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1. RISK-BASED DESIGN 

All engineers design in the face of uncertainty. Uncertainty about material 
properties, about conditions in service, about engineering models, and many 
others. Traditionally, geotechnical engineers have accounted for uncertainty 
by specifying capacities greater than projected demand. The ratio of capacity 
to demand--the factor of safety--is usually chosen by experience. 

This approach has certain drawbacks. For example, there is a tendency to be 
conservative about each estimate needed for design. As a result, the overall 
factor of safety in a design is unknown. Also, conservatism in estimates of 
soil properties and loads is subjective. Thus, predictions are often not 
repeatable. Finally, uncertainty varies from situation to situation. A fixed 
factor of safety implies a different likelihood of failure in each different 
situation. 

Risk-based design can be used to overcome some the limitations of fixed factors 
of safety. The term "risk-based design" means nothing more than attempting to 
quantify uncertainties inherent to an engineering problem and dealing with them 
in an engineering-like manner. 

Risk-based design in geotechnical engineering complements normal data analysis 
and modeling. At the data analysis stage, uncertainties are identified and 
simple statistical tools are used to quantify them. At the modeling stage, 
mathematical techniques are used to assess the affect of uncertainties on 
performance predictions. The end result of risk-based design if a quantified 
measure of confidence that a facility will perform satisfactorily. This 
measure, called the "reliability index," describes the relative error in 
performance predictions compared to the margin of safety designed into a 
facility. 

2. UNCERTAINTY IN GEOTECHNICAL ANALYSIS 

Four principal uncertainties enter calculations of the response of a soil 
deposit to design loads (Figure 1): 

1. Soil (spatial) variability, 
2. Measurement noise, 
3. Measurement or model bias, and 
4. Statistical error due to limited measurements. 

These are the uncertainties affecting calculated predictions. 

Soil variability is important because the engineering properties of soils 
fluctuate from one location to another. Major variations such as 
stratification are accommodated in calculations, but smaller scale variations 
are not. Nontheless, these latter variations can be 30 to 50 percent of the 
average, as reflected in the large scatter observed in test data. 
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Figure 1 Sources of error or uncertainty in soil property estimates 
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The second source of uncertainty, measurement noise, also contributes to data 
scatter. Measurement noise is random error caused by operator or instrumental 
effects, or by small but real variation in the soil deposit (e.g., stones or 
shells). Statistical methods are used to separate the fraction of data scatter 
due to real variability from that due to measurement noise. 

The last two sources of uncertainty, measurement bias and statistical error, 
cause systematic errors. The distinction between data scatter and systematic 
error is shown in Figure 2. Systematic error is a consistent difference 
between the actual value of some property and the measured or estimated value. 

Measurement bias is common in geotechnical engineering. It is caused by s u c h 
things as soil disturbance, or differences between how a property is measured 
and how a structure imposes load on the soil mass. For example, field vane 
measurements of undrained strength introduce a rotation of principal planes, 
vertical failure surfaces, and other conditions which differ from those 
existing under a foundation or embankment. Therefore, strengths 
back-calculated from embankment failures systematically differ from those 
measured with the vane. Statistical error is caused by limited numbers of 
measurements. For example, the average values of two sets of measurements vary 
somewhat because the measurements themselves vary. Each average differs 
slightly from the true average across a site. Such error is said to be 
'statistical,' as it derives from the statistical variation among sets of 
measurements. 
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Figure 2 Distinction between data scatter and bias error. 
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Data scatter and systematic error each introduce uncertainty to geotechnical 
calculations. Yet, the effects of each differ. Risk-based design separately 
assesses the four sources of uncertainty and separately evaluates how each 
affects predictions. The implication of uncertainty for design conservatism 
and the manner in which one best accommodates uncertainty both depend on the 
mix of contributions from the four sources. 

3. DESCRIBING UNCERTAINTY 

Estimates of soil properties for most purposes are adequately represented by 
two numbers, (a) a best estimate, and (b) a measure of uncertainty. 
The average value and the standard deviation, respectively, are used to 
express these two attributes. 

3.' 'Best Estimate' = Average 

The average (or mean) of a set of measurements x = {x" ••• ,xn } is denoted mx ' 
and defined as 

= = mean ( 1 ) 

In effect, the mean is the center of gravity of a set of measurements along 
the x-axis. For this reason it is used as the best single-valued estimate of 
x, being neither conservative nor unconservative. Figure 3 shows a histogram 
of standard penetration test (SPT) data taken in an alluvial sand deposit. 
The mean of these measurements is mx = 8.9 bpf. 

3.2 'Uncertainty' = Standard Deviation 

The standard deviation of the measurements x is their variation with respect to 
the mean, expressed as the square root of the moment of inertia of the data 
abou t the mean 

1_'_ L: (xl" _ m
x

) 2 
n-l 

= standard deviation (2a) 

sx measures the dispersion or uncertainty about the value of x. The standard 
deviation of the SPT data of Figure 3 is sx = 4.4 bpf. 

4 
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Figure 3 Histogram of standard penetration test blow counts 
in a silty sand. 

Some engineers prefer to work with relative rather than absolute uncertainty. 
The relative uncertainty, measured by the ratio of standard deviation to mean, 
is called the coefficient of variation 

coefficient of variation 

The coefficient of variation of the data in Figure 3 is ~N = sN/mN = 
4.4/8.9 = 0.49. 

(2b) 

In calculations it is often convenient to deal with the square of the standard 
deviation rather than Sx itself. The square of the standard deviation is 
called the variance 

s 2 = variance x (3 ) 

Given the similarity of mx and sx2 to mechanical moments, the mean and 
variance are often called the first and second (statistical) moments of x. 
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3.3 'Association' Between Uncertainties = Correlation Coefficient 

When dealing with two or more soil properties, uncertainties in estimates may 
be associated with one another. The uncertainty in one estimate may not be 
independent of the uncertainty in the other estimate. For example, in 
estimating 'cohesion' and 'friction' parameters of a Mohr-Coulomb strength 
envelope (Figure 4), if the slope of the envelope tan~ is estimated too high, 
the intercept c will be too low. The reverse is true if tan~ is estimated too 
low. Thus, the uncertainties about correct values for tan~ and care 
associated with one another. 

The degree of association between two uncertain estimates is expressed by the 
correlation coefficient. The correlation coefficient for a set of paired data 
~,y" = { (x"y,), ••• , (xn,Yn) } is denoted r, and defined as 

n 
correlation coefficient (4 ) r = 

In effect, the correlation coefficient is a product moment of inertia. It 
expresses the degree to which two parameters vary together. The correlation 
coefficient is non-dimensional because deviations of x and y from their 
respective means are measured in units of the respective standard deviations. 

CI) 
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I­
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a: « w 
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NORMAL STRESS 

SLOPE 
TOO 
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INTERCEPT 
TOO HIGH 

Figure 4 Correlation of uncertainties in Mohr-Coulomb 
strength parameters. 
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Figure 5 Examples of various levels of correlation between x and y. 

For data which vary together--higher values of x are associated with higher 
values of y--r; is positive. Xi is greater than mx ' Yi tends to be greater 
than ffiy, and vice versa. Thus, the product in equation 4 tends to be positive. 
For data which vary inversely--higher values of x are associated with lower 
values of y--r is negative. The product of equation 4 tends to have one 
positive term and one negative term. The range of r is =1: r-+l implies a 
linear relation between x and y with positive slope, r = -1 implies a linear 
relation with negative slope, and r = 0 implies a "shotgun blast" (Figure 5). , 
The corresponding dimensional form of 4, that is, using the absolute deviations 
of x and y rather than normalized deviations, is called the covariance and 
denoted 

c = covariance 
n 

(5 ) 

From the definitions of 4 and 5 

r = c (6 ) 
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4. UNCERTAINTY IN A CALCULATED PREDICTION 

Engineering analysis uses mathematical models of one form or another to predict 
facility performance. Estimates of soil properties are used as input to these 
models, and calculations of settlement, factor of safety, or other performance 
variables are obtained as output. In risk-based design soil properties are 
estimated by a mean and standard deviation, and this mean and standard 
deviation are translated through an engineering calculation to obtain a 
corresponding mean and standard deviation on the performance variable. 

