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PREFACE

This report summarizes a study of network aggregation in trans-
portation planning models conducted under contract DOT-TSC-1443 for
the U.S. Department of Transportation. Funding for the work was provided
under the Transportation Advanced Research Project (OST/TSC) with addi-
tional support provided by the Urban Mass Transportation Administration.
The goals of this study have been to perform exploratory research, both
theoretical and computational, on a model of extraction aggregation prac-
tices often employed in transportation planning studies. The research has
yielded six independent papers which form the body of this report. An
overview section is included which summarizes prior work and the six
papers.

The contract under which this work was performed was guided by
Edwin J. Roberts and Mike Nienhaus, TSC-213, and Robert Crosby, Office
of the Secretary. Principal consultant was Harold W. Kuhn, Princeton
University.

Special acknowledgment is due to Michael Florian and Sang Nguyen
of the University of Montreal for sharing their computer programs and

ideas.
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AN OVERVIEW OF MATHTECH RESEARCH

IN TRANSPORTATION NETWORK AGGREGATION

Introduction

This report completes three years of research by Mathtech, Inc.,
on Aggregation of Transportation Networks under the auspices of Project
TARP, U. S. Department of Transportation, Office of the Secretary.
While its primary purpose is to report results of the final year under
contract DOT-TSC-1443, this overview also contains, in the following
sections, a summary of results from the first two years under contracts
DOT-TSC-883 and DOT-TSC-1232.

The purpose of the research has been to bring together the network
aggregation practices of transportation planners and the related theory
and computational results of mathematical programming. In so doing, it
was anticipated by both the sponsors and researchers that improvements
in the day-to-day methodology would result. It is further hoped that other
researchers will be attracted to the models and methods developed here
and offer additional results. This overview concludes with specific re-

search and development recommendations.



Research under Contract DOT-TSC-883

The first year of Mathtech research in network aggregation is
documented in reference [6] . The central objective of this work was
to identify, extend, and evaluate methods of network aggregation in
transportation planning models, Toward this end, an annotated bibli-
ography of over 200 articles and books was compiled from the
transportation science and operations research literature. This literature
survey revealed, somewhat surprisingly, very few theoretical results for,
or practical examples of, transportation network aggregation, (The
reference section of this overview includes some of the bibliography which
has been useful in the Mathtech research,)

From the available references, however, it was possible to identify

network aggregation methods as being of two types - hierarchical and

intrinsic,

Hierarchical aggregation may involve either an extraction of
network elements (links, nodes, etc.) or an abstraction of elements into
pseudo or dummy elements which replace the original ones. The result
is a smaller network which topologically resembles the original. Intrinsic
aggregation, on the other hand, involves the construction of an alternative
model - not necessarily a network - which will produce the results desired,
For example, reference[ 5 ] describes an attempt to determine traffic
equilibrium by formulating area-wide supply and demand curves. This
methodology completely avoids the use of a transportation network model.

The literature survey also revealed that four main classes of

network models, or problems, were likely to be of use in transportation



planning, These are (a) traffic assignment type flow problems, (b)

shortest path problems, (c) maximum flow problems, and (d) Hitchcock-

Koopmans type problems. As pointed out in the report, these classes are

not disjoint, The importance of each of the particular problems, however,

justified the four types.

For definitions we paraphrase from the report:

Traffic Assignment Models: Problems in which link
costs to a user are nondecreasing functions of flows

on each link and the constraints specify origin - des-
tination flows and (possibly) capacity bounds on some
links. This category includes both the user optimized
(equilibrium) and system optimized models so often used
in flowing highway networks.

Shortest-Path Problem: A fundamental network problem -

for given constants associated with each link, determine
shortest paths between specified nodes.

Maximum Flow Problems: This model asks for maxi-
mum flow between a fixed origin and destination in a
network with capacities on the individual links.

Hitchcock-Koopmans Transportation Problems: Another
basic network problem which, in its original form, asks
for the flows from m origins to n destination along
direct links which satisfy given demands at minimum
(linear) cost.

Table 1 illustrates the possible combinations of aggregation

methods and problems. Entries in the chart are representative references,

exclusive of this report.

TABLE 1. AGGREGATION METHODS AND PROBLEMS

Network Aggregation Traffic Shortest Maximum Hitchcock-
Method Assignment Path Flow Koopmans
Extraction 7,8,19 25 2
Hierarchical
Abstraction |3, 4,5, 6,17,18 1, 6,10,13,15,16
Intrinsic 22 21




The literature survey and above classifications formed a basis
from which mathematical and computational research could be conducted.
Principal results of the first year were presented in a collection of papers
in the final report. Two of these papers, entitled "Bounding Aggregation
Error in Network Models, "' and "Bounding Aggregation Error in the
Equilibrium Model, ' have the common theme of using the duality theory of
mathematical programming to bound aggregation error. Specifically,
the first paper suggests that if a problem P is aggregated to some form
P, then solving P implies that its dual D is also solved. If solutions

for P and D are constructed from P and D, then the relation

Objective value for P > Optimal value for P > Objective value for D (1)

will hold. This relation assumes that P is a minimization problem (i.e.,
any optimization problem), that the dual problems exist, and that there
exists some mechanism, called ''lifting, ' for obtaining disaggregated solu-
tions from aggregated solutions. To demonstrate the idea, it is applied to
the Hitchcock-Koopmans problem. Solution of a 3 source, 100 destination
numerical example shows the power of the idea - a "matural" clustering of
the destinations into four aggregate destinations produces an easily solved
(3 x 4) problem whose solution may be lifted to a solution of the disaggregated
problem. Application of (1) shows that the result is within 8 percent of
optimality. Even more interestingly, it is shown that solutions of the aggre~
gated dual (D) can be used to improve the aggregation.

These results are limited to problems of the Hitchcock-Koopmans
type, i.e., single commodity, linear problems where the destination (or
origin) nodes are aggregated. § However, the second paper points out that

the equilibrium traffic assignment problem is a convex optimization problem

#Concurrent and independent research by Geoffrion[15,16] and Zipkin [ 12]
has produced equivalent results.



and that nonlinear duality theory exists as a tool for bounding aggregation
error, In particular, itis shown that equilibrium models with linear link
costs are quadratic programs, for which explicit duals exist, Therefore,

the relation (1), is valid, at least in theory, for the equilibrium model.

Other results from [ 6 ]include:

- A fixed point algorithm for the equilibrium traffic
assignment problem. This method was later named
PATHFIX, coded, and tested computationally. The
method is currently limited to problems where paths
between origin-destination pairs are known. Its
outstanding feature is the precision of the solutions
obtained. Separate, self-contained documentation
of the theory and results is available[14].

- Theoretical results on the effect of extracting or inserting
a traversal link between two chains joining one fixed
origin-destination pair in the traffic assignment model.
The main result is the precise evaluation of the cost
change per individual traveler brought about by the
simplest non-trivial aggregation: the extraction of a single
link.

- Empirical results from a computational study aimed at
determining the range of error induced by aggregation

of a highway network.

- Bounds and estimates for average speed per path, and
estimates of computational savings from aggregation.

Research under contract DOT-TSC-1232

The statement of work for the second year of research called for
a survey of aggregation practices to be conducted by interviewing trans-
portation network users in D.O.T. and other transportation planners as
might be required. The objective of this survey was to learn what
aggregation practices and problems were most prevalent from among
the possible combinations (Table 1). The emphasis was on obtaining
detailed evidence, includin:g actual network data, of a real world study

which could be examined and simulated.



As an outgrowth of this experience it was anticipated that special-
izations of the mathematical models and algorithms could be developed

which would improve aggregation practices.,

Part I' of the final report[12] documents the results of this
survey which consisted of 20 interviews of D.O. T, personnel, repre-
senting all transportation modes, as well as several transportation
planners and consultants in the Washington, D. C. area. It contains
detailed descriptions of four aggregation practices encountered at UMTA,
FRA, the Washington Transportation Planning Board, and at JHK Asso-
ciates, a consulting firm. These four, as well as one dissertation from
the literature [18] on a study in Phoenix, Arizona, were shown in the
report to fit a common pattern of extraction aggregation, With respect
to Figure 1, the FRA model involved a shortest path problem; the other
four were traffic assignment problems.

The pattern of extraction aggregation employed is simple. Given a
large network and matrix of flow demands (trip table in the traffic assign-
ment problem), it involves the extraction of a subnetwork containing links
of particular interest, the transfer of some portion of the demand matrix
to the nodes of the subnetwork, and a subsequent flowing of the subnetwork
to satisfy the transferred demand. In each case documented, the specifics
of the pattern varied greatly; e.g., the subnetwork could be the entire
original network or just a few links of the original.

Table 2, adapted from the final report, shows the pattern of
extraction aggregation and how the various studies fit this pattern. (For

details, the reader should consult the report.)

#*Part I [14 ] is documentation of the PATHFIX algorithm.
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The terms "trip table' and 'centroid" are traffic assignment
terms; more generally, these might be replaced with "demand matrix"
and "origin/destination nodes". It is assumed, of cole.rse, that the
links identified in step 2 are a subset of the extracted subnetwork, and
that the pseudo-centroids are nodes of the subnetwork. Step 6, flowing
the subnetwork, is accomplished by some algorithm appropriate for the
particular problem. It is applied to the subnetwork and transferred
trip table in lieu of the original network and trip table. The resulting
computational savings may be modest or large. The Phoenix aggregation
resulted in computer time savings of 40 percent to 60 percent, while
the JHK aggregation in a study of Interstate 95 (Shirley Highway),
south of Washington, involved a subnetwork so small that potential
savings in computation effort were estimated at over 99 percent.

In Figure 1, the MEASURE step has been added to illustrate the
need for feedback in the process. None of the studies surveyed had such
a step; instead, the flows obtained in Step 6 were used in the planning
process.

The second phase of work under the contract was a simulation of
the Shirley study. The objectives were to (a) gain insight into actual
aggregation practices, (b) determine what steps of thé extraction aggrega-
tion model seemed the most critical, (c) test the idea of duality theory as
a tool for the MEASURE step, and (d) determine whether estimates of
computational savings (which are derived in[12]) are accurate..

In this simulation, a given network of over 9000 links formed the
basis from which a subnetwork of 483 links was extracted. The transfer
of the demands in the original 700 x 700 trip table to the subnetwork

became the object of several heuristic methods, because, not surprisingly,
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the model showed high sensitivity to this step. Other conclusions of the
computational study were that the formulas for predicting savings were
very accurate, and that the heuristics employed to construct primal and
dual solutions (see (1) ) yielded very weak bounds.

The final chapters of Part I of the report address the extraction
aggregation model from the viewpoint of mathematical programming.
Decomposition theory is cited as a primary tool for making Steps 5 to 7
of the model precise and guiding further heuristic development. Theoret-
ical proofs were given to show that various known error measures for
the traffic assignment model are equivalent to bounding error by nonlinear

duality theory.

Current Research Summary (Contract DOT-TSC-1443)

Research for the current year has focused on the extraction
aggregation model, The emphasis has been on obtaining new theoretical
results and algorithms, testing ideas computationally, and the design
and testing of an improved heuristic., Particular stress has been placed
on defining the extent to which nonlinear decomposition theory applies
to steps 5 to 7 of the model (see Figure 1), and the extent to which duality
theory is useful as a tool in step 7.

This research has produced six independent papers which form
the body of this report. Each adopts a style and technical level deemed
appropriate for the particular problem considered. For numerical
examples and computational experiments, the equilibrium traffic assign-
ment problem is often used. However, virtually every result applies to

any convex multicommodity flow problem. The remainder of this section

10



is a nontechnical summary of the papers.

Paper 1. Transfer Decomposition

This paper is an expository development of a new method for
network decomposition which is particularly well-suited for problems
where the subnetwork is a set of major links. (The Shirley highway
study is one example.) Its name derives from the fact that the communi-
cation between master and subproblem is via the subnetwork trip table
of the TRANSFER step. In other words, the master problem constructs
different (trial) trip tables which are used by the subproblem to flow the
subnetwork. The process is a convergent one which, in theory, will
ultimately produce a correct subnetwork trip table. By ''correct,' we
mean the trip table will, upon solution of the subproblem, produce the
same subnetwork flows obtainable if the full problem is solved.

There is, of course, communication from the subproblem to the
master problem after each trial flowing of the subnetwork. With respect
to Figure 1, the steps 5 to 7 are repeated and the inner feedback loop is
present.

Transfer Decomposition has several appealing features not present
in other decompositions. They include:

a) No preliminary decomposition by commodity (origin)
is required.

b) Both master and subproblems are network flow
problems. Therefore existing computer codes can
easily be employed to implement the method.

c) Computational experiments with variations of the
basic method suggest that computer time and space
requirements can be competitive with existing
methods for solving the full problem.

11



The paper includes a numerical example, heuristic and precise

variations of the method, and the results of computational experiments.

