecting distances as m increases or as the depot 
moves away from customers. In Model 5 and Model 6, the parameter kb is included, but provides 
a less intuitive meaning. However, this factor provides information about the effects of a 
centrally located depot versus a depot with a corner location, which is explained in more detail in 
section 5.1. 

3.1.2 Naïve approximations of VRP distances with time-window constraints 

The addition of time-window constraints is introduced into the VRP distance approximations in 
this section. Model 1 and Model 2 from section 3.1.1 and an additional six models provided 
below are tested. Let dm  denote the number of routes needed to meet customer demand D  using 
vehicles of capacity C , then: 

/dm D C= .  

Let tm  denote the number of additional routes needed to meet the requirements of customers 
with time windows and let tn be the number of customers with time-window constraints and let 
the fraction of customers with time windows be /t tp n n= . The additional proposed models are 
as follows: 
 
Model 7: 2( ) 2 2n

l d d t tVRP V k An k m r k p r≈ + +  

Model 8: ( ) 2 2n
l d d t tVRP V k An k m r k p r≈ + +      

Model 9:
 

( ) 2 2n
l d d t tVRP V k An k m r k p n r≈ + +       

Model 10:
 

( ) 2 2n
l d d t tVRP V k An k m r k p n r≈ + +       

Model 11:
 

( ) 2 2n
l d d t tVRP V k An k m r k p n n r≈ + +      

Model 12:
 

2( ) 2 2n
l d d t tVRP V k An k m r k p n r≈ + +      

The parameter kl is defined as in section 3.1.1. The additional regression parameters kd and kt 
represent the effects of customer-demand levels and time-window constraints, respectively. To 
the best of the author’s knowledge, there are no practical or theoretical guidelines regarding the 
functional form that connects mt with the number of time-window constraints, total number of 
customers, and the influence of demand levels. Model 7 through 12 assume that the contribution 
of time-window constraints and demand levels to the number of routes needed is linear and 
additive such that 
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ttdd mkmkm += . 
 

(3.1)
 

In particular, Model 7 assumes that tm  increases with the square of the percentage of customers 
with time windows, i.e. ( )22 nnpm ttt =≈  whereas Model 8 has a linear relationship between 

tm and the percentage of customers with time windows, i.e. /t t tm p n n≈ = . Model 9 through 
12 respectively assume that: 

nnnpm ttt =≈ , (3.2)

ttt nnpm =≈ , (3.3)
 

nnnnpm ttt =≈ , (3.4)
 

nnnpm ttt =≈ 2 . (3.5)
 

In all models the contribution of the demand levels and time-windows constraints is null when 
customer demand is zero ( 0=dm ) or when the number of time-windows constraints is zero 
( 0tn = ). The proposed models are evaluated using numerical experiments in Section 5.0. In the 
next section, a theoretical approach is developed for the time window-constrained VRP in an 
effort to provide a more intuitive meaning to the regression parameters describing the effects on 
average route distance. 

3.2 CHARACTERIZING THE IMPACTS OF TIME-WINDOW 
CONSTRAINTS 

This section introduces a probabilistic approach to capture the impact of time windows on 
distance traveled for VRP instances that serve {1, 2,...., }N n=  customers. Associated with each 
customer i N∈ there is a quintuplet ( , , , , )i i i i ix q s e l  that represents, respectively, the coordinates, 
demand, service time, earliest service starting time, and latest service ending time. The depot 
quintuplet is denoted 0 0 0 0 0( , , , , )x q s e l  with 0 00, 0q s= = and 0 0e = . Travel speed is constant and 
equal to one unit of distance per unit time. The distance between each customer i N∈  and the 
depot is denoted ( )id x ; feasibility conditions include ( )i id x l≤ , 02 ( )i id x s l+ ≤ , and iq Q≤ .  
Customers with time windows are drawn from a probability measure ν  with bounded support. 
Without loss of generality, attributes of the quintuplet are scaled and shifted so they belong to the 
real interval [0,1] . The coordinates ix  are independently and identically distributed according to 
a distribution with compact support in 2ℜ , [0,1] [0,1]× ; the customer parameters ( , , , )i i i iq s e l  are 
drawn from a joint probability distribution Φ  with a continuous density function φ . The support 
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of φ  is the feasible subset of 4
1 2 3 4( , , , ) [0,1]x x x x ∈ . It is also assumed that customer locations and 

their parameters are independent of each other.  

Customers without time windows are drawn from the same probability measure but their time 
windows are relaxed, i.e. ( , )i ie l is replaced by 0 0( , )e l . The “relaxed” probability measure is 
denoted μ , whose support is the feasible subset of 2

1 2( , ) [0,1]x x ∈ with 03 =x  and 14 =x . The 
expected number of routes needed to serve n  customers with and without time windows is 
denoted ( )nmν and ( )nmμ , respectively. 

Known results for the CVRP (Bramel et al., 1992) indicate that: 

* ( , )lim 2 ( )n
CVRP n E d

n μ
μ γ→∞ =  

 
(3.6)

 

where 0μγ >  is a constant that depends only on μ , ( )E d  is the expected distance between the 

depot and customers, and *( )CVRP n is the best VRP solution for travel distance. The ratio 1/ μγ  
is the average number of customers per route. Similar results can be derived for the VRP with 
time windows (Bramel and Simchi-Levi, 1996, Federgruen and Van Ryzin, 1997):  

* ( , )lim 2 ( )n
VRP n E d

n ν
ν γ→∞ = . 

 
(3.7)

 

The first lemma provides a useful bound for the additional number of routes due to time-window 
constraints.   

Lemma 1. The contribution of time windows to the distance traveled is bounded. 
Asymptotically, the number of additional routes due to time-window constraints can be 
expressed as kn , being k  a constant such that 0 1k≤ ≤ .  

Proof.  Asymptotically, the contribution of time windows to the distance travelled per customer 
can be expressed as 2 ( ) ( )n E d ν μγ γ− . The increase in the number of routes due to time 
windows, denoted mνμ , can be approximated by ( ) ( ) ( ) ( )m n n m n m nνμ ν μ ν μγ γ= − = − . There 
cannot be more routes than customers, hence 1 νγ≥ . Time windows, additional constraints, 
cannot reduce the VRP distance; hence ( ) 0ν μγ γ− ≥ .   

The increase in the number of routes when time constraints are added is modeled 
probabilistically. Given any two customers ,i j N∈  there is a probability ijP  that a vehicle can 
successfully visit customer j  after visiting customer i  without violating 'j s  time window. In 
general, ijP  is a random variable that will depend on the probability measure ν . The goal is to 
find an expression that provides the average number of additional vehicles needed due to time-
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window constraints, i.e. ( )m nνμ . An exact solution using ijP  is likely to be intractable and, to the 
best of the author’s knowledge, there is no general analytical expression that can be used to 
estimate the impact of time-window constraints on VRP distances.  