Mathematically, an engineering calculation can be represented by the model 

y = g(x) (7) 

in which x = a soil property or other input parameter, and y = a calculated 
prediction (Fig. 6). In risk-based design the mean mx and standard deviation 
Sx of the input parameter are translated through g(x) to obtain a mean my and 
standard deviation Sy of the calculated prediction. The mathematical approach 
to translating (mx,sx) to (my'sy) is based on a linear approximation. For 
most geotechnical purposes this linear approximation is sufficiently accurate 
to meet practical needs. 

INPUT 
X 

Figure 6 

-- MODEL 
g(X) 

OUTPUT 
V 

Error propagation through an engineering mode~. 
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4.1 Best Estimate (Mean) Prediction 

Operationally, best estimates of soil properties are translated through g(x) 
using a linear approximation. This approximation replaces g(x) by its tangent 
at mx (Figure 7). Applying probability theory leads to the result, 

(8 ) 

in which ~ indicates a tangent approximation. In words, the mean or best 
estimate of the prediction y is the function of the mean or best estimate of 
the parameter x. This is the normal deterministic solution using 
best-estimate soil properties as input. 

Figure 8 shows a calculation of bearing capacity for an unembedded footing in 
which data on friction angle come from laboratory tests, and bearing capacity 
is calculated using Terzaghi's bearing capacity factor N-{ . This factor is 
related empirically to >' by the equation logeN-.; '" (-2.107+0.173 ) ') (Ingra and 
Baecher, 1983). ' 
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Figure 7 Tangent approximation for calculating mean and standard 
deviation of Y from mean and standard deviation of X. 
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------------~--~~~~~~~-----------------------------------------------------

CALCULATION SHEET 

PROBLEM: bearing capacity CALCULATED BY: I 
DATE: CHECKED BY: I 

/------------------------------------------------------------------------------/ 
I, PROBLEM SOIL PROPERTIES 1\ 

q = 10 kip 
......... ~~,ii '!'i' m~ = 36.4 0 (n=5) 

B=5' I s '2 ~ = ( 1 .14 0 
) 2 

__________ 1 I __ ~:~~_ s~~ : ~~~ pcf 

1/1//1111111111/11/1111111/1111111 loge Ny = -2.107+0.173$ 

q = (1/2) y b Ny 

(a) BEST ESTIMATE (MEAN) OF BEARING CAPACITY 

= 
= 
= 

( 1/2) (!tty) (b) (mNY) 
(1/2) (120) (5) (66.0) 
19.8 kip 

(b) UNCERTAINTY (STANDARD DEVIATION) OF BEARING CAPACITY 

2 dq dNy 
)2 s2. s lnNy = ( dNy d$' 

= [(1/2)yB]2 [0.173exp(-2.107+0.173.)]2 
= [ ( 300) 2 ( 11 .4 ) 2 ( 1 .14) 2 

= (3.9kip)2 

(c) RELIABILITY INDEX 

IDqv - qvo 
= 

S~v 
19. - 10 = 3.9 

= l.:.2. 

Figure 8 
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4.2 Uncertainty (Standard Deviation) in Predictions 

By similar reasoning, the standard deviaton on an input soil property x is 
translated through g(x) to find a corresponding standard deviation on the 
prediction y. The tangent approximation leads to the relation 

(9) 

In words, the standard deviation of the prediction y is the product of the 
standard deviaton of the parameter x and an influence factor equal to the 
derivative of y with respect to x (Figure 8). The relation is exact when g(x) 
is linear. 

When the prediction depends on a set of parameters x={x" ••• ,xn } the equivalent 
forms of Egs. 8 and 9 are, 

s 2 • 
Y 

( '0) 

( 11) 

in which Cxi,xj is the covariance of xi and Xj from Egn. 5 (for a more 
general discussion see Ditlevsen, 198'). Note that, when two variables xi and 
Xj are independent, their correlation coefficient and covariance are zero. 
Slmilarly, the covariance of a variable xi with itself equals its variance 
sxi 2 • Thus, in the case that all xi and Xj are independent, 11 reduces to, 

••• 'Ym} is calculated from a set of soil properties ~::: {x" ••• ,xk} are 

my - g(mX)' and 

in which my={my l, ••• ,myn} is the vector of means of the Yi; mX={mx l, ••• ,mxk} 
is the vector of means of the Xjl Ly is the covariance matrix of y having 
ij-th term Cyi,yj' and LX is the covariance matrix of x. 

1 , 



s 2 _ I ( dy )2 
Y dx. 

1 

s 
X. 

1 

2 ( 1 2 ) 

Two special cases of 12 deserve note because they are common in practice. For 
the case in which y is a linear combination of a set of independent parameters 
y = E aixi the variance of y is exactly 

s 2 
Y = '" a. 2 s 2 

I.. 1 Xi ( 1 3 ) 

This situation occurs in the example of Section 7. For the case in which y is 
a power function of a set of independent parameters, y = IT Xiai , the variance 
of y is approximately 

1 +n 2 y E (1 +a . 2 n . 2 ) 
1 X1 

which for small coefficients of variation reduces to 

n2 y = 

This case occurs in the example of Section 8. 

4.3 Reliability Index a 

( 14a) 

(14b) 

In traditional analysis the adequacy of a design is expressed by the 
factor of safety 

F r capacity 
demand 

( 1 5 ) 

Depending on the level of uncertainty in a calculation, the same numerical 
value of F can imply different levels of reliability. A high F with 
correspondingly high uncertainty can imply less reliability than a small F 
with correspondingly small uncertainty. This situation is shown schematically 
in Figure 9. The bell-shaped curves represent the probability distributions 
of two calculated factor of safetys. The peaks occur at the respective means; 
the widths reflect the respective standard deviations. The areas under the 
curves beneath F=1.0 are proportianal to the likelihoods of failure. The 
smaller this area, the greater the reliability of the design. In this case, 
the design with the smaller best estimate F is actually the more reliable. 

12 
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Figure 9 Two cases of uncertainty in predicted factor of safety 

To express reliability, we would like to combine the best estimate of F and the 
standard deviation of F in a single number. One convenient way is the 
reliability index 

a = ( 1 6a ) 

The reliability index measures the number of standard deviations of the 
predicted F separating the best estimate from the limiting value F=1.0. 
Rewritten in a more general form 

a = 
m - Yf y 

in which Yf is the "failure" value of y, and mF = (mY/Yf). 
number of standard deviations separating the best estimate 
unacceptable value Yf. In Figure 8 the design load on the 
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a measures the 
my from some 
footing is 10ksf. 



Since the best estimate of the bearing capacity is my = 19.8ksf and the 
standard deviation is Sy = 3.9ksf, the reliability index equals 8 = 2.5. That 
is, my = 19.8ksf is 2.5 standard deviations above the required capacity 10ksf. 

For most geotechnical applications 8 ranges from 1.5 to 3.0 (Table 1). Lower 
values of 8 imply lower reliability. 8=0 means the best estimate of 
performance just equals the failure criterion, that is, my = Yf. 8>0 means 
that my>Yf, because the standard deviation is always positive. 

