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PREFACE

The work described in this report was performed as part of an
overall effort to investigate the application of Computer System
Performance Measurement technology to automated Air Traffic
Control.

Software measurement techniques were comparatively assessed
through prototype implementation on the H-832 computer at the
Transportation Systems Center (TSC). Programs required for measure-
ment data reduction and graphical representation were programmed
and exercised by Ms. Ellen Kelley and Ms. Sandra Flanzbaum
utilizing TSC's H-832 computer and DDP-516 Computer Graphics
System.
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1.0 INTRODUCTION

The measurement of computer system performance is of vital
importance in the determination of workload characteristics; the
selection of new computer systems; the design and/or modification
of Operating Systems (Executive Systems) and applications; the
evaluation of existing hardware and software; the assessment of
equipment reconfiguration; and the debugging and tuning of system
components, both hardware and software, for overall efficiency.
Measurement can identify system imbalances, monitor utilization,
locate performance bottlenecks and provide environmental profiles.
Computer system measurement and evaluation are usually undertaken
for a specific purpose. The variables to be measured must be
selected in light of the objectives and should consider the design
goals of the particular system.1 The tool(s) and technique(s)
employed must be chosen with regard to suitability to the measure-

ment, resource requirements, ease of implementation, and cost.

The ARTS III system is an actively evolving system. Func-
tional capability is being added in a buillding block fashion.
Hardware and software configurations will vary from site to site
depending on workload and control requirements. Changing en-
vironment and technology impose new considerations and ultimately
alterations. Judicious application of measurement methods and
intelligent evaluation of measurement data will permit objective
analysis of the system in its various stages of development and
operation and also provide real-world data for long-range planning
and input to various ATC-related studies.

This report highlights specific areas where measurement
methodology can be usefully applied to ARTS III systems, identifies
variables of interest in those areas, and suggests state-of-the-
art tools and techniques appropriate to the measurement of those
variables. Various considerations affecting the choice of imple-

mentation of measurement tools are also discussed.

It is concluded that measurement and evaluation can play a

key role in the ARTS III Program: 1) as a management tool to



assist in planning and to assess the impact of system changes on
saturation thresholds and on overall performance; 2) as an aid in
program design, development, and debugging; and 3) as a tool in

"tuning" the system to optimum performance.

It is recommended that FAA establish a measurement and
evaluation activity as an integral part of the ongoing ARTS

program.

It is at this time in the evolution of the overall ARTS III
Program that the opportunity is ripe to extract substantive data
of extreme value to future planning and the eventual proper
evaluation of future developmental efforts. Computer equipment
has been installed at numerous operational sites. Direct measure-
ment of these sites can improve the accuracy and thoroughness of
the data currently being used in various simulations and studies.
Performance analysis of such systems can lead to a better under-
standing of the factors which influence the efficiency of ATC

automation.

The credibility of ARTS III simulation efforts can be enriched
by pre-simulation measurement which could aid in the generation of
required statistical models and in the accurate representation of
critical system elements. Measurement is also the logical follow-
on to simulation. It is necessary to validate the simulation and

to verify simulation predicted system performance.

The response of a computer system to workload and other
variation tends to be highly non-linear. Test bed measurement and
evaluation of various versions of the ARTS III systems should be
conducted as these systems evolve through modification and addition.
This should be done with a view towards minimizing potential
hottlenecks and performance anamolies, as well as understanding
the total system impact of changes. A lack of quantitative
data on the performance of a system increases the possibility that

future systems will be designed with all flaws preserved.



2.0 PHILOSOPHY OF MEASUREMENT

The purpose of measurement is insight, not numbers . 2

The
approach to measurement must be systematic. Experiments must be
well planned with the measured variables carefully chosen to
provide desired insight into specific aspects of system performance.
Otherwise, the result will be an enormous amount of confusing data,

analysis of which may be meaningless or, even worse, misleading.

Measurements should be taken at two levels, macroscopic and
microscopic. At the macroscopic level, an overview of the general
area of interest can be examined in rough form to determine the
significance of various variables. Decisions can then be made as
to which measurements should be refined to give a valuable micro-

scopic view of those areas of further concern.

Measurements should be taken over a large enough period of
time and repeated often enough to assure a reasonable level of
confidence in the processed results. The length of time a system
is monitored on a single occasion is governed somewhat by the
frequency of data extraction and recording. At the macroscopic
level, data may be automatically summarized rather than continu-
ously recorded, or it may be concerned with variables whose state
changes take place slowly or occur infrequently. In these cases
the monitoring can take place for many hours or days. Whereas,
obtaining a microscopic view of some aspect of performance
usually requires the detailed recording of rapid and frequently
occuring events. It would be impractical to extract such data
for hours on end because the volume of data recorded would be
prohibitive. In any event, it is necessary to repeat the experi-
ments several times on different occasions to get a truly repre-

sentative sample of activity.

The value of measurement data is often influenced by knowledge
of events surrounding the data gathering which may not be repre-
sented physically in the data itself. Such as the erratic
behavior or temporary malfunctioning of a hardware component, or

an atypical workload due to weather or other environmental



considerations. Such events can shade the interpretation of, or
badly bias, results and should be noted at the time of data ex-

traction for proper consideration in the analysis.

It is important that measurement tools be subjected to
thorough testing in a controlled environment where results can be
verified. Initial experiments can be conducted on programs whose
behavior is known, on Operating Systems whose workload is simulated
and regulated and on hardware whose individual components are
specifically exercised. Such procedures will not only assure the
proper functioning of the measurement apparatus but allow for the
identification and quantification of distortions in the data pos-
sibly introduced by the measurement process, and the assessment of
the impact on the system of the presence of measurement instru-
mentation.



3.0 TYPES OF MEASUREMENT DATA

The types of data obtained from a computer system can be con-
sidered to fall into three categories; software related, hardware
related, and workload related. In general, the determination of
cause and effect relationships in a system requires data from all
three categories.

The highly complex nature of computer systems gives rise to
a myriad of labyrinthine interrelationships between significant
variables. It is not reasonable to gather data on all variables
of imaginable interest at the same time. Therefore, a basic
problem in measurement is the identification of the proper subset
of variables to be examined in order to meet a specific objective.
Balances must be struck between overhead and flexibility. Over-
head can be incurred in processor time and memory space in the
monitoring of extra variables of marginal immediate value; however,
the presence of any related variable affords flexibility in the
manipulation of new data in alternate fashion at a later time

without having to re-run the experiment,
Software related measurements yield information such as
program or system module

1. elapsed time,
2. frequency of execution,
3. time density distribution,
4. flow history (traces),
5. queue activity on shared resources,
6. data base utilization,

Hardware related measurements yield information such as
1. CPU busy or idle time,
2. channel use statistics,

3. peripheral device utilization,



4, memory module utilization,
5. memory conflicts,
6. CPU/channel overlap.

Some measurement data can be considered either hardware or
software related depending on the nature of the study. These

measurements include
1. frequency of interrupts or traps,
2. OP code use statistics,
3. Paging or segmentation statistics.

Workload environmental measurements provide information such

as
1. response time statistics,
2. input and output data rates and frequency
distributions,
3. application program key variable activity
(i.e., average # target reports per radar
sector, number of coasted tracks per unit
time, etc.).
These measurement data can be combined in a variety of ways
to aid in various analyses. For example, the same raw data used

to compute the elapsed time of all subroutines in a subprogram
can, if properly recorded, be used to produce a trace history of
the flow of program control for purposes of debugging or logic
verification. It can also be used to analyze the subprogram
hierarchy, produce frequency of 'call' statistics, and time
density distributions.* Measurement results can be reported as
percentages, totals, summaries, or combined to show degree of
overlap or balance of activity between various components. Graphs
and charts are extremely useful in assessing the relationship of
variables at a glance and are considered an important evaluation
tool.

*
See sample output from Event Monitor Trace program.



4,0 ARTS 111 AND MEASUREMENT

The nature of measurement and evaluation is such that the
desire or need for obtaining different combinations of measured
variables or measurement of different variables is invariably
born out of analysis of previously obtained measurement data.

The uses to which measurement tools are put is limited for the
most part, only by the talent and imagination of the analyst(s).
It is, therefore, not reasonable or practical to attempt to
itemize all possible measurement data obtainable from the ARTS III
system, to speculate as to all its applications, or to define all
the conceivable combinations and permutations of that data which
could be edifying. It is our intention to outline some of the
major areas where measurement can and should be applied and from

which further exploratory efforts may be launched.

4.1 EXISTING OPERATIONAL SYSTEMS

The ARTS III systems currently installed are single or dual
Beacon Level Tracking systems. The Data Processing Subsystem
(DPS) contains a single IOP; or in dual beacon systems two IOPs,
where each IOP receives data from its own Data Acquisition Sub-
system (DAS) for transmission to its own Data Entry and Display
Subsystems (DEDS). Both IOP's have access to all memory modules
and the functional workload is divided in a pre-determined
fashion with each process dedicated to specific tasks., The
functions performed by these systems are Target Detection/Declara-
tion, Beacon Level Tracking, Display Processing, Flight Plan
Processing, Interfacility Communication and various related systems
"housekeeping" chores. The tasks are scheduled and dispatched
through an Executive program on the basis of time and priority§’4
As a real-time system, one of the major goals of ARTS III system
is the maintenance of critical response times while performing

its functions.



4.1.1 Measurement of Existing Operational Systems

The multi-faceted character of the ARTS III system involves
a fairly large quantity of operational and environmental (workload)
parameters which are subject to variance. The exhaustive measure-
ment of existing ARTS III systems can influence the long range

direction of ATC automation.

It is at this time in the evolution of the overall ARTS III
Program that the opportunity is ripe to extract substantive data
of extreme value to future planning and the eventual proper
evaluation of future developmental efforts.

Data obtained through direct measurement of existing systems
can aid in future planning by defining the operational, performance
and automation characteristics of ATC applications. Such informa-
tion can be used in assessing the ability of existing systems to
handle new functional tasks and increasing air traffic, and in
studying the effect of proposed hardware/software modifications
through the use of simulation, emulation, and/or analytic

techniques.

The operational efficiency of the present system and the
validity of algorithm implementation can also be determined with
the aid of measurement. The system(s) can be tuned and tested
for optimum performance of current design and may point the way to

major design changes to be incorporated in future systems.

In many instances the same measurement data can be massaged
in a multiplicity of ways and analyzed from differing viewpoints

to satisfy more than one purpose.

4.1.1.1 Operational Characteristics - The operational character-
istics of an ARTS III system can be defined in terms of 1its

hardware/software configuration, site dependent parameters, and
ambient ATC load. The first two of these items are available with-
out measurement and to some extent so is the third. However, the
accuracy and thoroughness of the data describing the operating
environment of a given installation can be improved through direct

measurement.



Variables of interest in the definition of ambient ATC load

might include all or a subset of the following.

No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.

of Flight Plans

of Discrete Beacon automatic acquisitions
of non-discrete beacons

of Beacon replies

of hits, misses

of Beacon Reports

of Target Declares

of turning tracks

of initial tracks

of coasted tracks

of suspended tracks

of cross - reference matches

of normal tracks

of total tracks

of tabular lines

of single symbols, Full Data Blocks, Limited Data Blocks
of handoffs

of controller keyboard requests (by type)

of interfacility messages

Useful information about the activity of these variables might

include
1.

2 .

Distributions by time of day/week, (incidence rate).
Distributions over the 32 radar sectors.
Averages and maximums by sector or time of day/week.

Distribution over active displays.



Environmental data of this nature combined with site dependent
information provides a detailed operational profile of an installa-
tion or some specific aspect of that installation.

Site dependent information includes

number of IOPs or CPMs

number of DASs

number and/or type of displays

number of keyboards and controllers

ATC functional framework

Beacon PRF

number of hits/and or sweeps to declare targets

number of correlations required for acquisition

4,1.1.2 Automation Characteristics - Measureable automation

characteristics would include statistics such as

1. counts of each OP-CODE (instruction type) used in the ATC
application.

2. TFrequency distributions by class of OP-CODE.

3. Distribution of OP-CODE usage among program elements.
4. Number of memory accesses per OP-CODE.

5. Average instruction execution time.

6. Actual memory cycle time and memory queuing.

7. Channel Data rates § channel queuing.

8. Number of memory accesses for I/0 transfer.

9. Frequency of interrupts.

10. Distribution by class of interrupt.

4.1.1.3 Performance Characteristics - The performance character-

istics of the system can be defined in terms of the utilization of

critical resources as a function of the workload, and the ability

10



of the system to meet specified response time criteria without
consistent data loss. In general, the response of a computer
system to workload variation tends to be highly non-linear. The
actual utilization patterns of ARTS III system resources can be
examined as a function of various aspects of the workload if the
measurement data pertinent to workload and resources is concur-

rently recorded.*

It is possible to obtain hardware resource measurement rela-
tive to IOP utilization, channel activity and memory utilization,
and software resource measurement associated with subprogram
activity, queuing, and data base utilization.

Variables of interest here include
1. Elapsed time of subprogram modules or program segments.

2. Percentage of I0OP utilization for each subprogram or
routine.

3. Executive Overhead.

4. Number of accesses to specific data bases.
5. Maximum size reached on data bases.

6. Percentage of busy time for each channel.

7. Queue time of various tasks (when several are eligible

for execution simultaneously).
8. Total busy time of IOP.
9. Distribution of memory references across memory modules.

