REFERENCE USE ONLY

FAA-AF29.010

REPORT NO. FAA-RD-77-177, 11

S INGLE-CHANNEL VOICE-RESPONSE-SYSTEM
PROGRAM DOCUMENTATION
Volume Il: Program-Design Modules

Input Output Computer Services, Inc.
689 Concord Avenue
Cambridge MA 02138

DECEMBER 1977
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

Prepared for

U.S., DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION

Systems Research and Development Service
Washington DC 20591

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use

thereof. ’

NOTICE

The United States Government does not endorse pro-
ducts or manufacturers. Trade or manufacturers'
names appear herein solely because they are con-
sidered essential to the object of this report.

Technical Reéon Documentaticn Page

1. Report No. 2. Governmen! Accession No.

FAA-RD-77-177, 1I

3. Recipient's Catalog No

4. Title and Subtitle

SINGLE-CHANNEL VOICE-RESPONSE- SYSTEM RROGRAM
DOCUMENTATION
Volume II: Program-Design Modules

5. Report Date
December 1977

6. Performing Organization Code

8. Performing Organization Report No.

7. Author’s}

DOT-TSC-FAA-77-24,11

9. Performing ng‘?nizufion Name and Address
Input Output Computer Services, Inc.*
689 Concord Avenue '
Cambridge MA 02138

10. Work Unit No. (TRAIS)
FA831/8109

11. Controct or Grant No.

DOT-TSC-1107-2

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
U.S. Department of Transportation

Federal Aviation Administration
Systems Research and Development Service

Final Report
Sept 1975 - Jan. 1976

14. Sponsoring Agency Code

Washington DC 20591

15. Supplementary Notes U.S. Department of Transportation

*Under Contract to: Transportation Systems Center
Kendall Square

Cambridge MA 02142

16. Abstract

This report documents the design and implementation of a Voice Response System
(VRS) using Adaptive Differential Pulse Code Modulation (ADPCM) voice coding.
Implemented on a Digital Equipment Corporation PDP-11/20," this VRS system
supports a single audio output channel. Vocabulary size is limited to 900 words
or phrases. Input to the system consists of text messages or sentences in ASCII
format transmitted to the 11/20 through a 300-baud asynchronous interface. A
preliminary design for a VRS for 10 channels is reported.

This is the second of three volumes. Volume I is a system description, and
Volume IIT is a user's guide.

17. Key Words 18, Distribution Statement
Voice Response System DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
VRS THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
ADPCM) VIRGINIA 22161

Speech Coding

21. No. of Poges 22, Price

68

20, Security Classif. (of this poge)
Unclassified

19. Security Classif. {of this report)

Unclassified

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

S Fiy Je [] = LI -
Q01 oe os ov) oz [02— or- 3 = = £
T 13) 1] s | I = = = €
'y + T T 4 = = <
. o0z osi ozi ‘ os oo._.. 0 os- =
™ »es % 4o Lad = —
de - = = =
, o = =
mmyusaurty {Zx mpu emusmdu) = -_
4 P] -—p) 3/ smsjen 2, . T= =
12870) JYNLVEIINIL = = = o
-..l spamiA o L SMBW NGNS P z |m| =—
n-. Wy Jqwd [3 E1e0w ngn> ™ _= H'l
- syoy1e8 1] sy 1 o = =
») ot 201y 1 = == -
= nmd T s 1 - = =
™y SEXOND pnpy €00 L U ™ = =
IRNI0A = =
e m = -
o) Loy N3 {84 0001] SOy 1 = ==| ==
- spunod zt sweso1y) = = —
20 spaunD €00 sunrsd B = l||
s = =
1gBiem) SSym - —= = -
1] = =
ssoe T2 1,4 000°0L) o8y L - = =
o 38{tw asmbe 0 £18y0u0| 1y esenbes P = =i
) Sped aenbe Tt sioiow esenbs ™ . —_= —
™ sopu esmbs "o SmIswUes esmnbe 2o = = -
5 = =
vidv = =
s T T
L s 0 Tmeun|Iy u = —
pA spmA Ut [T T w - = = =
y wey £t S8 w = —
™ sepw »o Smowves w - = —
ue sayu 0 SN | 1w uay = m r||
8 = =
H19NTT E = __=
= = -
roumig porg op Aq jenjep mowy wey moyy (egwig - —=
» s &
sainsudy 3mnely Wwoyy sweisioaucy) siewixeiddy = —
:] -
(=) = - L

SHO1JIv4 NOISHIANGD JIHLIIW

al.

5%t s 2

§Eef

oquig

aamusathue)
sniE|e)

smw 2gno
SW QN
s

son

s

s
ssoupw
Ry U
s w

sowmmn
swesoyy

swwsb

samdey
S1010uD) 1y esEnbg
Smey wenbs
1910w sawnbe
SI01WNUIT ssEnds

£1010WD) 1y
simow
SIBUIUSD
SHOBunlued

my 0y

SOINSEAWY JUIBW € SusisIeANs] aRwuzeiddy

Noweney

13070 JYNLYYIdMIL

%o spmd 21qn>
t00 188} gnd
[23 swo| et
S6°0 fiamb
oo sind
o edn3
ot S03wn prny)
st swomtseiqu)
] suoodsem
nnt0A
{1 000z}
60 Su01 LyS
Yo spurod
[24 £2un0
{gbiam) syl
0 sane
[X4 S8y 1w emnbs
20 sprmA endg
&0°0 me) svbs
sy SO savds
Yiwy
i bl L
60 spomd
ot 109}
Ly 4 YOour
H19NIY
Aq hyénppy meay me) meym

vEF 3% i "

'Y

RS

ccRi

Pquig

i1

PREFACE

GUIDE TO THE PROGRAM DOCUMENTATION
This volume contains:
CALLING SEQUENCES °

A brief description of the major file management and text
buffering routine is provided. The description includes the
required arguments for the subroutines, error conditions, and
a list of subroutines called by the described routine.

FLOW CHARTS

A flow chart is provided for each of the user commands avail-~
able in VEDIT and RECORD. These charts assume knowledge of
system operation, as described in the user manual (Volume III).
Since copious reference is made to the listings, they should
also be consulted.