Paper 2. Subset Decomposition

This paper presents an interesting alternative decomposition which
is appealing for particular problems. The method of Wilson [ 18], for
example, involved a heuristic removal of centroid connectors in a highway
network and a transfer of the trip table to actual intersections of the net-
work. Viewed as a decomposition, all of the deleted links (centroid
connectors) have similar characteristics, e.g., constant travel times.
Subset Decomposition exploits such special structure.

In this method, the master problem is shown to be minimization
of a convex function subject to just one linear constraint, and a simple
method for maintaining feasibility is given. The subproblems for each
subnetwork (there may be many) are convex flow problems of the same
form as the original problem. For the traffic assignment problem, a
necessary modification of the Frank-Wolfe method, which is commonly
used for such problems, is given.

Computational testing of the method is proposed for future research.

Paper 3. Minimizing the Gap Function in Certain
Convex Programs

This paper is related to the bounding formula (1) on page 4. It pre-
sents a new idea for direct minimization of the duality gap; i.e., the dif-
ference between the upper and lower bounds of (1). This gap is expressed
as a function of primal variables only (flow variables in a network problem),
and methods are presented for minimizing it to achieve the optimal value

of zero.

12



The idea has intuitive appeal in the equilibrium traffic assign-
ment problem because the duality gap is (as shown in [12 ]) the total
time for all trips in the network minus the time if all trips are via
shortest paths. In the usual algorithms for the equilibrium problem,
this quantity approaches zero indirectly because the algorithm is designed
to minimize a different objective function.

Results in the paper include sufficient conditions for the duality
gap to be a convex function. Unfortunately, however, these conditions
are not normally met for equilibrium problems unless the link travel
times are linear. The computational results reported are mixed - in
some cases direct minimization of the gap produced solutions very quickly,
but in others convergence is slow. It is our feeling that this remains an
interesting research problem, but for the short term, the most useful
result of this investigation is the correction steps for improving error

bounds (see Paper 4).

Paper 4, The MEASURE Step and Nonlinear Duality

As already mentioned, theoretical results in [12] prove that all
methods commonly used for bounding error in traffic assignment problems
are equivalent to the use of nonlinear duality theory (1). Further, compu-
tational results have verified additional analysis showing that the bounds
are often very weak.

Paper 4 shows some inherent limitations of duality theory for
bounding convex cost flow problems. Specifically, it is shown that flows
for the entire network are required in order to evaluate the dual objective
value. This requirement is not present in linear problems such as the

Hitchcock-Koopman problem, and means that lifting of aggregated dual

13



solutions requires not just dual variables, but primal (flow) variables
as well. An important implication is that nontrivial bounds require the
solution of at least one linear program. This discussion includes both
graphical and network interpretations of the dual problem.

Paper4 also contains the results of some computational experi-
ments in which error bounds are generated from infeasible network flows.
These results suggest that bounds in the range of 10 percent to 50 percent
can often be obtained from infeasible flows (e.g., all flow variables equal
to zero). An interesting, and still experimental, idea of !'"correction steps'
which can improve these bounds is briefly explored. It is pointed out that
such correction steps could easily be added to existing D, O, T, software
such as UROAD, but that the cost of the improved bounds may not be

attractive.

Paper 5, Equivalent Flows for Extracted Subnetworks

This paper explores the theoretical relationships between flows
obtained from flowing a given network and those obtained from flowing
an extracted subnetwork., Questions such as the existence of a subnetwork
trip table which will replicate optimal flows on the subnetwork are
addressed. One interesting result investigated is the theorem of Nguyen's
[17] which gives a formulation of the equilibrium assignment problem
that does not require a trip table. More precisely, if origin to destination
path times are known, Nguyen's formulation will replicate flows in the
network equivalent to those one would obtain if the trip table were known.
However, several examples show that the unpredictable nature of the
subnetwork trip table limits the usefulness of the theorem in step 5

of the extraction aggregation model.

14



Paper 6. Experiments with a TRANSFER and FLOW Heuristic

This paper summarizes some experiments with a heuristic method
suggested in the prior research [12], From this prior work, it seemed
that, for the simulated Shirley study (see above), the flows of the subnet-
work were highly sensitive to the number of trips transferred, but not
very sensitive to other parameters of the extraction aggregation model.
It was conjectured that any intelligently designed transfer of the correct
number of trips to the subnetwork would produce good flows on the sub-
network links.

The specifics of the heuristic (known as Ml) involve connecting,
via pseudo links, the original 700 centroids to the 483 link subnetwork
of the Shirley study. The pseudo links are an example of abstraction
aggregation because they are constructed from deleted links of the
original network in an intuitively appealing way. The original (700 x 700)
trip table is scaled by a fraction which is an estimate of the proportion
of trips using the extracted subnetwork., It is noted in the paper that Ml
is a generalization of the procedure which must be implemented in the
design of a computer network model of urban highways because the
pseudo links are generalizations of centroid connectors.

Computational experiments with M1 were limited to two choices
for percentage of trips transferred and three choices for number of
pseudo-links per centroid. The results for aggregate measures, such
as average error in links flows, etc., are within 15 percent of the

correct values obtained from a benchmark flowing of the entire network.
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Summary and Recommendations

Our research in transportation network aggregation has been of an
exploratory nature, in keeping with the philosophy of the TARP Project.
Throughout, emphasis has been on development of new methodology relevant
to the various possible combinations of aggregations and models (Table 1).
We feel that the inner loop (Figure 1) of the extraction aggregation modél
has been thoroughly studied as an application of decomposition theory.
Sufficient computational testing has been done to demonstrate the potential
of the proposed methods. Other types of aggregation, especially abstraction,
remain open questions except in very special cases. Primary accomplish-

ments of our research are given below:

Development of an Aggregation method for the
Hitchcock-Koopmans problem [ 6 ].

Development and testing of the PATHFIX
Algorithm [14 ].

Survey of Extraction Aggregation Methods [12].

Development and testing of TRANSFER-FLOW-
MEASURE decompositions [Papers 1 and 2].

Exploration of Nonlinear Duality for Bounding
Error in Convex Flow Problems [12, Papers 3 and 4).

Development of a Large-Scale Data base for
testing Extraction Aggregation Methods iz ].

Development and Testing of Heuristic Methods
for Extraction Aggregation[12, Paper 6].

Turther research and development ideas relevant to transportation
networks which we feel important are:
a. Resolution of Decomposition
Virtually every result obtained in our research and the

research of others [7, 16] has either employed decomposition theory,
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or may be related to decomposition theory [24 ]. It is our belief
that the theory will continually be the basis for large-scale
network methodology development. The TARP project has pro-
duced various decompositions in coded form, and a variety of
networks of all sizes. Therefore, we recommend that a thorough

testing of the methods be undertaken with an emphasis on the

derivation of prediction formulas which can be used to guide the

choice of method to employ on a network of given parameters.

(It is worth noting that this study would include the well-known
Frank-Wolfe method because it is also a decomposition. )
b. Heuristic Development
Although decomposition is the theoretical key to solving large
network problems precisely, all such methods have two serious
drawbacks--they converge slowly and they flow the entire network.
Many transportation studies require only flowing a subnetwork.
From the experiments with heuristics in our research, we feel
that it is possible to develop sharp versions which will serve many
users. If the ideas of the Papers 1, 3, and 6 in this report are
employed, it is reasonable to expect that such heuristics would
produce solutions provably within 10 to 15 percent of optimality for a
fraction of the cost of flowing a full network to the same percent
relative error.
c. Minimax Code for Networks
A problem which repeatedly occurs in the solving of nonlinear
network flow problems is that of minimizing the maximum of a
collection of linear functions subject to network constraints. Two
examples are in bounding error and in solving decomposition

master problems. Although this is an example of the convex cost
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network flow problem, very little attention has heaen given to the

possibility of an algorithm exploiting the spacial structure of this

problem.
d. Testing of Subset Decomposition
The theory of this method is developed in Paper 2. It has
particular appeal for problems such as Wilson's [ 18] which has,
as one subset, arcs with linear costs, The potential of this
method needs to be explored computationally.
e. Extraction Aggregation Model
Steps 5 to 7 of this model have been thoroughly explored and
the relationship to nonlinear decomposition methods illuminated.
No work has been done on the interesting possibilities suggested
by the outer feedback loops in Figure 1. Specifically, we have
not developed mathematical programming techniques which would
guide the variation of either pseudo-centroids or the choice of

subnetwork links. Almost surely, methods devised in this area

would be combinatorial,
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1. TRANSFER DECOMPOSITION

Donald W. Hearn

Introduction

The Extraction Aggregation Model [2]* has at its core the problem
of determining a demand matrix for a given extracted subnetwork (TRANS-
FER), flowing the subnetwork (FLOW), and comparison of the solution
obtained with the ""correct! solution which one would obtain with no ex-
traction (MEASURE). In this paper we show that these steps may be viewed
in the context of a nonlinear decomposition of the entire network which we
call Transfer Decomposition because it illuminates the TRANSFER step
of the Extraction Aggregation Model. As a consequence, of course, flows
on all links are obtained and a lower bound is generated. Thus Transfer
Decomposition accomplishes all three of the steps. As will be seen, it is
a very flexible algorithm which can be varied to suit alternative needs such
as different choices of subnetwork and of subnetwork demand matrix, The
final section contains specific suggestions for the development of production

computer codes.

TRANSFER Decomposition

In keeping with the expository style of this paper, Transfer Decomp-
osition will be explained for the example of Figure 2. We assume the
problem to be a multicommodity convex cost flow problem (such as the

traffic assignment problem). The arcs of the network are partitioned

E o
See the overview section of this report.
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jnto sets A and A where subnetwork arcs are in A and all others are
in A. Components of A and A are of the form ij where i and j

are nodes of the network. Thus,

A = {56, 65, 57, 59, 68, 69, 97, 98, 78, 87},
and

A= {15, 16, 25, 26, 73, 74, 83, 84 }.
Individual commodity flows, representing all combinations of origin to
destination flows, are summed over commodity into total arc flows Yij
for ije A and Xij “for ijeA. There is a convex function fij for each
arc which represents the ""cost" (or '"time') of traversing the arc as a
function of total flow., Therefore the problem is

Minimize 2, £ (y..) + 3. £, (x..)
. R T & e A L
ijeA ije A

(P)
subject to constraints which conserve flow by commeodity with respect to
the given demand matrix (known as the trip table in the traffic assignment
problem). Note that the subnetwork of the example problem does not
contain either origin or destination points (centroids). This assumption
simplifies the present development, but also it reflects the conditions
which often occur in extraction aggregation practices (see [ 2 ], especially
the Shirley Highway study and Wilson's Load Node scheme). In a more
general treatment, this assumption may be relaxed.

Assume, now, that the flows Vij’ ijcK are fixed at values feasible
to the flow conservation conditions, and let the xij’ ijeA be variable,

s

Then there exists an induced demand matrix (trip table) for the subnet-

work, and, owing to the additive nature of (P), the optimal set of X

“The existence of an induced trip table is intuitively clear. For a rigorous
and detailed treatment see Paper 5 of this report.
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for the fixed Yij may be obtained by solving

Minimize iEA £ (xij) (S)
subject to conservation of flow constraints on the subnetwork with respect
to the demand matrix induced by the fixed Vij‘ The demand matrix of the
subproblem (S) does not need to retain the original commodity identification
of the probiern (P). For example, flows of a commodity from node 1 to
node 4 through nodes 5, 9, and 8 in problem (P) are merely represented in
problem (S) as flows from 5 to 8, combined with all other of the original
commodities flowing from node 5 to 8, such as flow from 2 to 3 via nodes
5, 7 and 8,

Based on this observation, we reformulate problem (P) as two
network flow problems: an outer problem and an inner problem (see

Figure 3). The inner network flow problem is (S) which has optimal value

h(z) where

h(Z) = h (Z57: Z58, 267, 268> = min E fiJ (XiJ) »
ijeA

subject to conservation of flow on the subnetwork where
Z = <z57, Zggr Zggr Z68) is the vector of components of the subnetwork
demand matrix induced by the Yi.i’ ijeA.

The function h(z) may be thought of as the minimum '"cost!" or
"time!' to traverse the extracted subnetwork given the subnetwork demand
matrix.

The outer (or master) problem is

Minimize 2, £.. (v..) + h(z), (M)
o i Vi
ijeA
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subject to flow conservation for the outer network of Figure 3. Note in
Figure 3 that the induced demand matrix for the inner problem is obtained
directly from flows on '""pseudo-links' of the outer network. This provides
communication from the problem (M) to the subproblem (S). To complete
the loop, the subproblem (S) supplies the master problem pseudo-link
"times'" or '"costs'" which are obtained from the optimal multipliers of

the subproblem.

Given these observations, we state without proof the following
properties of h, and the relationships of (M), (S) and (P) upon which
Transfer Decomposition is based. Proofs follow, for the most part, from
known results in decomposition theory as expounded by Lasdon [ 3 ] and

Geoffrion [ 1 ].

Property 1. h(z) is a convex function for any =z feasible to problem
(M).

