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This paper describes the integration of wavelet analysis and time-domain beamforming
of microphone array output signals for analyzing the acoustic emissions from airplane
generated wake vortices. This integrated process provides visual and quantitative
simultaneous information about the wake signal composition and array resolution for a
particular wavelet subspace during a time interval, T. In the results section, an example is
given on how image processing algorithms might be used to automate the extraction of this
information and select the wavelet subspaces from which to perform image reconstruction.
This process begins with the projection of all the microphone signals on wavelet multi-
resolution subspaces. The projections of these signals on the same wavelet subspace or scale
are then beamformed to produce an image of the wake corresponding to that particular
scale. Therefore for each time interval T, the process produces a number of images equal to
that of the wavelet scales. This is equivalent to a more conventional Fourier-based idea of
filtering the microphone signals with band-pass filters having non-uniform bandwidths then
beamform in different sub-bands, but offers greater flexibility and enhanced computational
speed. Results from both approaches will be shown, which ultimately illustrate the
advantages of wavelet analysis over that of the Fourier-based analysis. Amongst the
advantages are the speed of the decomposition and ease of the image reconstruction from
selected subspaces aided by the perfect reconstruction and orthogonality properties of
wavelet analysis.

Nomenclature
aj(n) = Coefficients of the projection of f(t) in Vj

bj(n) = Coefficients of the projection of f(t) on Wj

B = Orthonormal basis for the decomposition comprised of V0 and m wavelet subspaces
c = Nominal speed of sound
fj(t) = Approximation of a function f(t) in Vj

F0(n) = Coefficients for the low-pass filter for the synthesis bank
F1(n) = Coefficients for the high-pass filter for the synthesis bank

h0(k) = Coefficients of the refinement equation
h1(k) = Coefficients of the wavelet equation
H0(n) = Coefficients of the low-pass filter for the analysis bank
H1(n) = Coefficients of the high-pass filter for the analysis bank
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I0 = Integrated power of 0 ( )s t$

L2(R) = Set of all functions with finite energy
m = m number of wavelet subspaces in the basis used for the decomposition
M = Number of microphones in the microphone array

( , )ip x t
r

= Pressure sensed by the microphone at location ix
r

( )iR x
r

= Distance from i-th microphone to a location x
r

in the source distribution

( , )s x t
r

= Sound source distribution

0 ( )s t$ = Output signal resulting from beamforming on a grid point located at 0x
r

T = Processing time interval
Wj = j-th wavelet subspace

x
r

= A location inside the source distribution

0x
r

= Location of a point on the horizontal grid located at an altitude Z0 above the array center

ix
r

= Location of the i-th microphone of the array

0( )it x∆
r

= Travel time of the acoustic wave-front over a distance ( )iR x
r

φ(t) = Scaling function
φj,k(t) = Basis function for Vj

ψ(t) = Mother wavelet
ψj,k(t) = basis function for subspace Wj

I. Introduction

The use of microphone arrays to visualize and track aircraft vortices represents a recent and novel development
in both fundamental fluid dynamics and aeroacoustics as highlighted in a number of publications5,7. The state-of-the-
art wake acoustics knowledge has been advanced by using both time and frequency domain based algorithms to
generate images representing Acoustic Intensity Distribution Maps (AIDM), otherwise also known in aeroacoustics
as the source localization map. In these images the wakes appear as two bright lines behind the aircraft (as shown in
Fig. 5 of the results section). More studies have also been carried out to enhance the imaging of the wakes and array
resolution using deconvolution techniques8. These approaches have proved useful in enhancing vertical resolution
and therefore 3-D imaging and tracking capabilities of microphone arrays. However, when information about the
signal composition of the wake is desired, special processing of the raw signal and not of the images produced from
broadband microphone signals is needed. One approach to getting this information is using frequency domain
beamforming to produce AIDMs corresponding to multiple narrow analysis bands9. However, this approach
becomes computationally expensive when the signal analyzed is broadband. This is because the steering vectors of
the beamformer are a function of frequency and therefore the beamforming bands must be very narrow, which
results in a large number of AIDMs to cover the whole spectrum to be analyzed. In this study a wavelet-based
approach, coupled with both image processing and time domain beamforming, has been developed to analyze the
composition of the wake signal, with the ability to reconstruct the image in any combination of wavelet subspaces
(or sub-bands) without having to re-filter and re-beamform. This approach makes use of the multi-resolution,
orthogonality and perfect reconstruction properties of the wavelet decomposition to generate classified beamforming
images. The wavelet-based decomposition has advantages over Fourier-based filtering because it lends itself to an
efficient filter bank implementation of the decomposition and reconstruction of the signal while guaranteeing
orthogonality and perfect reconstruction (PR) of the original signal from its components. The orthogonality and PR
properties of wavelet result in an efficient way of recomposing images from subspaces when needed, without having
to re-beamform the raw signals.