10. Operational data of specific interest such as No. of
tracks, No. of beacon replies, No. of active displays,
etc.

A particular hardware measurement relative to the ARTS IOP chan-
nels would be the delay (if any) introduced by the fact that each
set of four channels shares an output register.

s

This aspect of ARTS III measurement is the subject of a Prototype
measurement package developed by TSC at the Minneapolis Test

Bed.
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Some of the areas in the ARTS III system where exacting demands

are made on response time are as follows

1.

S

The processing of Beacon replies (input to the DPS from
DAS approximately every 2.5 milliseconds - a function of
the PRF).

The overall processing of a target from declaration to
display (must not exceed 1.2 seconds for tracked targets).

The display refresh rate (must be maintained at a 24 Hz
minimum, 30 Hz maximum).

The scheduling of tasks whose '"time to execute' has

arrived.

Keyboard input and Interfacility message processing,

Measurements to study these response times include

1.

10.

Elapsed time of Beacon Input Processing modules (totals,

averages, minimums, maximums).

No. of Beacon replies received each DAS interrupt (totals,

averages, minimums, and maximums).

No. of Beacon replies processed each sweep.

Time of specific target declares (tag a target).

Time of specific target display (check for tagged target).
Time at beginning of each refresh cycle for each display.

Queue time for scheduled tasks (time between elegibility
for execution and actual scheduling).

Processing time for keyboard requests.

Processing time for handoff and other interfacility
operations.

Pertinent workload data for the monitoring period such as
total tracks in system, total active displays, volume
and type of display data, i.e., FDB, LDB, SS, Tabular.

12



4.1.2 Measurement for Systems Management

Clearly, the availability of concrete measurement data on the
operational, automation, and performance characteristics of the
existing ARTS III systems would provide a deeper understanding of
its actual functioning and thereby would enhance the value of any
study attempting to predict the future life, requirements, or
direction of ATC systems. If prognostications are to be made as
to how a system will react to changes, then it is essential to
know in specific detail how the system operates in status quo.

For example, the determination of whether a given ARTS system can
handle an increase in workload (represented by more air traffic,
additional displays, or new functions) without adding new equip-
ment or degrading response times requires a thorough comprehension
of present resource utilization patterns, and saturation thresholds.
The sizing of new computer architectures for ATC applications
requires an understanding of the automation characteristics of

the present systems. The development of representative Bench-

marks for evaluating candidate machines requires knowledge of the
operational profiles of the systems to be replaced.

4.1.3 Measurement and Simulation

Simulation is a popular tool for studying the effects of
proposed system modification. A number of simulations have been
developed by UNIVAC personnel relative to ARTS III. These
simulations are being used for site configuration, memory mapping,

and scheduling analyses,6’7:8’9

The problem with simulation

is its credibility. Even very detailed simulations are models--
abstractions that explicitly recognize a few system character-
10 yNTVAC has

taken pains to use actual measurement data in the development of

istics, approximate some, and ignore the rest.

certain aspects of its models. A trace program was used to
gather information about the number of each type of instruction
used by program segments, references to selected memory areas,
and number of calls to subroutines.8 An available measurement
tool in the form of a timer program (part of the ARTS III opera-
tional software) was used to compare simulation-derived data with

13



real-world operation relative to gross program timing and IOP
usage.9 Nevertheless, any simulation involves judgement as to
the value of representing particular features of a system and a
certain amount of educated guesswork which takes the form of
"assumptions" or "hypotheses'". The degree of representation
achieved by a simulation is governed by the reasonableness of these
judgements and assumptions. The credibility of ARTS III simula-
tion efforts can certainly be enriched by any pre-simulation
measurement which could aid in the generation of statistical
approximations, support assumptions and validate judgements.
Building simulations around measured and interpreted data in-
creases the utility and credibility of the simulation more than

enough to justify the measurement effort.lo’11

Measurement is also the logical follow-on to simulation, Once
a particular path has been chosen and a change or design has been
implemented, the actual effect of that change should be measured
to substantiate expectations or to discover why discrepancies
exist. The source of any discrepancy can usually be diagnosed
and the simulation can be refined for future application.

4.1.4 Measurement and Design

If a new or better system or program is to be designed, then
a good, quantitative understanding of the performance of previous
systems 1s necessary to avoid performance bugs in the new design.
We have no reason to suspect that performance bugs are any less
frequent or less serious than logical bugs.2 A lack of quantita-
tive data on the performance of a system increases the possibility
that the new systems or programs will be designed with all the
key bugs preserved. It is quite possible that thorough measure-
ment and evaluation of ARTS III systems will uncover performance
anomalies or hardware difficiencies which cannot be reasonably
altered in the current systems, but which certainly could be

considered in future designs.

Focusing on specific system functions with measurement methods
can point the way to minor design changes on existing systems as

14



well as in the development of new programs. Consider the follow-
ing possibilities. Data relative to the frequency of use of the
various keyboard function modules correlated with specific dis-
plays would reveal how a controller utilizes the system. This in
turn might suggest modifications on additional features such as
the automatic re-alignment of data blocks to their original
orientation after automatic offset has taken place and the over-
lapping of data blocks no longer exist. Statistics on '"coasted"
tracks might be useful in studying the effectiveness of the
tracking algorithms or the performance of the DAS.

What is the frequency of controller-entered data? Is the
present method of detecting keyboard entries efficient? (The
Keyboard Interupt Routine is signalled at the end of each refresh
cycle for each display to determine whether a change has occured
at the keyboard. This occurs up to 30 times/sec per display).

4.1.5 Measuring Performance Efficiency

The operational efficiency of the present ARTS III systems
can be evaluated through the use of measurement. It is entirely
possible that a computer system can process the required workload
within the specified response time tolerences and not be perform-
ing the job efficiently.

This can be a matter of less-than-optimum design since there
is seldom enough time available to develop software which 1)
meets time and space constraints, 2) is reliable, and 3) simul-
taneously achieves the quintesscence of performance. Inefficiency
can be a matter of inelegant or even erroneous implementation.
For example, an error in the scheduling algorithm which results
in the entry of a task in the wrong priority queue will usually
not result in disaster, but can certainly result in delays which
will affect overall performance. Analysis of system operational
efficiency usually requires a system programmer level knowledge
of system architecture and a good understanding of the goals of
the system on the part of the analyst. Pinpointing an efficiency
problem usually involves telescoping from macrolevel to microlevel

in a recursive series of measurement experiments. This effort can

15



be extremely rewarding in terms of recovering processing time or
memory space which can then be applied to new tasks or used in

absorbing a greater workload.

The approach to be taken for this purpose is to conduct a meas-
urement experiment which provides an overview (macroscopic) of ARTS
IIT activity to determine where the time is being spent. This
avoids spending time and money correcting obvious but minor in-
efficiencies with no great effect on overall performance. Analyze
the reasonablemess of the results. Itemize the possible contri-
butors to any observed pecularity or suspiciously large time con-
suming activity. Look into the design logic and code involved,
correct or change any source of inefficiency encountered. If
necessary, plan further measurement, based on the research, which
will shed more light or may verify conclusions. A survey of the
literature on tuning with the aid of measurement will show that it
almost invariably results in improved performance.z’12 Tracing
techniques are particularly appropriate to an in-depth analysis
for determining how the system performs its job. A chronological
time-stamped record of the entries and exits of the various ARTS
ITI subprograms and tasks could be used to observe the interaction
of subroutines, determine whether scheduling is proper, reveal the
hierarchy of events as they really occur, and identify subprograms
and tasks whose frequency of use or actual time consumption make
them candidates for optimization efforts.

System measurement and tuning activities could conceivably
extend the useful 1life of installed ARTS III systems by delaying
the necessity for additional hardware to handle new functions or

large air traffic volumes.

4.1.6 Measurement and Reconfiguration

ARTS III enhancement plans call for an increasing number of
controller decision aiding functions to be automated; such as
Conflict Prediction/Resolution and Metering and Spacing.
Reliability will be increased through the addition of redundant
hardware components and failure recovery procedures in the soft-

13,14,15,16

ware. Improvements in Radar/Beacon surveillance and

Data Display are anticipated and the addition of Data Link
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facilities will pave the way to other automated services.

Each modification or addition will have an impact on the
system as a whole. Each new automated function or hardware
element must be properly integrated in order to preserve the
integrity of the Real-time environment. Due to the variety in
hardware configuration and site dependent parameters at the ARTS
ITI installations, the effect of system alteration will vary from
site to site. As new functions are added which require processing
time and memory space, the capacity of the various systems to
handle a given volume of air traffic will be diminished, response
times may be affected and the balance of resource utilization may
change. Additional processors, memory modules, and possibly other
equipment will be added to absorb the load and will pose anew the
questions of: where is the processing time being spent? How are
the resources used? Is the system operating efficiently? What is
its projected life? What are its saturation thresholds? Can it
be '"tuned" to better advantage? Measurement can help to answer
these questions and should be used diligently at each major step
along the way, both for through understanding of actual performance
and for intelligent planning in anticipation of needed configura-
tion changes.

A comprehensive set of baseline measurement data on the
various ARTS III configurations would provide the yardstick against
which the effect of each new modification can be gauged.

A specific measurement of interest relative to hardware re-
configuration would be the overall effect of the CMA which is
installed as part of the multiprocessor systems. The CMA increases

memory access time from 750 to 950 nanoseconds.

4.2 PROGRAM DEVELOPMENT AND DEBUGGING

Measurement methods can be applied during program development
for debugging purposes, with the result that program development
proceeds at a more rapid pace.

With the aid of traces for subroutine or branch activity,

loop timing, and frequency of execution statistics on statements,
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subroutines, segments, or data files, a programmer can locate logic
errors and tune his individual task to optimum performance before

it becomes a part of a larger program or system.

4.3 FAILSAFE/SOFT MULTIPROCESSOR SYSTEMS

The advent of failsafe/soft systems in the terminal ATC pro-
gram brings to the forefront a host of new problem areas in terms
of computer efficiency and the ability to predict the saturation
levels of ARTS III systems.

Multiprocessing is a means of increasing computer power in
a system through a form of parallelism rather than through in-
creases in the raw speed of a single processor. It has the added
advantage in the case of real-time systems of automatically pro-
viding a form of redundancy which can be used to enhance the
reliability of a computer configuration. Adding a second proces-
sor to a computer system does not, however, double the throughput
capability or capacity of a system because a certain amount of
degradation is introduced through interference among the various
processors while attempting to access the same program code, data
base, or memory module, With each new processor added to the
system, the effect of this interference is compounded until, at

some point, it is no longer cost-effective to add more processors.

The level of degradation at each processor increment can be
minimized (and predicted) if sufficient information about the
actual operating characteristics of the system are collected and
analyzed. For example, programs that share data bases may be
scheduled so that they are not being simultaneously executed.
Programs which can be run in parallel on separate processors may
be duplicated in memory so that multiple processors are not
accessing the same memory module simultaneously for program code.
Data bases which can be accessed in parallel may be distributed
throughout memory in such a way as to minimize conflicts. The
necessary information to make such decisions can be gathered with
the proper combination of measurement parameters and techniques.
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Another factor affecting the efficiency of multiprocessing
systems is the requirement for Operating System or Executive soft-
ware which must perform more complex scheduling, communication,
control, and housekeeping functions than those necessary to manage
a single processor system. The need for such Executive logic has
a twofold affect. Firstly, its sophistication will, understand-
ably, incur a greater overhead in both processing time and memory
space; and secondly, its complexity supplies fertile ground for
design and coding inefficiencies (or errors) which can have a
negative impact on the overall effectiveness of the system.
Operating System (Executive) performance characteristics can be
analyzed in detail with software measurement tools; and, in fact,
such analysis is the subject of numerous measurement and evalua-
tion activities in the data processing field. Once the system
software resources have been efficiently organized and optimized,
system performance can be further studied to obtain a more accu-
rate picture of actual processing power increase and thus satura-

tion level predictions can be founded on firm data.

The ARTS ITI multiprocessing failsafe/soft systems are not
exceptions to these considerations. Large data bases are com-
monly required by several tasks which may be run in parallel, the
Executive code can be executed by several processors simultaneously
while searching for tasks to perform, and the Executive is, need-
fully, far more complex than that of the basic ARTS III systems.
Inefficiencies and delays may conceivably exist in searching the
lattice and pop-up tables, in queueing of ESR and I/0 requests,

in data base organization, and memory access schemes.

To add further ambiguity to the problem of performance ef-
ficiency and saturation level prediction for ARTS III, new ATC
functions will be periodically added to these systems; such as
conflict prediction and resolution, metering and spacing, data
link operations, radar reinforced tracking, multi-sensor radar
processing, DABS, etc. With each addition or change to the system,

performance and workload saturation levels will change.
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Many of these problems can be addressed through extensive
software simulation, but the reasonable and accuracy of simulation
should be verified by actual measurement, whenever possible. If
this is not done, a great deal of effort may be expended altering
things which are not substantial and the results which are
achieved may be significantly less than optimum. Without measure-
ment, simulations are a collection of those characteristics of
the system which the analyst considers important and key elements
may be ignored. Without measurement, many inputs to the simulation
are based on heuristics, statistical approximations, educated
guesswork, or a great deal of research and data reduction; all of
which leave more room for error and doubt than does direct measure-
ment. Without measurement the effect of actual modification can-

not be properly assessed.