Property 2, For given z feasible to (M), the set of optimal multi-
pliers of (S) is the set of derivatives of h. his dif-
ferentiable if and only if the set of multipliers is
unique.

Property 3. The optimal solution value of problem (M) is equal
to the solution value of problem (P). If the solution
of problem (M) is within ¢; of optimality and the
corresponding solution of problem (S) is within €5
of optimality then the combined solution is within

€11 & of optimality for problem (P).
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Property 1 guarantees that the objective of problem (M) has just
one optimal solution value. Property 3 insures that solving (M) and the
subproblem (S) does yield a solution to (P) to within measurable tolerance.

It is clear that both problems (M) and (S) are convex multicommodity
flow problems, just as (P)is. Therefore any algorithm which will solve
(P)will also solve both (M) and (S). Only one qualification to this statement
must be made. The function h is not differentiable over its domain and
therefore an algorithm which required differentiability of the objective
function for its convergence proof might not converge when applied to (M).
However, h can be shown to be differentiable ""almost everywhere! in
its domain, and at nondiffentiable points, subderivatives of h always exist.
Therefore, one may heuristically employ an algorithm such as Frank-Wolfe
to solve (M). Our computational experiments bear evidence that this works
without convergence difficulties, Of course, no such problem arises for (S).
The objective of (S) will be differentiable as a function of the xij variables
if the fij are differentiable.

When (P) is a traffic assignment -problem, both (M) and (S) are
traffic assignment problems. Therefore, the well known Frank-Wolfe
method may be applied to both. We summarize by stating the Transfer
Decomposition algorithm for the problem of Figure 2, assuming given

tolerances 61 and 62.

TRANSFER DECOMPOSITION ALGORITHM

Step 0. Comnstruct a feasible flow for problem (M), e.g.,
determine the all-or-nothing assignment with
zero times on the pseudo-links.

Step 1. Construct the trip table for problem (S) from

the pseudo-link volumes.
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Step 2. Solve problem (S) to within some tolerance €
Travel times of problem (S) are returned to the
master problem as pseudo-link travel times,

Step 3. Given the new travel times determine a lower
bound for problem (M) by solving the usual Frank-
Wolfe subproblem. If problem (M) is within €
of optimality, terminate. Otherwise load the
outer network trips along shortest paths determined
by the new travel times.

Step 4. Perform a line search minimization between the new
outer network flows and the prior flows. (Note that
each point of the line search requires solving problem

(S) )» The final iteration of the line search produces

new link volumes for the outer network. Go to 1.

Of course, particular care must be exercised in step 4, the line
search, Since each iteration requires a resolving of problem (S), the
method is only practical if just a few points on the line need be evaluated.

A heuristic variation performs the line search, not on the objective
of (M), but on a function £(y,z) which is defined to be the maximum of
all tangent planes generated in prior iterations. The information required
to evaluate [f(y,z) is easily obtained by employing Property 2. It must
be stored, so the heuristic requires more core, but the trade-off with
time required to solve the subproblems can be dramatic.

This heuristic does not produce monotonically decreasing objective
values for (M), However, even if the objective increases, the method con-
tinues to the next iterate defined by minimizing £(y, z). Since £(y, z) is defined

by the maximum of tangent planes and the line search is a minimization, we
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refer to the method as a Minimax Heuristic. Below are the modifications
required to the Transfer Decomposition Algorithm.,
MINIMAX HEURISTIC

Step 0. No change

Step 1. No change

Step 2. No change

Step 3. (Add to the previous Step 3.) Construct a tangent plane (from

the multipliers) for the objective of (M) and save,

Step 4. Perform a line search on the function /(y, z), the
maximum of all tangent planes., The final iteration of
the line seach produces new link volumes for the outer
network. Retain as the current objective of (M) the
minimum of the previous value and the value produced

by the line search. Goto l.

An Example

It is instructive to consider a numerical example of the transfer de-
composition algorithm of the previous section. In Figure 4 traffic assign-
ment data for the network already introduced is given., The "volume delay"
formula, typical of FHWA and UMTA models, represents the time to traverse
each link as a function of the link volume, or flow. The constant To is the
uncongested travel time for the link, and the ""Capacity" term is capacity
only in a penalty sense, (Both To and Capacity values were randomly
generated), The optimal objective value of 1854 is for the user equilibrium

model of traffic flow. The fixed trip table requires that a total of 100 trips

traverse the network from origins 1 and 2 to destinations 3 and 4. The
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aumber beside each link represents an optimal solution in terms of total
link flow. These values were obtained by applying the Frank-Wolfe
algorithm to the full problem.

The initial iterations of Transfer Decomposition on this problem
are illustrated in Figure 5, The subnetwork trip tables generated as flows
on the pseudo-links of problem (M) in steps 0 and 4 are in the second
column. In effect, these are extreme points of the domain of (M) with

respect to the variables (z57, Zpgs Zg7s Z68)' Step 4 of the algorithm,

the line search, transfers a convex combination of all past trip tables

to the subproblem. These are shown in the third column. Step 2 of the
algorithm solves the subnetwork traffic as signment problem with the trip
table of column 3 and produces the multipliers (travel times) shown in the
fourth column. Successive values of the objective for (M) are shown in
the final column.

In theory, an infinite number of iterations will produce the optimal
solution values for the subnetwork trip table and the multipliers shown in
the final row with objective value 1836. Note, however, that in only three
iterations the subnetwork trip table, a convex combination of the three
trip tables of column two, produces a solution within 8 percent of the
optimal value. Equally impressive is the fact that the travel times
(multipliers) for the traversal of the subnetwork are quite close to their
optimal values, differing by percentages which range from less than

3 percent to at most 12 percent,
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1-5 5 10
1-6 6 16
2-5 3 35
2-6 9 18
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5-7 2 11
5-9 8 26
6-5 4 11
6-8 6 33
6-9 7 32
7-3 3 25
7-4 6 24
7-8 9 19
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8-4 6 43
8-7 4 36
9-7 4 26
9-8 8 30

FIGURE 4. RANDOM PROBLEM
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Alternative Transfer Decompositions

The subnetwork of the decomposition in Figure 2 is a ""natural"
one in that the network divides into disjoint segments and the pseudo-
links have an easily visualized interpretation. Other choices of a sub-
network are possible, however. Consider Figure 6, where the same
network as before has been decomposed so that the links (59, 97, 74)
comprise the subnetwork. One advantage of this decomposition is that
the subnetwork is a tree and therefore the execution of step 2, solution
of subproblem (S), is trivial. The disadvantage is that the outer network
is three links larger than the original network. Note, however, that the
subnetwork trip table is not unique for this choice of decomposition. If
links associated with Zpg and z94 were removed from the outer net-
work, the subnetwork could be as shown and the trip table would only
contain Zggs Zg7e and Zim g The important difference is that the pseudo-
links of the outer network always have ''costs' which sum to h(z), even
if the pseudo-link replaces an original link.

This example shows that Transfer Decomposition is quite general
and can be varied to suit different needs. Computational results on the

decomposition of Figure 6 are in the next section.

Computation Experiments

This section reports computation experiments on three small
equilibrium assignment problems, all of which have the network topology
of the example problem in Figure 2. The data for the three problems is
given in Figure 4 and Figure 7. Problems E and H contain nonrandom
data designed to make them easy and hard, respectively, in terms of the

equilibrium model criteria. Thus the alternative origin to destination
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Problem E Problem H
Link To Capacity 'I‘O Capacity
1-5 5 10 5 10
1-6 ) 16 6 16
2-5 3 35 3 35
2-6 9 18 9 18
5-6 5 25 1 50
5-7 5 25 5 25
5-9 L} 25 2 35
6-5 5 25 1 50
6-8 5 25 5 25
6-9 5 25 2 35
7-3 3 25 3 25
7-4 6 24 6 24
7-8 5 25 1 50
8-3 8 39 8 39
8-4 6 43 6 43
8-7 5 25 1 50
9-7 5 25 2 35
9-8 5 25 2 25
Trip 1[5 240 1 235- 245

ERbReE 230 | 40 2125 [ 25

FIGURE 7. DATA FOR PROBLEMS E AND H

39



FW - Frank Wolfe

TD - Transfer Decompositicn
(Fig. 2)

MM - Minimax Heuristic

AD - Alternative Transfer Decomposition

30 4 plnng

2 | ;w\

20 4
AD

PERCENT
RELATIVE
ERROR

15 4

TD
10 4
MM AD W
0.5 1.0 1.5 2.0 2,53

CPU SECONDS

FIGURE 8. RANDOM PROBLEM -- RELATIVE ERROR COMPARISON
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15 4 ~ FW - Frank Wolfe
TD - Transfer Decomposition
(Fig. 2)
MM - Minimax Heuristic
AD - Alternative Decomposition
(Fig. 6)
30 4
FwW
MM
25 <+
20 +
PERCENT
RELATIVE
ERROR
15 4
AD
10 ¢
5 -
Fw
= 5 1.0 1.5 2.0 2.5
TIME

CPU SECONDS

FIGURE 9. PROBLEM E -- RELATIVE ERROR COMPARISON
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f
35 -+
FW - Frank Wolfe
TD - Transfer Decomposition
(Fig. 2)
Minimax Heuristic
o Alternative Decomposition
4 (Fig. 6)
25 & o
20 4
PERCEN
REL.
ERROR
15 4
D
10 4
5 &
FwW
0.5 1.0 1.5 2.0 2.5
CPU SECONDS TIME

FIGURE 10. PROBLEM H -- RELATIVE ERROR COMPARISON
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A production computer code of any of these methods would require

extensive testing before determining all parameters.

Summary and Conclusions

The results of the previous section demonstrate that Transfer
Decomposition is a viable method for solving convex multicommodity
flow problems. Perhaps surprisingly, the experimental results with the
alternative transfer decomposition of Figure 6 show that it can be compe-
titive with the Frank-Wolfe method if the subnetwork is chosen in an appropriate
manner. Intuitively, this requires that the subnetwork be small, so that
problem (S) is easy to solve relative to the full network problem (P).

Transfer Decomposition has a number of advantages which make
it appealing when compared with the Geographic Decomposition method
of Maier and Robinson [4]. Chief among these are:

(a) Transfer Decomposition does not require, as a

preliminary step, the decomposition of problem (P)
by commodity. The automatic aggregation of the
original commodities as flows on the pseudo-links

is very important because, unless there are origin/
destination points in the subnetwork, the subproblem
(S) may be treated as a problem of assigning flows
between access and egress points of the subnetwork.

(b) Both problem (M) and (S) are convex flow problems

of the same form as (P). Therefore existing computer
codes may be used to solve both problems, and, with
current knowledge about computer time required to

solve (P), it should be possible to predict the performance

of Transfer Decomposition for given choices of (M) and (S).
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The Geographic Decomposition method [4] was designed for large,
loosely connected networks. In such cases there are certain to be many
origin/destination points within each geographic region of the decomposed
network. Therefore, it is appealing to decompose (P) by commodity prior
to the decomposition by region. Transfer Decomposition, on the other
hand, is designed for flowing subnetworks such as major arteries (express-
ways) in an urban area. In this case, there are no origin/destination
points within the subnetwork. (The presence of such does not invalidate
the method, however. The subnetwork of Figure 6 contains Node 4,

a destination node.)

Point (b), above, assumes that the method for solving convex
flow problems will Work when the objective value is convex, but not
necessarily differentiable. Strictly speaking, methods such as Frank-
Wolfe require differentiability for convergence. There are a variety of
ways, including perturbation methods, which can be employed to avoid this
difficulty, however, it is unlikely that such would be needed in practical
computer codes. As already mentioned, the objective of (M) is differ-
entiable almost everywhere.

All of the methods mentioned in this paper are decompositions in
the mathematical programming sense, including the Frank-Wolfe method
which is not usually thought of as .such. This commonality means that
they share two unfortunate idiosyncrasies of decompositions. First, they
are slow to converge, i.e., the percent relative error in the objective
value (see Figures 8 -~ 10) approaches zero asymptotically., No satisfactory
explanation exists for this phenomenon and therefore there is little likeli-
hood of significant improvement. For practical use, therefore, one usually

must settle for relative error in the range of 2%-5%. Computational
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experience with a variety of decompositions indicates that this range of
error is attainable at reasonable computation cost. Attempting to attain
error under 1 percent can often be prohibitively expensive.

The second feature of decompositions is a disadvantage with respect
only to the Extraction Aggregation Model [2]. Transportation analysts
are often interested only in flows on a subnetwork, and hence they employ
this model as evidenced by the case studies in [2]. Decompositions,
however, address the full problem (P) and thereby obtain flows for the
entire network. Other than heuristics, there does not appear to be a
way to obtain the correct flows for the subnetwork links without flowing
the entire network. Even in heuristic methods, there is a theoretical
requirement for at least one full set of flows for the network in order to
measure the error in a set of heuristically derived subnetwork flows.*

The results presented here raise two interesting and potentially
fruitful areas for computational development:

(2) Develop a heuristic for flowing highway subnetworks

where the inputs are estimated extreme points of the
subnetwork trip table space (cf. Figure 5). The

master problem would be of the form

min h (z) (M)
s. t. z = Z)\ z"
A; 20

*
See Paper 3 of this volume for an elaboration of this point.
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where each z* is an extreme point, and h is defined
to be the optimal extreme value of a subproblem having
the same form as (S).