The remainder of the paper is organized as follows. Section II-A provides a background on wavelets and shows
the connection between wavelet analysis and filter banks. Section II-B discusses beamforming and how AIDMs are
produced and concludes with a flow-chart illustrating the integration of beamforming and multiresolution wavelet
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analysis. Section III shows example applications of this approach and validation of results using a Fourier-based
approach. Section IV describes future work and possible improvements to this technique.

II. Background

A. Wavelet Multiresolution Analysis and Filter Banks
This section introduces the concept of wavelets and how a signal could be decomposed into wavelet subspaces

using a filter bank. A more detailed development of wavelet analysis could be found in References 1 and 3. Let the
process start by defining a set of nested spaces that are assumed complete in L2(R) when m � ∞ (L2(R) is the set of
all finite energy functions).

... V V V V V V ....-n m-n+1 0 1 j⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂  (1) 

 

such that Vj has a basis function φj,k(t) =φ(2j.t-k) where φ(t) ∈ L2(R) satisfies the following equation called the
refinement equation

0
0

( ) 2 ( ) (2 )
N

k

f t h k f t k
=

= −∑ (2) 

where

1

( ) 10

N

k

h k
=

=∑ ,

so that φ(t) is normalized to 1. It can be shown that when this function exists it is compactly supported and is
completely defined by the coefficients h0(k) and can be synthesized using an FIR filter whose coefficients are h0(k).

In this case any function f(t) can be approximated by a projection on the space Vj according to equation (3).

0

( ) ( ). ( ),
k

f t a k tj j j kφ
=

∞
= ∑ (3) 

where

( ) ( ). ( ). ( ), ( ), ,a k f t t dt f t tj j k j kφ φ
+∞

−∞

= < >=∫ (4) 

Since these spaces are nested and complete for all finite energy signals, then as j�∞ the error between f(t) and its
approximation fj(t) approaches zero. That is, the space Vj+1 can better approximate f(t) than Vj since it is more
complete.

In order to have an efficient decomposition of a function into multiple signal components to be analyzed
separately, a set of orthogonal and complete basis is needed. Therefore the analysis starts with this nested space
representation and the definition of an orthogonal and complete set of subspaces in the following way. Let Wj

denote the complement of Vj+1 in Vj, where complementary means that

V = V + W and V W = {0}j j-1 j-1 j-1 j-1∩ (5) 

 

Loosely speaking, this means that a subspace Wj-1 is exactly what is missing from the set Vj-1 to become Vj and
is therefore orthogonal to Vj-1. In this case, V-n, W-n, W-n+1,…,W0, W1, …, Wj,…,Wm-1 form an orthogonal set and as
complete as Vm. And since Vm becomes more and more complete as m grows indefinitely so does the orthogonal
basis just defined. In practice, in the discrete domain the level of approximation m of a signal is limited by the
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available sampling rate. The equivalent of this statement in Fourier theory is that we cannot recover information
about the continuous signal for frequencies higher than the corresponding Nyquist frequency.