To model ( )m nνμ , the concept of an average probability of successfully sequencing any given 
customer with time-window constraints is introduced; this average success probability is denoted 
νP ; 1/b μγ=  is denoted as the average number of customers per route or “bin” without time-

window constraints. The probability associated to finding a feasible route with c b≤  customers, 
each with time-window constraints, can be expressed as: 

( ) ( ) 1−= cPcP ν  
 

(3.8) 
 

By definition ( ) 11 =P  because it is assumed that all customers can feasibly be served from the 
depot. When 1b =  the number of routes is simply m n= . When 2b = , the number of expected 
routes needed to serve n  customers can be expressed as the weighted sum of routes with one 
and two customers: 

( ) ( )[ ]212
2

PnPn
−+ , 

 
(3.9) 

 

and generalizing for any b : 

( )[ ] ( ) ( )[ ]∏∑
+=

=

=

−=
b

cj

bc

c

jP
c

cnPnmE
11

1ν . 
 

(3.10) 
 

A similar expression can be found in the work of Diana et al. (2006), which estimated demand-
responsive transit fleet sizes. The expected number of additional routes due to time-window 
constraints, [ ]E mνμ , can be expressed as: 

( )[ ] ( ) ( )[ ]
b
njP

c
cnPnmE

b

cj

bc

c

−⎥
⎦

⎤
⎢
⎣

⎡
−= ∏∑

+=

=

= 11

1νμ  
 

(3.11) 
 

Lemma 2. The expected number of additional routes due to time-window 
constraints, [ ( )]E m nνμ , is a continuously decreasing function of νP .  

Proof. The complete proof is presented in the appendix in Section 8.0; a sketch of the proof is 
presented in this section. The sum of weight factors ( )w c  
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( ) ( ) ( )[ ]∏
+=

−=
b

cj

jPcPcw
1

1  
 

(3.12) 
 

sum to one such that 

( ) ( ) ( )[ ] 11
1 11

=−= ∑ ∏∑
=

= +=

=

=

bc

c

b

cj

bc

c

jPcPcw . 
 

(3.13) 
 

As νP  increases from zero to one, the weight factors are shifted from 1c =  to c b= , hence, the 
sum 

1

( )c b

c

n w c
c

=

=
∑  

 
(3.14)

 

decreases as νP  increases.  

Lemma 3. The expected number of additional routes due to time-window constraints [ ( )]E m nνμ  
is bounded between (0, / )n n b− . The value of [ ( )]E m nνμ  is a fraction of the number of 
customers.    

Proof.  By substitution, it can be shown that [ ( )] /E m n n n bνμ = −  when 0=νP  
and [ ( )] 0E m nνμ =  when 1=νP . Since [ ( )]E m nνμ  is a decreasing function it is bounded 
between (0, / )n n b− . 

Theorem 1.  A routing problem with customers drawn from a probability measure ν  has a 
unique νP  such that [ ( )] ( )E m n nνμ ν μγ γ= −  as n →∞ . 

Proof. Asymptotically, the additional number of routes is 
( ) ( )m n nνμ ν μγ γ= − with 0 ( ) 1ν μγ γ≤ − ≤ . Due to Lemmas 2 and 3, [ ( )]E m nνμ is a continuously 

decreasing function. Hence, there is a unique νP  such that [ ( )] ( )E m n nνμ ν μγ γ= − . 

Corollary. The value of νP−1 , the average probability of “failing” to sequence a customer with 
time-window constraints provides a measure, in a scale (0,1) , of the impact of time-window 
constrains on VRP distance. As νP−1  increases the relative impact of time-windows constraints 
on the number of routes and the distance traveled increases. 



 

15 
 

3.3 APPROXIMATING VRP DISTANCES WHEN THE NUMBER OF 
ROUTES IS UNKNOWN AND WITH THE ADDITION OF TIME 
WINDOWS 

This section provides an approximation to VRP distance assuming a distribution center that 
serves a set of {1, 2,...., }N n=  customers on any given day or time period. The number of daily 
requests may vary, but it never exceeds a maximum number n , i.e. n n≤ . The total number of 
customers with time windows is denoted tn , tn n≤ , and the total demand is denoted N i

i N

q q
∈

= ∑ . 

The focus of this research is the derivation of general approximations to the average distance 
traveled to serve a total of n  customers with tn  time windows (i.e., constraints nn ≤≤1  and 

nnt ≤≤0 ). This average distance is denoted ( )ν,, tnnVRP . Instances of daily demands are 
formed by joining tn  customers, drawn according to a probability measure ν , and tn n−  
customers drawn according to probability measure μ . A customer has a time window if 
either 0ie e> or 0il l< .  
The value of νP  is approximated as the value that minimizes the absolute value of the difference: 

( ) ( ) ( )( )∑ ∏
= +=

−−
b

c

b

cj
v jP

c
cPnnm

1 1

1min  (3.15)
 

s.t.: ( ) ( ) 1−= cPcP ν , 10 ≤≤ νP , and ( )nmnbb μ=≈
~ . From Theorem 1, it is guaranteed that there 

is only one νP  that minimizes the absolute value of equation (3.15). The value of 
( )m nμ and ( )m nν  can be estimated by sampling from the respective distributions and 

determining the number of routes needed.  

To estimate the number of additional routes due to time windows when 0 tn n< < , it is necessary 
to model how time windows are distributed among routes. Assuming a binomial distribution, the 
probability of having a route with k  time windows out of c  customers is: 

( ) ( ) ( ) kc
t

k
tt PP

k
c

Pckbinomial −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1,;  

 
(3.16)

 

 

where: 

( )!!
!

kck
c

k
c

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
’ 

k =  number of successes in b trials, 
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c =  number of independent trials, and 

== nnP tt the probability of success on each trial. 

Then, the number of additional routes to serve a total of n  customers with tn  time windows can 
be approximated as follows: 

( ) ( ) ( )( ) ( )mnmjP
c
PcnPnnm

b

cj

b

c

t
t μνμ

ν
−⎥

⎦

⎤
⎢
⎣

⎡
−= ∏∑

+== 11
1,,,  (3.17)

where ( ) ( )( ) 1

0

,;,, −

=
∑= k

c

k
tt PPckbinomialPcP νν . 