LISTINGS

The program listings are found elsewhere. A running commen-
tary is provided in addition to a short description of each
program module. An index for the listings is found in Section 3
of this volume. The first part of the index gives the program
names followed by the name of all source modules required to
assemble the program. The second part gives the source module
name followed by the name of all subroutines in that module.

LINKING CONVENTION

The system linking programs can be found in the section de-
scribing the module STKBUF. The conventions used are described
as an aid to understanding the attached flow charts.

Subroutines in the VRS have two possible returns. The first is
the normal return. Execution continues after the call as nor-
mally would be expected from a subroutine return. The second
is called an "error" return. This return is specified by pro-
viding an address the program should continue at, should the
error return be taken.

It is importént to note that the error return can mean one of
two things: an actual error may have occurred in the system,
such as an attempt to write the disk with the write-lock on;
or, an error return can result from a test which fails. For
example, DCTBM is a routine to find the entry in the dictionary
which best matches the input string. If no match occurs,

iii

A

however, the error return is taken. This @oes not ihdicate
a program error, but rather is used to indicate that the
input string does not match any entry im the dictionary, In
the case of making sure that a new entry does not already
exist, the error return is actually the desirable return for
DCTBM.

The program flow charts indicate the error return by an arrow
leaving the subroutine call, which is labelled "“error",

Again, this always indicates the error return as described
above. Of course, the error return may be the desired return,
thus, the reader should consult the listing or the calling
sequence description to determime theconditions which lead

to the error return.

iv

Section

l'

CONTENTS

INTRODUCTION

1.1 Hardware Environment
1.2 Software Environment

1.2.1 Vedit
1.2.2 Record
1.2.3 Speak
1.2.4 System Subroutines
1.2.5 Data Base
SOFTWARE
2.1 Vedit
2.2 Record
2.3 Speak

Phrase Look-Ahead Algorithm
SYSTEM SUBROUTINES
3.1 Program Assembly module names
3.2 Subroutine Names
3.3 Subroutine Description

DATA BASE
File System Description

o
F
(0]

MNNHERE R

tJ

ILLUSTRATIONS

Figure
VEDIT - Main Program

Vedit Subroutines

LIST
TALK
PRINT
INSERT
SN
SYNON
ENTER
RENAME
DELETE

Record Subroutines
LISTEN
SAVE
SPEAK

3-1 POINTER SUMMARY ARROWS INDICATED DIRECTION OF
MOTION

4-1 SAMPLE FILE STRUCTURE

4-2 FILE SYSTEM PARTITION

TABLES

Table

2-1 Sample Dictionary

vi

60
62

1. INTRODUCTION

This documentation describes the operation of the
programs comprising the single channel Voice Response
System (VRS) delivered under contract DOT/TSC 1107.
The descriptions include a short narrative of each
module and corresponding flow charts. The program
listings are furnished under separate cover.

HARDWARE ENVIRONMENT

The single channel VRS system requires a PDP-11/20
computer configured as shown in Figure 1. At least
12K core memory is required.

SOFTWARE ENVIRONMENT

The programs described run under control of the DEC
RT-11 operating system, version 2. The single job
(8J) monitor is used. There are three main programs
callable from the monitor level as follows. Each
program is treated in detail in subsequent sections.

VEDIT

Program VEDIT comprises all modules required to create,
modify and update the dictionary which maps ASCII names
to the disk resident voice files. VEDIT contains a
command string interpreter (CSI) for reacting to user

input. A complete description of VEDIT and other program

commands is given in the user manual.

RECORD

Program RECORD comprises all modules required to enter
audio speech utterances into the system. It contains
modules which: (1) accept audio input and digitize it
into a temporary file; (2) process the file by the
ADPCM algorithm; (3) auto-edit leading and trailing
silence; and (4) associate each utterance with a
dictionary entry and build the disk-based voice file.

SPEAK

Program H516 comprises all modules required to
generate audio from the voice files. The modules
accept ASCII text from the H516 computer, search
for the disk blocks containing the voiced text,
and decode the voice file into the audio signal
which currently drives a speaker. H516 contains
the routines for parsing the input text, including
insertion of pauses, identification of the best
text match using phrase look-ahead, and proper
interpretation of numbers.

System Subroutines

All programs make extensive use of shared subroutines
which perform specific tasks, such as buffer manage-
ment, pattern matching, register saving, etc. All
subroutine modules of general interest are documented
fully, and those routines unlikely to be frequently
required have a brief description of the routine as
well as its calling parameters. All routines are
identified in the program listings.

Data Base
The dictionary and voice file are stored in a single

disk file: "DIRECT.DVF". The generation and manage-
ment of the data base is described below.

VEDIT

VEDIT is entered through the global symbol "CSI". Upon
entry the program version number is printed and the system
initialization routine is called. The system initializa-
tion routine opens file DIRECT.DVF if it exists or creates
a new one if it does not. If an error occurs in system
initialization, the program exits, since the program is
unable to proceed without proper initialization. If no
error occurs, the main loop is entered.

Command input occurs first in the main loop. A question
mark is printed and type-in is accepted from the console
terminal. The command input routine does not return until
either a new character is entered or until an error occurs.
The only error likely to occur is an attempt by the user
to input a command which is more than 255 characters long.

The command entered is now looked up in a table of commands.
The command is matched, character for character, with com-
mand names in the table until the first break character.
Only enough of the command name need be typed to prevent
matching more than one command. When the command is
matched, the command string is also checked for any switch
options to the command. If a switch exists, the switch
character is put in the global variable "SWITCH". Finally,
a pointer to the matching routine is returned.

The routine selected by command lookup is executed. The
remainder of the entered command is passed to the routine
for use as an arqument list. The command routine also has

. access to SWITCH and other globals in the program to insure

its proper execution. Upon completion of the routine, the
remainder of the command string not used is ignored and the
disk copy of file DIRECT.DVF is updated if any changes to
temporarily core resident sections have been made.

Errors occurring are of two types. The first can be called
"recoverable". These are such things as user typographical
errors or undefined or incorrect arguments. In this case a
message is printed and a carriage return line feed is
printed. The second are errors such as a failure of the
initialization routine. Errors of this type indicate hard-
ware or an RT-11 operating system error. The program it-
self is incapable of handling such errors and so the pro-
gram exits.

The following section contains flow charts of the basic com-
mands callable from the VEDIT command string interpreter.