It would be relatively easy to gather zi data
for an existing subnetwork by having traffic engineers
count flows at access and egress points. For design
networks, the zi could be estimated. Of course, the
zi need not be extreme points so long as their convex
hull contains an optimal trip table.

(b) Perform sufficient computation experiments to develop
prediction formulas which would estimate computer
time and space requirements for each decomposition
method proposed. g Some simple analysis would enhance
the development of these formulas. For example,
Transfer Decomposition involves a trade-off between the
size of the original subnetwork and the number of pseudo-
links.

Both of these suggestions build on the results of this paper and

offer the potential for long term utilization by transportation planners,

*Barton has proposed another decomposition for the Extraction Aggrega-
tion Model. See Paper 2 of this report.
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2. SUBSET DECOMPOSITION

Russell R. Barton

Introduction

In this paper we show that the aggregation procedure (steps 5 - 7)*
given by Hearn (1977, p. 2-26) can be accomplished through use of another
Bender's decomposition technique, Although in extraction aggregation the
network is usually decomposed into two parts (extracted and non-extracted
arcs), this subset decomposition technique can be used on networks decom-
posable into p parts. We will show how this technique leads to a particular
algorithm that is especially interesting when one or more of the parts
have constant cost functions (e.g., the Wilson problem).

Notation
We make four assumptions.

Assumption 1. The original network is connected,

Assumption 2, Each subnetwork is strongly connected, i.e., a path

exists between every node pair of the subnetwork,
(May be relaxed to strong connectedness of the split
nodes of the subnetwork - see below).

Assumption 3, Nodes are adjacent to at most two of the subnetworks

(trivial for p = 2; may be relaxed when p >2).

Assumption 4. Nodes adjacent to more than one subnetwork are not

centroids (may be relaxed).

We define nodes adjacent to two subnetworks as ''split" nodes (c.f. Maier

& Robinson (1977)). Two legitimate decompositions for a particular

network are shown in Figure 11.

*See the overview section of this report.
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I. Regional Decomposition

Original Network:

ot

= centroid
o h o= split node
Decomposition: 8 = other node
Part 1 Part 2 Part 3
(region 1) (region 2) (region 3)

II. Aggregated (Extracted) Subnetwork Decomposition

Oi‘iginal Network:

ot o)

>

Decompositions.
m = centroid
'y - e o
¢= split node
pawt 1 = other node
O O ( (none here)
rol
part 2

FIGURE 11. TWO ILLUSTRATIONS OF NETWORK DECOMPOSITION
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Let commodity q be the demand between origin-destination pair q,
and for split node i, let g(i1 represent the flow of commodity q passing be-
tween the two parts of the network incident to node i. Let 8ik specify the

relationship of g‘i:'l to the kth subnetwork part:

Sik = =1 if giq denotes flow out of subnetwork k
= 1 if gg denotes flow into subnetwork k
= 0 if split node i is not incident to subnetwork k.

Model Structure

We now present a particular subset decomposition model to
simplify the discussioﬁ. We consider the case of two subnetwork parts
(i.e., p=2). The extraction aggregation problem is an example of this
case, If we let nlq(‘ be the vector whose components are 5ikg§1, then we

may write the equilibrium traffic assignment problem as:

f..
[z [
Pl minimize Z cij (u)du + _ cij(u)du

ijeA ijeaA o
s.t.
f.. = Z xd
1] q 1]
AlZ =pd Vq
x4
x >0,

where x7 is the vector of g-commodity flows on links in d and %3 is the
vector of g-commodity flows on links in a.
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Assumption 3 implies the following structure for the (A | K) matrix

constraints.,

; q
nodes in part 1 A11 0 q b
p. <
split nodes A2 1 A22 = 0
x4
nodes in part 2 0 A23 v /.

Define n3 =A, % q ni= A,, %9 and note that n? = -2, Then we can re-

write problem Pl in a separated fashion:

f..
f ) ) f .
| i
P1 minimize E A cij(u)du + Z.__ Ls cij(u)du

ijea ijea
s.t. Z N\
: (< - q .=
fij : % ije fij ? x{s 1jeA
( a .
A1l B A22\ _q A
o3 = . = -
. A21 a A23 b
q
x1> 0 x320
n? feasible (*) .

Thus P1! is separable except for the constraint (%) so we may

write (P1l') as

P2 minimize Z(n) + Z (n)

master problem

s, t. nq feasible Vq
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where £
ij ij \
Z (n) = Min 2 : _/ c..(u) du Z (n) = Min Z_ f c..(u)du
ijed Yo M jjez 0 i
s.t. fi_ = Zx::l ij €A s. t 5 — Z i_?‘ iJ e;l-
J q A ) qQ j ?
q -q
All b AZZ -n
- . Vq =9 - g Vq
Ban u A23 L
x4 =0 x4 = o £

The strong connectedness of each subnetwork (Assumption 2) implies

that necessary and sufficient conditions on n? for subnetwork feasibility

are that:

=0 Vg (1)

=0 ¥q  (2),

where 1 is a vector of ones. The feasibility of P1 implies that
pe T= b4 i and so the n feasibility requirement (%) is simply that
n? lie in the subspace generated by (1) <equiva1ent1y (2)).

Thus we see that the master problem in P2 can be treated as an
unconstrained problem if the gradients of Z1 + Z2 have components which

940 always lie in the subspace

sum to zero, forcing successive values of n
defined by (1) above.
The subproblem dual variables are the gradient components and,

because the subproblem constraints have a redundancy, may be adjusted

to meet this requirement. By defining the subproblem dual variables in
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this way, we can sum (over all subproblems) the dual variables corre-
sponding to the split node constraints to get a usuable master problem

gradient. This process is described in more detail in the next section.

Solution Technique

A natural algorithm for solving P2 would be to apply a subgradient
optimization technique for solving the unconstrained master problem, and
apply the Frank-Wolfe algorithm to each of the multicommodity flow sub-
problems. Dual variable values for the split node flow constraints would
be calculated from the link travel times, summed over the subproblems,
and used as the subgradient for the next master step. The Frank-Wolfe
algorithm used in traffic assignment codes (e.g. UROAD) must be modified
to solve the subproblems of P2. This modification is explained in the
appendix.

The algorithm is outlined below:

SUBSET DECOMPOSITION ALGORITHM

Step 0 Construct a feasible n vector. This can be done for each
commodity q by defining ng, P ng arbitrarily, and
setting

>
nc{ = p%. 1 - 2 nl
i=2
Step 1 Solve each multicommodity flow subproblem using the

modified Frank-Wolfe algorithm (see Appendix). A lower
bound on the overall objective function is given by the sum
of the subproblem lower bounds. An upper bound is given

by the sum of the subproblem optimal objective function values.

53



Solution of subproblem 2 yields dual variables for each node and
commodity, ud. Assume these a.verage,uq for the split nodes. Redefining
the dual variables to be u? - ,U.q forces the split node sum to be zero as
required. These adjusted values are then used to update the vectors n4.

This leads to two new subproblems and the process continues.

Alternate Algorithm

Maier and Robinson suggest solving the decomposed problem
similar to P2. They explicitly include the n9, a9 feasibility constraints
in the master problem, and further decompose the problem by commo-
dity. Thus P2 is solved iteratively for each commodity, holding the
others fixed. The master problem incorporates inequality constraints
that are relaxations of the Z, Z equalities defined by the subproblems.
Thus their formulation involves a master problem which increases in
size at each iteration. In Subset Decomposition, this does not occur and

the master problem is effectively unconstrained.
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APPENDIX

Frank-Wolfe Solution of the Subset Decomposition Subproblem

For the traditional traffic assignment problem, each commodity
is associated with a unique origin, so that each set of commodity
constraints has only one node with positive net flow (i.e., one component
of bd greater than zero). This property enables one to find extreme
points (flows) by constructing minimal path trees rooted at origin q
for each commodity, and assignall g-commodity flows to these paths.
For the subproblems of P2, however, split nodes as well as origin q may
have positive net flow for commodity q. Since, in this case, demands for
commodity g can be met by a number of sources, one must do more than
construct a minimal path g-rooted tree to solve the L.P. (trans shipment
problem) phase of the F-W algorithm,

One method for solving the L.P, is to transform the trans shipment
problem into a transportation problem by finding shortest paths. The L.P.
phase of the F-W algorithm for the subproblems would then consist of
three operations:

Subproblem Solution
L.P. Phase of Frank-Wolfe Algorithm
Step 1. Construct shortest path trees for the subproblem, one for
each origin in the subnetwork and one for each split node
that has positive net flow for some commodity. Record the
shortest path distances for all origins (and positive split nodes)

to all destinations (and split nodes with negative net flow).
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Step 2. Using the distances from Step 1, along with trip demands
defined by the b2 and n? vectors, solve the transportation
problem for all commodities simultaneously.

Step 3. Using the solution to Step 2, load appropriate flows onto
the links in the shortest paths.

Note that welca.n solve Step 3 in one of two ways:
a) If the storage requirements are not too large, we can retain

the minimal path trees found in Step 1 to assign the ﬂ;)ws found in Step 2.

b) Alternatively, we can re-solve Si:ep 1, assigning the flows of

Step 2 as the minimal paths are found.
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3. MINIMIZING THE GAP FUNCTION IN CERTAIN
CONVEX PROGRAMS

Donald W. Hearn

Introduction

In an earlier Mathtech report [ 2] we have pointed out the impor-
tance of the '"gap'' function (defined below) in certain convex programs
such as the traffic assignment problem. This paper investigates the
practicality of direct minimization of this function by the methods of
nondifferentiable optimization, as opposed to the indirect minimization
which occurs when the convex program is solved by the Frank-Wolfe
method. Our preliminary results include an adaptation of a convergent
method due to Polyak, and computational experiments which illuminate

features of the method.

Consider the convex programming problem

min f£(x) s.t. xeS= {x|Ax=b, x Z0}, (P0)

for f convex and twice continuously differentiable. We assume through-
out that S is bounded and thus there exists X which solves (P0).
Our approach is to solve (P0) indirectly by minimizing an auxiliary
function, G(x) defined as follows:
G(x) = max VI(x)(x -y) s.t. yeS, (P1)
y
The function G has a number of interpretations; it is the negative of the
directional derivative of f in the direction of some extreme point y(x)
which solves the maximization problem in (P1), and it can be considered

as the difference between f(x) and a lower bound on f(x*), i.e.,

fx) = £(x) - G(x) xe€S

60



as is easily seen from the assumption that f is convex. Finally, as the
following result shows, G(x) is exactly the duality gap for problem
(P0). For this reason we refer to G as the ""gap" function.
Lemma l: For any x the dual problem is feasible and G(x)
is the difference between f(x) and the dual objective value.
Proof: The dual of (P0) may be written
max L(x, A, p) (D0)
(= A, p )
s.t. V. L(x, A,p)=0
=0

where L(x, A, p) = £(x) - AT (Ax -b) - pTx.

The constraints may be written )&TAg vV i(x) Which has a
feasible solution A if and only if there exists non-negative z such

that Az = 0 and V{(x) Tz <0, For }:;hc:'< , V(x) exists since S is

bounded, and z = y (x)-x satisfies these conditions. For x:xa\, the

existence of ,\* such that ()\*)TAgi(x*) is guaranteed by the

Kuhn-Tucker conditions for (P0). Hence (D0) is feasible for all xeS.
Under the assumption of x fixed, the Lagrangian function, L,

must be maximized in the dual variables ( u,)\ ) subject to the

constraints. From the stationarity condition we have V{(x) - )LTA - ;LT =0

which implies V{(x)x - )\T Ax = uTX

Substitution in the Lagrangian function reduces (DO) to

max f(x) - VE(x)x + ATb

s.t.  ATA = Vi(x)
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but since

max )\Tb
s. t. )\T

min Vi(x)y
A = Vi(x) yeS,

G(x) is the duality gap.

In general, G will be nondifferentiable and nonconvex, but
G(x)=20, xe€S, and G(X*) = 0 if and only if %' solves both (P0) and (PI1),
for otherwise (y - x*) is a feasible descent direction for f. When in
addition, G is convex in x (f quadratic is one example), we show that

one can solve (P1l) by nondifferentiable methods. Small examples

indicate that the nondifferentiability of G, rather than being a hindrance,
may actually hélp in obtaining x*.

The organizatioh of this paper is as follows. In the next section we
motivate the gap function using a small example due to P. Wolfe. Next
are some results concerning the convexity of G and calculation of its sub-
derivatives. We then state and prove convergence of an algorithm for
solving (Pl) assuming G is convex. Finally, the results of solving some

small problems are presented.
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Motivation

Part of the motivation for this investigation comes from the well-
known Frank-Wolfe algorithm [1 ] of nonlinear programming. For

problem (PO) the algorithm is
Step 0. Choose x¢€8S.