5. SEPARATING THE COMPONENTS OF UNCERTAINTY 

In Section 4, no distinction was made among different types of uncertainty in 
considering how standard deviations translate through calculations. A standard 
deviation was merely assumed for an input parameter, and a corresponding 
standard deviation on the output prediction was derived. In fact, the four 
components of uncertainty discussed in section 2 affect predictions in 
different ways. As a result they should be considered separately. The present 
section uses results of Section 4 to consider how each component of uncertainty 
individually translates through an engineering calculation. At the end, the 
components are brought together in a single standard deviation on a calculated 
prediction, y. 

The four components of uncertainty in a soil property estimate as 
discussed in Section 2 are: 

1 • Spatial variabi li ty, 
2. Measurement noise, 
3. Measurement bias, and 
4. Statistical error. 

( 1 7 ) 

Spatial variability and measurement noise appear as data scatter. Measurement 
bias and statistical error are systematic errors. Each component can be 
represented by its own standard deviation, denoted by the subscript 1 through 
4, respectively 

sX1 = standard deviation due to spatial variation, 

sX2 = standard deviation due to measurement noise, ( 18) 

sX3 = standard deviation due to measurement bias, 

sX4 = standard deviation due to statistical error. 

Based on 12, the total uncertainty in a soil property estimate x is the sum of 
the four component variances, 
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Table 1 -- Typical Reliability Indices for Geotechnical Facilities 

Facility 

Earth retaining 
structures 

Earthworks 

Offshore Foundations 

Onshore Foundations 

(after Meyerhof, 1976) 

Typical n 

0.13± 

0.15± 

0.20± 

0.25± 

Typical F Typical a 

1 .3 to 1.5 2.0 to 2.5 

1.5 to 2.0 2.0 to 3.0 

1.5 to 2.0 1.5 to 2.5 

2.0 to 3.0 2.0 to 3.0 
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s 2 x = ( 19) 

That is, the four components of uncertainty add together through the square of 
their respective standard deviations. 

In analyzing the uncertainty in a prediction y = g(x) the four component 
standard deviations of 18 are individually translated through g(x), as shown in 
Figure 10. This leads to four component standard deviations on y corresponding 
to spatial variation, measurement noise, measurement bias, and statistical 
error. Only at this stage are the components combined to assess the overall 
uncertainty in y. If the components are combined beforehand using Eqn. 19, and 
then the overall uncertainty in x used to calculate the uncertainty in y, a 
wrong answer is obtained. 

5.1 Spatial Variation 

Soils are geological materials with physical properties that vary from place to 
place. This spatial variability, combined with random errors in testing, 
produces the scatter observed in soil engineering data. 

In Section 3, the mean and standard deviation were used to describe the 
variability in a set of soil property data. These are useful measures, but 
they combine data in such a way that spatial information is lost. For example, 
consider the two sequences of measurements in Figure 11. These data have the 
same mean and standard deviation but reflect different soil conditions. The 
first data exhibit a distinct trend while the second are erratic. This 
difference is not captured by the mean and standard deviation alone. 

Two new measures are needed to describe spatial variation. The first is the 
trend of the data. In principle, spatial variation can be characterized 
precisely, but only if many, many tests are made. Thus, for engineering 
purposes a simplification is adopted which necessitates only more realistic 
amounts of data. Spatial variability is separated into two parts: a 
deterministic trend and residual variability about the trend. This model is 
written 

(20) 

in which xi = the soil property at location i, ti = the value of the trend at 
i, and ui = residual about the trend. The trend is characterized by some 
equation (e.g., a line or curve), and the residuals are characterized 
statistically (e.g., by a mean and standard deviation). 
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Figure 10 Propagation of principal sources of uncertainty 

through a model. 
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The second new measure is something statisticians call the autocorrelation 
function. In a loose sense, the autocorrelation function measures the waviness 
of the residual variations about a trend. Consider the data in Figure 12. In 
both Figures 12a and 12b the amplitude (i.e., standard deviation) of the 
residual variation is the same. However, in Figure 12a the residuals fluctuate 
rapidly. Their predominant wavelength is short. In Figure 12b the residuals 
fluctuate less rapidly. Their predominant wavelength is long. This difference 
in waviness is captured in the autocorrelation functions of the two sets of 
data. 

As a general rule, when a measurement at some location i in a soil deposit 
is observed to lie above the trend line at that point, the measurements at 
nearby locations also lie above their corresponding trends, and vice versa. 
This is autocorrelation. The longer the apparent 'wave length' of the 
residuals about their trend, the farther autocorrelation extends. The waviness 
of residual soil data reflects spatial structure that is ignored in fitting a 
trend. That is, it is spatial variation at too detailed a level to be 
accounted for deterministically. 

More formally, autocorrelation is the property that residuals off the mean 
trend are not statistically independent. They are associated with one another, 
and the degree of association depends on the distance separating two 
measurements in the field. As in Section 3, the degree of association is 
measured by a correlation coefficient. The correlation coefficient defined in 
Eqn. 4 gave the correlation between two different soil properties, for example, 
undrained strength and water content. Autocorrelation gives the correlation 
between two measurements of the same property made at different locations. 

Mathematically, the autocorrelation function Rx(O) is defined as 

= ( 21) 

in which ui = the residual at location i, ui+o = the residual at location i+o, 
su = the standard deviation of u, and n = the number of data pairs having 
separation distance o. Rx(o) expresses the correlation of two residuals as a 
function of their separation distance. By definition, Rx(O)=1.0. 

In the same way that covariance (Eqn. 5) is related to correlation (Eqn. 4), 
the autocovariance function Cx(o) is related to Rx(o) by the variance of the 
residuals su2 

(22) 
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The relationship between the autocorrelation function and the autocovariance 
function is the same as that between the correlation coefficient and the 
covariance. 

Figure 13 shows the vertical autocovariance function estimated for a set of 
field vane measurements taken from 27 borings in a soft clay deposit. At zero 
separation distance, Cx (O)=sx2 • For these data sx2 is about 50kPa2 • Figure 14 
shows the horizontal autocovariance function for the same set of data. 

Horizontally, the autocorrelation may be isotropic or anisotorpic depending on 
how a deposit was formed, but in practice isotropy is often assumed. Also, 
autocorrelation is typically assumed to be the same everywhere within a 
deposit. This assumption, called stationarity, is equivalent to saying that 
the deposit is statistically homogeneous. 

Manually, autocorrelation is estimated from a set of data following a 
five-step procedure: 

1. Form every possible pair of measurements. 
2. Group the pairs into sets having approximately the same separation 

distance. 
3. For each set plot a scattergraph of (ui) vs. (ui+o)' 
4. Calculate the correlation coefficient of each graph using Eqn. 4. 
5. Plot the correlation coefficients as a function of separation 

distance. 

The autocovariance function is estimated by replacing Eqn. 4 in step 4 by Eqn. 
5. An example of the procedure using the SPT data from Figure 3 is shown in 
Figure 15. Alternately, micro computer programs based on more sophisticated 
statistical techniques are available which automatically compute estimates of 
the autocorrelation or autocovariance function (e.g., DeGroot, 1985). 

5.2 Measurement Noise 

Random measurement error is that part of data scatter attributable to 
instrument or operator induced variations from one test to another. Sometimes 
the measurement is higher than the real value of the property, sometimes it is 
lower, and on average may systematically differ from the real value. The 
systematic difference between the real value and the average of the 
measurements is said to be measurement bias (cf., Figure 2), while the 
variability of the measurements about their mean is said to be random 
measurement error. 

Typically, random errors tend to be small and they tend to distribute equally 
on both sides of zero. Measurement error is the cumulative effect of an 
indefinite number of small perturbations simultaneously affecting a 
measurement. Because these errors do not reflect inherent variability in the 
soil itself, if their magnitude can be accurately estimated they can be removed 
from the total uncertainty in x and a more confident prediction of facility 
performance can be made. 
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The common model of measurement error is 

z = x + e (23) 

in which z = the measurement, x = the soil property being measured, and e = a 
random error with zero mean. Empirically, the value e takes on at one 
measurement is assumed to be unrelated to the value it takes on at any other. 
That is, values of e are independent from one test to another. 