The description of the commands described in the VRS users
manual provides guidelines for following the flow charts.

In addition, there are descriptions of the major subroutines
given at the end of this section. Consulting the program
listings 1s also helpful.

SYSINT

Error Returns
Used Which
Are Not Shown

Return To Here

BYE

exit
program

CLKUP

\look up the}
command

Execute
Selected One
Of Followingr

TALK, INSER
RENAME ,

&—{KILL, BYE,

SYNON, LIST
DELETE
ENTE

brint CRLF

VMBKUP

BUFSET
set for
next
command

LSTHDR

list dict.
header

Decide
f rom switch
type of
lookup

ARGINT

exror /initialize
| argument
I lookup
' ESTCHR TSTPRT
| get next
matching print
| entry entry
I :error
l .
| LSTFS *Note: All error
L. returns not shown
—""> list free return to ERTRN

storage directly.

RTRN

NO
ARGS N
Decode And
Output Next
Code Word
RTRN
PBFINT
Init D/A
OuﬁPut
Buffers
Get Ptr.
To Next
Code Word

Disable
ALD
init buffer
filling
Get Next
FILBUF Core Buffer REY
Keep core In Chain
buffer
RTI

Starts AD Service
Routine On Next
Page Output's
Speech

Start A/D
(clock)

Name l

already in

dictionary

ERTRN

INSERT

et insert

no

CRDIR

Create
entry

arg count

Needs

arg

)

Dictionary
full or
1/0 error

v

ERTRN

yes

CRDIR

Create
entr

RDWRD
Pointer To
File Name

WRDE
Write new

name but
old info

\

.D_C.T_B.ﬂ error name not

Find Name - — —p=| found or
In Dict.

needs arg

.

ERTRN

RDDE

Get file
info

Set count
of args
to zero

@

10

CROUT
Empty
Remainder
Of Line

BUFSET
Set buffer

to empty

CROUT
CRBKUP
Is Input A
Line Feed

INSERT
input

dictionary

entry

11

_ error

input
error

ERTRN

Return
error
from
insert

(Rename)
\

No arg DCTBM

or arg |ger o Match

not in Dict first
argument

\

(ERTRN '

\

DCTBM
get
insertion
Hoint

arg
already in
dictionary

A
ERTRN

dictionary
full

ERTRN

copy name
pointer

error
= ()
SIrer p{ RTRN

N?
| yes
@ Default
@

.:YeS

E?l
yes

DELDE

Delete
entry

CNFRM

delete it

Should we

()

Save
Pointer
To Name

NFSPTR

Get next

DELDE

Remove
Synonym

—#{ Get next

Restore
saved
pointer

NFSPTR

synonym

RDDE

get file
info.

DELDE

Delete
entry

DELDE
Remove
Entry

RECORD

The record module is structurally identical to VEDIT.
The command language is limited to the following:

LISTEN (for building a temporary file of
digitized speech)

SAVE (for encoding and editing the
digitized speech, and cataloguing
utterances on the disk according
to dictionary entries)

No switches or arguments are required.

The flow charts for these commands follows.

15

Listen

Ring Bell

Pause
Start Record

DSKRCD
Record
Till EOF.

A 4

Stop A/D
Ring Bell

PRGFIN

Close
File

RETRN

init
error

Recording
error

BAVE

Y
ADPST

Initialize
ADPCM

error,,

FRALOC
Allocate

nitializati

mitialization

errors

QY p

ERROR
RETURN

File space

exhausted

+

ERROR
RE

No Empty
dictionary
entries

ERROR
RETURN

error

no

ADPCM
> WBINS QrIQr fE'n]_d °
onvert samplé e O
and Get disk error
oran

17

EOT

or
Disk 1/0
error

ERTRN

closing
error

ERTRN

18

SPEAK -

The H516 module is flow charted on the following
page. ASCII text is input from the H516 computer.
The lookup algorlthm described separately parses
the text, using look-ahead techniques, and returns
a list of pointers to voice files whlch are fed to
the playback routine.

The play back routine is identical to the TALK

routine which is used by VEDIT. The appropriate
flow chart can be seen there.

19

SPEAK

Initialize
program
open files, etc.

CPYLUD

Copy Dictionary
From Disk

CPYPBD
Copy File
Pointers
From Disk

DAPLBK
speak voice
files

20

[Flow Chart For

Phrase Look-ahead Algorithm

This section is devoted to an analysis of the "phrase
look-ahead" function of the H516 program. Several
problem areas will be dealt with. A familiarity with a
standard binary search is assumed.

Consider the dictionary listed in Table 2-1 and the text
string "NEW YORK CITY IS A LARGE PLACE". There are two
problems that must be dealt with. First, "NEW" matches
two entries ~ "NEW" if taken alone or "NEW YORK CITY" if
taken as part of a phrase. "NEW YORK CITY" is the better
match, but if the binary search arrived at "NEW" first,

a match would be detected and the search would terminate
prematurely.

The solution lies in the fact that a phrase which matches
a string will always be alphabetically later in the dic-
tionary than a word or shorter phrase which matches the
same string. Therefore, whenever a match occurs before
the end of the search, (before LogsN tries for a diction-
ary of N entries), the matching entry is stored. The
match is then treated as a mismatch which is less than
the string input. At the end of the search the most
recently encountered match will be the best match.

The second problem is somewhat more subtle. Consider
again the dictionary in Table 2-1, and the input string
"NEW YORK STATE". The first try with the binary search
would compare the input string with "LASTING" after which
it would try "NEW JERSEY". ‘The character where the mis-
match occurs is at "Y" in the input and "J" in Jersey.
This would indicate that the input is greater than the
entry "NEW JERSEY" so the binary search would proceed

to "NEWARK". A blank is alphabetically less than an

"A", so the binary search would next try "NEW YORK CITY".
This would be its last try. But the "S" in "STATE" mis-
matches the "C" in "CITY". Therefore, the binary search
would indicate no match even though "NEW" by itself does
match an entry.

The problem occurred at the entry, "NEW JERSEY". The
comparison indicated that the input is greater than the
dictionary entry because "Y" is greater than "J". But

since this mismatch occurred after a blank was encountered,
the matching entry will be greater than the input only

if a phrase with at least one blank will be the final
match. If the final match has no imbedded blanks, then
the matching entry will always be less than the entry
where the mismatch occurred after a blank was encountered.