Step 1. Solve myin Vi(x)y s.t. yeS and
call the solution Y.
Step 2. Solve min f(Ax + (1-A)y) and
0S A1

call the solution A.
Step 3. Replace x by Ax+ (1-A)y.
Step 4. Go to 1.

Despite its elegant simplicity, and the fact that the process converges to
;;:< for any starting point [ 9], numerous applications have revealed
that convergence is often quite slow. An article by Wolfe [ 7] explains
this difficulty with a small example. In Figure 13, let the feasible region
S be the triangle and the objective of problem (P0) be f(x) = 1/2||x||2.
Starting from x0, the Frank-Wolfe algorithm produces iterates e
which converge slowly to x>:< at the midpoint of the base of the triangle,
This illustration is indicative of many instances when the Frank-Wolfe
iterates zig-zag toward the face of S which contains the optimal point.

The phenomenon results from the fact that all movements from one iterate

to the next are "toward'' extreme points of S.
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FIGURE 13. WOLFE'S EXAMPLE
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Consideration of (P1) rather than (PQ) leads to two interesting
possibilities, First, as we will show, the search direction produced by
the Frank-Wolfe algorithm (y - x in the above) is a descent direction for G
as well as f. Thus, at points where G is differentiable, one can apply the
Fr'a.nk-Wolfe method to (Pl). Furthermore, we will show how to compute
feasible steepest descent directions when G is not differentiable. This
approach solves the problem in Figure 1 in two iterations. To see this,

note that

2 .
G(x) = max Vi(x)(x-y) = ||x|| - min (x;y; + XZYZ)
Y(S YGS

2
= |1 x| _x2+|xll for all xe€S.

From xk, minimization of G along the direction yk - xk yields the point

zk. Then, from zk, the steepest descent direction is x* -z,
The other possibility for solving (P1) is to apply the methods of

nondifferentiable optimization. Chief among these is the method of

Polyak [6] which is attractive here because the optimal value of (P1) is

known to be zero.
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Theory
To consider solving (P1l), it is probably necessary that G be at

least quasiconvex. We have not explored this possibility, but here
assume rather strong conditions that imply G is convex. Under these
conditions we also derive a formula for subderivatives of G. In
addition, we show that the direction of the line search generated by the
Frank-Wolfe algorithm for minimizing f is also a descent direction
for G when G is differentiable at x. This result holds whether G is
convex or not.

For convenience we first introduce the following notation;

W(z) = min zly = max AVb (3. 1)
yeS s.t. A\TAZ 2
S(x) = W(Vi(x))
F(x) = Vi(x)x
Y(x) = {¥eS|VEix)Y = min Vi(x)y}
yeS.
Thus we have
S(x) =  Vi(x)y VyeY(x)
and G(x) = F(x) - S(x) .

Lemma 2. Let F(x) be convex and assume that each component of Vf(x)
is concave in x. Then G(x) is convex in x.
Proof: From (3.1) W is concave because the ""min'' part of its definition

shows that it is the minimum of functions linear in z. From the '"'max"
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part of its definition it is clear that it is also nondecreasing, i.e.,

z,=z, implies W(z,) = W(z;). Therefore,
SAxy + (1-M)x,) = W(VEQAx; + (1-X)x,))
= W(AVi(x) + (1- 2)VE(x,))
= AW(Vi(x))) + (1-2) W(VE(x,))

= /\S(xl) +(1-A) S(xz),

the first inequality uses the concavity of Vf(x) and the monotonicity of W,
while the second employs the concavity of W. The result follows since
G 1is the difference between a convex and a concave function.

Obviously the conditions of the lemma are satisfied when f(x) is a

convex quadratic function, and they also apply, for example, when

J
f(x) = Zj: log(l + t)dt.
K

However, many simple convex functions such as scalar ones of the form
f(x) = xk, k>2, x ;0, do not satisfy the condition that f be convex with
concave derivatives.

Lemma 3. If the components of V{(x) are concave, the subdifferential of

S(x) is given by the '"chain rule:"

3S(x) = VZi(x) dW(VE(x))

vZ£(x)y VyeY(x).

Proof: Since components of Vf(x) are concave

Vi) + (z - x) sz(x) = Vi(z), X,Z€S
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and for y =0, this implies
(z - x) V2 i)y = [Vi(z) - V()] y.
But if yeY(x), then y is a subgradient of W(Vf(x)), hence
(z - x) VAE(x) Y = W(VE(z)) - W(VE(x)) y e Y(x).
= S(z) - S(x) ,

and the result follows.

Corollary 9G(x) = OF(x) - 95(x)
= Vi(x) + sz(x)(x -vy) yeY(x).
Corollary G is differentiable at x if and only if ¥Y(x) is a singleton

(i. e., the solution of the Frank-Wolfe subproblem is unique).

Corollar}: If G is differentiable at x then the Frank-Wolfe descent

direction (for f) is also a descent direction for G.

Proof (y - x) VG(x) = VEE)y - %) - (v - %) VZEG)(y - ) <0,
yeY(x), because (y - x) is a descent direction for f and because f

convex implies sz(x) positive semidefinite.
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Poljak's, Algorithm and Convergence

Poljak .[ 6 ] has proposed an algorithm for minimizing a convex
function which need not be differentiable. The key requirement of his
method is that the optimal objective value be known. It is therefore
attractive for this problem. since G(x*) = 0. Another attractive feature
is that the method is a simple recursion. Each iteration a step is made in
the direction of any negative subgradient of G; no line searches are
required. The chief disadvantage of the method is that a projection on to
S must be made to maintain feasibility. In one variable, Poljak's
algorithm is the same as Newton's method for finding the root of a function.

We denote by PS(z) the projection of the point z on the set S.

Poljak's method, applied to (P1l) is

kt+1l k k
x = PS(X = Pyt )
A G!Xk! k k
p = t € dG(x))
k k ”tk ”2
= = 2 _
0 = £1< )\k_Z €, €1s €2>0.

Theorem (Polyak [ 5 ]): Let X be the limit of any convergent subsequence.

Then G(x) = 0.

Proof: Using the property that ||PS(z -w)|| £ ||z - w|| and the subgradient

inequality: G(xa‘) éG(xk) + ¢

ale

b3 x*
(x -Xk) for t°e aG(xk), where x is

a minimum point, we have

k *.112
I = [Pl - et - X))
k k * 12
= le = pkt - X H
o 2 FS
A P [T e PP AL P T
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}LZ

_ Kk
= |1 -5 )% — GG? - 2A, %‘Jz—(e(xk) - Glx))
e |l (e 1l
K% 2 G5
= |Ix -x |I" -

€_ €
1°2 k2.
e |l

%
Hence lek - x || is monotone decreasing, and thus G(xk)zf ||1:k I|2 tends

to zero. From the previous section the formula for 9G(x) shows that

the subgradients of G are uniformly bounded on S;

G(xk} = G(X) = 0 since G is continuous. (It can also be shown that

therefore,the limit of

the entire sequence converges to X.)

70



Experimentation

To test the two possibilities of minimizing the gap function, we
have written an interactive program and solved some small problems.

The user inputs the objective function choice, either f or G, the number
of Frank-Wolfe iterations to be performed, and the total number of itera-
tions (see Figurel4). The Frank-Wolfe iterations are performed as
specified unless the objective value is changing too slowly, or the
objective is G and a point of nondifferentiability is reached. In either of
these cases, the code will automatically switch to Polyak iterations on G,
as it will if neither occurs and the specified number of Frank-Wolfe
iterations is exhausted.,

First we experimented with Wolfe's example (see Figurel3). The
results of five runs are given in Table 6. As expected, the usual Frank-
Wolfe iterations converge slowly (Run l). The most interesting result
js the second run. The minimum of G along the Frank-Wolfe direction
(yo-xo) where yo = (1,1) occurs at xl = (0, 1.3333)., (This is the point labeled
zk in Figure 1.) From this point the next descent direction is chosen from
the set of subgradients of G at xl. This set is parametrized by points on
the lower edge of the triangle, and the (normalized) subgradient of minimum
norm is (0,1). Hence, the next step produces x*. In effect, the minimi-
zation of G, rather than f, in the Frank-Wolfe direction produced a point
on the '"crease' of nondifferentiability of G. Since x* is interior to a face

of S, it lies at the intersection of this crease and the optimal face.
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Input: NIT,

NFW, OBJ=F or G

A/

I
o

IT

IT

I
[
H
+
ot

NIT = Total No, Iterations
NFW = No. Frank- Wolfe Steps
OBJ = F for f(x), G for G(x)

(Iteration Count)

A

IT SNFW ?

FW iteration
on F or G

\

Print

Determine min norm
subgradient of G

V

Poljak iteration

on G
' ] l
Objective changing .
slowly or G not . Print
differentiable ?
Yy
= v
NFW =0 !
> N
IT = NIT ?

T

Y

FIGURE 14. FRANK-WOLFE/POLJAK COMBINED FLOW CHART
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TABLE 6. EXPERIMENT WITH WOLFE'S EXAMPLE

Run %° Obj. Method Results

1 (-0.5, 1.5) f FrwW Zig-Zags:
f(x°) = 0.58189
x> = (~0.0886, 1.0751)

2 (-0.5, 1.5) G FW Solution in two
iterations.

3 (-0.5, 1.5) G P Solution in four
iterations.

4 (L, 1) G FwW Solution in one
iteration

5 (1, 1) G P Near solution in nine
iterations:
£(x?) = 0. 500001
x? = (0.0010, 1. 0000)

NOTES: P=Polyak

FW=Frank-Wolfe

% =(0,1)
e
£(x )=0. 5
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TABLE 7. EXPERIMENTS WITH PROBLEM TWO

Run X Obj Method Result

1 1, 3) F FW Solution in two
iterations

2 1, 3) G P £(x7)=. 4551585,

x2=(. 8485, . 1015)
G(x’)=. 0117842

3 (1, 0) G = £(x)=. 477063

x2=(. 9297, . 0550)
G(x0)=0. 02489

4 (1, 3) G FW/P Automatic Switch to P
after one iteration.
f(x)=. 4545783

x2=x", G(x2)=0.0000623

5 (3,0) G FwW/P Automatic Switch to P
after two iterations.
f(x8)=. 4545455,
G(x8)=0. 0001143

xs;('o. 9090, 0. 0910)

NOTES: P=Polyak
FW=Frank-Wolfe

% =(.909090...,.090909...)
f(x )=0.454545. ...
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the Polyak algorithm. In Run 4 the crease was found in one Frank-
Wolfe iteration, as before, but in Run 5 two iterations were required.
In each case a line search along the crease, with either f or G as an
objective, would have yielded x* in just one more iteration.

The third test problem is a four-node traffic assignment problem.
This is displayed graphically in Figure 16. The quantity beside each arc
is the per unit travel time for the arc. This is constant for all arcs
except for arc (4, 3) which has a cost of log (1 + x) where Xg is the total
flow on the arc. Trip demands are 5 units from 1 to 3 and 8 units
from 2 to 3. Let the arc flows be Xy, Xy, Xg and X, on arcs (1, 4), (1,3),
(2, 4) and (2, 3) respectively. Then it is well known that the convex pro-
gram which has optimal equilibrium flow is

X

5
min  4x) + bx, + 2x, + 3%, + f log (1 + t)dt

& o
s.t. Xt X, = 5
Xg + Xy = 8
x1+x3-x5 =0
X, + Xyt Xg =13

1\
=

X1r X0 X320 Xp X5

The optimal solution for this problem is x* = (5,0, 4,4, 9) and it
is easily verified that this is an equilibrium solution. Test results for
the problem are in Table8. There are four extreme points for the

constraint region of this problem:
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log. (1 +x5)

Trip Table 1 5

FIGURE 16. TRAFFIC ASSIGNMENT PROBLEM
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TABLE 8. EXPERIMENTS WITH TRAFFIC ASSIGNMENT PROBLEM