Approximating the number of routes related to “bin-packing” constraints, such as vehicle 
capacity or tour duration, is relatively straightforward: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
−⎥

⎥

⎤
⎢
⎢

⎡
≈

00

,max
el

n
Q
q

nm N τ
μ  

 
(3.18)

 

where τ  is the sum of estimated travel time plus service time per customer. 

Although asymptotic results indicate that the number of routes is the only essential factor to 
estimate VRP distances, the literature review has shown that the best approximations to VRP 
distance account for (a) a term related to the distance traveled between the depot and customers 
and (b) a term related to the distance traveled between customers. The proposed approximation 
also accounts for both types of distances, but adds(?) terms to estimate the additional impact of 
time windows. 

Model 13: ( ) ( ) ( )t
mm

tt nnrmknrmkAnknAknnVRP ,~2~~~2~,, νμνμμμμλμμ γν +++≈  

The vector of coefficients ( , , , )m mk k k kμ λμ μ νμ
% % % %

 is estimated by linear regression. The coefficients mkμ
%  

and mkνμ%  are related to the distance generated by the number of routes needed; the coefficients kμ
%  

and kλμ
%  are related to the intercustomer distance, as in Beardwood et al. (1959). If tk n Aν

%  

and k nAμ
%  approximate the inter-customer distance with and without time windows 

respectively, then, kνμ%  represents the change in inter-customer distance when time-window 
constraints are added such that 