21

The binary search will go in the wrong direction after a mis-
match if several conditions occur. The first condition is that
the number of blanks encountered before the mismatch occurs is
greater than the number of blanks that will occur in the best
possible match. The second is that the result of the mismatch
indicates that the matching entry is greater than the entry
just compared with the input string, as in comparing "NEW YORK"
with "NEW JERSEY".

The solution involves a "tree search" of the dictionary whenever
no blanks are encountered. When a mismatch is encountered the
binary search proceeds as normal. If, however, one or more
blanks are encountered in the mismatch and the mismatch directs
the search to proceed in the "greater than" direction, the

point in the search where this occurred is pushed onto the stack
and then the search is permitted to continue in the "greater
than" direction. At the end of the search done in that way, the
location in the search which was pushed on the stack is popped
off and the search proceeds again from that point but in the
"less than" direction. As described in the first problem area,
the searches are allowed to continue even if matches are en-
countered. The best match will be the match containing the

most imbedded blanks.

This can occur any number of times, and several of these de-
cision points can be on the stack at once. Also note that if
one is proceeding from a point at which the mismatch contained
one blank and is moving in the "greater than" direction, the
further mismatches must contain two or more blanks before they
can be saved on the stack. This simplifies the tree search
somewhat and increases the speed of the search.

A flow chart of the algorithm aids in understanding this opera-
tion. It is helpful to draw a dictionary as a binary tree and
use it to trace the search for various inputs to find the path
followed.

22

TABLE 2~1. SAMPLE DICTIONARY

DENSE

DENSE AIR
DENSE FOG
DENSE SMOKE
LAST CHANCE
LAST ENTRY
LAST FLIGHT
LASTING

M

N

NEW

NEW JERSEY
NEW YORK CITY
NEWARK

YORK

23

Phrase look-ahead

algorithm.

Initialize
pointers
and best
match info.

pop search
state off
stack

A

*
no

match so
far

save
best
match.

Y

see note

state onto

pxﬂlééarch

stack

Return
Best
Match

erroxr
return.
no match

24

*Note: Is the number of
imbedded blanks encountered
in the matching process
greater than the number en-
countered in the last match
pushed on the stack?

(MJ0X) (XLID MMOX MIN) (MEN) (W) ?HEUH.H& LSVYT) (ZONVHO LSVT) (904 ISNIA) (gsNAQa)

/ i
\2

(XFSYIAL MEAN)

RN

{ONILSYT)

(MY YMEN)) (X4INT &L *ﬁ IV ISNIQ)

(IIOWS FISNAA)

punoz yo3eW

yied YoIedS ===

(3joe3s wox3y paddod yoaess) dn-30PH «w=ameme=

jyoe3s uo poAesS UYDIEIS 3 PUsSbol

5T4dVyl FSNAA, 3O butiis Indur I0F yojew 3saq Pury 03 AICUOTIOTP ybnoays pomoTTOF UIed

25

3. SYSTEM SUBROUTINE

The following section provides an index to the system
subroutines. It consists of an index to assembly modules
used by each program and a list of subroutines in the
order they appear in the module listings. Subroutines
which are of general interest are provided with a working
description. The combination of this index and the pro-
gram listings provide the documentation needed for pro-
gram maintenance.

26

3.1 PROGRAM ASSEMBLY MODULE NAMES

Program

Assembly modules

Program

Assembly modules

Program

Assembly modules

Other modules:

VEDIT

VEDCSI
STKBUF
COMBLK
CTAB

DIRPAG
ERRORS
LIST

TALK

INSERT
DELETE

GARBG

RECORD

RECCSI
STKBUF
LISTEN
ADPCM
CTAB
GLOBAL

H516

H516
STKBUF
LOK516
PLY516
CTAB
SPGLBL

PARAMS
Contains assembly parameters

27

Module

Subroutines

Module

Subroutines

3.2 SUBROUTINE NAMES

VEDCSI

SYSINT
CSI
GCOM
CLKUP
CSMTCH
SWTCHK
FLBLK
BRKCH
TTYOT
CRLF
OCTIN
OCTOUT
LISTNM
CNFRM

AYS
FCE

STKBUF

PUSH
RTRN
ERTRN
BUFINT
RIN
LINSET
RINC
RBKUP
CROUT
BUFRST
BUFSET
CRBKUP
ROUT

28

system initialize

main program loop

get command

command table lookup

command string match

legal switch checking routine
flush leading break characters
check for break character
console output

print carriage return line feed
octal number input

octal number output

list a dictionary name

confirm a request for an
operation

"Are you sure?" command verify

fatal consistency error

stack push

normal subroutine return
subroutine error return
ring buffer initialize
ring buffer in

ring buffer limit set
input with limit set
input pointer backup
conditional output

reset conditional output
output set

conditional backup

ring buffer output

Module

Subroutines

Module:

Module

Subroutines

COMBLK
KILL - dictionary reinitialize
BYE - program exit

Also contains command table used for
command lookup.

CTAB

contains all tables used by both ADPCM
encode and decode.

DIRPAG

VMINT - "Virtual memory" initialize

RDBYT

WRBYT _ word and byte i/o on dictionary

RDWRD via "virtual memory"

WRWRD

VMNG - virtual memory manager

YMBKUP - back up virtual memory or disk

DIRINT - directory initialize

RDDE ;)]

WRDE directory entry read and write

RDFSE .

WRFSE free storage entry read and write

NFSPTR - get next entry with same file
pointer

CRFSE - create free storage entry

FSPACK - pack contiguous free storage

DELFSE - delete free storage entry

GUID - generate unique identifier for
file

CRDIR - create a dictionary entry

CRDCT - create a text name for a
dictionary entry

DELDE - delete dictionary entry

DCTBM - get best match in dictionary
DLKUP - binary search dictionary lookup
DMTCH - match single dictionary entry
STRMTC - as above best for wild card

option

29

Module DIRPAG (Continued)

Subroutines FLMTCH - match entry with full command
string
ARGINT - initialize NXTARG routine
NXTARG - return successive entries in
dictionary which match command
string

Also program global variables.