Run x° Obj. Method Result

1 (0, 5, 0, 8, 0) F FW Solution in two iterations

2 (0, 5, 0, 8, 0) G FW/P Automatic switch to P
after two iterations.
G0 = 0.039

3 (5, 0, 8, 0, 13) G Fw Solution in one iteration

4 {5, 0, 0, 8, 5) G FwW Solution in one iteration

5 (0, 5, 8, 0, B) G FW Solution in two iterations

6 (o, 5, 0, 8, 0) G P Very slow convergence,

20
x

G(x" ") = 3.5328

NOTES: P

Fw
x ¥

Polyak
Frank-Wolfe
(5, 0, 4, 4, 9)
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(5, 0, 8, 0, 13)
(5, 0, 0, 8, 5)
(o, 5, 0, 8, 0)
(0, 5, 8, 0, 8),

and these were used as starting points for the six runs. Note that x* is
the midpoint of the line joining the first two extreme points. Because of
this fact, runs 3 and 4 required just one iteration, and run 5 required
only two, Also, run 1 demonstrates that from the '""bad' extreme

point, the usual Frank-Wolfe method found the solution in just two itera-
tions, Runs 2 and 6 are the most interesting. In run 6, the pure
Polyak method converged very slowly. This is because a projection was
required at each iteration (cf. Table 1, Run 5), Run 2 demonstrates
that, once again, the most powerful use of the gap function is to perform
Frank-Wolfe steps until the crease of nondifferentiability of G is
located. Here, two such steps were required to reach a point on the
crease. From this point, a line search minimizing either f or G along
the crease would produce the solution in one more iteration, In our
implementation, minimization down the crease was accomplished by
pure - Polyak steps, which required a projection at each iteration, and

hence yielded only a fair solution in eight more iterations,
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Summary

Although the idea of converting a convex program to a minimax
problem is hardly new [3], this appears to be the first examination of G(x)
for computational purposes. A similar approach has been taken by
Oettli [5] who defines a distance function of the primal and dual variables
of a linear program. His algorithm, also an adaptation of Polyak's, is
shown to have geometric convergence . Our adaptation of Polyak's method

differs in that we consider arbitrary convex programs,

Our preliminary results here suggest a number of research possi-
bilities. One is the development of an improved version of Polyak's method
with better convergence. Another is to show how to find, in some efficient
way, the optimal crease of nondifferentiability for the gap function in general
problems. If this can be done, it opens new algorithmic possibilities where
the optimization can be restricted to the intersection of this crease and the
feasible set. The final product could be an algorithm which does not have
the slow convergence properties of the Frank-Wolfe method. Finally,

Paper 4 which follows shows that minimization of the gap function by Polyak
steps offers the potential for sharply improving bounds in traffic assignment

models,
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4, THE MEASURE STEP AND NONLINEAR DUALITY

Donald W. Hearn

Introduction

The Extraction Aggregation Model [1] * outlines the common
practices of transportation planners who attempt to reduce computation
time by extracting and flowing a subnetwork of a given larger network.
The MEASURE step [1] is not implemented in practice, but was added
to allow the possibility of feedback in the procedure. This paper ad-
dresses theoretical and computational aspects of the MEASURE step
from the viewpoint of nonlinear programming. We point out that, if
the original problem is a (nonlinear) convex minimization problem, it
is necessary to obtain flows for the entire network in order to employ
duality theory as a tool in measuring error. This result is a consequence
of the nonli_nearity of the problem and does not hold if all functions are
linear. In addition, we report some computational experiments with
obtaining error bounds from arbitrary flows and applying correction

steps to those bounds.

Duality - Network Interpretation

We assume that the network flow problem of the Extraction Aggre-

gation Model is of the form

(P) min f(x)
s. t. Ax =D
x>0,

where f is a convex, differentiable function of a vector x, the components

of which are flow variables. A and b are a matrix and vector, respec-

#See the overview section of this report.
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The dual variables, )\? have the interpretation of path cost or time
from node i to destination node k., As indicated in th_e Figure 1, the
feasibility requirement for (D) is that the )\1; be less than or equal to
the minimum path cost from node i to destination k. This value, how-
ever, is a function of the flows along the path.

Therefore, to bound f(/x\) by use of the weak duality condition, one
must obtain flows X (where = X, possibly) and then define A such that
the components 7? are all less than or equal to the péth costs defined by
those flows. § In a linear problem, of course, the path costs are constants;
and the dual variables are independent of the flow variables.

It is important to recognize that while (\,x) must be dual feasible
to provide a lower bound for fé:\), it is not necessary that x be feasible
to (P). In other words, the components of x need not satisfy the conser-

vation of flow constraints. We make use of this fact in the computation

experiments reported here.

Duality - Geometric Interpretation

Another useful interpretation of the weak duality result is given
in Figure 18. This interpretation, which is independent of network
topology, assumes that the problem (P) is a one variable problem, so the
only constraints are that the variable x is bounded above and below.

The feasible set is shown as a shaded line segment, and /x\is some
particular value of x which need not be feasible. Since f is assumed
differentiable, it is possible to construct a tangent for f at/z?, as shown.
Since f is convex, this tangent is below f(x) for all values of x. Thus,
the tangentdefines a linear function whose minimum value over the

feasible setis a lower bound for f. This value is B(x) in the figure.

H )
Strictly speaking, there may be trivial dual solutions that do not require
flowing the network, but they lead to very weak bounds. Setting all dual
variables equal to a constant, for example, gives a lower bound of zero;
valid when the link costs are non-negative,
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B(x) = CONVEXITY BOUND

DUAL OBJECTIVE VALUE
o
A

b

OBJECTIVE
FUNCTION

f\ TANGENT

PLANE

£(%)

/ S
B(%)

FEASIBLE SET

FIGURE 18. GEOMETRIC INTERPRETATION OF CONVEXITY BOUND
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m [1 ] , we have proven that the bound obtained by minimizing
a tangent to f over the feasible set, which we call the convexity bound,
is equal to the best bound obtainable by considering the dual (D) with
x =/§?. _In other words,

B{x) = £(x) -VE(x)x + max A Tb

T A
s.te AASVE(x).

It is also proven in [ 1] that the convexity bound is exactly the
bound one obtains at each iteration when the Frank-Wolfe algorithm is

applied to (P).

Bounding Flow Problems

We summarize the results of the previous sections by listing
below several properties relevant to bounding flow problems of the form
(P). Mathematical proofs are easily developed from the results in
[1]. We assume (P) has a optimal solution x*, and f* = f(x*).
Property 1: If 2 is feasible to (P) and (7\ , x) is feasible to (D), the

inequalities
(D> > 35 4+ £® - VIR
always hold, regardless of whether x is feasible to (P).
Property 2: To obtain both upper and lower bounds on f*, at least one
set of flows feasible to (P) is required.
Property 3: The best (largest) lower bound for f* obtainable from
one set of flows, gc\, is B(;:\), the convexity bound. If
/;is feasible, B(/x\) is also the Frank-Wolfe bound.
Property 4: If several flows, say xl, xz, LRI xk are available, then
the best available lower bound for f* is obtained by mini-
mizing the maximum of all tangent planes over the

feasible set. (See [1]).
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From a computational viewpoint, these results imply one impor-
tant fact: obtaining a lower bound on f* requires at a minimum the
solution of one linear program (viz. the Frank-Wolfe subproblem). For-
tunately, in network flow problems, this reduces to the calculation of
shortest paths. In traffic assignment codes, however, it is well known
that this is the major computational burden., Thus the price of a bound

may be considerable.

Bounds from Infeasible Flows - Computational Experiments

Figure 19 summarizes the results of some computer tests de-
signed to determine relative error in the convexity bounds obtained
from arbitrary flows. For test problems, the three problems of Paper 1
in this report were used. Theseare all traffic assignment problems
of the form (P). The link volume delay formulas for these problems are

of the standard UMTA and FHWA format

VOLUME )4
CAPACITY

T=T <1.+o.15(
(o}

where To is the uncongested travel time. To obtain flows, the formula

VOLUME = B8 * CAPACITY
was used for 8= 0.0, 0.1, 0.2, »--- 2.0 and for each link of the network.
The convexity bound and its relative error were then computed. Figure
3 shows the results as a function of 8.

In the figure, note that the error relative to the optimal solution
value for the three problems is approximately 42%, 22% and 19% when
B= 0. Interestingly, these values are all approximately constant for
0< B <+ 7 and then the relative error increases rapidly for larger

values of 8. The experiments suggest the possibility that bounds under
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FIGURE 19. ERROR IN THE CONVEXITY BOUND
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50% can be obtained by simply assigning zero flow to all network links and
then solving the usual subproblem of the Frank-Wolfe algorithm to obtain
the convexity bound. By contrast, the bounds produced in early iterations
of the Frank-Wolfe method are usually negative, i.e., the relative error

is greater than 100%.

Correction Steps for Improving Bounds

Paper 3 of this volume explores the possibility of direct mini-
mization of the duality gap as an alternative method for solving (P).
In the notation of this paper the duality gap is

G(x) = f(x) - B(x)
and has value zero at x*, the optimal point. One method investigated

in Paper 3 is the algorithm of Poljak, a recursion based on the formula

Xk+1 =Ps (xk _ pk tk)
_ G(ka

T

o<ryr<?2 y

where Py is the projection operator for the feasible set of problem (P)
and where l:k is a subgradient of G at xk. It can be proven that this
recursion always generates a point xk+1 nearer the set of points where
G(x) = 0 than the prior point xk. This is represented symbolically in
Figure 20. The feasible set is a pentagon and the locus of points for
which G(x) = 0 is represented as a closed curve. These sets intersect
at the optimal point, x%. The point xk+1 represents a move in the
direction tk from the point xk. Since tk points toward the closed curve,
xk+1 is nearer the curve (even without the projection onto S).

We have employed the recursion above, with projection only on

the constraints x> 0 of (P), to obtain '"'corrections' to the lower bounds
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FEASIBLE SET

G(x) =0

FIGURE 20. POLJAK CORRECTION STEP
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obtained in the experiments of the previous section. These steps are
corrections in the sense that a decreasing G can result in an increase
in the bound B(x), if the value of f(x) does not decrease even more.
The biggest question is what value to choose for v, i.e., how far
should the step in the direction of t be.

In Figure 21, the relative error in the convexity bound is shown
after correction by the best value for v in the range 0<Y <2 (c {.
Figure 18). Note that for small values of B, the correction step gives
no improvement. However, for 8 near 1, there is a sharp improve-
ment in the relative error when the best correction step is made. On
all three test problems, a bound of 10%-15% is obtained.

To further test the validity of correction steps for improving
the convexity bound, the correction steps were applied to the bounds
normally produced by the Frank-Wolfe algorithm. Every iterate of
this method produces feasible flows, but the correction steps, based
on the recursion and projection just onto x >0, can produce infeasible
flows to obtain the bound. A summary of the results for one of the
problems is in Table 9. The optimal value for this problem is known
to be between 1720 and 1700 (see Paper 1, Table4) and the correction
step produced a bound within 3% of this range at the third iteration,
whereas the bound without correction did not achieve this error until
the fifth iteration.

While the above test makes it appear reasonable to add correc-
tion steps to the Frank-Wolfe method, one must be aware that the com-
putation cost of obtaining the correction is approximately the same as
the cost of an iteration of the Frank-Wolfe method. Thus, seven sub-
problems are solved before obtaining the bound of 1657 (with corrections)
while a better bound of 1649 (without corrections) is obtained after solving
just six Frank-Wolfe subproblems.
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TABLE 9. ADDITION OF POLJAX CORRECTION TO FW

(PROBLEM E)

BEST CONVEXITY NO. FW BEST BOUND NO. ¥W
BOUND -- NO SUBPROBLEMS WITH POLYAK | SUBPROBLEMS
IT, CORRECTION SOLVED CORRECTION SOLVED
0 - 1 = 1
1 -17010 2 -368 3
2 351 3 1540 5
3 1585 4 1657 7
4 1586 5 1657 9
5 1649 6 1657 1n
6 1649 4 1657 13
7 1649 8 1680 15
8 1653 9 1680 17
9 1673 10 1682 19
10 1673 1 1682 21
11 1677 12 1682 23
12 1677 13 1690 25
13 1677 14 1690 27
14 1677 15 1694 29
15 1688 16 1694 31
16 1688 17 1694 33
17 1688 18 1694 35
18 1688 19 1694 37
19 1693 20 1694 39
20 1693 21 1696 41

Note: 1720 >f >1700
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Conclusions

This paper defines limits, in a certain sense, to which one

might go in using nonlinear duality to bound error in the MEASURE

step of the Extraction Aggregation Model. It complements and ex-

tends the results in (1) where we proved that various error measures

for the traffic assignment problem are equivalent. To summarize,

the results are:

a)

b)

d)

At least one set of flows for theldisaggrega.ted problem (P)
must be obtained in order to evaluate the dual objective
value. This property results from the assumption that
this problem (P) has a nonlinear objective function, and
does not hold for linear problems.

The computation cost for obtaining a bound is at least the
cost of solving a linear program with the same constraints
as the disaggregated problem, For flow problems, this
reduces to a sequence of one or more shortest path problems,
but this may still be a nontrivial cost for large problems
such as the traffic assignment problems.

Bounds may be obtained for arbitrary flows which are not
feasible, and at the cost of additional computation, can be
significantly improved by Poljak correction steps.