AnknAkAnk tt νμμν
~~~

+= , (3.19)

where k k kνμ ν μ= −% % %  and tn n= . The other two remaining coefficients relate to the number of 
routes as follows: 
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( )m n nμ μ μγ γ→%  as n →∞ , (3.20)

( , ) ( ) tm n n nνμ νμ ν μγ γ γ→ −%  (3.21)

as n →∞ . 
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4.0 EXPERIMENTAL SETTING 

One of the main goals of this research is to estimate the impact of customer-demand levels and 
time-window constraints on VRP distance. This research utilizes the classical instances of the 
VRP with time windows proposed by Solomon (1987) to test the approximations. The Solomon 
instances include distinct spatial customer distributions, vehicles’ capacities, customer demands, 
and customer time windows. These problems have not only been widely studied in the operations 
research literature, but the datasets are readily available3.  

The well-known 56 Solomon benchmark problems for the VRP with hard time windows are 
based on six groups of problem instances with 100 customers. The six problem classes are 
named C1, C2, R1, R2, RC1, and RC2. Customer locations were randomly generated (problem 
sets R1 and R2), clustered (problem sets C1 and C2), or mixed with randomly generated and 
clustered customer locations (problem sets RC1 and RC2). Problem sets R1, C1, and RC1 have a 
shorter scheduling horizon, tighter time windows, and fewer customers per route than problem 
sets R2, C2, and RC2, respectively.  

Some studies have focused on the derivation or testing of asymptotic estimators of the TSP 
lengths (Bearwood et al., 1959, Ong and Huang, 1989). Hence, experimental tests have mostly 
included a large number of customers per route. However, real-world routes have a relatively 
small number of customers per route due to capacity, time windows, or tour-length constraints 
(Figliozzi et al., 2007). For example, in Denver over 50% of single and combination truck routes 
include less than six stops (Holguin-Veras and Patil, 2005) and 95% of the truck routes include 
less than 20 stops. As such, this research work tests the approximations using instances that 
range from one customer per route to over 35 customers.  

This research focuses on approximations to average VRP distance as a function of the number of 
customers to be served in a given day or instance ( n ), the amount of freight to be delivered ( D ), 
and the number of customers with time-window constraints ( tn ). The following real-world 
conditions must be considered: 

• not all potential N customers may request a visit on the same day and the number of 
customers served per day ( n ) may be significantly smaller than N.  

• The total amount to be delivered or picked up ( D ) also may vary on a daily basis, ranging  
from one to several pallets. 

• The number of customers with time-window constraints ( tn ) also may vary on a daily basis.  

                                                 
3 Several websites maintain downloadable datasets of the instances including Solomon’s own website: 
http://web.cba.neu.edu/~msolomon/problems.htm 
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As previously stated, while variability in the amount and characteristics of the day-to-day 
demand exists, the VRP problem analyzed in the following sections is neither dynamic nor 
stochastic as all the information related to the customers’ demands is known before the vehicles 
leave the depot or distribution center.  

The routes are designed daily and the number of routes/distances needed depends on the 
available freight. From an operational standpoint for the day-to-day design of routes, the daily 
customer demand is known one night in advance, hence, each daily route and sequence of 
customers depends on what freight is available on a particular day for delivery or pick-up. From 
a planning perspective (e.g., for fleet design) the average number of routes needed is not known 
in advance and depends on the specific values of n , D , and tn .  

Random samples of the Solomon problems are used to examine the accuracy of models. Out 
of N =100 possible customers in a service area A , a problem or instance is formed by a subset of 
n randomly selected customers. Using the first instance of the six problem types proposed by 
Solomon, 15 subsets of customers of size 70, 60, 50, 40, 30, 20, and 10 were randomly selected 
from the original 100 customers.  

To incorporate different levels of customer demand, new instances were created applying the 
demand factors presented in Table 4-1(3.21) to each subset of customers. Applying the factors in 
the second row of demand factors in Table 4-1, the customers have similar demands as in the 
original Solomon problems (the row characterized by all ones [1]). The resulting problems using 
the highest demand multipliers (last row of Table 4-1) are such that some customers are 
truckload (TL) or almost TL customers. Increasing some customer demands to or close to the TL 
level was done in order to test the approximations when problems are highly constrained and 
have a large number of routes and a small number of customers per route. Similarly, for each 
sample, out of the n customers a random subset of time windows is turned off; tP  takes on 
values from the set {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. In all cases the routes’ durations were limited by 
the depot time window. Hence, for each problem class or set, variability is introduced in three 
distinct ways: a) different subsets of customer locations, b) different levels of customer demands, 
and c) different levels of time-window constraints.    

Table 4-1(3.21): Demand Factors 
Problem C1 R1 CR1 C2 R2 RC2 
Vehicle Capacity 200 200 200 700 1000 1000 
Max. Demand 50 41 40 41 41 40 

D
em

an
d 

L
ev

el
 

0 0 0 0 0 0 0 
1 1 1 1 1 1 1 
2 1.6 1.78 1.8 3.6 5.68 5.8 
3 2.2 2.56 2.6 6.2 10.36 10.6 
4 2.8 3.34 3.4 8.8 15.04 15.4 
5 3.4 4.12 4.2 11.4 19.72 20.2 
6 4 4.9 5 14 24.4 25 
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In the Solomon problems, the depot has a central location with respect to the customers. To test 
the approximation when the depot is located in the periphery, all the created instances were also 
solved with the depot located at the origin (i.e., coordinates (0,0)). To study the approximation 
quality and parameter values without time windows, all the problem instances also were solved 
without time windows. To the best of the author’s knowledge, there is no published research that 
reports MAPE and simulation results for CVRP or VRP with time windows.  

All problem instances in this research were solved with a VRP improvements heuristic that has 
obtained the best published solution in terms of number of vehicles (Figliozzi, 2007).The 
solution quality of this heuristic is clearly superior than the performance of savings or 
construction heuristics used in previous research efforts such as Ong and Huang (1989) or 
Robuste et al (2004). 

To evaluate the prediction accuracy, the MAPE and the MPE (Mean Percentage Error) are used 
and calculated as follows: 

1

1 *100%
p

i i

i i

D EMPE
p D=

−
= ∑     

1

| |1 *100%
p

i i

i i

D EMAPE
p D=

−
= ∑     

Where the actual distance for instance i is denoted Di and the estimated distance is denoted Ei. 
For a given set of instances it is always the case that MPE MAPE≤ . The MPE indicates whether 
the estimation, on average, overestimates or underestimates the actual distance. The MAPE 
provides the average deviation between actual and estimated distance as a percentage of the 