Random measurement error can be estimated in a variety of ways. As a general 
rule, direct techniques such as replicate testing are difficult to apply to 
soil data because measurements are made destructively. Indirect methods based 
on the autocorrelation function are usually preferred. These techniques are 
based on the observation that real spatial variability of soils and random 
measurement errors have different signatures in the autocorrelation function, 
and this difference in signature can be used to estimate the relative 
contribution of each to the total data scatter. 

Inserting the measurement model z=x+e into the definition of the autocovariance 
function (Eqn. 22), and algebraically rearranging, leads to a relation between 
the autocovariance function of the measured data z and the autocovariance 
functions of the real soil variability x and of the random measurement error e 
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Figure 16 Estimation of noise in field vanes. 
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(24) 

The autovariance function of z is the sum of the autocovariance functions of x 
and e. 

For most soils, the waviness of real spatial variability about a trend leads to 
an autocovariance function Cx(o) which equals Sx1 2 at the origin, and 
monotonically decreases to zero as 0 increases. On the other hand, since the 
random errors e are independent from one test to anothe2, their autocovariance 
except at the origin is zero. At the origin, Ce(0)=sx2. Thus, C~(O) is a 
spike at 0=0 and zero elsewhere. The relative contribution of sxl and sx22 to 
the total data scatter sz2 can be estimated by extrapolating the autocovariance 
function of the observed data back to the origin. When this is done for the 
autocorrelation function in Figure 13, the variance of random measurement noise 
appears to be about 20kPa2 , or about 40 percent of the data scatter variance 
sz2=50kPa2 (Figure 16). 

5.3 Size Effect Factor Ry 

The volume of soil influenced by an in situ test or contained in a laboratory 
specimen is small compared with that influenced by a prototype structure. To 
make predictions of how the prototype will perform, an estimate is needed of 
the average properties within this larger, representative volume of soil, and 
of the variability among the averages of representative volumes. 

This is done by considering the representative volume to be composed of a large 
number of elements each the size of a test specimen. From the statistical 
formulas of section 3, the mean and standard deviation of the properties of 
specimen sized elements are found, and then using the spatial structure 
described by the autocorrelation function, a mean and standard deviation for 
the larger volumes can be calculated. These calculations are summarized in a 
size-effect factor, Rv, which can usually be expressed by simple formulas or 
read from tables. The derivation of Rv, however, is beyond the scope of the 
present manual. 

Empirically, the variability of average properties among small soil elements is 
larger than among large elements. Less averaging-out takes place in small 
volumes, so the average property fluctuates considerably from one element to 
the next. In large elements the reverse is true. High values balance out 
against low values within a single element and the average fluctuates little 
from one element to the next. The extent of averaging of properties within a 
large volume of soil depends on the structure of the spatial variation. More 
precisely, the extent of averaging depends on the autocorrelation function. 
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Consider the problem of calculating the variability of average SPT blow count 
among borings in a homogeneous soil. Figure 17 shows a set of six boring logs. 
One N value is randomly chosen from each boring and the standard deviation 
among them is calculated. Then two N values in each boring are randomly 
chosen, the average taken, and the standard deviation of these boring averages 
calculated. From this calculation a smaller standard deviation results. 
Continuing, the greater the number of N values included in the average of each 
boring, the smaller the standard deviation of the boring-averaged N across the 
six borings. 

The same thing happens when the properties in individual elements within a 
large volume of soil are averaged. As the number of elements increases--that 
is, as the volume over which averaging takes place increases--the variation 
among the averages of the large volumes of soil goes down. In this way, for 
example, one would expect that the average soil properties beneath large 
footings would be less variable than the average properties beneath small 
footings. 

This effect of size on the spatial variation among average properties within 
representative volumes of soil is represented by a size-effect factor, Rv. The 
size-effect factor is defined as the ratio of the variance of the average soil 
property within a large vol~me of soil, sv2 , to the variance among 
specimen-sized volumes, sxl 
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Figure 17 Averaging of blow count data in six borings. 
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(25) 

in which v = the representative volume. The ratio of variances rather than 
standard deviations is used because it is more convenient in subsequent 
uncertainty analysis. 

As a first approximation, the size effect factor Rv for averaging of soil 
properties over a line is approximately, 

one-dimensional case (26) 

in which L is the distance of the line, and 00 is the so-called autocorrelation 
distance. The autocorrelation distance is that distance at which Rx(oo) 
reduces to '/e, in which e is the base of the natural logarithms ('/e=O.37). 
The autocorrelation distance is simply a convenient way to express the 
significant extent of correlation in the soil properties. The approximation is 
good for L>400 ' but a satisfactory upper bound for L>200 • 

For averaging over 2-dimensional rectangles or 3-dimensional prisms--under 
fairly general conditions--Eqn. 26 becomes, 

Rv - (20,/L,)( 20 2/L2) 2-dimensional case (27) 

Rv - (20,/L, )(202/L2)(203/L3) 3-dimensional case (28) 

in which L" L2' and L3 are the lengths in each dimension, and o,,02,and 03 are 
the corresponding autocorrelation distances in those dimensions. 

5.4 Systematic Error 

Thus far the analysis of uncertainties has concentrated on data scatter. We 
saw that data scatter uncertainties manifest as variability across a site, for 
example, variability of settlement from one footing to another. Another type 
of uncertainty is also important: systematic errors. Uncertainties due to 
systematic errors do not manifest as variability across the site, but appear as 
a difference between the predicted average performance and the average 
performance which occurs in the field. Systematic errors are biases. Usually 
they occur because errors are introduced in estimating mean values of soil 
properties, loads, and other input variables. 

The most important systematic errors in soil property estimates are measurement 
bias and statistical error. Measurement bias is caused by 
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inadequacies in the way soil test results are interpreted. Statistical error 
is caused by limited numbers of tests. 

5.5 Measurement Bias 

In testing soils, whether in the field or laboratory, a system of boundary 
conditions is applied to a specimen and response measured. From this response 
and a set of physical assumptions--i.e., a mode1--soi1 properties are 
backca1cu1ated. These properties are then used with another model to predict 
performance. Nonrandom errors are introduced to this process at several 
points, and it is these nonrandom errors which give rise to measurement bias. 

Among the more common measurement biases in estimating soil properties are, (1) 

inappropriate boundary conditions, (2) incorrect model assumptions, and (3) 
sample disturbance. The first occurs, for example, when the stress system 
imposed on a specimen differs in principal directions from that imposed by a 
prototype structure. The second occurs, for example, when elastic theory is 
used to backca1cu1ate deformation moduli for a soil which actually deforms 
nonlinearly. 

For most practical situations, the systematic error introduced by measurement 
can be adequately represented by a bias correction factor, S, such that the 
measurement z is related to the real soil property x by an extension of Eqn. 
23 

z = (2.) (x) 
B 

(29) 

Applying Eqn. 12 the variance in x due to uncertainty about the correct value 
of B is 

= (30) 

in which sB2 is the uncertainty in the appropriate value of B. 

The evaluation of SB2 is usually made by comparing predicted performance of 
prototype structures with the actual performance measured in the field. For 
example, for measurements of undrained strength of soft clays made with the 
field vane device, sB2 can be found from the scatter of calibration data such 
as those collected by Bjerrum (Fig. 18). 