Module ERRORS
Subroutines PRERR - print error message
PRCT - print current token in command

Also error messages (ASCII TEXT)

Module LIST
Subroutines LIST - program list command
LSTCHK - check arg to see if it should
be listed
LSTHDR - print listing header
LSTPRT - print file name
LSTFS - list file area free storage
Module TALK
Subroutines TALK - program talk command
SPINT - speaking buffer initialize
PBFINT - buffer set up
FILBUF - maintain speaking buffers
ADSTRT - start of A/D convertor (used as
clock)
PBINT - interrupt service and ADPCM
decode

30

Maodule
Subroutines
Module

Subroutines

Module

Subroutines

Module

Subroutines

Module

Module

Subroutines

DELETE
DELETE -
INSERT

INSERT
SYNON
RENAME
ENTER

GARBG

GARBG -

RECCSI

CcsI -
GCOM N
CLKUP -
CSMTCH -
FLBLK
BRKCH
TTYOT
CRLF -
PRERR
PRCT -
AYS .
FCE -

GLOBAL

Contains
LISTEN

LISTEN -
PRGINT -
BFRSTP -
DSKRCD -
ADINT -
PRGFIN -
GAIN

31

program DELETE command

program commands

program command for free
storage "garbage collections”

program main loop

get command

command lookup

command string match

flush blanks

check for break characters
console output

print carriage return line feed
print error message

print current token

"Are you sure?"

fatal consistency error

all program global variables

program LISTEN command
initialize

buffer set up

disk recording routine
program interrupt handler
program close

program command to set
GAIN on A/D

Module

Subroutines

ADPCM

ADPST -
SAVE -
WDPACK -
DOPEN -
FRALOC -

WRINT
RDINT

WRCLS -
WRTWAT
REDWAT
AUTORD
ADPCM -
WBINS -
FBSQ -
PERMFL -
DCLOSE -
DELFSE ~-
NSFPTR -

THRESH =

32

initialize

program - -main loop
code word packing
dictionary open command
free storage allocation
disk word at a time i/o
initialize

close write channel

word at a time disk i/o

ADPCM word encode

insert safiple in energy "window"
compute (Cc(i)-7.5)2

makeé a permanent speech file
close dictionary

delete free storage entry

get next file with same file
pointer

program threshold modification

Module H516

Subroutine H516 program main loop
GLIN input time of ASCII text
CPYLUD - copy in dictionary for lookup

CPYPBD - copy in dictionary for speaking
ALCCOR - allocate free core

TTYLOT - console output

CRLF - carriage return - line feed
PRERR = print error

PRCT - print current token
BRKCH - check for breaks

Module LOK516

Subroutines PRSLIN - look up text in a single line
PAUSE - pause handler for punctuation

AUTOWR - write pointer into ring buffer
NUMCHK - check if text string is a numeral

SINGLE - check if token is a single
character

PRSNUM - parse up a numeral

PRS3DG - parse up 3 digits of a numeral
PRSWRD - spell a word

PBLKUP - phrase look ahead binary search
PBMTCH - match single dictionary entry

ggigg - initialize word at a time i/o
WRCLS - close write channel

WRWAT - write disk word at a time
RDWAT - read disk word at a time

AUTORD - auto read of words

33

Module

Subroutines

Module

Subroutines

PLY516

PLAYBK - main loop
SPINT - speaking initialize
PBFINT - buffer initialize
FILBUF - keep buffers full
ADSTRT - start A/D converter (clock)
PBINT - interrupt handler and ADPCM
decode
also variables and tables
SPGLBL

Speak program global variables

Macro:

Function:

Other Operations:

Name:

Function:

Called:
Arguments:

Other Operations:

3.3 SUBROUTINE DESCRIPTION

.CAL

.CAL1 subroutine. Provides uniform format
for calling subroutines which have error
return.

.CAL sub, error.

Expands into:

JSR R7, sub
error

"sub" is the name of the subroutine to be
called.

vetror" is the address of the error handler

concerned with an error return from the sub-
routine. '

PUSH

PUSKE all registers on stack, also position
RS5.

JSR R5, PUSH
None.

Upon rXeturn from PUSH, user stack looks
like this:

Return to Caller | €<—(RS5)

. R5
. R4
‘ R3
o R2
. Rl

RO <—(R6)

Save registers

35

Name :

Function:

Called:

Arguments:

Other Operations:

Name:

Function:

Called:
Arguments:

Other Operations:

RTRN

RETURN from subroutine; restores registers
from stack and makes a return, skipping
error return location in calling routine.
JMP RTRN

R6 need not point to stack.

R5, however, must point as shown in "PUSH"
description.

Stack before call after

RTRN ADD |€(R5) RTRN ADD | <(R6)
SRS SRS (R5) = SR5
SR4 SR4 (R4) = SR4
SR3 P°§fpfed SR3 (R3) = SR3
SR2 Stack 3 (R2) = SR2
SR1 . (R1) =SR1
SR@ . (R@) = SRP
R6 points (PC) = RTRN ADD + 2
anywhere
beyond SRf

ERTRN

Error ReTuRN.
restoring registers.

Return from subroutine after
Return made by in-

directing through error address pointed to
by return address in stack.

JMP ERTRN
Exactly as "RTRN".

Exactly as RTRN except:

(PC) (RTRNADD)

36

RING BUFFER PACKAGE

The ring buffer package for the VRS is a versatile system of
routines for the buffering of data between two programs.
Features include those of a normal ring buffer as well as the
ability to examine the contents of the buffer without actually
removing the item from the buffer, as would be desirable for
comparisons at an input stream with many text strings. An
additional feature is a limit pointer useful for line-at-a-
time editing. The limit pointer can be set to the point where
an input line ends. While this line is being processed, a new
line is composed. The buffer can only be processed up to the
limit pointer, even though the input pointer is beyond that
point. This prevents processing on a partially composed line.

Consulting Figure 3-1, the function of each of the pointers
is as follows:

IN - this is the input pointer to the buffer. As data is

added, the pointer moves toward out (clockwise). In-
valid data can be removed by "backing up" (counter clock-
wise). The limit on the clockwise direction, is the OUT

pointer. At that point the buffer is full. The back up
limit is the LIN pointer.