The correction steps can be added to standard production
computer codes much as UROAD with ease, but the cost of
computation per iteration doubles (approximately).
Heuristic transfer and flow methods for the Extraction
Aggregation model would likely involve finding flows feasible
to the extracted subnetwork only. The above results imply
that obtaining a bound would require assigning flows to the

remainder of the network, but that they need not be feasible.
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Of course any production use of these results would require

testing to establish values of the parameters o, 3 and 7.
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5. EQUIVALENT FLOWS FOR EXTRACTED SUBNETWORKS
Russell R, Barton

Introduction

Transportation planners are frequently interested in estimating
user equilibrium traffic flows for a large network (h, ), where link
travel time is a convex function of link flow. These flows may be
difficult, if not impossible, to find if the network is very large. Extrac-
tion aggregation® can be helpful in solving such problems for two reasons.
IFirst, the planner's main interest often lies in estimating flows on a
subset (n, @) of the complete network., Second, Hearn [1977] showed
that one may be able to get a good solution to the complete problem more
quickly by first solving for flows on an extracted subnetwork. When the
subnetwork is of special interest (i.e., the first reason) we would like to
find a solution that matches the flow values one would obtain in solving
the complete problem. If one is attempting to solve the complete problem
quickly using an extracted network solution, it may or may not be advanta-
geous to have the extracted solution match flows; perhaps some other
characteristic of the extracted solution will be more important in finding
a good solution to the complete problem.

In the following sections we consider the relationship between
equilibrium solutions obtained for the extracted subnetwork and equilibrium
solutions for the complete network. We will be particularly interested in
solutions to the subnetwork that yield flows equivalent to the complete
network flows on the extracted arcs. We show that, to solve this problem,

one must flow the extracted network without knowing the trip table.

*See the overview section of full problem.
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1. Problem Definition

The equilibrium traffic assignment problem can be described
as a minimum cost multicommodity flow problem, where the commodity
pPq corresponds to trips from node p to node q. One in fact need only

define separate commodities by destination nodes (or origin nodes)
as is done below, but the fuller separation is sometimes useful. We
assume that the complete network has 'n' nodes, 'a' directed arcs,
and 'k' origin/destination centroids, while the extracted subnetwork
has 'n' nodes, a arcs, and k origin/destination centroids. For
simplicity in exposition (and as a necessity for the subnetwork that
yields equivalent flows) we assume that all nodes are centroids, i.e.,
n =k and n = k. This causes no loss in generality since positive link
travel times imply zero optimal flows for commodities having no demand.

We index the nodes and arcs of the networks so that the extracted
subsets consist of the first n and a indices. We will label arcs by their
nodes so that arc ij is a directed arc from node i to node j. This label
is in addition to the index of the arc. We let P = {pq|p <n q=< n}
and P = {pq|p <n, qS_r_l_} be the index sets for the O-D paijrs of the
complete and extracted networks, respectively. Similarly we let
Q= {qqu n} and Q = {quSE} be the index sets for the destination
centroids. Total demand for trips from p to q (in the complete problem)
is given by z° .

Pq

The traversal time for link ij cij(- )) is assumed to be a function
of total link flow (fij) such that Jij e (u)du is convex in fij'

We can write the user equilibrium traffic assignment problem

for the complete network as
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ij
minimize Z cij (u)du
o

ije
s.t. f.. = E : x?.
ij gy
Axd = pd VaqeQ
x 20

where A is the nxa node arc incidence matrix for (h, @). The b vector

is a net flow n-tuple whose components sum to zero, and is defined by:

bc,l = - E : zo j =q
J pq P Pa
= z° otherwise.
Ja

The x2 vector is an a-tuple where x‘ilj gives flow of commodity q on
arc ij.
By our indexing scheme we can write A as

~

A Ao

A = (1.1)
0 A,

-7

where the partition is after the _gth row and gth column, so that A11 is

the node arc incidence matrix for the extracted subnetwork (i, @). The
lower left submatrix is zero because we do not allow extracted arcs to
be incident to deleted nodes. The upper right submatrix need not be
zero, since deleted arcs may be incident to extracted nodes. Optimal

£
flows are given by fij 3
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2. Extracted Network Equilibrium Flows

We write the user equilibrium traffic assignment problem for

the extracted network as

P2(z) minimize z f cij (u)du
o

ijea

s.t. f.. = v z4

_ij T df —ij

qeQ
Aq x1 = b4 YV qeQ
x =2 0.
We are interested in conditions under which‘fifj = f:; Vij €a. We

have given the trip demands, qu for this problem as separate unknown

variables., This is because, as the example below illustrates, setting

* e
z_ = z;q does not guarantee generally that iij =f..

pq Vi.e(_l_.

1] J

Example 1,1

Consider the complete network below, where the extracted

network is in bold ink.

FIGURE 22. NETWORK FOR EXAMPLE 1.1
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The nodes have been numbered in accordance with our assumptions

above. If we let zfi)4 = d1 >0, zgé = dz > Q and all other zgq values

—be zero, then

Zpq -~ “pq f23 (_ 9 +d2) # 3 <_ dl)

In the next section we show that there exists at least one set of

* X
trip demands for the extracted problem (zij) that give iij =f.. V. ed.
As can be seen in Example 1.1, it may be necessary to allow new pairs

of nodes to have nonzero trip demands, i.e., for pqe P:

¢
Proposition 1. 1. zpq =0 i> qu = 0

Furthermore, we have

%*
Proposition 1. 2. qu # 0 i> qu # 0

Proof. By the following example:

Example 1.2

For the network below, with bold lines for extracted links, we
. : o o
see that if c23(x) :. c25(x) + c53(x), and if Zig = d1 > 0, Zyg = d1 >0
sk %
with all other z values zero, then we can get f23 = f,, with Zi4* 0 or

Z,q = 0 (or both).

FIGURE 23. NETWORK FOR EXAMPLE 1, 2
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3. Existence of Equivalent Equilibrium Flows

We will show that, if one allows any node in fi to be an origin/

destination centroid for P2, there exists at least one set of qu's that

give _{:; = f:‘; Vij € @. Our approach is to augment the components

o pq €P by Pl equilibrium flows corresponding to O-D pairs p'q'

Z_ s
Pq
not in P. We will assume for the proof that once an equilibrium trip

leaves the extracted subnetwork it does not return to the extracted sub-

network (e.g., example 1.2 is disallowed). The theorem can be proved

without this restriction using a different construction for the qu's.l
We denote a Pl-equilibrium flow on ije @l corresponding to

Cl (or C3) by xij*(q, Cl) (or :;ij"b‘(q, C3)). The theorem on existence of

flows will be proved by defining E*, 3:_* such that_j_ij* = fij* and showing

that x is feasible and optimal for P2(z ).

We give
B _ o a Pl -equilibrium flows from p to r (1)
qu - zpq by that leave the subnetwork at node q
+ Pl-equilibrium flows from r to ¢ (C2)
rf that enter the subnetwork at p
P1l-equilibrium flows from r
+ to s that enter the subnetwork (C3)

réN sfR \at p and leave at q .

The three cases leading to augmented flow are illustrated in Figure 1. 3.

For example, if we use -z-'ij = ff‘j Vijeg,the existence of equivalent
equilibrium flow is easy to prove. We feel, however, that this definition

of subnetwork trip demands is less meaningful.
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r
- e ./P'
ja oc& e o (C1)
P q

R

w@Pw = subnetwork
o = flows on subnetwork

—» = flows not on subnetwork

FIGURE 24. THREE TYPES OF EQUILIBRIUM FLOW

THAT AUGMENT z° IN DEFINING zpq

Theorem 1.1

There exists at least one set of trip demands _z_;a: for P2(z) such

that [ij = -Eij Vijfa_.

Proof:

Choose z * as above and let
—Pq i

=’.=q _ *q
Xy = %5 + % (q, Cl) + 43 (q, C3), (L. 2)

for any % that is Pl-optimal.
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Feasibility of x,,"% for P («") 18 implted by the defiattion of
5* and the Pl-feasibility of the ariginal flows x$. We see from (1, 2) that

4= %, - Z ‘q *Z

qeQ uQ/Q_

£ b
ij ¢
Now if f is not optimal for PZ(E*) then for some pqge Pthere exists

—
=1

a flow a>0 on a non-shortest path { from p to q. For some >0 one can
decrease the objective function of P2 (g_*)by transferring 8 percent of the flow
(from p to q) on { to a shortest path Q*. By the construction of 3:_*, a

similar change can be made to the original flows, where for flows of

type Cl, C2, and C3 only the p - q portion of the path is rerouted. This

operation implies that X is not Pl-optimal, a contradiction, and so ;5

is optimal for PZ(E*). 0

The proof above applies to particular optimal solutions. When
there are alternative optimal flows for the complete problem, the subnet-
work optimal flows will match the flow vector f>=< that was used to construct
the 513 It need not be true that there will be alternative optimal flows for
the subproblem. Using the method above for constructing the Ea;.'ls', :
alternative subnetwork optimal flows will imply that there are alternative
complete network optimal flows. For different constructions of z th1s
need not be true. As the following example shows, it is possible that there

isa z such that there are some P2 optimal solutions that are not Pl optimal,

while all Pl optimal solutions are P2 optimal.

106



Example 1. 3

We assume that the entire network below is extracted that

o o
c13(x) = clz(x) + C23(x) Vx20, and that z,," = z,3" = 1. If we
let ‘_z_13 =1 and all other z values be zero, then we get

*® \ / n® / *® L
iy =1 i f 212 =1 ip EC

sk e Cz B - ) sk =
f3 =L | FV| f23 71 Ly =0

f;3 =0 ‘ \f; =0 \—13 L/ 1,

T i

1 2 3

FIGURE 25. NETWORK FOR EXAMPLE 1.3
The above results show that, if we can assurhe no equilibrium flows

return to the extracted subnetwork that there is an 1ntu1t1ve1y appealmg

augmentation of qu that gives fJ = f . As we have mentioned,

this can be shown for another definition of qu,," allowing equilibrium flows

to leave and return to the subnetwork.

4, Flowing the Extracted Network Without a Trip Table’

Unfortunately, calculation of these E‘pq* vectors requires knowledge
*
of the Pl-optimal flows xijq . A recent theorem by Nguyen [ 1977] shows
"
that one can calculate x. ¥and z simultaneously that yield £.5 =1, ., pro-
&1 —P4d 1 -
vided one knows equilibrium travel times, M pg? for all pairs pdeP. This
fact is actually a corollary of the main theorem, which shows that one

can find equilibrium flows for a general network (17,d) if one knows the

equilibrium travel times, Mpg? between all pairs pq¢P for which z > 0.
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The form of the Nguyen problem, which is a special case of

problem (M2) of Hearn [1977] is given below:

£
1)
23 minimize Z/ c..(u)du | ~uz
o ij -
ijed
= q
s. t. fij = ; xij (m (1.3)
B, =T, VqeQ (0N (1. 4)
x,z > 0 (u, v) (1. 5)

B is a block diagonal matrix of node arc incidence matrices, and
T is a block diagonal matrix such that Tz = b, The qth block, Tq, is an

nxn - 1 matrix of the forms:

1

We givetwo lemmas relating to the form of P3 that willbe used

to prove the theerem,
Lemma 1.1 T T is full rank

T
Proof: T94is nxn - 1and clearly of rank n-1. Therefore, 79 19s (n-1)x(n-1)
S L00% y

-
and of rank n-1 Vg, This in turn implies T T is full rank.

O
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Lemma 1.2 Suppose F(x,y) = t(y) + g(x) where g is convex in x, and
suppose that t is strictly convex iny. Suppose that y can be expressed
asy =¢(x). If ¢is linear, then we can say that the space of points sat-
isfying y =¢(x) is a linear subspace. If C is a convex set in that subspace,

then the problem

min F (x,¥),
(x,y) €C
has a unique solution in y, that is, Hy o (x) = y"‘ for any optimal x.

e

Proof: Suppose there are two optimal y values, ylm and yz*. Corresponding
to these values we have two disjoint sets of x values, say X{z< and XZ*.
They are disjoint because Yl # yzk and X =X, —_=>(p(x1) = <p(xz) Choose
an element arb1trar11y_ frornX.1 , say xld‘, and from X", say xZ . Since
C is convex, (x1 : Yl ), (x2 , YZ )EC=>(X3, Y3) e C for (x5 :Y3) =
(x1 ’Yl ) + (1- ) (x2 ’YZ ), <a<l. Slnce (x ’Yl )and (x ,yz )are
optimal, we have:
iy y3)2 Fix' oy ) = Flxy vy
so  Flax +(l-a)x, by, +1-a)y, )2 aF(xl*,yl*)+(1-a)F(x1"‘,yl*)
or  tlay, +(-a )yz*)+g(axl*+(1- @)z, )2

atly,") + (L-a) tly,") +agle ) + (-a) glx,')

Thus one of the following must be true:

A ey, ey, Bty + (e Hyp)
= (“Xl* * (1"")"2*) >aglx )+ (1-a) g(Xz*)
c: oty +(1 2y, )= t(vl )4(1-a)t(y, ) and glax) +(1-a)x; )

ag(x ) 23 (1"“) g(xz )
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But

A ==t strictly concave over the region hetween yl* and yz* \X/

B —=» g strictly concave over the regionhetween xl* and xz* ' W

C =—>tnot strictly convex over the regionbetween y;‘ and yz w
. Cl
We turn now to the theorem by Nguyen, which shows that one can ,
find equilibrium flows without knowing the trip table [z ] if one knows
pq

the equilibrium travel times, IEtpq] .