5.6 Statistical Uncertainty 

Because a limited number of measurements are made at any depth, their average 
may be above or below the actual spatial average even if there is no 
measurement bias. Statistical theory allows an assessment of the probable 
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magnitude of this error. Typically, statistical error is expressed as a 
variance or standard deviation on the estimated parameter. For example, the 
statistical error on the estimate of the average soil property would be 
expressed as a variance on the mean. 

The larger the number of measurements at any depth, the lower the statistical 
error. In general, the variance of statistical error decreases approximately 
in proportion to the reciprocal of the number of observations, n. Doubling the 
number of tests typically reduces the statistical error by about 1/12, so the 
marginal benefit of increased testing suffers diminishing returns. From 
rudimentary statistics, the variance of the statistical error of the mean is 
approximately 

s 2 
mx = (31 ) 

n 

If repeated samples of n tests from the same soil deposit are made, and if 
each of the tests is statistically independent of all others, and if for each 
sample the mean is calculated, then the variability of those means would have 

variance smx 2 • 
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5.7 Recombinining the sources of Uncertainty 

Having considered each component of uncertainty by itself, it is now time to 
bring the components together in an aggregate standard deviation on the 
predicted variable y. 

The effect of the components of uncertainty in x on the prediction y is found 
by Eqn. 9. Each component standard deviation sx1 through sx4 is multiplied by 
(dy/dx) to determine the corresponding comgonent st~n4ard deviations Su through Sy on y, then the standard dev1~t10ns are omb1ned through tne1r ~quares 
(1.e., variances) as in equation 12. 

For the spatial variability component, SX1
2 

is multiplied by the appropriate 
size-effect factor Rv to correct for the difference in scale between test 
specimen and prototype (Eqn. 25) 

2 2 

2 
For the measurement bias component, sX3 is taken from Eqn. 30 

2 = (~)2 
dx 

m 
x 

2 s 
B 

2 

For the statistical error component, 

s 2 
Y4 

( 
s 2 + s 

x 1 x2 

n 

2 

) 

2 
Sx is taken from Eqn. 31 

L+ 

(32 ) 

(33) 

(34) 

Measurement noise reflected in sX22 increases statistical error because it 

increases data scatter and thus increases the variability of the calculated 
value of mx from one set of tests to another. However, the direct affect of 
measurement noise on the uncertainty in y is eliminated because it does not 
reflect real variability in soil properties and can be statistically removed 
from the data scatter using techniques such as those in Section 5.2. 

The components of uncertainty in yare combined as in Eqn. 19 to give an 
overall variance on predicted performance Sy2 
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s 2 = s 2 + s 2 + S 
2 (35a) y Yl Y3 Y4 

2 2 

(dY)2 (R 2 2 
s + S 

S + m s + xl x2 ) (35b) dx v xl x B n 

in which the direct effect of sX22 is eliminated by having been removed from 

the original data scatter. The following sections illustrate how Eqn. 35 is 
used in applications. 

6. APPLICATION TO SHALLOW FOOTINGS 

In this section the procedure outlined above is applied to settlement 
calculations for the design of shallow footings on sand. 

6.1 Site Conditions 

The site is underlain by fine dry sand to a depth of 10m (Hilldale, 1971). 
Fifty SPT borings were made across the site and a limited number of laboratory 
tests were performed to correlate blow count with friction angle. The trend of 
depth-averaged blow counts was corrected by Gibbs and Holtz's method, and the 
autocovariance function used to estimate the contribution of noise to total 
data scatter, as described in Section 5.2. For the upper levels of the profile 
which most strongly influence the settlement of shallow footings, the average 
blow count is 16.6 bpf, and the average corrected blow count is about constant 
with depth at 25 bpf (Figure 19). 

The standard deviation of the vertically averaged corrected blow count in the 
upper levels is about sN=11bpf. Thus, the coefficient of variation is 
QN=(11bpf/25bpf)=0.44. Using the autocorrelation function technique to 
estimate noise suggests that noise contributes about 50 percent of this data 
scatter, measured in variances. 

6.2 Best Estimate of Footing Settlement 

The results of applying the methods described in Section 5 to predictions of 
settlement are shown in Figure 20. 

The footing is 10' wide and embedded 5', with a design load of 3 TSF, as shown. 
Settlement is predicted by the Peck and Bazaraa formula 

p 
(36) 
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CALCULATION SHEET 

PROBLEM: SPT data analysis CALCULATED BY: 
DATE: CHECKED BY: 

DESIGN PROFILE: SPT data in a clean, wind-deposited sand. 

DATA SCATTER 

Data: 

n = 50 measurements 
mN 16.6 between elevations 590' and 610' 
mNc = 25 bpf, corrected blow count approximately constant with depth 

for first 20' I 
sN 11 bpf (total data scatter of vertically averaged blow counts) 

Measurement Noise (from autocorrelation analysis): 

Spatial Variability: 

• (11bpf)2 - (7.Sbpf)2 
.. (7.8 bpf)2 

SYSTEMATIC ERROR 

Statistical Error S3~: 

S 2 '" SN2 / n mN 
.. (11bpf)2/50 
'" (1 .6bpf)2 

Measurement Bias S42 : 

<ignored> 

Figure 19 
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PROBLEM 
Doq = 3 TSF 

HHHHHH+H 

__ ~:~~~ ___ I .. o~ •• 'Do 0 ______ _ 

11111111111' 0 0 • IIIIIII 
D=5' IIIIIIIIIIIIIIIIIII 

allowable p = 1" 

(a) BEST ESTIMTE (MEAN) OF SETTLEMENT 

= 

= 0.70" 

CALCULATED BY: 
CHECKED BY: 

SOIL PROPERTIES 

N = vertically averaged 
corrected SPT blow 
count 

mN = 25 bpf 
sN = 11 bpf 

n = 50 measurements 

1 
[1- - 5/10) 

4 

(b) m~CERTAINTY (STANDARD DEVIATION) OF SETTLEMENT 

Spatial Variability 

= 0.31 

SPl = ~rmp = (0.31)(0.70") = (0.22") 
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CALCULATION SHEET 

CALCULATED BY: GBB PROBLEM: footing settlement 
DATE: -------------------CHECKED BY: 

[(b) UNCERTAINTY OF SETTLEMENT con't] 

Systematic Error (statistical only, model bias neglected) 

n=50 borings thus the statistical error on the mean blow count at 
any elevation is, 

= 
/ (11bpf)Z 

.; 50 1.6bpf 

Total Uncertainty from Equations 41 and 42. 

(c) RELIABILITY INDEX 

mp - Po 10.70" - 1 " 1 
a = ------- ------------ = 1 .3 
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(d) OBSERVED SETTLEMENT 

Observed Settlement vs. Predicted Settlement 
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Figure 20 Continued 
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CALCULATION SHEET 

PROBLEM: footing settlement CALCULATED BY: GBB -------------------DATE: CHECKED BY: 

(e) ESTIMATE BIAS DUE TO 
SETTLEMENT MODEL: 

Correlation of Peck and 
Bazaraa method and actual 
footing settlements shown 
in histogram at right. 

ns -ns 
'0 -0 ... 
CI) 
.Q 
E 
:l 
C 

8 

6 

4 

2 

0 
0 1 

measured 
2 

mean = 0.46 
std dey = 0.32 
number = 40 

3 4 
settlement/calculated 

From observed data, the ratio of measured settlement to cacluated 
settlement has mean and standard deviation, 

SR settlement ratio 
= measured settlement/caclulated settlement 

mSR 1.45 
sSR 1.32 
nSR 0.91 

5 

Mean (best estimate) settlement corrected for model bias (from Eqn. 8): 

pc 
m c p = (0.7")(1.45) = 1.02" 

Standard deviation (uncertainty) of corrected settlement (from Eqn. 15): 

0.31 2 + 0.91 2 

= 0.98" 
= 

Figure 20 Continued 
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in which, 

Aq = applied stress (37) 
b = footing width 
p settlement 
D = embedment depth 
N = depth averaged blow count 

The mean settlement mp is found by substituting mean values of all the 
parameters in Eqn. 36, in the same way that the deterministic solution would 
be obtained. In the present case, the only uncertain parameter is SPT blow 
count, N, for which mN is substituted. Inserting ~ into Eqn. 36 gives the 
best estimate of settlement, mp = 0.7 in •• 

6.3 Spatial Variability of Settlement 

The uncertainty in the settlement prediction is represented by the 
standard deviation sp. This is calculated by propagating the four sources of 
uncertainty in the input parameter N through Eqn. 36, using Eqn. 12, and 
then recombining the output according to an equation of the form Eqn. 19. 