The failsafe strategy of the ARTS III system includes periodic
recording of critical data on on-line mass storage devices.
Initially, disk devices will be used. This facility provides
still another area where overall efficiency (and subsequently
system life) can be affected. The organization and format of data
sets on direct access devices determines how much "head'" movement
will take place and how much rotational delay will be incurred.
These factors in turn determine how long disk requests will be
queued and how long tasks must wait for use of the device. The
utilization characteristics of disk devices and their effect on
overall system efficiency is another measurement area where a
great deal of attention has been focused in the past few years.

The critical data recording philosophy of the ARTS III
multiprocessing systems is one where the tasks shall decide (with-
in reason) which data to record and how frequently it should be
recorded.16 It is easy to imagine how, with ever increasing
functional tasks, queueing for disk use could become a problem in
future ARTS III,systems. The recording of numerous copies of the
same basic data may also occur. If periodic measurement of these
systems is performed as they evolve, may of these problems can be

avoided or their effect minimized.
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Some particular measurements of interest in the ARTS Multi-

processor systems are as follows

1. Time spent processing (searching, updating) Executive
Tables (LDT, PTP, and Pop-Up)

2. Scheduling queue time for individual tasks (eligible but
not executing)

3. PTP queue length distributions

4., Cycle completion times

5., Interrupt handling (time, frequency)

6. Interrupt Queue time

7. Processor queue times for shared table use
8. Percentage busy time for each processor

9. Program stretchout due to memory interference for each
task

10. Time spent executing Pop-Up tasks

11. Distribution of pop-up tasks across cycles

12. Distribution of tasks among processors

13. Time spent recording critical recovery data

14. Memory references for recovery data

15. Access characteristics of disk

16. Frequency of recording recovery data (total, by task)
17. Task queue time for disk use

18. Rate of update to each recovery data base

19. Effect of CMA on overall performance (slows memory access
from 750 to 950 nanosec.)

20. Memory queue effect on display refresh rates.
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5.0 MEASUREMENT TOOLS AND TECHNIQUES

We have discussed the utility of direct computer measurement
and suggested various areas in the ARTS III program where it can
be benefically applied. Let us now look at the tools and techni-

ques available for extracting measurement data.

In general, monitors can be classified as Software Monitors,
Hardware Monitors or Hybrid Monitors. Within each of these three
categories there are various techniques or approaches which may
be employed depending on the measurement objectives, and the
environmental constraints. Of course, a measurement and evaluation
effort may combine tools and techniques from all three categories

in any reasonable fashion to achieve its goals.

5.1 SOFTWARE MONITORS

Software monitors consist of code imbedded in the system for
£ Most Software tech-
niques intercept, in some way, the normal flow of programmed

the purpose of recording interesting data.

procedures to obtain the required information.18 The amount of
code imbedded in the system depends a great deal on the amount and
type of information sought.

Software monitors can be somewhat arbitrarily separated into
two categories, Event Monitors and Statistical Samplers. While
it is possible to obtain, in some cases, similar information with
either technique, there are significant differences in ease of
implementation, extent of information obtainable, credibility of
results, computer resource requirements, and volume of measurement
output. In order to properly assess these differences, and to
put them in perspective relative to their importance in ARTS III
measurement, several prototype measurement packages were developed
for an H-832 computer available at TSC utilizing the different

monitoring techniques.

The purpose of the prototype development was to compare the
monitoring techniques from the vantage point of first-hand imple-
mentation experience. For purposes of comparison the Event Monitor
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was limited to gethering data which could be readily analogized
with output from the Sampling Monitors. We chose, therefore, to
monitor and time the entry and exit from each program element of a
large simulation program. This same simulation program was
analyzed utilizing sampling techniques with both fixed and random

sampling intervals.

The selection of a single large application program as the
measurement ''test-bed" for this study provided several expedients.

1. It reduced the necessary tinkering with the existing
Operating System. This saved time, effort, and some

frustration.

2. It provided a controlled (and controllable) environment
whose

a. Characteristics were familiar.

b. Performance was known, repeatable, and not subject
to fluctuation. This was necessary to establish
confidence in the operation of the measurement

package and in the measurement results.

c. Source code was available for examination. This was

useful in debugging the measurement package.

3. It was sufficiently large, complex, and unwieldy to
represent some of the practical and logistical problems
of a large system and thereby presented a reasonable set
of challenges to the implementation of measurement
packages.

It is worthy of note that although this experiment was conducted
on an application task, the procedures are applicable and exten-
sible to an entire system.

5.2 THE TECHNIQUES

5.2.1 Event Monitoring

Event monitoring, as the name suggests, is the process of
noting the occurrence of specific events of particular interest
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to the analysis at hand. The events usually are such things as
the entering and/or exiting of program modules, the incidence of
pertinent interrupts, updating of critical qQueues, start and end
of I/0 operations, accession to a particular device or data base,
schedule initiation, etc. The monitoring package may compute
elapsed time for events, time-stamp them for later analysis, keep
a running count, or dynamically adjust percentage statistics.

The design of the monitor is very much dependent on the nature of
the analysis, availability of computer resources, and environmen-
tal constraints.

5.2.1.1 Ease of Implementation - When event monitoring is im-

plemented through software means, it entails modification of exist-
ing application program or system software in some fashion. 'Hooks"
are planted at strategic points in the software; these hooks

cause control to pass to the monitoring package which then takes
appropriate action such as incrementing counters, reading a time-
of-day clock, and gathering additional data from system tables.

The monitor record is then composed, formatted, and recorded.

Hooks may take any number of forms from innocuous branch
instructions, thru sophisticated executive service requests, to
diabolical, intentionally planted, interrupt-causing pseudo errors.
For the most part, hooks are accompanied by codes which indicate
the nature of the specific event to the monitor. Implantation of
hooks, if not part of the original system design, usually requires
re-assembly or re-compilation of those elements to be monitored.
The dynamic planting of interrupt-causing conditions is an excep-
tion. In any case, successful implementation of this technique
usually requires a thorough, in depth knowledge of the structure
of the object system software and the architecture of the computer.

It is, therefore, normally performed by senior systems personnel.

The method used in the H-832 prototype Event Monitoring
measurement package to acquire "hooks" was that of planting coded,
interrupt-causing, pseudo-error conditions. An advantage of this
method is that re-assembly or re-compilation is not necessary,
and the measurement process is therefore relatively painless to
the object program (mer). In addition, hooks may be easily removed
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so that the program will run again normally, with no juggling of
actual program code. Essentially, the measurement process is
transparent to the monitored program. This consideration is not to
be taken lightly when dealing with large, unwieldy systems. This
method differs from that used in the Executive Scheduler Tracing
package implemented as part of the ARTS III prototype*. Both
techniques are transparent to the measured process. However, the
technique used in the Executive Schedule tracing packages will
measure elapsed time at the '"subprogram'" level only, while a finer
granularity and flexibility is possible with the planted hook

procedure --- at the cost of greater implementation complexity.

In the H-832 Event Monitoring prototype the entry point
instruction in each subroutine is replaced with an instruction
containing an illegal op-code and a coded address field. This
replacement is performed by the event monitor immediately after pro-
gram loading and prior to program execution. (It can be designed to
take place at . any time after program loading.) The original entry
point instructions are retained by the monitor in an ordered list.
The interrupt procedure of the host computer is then modified to
give control to the event monitor program at the occurrence of an
illegal op-code interrupt.

When, in the course of program execution, a subroutine is
entered, an illegal op-code interrupt will be generated by the
hardware and the monitor will receive control. At this point,
the monitor first determines whether the interrupt was caused by
a planted hook or an actual error. If the interrupt was not a
planted hook, control is passed to the normal interrupt handling
routine. Otherwise, a monitor record is composed containing the
program code (obtained from the hook), the clock time, and the
address of the entry point. Obviously, any other system data of
interest can be gathered at this time, as well. The formatted
record is then transferred to an output buffer for subsequent

output. The event monitor makes provision to gain control again when

—
Several prototype measurement tools have been developed for the
Basic ARTS systems, by H. Glynn and F. Woolfall of TSC.
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the subroutine exits, the original entry point instruction is
executed via an XEQ* type instruction, and control is returned to
the object program.

The method which was used by the H-832 Event Monitor to regain

control at subroutine exit time makes use of several facts.

1. The simulation program (object program) was written
entirely in a higher-level language. This usually means
that a standard set of register-use conventions 1is
employed by the compiler. In this specific case, return
from subroutines is always accomplished via an indirect

jump instruction utilizing the contents of register 15.

2. The Operating System does not support the execution of
co-routines, recursion, or any other form of operation
which would permit a subroutine return sequence to belong
to any subroutine other than the last one entered.

Once these facts were established, regaining control at subroutines
exit time was assured by altering the contents of register 15
before returning control to the subroutine, and saving the original
contents of register 15 in a simple stack. The address at the top
of the stack (last one entered) is then used to return control to
the calling routine after the monitor has taken appropriate action
to note the subroutine's exiting. If parallel executing of sub-
routines were supported, a means of coding the subroutine return
sequence to identify the returning subroutine would be necessary.

The method employed in the Event Monitor prototype for plant-
ing hooks at subroutine entry points can be used to plant hooks
at other places in the object program (or system) to count or time
other events. The basic requirement is that the instructions to
be replaced by hooks have 'global' (as opposed to local) labels,
or are near such globally labelled instructions, so that their
references can be resolved for the event monitor code. It is also
desireable to avoid replacing BRANCH, JUMP, SKIP, XEQ or similar

—
An XEQ type instruction allows an instruction (the object of the
XEQ instruction) to be executed out of sequence.
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instructions which would cause special concern as the object of

the Monitor's XEQ mechanism. A particular pitfall to be aware of
in planting hooks in this manner is the possibility that other
instructions in the object code, preceding or following the instruc-
tions to be replaced, are somehow dependent on the original contents
of the replaced instruction. For example, a register may be set
indirectly with the contents of the address field of the replaced
instruction to be used in an indexing operation. This, of course,
would wreak havoc with program execution. This type of error is
extremely difficult to locate when debugging. It is easy to see
from even this cursory discussion that Event Monitoring demands

an intelligent grasp of the fundamental operational and pro-
gramming character of the system under study and a great deal

of care in implementation.

5.2.1.2 Credibility - The credibility of results from an Event
Monitor experiment is affected by the resolution and accuracy of
the hardware clock, the distortion of activity introduced by
measurement artifact, the length of the monitoring period, and

repetition of the experiment.

If considerable accuracy is required in absolute elapsed
time measurements as is often the case when probing the "primitive"
level of operating systems, then a high resolution timer is very
important. The calendar clock used in the instrumentation of
"Multics" counts microseconds. That rate is the same order of
magnitude as the instruction rate of the host computer, therefore
the timing of ten instruction subroutines is meaningful.19 The
Gemini real-time operating system instrumentation had available a
ten microsecond timer which could be read or reset to zero under
program control.20 The Statistics Gathering System of the Apollo
real-time operating system also used a clock with ten microsecond
resolution to record accurate timing statistics.21 With a timer
whose resolution is good enough to time individual instructions
or small groups of instructions, the credibility of a single event
time becomes excellent. However, when events take place at the

microsecond level but the clock ticks-off in milliseconds, there
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will most assuredly be many zero elapsed times recorded, although

no occurrence of monitored events will be missed. Several different
events may also be stamped with identical times even though they

did not occur simultaneously. In measurement which requires extreme
timing accuracy, this is clearly an undesirable situation. On the
other hand, the fact that an individual time measurement may be
inaccurate is not necessarily a problem in many cases. In such
instances, the elapsed time may be approximated from a statistical
sample and a one millisecond or possibly even in 16.67 millisecond
(60 cycle) timer is adequate. This is true, for example, in
developing a time density distribution where the events to be

times will occur many times during the monitor run and average or
total elapsed times can be computed within a reasonable tolerence
from the overall results. The accuracy of the elapsed time approx-
imation, of course, is dependent on the total time measured for

one or more events and the independence of the clock from the

events being measured. !

To illustrate this point, the event-
monitor prototype was used to develop a time density profile of
the simulation program in execution. The experiment was conducted
utilizing a one millisecond time source and then repeated utiliz-
ing a 125 microsecond time source. An examination of the raw data
obtained with the one millisecond time source revealed several
zero elapsed times, while the 125 microsecond time source was
sufficiently fine to time the smallest subroutine in the simula-
tion. This was established both manually and by examination of
the raw data from the 125 microsecond monitor run. The results
are shown in Figures 5-1 and 5-la (the number of subroutines in
the simulation program suggested splitting the results into two
graphs). It should be noted that the percentage scale of the two
graphs differ. Where the largest concentration of total elapsed
time is 'experienced (Figure 5-1a), it can be seen that use of the
one millisecond timer produced overall results almost identical

to that of the 125 microsecond timer. Reasonable approximation
was also achieved for those subroutines whose running time

accounted for less than four percent of the total,.
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When individual elapsed time accuracy is required but a high
resolution timer is not available, the precision of elapsed time
measurements can be improved over that directly available via the
hardware clock through software techniques. This is done, however,
at the expense of degradation in the total running time of the
measured process. Such a technique is described by Bussell and
Koster,22 and is dubbed ''the vernier clock algorithm". The pro-
cedure has five basic requirements: 1) an accurate hardware clock
with 2) minimal jitter, and 3) a very short program loop whose
time is 4) accurately known and 5) which can detect (be initiated)
when the clock is incremented. Briefly, the technique utilizes
the program loop 1) to synchronize event timing initiation with
clock incrementation and 2) as a vernier to determine how much of
the final interval (between clock jncrementations) was spend
actually executing the timed process. The algorithm introduces
delays of several microseconds, or more, both at the beginning
and the end of each timed process in order to determine the higher
resolution elapsed time. The length of the delays is a function
of the resolution of the available timer. The precision of the
measured time is the time required to execute one instruction
on the host computer. Elapsed time must be calculated on-the-
spot, rather than during post processing data reduction. Effective
use of this technique requires that calibration methods be devel-
oped to experimentally determine the precise time of the vernier
loop, the precise resolution of the hardware clock, and the pre-
cise overhead for interrupt processing (used to signal the vernier
loop when the clock increments). This can be a rather cumbersome
process, but does provide a useful substitute for a high resolu-

tion timer under the proper circumstances.