LIN - this is the input and output limit pointer. It is
usually pointed to the last new line character in the
input stream. Once set, the input pointer cannot be
backed up beyond it, nor can the output pointer move
forward past it; that is, the output pointer cannot
remove data beyond the limit pointer. LIN can only
move clockwise. It is set to the position of IN by a
subroutine call, and remains stationary until the next
call regardless of the motion of IN or OUT.

OUT - the ring buffer output pointer. Removal of data is
"final" in the sense that this pointer cannot be backed
up. It sets the limit up to which IN can insert data.
It is either moved one character at a time, or moved by
a subroutine call to the position of COUT.

COUT - this pointer allows examination of any data between
the LIN and the OUT pointers in the area shown on
Figure 3-1. It can move one character at a time in either
direction or be set to the value at OUT.

37

Ring Buffer Package.

cour

LIN

ring buffer

S rotion limit for OUT

RNNSNN otion 1limit for COUT

IN

% motion limit for IN

FIGURE 3-1. POINTER SUMMARY ARROWS INDICATE DIRECTION OF MOTION.

38

Name : BUFINT

Functions: BUFfer INiTialize. Set up a ring buffer

A
in core.

Called: .CAL BUFINT, error.

Inputs: R# pointer to 2623p byte block of storage

to be used as a ring buffer.
Outputs: None.
Other Operations: 256)]p byte,circular buffer is initialized
: in core. 6 byte header is provided as
follows: 3

Initial
Byte Name Function Value

/

g LIN Line Limit. Sets @
limit beyond which
output pointers
cannot go.

1 IN Input pointer.]
_Points to next free
~byte in buffer.

2 CFUL Conditional full- g
ness. Distance
from conditional
output pointer to
output pointer.

3 COouT Conditional output g
pointer. Free-
flowing pointer to
examine any charac-
ter between LIN and
OUT without removing
from buffer.

4 FUL Actual fullness. P

Distance from output
pointer to input.

39

Routines called:

Errors:

Name :

Function:

Called:
Args:

Inputs:

Outputs:

Other Operations:

Routines called:

Errors: °

Initial
Byte Name Function Value

5 ouT Output pointer. g
Final output pointer
for characters.
None.

None.

RIN

Ring buffer INput. Places input character
in ring buffer.

.CAL RIN, error.

Two.

RP - pointer to ring buffer

Rl - character to be inserted right justi-
fied.

None.

Fullness count and input pointer incre-
mented after character inserted. (Also
conditional fullness updated.)

None,

Buffer full,

40

Name:

Function:

Called:

Inputs:

Outputs:

Other Operations:
Routines Called:

Errors:

Name :

Function:

Called:

Inputs:

Outputs:

Results:

Routines Called:

Errors:

LINSET

LIN pointer SET. Limit pointer set to
current value at input pointer.

.CAL LINSET, error.

R# - pointer to ring buffer.

None.

Contents of IN pointer placed in LIN pointer.
None.

None.

RINC

Ring buffer Input with No Check. Equivalent
to RIN followed by LINSET. Used when data
need not be checked before definitely entering
it’

.CAL RINC, error.

R¢ - pointer to ring buffer.

Rl - character to be inserted.

None.

If error - none.

If no error, character placed in buffer, con-
ditional fullness and fullness updated, limit
pointer (LIN) and input pointer both set to
next character. .

None.

Buffer already full.

41

Name :

Function:

Called:
Args:
Inputs:

Outputs:

Other Operations:

Routines Called:

Errors:

Name:

Function:

Called: -
Args:
Inputs:

Outputs

Other Operations:

Routines Called:

Errors:

RBKUP

Ring buffer BacKUP. Removes last character
placed in ring buffer.

.CAL RBKUP, error.
Two.
RfF - pointer to ring buffer used.

SR1 - if no error, returns character re-
moved - if error, returns unchanged.

Pointer positions moved.
None.

Pointer already backed up to LIN limit
pointer.

CROUT

Conditional Ring buffer OUTput. Remove

next character from buffer using the condi-
tiona; ring buffer pointer.

.CAL CROUT, error.

Two.

Rf - pointer to ring buffer.

SR1 - character removed from buffer. 1If
error, no change.

Conditional pointer incremented, condi-
tional fullness decremented if no error,
otherwise no change.

None.

Buffer "empty".

Conditional output pointer COUT has caught
up to limit pointer LIN.

42

Name :

Function:

Called:

Args:

Other Operations:

Errors:

Name :

Function:

Called:

Args:

Other Operations:

Errors:

BUFRST

BUFfer ReSeT. Resets conditional
and conditional fullness to value
and fullness.
.CAL BUFRST, error.
None.

Covered in function.

None.

BUFSET
BUFfer SET.
to conditional output and
fullness.
.CAL BUFSET, error.
None.

Covered in function.

None.

43

output
of output

Moves output and fullness up
conditional

Name: CRBKUP

Function: Condition Ring Buffer output BacKUP.
‘Back up to previous character.

Called: .CAL RBKUP, error.

Args: Two.

Inputs: R - pointer to ring buffer.

Outputs: SR1 - character removed from buffer.

If error, SRl is unchanged.
Routines Called: None.
Errors: Attempt to back up beyond output pointer.

Other Operations: Conditional fullness incremented if no
error. COUT backed up one character.

Name: ROUT

Function: Ring buffer OUTput. Removes next character
p01nted to by o output pointer.

Called: .CAL ROUT, error.

Args. Two.,

Inputs: RfF - pointer to ring buffer.
Outputs: Rl - no error: Character removed.

Rl - error: Unchanged.

Other Operations: Error - none.
No error - output incremented, fullness

decremented.
Routines Called: None.
Errors: Attempt to move output pointer past con-

ditional output pointer.

Name:

Function:

Called:
Arguments:

Other Operations:

Routines Called:

Errors:

VMINT

Virtual Memory INiTialize. Sets up core
buffers For disk to permit read and write

of disk resident dictionary through a virtual
memory system.

.CAL VMINT, error.
None.

Core Buffers initialized to contain core
keys of first five pages (256 words each)
of the dictionary. Core buffers brought
in by an LRU algorithm, so appropriate
variables for LRU are initialized.

None. .
RT-11 monhitor calls .READW

RT-11 errors only -~ disk read.
Error message pointer returned in ERPNTR.

45

Name :

Function:
Called:

Arguments:

Other Operations:

Routines called:

Errors:

RDBYT - read one byte

RDWRD - read one word
WRBYT - write one byte
WRWRD - write one word

Basic input-output for dictionary.