Theorem 1. 2 (Nguyen [1977}])

For P3, let p’pq be the (Pl) equilibrium travel time from p to q
VpqeP. Then i:‘.)ft:ij(u)du is strictly convex in xVije@, Pl and P3 have
identical solutions in £, (i. e. (fij*) . ggij*) ) and x" is a solution to
Pl =>(x*, zo)is a solution to P3.

Proof: Nguyen's proof is for the arc-chain formulation of the
user equilibrium traffic aésignment problem. We give here an
alternate proof based on the node arc (i. e. Pl) formulation of the
problem.

We first show that x*, 2° satisfies the Kuhn-Tucker conditions
for P3, which by the convexity of the objective function is sufficient
for P3-optimality. We then show that by Lemmasl.l and L. 2, the P3-

optimal value for fij is unique and thus identical to that for Pl.

The Kuhn-Tucker conditions for P3 are:

Vi - BA- DY -u=0 (1. 6)
X u= 0 (L.7)
uz 0 (1. 8)
T
v+ T AN -v =0 (L. 9)
Z -V = 0 (1. 10)
v >0 (L. 11)



along with feasibility conditions (1. 3) - (1. 5), where D is defined so that
(1. 3) reads {=Dx.

We see that #*,x*, zo, u*, N from Pl satisfy (L. 3) - (1. 8) since
these are the Kuhn-Tucker conditions for Pl. If we set

v =0forz °>0
Pqa ra

* % (o]
= + T ‘A7 for z =0
“Pq Pd Pa

where qu is the column of T corresponding to qu, then (1.10) holds.

Furthermore, by (4-16) of Hearn [1977] (sklznki A = )\ki) we see that

Kk
T .A = - >
Pq Aa ~ Mg = g

so that Vijis nonnegative que P. It only remains to show that (L. 9) holds

for quo>0' But this is just the requirement that

- [ 3 >0
Apq Mg “Hpq Yoq 7 “pq

which Hearn[1977] shows holds for 5 for PL.

The uniqueness of fijlﬁ for P3 follows from lemmasl.1 and

1. 2. Lemma 1.1 says we can write

T -l T
az =Al(T YT B)x = g(x) (1.12),
which is convex (linear), We recall that
f,.
of 1 c;. (u) du = t(f) (1.13),
ije J

is strictly convex in f, and

- q
o= x, .+ =Y(x) (1. 14)

j ~ geq i !
where % is a linear function. Then (1.12) - (l.14) imply that lemma

1. 2 holds, and so £ is unique for P3. J
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We note that the requirement i = Pl-optimal travel times

P4d
que P can be relaxed to qu>ﬁ = Pl optimal travel times qu such that

e

quo>0’ provided the remaining ”qu'r values are set to suitably large

positive values for (1. 9) and (1.11) to hold. . This relaxation is not
possible if one is looking at an extracted subnetwork, since zp =0
> B & 0. This problem limits the usefulness of Theorem 1.2 inh
finding equivalent flows for an extracted subnetwork.

A further problem arises from the fact that even if offc(u)du
is strictly convex for each link, the optimal qu values need not be

unique, as illustrated below:

Example 1.4 For the network below, any convex combination of the sets

12, =% P =2 12, o z), =0
13 =%  Zp3=2 X3 =2 z53 =0
z13 =0 z13 =2

give optimal solutions to P3.

o T

51, = SHp ) = Bl

Xy =Xp3 =2
FIGURE 26. NETWORK FOR EXAMPLE 1.4

In the following example we find equilibrium flows for a network
with linear travel time functions, The variable trip table problem P3 .

is solved to find equivalent flows for a subnetwork,
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Example ‘1.5

For the network above, we have a linear arc travel time function:

c(u) = R e

where ¢, and ¢

0 | a¥e given for each arc as:

Arcs c c

12, 23, 34 1 1
35, 73, 53

65, 74, 26, 1 4
62, 72, 217,

16, 61, 71,

176

The complete trip table (z%), is defined as;

* 4 5

from
1 6 6
[z°] = 2 9 9
6 9 5
7 5 9

The node-arc incidence matrix for the complete network is given
below. The upper left portion is the n -'a incidence matrix for the

extracted subnetwork.
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Note: extracted network in bold ink.

FIGURE 27. NETWORK FOR EXAMPLE 1.5
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arcs
—
arcs ' A
- 12 23 34 35 43 53 65 74 26 62 72 27 16 61 71 17
nodes M““ . . T T l [ H = T 0 1 LS k3 H
| 1 1 -1 -1 1
subnetwork ('2 -1 1 1 -1 -1 1
nodes (3 101 1}l-1s
I 4 -1 1 <l
b -1 1 -1
6 1 -1 1 =] 1
7 1 1 -1 1 -1

subnetwork

P1 for this problem is a quadratic program. Optimal flows and

travel times are given below:

Arc

12
23
34
35
43
53
65
T4
26
62
72
27
16
61
71
17

8.9
33.6
19. 4
19.4
2.6
2.6
12,2
12,2
1.1
4.4
4.4
1,1
3.5
2.0
2,0
3.5
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Travel Time

9.9
34.6
20.4
20,4

3.6

3.6
49.8
49.8

5,2
18.8
18.8

5.2
15,1

8.9

8.9
15.1 .




The objective function value at optimality is approximately 1864.
To find equivalent flows on the extracted subnetwork, we solve

P3, defining the p vector by:

“12 = 9-9

u13 = 9.9-[‘34.6 = 44,5

H14 = 9.9 4+ 34.6 + 20.4 = 64.9
Big = 9.9 +34,6+20.4 = 64.9
“"23 = 34,6

Yoa 7 34,6 + 20.4 = 55.0
Hos % 34.6 + 20.4 = 55,0
Hasa & 20,4

Pag = 20.4,

The structure of the extracted network allows elimination of Ko qe
.#32, u3 1’ etc., since these node pairs are not connected by a directed
path. This yields the following solution for flows and trip demands on the

extracted network.

£

Arc ; U

1]
12 8.9
23 33,6
34 19. 4
35 19.4
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1 8.9
£ 3
[z ] = 2 14,2 10.5
3 5.2

The objective function value at optimality is approximately -981, .
As mentioned above, the solution need not be unique in z . Below is a set

of trip tables that yield the same set of flows and P3-objective function,

for 0 <a< 10.5:

3 4 5
1 8.9
%k
[z ] = 2 a 14, 2 10.5-a
3 a

5., Sensitivity Results

To use Theorem 1,2 for solving the variable trip table traffic

assignment problem one needs to know the equilibrium travel

times oq' We expect that these values will be unknown, and that one

will solve P3 using estimates for qu. It is important, in this case, to

know how errors in these estimates affect the optimal values x*, z* for P3.,
Basic results on the sensitivity of nonlinear program solutions to

changes in problem parameters have been presented by Bigelow and

Shapiro [ 1974] , Robinson [ 1974],, and Fiaceo[1976]. In general terms,

each of the three papers above is based on an application of the Implicit

Function Theorem to the Kuhn-Tucker first order necessary conditions

for optimality.
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The Bigelow and Shapiro result is more general than the others
in that strict complementary slackness is not required. Solutions to P3
need not satisfy strict complementary slackness, sa the Bigelow and
Shapiro results are more applicable for our problem,

If the conditions of the Kuhn-Tucker theorem are met, Bigelow

and Shapiro's results imply the following conditions:

>
BT % 0
D =1 . =
a 1
["pq]
u
v
_B_Hi-f-ig— if A #0
<0 1£)\1._=0
}E.{=0 u.>0
1
>0 u. =x, =0
1 1
éi=o v.> 0
>0 v. =2, =0
1 1
A 20 )t.1=0
u.(=0 x.>0
1 1
=0 . =3, =0
1 1
\.?20 z. >0
1 1
>0 vi=zi-—0
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where Ei and Ii represent the ith rows of the block diagonal matrices
having k (# destination centroids) blocks of A and T respectively., D is
thg Hessian matrix (with respect to both x and z) of the objective
function of P3,

Bigelow and Shapiro show that these conditions can be solved by
solving a certain quadratic program.

To illustrate these results for the subnetwork above, we consider

the affects of changing by and u25 from 55,01 to 56.01. Thus

ﬁ24 _ '1‘25 =1, qu = 0 for all other pairs, The changes in x and gz,

illustrated in Figure 28, are

o4 .24 . .
x23—1 z =1 Zyg = 1
.5 .34 _ . _
xlz——l z = =] z25—1

2

A
5.2 ( 14.2 4.2 (

@) 3 @ @

@

J .

©)
8'91 1015 7.9 11105

®

original perturbed

FIGURE 28. EFFECT ON OPTIMAL FLOWS OF £
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These changes, along with changes in the dual variables (u, v, A\ ) do
indeed satisfy the above conditions. The solution is not unique, however,
at least in terms of the 1, v, and )\ values,

Another problem in solving the combined distribution-assignment
problem (P3) is that estimates of the Moq values may be inconsistent.
For example, a planner may inadvertently estimate ,ubql <'upq2 '
when the shortest Pq, path passes through qye This could easily occur
if the planner is asked to supply O-D travel times for a complex network.
When the ,upq values are inconsistent, the conditions of the Nguyen
theorem are not met, and since the P3 optimal x and z values will be

feasible, their implied travel times will not match the inconsistent W

vector. This is illustrated below.

Example 1.6 Consider the network below, with trip Table

=°1 )

and link travel time function

c(u)=1+u

e —

2 3
> ® °

)
—d

FIGURE 29. NETWORK FOR EXAMPLE 1.6

The optimal solution is given by:
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and the resulting equilibrium times are:

Beip =3
#23 =4
#I3 = 7°

As expected, solution of P3 with these ‘upq estimates gives flows
that are consistent with the p-q travel times. Now suppose one attempted
to solve the variable trip table traffic assignment problem (P3) for this

network using

Byp =3
Pog =3
#13 =4,

Solution of this problem gives the trip Table

\2 3

1 4
[Z] = 2 2
and flows: xz =4 x3 =0 x3 = 2. The resulting equilibrium travel
712 P12 " T3
times are
P =% S
Ha3 =3 =123
Fpz=8 #h5.

(Since the Lvalues are necessarily consistent with the optimal x and z

values, they cannot match the input fvector.)
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6. EXPERIMENTS WITH A TRANSFER AND FLOW HEURISTIC

Russell R. Barton and Donald W. Hearn

Introduction

In the computation experiments of reference [ 1], it was sug-
gested that a heuristic designed to transfer the correct percentage of
the original trip table to the subnetwork of the Extraction Aggregation
M'odel might be an economical alternative to flowing the entire network.
This paper summarizes the results of experiments with such a heuristic
applied to the network data base derived from the metropolitan D. C,

network as describedin[1 ].

The subnetwork, sketched in Figure 30, consists of major arteries
of the Washington area. It has 483 links and 228 nodes, none of which
are centroids, and is an extraction of the much larger (9, 386 links,
3,027 nodes, and 700 centroids) VA/DC network as described in [1]
The trip table for the VA/DC network contained a total demand of 109, 000
trips between the 700 centroids. Of particular interest is the Shirley
Highway. The experiments in [1] included the flowing of the entire VA/DC
network to obtain benchmark flows for the links of the Shirley Highway,
and heuristic attempts toreplicate those flows by emulation of an actual
study.

The heuristic of this study, which we have termed '""M1'", also
attempts to replicate the benchmark flows. In the following sections,

Ml is described and computation results reported.

The heuristic assumes that there is a defined subnetwork of

an existing given network and a given trip table for the full network.
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Capital Beltway

George Washington Parkway

Constitution Ave,

1695

Route 50

FIGURE 30. MODIFIED SHIRLEY STUDY NETWORK
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TABLE 12. M1 ALGORITHM RESULTS

F =0.50 F =0.65
NA i Shirley Subnetwork Shirley Subnetwork
1 -534 196 816 736
2 -724 19 507 504
3 -867 -79 151 341

Average Per Link Bias
Table 12(a)

F=0.50 F =0.65

N, Shirley Subnetwork Shirley Subnetwork
1 772 648 1245 973
2 780 545 1067 758
3 867 507 755 625

Average Per Link Error
Table 12(b)

NA No. Links Time (Secs) Percent
1 1883 62 28%
2 3249 75 34%
3 4593 82 37%

Full Network 9386 221 100%

CPU Time for Shortest Path Calculations

Table 12(c)
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APPENDIX - REPORT OF NEW TECHNOLOGY

This appendix certifies that no patentable inventions were
developed in the course of this research. Principal new results of
the research reported here are the methods of transfer and subset
decomposition reported in papers 1 and 2, the theoretical results
on the duality gap function in paper 3, and the application of those
results to improved bounds in traffic assignment models reported

in paper 4.
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