Distortion due to measurement artifact varies considerably
according to the methods employed in collecting the data. The
mere existence of software measurement instrumentation implies
that the normal course of the measured process will be disturbed
periodically. In the very least, an instrumentation overhead
factor will be introduced. Typical overhead for measurement has
been reported to be in the neighborhood of 1% to 10%. This
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overhead, however, can run much higher, especially in event monitor-
ing, if not carefully controlled.

Separating the time spent monitoring from the time spent in
the monitored process can be difficult. For example, if the clock
is continuously running and is used to "time-stamp" the occurrence
of an event, the time used by the monitor to collect the data may
be included as part of a later calculation of elapsed time between
two events. This monitor time can be significant, and not neces-
sarily constant. Steps should be taken, wherever feasible, to
minimize monitor time or to properly account for it. This particu-
lar problem was reasonably resolved in the H-832 prototype by ex-
ploiting the fact that the clock could be stopped and subsequently
resumed without resetting (with some programming acrobatics).
Therefore, the clock was halted as soon as the monitor program was
initiated and resumed just before control was returned to the
object program. The remainder of the clock interval is lost, how-
ever, each time the clock is stopped, so an error factor still
exists. It is worthy of note that this action was taken after
certain peculiarities in the original output, obtained with a
continuously running clock, were noticed and investigated. It is
always tempting to assume that this type of error will be insig-

nificant and thereby not worth the effort to minimize.

In addition to the problems of clock resolution and distortion
of results, credibility is affected by the length of the measure-
ment period and repetition of the experiment because a system
reacts to workload and environmental changes, and a program may
take different paths for different input data. If the monitoring
period is too brief, significant events may be missed entirely;
and if the experiment is not repeated, the results may be biased
by an atypical situation. The danger of drawing erroneous conclu-

sions due to either condition is all too apparent.

5.2.1.3 Volume of Measurement Data - Since the application of event

monitoring techniques is largely in the microscopic analysis of
internal system events, and since such events usually occur with
great frequency, it can be expected that event monitoring will
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produce a large volume of output data. Typical of the amount of
data accumulated during event monitoring is that reported by

Schwetman and Brown.23

"During observation period of normal pro-
duction which lasted 4,037 seconds, in excess of 1.8 million
events were recorded." The H-832 event monitor prototype package
produced 6060 records while merely tracing the entries and exits
of the subroutines used during execution of a simulation program.
The CPU time logged for the simulation program (exclusive of I/0
and monitor time), was approximately 3 seconds. Obviously, the
processing of such a large volume of data presents quite a problem
in itself. The amount of thought and effort to be expended on

this task should not be dismissed as inconsequential.

Analysis of data usually requires summarization and extraction
of features of interest. If the analysis is performed as a post
processing task rather than dynamically during the monitoring
period, many uses can be made of the same data as the need for
different points of view arises, and real-time measurement over-
head can be minimized.

5.2.1.4 Extent of Information - Event Monitoring has the advan-

tage of permitting a fine grain, microscopic view of activity,
and therefore, is well suited to the study of the complex inter-
actions and subtle behavior of systems.

It is possible to obtain queue time and wait time as well as
holding time for system resources. The sequences of events as
well as their time distributions can be determined. The software
traffic patterns of the system can be studied and the hierarchy
of events revealed. This information allows the definition of the
structure and flow-of-control throughout the system which is ex-
tremely useful in debugging as well as system "tuning'" efforts.
It is possible to ascertain cause and effect relationships or
merely to count the incidence of a single event. Areas of system
activity are accessible through monitoring which may be ''masked"
to other techniques. The elapsed time of events can be directly
measured rather than estimated. This makes timing fluctuations
and other anomalies, which may be significant, readily apparent
even at the raw data level.
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The natural chronology inherent in event monitor data can be
used to advantage in the manipulation of that data in a variety of
ways to answer different questions, or to study a problem from an
alternate point of view. To illustrate the latter point, consider
the raw output of the H-832 event monitor prototype (Figure 5-2).
As stated earlier, the events monitored consisted of each entry
to, and exit from, every subroutine exercised during the course of
execution of a simulation program. Each monitor record contains
the subroutine identification, a time-stamp, and an address. On
entry to the subroutine, the address field of the monitor record
contains the entry point address and on exit from the subroutine,
the address field contains the address to which control was
returned (in the 'calling" routine). A sample of basically raw
data, formatted for human consumption, is shown in Figure 5-2.
Being from an early test run, the time-stamps in this figure re-
flect the monitor overhead, including monitor I/0 as well as system
I/0 on behalf of the program, and should not be taken seriously.
The clock resolution was 16.67 milliseconds (all numbers are hexi-
decimal). This is not the data which was used in the final
analysis.

The ultimate purpose of the experiment was to produce a time
density distribution for the simulation program. The final re-
sults are shown as a printer-plot in Figure 5-3, as well as in
graphical form in Figures 5-1 and 5-la. One can see, however, that
a wealth of additional information can be gleaned from the output.

A perusal of the unprocessed raw data reveals the hierarchy
of events during program execution. Subroutine JUDY (the "main"
routine) called subr. GASP, which in turn called subr. DATIN which
in turn called DRAND, which called RAND1. Then RAND1 returned con-
trol to DRAND which returned control to DATIN which then called
SET (which returned control to DATIN) followed by FILEM which it-
self called SET; and so forth. A closer look at the addresses
reveals that the subroutine sequence FILEM, SET, XMAX, XMAX, SET,
FILEM is executed as part of a loop in subroutine DATIN rather
than from different places throughout the program. (The return
addresses are always the same.) This type of information is
particularly useful when attempting to understand how a program

goes about performing its function. Such information may be sought
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PGM CODF 3 000p0p05 SUBR = JUDY ADDR = 90503280 TIME STAMP = 0000000 —
PGM CODE = 00000015 SUBR 3 GASP ADDR = 00005656 TIME STAMP = 00000812
_PGM CODE = 00000010 SUBR = DATIN ADDR = 00004DAC TIME STAMP = 000008B8
pgM CO0E = 000400011 SUBR = DORAND ApDR = 00005228 TIME STAMP = (00003478
pGM CODE = 0020000C SYBR ® RAND1 ADDR = 00004C20 . TIME STAMp ® 00003540
PGM GODE sz g0poo00C SUBR z RAND1 ADDR = 00005238 TIME STAMP m 00Q0035E8
04000014 SUBR = DHAND ADDR = p0OO04F7E  TIME SYAMP = 0
PGM COpE = 00000019 SUBR = SET ADDR = 0000605C TIME STAMP = 00003860
PGM COUE = 0000019 SUBR s SET ADpR = O00004FED TIME STAMP = 00003928
PG CODE = p0oug013 gUBR = F ILEM ADDK = (000p5414 TIME SyAMP = 00003 AFC
PGM COoDE w 0000019 SUBR ® SET ADDR = 0Q0D60Q5C TIME STAMP = 0Q0Q3BC4
PGM CODE = Q000004D SUBR 3 XMAX ADDR ®= 00008BA2 TIME STAMP a 00003C6A
PGM CODE = n0ado04n SUAR ®» XMAX ADDR = 0000N&4ED TIME STAMP e 000n3D10
PGM CODE = 00000019 sUBR s SET ADDR = 0000548C TIME STAMP = 00003DD8
PGM COUE = p0000033 SUBR = FILEM ADDR = DOOQ00D4FEE TIME STAMP = 00003E8Q
PGM CUDE = 00000043 SUBR = F JLEM ADDR = 00005414 TIME STAMP = 00004052
PGM CODE = 00000019 SUBR @ SEY ADDR = 000D605C TIME STAMP ® 000040F8
PGM CODE ®» 0000001D SUBR & XMAX ADDR & 00006BA2 TIME STAMP = 000041A0
PGM CODE = (00000040 SUBR = X MA X ADDR @& 000061ED TIME STAMP = 00004268
PGM COUE = 00000019 SUBR = SET ADDR = 0000548C TIME STAMP = 0000430E
PGM COUE = 00000013 SUBR = FILEM ADDR = O00004FEE TIME STAMP = 00004384
PGM CODE = 00U00013 SUHR = FILEM ADDH = 00005414 TIME STAMP = 00004588
PGM CODE = 00000019 SUBR = SET ADDR = 0000605C TIME STAMP = 0000462E
PGM CODE = 0000001D SUBR = XMAX ADDR &= 00006BA2 TIME STAMP s 000046F6
PGM CODE = pONO0O0AR SURR ® XMAX ADDR = 000N64ED TIME STAMP = 0000479C
PGM CQUE = 00000019 SUBR = SET ADDR = 0000548C TIME STAMP = 00004844
PGM CODE = 00000013 SURR = FILEM ADDR = O0QOOQ4FEE TIME STAMP = 000048EA
PGM CODE = 00000013 SUBR = FILEM ADDR = 00005414 TIME STAMP a O0Q004ABC
PGM CODE =3 00000019 SUBR ® SET ADDR = 0000605C TIME STAMP 2 00004884
PGM CODE s 0000001D SUBR ® XMAX ADDR ® 00006BA2 TIME STAMP = 00004C2C
PGM CODE a 00000010 SUBR & XiHMAX ADDR = 0000&LED TIME STAMP m 00004CD2
PGM CODE = 0000N001Y SUBR = SET ADDR = 0000548C TIME STAMP = 00004D94A
PGM CODE = 00000013 SUBR = FILEM ADDR = O0DOOD4FEE TIME STAMP = Q0004E4Q
PGM _COUE = 00000013 SUBR = FILEM ADDR = 00005414 TIME STAMP = 00005014
PGM CODE = 00N00019 SUBR s SET ADDR = 0000605C TIME STAMP = 000050BA
PGM CODE = 000000410 SUBR = XMAX ADDR = 00006BA2 TIME STAMP = 00005160
‘___Jumi_anuﬁ_;_nnnnnmin_asuaa.:-x¢uuL_____Anna_;__nnnnﬂ15n TIME STYAMP = 00005228
PGM CODE = 00600019 SUBR = SET ADDR = Q000548C TIME STAMP = 00005200
PGM CODE = 00000013 SUBR = FILEM ADDR = QO0O0D4FEE TIME STAMP = 00005376
PGM CODE = 00000013 SURR = F 1LEM ADDR = 00005414 TIME STAMP = 00005548
PGM COUE » 00000019 SUBR = SET ADDR = 0000605C TIME STAMP 3 000055F0
PGM CQDE = 0000001D SUBR m XMAX ADDR = 00006BA2 TIME STAMP = 000056B8
PGM CODE = 00nN003ID SUBR = XMAX ADDR ® 0000 5
PGM CUDE = 00000019 SUBR = SET ADDR = 0000548C TIME STAMP = 00005804
PGM CODE = 00000013 SUBR = FILEM ADDR = (0O0O004FEE TIME STAMP = 000058AC
PGM CQUF = Q0u0Q0013 SUBR = F[LEM ADDR = 00005414 TIME STAMP = 000Q5A7E
PGM CODE = 00000019 SUBR = SET ADDR = 0000605C TIME STAMP = 00005846
PGM CODE = 0000004D SUBR s XMAX ADDR = 00006BA2 TIME STAMP s 00005BEC
PGM CODE = 0000001D SUBR = XMAX ADDR = 0000861ED TIME STAMP = 0000%C94
PGM CODE = 00000019 SURR = SET ADDR = 0000548¢C TIME STAMP = 00005D5C
pPGM CODE = 00000013 SUBR = FILEM ADDR = O000D4FEE TIME STAMP = 000Q5E02

Figure 5.2. Raw Event Monitor Output
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merely for educational purposes or, more often, for purposes of
debugging. The raw output can also be useful in determining to
some extent the overhead introduced by the monitoring instrumenta-
tion, if one is familiar enough with the monitored process to
identify points at which an exit from one subroutine is immediately

followed by entry to another, etc.

This data can be manipulated to tell other stories. Consider
Figure 5-4. These are the processed results of an event monitor
run using a 125 microsecond timer. The numbers in the "time"
columns represent the number of 125 microsecond pulses of the clock.
Here we have counted the number of times each subroutine was
executed, accumulated the total time for all executions, computed
the mean execution time, and indicated the minimum and maximum
elapsed time spent in each separate subroutine. We can see that
several of the subroutines are frequently used. They are EVNTS,
AMAX, AMIN, FILEM, RMOVE, SET, TMST and XMAX. The bulk of time,
however, seems to be distributed slightly differently with ETAB
and HPLOT entering the picture. Figure 5-1 and 5-la depict this
same time density distribution graphically. An interesting point
revealed by Figure 5-4 is the large difference between the minimum
and maximum elapsed times for the subroutines EVNTS, ENDCY, SET
and HPLOT. This variation, combined with a relatively low total
elapsed time for routines EVNTS and ENDCY accounts for the devia-
tion in Figure 5-1, between the total time accumulated with the
one millisecond and 125 microsecond time sources, and also demon-
strates why timer resolution matters. The elapsed time variations
are not cause for alarm in this particular case, but such conditions

might well be a startling relevation in other analyses.