The first step in calculating sp is assessing the magnitude of the four 
contributions to uncertainty in N: spatial variability, measurement noise, 
measurement bias, and statistical error. The first two appear as data scatter 
and must be separated from one another. The second two are systematic errors 
and can only be estimated by calculation (i.e, they do not appear in data 
scatter or in any other explicit form). 

The scatter in 8PT data for the site, by empirical observation, has a 
standard deviation of 11bpf. Since about half the data scatter measured as a 
variance appears to be noise, the standard deviation of the spatial 
variability alone is 

I 0.5 (11bpf)2 = 7.8 bpf (38) 

Applying Eqn. 14 to the settlement formula yields the result that the 
coefficient of variation of -should be proportional to the coefficient of 
variation of N. This conclusion could be reached by inspection by noting that 
p is proportional to N, so the proportional uncertainties should be the same. 
Given that the autocorrelation distance is large compared to the footing 
width, the assumption was made that Rv~1.0. As a result 

= = 7.8 
25 

0.31 

and the standard deviation, as shown on Figure 20, is s '"1=0.22 in •• 
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6.4 Systematic Error in Settlement Predictions 

In the calculations of Figure 20 the measurement bias sN3 is ignored 

because blow counts are measured directly rather than inferred through a model 
or set of calculations. Thus, no error of interpretation was assumed to be 
introduced by the way measurements are analyzed. This is obviously a 
simplification because it ignores the model bias in going from N values to 
settlement predictions. We return to this problem below. 

The statistical error in the mean value of N, expressed as a variance, is 
approximately equal to the data scatter variance divided by the number of 
independent measurements, n. In the present case, there are n=50 blow count 
measurements at any depth, so the standard deviation of the statistical error 
is approximately 

/ 
/ (11bpf)2 

I 50 
= 1.6bpf (40) 

6.5 Total Uncertainty 

The total error in the settlement prediction is found by combining the sources 
of uncertainty according to equation 19. The main causes of uncertainty are 
spatial variation and statistical error. Measurement noise has been 
statistically removed from the prediction, and measurement bias has been 
ignored. This gives 

s 2 
P = 

Dividing both sides by the mean settlement squared, m2, gives 

= 0.33 

(41 ) 

(42) 

The histogram of actually observed footing settlements is shown in Figure 21. 
The mean settlement was about half that predicted, but the variability among 
footing settlements was close to the spatial variability predicted. The 
difference between mean predicted settlement and mean observed is due to two 
factors. First, in service, the footings were subject to less than the design 
loads. Second, the settlement model of Eqn. 36 itself contains bias. As shown 
in Figure 22 this latter bias can be accounted for by regression analysis, and 
incorportated in the uncertainty analysis as an s3 term. As can be seen, for 
many settlement methods, model uncertainty is very large. 
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Figure 21. Observed footing settlements. 
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I -----------------------~~-----------------------------------------------------1 CALCULATION SHEET 

PROBLEM: 2-D slope stability analysis CALCULATED BY: I 
DATE: 

Problem: 

REFERENCE: 

single stage 
H=12m case 

(a) BEST ESTIMATE (EXPECTED VALUE) OF FS AGAINST INSTABILITY 

= 1.45 ==== [by modified Bishop method] 

(b) UNCERTAINTY (VARIANCE) IN FACTOR OF SAFETY 

-25m 

-12m 

- 6m 

assuming the soil parameters to be statisticall independent, 

= 

in which x1 = friction angle, ~ 

x2 = density of the fill, Yfill 
x3 = depth to till, Dtill 

I-------------------~~-~-~;;~;~~;;-~~~~~;~;-~~-~~-:;~;;~~~;:~~~~~~~~~------i 
---------------------------------::~~~-::-------------------------------~~:--I 
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CALCULATION SHEET 

PROBLEM: 2-D slope stability analysis CALCULATED BY: 

DATE: REFERENCE: 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Parameter t.FS/ t.xi Variance (t.FS/t.x i)2·V(xi) 

Spatial Syst. TOTAL Spatial Syst. TOTAL 
- - - - - - - -

~ , 0.01 1.0 3.0 4.0 0.0001 0.0003 0.0004 

YFILL 0.06 1 .0 1.0 2.0 0.0036 0.0036 0.0072 

Dcrust 0.008 0.96 0.036 1 .0 0.0013 0.0013 

Dtill 0.056 0.0 1 .0 1 .0 0.0000 0.0031 0.0031 
Cu (L) 0.0215 74.8 24.9 99.7 0.0346 0.0115 0.0461 
Cu(M) 0.0137 40.0 7.6 47.6 0.0075 0.0014 0.0089 

SF2 = 0.0471 0.0199 0.0670 
====== 

sF2 @ Rv=0.2 = 0.0094 0.0199 0.0290 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(c) RELIABILITY INDEX 

mF - 1.0 
S = --------

sF 

1.45 - 1 .0 

= -----------
1'0.029 

= 2.66 

Figure 22 (continued) 2/2 
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6.6 Reliability Index for Settlement Prediction 

The reliability index is calculated from Eqn. 16 as 

10.70" - 1"1 
(0.33)(0.7) 

1.3 

7. APPLICATION TO EARTH EMBANKMENT DESIGN 

The second case involves end-of-construction stability of a low embank­
ment on soft ground. 

7.1 Site Conditions 

(43) 

The site is underlain by 20m of soft marine and lacustrine clays lying on 
glacial till, in turn lying on crystalline bedrock. The site characterization 
program included borings, field vane measurements, block samples and laboratory 
testing. A 25m embankment is to be constructed on the clay, and the principal 
source of information on undrained strength for end-of-construction analysis is 
the field vane data shown, leading to the design profile of Figure 23. 

7.2 Stability Calculation 

The tentative design configuration is shown in Figure 22. Three design cases 
were analyzed, a 6m single-stage dyke, a 12m single-stage dyke, and a 25m 
two-stage dyke. In the two-stage construction the foundation clays are allowed 
to consolidate under a 12m fill which is then raised to 25m. The worst case or 
design condition is end-of-construction, which is analyzed assuming undrained 
conditions. For illustrative purposes, only the analysis of the 12m dyke is 
presented. 

The principal uncertainties in the stability calculations are the undrained 
strengths of the foundation clays, the engineering properties of the embankment 
fill materials, and the geometry of the subsurface stratification. These are 
shown in Figure 24, with their respective systematic and spatial variances. 

The derivatives of factor of safety F with respect to the uncertain parameters 
were calculated numerically using simplified Bishop circular arc and 
Morgenstern-Price wedge-type failure geometries. For each design geometry a 
base-case analysis used all parameters at their means. This gives the 
best-estimate F. For each parameter, additional calculations were made to 
numerically determine the derivative of F near the mean. The derivative was 
calculated as the ratio of change in F to change in input parameter, ~F/~x. 