It can be shown that when φ(t) exists then each subspace Wj has a basis function ψj,k(t) = 2j/2 ψ(2j t – k) where the
function ψ(t) is called the mother wavelet and satisfies the following equation called the wavelet equation

0

( ) 2. [ ]. (2 )1

N

k

t h k t kψ φ
=

= −∑ (6) 

where

1

( ) 11

N

k

h k
=

=∑
so that ψ(t) is normalized to 1. It can also be shown from the wavelet and refinement equations that the mother
wavelet can also be synthesized at any scale using the FIR filters with coefficients h0(k) and h1(k). The conditions
for the existence of φ(t) and ψ(t) are discussed in References 1, 2 ,3, and are beyond the scope of this paper. For now
it is assumed that these functions do exist for some set of coefficients h0(k) and h1(k) according to the above
formulation and that they satisfy equations (2) and (6).

For n = 0 the orthonormal set becomes:

B={ V , W , W ,..., W ,...,W0 0 1 m-1j
} (7) 

 
Therefore any function f(t) in L2(R) can be approximated in Vm as follows

1

0 ,
0 0 0

( ) ( ). ( ) ( ). ( )
N m N

m j j k
k j k

f t a k t k b k tφ ψ
−

= = =

= − +∑ ∑∑  (8) 

 

where

0 ( ) ( ), ( ) and ( ) ( ), ( ),a k f t t b k f t tm mjk j kφ ψ=< > =< > (9) 

 
Equation (8) represents the projections of the function f(t) into orthonormal wavelet spaces and an approximation at
V0. The first term in equation (8) is the low resolution approximation of f(t) in V0 . For the second term of the same
equation, as j increases, the basis functions ψj,k (t) become more and more compressed and localized in time and
therefore called the wavelet details. As m increases fm(t) converges to f(t). In practice, in the discrete domain, the
largest achievable m is limited by the sampling rate. This is almost intuitive, because in general when a function is
sampled, unrecoverable details were lost. However if the sampling rate is high enough the approximation becomes
exact for all practical purposes. This is similar to the relationship between the Nyquist frequency and the sampling
rate in Fourier analysis.

In signal processing all signals are discrete, and therefore the equations above cannot be directly applied. In the
rest of this section the relationships between the coefficients h0(k), h1(k) and the functions φ(t) and ψ(t) are
examined. The properties and constraints on these coefficients are introduced, followed by the presentation on how
the wavelet decomposition of a function according to (8) can be approximated by calculating the coefficients in (9) 
using a filter bank with the low pass filter h0(k) and the high pass filter h1(k).

First, it can be shown that the following orthogonality conditions on the wavelets and scaling functions are
equivalent to orthogonality conditions on the FIR filters h0(k) and h1(k) outlined in equation set (11). 
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The corresponding orthogonality conditions on the filter coefficients are

0 0
1

0 1
1

1 1
1

( ). ( 2 ) [ ]
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N

n

N

n

N

n
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δ

δ
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=

=
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− =

− =

∑

∑

∑

(11)

If h0(n) is known to satisfy the first of these equations, and if h1(k) is chosen to be defined according to Eq. (12)
then the rest of the equations in Eq. (11) are satisfied. Therefore, knowing h0(k), h1(k) can be computed with ease as
the two sets of coefficients define orthogonal filters according to Eq. (11). 

 

1 0( ) (-1) . ( - )nh n h N n= (12)

Furthermore, it can also be shown using the refinement and wavelet equations that the wavelet coefficients defined
in Eq. (9) can be calculated using these filters according to the following equations called multiresolution
decomposition equations

1 0( ) 2. ( 2 ). ( )j j
k

a n h k n a k− = −∑ (13)

1 1( ) 2. ( 2 ). ( )j j
k

b n h k n a k− = −∑ (14)

So, given signal samples fs(n) = f(n.Ts) of the function f(t), these samples could be thought of as samples of fm(t)
= f(t) smoothed with a kernel φm(t), the basis function of Vm, as shown in Eq. (15). In practice, this is not a bad
assumption since the output of any A/D process involves smoothing of the analog signal by a narrow time window
before digitization. When the sampling period is normalized to 1, equation (15) is nothing but the coefficients am(k).
So starting with the sampled signal, Eq. (13) and Eq. (14) can be used recursively to find the coefficients of the
wavelet decomposition of the signal f(t).