actual distance. 



 

22 
 



 

23 
 

5.0 ANALYSIS AND DISCUSSION OF EXPERIMENTAL 
RESULTS 

All the regression results presented in this section are obtained by forcing the intercept or 
constant term to be zero; this is consistent with previous studies by Chien (1992) and Kwon et al. 
(1995). The results analysis is organized as follows: Section 5.1 provides results for the CVRP 
(i.e., no time window constraints); Section 5.2 provides results for the time window-constrained 
VRP approximations in two subsections separating results for the naïve approximations and the 
approximations for when the number of routes is unknown a priori. Lastly, a distance component 
analysis is provided in Section 5.3. 

5.1 COMPUTATIONAL RESULTS: MODELS WITHOUT TIME-
WINDOW CONSTRAINTS (CVRP) 

Results for CVRP instances (i.e., no time windows and the depot located at the center) are shown 
in Table 5-1. In the regression models, the average distance per sample size is the dependent 
variable. Model fit R2, MAPE, and MPE are displayed for models 1 to 6. The average, 
maximum, and minimum correspond to the first Solomon problem in each of the six problem 
types (R1, C1, RC1, R2, C2 and RC2). For the sake of clarity, only three decimals are displayed 
for the R2 values, and two for MPE and MAPE values. 

As can be seen from Table 5-1, all tested models have very good R2 values. However, models 
with more terms such as Model 5 and Model 6 have a superior MAPE performance. The models 
that adjust the tour distances using the term ( ) /n m n−  (Model 2, Model 4 and Model 6) have a 
superior MAPE performance over their counterparts with the same number of estimated 
coefficients (Model 1, Model 3 and Model 5). 

In the next section, the models with time-window constraints are analyzed which impact model 
prediction ability and the coefficients describing customer spatial distribution. 
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Table 5-1: Comparison of models 1 to 6 with centrally located and corner depots (no time windows) 
 Central Depot Corner Depot 
MODEL Statistic R2 MPE MAPE Statistic R2 MPE MAPE 

M
od

el
 1

 Average 0.966 1.40% 6.00% Average 0.968 6.20% 12.00% 
Min 0.933 -0.80% 4.20% Min 0.954 3.20% 6.20% 
Max 0.986 3.50% 7.30% Max 0.982 10.20% 17.90% 

M
od

el
 2

 Average 0.991 1.50% 4.70% Average 0.984 4.90% 7.90% 
Min 0.986 -1.20% 3.10% Min 0.977 2.50% 5.20% 
Max 0.994 4.20% 6.50% Max 0.990 9.20% 12.70% 

M
od

el
 3

 Average 0.999 1.00% 4.00% Average 0.994 6.80% 11.00% 
Min 0.998 -0.90% 2.20% Min 0.987 3.50% 5.80% 
Max 1.000 3.50% 6.40% Max 0.998 12.30% 17.80% 

M
od

el
 4

 Average 0.999 -0.70% 3.20% Average 0.997 4.30% 6.90% 
Min 0.999 -2.60% 1.70% Min 0.994 1.60% 2.80% 
Max 1.000 1.60% 4.50% Max 0.999 8.80% 12.10% 

M
od

el
 5

 Average 0.999 -0.40% 3.10% Average 0.998 -0.30% 4.80% 
Min 0.999 -0.70% 2.00% Min 0.997 -0.80% 2.80% 
Max 1.000 -0.10% 4.30% Max 0.999 0.20% 7.10% 

M
od

el
 6

 Average 1.000 -0.10% 2.40% Average 0.999 -0.10% 3.70% 
Min 0.999 -0.30% 1.50% Min 0.998 -0.50% 2.10% 
Max 1.000 0.10% 3.40% Max 1.000 0.30% 5.70% 

  

5.2 COMPUTATIONAL RESULTS FOR TIME WINDOW-
CONSTRAINED MODELS 

5.2.1 Results of naïve approximations of VRP distances 

The following is an analysis of the naïve approximations of the VRP distance with time-window 
constraints from section 3.1.2. The models are tested with centrally located and corner-located 
depots. Results for the depot located at the center are shown in Table 5-2. As with the models 
analyzed in section 5.1, the average distance per sample size is the dependent variable. Model fit 
R2, MAPE, and MPE are displayed for pooled data consisting of Model 1 and Model 2 and 
Model 7 through 12.  

As with the models without time-window constraints, all eight approximations with time 
windows have high R2 values. Model 2 adjusts the tour distances using the term( ) /n m n− , and 
has a superior MAPE performance compared to its counterpart, Model 1, with the same number 
of estimated coefficients. The models with more parameters have a similar or superior 
performance in this measure. Model 11, with the parameter t t tm p n n n n≈ = , has the best 
approximating power, followed by Model 10 ( t t tm p n n≈ = ), and Model 12 ( 2

t t tm p n n n≈ = ). 
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Table 5-2: Approximation Quality by Problem Class (Pooled data) 
Problem R2 MAPE MAP 

C101 0.996 5.60% -0.60% 

R101 0.999 3.40% -0.30% 

RC101 0.999 3.30% -0.50% 

C201 0.995 5.80% -1.80% 

R201 0.997 5.20% -0.20% 

RC201 0.999 4.00% -0.70% 

 

The data for all 12 models with time-window constraints are displayed in Table 5-3. Using a 
corner depot, the same trends are observed as with the models without time-window constraints. 
However, there is a significant improvement in the predicting power of Model 1 and Model 2 
while the remaining models have similar MAPE values. As previously observed, Model 11 has 
the best approximating power, followed by Model 10, Model 12, and Model 2, in this order.  
According to Model 11, the impact of time-window constraints on the number of routes is a 
function of the number of time-window constraints and the square root of the total number of 
customers. For a given tn , if the number of customers increase by a factor x, the increase in the 

number of routes due to time-window constraints increases by a factor x . 

Although Model 7 and 12 provide good approximations, they do not account for the interrelation 
between the number of routes generated by customer demands and time windows. In instances 
that are highly constrained, both in terms of customer demands and time windows, the following 
constraint may be binding or even violated: 

d d t tm k m k m≥ +  (5.1)

Let maxm  denote the maximum number of routes that can be achieved by the combination of 
customer demands and time-windows constraints (a proxy is needed because, by definition, m  is 
an unknown). The term max(1 ) /dm m− is introduced to avoid the violation of the constraint 

d d t tm k m k m≥ + when customers’ demands are high and all customers have tight time windows4. 
Model 14 is the result of adjusting Model 12: 

Model 14: ( ) ( )
rnnpk

m
m

rmkAnkVVRP tt
d

ddl
n

max

1
22

−
++≈

 

                                                 
4 Alternatively, the term max(1 ) /t tk m m− can be introduced if time-window constraints generate more routes than 

demand constraints. However, the term t tk m  is unknown and an iterative approach is required. On the other hand, 

the value of 1dk ≈ ; hence max(1 ) /dm m− provides a reasonable approximation, without iterations, when demand 
constraints are at least as relevant as time-window constraints. 
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Table 5-3: Comparison of models 1 to 12 with centrally located and corner depots and time-window 
constraints 
  Corner Depot Central Depot 

MODEL Statistic R2 MPE MAPE R2 MPE MAPE 

Model 1: ( ) rmAnkVVRP l
n 2+≈  Average 0.955 3.40% 8.70% 0.985 0.80% 3.30% 

Min 0.941 0.00% 5.60% 0.970 -1.00% 1.70% 
Max 0.977 6.20% 13.20% 0.994 2.80% 4.50% 

Model 2: ( ) rmAn
n

mnkVVRP l
n 2+

−
≈  

Average 0.985 3.20% 5.40% 0.981 1.40% 2.90% 
Min 0.976 0.90% 3.20% 0.965 -0.20% 1.50% 
Max 0.989 6.60% 9.30% 0.995 3.00% 4.70% 

Model 3: ( ) mkAnkVVRP ml
n +≈  Average 0.998 2.70% 5.60% 1.000 -1.00% 3.10% 

Min 0.996 1.00% 2.40% 0.999 -2.30% 1.90% 
Max 0.999 6.20% 10.20% 1.000 0.90% 4.40% 

Model 4: ( ) mkAn
n

mnkVVRP ml
n +

−
≈  

Average 0.999 3.00% 5.00% 1.000 0.10% 2.10% 
Min 0.997 1.00% 3.50% 0.999 -1.00% 1.70% 