The square of the derivative dF/dx with respect to each principal uncertainty 
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Figure 24 Variance components for factor of safety against 
strength instability of dykes. 
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was multiplied by the corresponding variances of Figure 24 to obtain the 
contribution of each uncertain input parameter to systematic and spatial 
uncertainty in the calculated factor of safety. These are shown as variance 
contributions. By Eqn. 12, the sum of these variance contributions over all 
the input uncertainties gives the overall spatial and systematic variances in 
the calculated value of F. From Figure 24, this total variance is sF2=0.067. 

The critical failure circle for the two-berm 12m case has a 125m radius. Since 
the deposit was anisotropic and the failure circle cut across different soil 
layers, numerical integration was used to obtain a more precise size effect 
factor Rv than could be obtained from Eqn. 26. This led to a reduction factor 
Rv =0.2 for the spatial component of variability. Thus, the variance of F is 
calculated as 

0.2 (0.0471) + 0.0199 

= 0.029 

and the reliability index is 

e = 
mF - 1.0 

1.45 - 1.0 

10.029 
= 2.66 

(44) 

(45) 

Contributions of the various uncertainties or errors to SF2 are shown in Figure 
25. Th~ cross-hatched portion of each contribution is systematic error, which 
does not reduce with increasing failure dimensions. The uncolored portion is 
spatial variability, which does reduce with increasing failure dimension. 
Reduction for the 125m critical failure circle (Rv=0.2) is shown as a heavy 
horizontal bar in Figure 25. 
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Figure 26 Nominal probability of failure for three distribution 
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8. RISK-BASED DESIGN 

The approach of previous chapters has been to deal only with means and 
variances of uncertain variables. Conclusions about safety have been 
summarized in reliability indices. "Probabilities of failure" have been 
avoided. The reason is twofold. First, reliability indices can be calculated 
from the types and amounts of data normally available in geotechnical 
practice. They do not require extensive computation and are not based on 
unverifiable assumptions. Second, failures in the field are often caused by 
incorrect hypotheses or unanticipated conditions, so any probability of 
failure resulting from calculations alone is necessarily incomplete. 
Nevertheless, economic benefits can be obtained using risk techniques as a 
basis for design, because these techniques at least allow an optimization of 
that part of design which deals with calculational uncertainties. 

Optimal design is based on the balancing of risk against cost. Increases in 
conservatism decrease the probability that a facility will perform 
inadequately; yet at the same time, conservatism is bought at a cost in 
construction. The degree of conservatism at which marginal increases in 
construction cost are just equalled by marginal decreases in risk cost 
provides the most cost-effective solution. 

The traditional way of measuring risk cost is through the product of 
probability of failure Pf and cost of failure Cf 

(48) 

As long as the cost of failure is not catastrophic and there is no loss of 
life, this measure is adequate. 

The probability of failure depends on the adequacy of a design against 
conditions that have been analyzed and against those that have not. Although 
the latter are responsible for many actual failures, they fall outside 
analysis. Optimal design addresses only failures due to ordinary or 
anticipated conditions: partial optimization is the best one can achieve in 
normal situations. 

The relationship of Pf to 6 for common distributional forms is shown in Figure 
26. For 6<2.5 the differences among distributions are small. Therefore, any 
of these could be used with little error. The most convenient is the normal 
distribution (Figure 27). For large 6 (i.e., very small Pf> the situation 
changes. Pf becomes sensitive to the choice of distribution, yet there is 
little cogent reason to chose one distribution over another. Conveniently, 
for most practical problems in geotechnical engineering 6 is small and the 
choice of distribution poses little problem. 
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8.1 The "probability of Failure" 

An important point to note is that uncertainty in factor of safety has to do 
with the chance that, if the proper analysis had been made and if the proper 
parameter values had been used, then the predicted factor of safety would have 
been less than 1.0. This 'chance' can be expressed as a nominal probability 
of failure, 

Pf = Pr{F<1.0} (49) 

having to do the likelihood that one should be calculating a factor of safety 
less than 1.0 when actually the calculations indicate F)1.0. From Figure 27 
this probability that F<1.0 is the area under the probability distribution of 
F within the region 0~F<1. 

8.2 Risk-Based Design 

No matter how design decisions are made, they require a balancing of economy 
against safety. Only if performance could be predicted precisely could a 
facility be designed to carry exactly the loads required and no more. In the 
real world performance cannot be predicted with such precision, and thus a 
margin of safety must be adopted. 

Schematically, optimization is shown in Figure 28. Increasing safety margin 
means a more conservative design and a larger direct cost. Simultaneously, 
increasing the safety margin means a lower rate of failure, and thus over a 
number of facilities a lower cost of clean-up, repair, and other consequences 
of failure. Since direct cost increases with safety margin and risk cost 
decreases, their sum has a minimum corresponding to the optimal design. 

For the purpose of this manual, the principal thing we ask of risk based 
design is that it help with the question of how to select appropriate 
numerical values of the design factor of safety, reliability index, or other 
safety margin. Actually, there are a number of ways one might go about this 
task. Safety margins might be chosen such that they are: 

• Balanced (i.e., internally consistent), 
• Calibrated (i.e., externally consistent), or 
• Optimal (i.e., economically efficient). 

Each of these is discussed briefly. 

8.3 Balanced Factors of Safety 

The effect of differing levels of uncertainty on comparitive factors of safety 
is illustrated by the embankment stability case of Section 7. The project 
involved staged construction on soft clay. The first stage dyke was 
constructed to 6m, then raised to 12 m, and after partial consolidation raised 
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again to 25 m. Figure 29 gives a summary of the mean and standard deviation 
calculations. 

Each design case has a different mean factor of safety and a different 
standard deviation. To balance the conservatism of design across the three 
cases, factors of safety should be chosen to give the same reliability index 
6. A graph for determining consistent factors of safety is shown in Figure 
30. Consistent design (mean) factors of safety for the four embankment cases 
are shown in the last two columns of Figure 31, for 6=2 and 6=3. 

8.4 Calibrated Factors of Safety 

A second approach to selecting design factors of safety is by comparing 
nominal probabilities of failure with accepted (i.e., historical) rates of 
failure of other civil facilities. Fig. 31 shows empirical rates of failure 
for a variety of civil facilities, plotted against the corresponding 
consequences of failure. The horizontal axis of the plot shows both financial 
consequence and life loss. Financial loss and life loss typically occur 
together, and are not intended to imply a tradeoff of dollars vs. lives. 

For a facility such as a large water-retaining embankment the consequence of 
failure might conceivably be $108 or more. Thus, a probability of failure of 
10-3 would be consistent with accepted civil works risks. Taking this value 
as the nominal Pf and using the Normal probability distribution leads to a 
typical reliability index on the order of 3. For a structure such as a 
shallow footing the failure cost might only be on the order of $104 to 105 

implying a reliability index of about 1.5. These values are approximately 
consistent with common practice. 

8.5 Economic Optimization 

The purpose of economic optimization is to find that design factor of safety 
at which the marginal increase in construction cost necessary to further 
increase F just balances the marginal decrease in risk cost enjoyed by 
increasing F. Risk cost is taken as the probability-of-failure times the 
cost-of-failure, and the total cost to be minimized is taken as the 
construction-cost plus risk-cost. Presuming construction cost to increase 
with F and risk cost to decrease, the F at which the respective marginal costs 
are equal in magnitude yields the least total cost design. 

The analysis of section 6 considered the settlement of a shallow footing 
founded on sand. Fig. 32 shows the reliability index 6 against excessive 
settlement (serviceability failure) as a function of footing size, where 
excessive settlement is arbitrarily taken as 1.0 inch. For sake of 
illustration, the associated cost of servicability failure is set at $10,000. 