( . ) ( ), ( . )m s mf n T f t t n Tsφ=< − > (15)

It can also be shown that the signal can be reconstructed from the wavelet coefficients using the synthesis filter
bank shown in Fig. 2 which is the implementation of Eq. (16). This equation is the multiresolution reconstruction
equation. Given the orthogonality conditions, this equation is obtained after imposing one more condition called the
perfect reconstruction condition on the analysis and synthesis filters1,2,3.

Figure 1. Computation of wavelet coefficients using an analysis bank

1( )ja n−2↓02 ( )h n−

2↓12 (h n−

( )ja n

1( )jb n−
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2↓H0(n)

2↓H1(n)

2 ( )a n

2↓H0(n)

2↓H1(n)

2↑

F0(n)

F1(n)

2↑

2↑

2↑

F0(n)

F1(n)
1( )b n

0( )a n

1( )a n

0( )b n

1( )a n

2 ( )a n

Multiresolution decomposition Multiresolution reconstruction

Figure 3. Full decomposition and reconstruction wavelet tree for m=2

1 0 1 1( ) 2. ( ). ( 2 ) 2. ( ). ( 2 )j j j
k k

a n a k h n k b k h n k− −= − + −∑ ∑  (16)

Because of the restrictions imposed by the orthogonality conditions on the analysis filter bank and by the perfect
reconstruction conditions on both the analysis and synthesis filters, it can be seen by substituting Eq. (12) in Eq. (14)
and Eq. (16) that all four filters are completely defined once h0(n) is known. Therefore, the scaling function, and
wavelets and the wavelet decomposition are all defined once the coefficients h0(n) are known. The process of
finding this filter’s coefficients is the subject of wavelet design and is beyond the scope of this paper. By redefining
the nomenclatures for these filters to simplify notations, the analysis filter bank is reintroduced as,

( ) 2. ( )0 0

( ) 2. ( )1 1

H n h n

H n h n

= −

= −
(17)

and the synthesis filter bank is redefined as,

( ) 2. ( )0 0

( ) 2. ( )1 1

F n h n

F n h n

=

=
(18)

In summary, the wavelet decomposition of a continuous signal can be approximated by recursive filtering and
decimation of the sampled signal through the filter bank in Fig. 1. Conversely, the sampled signal can be synthesized
from the wavelet coefficients by recursively applying the synthesis bank on the wavelet and approximation
coefficients a0(k), b0(k), b1(k), b2(k)… bm-1(k). The full decomposition and reconstruction process is illustrated in Fig.
3 for m=2.

Figure 2. Signal reconstruction using complementary
synthesis filter bank

2↑
( )ja n

1( )ja n−

1( )jb n−

02 ( )h n

2↑ 12 ( )h n
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H0(n)

↓H1(n)

2 ( )a n

2↓H0(n)

2↓H1(n)

2↑

F0(n)

F1(n)

2↑2↑

2↑

F0(n)

F1(n)
1( )b n

0( )a n

1( )a n

0( )b n

Multiresolution decomposition Multiresolution reconstruction

Figure 4. Multiresolution decomposition of the sampled signal, and reconstruction of the
low resolution signal approximation f0(n) as well as the individual signal projections on
each of the wavelet subspaces for m=2

2↑ F0(n)

f0(n)

f1(n)

f2(n)

2↓

By removing the summation nodes from the tree, the low resolution approximation of the signal and its
projections on the wavelet subspaces can be reconstructed so they can be processed independently. This is shown in
Fig. 4 for m=2 for illustration purposes but could be done for any size orthonormal basis. As will be shown later, the
collection of synthesized signal projections from all microphones on a particular wavelet space will be processed
through a time domain beamformer to produce an image of the wake corresponding to that wavelet space.

In the next section, the discussion of time-domain beamforming and the illustration on how it can be integrated
with the wavelet analysis for the purpose of imaging the wake in each of the wavelet subspaces are presented.

B. Beamforming in Wavelet Subspaces

Let ( , )s x t
r

be a sound source distribution and ( , )ip x t
r

be the pressure sensed by the microphone at location ix
r

.