Max 0.999 6.10% 9.00% 1.000 1.20% 2.60% 

Model 5: 
( ) mknAkAnkVVRP mbl

n ++≈  
Average 0.999 -0.40% 3.90% 1.000 -0.40% 2.10% 
Min 0.999 -0.90% 2.10% 0.999 -0.70% 1.30% 
Max 1.000 -0.10% 5.60% 1.000 -0.10% 2.60% 

Model 6: 

( ) mknAkAn
n

mnkVVRP mbl
n ++

−
≈  

Average 0.999 -0.20% 2.90% 1.000 -0.10% 1.70% 
Min 0.999 -0.50% 1.60% 0.999 -0.30% 1.20% 
Max 1.000 0.00% 4.50% 1.000 0.00% 2.20% 

Model 7: 
2( ) 2 2n

l d d t tVRP V k An k m r k p r≈ + +  

Average 0.991 13.00% 7.40% 0.989 13.70% 8.00% 
Min 0.984 10.50% 5.30% 0.982 7.20% 3.20% 
Max 0.995 16.20% 10.10% 0.996 20.00% 13.00% 

Model 8: 

( ) 2 2n
l d d t tVRP V k An k m r k p r≈ + +  

Average 0.991 12.50% 6.90% 0.989 13.30% 7.40% 
Min 0.985 9.90% 4.70% 0.982 7.10% 3.00% 
Max 0.995 15.40% 9.50% 0.997 19.40% 12.30% 

Model 9:
 ( ) 2 2n

l d d t tVRP V k An k m r k p n r≈ + +  

Average 0.994 9.50% 5.00% 0.994 9.60% 5.20% 
Min 0.990 6.80% 2.60% 0.990 5.90% 2.10% 
Max 0.997 12.20% 7.60% 0.997 14.10% 9.10% 

Model 10:
 ( ) 2 2n

l d d t tVRP V k An k m r k p n r≈ + +  

Average 0.996 7.30% 2.80% 0.996 7.00% 2.70% 
Min 0.994 5.90% 0.80% 0.995 5.10% 1.10% 
Max 0.998 9.60% 5.40% 0.998 9.40% 5.30% 

Model 11:
 ( ) 2 2n

l d d t tVRP V k An k m r k p n n r≈ + +
 

Average 0.996 7.00% 1.90% 0.997 6.70% 1.80% 
Min 0.994 5.90% 0.20% 0.995 5.00% 0.40% 
Max 0.998 8.50% 4.30% 0.998 8.00% 3.80% 

Model 12:
 2( ) 2 2n

l d d t tVRP V k An k m r k p n r≈ + +  
Average 0.996 7.40% 1.80% 0.996 7.30% 1.70% 
Min 0.994 6.40% 0.20% 0.994 5.10% 0.40% 
Max 0.998 8.40% 4.00% 0.998 8.80% 3.50% 

 

  



 

27 
 

Table 5-4 compares these models for centrally located and corner depots. The results indicate 
that the additional terms do provide a better approximation both in terms of MAPE and MAP 
values. 

Table 5-4: Comparison of Model 11 and adjusted Model 14 approximation quality for corner and centrally 
located depots 

  Central Depot Corner Depot 
Model Statistic R2 MAPE MAP R2 MAPE MAP 

Model 11 Average 0.997 6.70% 1.80% 0.996 7.00% 1.90% 

Min 0.995 5.00% 0.40% 0.994 5.90% 0.20% 
Max 0.998 8.00% 3.80% 0.998 8.50% 4.30% 

Model 14 Average 0.996 6.50% 0.80% 0.997 6.50% 0.70% 

Min 0.994 4.80% -0.70% 0.996 5.60% -1.20% 
Max 0.998 8.00% 2.60% 0.998 7.50% 3.20% 

 
The term ( ) nmn − seems to provide an explanatory advantage but cannot be used in Model 7 to 
Model 12 because m  is unknown. However, the adjustment provided by ( ) nmn −  can be 
simulated if d d t tk m k m+ is used as a proxy for m . This hypothesis is tested using the best 
approximating Model 14. Model 14 is estimated and with the calibrated parameters, dk  and tk , 
and a new Model 15 is estimated with the previously estimated parameters '

lk , '
dk , and '

tk .  

Model 15:
 

( ) ( ) ( )
rnnpk

m
m

mrkAnnnpk
m

m
mkn

n
k

VVRP tt
d

ddtt
d

dd
ln ′−

+′+⎟⎟
⎠

⎞
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⎝

⎛ −
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′
≈

maxmax

1
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Table 5-5 compares Model 14 and Model 15 for centrally located and corner depots. The results 
indicate that the proxy approximation of the term ( ) nmn −  does improve the performance in 
terms of MAPE and MAP values. This is not surprising given that it has some desirable 
theoretical properties (Figliozzi, 2008): (a) when mn =  the estimated local distance is zero, 
whereas (b) when n m>>  or 1m =  the local tour distance in the limit becomes similar to the 
expression suggested by Beardwood et al. (1959). The convergence to the final 
parameters '

lk , '
dk , and '

tk  is very fast and another iteration does not change the value of the 
estimated regression parameters. 

Table 5-5: Comparison of Model 14 and adjusted Model 15 approximation for corner and centrally located 
depots 

  Central Depot Corner Depot 
Model Statistic R2 MAPE MAP R2 MAPE MAP 

Model 14 

Average 0.996 6.50% 0.80% 0.997 6.50% 0.70% 
Min 0.994 4.80% -0.70% 0.996 5.60% -1.20% 
Max 0.998 8.00% 2.60% 0.998 7.50% 3.20% 

Model 15 

Average 0.997 5.90% 0.30% 0.997 5.60% 0.00% 
Min 0.995 4.20% -1.00% 0.996 4.50% -1.40% 
Max 0.998 7.20% 2.20% 0.998 6.20% 0.90% 
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The estimated regression parameters for Model 14 disaggregated by problem type are shown in 
Table 5-6. It is reassuring that the values of the parameters lk , dk , and tk broadly reflect the 
characteristics of the underlying problem types; Table 5-7 contains some summary statistics of 
the problem types demand and time-window distributions. The value of tk displayed in Table 5-6 
is “normalized” so it has the same order of magnitude as the other parameters lk  and dk : 

( ) tt knnknorm =  where 40=n  is the average number of customers across all samples. As 
expected, the values of tk are higher for problems where time-window constraints are 
predominant (i.e., type 1 problems and, in particular, R1 and RC1 problems (see time-window 
lengths in Table 5-7)). The values of dk  are distributed around one and tend to be smaller when 
there is a higher time-window influence. 

Table 5-6: Regression Parameters by Problem Type (Model 14) 
Class kl t-stat Norm(kt) t-stat kd t-stat 
C1 0.52 11.0 4.85 20.7 1.07 73.5 
R1 1.38 29.3 7.28 30.7 0.83 52.7 
RC1 1.66 34.2 6.34 25.6 0.78 57.8 
C2 0.79 26.4 3.01 19.9 0.99 104.1 
R2 0.82 32.0 4.08 30.7 1.05 122.9 
RC2 0.78 29.8 3.65 26.4 1.03 138.7 

 
Table 5-7 Statistics of customer distributions by problem type 
Class Statistic X Coord. Y  Coord. Demand TW Begin TW End TW Length Service Time 

C1 
 

Min 0 5 10 10 67 37 90 
Median 40 48 10 418 480 61 90 
Average 42 49 18 427 488 61 90 
Max 95 85 50 1,054 1,127 89 90 

R1 Min 2 3 1 18 28 10 10 
Median 31 35 13 93 103 10 10 
Average 34 36 15 96 106 10 10 
Max 67 77 41 200 210 10 10 

RC1 Min 0 3 2 11 41 30 10 
Median 40 41 16 87 117 30 10 
Average 40 44 17 92 122 30 10 
Max 95 85 40 192 222 30 10 

C2 Min 0 5 10 8 168 160 90 
Median 41 45 10 1,449 1,609 160 90 
Average 42 48 18 1,470 1,630 160 90 
Max 95 85 50 3,119 3,279 160 90 

R2 Min 2 3 1 17 172 27 10 
Median 31 35 13 386 459 117 10 
Average 34 36 15 391 507 116 10 
Max 67 77 41 849 980 212 10 

RC2 Min 0 3 2 11 131 120 10 
Median 40 41 16 351 471 120 10 
Average 40 44 17 371 491 120 10 
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Max 95 85 40 822 942 120 10 
 

5.2.2 Results of VRP approximations when the number of routes is unknown 

The average probabilities νP−1  of failing to connect any two customers due to time-window 
constraints are shown in Table 5-9. The values of νP−1  reflect the characteristics of the 
underlying problem types. Type 1 problems where time windows are tight result in higher νP−1  
values. Table 5-9 also provides an understanding of the relative impact of time-window 
constraints on distance traveled. As the level of demand increases, the relative size of the “bin” 
or vehicle capacity is reduced and there is a consequent reduction in the feasible number of 
customers per route. Hence, the impact of time-window constraints is reduced as capacity 
constraints become more “binding.” 

For Model 13 of Section 3, the estimated regression parameters disaggregated by problem type 
are shown in  

Table 5-10. These parameters are obtained by pooling the data of all different demand levels per 
problem type (i.e., using one set of parameters ( )mm kkkk νμμλμμ

~,~,~,~
 for all instances). It is reassuring 

that the regression parameters are not only statistically significant but also reflect the 
characteristics of the underlying problem types. The values of kμ