Fig. 32 also shows the relation between construction cost Cc and risk cost 
Cr=PfoCf as a function of footing width. The probability of failure Pf is 
found from the corresponding reliability index using Fig. 29. The total cost 
is the sum of Cc and Cr 
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CALCULATION SHEET 

PROBLEM: 2-D slope stability analysis CALCULATED BY: 

DATE: REFERENCE: 

SUMMARY OF RELIABILITY RESULTS 
========================================================================= 

S2 S2 s2 F F F 
mF Spatial System-TOTAL 

atic 

S 2 F 
wi Rv 

mF for 

13=2 13=3 
========================================================================= 

Single stage, 1.500 0.071 0.024 0.095 0.074 1.84 0.031 1.54 1.82 
H = 6m 

Single stage, 1.453 0.047 0.020 0.067 0.029 2.66 0.004 1.J4 1 .51 
H = 12m 

Single stage, 1.244 0.011 0.006 0.017 0.008 2.69 0.004 1 .18 1.27 
H = 12m Case II 

Multi stage 1.427 0.018 0.012 0.030 0.013 3.68 0.0001 1.23 1.34 
H = 23m 

============~============================================================ 

Figure 29 
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SETTLEMENT RELIABILITY ESTIMATES 

FOOTING MEAN STANDARD RELIABILITY NOMINAL 
WIDTH SETTLEMENT DEVIATION INDEX PROBABILITY 

OF SETTLEMENT OF FAILURE 

B mp sp 8 Pf 
---------------------------------------------------------------------
5 
7.5 
10 
15 
20 

I:-; 
Ul 

8 

1 .0 
0.83 
0.7 
0.52 
0.42 

7500-

5000-

2500-

o 
0-

o 

* 

5 

0.31 
0.26 
0.22 
0.16 
0.13 

optimal 

10 

WIDTH (ft) 

0 
0.54 
1.36 
3.0 
4.6 

15 

Figure 32 Optimal footing width. 
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(50) 

Construction cost was modelled using a fixed cost of $1000 per footing plus a 
variable cost of $1000 per foot of width. The total cost accordingly is 
plotted as a broken line. The minimum at 12 to 14 feet indicates the most 
efficient footing width. 

9. CONCLUSIONS 

Risk-based design using means and standard deviations of soil parameters and 
calculated predictions of performance presents a practical technique for 
accomodating uncertainty in geotechnical engineering analysis. The technique can 
be used with the numbers of data typically collected in practice, and does not 
require extensive computations. The result of this approach is a reliability 
index a, used to measure the margin of safety in a design in light of the 
uncertainty in predicted performance. 

The central concept of the procedure outlined here is to separately consider the 
contributions of data scatter and systematic error to predictive uncertainty. The 
first can be used to assess variability in performance across a site; the second 
can be used to predict probable error in predictions of average performance. 

In making design decisions, risk-based methods allow uncertainty in 
performance predictions to be explicitly considered, and balanced against 
cost. In this way, the practice of geotechnical engineering can be made 
somewhat more objective, and expenditures can be made more efficient. 
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Cu(m) 

cu 
Cx (5) 

Cx,y 
D 
Dcrust 
Dtill 
e 
F 
FV 
G 

g(x) 
k 

L 

m 

mx 
n 
N 

Pf 
pr{ .} 

qv 
f.q 
r 
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Appendix B -- SYMBOL LIST 

= constant 
= bias correction coefficient 

footing width 
failure cost 
risk cost 

= undrained strength of 
lacustrine clay 

= undrained strength of 

= 
= 

= 
= 
= 
= 
= 
= 
= 
= 

marine clay 
undrained strength 
autocovariance function over 
separation distance 0 
covariance of x and y 
embedment 
depth of OC crust 
depth to ti 11 
random measurement error 
factor of safety 
field vane 
derivative matrix with ijth 
element dYi/dxj 

= deterministic function of x 
= undrained strength ratio for 

NC clay 
= averaging distance, also L" 

L2, L3 
= power coefficient for 

strength increase with OCR 
mean of x 

= number of measurements 
= SPT blow count 

probability of failure 
= probabi li ty of 
= bearing capacity 
= applied footing stress 
= correlation coefficient 
= autocorrelation distance, 
Cx(50)='/e~ also 5" 52' 53 in 
multiple dimension 

= size effect factor 
= autocorrelation function over 

separation distance 5 
= standard deviation of x 
= standard deviation of spatial 

variation 
= standard deviation of 

measurement noise 

53 

sx3 standard deviation of 
statistical error 

sx4 = standard deviation of 
measurement and model bias 

ti = trend of spatial variation at 
ui = residual spatial variation 

about trend at i 
xi soil property at location i 
y = predicted performance variable 
z = observation or measurement, 

s = 
0 
P = 
Po = 
Ex = 

, 
avrn = , 
avo = 

possibly corrupted by noise 

reliability index 
separation distance 
settlement 
critical amount of settlement 
covariance matrix of x 
{x, , ••• , xn} 
maximum past pressure 
effective vertical stress 

T = undrained strength 
nx = coefficient of variation of x 



Appendix C -- OTHER METHODS OF UNCERTAINTY ANALYSIS 

The approach to propogating uncertainty through an engineering model used here 
is based on a first-order propogation of variance. This is a common technique 
and is called many things in the many disciplines to which it finds 
application. It is sometimes called "first-order second-moment" (FOSM) 
analysis, and sometimes simply "error analysis." However, there are several 
other ways to analyze the affect of input uncertainties on output 
uncertainties. Among the more often encountered of these other methods in 
civil engineering practice are adjoint methods, simulation, and response 
surface techniques. 

Adjoint techniques evaluate the proportionate effect of a pertubation in input 
parameter on the resulting purtubation in an output prediction. That is, they 
lead to an evaluation of the quantity {(~Yj/~Xi) Xi/Yj}' in which Yj is the 
jth component of the prediction and xi is the ith input parameter. Adjoint 
techniques are conveniently applied to large numerical models involving the 
solution of systems of linear equations. By manipulating the linear algebra 
of such solutions, adjoint results can be obtained in the course of 
computations. While adjoint techniques are usually used to obtain sensitivies 
of a model rather than to perform quantitative uncertainty analysis, the 
results can be used to numerically obtain derivatives, and thus to provide the 
means for first-order variance propogation. 

Simulation uses many repetitions of deterministic calculations in which values 
of input parameters are randomly generated from specified probability 
distributions. The result of simulation is a set of many predictions of each 
output parameter which are treated as empirical data from which statistical 
inferences of the means, variances, etc. of output predictions can be made. 
An advantage of simulation is simplicity. It requires none of the mathematics 
of variance propogation, adjoint analysis, and related techniques. On the 
other hand, simulation has three important limitations. It is expensive 
because the deteministic model must be run many times. For example, at least 
several hundred trials are typically needed. It requires not only means and 
variances of input parameters, but entire probability distributions. These 
may be ambiguous or arbitrary. Finally, the components of uncertainty are 
lumped together in simulations. Thus, differing effects are hard to unravel. 
Nevertheless, simulation is an important tool when a model is complicated, 
involves logical branching, or on other occations when variance propogation 
and related techniques cannot be used. 

Response surface techniques are related both to variance propogation and 
simulation, finding their most frequent use with models that are numerical, 
possibly implicit, difficult to analytically propogate variance through, and 
expensive to run. Response surface techniques are closely related to 
regression analysis. Multiple runs of the model are made in the vacinity of 
the mean of the input parameter values and a regression surface of chosen 
complexity is fit to the output. This regression surface is presumably less 
complicated than the model function itself, and yet can still be used as an 
approximation on which variance propogation or other techniques can be used. 
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At the same time, many fewer runs of the model are made than with simulation, 
and thus cost is reduced. Response surface approaches are often applied to 
risk analysis problems associated with nuclear power and waste facilities, and 
to structural reliability problems. 
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