Assuming that each infinitesimal portion of the source distribution ( , ).xs t dv
r

is a simple monopole emitting

spherical waves in a homogeneous atmosphere with negligible attenuation, we get:

( )1
( , ) , .

( )

R xip x t s x t d xi
cR xi

= −
 
  
 

∫
r

r r r
r (19)

where

( )R x x xii = −
r r r

(20)

When the primary focus is in mapping the acoustic power distribution of a finite square horizontal plane at some
altitude Z0 above the array during a time interval T, this mapping can be carried out as follows. First, consider a grid
on that plane and estimate the average acoustic power emitted by each grid point over the same time interval T. An
image is then constructed with each pixel-intensity being a function of the average power emitted from the
corresponding grid point in the source plane.

The average power corresponding to a particular location 0x
r

on the grid is estimated by focusing the microphone

array on that grid point and averaging the power of the resulting signal over the time interval T. The array is focused
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by compensating for time delays in each of the microphone signals so that the signal corresponding to the sound

emitted from the desired location is amplified. More precisely, a delay term, 0( )it x∆
r

is defined as follows,

0( )
0

x xi
t xi c

−
∆ = −

r r
r

(21)

After introducing this delay to each of the microphone signals and forming the sum the resulting signal is
proportional to

1

1
( ) ( , ( ))00

M

i

s t p x t t xi iM =
= − ∆∑ r r

$ (22)

Substituting Eq. (19) in (22) and interchanging the order of integration and summation, it follows that

0

1
0

( )1 1
. , ( )

( )
( ) .

M

i

R xis x t t x d xiM cR xi

s t
=

− − ∆
   =       

∑∫
r

r r r
$ r (23)

By examining this equation, it can be observed that when x
r

approaches 0x
r

the sum inside the curly braces

reduces to 0. ( , )M s x t
r

. As the point of interest moves away from the location 0x
r

the time delay term inside the

parenthesis becomes more and more dependent on the microphone location and the signal may no longer add
constructively. Therefore, this way of summing the microphone signals amplifies the acoustic signal corresponding

to location 0x
r

more than any other location. The estimated average power corresponding to the grid point 0x
r

is
therefore

0

2
( ) .0 0

T

I s t dt=  
 ∫ $ (24)

How fast the response drops as one moves away from 0x
r

depends on the array design and the level of
correlation between the monopoles in the source distribution. This is the subject of array design which is beyond the
scope of this paper. In general, the selectivity of the delay and sum beamforming improves as the array size and the
number of microphones increases, and as sources become less correlated. Array designs are usually optimized by
simulating the array response for various configurations. If the process of obtaining equation (24) is repeated for
each grid point, these results can be combined into an image representing the Acoustic Intensity Distribution Map
(AIDM) of the sources intersecting the horizontal plane being examined.

Just as this beamforming process is performed by processing the broadband signals, it could be equally applied
to orthogonal projection of that signal on the wavelet subspaces. That is, one can beamform the projections of all
microphone signals on the same subspace to generate an AIDM in that subspace. So for a time interval T, m images
are formed, where m is the number of subspaces in (7). This full process is depicted in Fig. (5). Since these images
represent the average power of signals from an orthogonal and complete set, they can be added to reconstruct the
original broadband image or reconstruct an image selected sub-bands without introducing distortions. This is
because the power of the sum of two orthogonal functions is the sum of the powers. That is, if f(t) and g(t) are 2
orthogonal functions and if the time averaging were denoted by <.> then the power of the sum is

( )2 2 2 2 2( ) ( ) ( ) ( ) 2 ( ), ( ) ( ) ( )f t g t f t g t f t g t f t g t+ = + + = +  (25)
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Therefore the value of the average power of a grid point in one of the sub-spaces can be added to the average
power of the same grid point in another subspace to get the average power of the that grid point as if beamforming
was done on a signal synthesized from both subspaces. This eliminates the need to re-beamform to reconstruct
images from any combination of sub-spaces or sub-bands while guaranteeing no signal distortion.