The Subprogram Call Analysis chart (Figures 5-5 and 5-5a) 1is
another useful output from the same data. The chart is divided
into two parts for publication but should be viewed as one chart.
The numbers heading the columns represent the same numbered sub-
routines listed in the leftmost column. There are 33 subroutines,
thus 33 rows and 33 columns. The '"calling'" routines are listed
vertically and the "called" routines horizontally. For example,
we can see that subroutine EVNTS (#1) calls subroutine EOTSK (#2)
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44 times because the number 44 is found opposite EVNTS in the
column headed 2. Similarly, EVNTS calls subroutine ETAB (#4) 60
times, and ETAB calls RAND1 (#12) 440 times The total number of
subroutines that each routine has called is listed as the last
number opposite that routines' name in Figure 5-5a. For EVNTS,
the total is 156. The chart enables one to see at a glance which
routines are used by which. This can be valuable if a change is
to be made in the overall program and it is necessary to know

what routines may be affected. It may also lead to reorganization.
For example, if a subroutine is called frequently by one routine,
it may be more efficient to make that subroutine a part of the
calling routine instead of a separate subroutine. This chart in-
dicated that AMIN (#14) is called 232 times from subroutine TMST
and never called by any other subroutine; and XMAX (#29) is called
exclusively by SET, 342 times. Once again, this situation is
acceptable in our case because these subroutines are part of a
general simulation package, and different input data will very
likely change the picture somewhat. If this were a special pur-
pose program, however, it would be wise to look into the possibil-

ity of reorganization.

The utility of event-monitor data is manifold.

5.2.1.5 Resource Requirements - Computer system resources are

required to conduct measurement via software techniques. These
resources are central processor time, memory space, I/0 channel
time, peripheral devices, and program readable clocks. When event-
driven techniques are employed, the central processor is usurped
by the event monitor each time an event of interest occurs. The
processor is occupied by the monitor for the amount of time needed
to record the event and to gather whatever other data is desired.
If multiple, frequently occurring events are monitored and related
data must be gathered from available tables, a significant amount
of processor time will be spend on the monitoring task resulting

in delays to all other processes in the system. The nature of
event-monitoring, then, suggests prudence in selecting a reasonable
set of '"variables of interest'" in order to minimize the processor
time overhead.
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The number of events being monitored, and the frequency of
occurrence of those events also impacts on the memory space and
I/0 channel time requirements. Memory space is necessary for the
monitor program code, but equally importantly, for the data
buffers. It is necessary to allocate sufficient buffer space to
accommodate all the new event records which will be accumulated
while the previous records are being processed or dumped to an
external device. Failure to properly allot memory space will
result in lost data or additional delays. Obviously, if events
occur with great rapidity and each event is accompanied by inci-
dental information, the buffer space must be large. The amount of
channel time required is a function of the size of the buffer
blocks transmitted as well as the frequency of output transfer.

It is usually necessary to dedicate a tape drive to the task
of recording monitor data, thus tying up a peripheral device.
For purposes of timing events, a program addressable clock is a
necessity. Event-monitor timing usually requires a high resolution

timer, as previously discussed.

5.2.2 Statistical Sampling

Statistical sampling is a method for determining how the
computer time and other resources spent on a process are distributed.
It is useful for finding the areas where performance bugs may exist
and in pinpointing the areas where '"tuning" can be applied to the

greatest benefit.

Statistical sampling techniques are founded on a premise
aptly stated by Cantrell and Ellison2 as follows: "If an executing
program is frequently interrupted according to some random or
periodic time schedule which is known to be statistically indepen-
dent of any natural execution pattern in the program, then the
frequency with which the interrupt location falls within a particu-
lar instruction sequence is proportional to the total time spent
by the program in executing that instruction sequence.'" In other
words, it is possible to develop a time density distribution of a
program in execution without precisely timing the entry and exit
of every subroutine in that program. It is, in fact, possible to
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locate time consuming areas within a program which has no sub-
routines. Commercial performance monitors utilizing sampling
techniques have carried this philosophy one step further and have

applied it to overall system activity.24

5.2.2.1 Ease of Implementation - The sampling technique can be

applied on any computer which has a program interrupt capability
and an interval timer, or other clock capable of generating an

interrupt after a pre-defined interval of time has elapsed.

In general, the more complex and general purpose the Operating
System, the easier it becomes to implement this measurement facil-
ity. That is, in terms of the built-in provisions for clock handl-
ing, interrupt routing, and the availability of operating system
maintained tables containing hardware, system, and job status
information. On the other hand, multiprogramming, multitasking,
and multiprocessing introduce special considerations which do not
exist in uni-programming environments. For example, in a multi-
programming situation, one may have to determine whether a program

was executed at all since the last sample was taken.

Basically, a sampling monitor obtains control at the beginning
of a monitor run and sets the interval timer (clock) with the
selected sampling interval. The timer interrupt facility of the
processor must be initialized at that time to communicate with the
sampling monitor, and then the object program is initiated. Object
program activity is suspended by the computer system's interrupt
mechanism when the interval has elapsed and control is passed to
the sampling monitor. The sampling monitor records the interrupt
address (the instruction counter or program counter value at the
time of the interrupt). The clock is then set with a new time
interval and control is returned to the object program. The
recorded addresses are later sorted or otherwise processed and the
the resulting frequency distribution indicates where most of the
object program time has been spent. It is not necessary to have
any previous knowledge of the object program in order to implement

a sampling monitor for this purpose.
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If one is interested in overall system activity, however,
things are a bit more difficult. The system tables of interest
must then be probed and pertinent information assembled. This can
require a fairly sophisticated level of know-how.

A major selling point, of statistial sampling as a measurement
tool is its relative ease of implementation. It is not normally
necessary to modify existing program or operating system code.
However, certain '"protection'" schemes, virtual memory, or hardware
relccation features can make addressability to system and program
tables difficult enough to warrant implementing the sampling
monitor as part of the operating system.

When random intersample intervals are used, the programming
is slightly more complicated and the overhead slightly higher due

to the random interval generation process.

5.2.2.2 Credibility - The credibility of statistical sampling

results is affected by sample density, length of monitoring,
randomness of observation, interrupt handling, and experiment

repetition.

Relative to sample density Kolence25 states '"'given the random-
ness of observation, the accuracy of the data obtained is then a
function of the number of samples taken, not the frequency of
sampling." Confidence curves have been developed to indicate the
expected accuracy as a function of the number of samples. See
Figure 5-6. A discussion of the theory and development of the

. . . . 1
confidence curve equation can be found in our previous report.

It follows, that the length of the monitoring period must be
suitable for obtaining a sufficient number of samples to achieve
the desired level of accuracy. The resolution of the timer limits
the number of samples obtainable in a given unit of time. For
example, a time with a one millisecond pulse limits the number of
sample which can be taken in a one second run to 1000. If random
intervals are used, even fewer samples can be taken in the same
time period, since many of the intersample intervals will be
greater than one millisecond and none can be less than one milli-
second. It can be seen, therefore, that this techniques is not
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particularly appropriate to the examination of short running pro-
grams.

Sample density alone is not sufficient for accurate results.
The statement by Cantrell and Ellison specifies that the sampling
time schedule must be known to be "statistically independent of
any natural execution pattern in the program'", and Kolence also
states ""The key to a-successful sampling technique is that a
certain number of samples be collected randomly with respect to
the variables being observed. That is, randomness in the sense
that synchronization of sampling with the occurrence of 'some event
in the system must be avoided." If synchronization occurs, events
can be missed entirely. Experience has shown that on general
purpose systems synchronization is actually rare with fixed inter-
val sampling. Even so, using random length intersample intervals
gives one more confidence in achieving the randomness necessary to
assure the validity of the results. As mentioned previously, how-
ever, it is sometimes more difficult to obtain an adequate number
of samples when using random intervals. In addition, computer pro-
gram random number generators will begin to cycle after a period.*
It is, therefore, necessary to carefully choose an algorithm which
will not degenerate into a cycle quickly because synchronization
with the cycle is also possible. Although, an argument could cer-
tainly be made that any randomness is better than none at all.

Designing the Random Sampling Process

The random sampling process is designed to be a Poisson pro-
cess. This assumes that for a given time interval the number of
samples that will occur in the interval is proportional to the
length of the interval and the number of samples is independent
of non-overlapping time periods.

The Poisson distribution states the if the mean intersample

time is m, the probability of k samples in time t is

—
See Knuth, "The Art of Computer Programming," Volume 2, "Semi-
numerical Algorithms'" (Chapter 3) for an excellent discussion on
computer random number generation.
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Using this expression, the probability of no samples in time t is
(setting k=0) e-t/m, Thus, the probability of at least one sample
in time t can be found by subtracting the probability of no samples
from unity. The probability of at least one sample in time t can
be restated as the probability that the next sample will occur
within t time units and is given by

l_e-t/m

Calculating Random Intervals

For the sampling experiment, assuming we have a desired mean
intersample time m, we want to have a different t between each
sample.

Pr (at least 1 sample) = l-e-tm = g random number where
0. < random number < 1.

Rearranging the terms,

e—t/m = 1-random number.

Since (1-random number) is also a random number, we can replace

this term as

/M - rNuM

where RNUM is a random number. Finally, solving for t

-t/m = 1oge(RNUM) or

t = - m log_(RNUM)

Minimum Interval

Since the real time clock in the computer has a minimum time
increment, we want to be certain that the intersample times are
not less than the minimum interval. This can be accomplished by
setting m, the mean intersample time, such that the probability
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of having a sampling interval less than the minimum increment is
close to zero. Or stated another way, we want to set m such that
the probability that the sampling interval is greater than the
minimum clock interval is close to one.

M can be set from the following:

We want Prob (sampling interval > minimum
clock increment) = .99

The probability density function corresponding to the cumulative
probability density function (1-ehtm) is (1/m) e_t/m, so we want
to set m such that

/ (1/m) e t/M 4¢ = .99
min

where min is the minimum clock increment.

et/ / > .99

t=min

Solving for m

0 - (-e™N/My 5 g9
- min/m > loge (.99)
or

m > min/loge (.99)

Sample Size

Assume that we want p, the percentage of time spent in a
given range to be within 5 percentage points of the true value,
P, the desired range is then P+5. Since p is assumed to be nor-
mally distributed about P, it will lie in the range (P:ZUSJ with
probability .95. Since

@ = v/PQ/n (where Q = 100-P), and n = number of samples
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we may put Zos = 5,
2 /PQ/A = 5 or n = 458 (1)

It is obvious at this point that n depends on a property of the
process to be sampled, namely P. However, if a range of values

can be estimated for P, then we can calculate the corresponding
value of n over the range and select the largest n. If the range
for P is estimated to be 45-65%, n is a maximum of 400 for P = 50%.
The following table summarizes the appropriate values for n at the
95

e

confidence level under varying acceptable ranges for p.

ACCEPTABLE RANGE SAMPLE SIZE REQUIRED
+ 1 10,000
P + 2,500
P + 400
P + 10 100

Setting the Mean Intersample Time

The selection of m can be done by dividing the length of
the sampling period by the number of samples required. This num-
ber should then be compared with the m calculated under 'minimum
interval™. If it is larger than the feasible minimum m, the sampl-
ing period might be lengthened so that the required number of
samples could be obtained. If the sampling period cannot be length-
ened (i.e., the program terminates in a finite length of time),
then a calculation can be expected with the limited number of

samples which can be made.
Re-arranging the terms of Equation (1)
2VPQ/N

The adjusted range (P+r) would be the maximum accuracy that could

+ T

be obtained for the given confidence level of 95%.
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When the sampling technique is applied to overall system
measurement, the host system's interrupt handling procedures can
have a subtle affect on the results. In large systems, some of
the operating system (Executive) routines may be designed to run
with all, or a class of, interrupts 'disabled'. This means that
should an interrupt occur during execution of such a routine, it
would not be processed until the routine has completed execution.
The sampling process is directed by an interrupt, and therefore,
could be disabled for certain routines. The affect is that those
routines will never show up in the sampling results even though
they may be significant time consumers. There is no way of know-
ing that this will occur unless one is familiar enough with the
system in question to know whether the interrupt handling pro-
cedure makes this possible, and if so, which routines operate in
this fashion.

Repetition of any measurement experiment is important in
order to assure that the results are truly representative of the
program or system activity.

In order to assess the credibility of the sampling technique
under real-world conditions, the following experiment was con-
ducted. The event monitor measurement package, previously described,
was used to obtain time stamps on each entry to, and exit from,
every subroutine exercised during the course of a simulation
program execution. A 125 microsecond time source was used. This
was adequate to time the smallest subroutine in the simulation,
but the average instruction time on the host conputer was appro-
ximately four microseconds. This implies that a timing error will
be introduced in those routines which call many other subroutines
in a short period of time. A look at Figures 5-5 and 5-5a suggests
that subroutines EVNTS, ETAB, FILEM, SET, and TMST are candidates
for such error. The clock was stopped during all event monitor
processing in order to eliminate distortion in the results due to
measurement instrumentation. It was also necessary to stop during
all simulation program initiated I/0 in order to force the results
to conform to those obtainable through sampling. (It is difficult,
sometimes impossible, to link the I/O activity with the initiating
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subroutine when sampling.) By stopping the clock during problem
program 1/0, we are timing only the execution of the actual simu-
1ation code which can be easily compared with sampling output.
This, however, suggests that we will experience some timing error
in those routines with heavy I/0 operations, again due to clock
resolution (when the clock is stopped, the remainder of the 125
microsecond interval is lost). The suspect routines in this case
are DATIN and HPLOT. We are now prepared to consider the event
monitor results as representing the actual operation and timing
of the simulation program, within acceptable tolerences; and we

know in which subroutines we may expect some error.