.CAL name, error.

R2 - points to word or byte on disk, if

it is a word, it should point to an even
byte boundary.

R1 - argument to be réad or written.

Byte arguments :should be right justified.
on return from read byte, top byte cleared.

LRU variables updated. If desired, data

not in core at timé of call is swapped in.
VMNG

RT-11 errors.
Error message pointer returned in ERPNTR.

46

Name :

Function:

Called:
Arguments:

Other Operations:
Routines Called:

Errors:

VMBKUP
Virtual Memory BacK UP. Updates disk
resident copy of dictionary by swapping
out pages in core buffers.

.CAL VMBKUP, error.

None.

None other than described in function.

RT-11 monitor calls WRITW

RT-11 errors.
Error message p01nter returned.

47

Name :
Function:
Called:
Arguments:

Other Operations:

Routines Called:

Errors:

DIRINT

DIRectory INiTialize.
.CAL, DIRINT, error.
None.,

All variables in header at dictionary set
to indicate empty dictionary.

CRFSE.

Error return from CRFSE returned directly.

48

Name:

Function:

Called:

Arguments:

Other Operations:

Routines called:

Errors:

RDFSE -~ Read free storage entry.
WRFSE - Write free storage entry.
i/o on 2-wcrd'free storage‘information.
.CAL Name, error.
R2 - byte pointer to first byte of two-
word descriptor.
Callers stack at call time:
(R6) - address of block of free storage.
2(R6) - size of free storage in number
of ‘blocks.
Dictionary written via WRWRD.
RDWRD
WRWRD

Returned directly from above routines,

49

Name :

Function:

Called:

Arguments:

Other Operations:

Routines called:

Errors:

RDDE - read directory entrg.

WRDE - write directory entry.

Read or write a three-word file information
block from dictionary.

.CAL name, error.

R2 - pointer-to fifst byte at ‘entry to be
accessed. (Offset from beginning of dic-
tionary.) Callers stack as follows (at
call time):
(R6) - pointer to text name of file.
2(R6) - file size information.,
*4(R6) - pointer to first bloék of file.

On WRDE, dictionary written through virtual
memory .

WRWRD
RDWRD

Returned directly from above calls.

50

Name:

Function:

Called:

Arguments:

Other Operations:

Routines Called:

Errors:

CRFSE

Create a two-word entry in the table of
free storage space.

.CAL CRFSE, error.

Stack as follows:
(R6) - address of disk area to be returned
to free storage.:
2(R6) - size in blocks-of disk area.

Free storage area sorted by, address. Entries
moved to accommodate new entry. If new

entry is contiguous with existing entry,

the entries. are merged into one entry.
Pointers to table of free storage space are
updated.

RDFSE

WRFSE

FSPACK

Free storage space full. Error pointer
returned ln -ERPNTR.

Other errors directly returned from called

.routines.

51

Name :
Function:
Called:
Arguments:

Other Operations:

Routines Called:

Errors:

Name:

Function:

Called:

Arguments:

Other Operations:

Errors:

DELFSE

Delete FREE storage table entry.

.CAL DELFSE, error.

R2 pointer to entry to be removed.

Table of free storage updated by moving
,remaining entries down over deleted entry
and by updating pointers to table.

RDFSE

WRFSE

Returned directly from routines called.

GUID

Generate Unique IDentifier used in file
creation.

.CAL GUID, error.

R3 - high order byte of unique identifier
returned in low order byte of R3. High
order byte of R3 cleared.

R4 - low order two bytes of uid.

Current uid in file header updated.

None.

Name: CRDIR

Function: CReate DIctionaRy entry. Takes text argu-
ment and creates a new dictionary entry.
File block size is initially zero. Synonyms
use three byte unique identifier copied
into last block size, and file pointer
fields of entry.

Called: .CAL CRDIR, error.

Arguments: RP - pointer ring buffer containing text
name for new entry. First call to CROUT
should return first character for name.
Name used until first non-blank break
character.

R2 - insertion point for new entry.

Other Operations: Text entry inserted after previous end of
text area. (File name area.) New three-word
entry inserted in dictionary. Pointers
to dictionary updated.

Routines Called: CRDCT
RDDE
WRDE
GUID

Errors: Dictionary full (returned in ERPNTR) or
else error returned from routines called.

53

Name:

Function:

Called:

Arguments:

Other Operations:

Routines Called:

Errors:

CRDCT

Inserts text name into file name area of
dictionary. Returns pointer to newly
created name.

.CAL CRDCT, error.

Rf - pointer to ring buffer containing text
name described in CRDIR.

Rl -~ returns pointer to location. Text name
was inserted.

File name area and appropriate pointer to
that area are updated.

CROUT
BRKCH
WRBYT

Dictionary full - returned in ERPNTR.
Or else error returned from routines called.

54

Name:

Function:

Called:

Arguments:

Other Operations:
Routines Called:

Errors:

NFSPTR

Find next entry with same file pointer. Used
to locate synonyms to a file. When called,
look for synonym which alphabetically follows
after entry provided as argument. If search
runs past end of dictionary, restart at the
beginning of the dictionary. 1If an entry has
no synonyms, return original entry.

.CAL NSFPTR, error,

On entry R2 is pointer to three-word entry
block in dictionary;

on exit R2 contains pointer to three-word
block of next synonym.

None.

RDDE.

Returned directly from RDDE.

55

Name :

Function:

Called:

Arguments:

Other Operations:

Routines Called:

Errors:

DELDE

Delete dictionary entry - remove three-
word block associated with entry and the
text entry name.

.CAL DELDE, error.

R2 - pointer to three-word block of dic-
tionary entry to be removed.

Text entry removed from file name area.
Any names in higher core than removed name
are moved down to compress file name area.
The same is done for the information block
area. All pointers are updated. LCHECK
is also updated if entry it points to is
moved by delete.

RDDE

RDBYT

WRBYT

RDWRD

WRWRD

Returned directly from routines called,

56

Name:

Function:

Called:

Arguments:

Other Operations:

Routines Called:

Errors:

DCTBM

Find best match in dictionary. Determines
if string provided provides a match with an
entry in the dictionary up until the first
non-blank break character.

.CAL DCTBM, error.