Figure 5. Flow chart illustrating the process of performing m=2 wavelet decomposition of N
microphone signals, projecting each of the signals in the approximation space V0 and the wavelet
spaces W0 and W1, then finally beamforming the projections of all signals on the same subspace to
generate an AIDM corresponding to this particular projection. Since for this illustration we have
m=2, therefore we get 3 AIDMs for each processing time interval.
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III. Application and Results

C. Sample Application

In this section, the applicability of the developed technique to reveal wake vortices’ signal composition is
illustrated. The image recomposition from selected subspaces is then shown next, where the selection process is
based on particular criteria. This is followed by an approach on how this selection process might be automated using
image processing algorithms. In the following example, data from the 252-element NASA-Volpe microphone array
deployed in Denver during September of 2003 is considered1,2,5,6,9. This particular case refers to a landing 757
aircraft. Fig. 6 is the AIDM generated from
beamforming on a horizontal grid at 500 ft altitude and
with a size of 1500ft (E-W) and 1000 ft (N-S). The time
is about 8 seconds after the aircraft passed above the
array center and the integration time for the acoustic
power is 2 seconds. The microphone signals are first
filtered down to 400 Hz using 8-th order Chebychev
low-pass filter and an image representing the AIDM in a
2-second time interval is generated using conventional
time-domain beamforming as discussed in section II-B.
This image is shown in Fig. 6

As discussed previously, this image represents the
integrated acoustic power in the entire 400Hz band and
provides no information on the wake acoustic spectral
content in that time interval. Should further detail on the
spectral content be desired in the AIDM, it is necessary
to either filter the time series data using band-pass filters
in the case of time-domain beamforming, or beamform
in very narrow bands in the case of frequency domain
beamforming. For the first case, if the filters designed
are not orthogonal, redundant information will exist in
adjacent bands due to spectral leakage. If the filters are
sharp enough to be orthogonal but they do not form a
complete basis for the analysis band, then there will be
missing information or distortions in the transition bands
when reconstruct of the signal from successive bands is
attempted. These problems are solved by the
orthogonality and PR properties of wavelet
decomposition. In the case of frequency domain
beamforming, a large number of beamforming steps are
needed to cover the whole signal-band since it is
constrained by a predefined high spectral resolution due
to the dependence of the steering vector on frequency.
The proposed wavelet based approach uses the
flexibility of multiresolution analysis to decompose the
signal into subspaces or pseudo-spectral components.
The term pseudo-bands or pseudo-spectrum is used
because the wavelet decomposition is not equivalent to
band-pass filtering. Although every projection is
practically band-limited, the spectrum in that band looks
like an aliased or distorted version of a clean band-
passed version of that signal. They look that way
because in this contest they are being observed with a
Fourier view. However these distorted band-passed like
signals are orthogonal projections which contain all the information about the signal and can be used to reconstruct
it.

Figure 6. AIDM for the wake of a 757
airplane using conventional time-domain
beamforming in the time interval [7, 9]
seconds relative to airplane overhead
time

W0

W2W1

W3

W6W5

V0

W4

Figure 7. AIDM from beamforming using
individual projections of the microphone signals
onto wavelet subspaces. The time interval is the
same [7, 9] seconds relative to airplane overhead
time used in the previous figure
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8-(a)

8-(b)

Figure 8. (a) Original image from
beamforming in the full band. (b)
Image recomposed from signal
projections on subspaces W5 and
W6.

Fig. 7 shows the result of beamforming after projecting each of the microphone signals on multiple wavelet
subspaces. The filter h0(k) in this wavelet decomposition was the 10-th order Symmlet. The number of wavelet
levels in the decomposition is 7m = . Beamforming was performed in the approximation space V0, and in each of
the wavelet subspaces separately to generate 1 8m + = images. The one labeled V0 represents the AIDM produced
using the projection of the microphone signals on the approximation space, and W1 is that of the projections on the
coarsest wavelet subspace. The images labeled Wi are results from beamforming in the i-th wavelet space. As can be
observed from these images, the acoustic energy of the wake in the T=2 seconds time-interval is concentrated in the
wavelet subspaces W3, W4, and W5. It could also be seen that the power level of the acoustic waves emitted by the
wake is not the same in these 3 subspaces. It is also not consistently higher in one scale (or subspace) relative to the
other. For example, in Fig. 7, considering the beamformed projection on W4 of the microphone signals, the region of
the right wake enclosed in the white circle is brighter than its counterpart in the image produced by the beamformed
projection of the signals on W5. However, the opposite is true for the left wake; that is, the region of the right wake
enclosed in W5 is brighter. Also different features of the wakes are apparent in each of the spaces. This could in part
be due to the way the wake emits sound in a particular wavelet space, and in another part due to the shape of the
array point spread function in that wavelet space.