The same simulation program was subjected to measurement
utilizing sampling techniques with both fixed and random inter-
sample intervals. The sampling output consisted of the problem
program interrupt addresses recorded at the expiration of the
timer intervals. The interval timer available for sampling had
a one millisecond pulse resolution. All measurement runs were

repeated several times for confirmation.

Post processing programs were developed to generate time
density distributions and other reports, from the output data of
both the event monitor and sampling packages. Subroutine elapsed
times were accumulated from the event monitor output and time
percentages were computed from the totals. A frequency distribu-
tion was developed from the sampler output using the subroutine
boundary addresses as limits, and time percentages were also
computed. These particular measurements were not affected by
disabled interrupts. There was roughly a 10 to 1 ratio of I/0
time to actual simulation time. As a result, the absolute non-
I/0 elasped time of the simulation code is in the neighborhood of
3 seconds. This did allow sufficient time to collect enough sample
data to have some confidence in the results, even though the
portion we are interested in constitutes only 10% of the total

activity.

Figures 5-7 and 5-7a are computer drawn graphs which show
the random interval and fixed interval sampling results plotted

against the baseline event monitor results. (Note that the scale

51



SurTdues TeAISIUT POXT]
*SA
Jurydueg TeAX93UT WOpURY
*SA
(eo®BI]L) S3IINSOY I03TUOW IUSAF /-G oIndijg

0010

00°2

00°y
HLIN3JH3d

oM

00°8

00°0%

—— 8217364l
=  (J3XId
+——+ HOONUYH

SOOHL3W 3JHL 40 NOSIHHJWO3

52



SurTdueg [BAIS3UI PaxTI sA JurTdueS TBAISIU]
wopury SA (IOVYL) S3ITNSSY IO0JTUOW JUSAT "BL-G 2andt4g

——GZ2T1736dlL
o HE) Q|
+——+ HOONBH

SOgOHL3W FHL 40 NOSIdBdWOJ

53



i1s 10% on Figure 5-7 and 40% on Figure 5-7a.) In general, the
sampling results are very good approximations. The areas where
the largest discrepancies occur are in subroutines EVNTS, ETAB,
DATIN, FILEM, SET, TMST, and HPLOT. This was expected; as the
event monitor data for these routines should have some distortion
introduced by the resolution of the clock and the stop-clock pro-
cedure. The differences between the fixed interval results and
the random interval results is mostly due to the fact that fewer
samples were obtainable with the random intersample interval, and
therefore the level of confidence must be lower. There were
approximately three times the number of samples taken with the
fixed interval runs as there were with the random interval. The
expected confidence level for the overall program time is 99.9%
that the fixed interval results are within 1-1/2% of the true
distribution, and 95.0% that the random interval results are with-
in 1-1/2%. That confidence level applies to the total running
time of the program. The simulation code accounts for only 10%
of the total. We are essentially magnifying that 10%, and,
therefore, should expect that the confidence level is slightly

less than it otherwise would be.

As an illustration of the importance of sample density, con-
sider Figures 5-8, 5-8a and 5-9, 5-9a. On Figures 5-8, 5-8a we
have plotted the results of a sampling experiment using a 2
millisecond fixed interval and that of a sampling experiment
using a 3 millisecond fixed interval against the baseline event
monitor data. There were approximately 13,000 samples taken with
the 2 millisecond interval and 8,600 samples with the 3 milli-
second interval.

Figures 5-9, 5-9a represent the results of sampling runs made
with only random intersample intervals. The difference in the
runs is in the value of the 'mean'" used for the random interval
generator. The mean values were two and three and the resulting
sample densities were approximately 6,600 and 4,700 samples

respectively.
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In summary, it appears that the sampling technique is quite
credible for identifying where the concentrations of time exist
in a program; and, when used with caution, can also be valuable
for that task when applied to an entire system, provided that the

caveat concerning randomness and sample density is heeded.

5.2.2.3 Volume of Measurement Data - The volume of sampling data

output is usually measured in thousands as opposed to possibly
hundreds of thousands with event driven techniques. Moreover, the
analyst has the ability to keep the sample density within limits
by manipulation of the length of the intersample interval. A
manageable volume of measurement data is one of the desireable

features of sampling techniques.

5.2.2.4 Extent of Information - The basic element of information

available through statistical sampling of computer programs is an
indication of the distribution of time. It is possible to resolve
program activity down to the single instruction level. If the
system on which the program is executed is data rich, it is some-
times possible to implement a traceback procedure which will cor-
relate I/0 time spent by the system on behalf of the brogram with
the initiating subroutine or sequence of code. It may also be
possible to probe operating system maintained status information
tables to determine the activity of peripheral devices and channels,
the size of queues, the location of disk heads, etc. In short,
any information on the status of activity which is available to
software can be sampled. It is possible, then, to determine
percentage utilization of resources as well as distribution of
time. Such information can be used to determine whether resources
are overloaded, misused, not balanced, not used, etc. Changes in
resource utilization as a result of system modifications can be

studied with the aid of sampling measurement.

Sampling can be used to discover the fact that inefficiency
exists. It does not, however, necessarily identify the reason for
the inefficiency. This technique suffers from an inability to

measure sequences of events, classes of events whose rate of
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occurrence exceeds the sampling rate, absolute duration of events,

and fluctuations in elapsed time.

5.2.2.5 Resource Requirements - In general, sampling requires

use of all the same resources as event monitoring. However, it
requires less of each. Less processor time is required because
activity is sampled at intervals rather than monitored for every
change. Less memory space is required for buffers and less chan-
nel time for data transfer because the volume of data is lower

and the frequency of recording is usually moderate compared to
that of event monitoring. A dedicated tape drive is usually
required, although data can be accumulated elsewhere and processed
or dumped at the termination of the monitoring period.

5.2.3 Practical Implementation Considerations

There are a number of practical problems which must be
addressed when implementing software monitors regardless of the
chosen measurement technique.

Initiation and termination of the monitoring facility must
be dealt with. Initiation for obvious reasons; termination in
order to complete processing, dump buffers, and to close-out

(end-file) the output data set on the recording medium.

One approach is to implement the monitor as an integral part
of the system with all necessary monitor code present, but dormant,
until initiated through an operator action. A common method of
initiation, in this case, would be the setting of a console switch
during the system load procedure. The system initiation routine
would be modified to interrogate the switch and to take the action
necessary to cause monitor initiation, if desired. Termination
could be controlled in a similar manner, through a different
switch or by resetting the original switch. Another method would
permit the operator to interrupt a system in operation with a
keyboard request to begin monitor activity. This method would
require that the monitor code be available to the system as a load
module with all references to system tables, etc. previously

resolved. Again, termination procedures would be signalled in a
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l1ike manner. In both cases, provision must be made within the
system for communication with the outside world, either through
console switch testing or keyboard interrupt (break key) techni-

ques.

When monitoring only problem program code, the monitor is
usually loaded as part of the problem program; either as a result
of an actual reference to it from the problem program, or through
system facilities which permit the monitor to link-to and control
problem program execution. Termination for the former method is
usually accomplished through a closing reference from the problem
program code or by dynamic implantation of branch instructions by
the monitor. Termination in the case of monitor link and control

procedures is effected naturally as part of the facility.

The allocation and handling of monitor data buffers is also
an important consideration. Monitor record data transfer to a
peripheral device should be overlapped, with the execution of the
monitored program or system, in order to minimize processing time
overhead and total system degradation. If monitor output is not
overlapped, the monitored process waits while each record or group
of records is transferred to the assigned peripheral device. The
speed of most peripherals is several orders of magnitude slower
than processor speed so the overall effect can be devastating.

If monitor output is overlapped, buffer allocation and handling
schemes must be developed. The size of the buffer(s) must be
adequate to accommodate a reasonable amount of monitor data.
Reasonable is defined as sufficient to minimize either data loss
or wait time if the rate of monitor data recording exceeds the rate
at which the buffer(s) can be emptied by output routines. The
buffering scheme and size of buffers chosen also depends on the
availability of memory space.

Double buffering is a good choice when memory is available and
a high degree of overlap is desired. This scheme causes the output
routines to process each buffer when it is full, while the monitor
program continues to operate by placing records in an alternate
buffer. Synchronization of input and output buffers is necessary

to avoid data loss.
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A circular buffer may be used to conserve memory space. When
circular buffering is used, the monitor places data in the buffer,
while at the same time the output routine is stepping through the
buffer, transferring previous monitor records to the output device.
When the end of the buffer is reached by the monitor, the next
record overwrites the first record of the buffer, and the cycle
is repeated. Consideration must be given to the possibility of
the monitor overrunning the records being processed by the out-
put routine; and to the possibility of the output routine catching-

up with the monitor.

The capacity of the output medium has an effect on the
measurement process. If the end of an output volume (tape or disk)
is reached during the monitoring period, some action must be taken
to close-out the volume, and terminate or continue with the measure-
ment. This action can result in delays, loss of data, or both.
Ideally, a second tape device can be '"switched" in to receive data

while the original tape is being closed-out and re-wound.

Data compaction techniques can be applied to minimize the
buffer memory requirements and to maximize the volume of data
obtainable before end of volume or end of data set conditions are
encountered. Data compaction involves '"coding' the data wherever
feasible and packing the information as closely as possible into
a word or group of words for later deciphering and processing.
This means that each item of information takes up less space in
memory, as well as the output medium. Blocking the records on the
output medium reduces the number of interrecord gaps and therefore
makes fuller use of available capacity. Data compaction, of course,
adds to the overhead of the monitoring process.

Dynamic processing and periodic summarizing of the measurement
data can be performed on-line to minimize output. To do so, how-
ever, adds a task to the system which of course requires processing
time and other resources. Post processing of data has the dis-
advantage of dealing with potentially large volumes of data, but
permits a given set of measurement data to be combined in various

ways and analyzed from different points of view.
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5.3 OTHER SOFTWARE MEASUREMENT TOOLS

In addition to Software Monitors, which consist of code
embedded in an existing system, there are other software measure-
ment tools which can be employed in computer systems evaluation.
Among these are Self-Simulators, Benchmarks, and Synthetic Pro-
grams. These tools fulfill a purpose different from that of
Software Monitors.

Benchmarks and Synthetic Programs are used to compare the
relative suitability of several machines or machine configurations
for a particular application or job environment; while self-
simulators are used to collect in-depth information about the
make-up and operational characteristics of particular program or
task.

5.3.1 Self-Simulators

Self-Simulators are programs which interpretively execute
another program and simultaneously gather statistics about its
instruction mix and branching patterns. The simulation program
simulates the host computer on itself. The key element for imple-
mentation of such a program is the availability on the host com-
puter of an "EXECUTE' instruction which allows the execution of
an instruction out of its normal sequence of code. Thus, the
simulator steps through the program under study, examines each
instruction, increments counters indicating which instruction type
is being executed, indirectly "EXECUTES" the examined instruction
and proceeds to the next instruction in sequence. Special
processing is provided for instructions which would interrupt the
normal sequence of events, such as "BRANCH" or "JUMP" instructions,
and additional statistics may be gathered about such instructions;
such as the '"conditions'" which caused this jump on conditional
jump instructions, the location of the jump instruction, and the
location to which it jumped.

It is important that the simulator occupy minimal space and
be able to retain control in spite of error, interrupt or other

conditions which may arise from the object program.22
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The data coliected through self-simulators is valuable in
many program analyses including larger simulations in which the
analyzed object program is but a part. Generally, this tool
extends the natural running time of the object program by a large
factor.

5.3.2 Benchmarks

A benchmark is an existing program which is coded in a spe-
cific language and executed on a machine being evaluated for use
in a particular application or job mix environment. Benchmarks
are developed primarily to compare one machine configuration
(hardware and software) against another for possible acquisition,
rather than for exhaustive performance analysis of machines already
employed. A comprehensive series of benchmark runs can demonstrate
differences in machine organization and evaluate the performance
of I/0 equipment and secondary storage as long as a variety of
instructions are used by the test programs.

In order to be effective, benchmarks must be carefully chosen
to be representative of the application or job mix for which a
machine is being selected. Performance predictions for problem
areas which are not benchmarked can be risky extrapolations. It
takes a large effort to program benchmarks and to prepare realistic
data. Benchmark performance can be misleading in terms of capacity
of a system unless complete benchmarks are selected to place a
capacity load on that system.27 Even large benchmark jobs must be

recognized as models simulating the real world.>S

5.3.3 Synthetic Programs*

Like a benchmark, a synthetic program is one that is coded
and executed, but it differs in that it does not necessarily exist

beforehand.26 A synthetic job is a fabrication which strives to

*This approach has been taken by TSC to evaluate computer architec-
tures for future ATC use. The synthetic programs have been
imcorporated into a synthetic system which is a stylized version
of the terminal ATC system and is known as the "ATC TEMPLATE".
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represenf an application (or job mix) by imitating the type(s)

of data processing which characterize it. It is a stylized version
of the function(s) for which a computer is being evaluated. It
may be simply a well-behaved exerciser of system features, or a
tool for comparing the speed of dissimilar systems. Requirements
of such a job are: 1) that it can be stated as a machine indepent-
ent procedure. 2) that it be meaningful over quite a wide range

of computer systems, being neither too trivial for the larger

ones nor too complex for the smaller omnes. 3) that it should be
long enough to be measured accurately, yet not so long that
measuring becomes burdensome. Consequently, the procedures should
be ¢ycles with the running time directly proportional to the
number of repitetions, 4) that it be simple enough to be readily

re-programmed in different languages for different machines.