%  are lowest and highest for 

clustered and random problems, respectively. In all cases the coefficients kλμ
%  are significant and 

positive, which suggests that time-window constraints increase the distance traveled between 
customers. The coefficients kλμ

%  follow a similar trend as the kμ
%  coefficients; lowest and highest 

values for clustered and random problems, respectively. As expected, the values of mkμ
%  are 

slightly less than one but significantly different than zero. The type C2 coefficients demonstrate 
that although mkνμ%  is zero, kλμ

%  can be positive and significant (i.e., time-window constraints 
increase the inter-customer distance but do not affect the number of routes that is determined by 
capacity constraints). 

The approximation quality is high, particularly for random and random-clustered problems. The 
values of MAPE range from 3.4% to 5.6% with an average of 4.5% for the pooled data. As 
expected, a better fit can be obtained if a regression is run for each demand level. Approximation 
quality, as evaluated by MAPE, improves significantly as shown in Table 5-12.  

Table 5-8: Demand Factors 
Problem  C1  R1 CR1 C2 R2 RC2 
Vehicle Capacity  200  200 200 700 1000 1000 
Max. Demand  50  41 40 41 41 40 

D
em
an
d 

Le
ve
l 

0  0  0 0 0 0 0 
1  1  1 1 1 1 1 
2  1.6  1.78 1.8 3.6 5.68 5.8 
3  2.2  2.56 2.6 6.2 10.36 10.6 
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4  2.8  3.34 3.4 8.8 15.04 15.4 
5  3.4  4.12 4.2 11.4 19.72 20.2 
6  4  4.9 5 14 24.4 25 

 
Table 5-9. Average Probability ( )νsP−1  

    C1 R1 RC1 C2 R2 RC2 

D
em

an
d 

L
ev

el
 0 13.60% 25.40% 20.50% 0.00% 9.10% 10.60% 

1 13.60% 25.40% 20.50% 0.00% 9.10% 10.60% 
2 1.20% 23.10% 7.00% 0.00% 1.00% 1.00% 
3 0.00% 9.80% 1.40% 0.00% 0.00% 0.00% 
4 0.00% 2.60% 0.60% 0.00% 0.00% 0.00% 
5 0.00% 1.80% 0.00% 0.00% 0.00% 0.00% 
6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 
Table 5-10. Estimated Regression Coefficients by Problem Class 

Problem kμ
%  t-stat kλμ

%  t-stat mkμ
%  t-stat mkνμ%  t-stat 

C101 0.67 24.3 0.25 5.6 0.81 48.5 1.31 6.49 

R101 0.89 54.6 0.32 8.0 0.80 78.5 1.02 24.42 

RC101 0.70 40.8 0.21 4.1 0.94 108.2 0.98 16.51 

C201 0.70 37.5 0.29 10.1 0.78 55.7 ----- ----- 

R201 0.99 48.1 0.41 17.1 0.73 57.9 1.44 16.84 

RC201 0.77 48.8 0.34 12.5 0.88 106.9 1.54 25.87 

 
Table 5-11. Approximation Quality by Problem Class (Pooled data) 
Problem R2 MAPE MAP 

C101 0.996 5.6% -0.6% 

R101 0.999 3.4% -0.3% 

RC101 0.999 3.3% -0.5% 

C201 0.995 5.8% -1.8% 

R201 0.997 5.2% -0.2% 

RC201 0.999 4.0% -0.7% 

 
Table 5-12. Average Approximation Quality by Problem Class (By Distribution) 
Problem R2 MAPE MAP 

C101 0.998 3.9% -0.7% 

R101 0.999 2.5% 0.4% 

RC101 1.000 1.9% -0.4% 

C201 0.994 5.5% 0.3% 

R201 0.999 3.1% -0.4% 

RC201 0.999 2.6% -0.3% 
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5.3 DISTANCE COMPONENT ANALYSIS 

 
The fraction of connecting distance, cf , can be obtained as the ratio between the connecting 
distance and total VRP distance, using Model 2: 

An
n

mnkmr

mrf
l

c −
+

=
2

2   
(5.2)

 

The fraction of connecting distance is a function of a coefficient λ  and the number of customers 
and routes: 

( )

nm
mn

mnfc −
+

=
λ

λ
1

1,, ,  
(5.3)

 

where 

r
Akl

2
=λ . 

 
(5.4)

 

As intuitively expected, expression (5.3) renders 1cf =  when n m=  or 0λ = . The coefficient λ  
is the dimensionless “service area-depot” factor that reflects the relative size of the distribution 
area in relation to the average distance between the depot and its customers. Hence, λ  is highest 
for centrally located depots and tends to zero as the average distance between the depot and its 
customers increases.   

For large n  and 1n m>> = , the decrease in connecting distance is proportional to the term: 

( )
n

m

mnfc λ
λ

+
≈

1

1,, ,  
(5.5)

 

with mn >> . 

Hence, for the TSP with large n : 

( )
n

nfc λ
λ 11,, ≈ , 

 
(5.6)
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with 1>>n . 

For a TSP, the parameter 0cf →  when n →∞ ; this is congruent with Beardwood et al. (1959) 
which indicates with probability one that the average inter-customer distance tends to /lk A n  

when n →∞ . Figure 5-1 shows the relationship between cf  and ( ) /( )n m m n−  for the R2 
subsets. There is a clear division between VRP (to the right) and TSP points (to the left) in 
Figure 5-1. This is expected from the analysis of expression (5.3). For a given λ , when more 
constraints are added m n→  and 1cf → ; when the number of routes remains constant and more 
customers are added, n →∞ , then 0cf → . As expected, the corner depot λ  is smaller than the 
center depot λ , hence, for the same ( / 1)n m −  the fraction of connecting distance cf  tends to be 
higher for the corner depot points.  

 

Figure 5-1: TSP and VRP Fractions of Connecting Distance 
 
The analysis of cf may be used to simplify the estimation of distances in theoretical logistics 
models. Even in TSP instances, the connecting component prevails over the local tour 
component for λ  and n  where ( , ,1) 1cf nλ ≈ . For situations where ( , , ) 1cf n mλ ≈ , the local tour 
term can be safely ignored: 

( ) rmkVVRP m
n 2≈ , (5.7)

whereas for situations where ( , , ) 0cf n mλ ≈  it is the connecting distance term(s) which can be 
safely ignored: 

( ) AnkVVRP l
n ≈ . (5.8)
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5.4 REAL-LIFE APPLICATION 

Previous literature has solely tested TSP or CVRP distance approximations on simulated 
environments with Euclidian distances. Although approximation formulas have theoretical 
applications in transport and logistics planning models, they also can be used to estimate 
distance, costs, and times in real-life planning applications. The original motivation for this 
research came from the study of distribution routes for a freight forwarding company based in 
Sydney, Australia. Distribution tours originated at a depot located close to the port of Sydney; 
the customers were mostly located in different industrial suburbs. The pattern of customer 
distribution resembles the mix of random and clustered customers as in the random-clustered 
Solomon problems. The company’s customers are in the hundreds, but they are not visited every 
day. The freight forwarding company consolidates less-than-container (LTC) shipments and 
customers are visited only if a consignment has arrived before the distribution cutoff time. 
Further details about the tour characteristics can be found in Figliozzi et al.  [22].  

Model 4 was tested with customers located in the industrial suburb of Bankstown, with 30 
customers distributed in an irregular area of 39.5 squared kilometers (Figure 5-2). The delivery 
area is bordered by the Bankstown local airport to the west, a freeway to the south, and 
secondary highways to the east and north. The average distance between the depot and the 
industrial suburb is approximately 22 kilometers on the connecting freeway. To test Model 4, 
five sets of 2, 4, 6, 8, 10, 15, and 20 customers were randomly chosen among the existing 
customers in the suburb to simulate the daily demand. Selecting random subsets of customers 
from the pool of existing customers in the area is a fair representation of the real demand. The 
number of customers visited per day varies widely; it may be as low as one or two or, 
exceptionally, close to 30.  In the results presented hereafter all customers have the same 
probability of a visit. Although this is not the case in reality, it simplifies the exposition and 
introduces greater variation in the customer subsets.  