Now, assume that it is desired to form an image only from subspaces where the airplane does not appear and
where the integrated power in the wake region has a strong enough SNR relative to the airplane and the rest of the
noise (i.e. above a certain SNR-dependent threshold for each frame).
Of course depending on the application, other criteria could be
selected (such as the appearance of 2 wakes as opposed to one wake
in the frame), but this criterion was selected for the purpose of
illustration and because it is relatively simple to devise an image
processing algorithm to automate it. Looking at the frames of Fig. 7
it is obvious that the frames that meet these criteria are the ones
corresponding to W5 and W6. Therefore the resulting image should
be recomposed by re-beamforming the microphone signals projected
on these two subspaces. However, since these images are the
logarithm of the integrated signal powers, and since all subspaces are
orthogonal, by using equation (25) it can be observed that this re-
composition can be done in the following 3 simple steps:

- First, use the inverse logarithms of the 2 Frames
corresponding to the desired subspaces W5 and W6.

- Add the two resulting frames.
- Take the logarithm of the resulting sum.

The resulting image along with the original broadband image is
shown in Fig. 8. In general, as discussed earlier in this section, if
signals were decomposed using Fourier-based band-pass filters that
do not satisfy the orthogonality and PR conditions offered by
wavelets. this process of decomposition would not be valid.

The image processing steps used to find the frames containing the
wake and segment it out from the region of the image corresponding
to the airplane and other noise artifacts (which are the information
needed to make the decision on which frames to use for image
recomposition) are shown in Fig. 9. This image processing is an
example of how to automate the decision on which frames to use for image reconstruction, and as bi-product it can
segment out the image into one where the wake alone is present and another containing the rest of the noise as
shown in Fig. 9-(e) and 9-(f).

The frames of the decomposed image of Fig. 9-(a) are first thresholded to generate a mask corresponding to the
wake and airplane regions when they exist as seen in Fig. 9-(b). This figure shows that this process picks up some
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noise or acoustic power other than that corresponding to the wake and airplane location. In the next step, an image
processing algorithm called Component Labeling10 is applied, which identifies how many continuous objects there
are in an image and label each of them. For each component the algorithm calculates its width and removes the
portions where the width exceeds some preset threshold. This algorithm assumes that the airplane will manifest itself
as a wide object that might or might not appear to be connected to the wake. Therefore, places where the width is
larger than the threshold most probably belong to the airplane region and are removed from the mask. The result of
this process is the generation of a mask containing the airplane regions. A mask containing only the wake and all the
other noise except that corresponding to the airplane region can now be generated, and is shown in 9-(c). Finally to
remove the rest of the noise, the image is convolved with a narrow vertical rectangular structure element and
thresholded, the result is shown in Fig. 9-(d). This figure shows the masks corresponding only to the wake regions in
the frames where the wake has significant acoustic energy. The result of using these masks to segment out the wake
from the rest of the image is shown in Fig. 9-(e) and Fig. 9-(f).

Now that the algorithm knows that the only frames that contain the wake but not the airplanes are W5 and W6,
and because of the orthogonality property they can be added to generate Fig. 8-(b) as mentioned earlier in this
section.
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9-(a)

9-(b) 9-(c) 9-(d)

9-(e) 9-(f)

Figure 9. (a) Image formed from beamforming in wavelet sub-spaces. (b)
Thresholded image based on the SNR for each frame. (c)Masks created after
detecting and removing the airplane regions using component labeling and
horizontal projection of each component. (d) Masks representing the wake
regions only. (e) Resulting image projections containing everything except the
wake region. (f) Resulting image projections with the wake regions only.
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D. Validation Against Fourier Based Filters