In order to keep the programs simple enough so that they can be
readily re-programmed for various machines, details of the appli-
cation being represented are intentionally supressed. Hence,
performance of a system on a synthetic program cannot be used
directly to predict the running time of a specific application
accurately. The relative performance of two systems on a synthetic
job, should, however, yield a reasonable first approximation to
their relative performance on a specific job using the same system
facilities.?®

The major advantage of synthetic programs in the flexibility
they provide, since jobs can be designed to include almost any

. 26
desired measurement parameters.

They suffer, however, from some
of the same problems as benchmarks in that it is difficult to
realistically characterize the real-world applications and data,

and a significant amount of programming effort is usually involved.

5.4 HARDWARE MONITORS

Hardware monitors are devices that use signal collection
probes physically attached to defined acquisition points of com-
puter circuitry. These probes feed counters or drive time accumu-
lation registers making it possible to count the occurrence of

events or time their duration. The values accumulated in the
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counters and registers can be periodically copied to magnetic

tape, or graphically represented on attached plotting equipment.

The capability and features of commercially available hard-
ware monitors vary a great deal. For example, monitoring can be
continuous, sampled at fixed intervals, and/or sampled at inter-
vals stimulated and controlled by external signals. In many,
individual signals can be logically combined (and/or/ex or/not)
to filter the probe data. In some, a "Fanout" feature is provided

to disperse the same signal to various monitors or counters.

The following features should be considered in selecting a
hardware monitor. Each of them will affect the utility of the
monitor for a particular measurement effort. Some monitors are
modularly assembled so that capability can be incrementally in-
creased. Others merely vary in capability from model to model or
vendor to vendor.

1. Number of probes

2. Number of standard counters

3. Number of electronic counters

4. Resolution of standard and electronic counters
5. Number of logic panels

6. Type of decoders (hex, octal)

7. Real time clock availability

8. Availability of data tags or other mechanism to identify

files or record groups on output medium.
9. Capacity of output medium
10. Bit width of counters and accumulators
11. Availability of Comparator facility
12, Bit width of comparator registers
13. Number of probes input to comparator logic

14. Ability to combine several monitor's probe data for
output to a single medium. (Multiplexor)
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15, Range of adjustable voltage threshold levels for dif-

ferent computer system logic levels

16. Changeability of probe tips to accommodate different
computer system pin attachments

17. Ability to logically combine probe signals
18. Ability to Fanout signals
19. Selectable output frequencies

20. Other mechanism for periodic output (Buffer full, counter
full)

21. Buffered output capability

22. TRecording while outputting capability
23. Output recording speed

24. Maximum cable length for probes

25. Probe sensitivity to signal duration (typically 30 nsec)
and repetition rate (10 - 15 MHz)

26. Minimum sampling interval selectables
27. External probe stimulation capability

28. Ability to optionally count multiple occurrences of

event rather than every occurrence

29. Ease and Flexibility of monitoring. initiation and

termination
30. Availability of Data Reduction Software

31, Compatability of Monitor output medium with available

computer data reduction facilities
32. Portability

Classically, hardware monitors are used to measure hardware features,
many of which are difficult or impossible to measure by software

means. Typical hardware monitor measurements include:

Processor active/idle time

Channel busy/idle time
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Control unit busy/idle time
Processor/Channel overlap
Multprocessor overlap

Device busy/idle time

Device use overlap

Time in program state

Time is Supervisor state
Interface activity

Disk head seek time

Frequency of interrupts (by class)
Memory queue time by processor
Memory bank usage

With the addition of comparator and decoder logic, hardware
monitors can be applied in a limited manner to many measurement
tasks formerly considered the exclusive province of software
monitors. These include program elapsed time, program execution
frequency, and data base activity.

Attached to the memory address register a properly equipped
hardware monitor can be used to trace program and subroutine
activity, overlaying or paging. Attached also to the data regis-
ter, it might be used to study the response time for terminal
requests, or to time the various aspects of a transaction such as
time to process, queue time, formatting time, or message turn-
around time. Attached to the instruction register, utilization
statistics can be gathered on the types of instructions most fre-
quently employed by the system under study.

The use of hardware monitors for software related measurement
is limited by the number of probes, complexity of the combina-
torial logic, comparator and decoder capability, and machine
architecture (paging-segmentation), as well as the analysts
understanding of the subtle details of the software in question.

The use of hardware monitors for any measurement requires an
intimate knowledge of the circuitry and architecture of the com-
puter to which it is being applied. Hardware monitors provide the
distinct advantage of not perturbing the system under study. There
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is no deviation of normal program flow or timing (software over-
head). Further, in a static real-time system such as ARTS, all
programs and data are memory resident and therefore more easily

accessible to a hardware monitor than in a dynamic General Purpose
system.

Measurements can be made of hardware activity which would not
necessarily be available to software monitors. On the other hand,
a knowledge of computer electronics is required for installation,
and if software related data is desired, an intimate knowledge of
the subject software is also necessary along with particulars on

the computer architecture.

Test procedures (hardware or software) must be devised to
verify proper placement of probes. The computing system will be
mynavailable" during probe attachment and checkout. The amount of
information obtainable in one measurement Tun is usually more
limited than that obtainable through software techniques; and
hardware is considerably less portable and more costly to duplicate

than software.

5.5 HYBRID MONITOR

Hybrid monitors are an attempt to combine the desireable
features of both hardware and software monitors in one powerful
measurement tool. Typically, a separate processing unit with
peripherals 1is attached to the host computer system through a

memory port or I/0 channel.lg’29

Measurement software, with all
its inherent flexibility runs on the attached computer and accesses
pertinent measurement data through system tables in main memory.
The data can be dynamically recorded, displayed, summarized or
otherwise reduced by the attached system without interfering with
the normal operation of the computer system under study. Special
features might include the ability to stimulate an event or to
obtain measurement assistance from the host system.

More recently, mini-computers have been employed to drive and

30

control hardware monitors. Such arrangements grew out of a need

to obtain information directly, at a more primitive level,
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in greater quantity, at higher bandwidths, and with more convenient
and accessible output facilities than normally possible with ordin-
ary hardware monitors. Basically, the mini computer console,
display equipment, etc. are used by the analyst to select (inter-
actively) through computer programs the events to be monitored via
hardware probes attached to the host system. Programmable logic
and registers which can be set and read by either the mini-cpu

or the external environment (host computer) form the main communi -
cation link. This type of hybrid configuration also has the
potential for interaction with software monitors Operating in the
host system. Thus providing a complete, flexible, and extremely
powerful measurement facility with access to virtually every
pertinent measurement variable.

The drawback in hybrid monitoring is the necessity for the
presence of additional processing capability (mini computer)
coupled with the fact that such hybrid facilities are not yet
commercially prolific. While this approach represents the ultimate
in computer system measurement technology, there may be an asso-
ciated software development effort for the mini computer monitoring
facility over and above the actual measurement software, and
specialized interface hardware may have to be developed for a
particular project. 1In addition, all the expertise required to
implement effective, workable, hardware and software monitors is
also necessary. The overall development time for a good hybrid
measurement facility would generally be longer than for either a

basic hardware of software monitoring activity,

5.6 FIRMWARE MONITORING

The current trend towards computer systems with alterable
microprogram control logic makes available yet another measurement
technique which we will refer to as firmware monitoring.

Microprogramming is a technique for implementing the control
function of a digital computing system as sequences of control
signals that are organized on a word basis and stored in a memory

31

unit. The microprogram memory is usually significantly faster

than the main memory. If this memory is alterable then
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microprogramming allows the modification of system architecture
as observed at the machine language level. That is, instructions
may be modified, or added to the repetoire, by providing micro-
programs to properly handle them.

There are several ways 1in which the alterable microprogram
feature can be used as a measurement tool. One approach is to
add special instructions or "hooks" at strategic points in a
program. These hooks are interpreted by the microprogram as NOPs
(no operation) when measurements are not being taken. Otherwise,
they may cause the microprogram to increment a special counter
(or dedicated memory address) or to cause the clock cycles to be

counted in order to time the duration of an event.

Another approach would not require special instructions in
the program code, but would modify the microprograms used for the
normal instruction set to perform additional measurement functions.
For example, the source and target addresses of every BRANCH
instruction executed might be recorded, thus providing a trace of
program flow.

The fact that microprograms could be used to aid the measure-
ment process means that such measurements would distort the
measured system to a lesser degree, measurement overhead would be
reduced, and measurements which would be difficult or impossible

to obtain with straight software monitors would become tenable.
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6.0 SUMMARY

6.1 THE ROLE OF MEASUREMENT IN THE ARTS III PROGRAM

We have suggested that direct computer measurement can play

a useful role in the evolution and life of the ARTS III systems

in a number of ways, they are:

1.

Management Information - Improved Planning

Direct Measurement of operational system characteristics
would provide thorough and accurate data for use in
simulation, system operational analyses, or other ATC
related studies, whose results are ultimately used

to determine the pattern of expansion in ARTS III
systems.

Reconfiguration Evaluation

As hardware elements and ATC functions are added to the
ARTS III systems, performance characteristics of the
systems will change. Direct measurement should be used
to assess the impact of such modifications, to verify
or refute anticipated results, and to obtain new data
relative to overall operation. In this way the growth
of the ARTS III systems can be guided in an orderly,
cost-effective manner.

System Performance Evaluation

In addition to monitoring the ARTS systems for purposes
of management and planning, measurement activities can
be directed towards the analysis and improvement of
current computer system performance. The identification
of system bottlenecks and their causes can point the way
to software or hardware alterations (often minor)} which
can increase the performance and subsequently the life
of a system. In general system "tuning" activities on
large systems have been highly successful. Reported
improvements of 30% are not uncommon. A General
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Accounting Office report states that federal dp costs
could be cut "several million dollars a year'" if perform-

ance measurement tools were used more extensively.*®
Future Program and System Design

Major inefficiencies both hardware and software disclosed
through proper measurement and evaluation can be avoided
in future programs or systems, if not correctable in
current ones. If performance bugs are not ferreted out
in current systems, they may be carried over into future
designs.

Program Development

Measurement tools can be applied to task development
activities to provide the programmer with the necessary
data to debug and tune his individual programs prior to
their integration with the system as a whole. This is
not a substitute for total system performance evaluation
however, because a computer system is not well repre-
sented by- the sum of its parts. The performance of each
part of a system will, generally, give little insight as

to overall system performance.

An active measurement and evaluation effort, therefore, can pro-

vide the FAA with valuable insight, and the basic data necessary

to make cogent decisions regarding the direction of the ARTS III

systems. It can also provide the concrete information necessary to

guide the progress and evaluate the results of contractor efforts,

both in development and in simulation.

6.2

APPLICABLE MEASUREMENT TECHNOLOGY

There are a number of measurement tools and techniques which

might be applied in a measurement activity: Software Monitors,

Hardware Monitors, Firmware Monitors, Self-Simulators, Benchmarks,

and Synthetic Programs. Each has positive and negative aspects

- —
From DATAMATION, January 1973, Page 91.
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which must be weighed against the measurement objectives and

environmental restriction.

Software monitors can be arbitrarily separated into two
classes: Event Monitors and Statistical Samplers. Event monitors
involve modification of existing program code and therefore re-
quire intimate knowledge of the task or system under observation
and, very often, the basic architecture and operational philosophy
of the host computer, as well. Overhead, resource requirements,
and volume of output can be considerable, implementation can be
tricky, and in certain cases the environment should be controlled
and reproducible. Event monitors are necessary however, for in-
depth performance analysis, and system tuning efforts., With
Event monitors, sequences of events can be traced and algorithmic
or performance bugs can be ferreted out. A high resolution timer

in necessary for fine grain event-oriented measurement.

Statistical Samplers are usually easier to implement since
they require little or no modification to existing code. Their
processing time overhead is considerably less than most event
monitors. A specific hardware requirement is the availability
of a program addressable interval timer which will cause an inter-
rupt at the end of a pre-set time interval. Knowledge of system
logic and familiarity with system tables is required if overall
system performance is to be studied. Statistical sampling can
provide useful overview data such as task time density distributions
and large resource usage percentages. It does not provide suffi-
cient information to pinpoint cause and effect relationships or to
analyze sequences of events. The interrupt protocol inherent in
many systems can cause loss of information and subsequent distortion
of results. A random, asynchronous sampling process and adequate
sample density are of paramount importance for credible results.

Hardware monitors obtain measurement data through passive
probes which do not interfere with system code or activity. They
are primarily important for obtaining hardware oriented measurements
which are difficult or impossible to obtain through software means.
Certain measurement data can also be elicited with regard to soft-

ware activity, such as elapsed time of program modules, utilization
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statisticé on key data sets, and turnaround time of man-machine
interface messages. Hardware monitors are usually equipped with
their own recording facilities. Measurement data acquisition
during a given hardware monitoring period is limited by the number
of probes, combinatorial and comparator logic restrictions, and
the capacity of the output medium. Intimate knowledge of the host

computer architecture and circuitry is required for implementation.