Silverwater 
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Figure 5-2:  Relative Location of the Port of Sydney and Delivery Industrial Areas 
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Due to contract and labor policies, the main distribution cost is associated with the number of 
driver hours needed. Therefore, the objective is to minimize total route durations and avoid 
expensive overtime (overtime pay rate is 50% higher). An important consideration when 
working with travel times in an urban area is that speeds are strongly influenced by congestion, 
road characteristics, and speed limits. In this application the travel speeds used are: 65 km/hour 
for freeways, 35 km/hour for main connecting streets (four lanes or more with traffic lights), and 
25 km/hour for local streets. With this speed information, a matrix of shortest travel times 
between customers and the depot was constructed using the urban highway network and 
geographic information system (GIS) software.  

Figure 5-3 displays the relationship between the Euclidian distance and the distance based on the 
shortest time path for all customers and the depot. The high concentration of short-distance 
points close to the origin correspond to the distances between suburban customers while the 
longer distances are mostly depot customers. The R2 of 0.93 indicates that despite the irregular 
shape of the distribution area and the mix of travel speeds, the Euclidian distance is a fairly good 
predictor of the actual distance traveled between customer pairs or depot-customer pairs.  From 
existing customer data, an average service time of 45 minutes per customer is used.  
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Figure 5-3 Euclidian Distance vs. Shortest Time Distance among Suburban Customers and Depot Customers 

 
Three different routing scenarios were constructed: (a) no constraints or TSP case, (b) with a tour 
duration constraint of eight hours, and (c) adding four-hour time windows per customer. The 
number of routes varied from one route in the TSP instances to five routes in the instances with 
time windows. The regression was estimated using the consolidated data from all three scenarios. 
The results are shown in Table 5-13. The network distance traveled is well approximated with a 
MAPE of 4.2%. The prediction of travel time or driving time in hours has a MAPE of 11.7%. The 
good MAPE percentage is not surprising given the good correlation between distance traveled 
and time driven (see Table 5-4). Model 4 was used to approximate times and distances due to the 
different travel speeds; the connecting distance between the depot and customers does not always 
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follow the same type of highway. These results are encouraging and show that the proposed 
models may have useful applications in urban networks and modeling applications [23, 24] . 
While these results are promising, from this example it is impossible to generalize the results. 
Further research efforts are necessary to study the accuracy of VRP distance approximation in 
cities with different layouts and highway networks. 
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Figure 5-4: Distance Traveled and Time Driven 

 
Table 5-13: Real-life network distance and time estimation (Model 4) 
Instance R2 MPE MAPE Coefficient kl km 
Distance 
(kms) 

0.999 -0.5% 4.2% Estimated 0.80 49.51 

t-stat 4.158 48.317 
Time 
Driven 
(hrs) 

0.988 5.9% 11.7% Estimated 0.028 1.25 

t-stat 2.838 13.088 
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6.0 CONCLUSION 

This is the first research effort to study approximations to the average length of VRP when there 
is variability in the number of customers, time-window constraints, and demand levels. These 
approximations are intended for the strategic and planning analysis of transportation and logistics 
problems, when the number and location of customers vary daily and are not known a priori. 
Several approximations are proposed and successfully tested using instances with different 
patterns of customer spatial distribution, time windows, customer demands, and depot locations. 
A relatively simple approximation formula can be used to approximate reasonably well the 
impact of the number of time-window constraints and the demand level on the number of 
additional routes.  

Adjustment factors were successfully introduced to enforce the total number of routes constraint 
and to account for the decrease in local distance when more routes are needed. The adjustments 
not only improve the approximation quality in terms of MAPE and MAP, but also render 
parameters that reflect the characteristics of the underlying routing problems. The VRP distance 
can be broken down in three distinct components: local, demand, and time-window distances. 
The level of demand and time-window constraints are successfully used to predict the number of 
routes needed. The analysis of tradeoffs between distances travelled, number of customers, 
number of routes, and depot/delivery area factors allows for the determination of conditions that 
correspond to either VRP or TSP routes. The distance analysis for VRP and TSP limit cases 
provide a theoretical justification to simplify the distance expressions in limit cases where the 
connecting distance or the local tour component prevails.   
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8.0 APPENDIX 

Lemma 2. The expected number of additional routes due to time-window constraints, ( )E mνμ , is 
a continuously decreasing function of νP .  

( )[ ] ( ) ( )[ ]
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(8.1)

 

Proof. This is a continuous function because it is a linear combination of continuous functions of 
the variable νP . 

The weight factors 
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(8.2)
 

are applied to each feasible route with c  customers per route. Developing the sum of weight 
factors and denoting ( ) cPcP =  for the sake of brevity 
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Since 11 =P  as all customers can be served from the depot without violating time-window 
constraints, for 2b =  expression (8.3) is equal to one: 
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For 3b = , expression  is also equal to one: 
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By induction, for any positive integer b , expression (8.3) is always equal to one such that 
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Developing the sum and replacing ( ) 11 −− == cc
c PPP ν  for the sake of brevity, for any sum up 

to b i= : 
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Making the terms 1,...,1,1 −=− ijP j  common factors in equation (8.7) gives 
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For any increase in νP , any 1,...,1,1 −=− ijP j
 will have an increase. However, any increase in 

jP will reduce the term jP−1  that multiplies the sum of the 1, 2,...., 2,1j j− −  terms. Since the 
sum of the weight factors remains constant and equal to one, as νP  increases the weight applied 
to the terms: 

1
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1

0132 PnPn
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decreases whereas the term 
j

Pn
j 1−

increases for any 1,..., 1j i= − . Hence, as νP  

increases ( )E mνμ decreases. In particular, as νP  increases the term with the largest index always 
increases whereas the term with index one always decreases.  
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