In this section, an approximation to the multi-resolution decomposition using 9 band-pass FIR filters with non-
uniform resolution is generated and shown in Fig. 10. As discussed earlier in this paper, the narrower the band the
longer the filter length is and the slower
the processing becomes. So each
microphone signal was first filtered with
these 8 band-pass filters, followed by
beamforming in each sub-band to
generate approximations to the images
from the wavelet decomposition. The
center of each band-pass filter and the
cutoff frequencies approximate the
corresponding wavelet basis approximate
bandwidth and center frequency
(sometimes referred to as pseudo-
frequency).

As can be observed in Fig. 11, the
results from approximating the wavelet
decomposition with band-pass filters
compare very well to the wavelet
decomposition with a shorter orthogonal
filter bank. An important note is that the
analog signals were filtered using a high-
pass filter with a lower cutoff frequency
of 20 Hz. Therefore the comparison of
wake signal power in the last 4 sub-bands (and the last 4 subspaces or pseudo-bands) to the upper 4 is not a fair
comparison but it was done to illustrate
the technique. Finally, we observe that
the similarity between the 2
decompositions is striking as if the
wavelet view is no different from the
Fourier-based approach. It is believed
that this is due to the fact that the signal
was decimated to 1024 samples per
seconds after filtering it down to 400 Hz
prior to the wavelet decomposition. If we
had started with the full signal band that
has a sampling rate of 25.6 KHz, we
believe that dissimilarities would have
been more pronounced. In fact these
images are not exactly the same and to
illustrate that images delineating the
difference were made by subtracting Fig.
11-(b) from Fig. 11-(a). The result is
shown in Fig. 12. It can be observed that
the lower images are different from the
upper ones. This supports the previous
statement about the image becoming
more different for higher order
decomposition. This will be the subject
of future investigation. For now, this
analysis is sufficient for the purpose of
validating the present wavelet based
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Figure 11. Validation of the wavelet multi-resolution analysis. (a) Frames
from beamforming in multiresolution sub-bands using long band pass filters
with the frequency responses depicted in Fig. 11. (b) Frames from
beamforming in wavelet subspaces.

Frequency (Hz)
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technique against the Fourier based one.

IV. Conclusion

The present paper presents an approach that combines wavelet analysis with beamforming to provide visual and
quantitative assessment of the wake’s signal composition corresponding to a processing time interval T. While
previous approaches use time domain beamforming to look at the broadband signal or at selected very narrow bands
(as is the case of frequency domain beamforming), this technique uses the multiresolution, orthogonality and perfect
reconstruction capabilities of the wavelet decomposition to analyze the full signal composition in orthogonal
subspaces. The use of this technique to perform image reconstruction from combining selected subspaces was also
discussed. The illustration of how image processing algorithms can be used to automatically select the subspaces
from which to perform image reconstruction has also been demonstrated. The advantages of using this technique
over Fourier-based techniques as well as a validation against a Fourier based approach were also discussed.
However, since the wavelet decomposition was done after low-pass filtering the microphone signals, the assessment
of this approach is not complete. In the future, reprocess the data without low-pass filtering and redo the comparison
is planned. Furthermore, future plans include assessing the impact of using a different basis function as opposed to
the one used in this paper, as well as adding more flexibility to the multi-resolution analysis by using wavelet
packets that offer greater flexibility when higher resolution information is needed about a particular band while
maintaining orthogonality of the signal components for efficient analysis. Other possible extensions of this work are
the iteration between image processing and wavelet-packet decomposition for adaptive decision making on which
sub-band should be further decomposed. It is anticipated that as the consequence, refined spatial and temporal
resolution of the AIDM as well as the enhanced ability to visualize vortex dynamics would lead to advancement in
better understanding of aircraft wake vortices at various stages of development and interaction with the
environment.
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Figure 12. Difference image Fig. 11-(b) minus Fig. 11-(a). The frames
corresponding to lower subspaces show larger differences. That is, the
deeper the decomposition the more the wavelet representation becomes
different than the decomposition with Fourier-based filters
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