Rg - points to ring buffer with string in

it. If match output pointer points to be-
ginning of string with leading blanks flushed,
conditional oqutput pointer points to break
character terminating string. If no match,
both output pointers point to beginning of
string with leading blanks flushed.

R2 - pointer to match. If match occurs,

R2 is pointed to entry in dictionary which
matches the string. If no match, R2 points

to place in dictionary where new entry would
be inserted if input string were used for
test name. If end of text encountered in
input string before any other text encountered,
R2 is set to all ones.

None.
FLBLK
DLKUP
CRBKUP
CRDUT
BRKCH
BUFRST

Text string does not match any entries or

end of text in input string.
ERPNTR unaffected by DCTBM. If set by

routines called, its value is returned
unchanged.

57

Name:

Function:

Called:

Arguments:

Other Operations:

Routines Called:

Errors:

DLKUP

Dictionary LooKUP. Performs a binary search
on dictionary to find entry which matches
input string.

*.CAL DLKUP, error.

R - points to text string in ring buffer.
Both output pointers must point to the

first character of the string. If no match
is found, output pointers are unchanged. If
match occurs, conditional output pointer
points to break character at end of match.

R2 - if match occurs in course of search,

R2 points to matching entry. If no match,

R2 points to insertion point found for string.
If end of text, R2 is set to all ones.

R3 - if match found, R3 points to insertion
point for string. This is done because a
string which matches an entry may continue
beyond the match. For example, "NEW YORK
CITY" would match "NEW YORK" in the diction-
ary but could still be inserted as a new entry.
None.

BUFRST

DMTCH

No match in dictionary or end of text in ring
buffer.

58

4. DATA BASE

The File System for the VRS was designed to meet three
criteria:

a. Speed - The File System must be capable of a data
rate of 7.5 disk reads per second.

b. Compact Dictionary - The File System eventually
must maintain a full dictionary of 4000 entries. To
permit file lookup to proceed at maximum speed the
dictionary must be core resident. The amount of in-
formation associated with each dictionary entry must
be minimized in order to keep a 4000 entry dictionary

to manageable size.

c. Editing Flexibility - The dictionary must be easily
modifiable by the system programs. The user should not
be subjected to constraints due to limitations in the
file structure.

In addition to the above criteria, the dictionary format
must permit phrase look-ahead.

In general, these criteria conflict. Speed and editing
flexibility always require additional information, which
implies additional space. The design chosen provides
maximum speed in operation but permits the desired editing
capabilities through software which calculates the required

pointers, rather than storing them in the dictionary.

File System Description

The VRS file system is divided into five major storage
areas. These areas (illustrated in Figure 1-2) are:

a. Header Block - This area contains a 34g byte de-
scriptor for the file system. This includes an 8 byte
name block and information concerning the size of the
remaining 4 areas.

b. File Name Area - The text names for the various
dictionary entries are stored in this area. As the names
can be of any length, no fixed size is set for an entry.
Instead, each name is followed by a zero byte.

cr File Description Area - The size and location of
each dictionary entry is stored in this area.

59

FDA i ¢
N E N
pointer to name blank W
i in|last block)
gggnymd—o bsll;:ceksl_‘; siie 1374 2 \F;
pointer to file - C blank ~ DVF
. .
g byte] Y g

N

|

- Y N
pointer to name

! Zero C

o 1 55 1374 | in file name

} area

ipointer to file L

in file descriptor

a
i last block unused ;/
after word 1378 / /45

FIGURE 4-1. SAMPLE FILE STRUCTURE CREATED. FOR THE FILp
NAME "NEW YORK CITY" AND 178 ABBREVIATION' (synorym) "NYC"

60

d. Free Storage Description Area - Unused disk storage
is described in this area.

e. Digitized Voice File Area - Contains the encoded
speech.

These areas are all on disk in the layout shown in Figure 4-2.
The descriptor areas are copied into core memory as needed by
the particular program using the file system. (For example
see flowchart for "SPEAK" in Section 2.)

To visualize the functioning of these various areas it is best
to examine a typical dictionary entry (Figure 1-3). The entry
shown is an example of how the encoded utterance "New York
City" might be accessed by that name as well as by the abbre-
viation "NYC". The files are accessed first through the file
descriptor area. This area consists of a number of three-
word blocks which appear in detail in the example. Most of
the important capabilities are provided by the information in
these blocks.

The first word points to the file name, the second contains
the file status and size information, and the third points to
the disk location. Alphabetic sorting is accomplished by
moving these descriptor blocks, rather than directly moving
the variable-length entries in the file name area.

The file name can be of arbitrary length, contain embedded
blanks, and must be terminated by a zero byte. New names are
added to the end of the name area, while the corresponding
three-word block is inserted in the correct position in the
block area as determined by the sort.

The file status and size (second word of descriptor block)
contains the following information: The file size (in 256
word blocks) is contained in the low order 7 bits of the high
order byte. The number of words actually used in the last
block is contained in the low order byte. The high order bit
of the word is used for abbreviations. When a dictionary
entry is first created, the high order bit, called a "synonym
flag" is left zero. If an entry is being created as an ab-
breviation for an already existing entry, the remainder of
the second and third words are copies from the original entry.
During editing, an entry's synonyms are found by comparing
the file pointer and size words for a match with other dic-
tionary entries. Note that an abbreviation entry is identi-
cal in every respect to other entries except for the flag.
When an empty file is created, a three byte "unique identi-
fier" maintained in the file header is copied into the file
pointer and size of the last block portions of the dictionary
entry. This provides a means of distinguishing synonyms be-
fore a file is created. When a file is deleted, the block
size and the file pointer are copies into the free storage
area to give information about available space in the file
storage area.

61

- } Header Block

A
; FNA (File name area)
f

AL FERTIE

e B Free area for FNA

E\ i : \\. "'.\I . r}
i File descriptor area
gl
I
./

SRR \

A .\-"\\Q\§\ LT N T

AN \\\‘ ! ! Free space for FDA, FSDA

J\\\\\\\\\\ .,\ -("'*

AN ". ‘\‘ M TN

%%_\\\ FR AR LY ':
|) Free storage descriptor area
|
Vi
)

Voice file area

_FIGURE 4-2 - FILE SYSTEM PARTITION

A 62
180 Copies -