Hybrid monitors combine the passive, non-perturbative aspects
of hardware monitoring with the flexibility and information
gathering/processing strengths of software monitoring, thereby
achieving a fairly comprehensive and desireable measurement tool.
A separate computer (mini) with attached peripheral devices is
required, and a significant amount of software development work

may be involved.

Firmware monitoring is the exploitation of a microprogrammed
computer's microprogram control logic as a measurement tool. It
is possible only on those systems which employ microprogram control
logic. It has the advantages of access to the computer's control

registers and reduced execution time overhead.

Self-Simulators are software packages which interpretively
execute program code while gathering data about program character-
istics, such as branch analysis or instruction use statistics.
They incur a great deal of overhead in execution time. They are
not a suitable tool for a real-time environment, but are extremely

useful as a developmental or non-real time analysis tool.

Benchmarks and Synthetic programs are programs designed to
represent the data processing characteristics and workload of a
particular application or installation job mix. They are used
primarily to compare the suitability of various computers for the

job environment which they represent.

Any combination of these measurement tools (except Firmware
monitoring) can be applied to the tasks of measuring, evaluating
and studying the ARTS III systems. The choice depends on the
specific measurement objectives and the environment in which the

measurement activity will take place. With any measurement
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activity there is an accompanying and equally important data
reduction effort to extract, combine, and organize the measurement
data in a digestible and informative fashion. The use of computer
generated graphs and charts is invaluable for aiding the analyst
in grasping the significance of results. With Benchmarks and
Synthetic Programs there is also a large effort involved in
realistic input data preparation.
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7.0 CONCLUSIONS & RECOMMENDATIONS

Measurement aids to program development and debugging are
currently being developed by UNIVAC under the heading "General
Purpose Data Recording and Timing for ARTS'"; and an effort is
underway at TSC to evaluate various computer architectures for ATC
applications through the use of Synthetic Programs collectively
known as the "ATC Template'.

There are at least two other specific areas where direct
computer measurement should be utilized within the overall ARTS
ITT program: systems analysis of operational site performance
and environmental characteristics; and continuous test-bed monitor-
ing which includes the effects of hardware reconfiguration, the
impact of new Executive and functional task software, as well as
performance efficiency.

Simulations have been developed to aid in planning the hard-
ware configurations, memory mapping and lattice table organiza-
tions for future ARTS III multiprocessor systems. Accurate and
comprehensive data relative to the operational and environmental
characteristics of the various sites which are candidates for
multiprocessor operation is inportant in making such simulation
models truly effective. This information should be obtained
directly from the existing basic ARTS III sites, since much of
the data would be concerned with ambient air traffic characteris-
tics and other local considerations. Additionally, those sites
should be subjected to measurement after multiprocessor installa-

tion to verify anticipated performance.

A certain amount of information can be obtained through the
use of existing measurement aids in the form of a Data Extractor
program and a task Timing program. These aids are rather primi-
tive, however. The data extractor dumps raw buffers, and it is
not possible to run it concurrent with the timing program. It is,
therefore, not easy to obtain task timing as a function of air
traffic load; although useful operational data for system opera-
tional analysis is available. These programs can be improved on,
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or built upon to extract data selectively and more germain to

performance analysis.

Measuring an operational system, however, gives rise to several
problems. Firstly, it is difficult if not impossible to obtain
data relative to certain hardware utilization in the ARTS systems
via software means, particularly without extensive overhead.
Secondly, the sites of immediate interest would most likely be
the busiest ones with the least amount of processor time to devote
to measurement overhead. Any software measurement package will
incur an overhead which could become detrimental to the real-time
integrity of the system during periods of increased air traffic
or additional function processing. Thirdly, only one magnetic
tape (used to load the system) is available at operational sites.
Even if this tape were used to output measurement data, some data
would be lost during tape changes.

There are several approaches which may be taken to alleviate

these problems.

1. Hardware measurements, along with a subset of software
measurements relative to program execution frequencies
and elapsed times, can be extracted via hardware monitor.
However, data on traffic volume, distribution of targets
across sectors, correlation statistics, etc, would not
be available unless they were provided via software

monitor augmentation.

2. Sophisticated software monitors yielding some hardware
measures could be developed and run only during low and
medium load periods with data for high load periods
extrapolated.

3. Software monitor overhead could be reduced through the
use of sampling techniques rather than continuous

monitoring of events.

4. Software overhead could be reduced through the use of
counts and gross timing measures rather than fine grain

timing of operational events.
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5. Provision could be made to include time for continuous
software monitoring overhead in plans for future process-

ing capability requirements for operational sites.

6. A hybrid monitoring scheme could be developed for use at

operational sites.

I1f "level 1 redundancy'" plans were implemented, the redundant pro-
cessor would be used only a small percentage of the time recording
critical backup data and performing error monitoring. It would

be possible, therefore, to run a software monitor on the second
processor which would have access to all information in main
memory and which would not interfer with normal processing on the
primary processor. This arrangement would be Hybrid-like in that
the second processor is effectively passively monitoring the

activity of the main operational processor.

Of the alternatives listed above, Item 5 has been somewhat
addressed by the continuous Data Recording and Analysis System
under development by UNIVAC. This facility will extract certain
operational data on multiprocessing systems and it includes the
necessary additional recording hardware (disc). Computer perform-

ance is not included in the current design.

The evolution of the Failsafe/soft multiprocessing phase of
the ARTS III program bears close watching. This new sophistica-
tion brings with it a new difficulty in sizing, assessing, and
understanding the effects of changes in the system. The Executive
logic is considerably different and more complex than that of
Basic ARTS III Systems. Potential exists for performance degra-
dation due to less than optimum implementation, processor and
parallel task interference, bottlenecks, queue delays, and
inefficiencies involved with the use of on-line direct access
devices for recording critical backup data. In addition new
functional tasks will be periodically added to the system such
as Radar tracking, Conflict Prediction, and Metering and Spacing,
each will alter the system performance characteristics and satura-
tion thresholds. The addition of any new hardware (CPM, Parallel

Processor, Data Link Minicomputer, or modification of existing
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hardware will also have an impact which should be measured and

understood.

In order to keep abreast of the multiprocessor expansion, a
comprehensive measurement facility should be incorporated into
the ARTS III test bed facility for the primary purpose of con-
tinuous total system performance evaluation. The test bed is the
ideal place for such a facility since it can tolerate the measure-
ment overhead without jeopardizing actual terminal control. New
software and hardware features can be properly integrated, their
impact assessed, and the system tuned for performance prior to
operational use. Once operational data has been gathered from
the operational sites, that data can be used to simulate or emu-
late those operational sites in the test bed. Each site could
therefore, be equipped with an operational system tailored for
performance as well as for configuration and local parameters.

The measurement facility should be capable of obtaining hard-
ware oriented measurements such as channel and memory activity,
channel and memory conflict queue times, percentage busy statistics
for each processor, processor overlap percentages, disk access
statistics, etc. Software related measurements should be possible
at the microscopic level to indicate absolute elapsed time of
tasks and subroutines, as well as table access and scheduling
queue effects. Operational data such as track load, track sector
distributions, display statistics, etc. should also be obtainable.

Ideally, this would be accomplished with a mini-computer/
hardware monitor hybrid system with tape and printer peripherals;
where the mini-computer has access to main memory and interfaces with
the hardware monitor and with a software monitor running in the
host ARTS system. A more realistic approach, however, would be
the development of a sophisticated software event monitor with
special data gathering options, augmented by an independent hard-

ware monitor with its own magnetic tape recording facility.

Considerations relative to existing test bed hardware and

software would include the necessity for a program readable clock
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driven by a timing source on the order of ten microseconds,*
availability of tape devices for software measurement output, and
modifications to existing operational software to integrate the
software monitor and software probe points.

VO —
A 60 microsecond timing source has been installed on the MSP
multiprocessor configuration and presumably will be transferred
to NAFEC along with the rest of the hardware. This would be an
improvement over the one millisecond clock currently available
and may be adequate for much measurement.
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APPENDIX A
A SIMULATION MODEL OF THE ENHANCED ARTS EXECUTIVE SCHEDULER

It is necessary to have a clear undefstanding of the functions
of the ARTS Executive in order to develop an effective measurement
strategy. One technique for gaining insight into a system while
selecting critical system features for measurement is computer
simulation. For this reason, a simulation model of the Enhanced
ARTS Executive Scheduler operating in the Data Processing Subsystem

was developed.

A-1., SCOPE OF THE MODEL

The simulation model represents the logic of the Enhanced
ARTS Scheduler Module operating in a multi-processing environment.
The ARTS Scheduler is part of the table-driven ARTS Executive.
Task programs operating in this environment are either planned or
popup tasks. Planned tasks are grouped into heirarchical sets
described in the Lattice Description Tables (LDT). When a planned
task is ready for execution it is moved from its LDT to the
Planned Task Pointer (PTP) Table.

The execution order of the lattices is stored in the Cycle
Table (CT). The time-to-execute for a cycle is set, (i.e., 125 ms.)
and there is one lattice pointer entry in the CT for each cycle
(See Figure A-1).

Scheduling of popup tasks is requested by planned tasks
through an Executive Service Request (ESR). The scheduled pop-up
task is placed in the popup list. Pop-up tasks are indirectly
given higher priority than planned tasks since the pop-up queue
is searched before the PTP.

The model has the capability to handle planned tasks
organized in lattice structures, popup tasks, and interrupts. The
resources of the simulated system are one to four processors and
two tables; the Lattice Description Table (LDT) and the Planned
Task Pointer (PTP) table. Execution time was the only task pro-
gram characteristic which was represented in the simulation.
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Cycle Table (CT)

CT Index

Pointer to LDT for this cycle

th

Pointer to LDT for N 'cycle

Past Task Pointer Tahle (PTP)
PP Processor Task
P Preamble
Address

LRI RN

Repeat for all tasks elegible
for execution

Figure A-1.

Data o
for <
one
task

Lattice Description Table

(LDT)
] Task
rask 1 Processor
Eligibility # EESiZE;e
Indicator

1lst successor task LDT address

.
.

nth successor task LDT address
Task m Processor Task
eligibility # Preamble
Ptr

15t predessor Task LDT address

nth Predessor Task LDT address

1St successor task LDT address

nth successor task LDT address

Repeat as above for all tasks in nth

cycle
.

ARTS Scheduler Tables
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multiprogram design data available at the time the simulation was
written, (2) the memory capacity of the Honeywell 832 (the
machine used to run the simulation), (3) the lack of a high level

simulation language.

The following "events'" which occur in the operation of the
ARTS Scheduler Module were modelled in the GASP framework.

1. Task completion

2. LDT pointer updating
3. PTP utilization

4. Cycle completion

5. Interrupt handling

Functions for calculation of task and interrupt execution times
and inter-interrupt intervals are also included. A flowchart of
the GASP model logic appears in Figure A-2.
A-3. MEASUREMENTS OF THE SIMULATED SYSTEM

The simulation program includes the capability for gathering
statistics on the performance of the simulated system. The
following summary statistics are provided:

Average and Max. number of processors waiting for LDT
Average and Max. number of processors waiting for PTP
Average and Max. number of interrupts waiting for processing
Average and Max. number tasks in PTP

Total time spent waiting for LDT and PTP for each processor

% busy time for each processor (non-idle time, includes
table queue time)

% busy time for each table

Distribution of processor PTP wait times (histogram)
Distribution of processor LDT wait times (histogram)

For each task with a variable execution time: mean, std. dev.,

min., and max. and number of executions.
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A system measurement package might gather these types of statistics,
By analyzing the data gathered by the simulated system the critical
features to be monitored by the measurement package can be identi-
fied, thus avoiding unnecessary data collection by a measurement
tool. A sample simulation output is included.

A-4., DISCUSSION OF RESULTS

The ARTS simulation model was run using the eight different
lattices (Figure A-3) provided by UNIVAC documentation and the
timing data in Table A-1. Only planned tasks were included in
the runs because no data was available for interrupt occurrences.
Also, no popups were included because the UNIVAC data provided one
popup task which executes every 10 to 12 seconds and the model
was run to simulate 5 seconds (5000 milliseconds) of ARTS activity.

The model was run simulating a two processor system and then
a three processor system. To assess the possibility of increasing
the number of displays in the system, the time for task CPSE was
changed to reflect the effect of having 5 displays rather than

just one.

The results of four runs of the model are summarized below.
Each run represents 10 cycles of activity

Two Processor System:

1 display 5 displays

Resource % busy time
Processor 1 9.72 9.72
Processor 2 34.34 39.97
PTP 11.0 11.0
LDT 8.9 8.9

Elasped time 5000 ms.

Three Processor System:

Processor 1 9.31 9.31
Processor 2 34.10 39.73
Processor 3 5.17 5.17
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Lattice 6
same as 0.

Start time = 375.

Lattice 7

KOFK

Start time = 437.5 CPSE

Figure A-3. Sample Lattices cont'd
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(times are in ms.)

TABLE A-1 SUBPROGRAM TIMING DATA

Task name Mean.exec.‘ Min._exec. Max. exec.
time time time

ENROTC 6.

CPSE 28.875 3.235 54,295

AOFSTL 12.0

CTYPX .5

STOPE 2.0

MTFPY 1.0

TRACKB 10.0 .1 100.

KOFK 5.

ENRINC 15,

PUBCK 21.324 1.112 44,103

DAS 1.023 .195 2,243

KIPZ .16 .13 .65

P/S1 1.2080 .045 2.461

P/S2 1.2080 . 045 2.461

INITIAL .303 .008 2.361

TURNING .75 .008 2.991

PREDICTION 1.999 .191 3.9790
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