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1.0 INTRODUCTION

1.1 Background

The Oregon Department of Transportation (ODOT), as well as other highway agencies, continues
to experience rutting in asphalt concrete pavements. This is, in part, due to increasing axle loads and/or
tire pressures. In an effort to improve the rutting resistance of the asphalt layer, new asphalt mixes are
being employed. In Oregon, for example, both Class A (large stone) and Class F (open-graded) mixes
are now being used. In addition, new performance-based asphalt (PBA) specifications are now being used
by ODOT. Although these products have been implemented, in part, to reduce rutting, the performance
of mixes containing PBA-graded asphalts has not been validated.

New techniques emerged from the Strategic Highway Research Program (SHRP) to evaluate
mixes in terms of their resistance to permanent deformation. One of these techniques is the simple shear
test which has been proposed for inclusion in Superpave (Monismith et al., 1993). The simple shear test
can also be used to generate mix properties which are employed in prediction models to estimate the
rutting in an asphalt pavement as a function of traffic and environment (Lytton et al., 1993). The
performance of the shear test has been validated using a wheel tracking device such as that developed by
Laboratoire Central des Ponts et Chausées (LCPC) in France (Brosseaud et al., 1993). The LCPC device
was also used in studies at Oregon State University (OSU) in the validation efforts for water sensitivity
which were a part of SHRP project A-003A (Terrel et al., 1993).

This study makes use of the LCPC rutting tester to evaluate the relative rutting characteristics of
existing (B, C, and E) and new (A and F) asphalt mixes used in the state of Oregon. All of the mixes
evaluated used PBA-5 asphalt. Similar rutting tests have been widely used in Europe to rank the relative

performance of both conventional and modified asphalt mixes (Brosseaud et al., 1993).



1.2  Objectives

The objective of this study is to evaluate the rutting resistance of selected asphalt concrete mixes
used in Oregon. In particular, it will evaluate the effect of mix type and lift thickness. Future studies

should explore the effect of base support and asphalt type or modifiers.

1.3 Study Approach

The study was accomplished in several tasks as follows:

1) Task 1. Development of Laboratory Experiment Design. This task consisted
of selecting the materials to be studied and the various combinations to be
evaluated. The results of this effort are presented in Chapter 2.

2) Task 2a. Preparation of Test Specimens. This task consisted of obtaining the
necessary materials and preparing the test specimens. The results of this effort
are given in Chapter 3.

3 Task 2b. Testing of Asphalt Mixes. This task took place in the fall (1992) and
winter (1993) and consisted of the evaluation of the test specimens in the wheel
tracker and the simple shear device (at University of California, Berkeley
(UCB)). The results of these efforts are presented in Chapters 4 and 5.

4) Task 3. Analysis of Results. Data analysis produced a ranking of the relative
rut resistance of the asphalt mixes tested. The results are presented in Chapter 6.

5) Task 4. Report. This task documented the findings and recommendations

resulting from the study.



2.0 EXPERIMENTAL DESCRIPTION

This chapter describes the variables considered in the study, the experiment design, the materials
used, and the job-mix formulas employed. The decisions on variables selected were based on numerous

discussions between ODOT and OSU personnel.

2.1 Variables Considered

The study variables included mix types and lift thickness for two aggregate types.

2.1.1 Mix Types

The major mix types utilized in Oregon were selected for study. They included the following:

D Class A, a large stone mix (1'% in. (38 mm) max. aggregate size) which is used
primarily as a base layer;

2) Class B, the workhorse asphalt mix (3% in. (19 mm) max.) which is normally
used on high volume roads;

3) Class C, a commercial mix (%2 in. (13 mm) max.) commonly used by cities and
in private works;

4) Class E, an open-graded (12 to 17% voids) mix (2 in. max.) used as a thin (1 to 1'%
in. (25 to 38 mm)) wearing surface on the A and B mixes; and

5) Class F, an open-graded (15 to 20% voids) mix (% in. max.) which is used as

a thick (2 to 4 in. (50 to 100 mm)) wearing surface on B mixes.

2.1.2 Lift Thickness

To evaluate the effect of lift thickness in contributing to the amount of rutting, one or two levels

of thickness were considered as shown below:



Mix Type Lift Thickness in. (mm)

A 4 (100)
B 4 (100)
C 4 (100)
E 1 25)
F 2,4 (50,100)

The total layer thickness was always held at 4 in. (100 mm). For example, 1 in. (25 mm) of E-mix
would be placed on 3 in. (75 mm) of a base layer (A or B mix). Similarly, 2 in. (50 mm) of F-mix
would be placed on 2 in. (50 mm) of B-mix. For all mix types, one asphalt type, a PBA-5, was used.

The experiment design for the study is summarized in Table 2.1. Each mix combination was

fully replicated.

2.2 Materials
2.2.1 Asphalt Cement

For all test slabs, a Chevron PBA-5 was used. Three batches of binders were obtained from the
Chevron Willbridge Refinery in Portland, Oregon. The first batch (30 gal. (114 L)) was obtained on
June 23, 1992, the second batch (15 gal. (57 L)) in September 1992, and the third batch in June of 1993,
The properties of each batch are summarized in Table 2.2.

Temperature-viscosity curves for each of the batches are summarized in Figure 2.1. These curves

were used to establish the following mixing and compaction temperatures based on the Asphalt Institute

criteria. (1986):

Mixing Temperature Compaction Temperature
Mix Type °F (O FCO)
A 318 (159) 266 (130)
B 318 (159) 266 (130)
C 318 (159) 266 (130)
E 261 (127) 248 (120)
F 261 (127) 248 (120)



Table 2.1. Experiment Design for Rutting Study.

Surface Thickness Base Thickness
Combination Mix in. (mm) Mix in. (mm)
1 A 4 (50)
2° B 4 (50)
3 C 4 (50)
4 F 4 (50)
5 E 1 (25) B 3 (75)
6 E 1 (25) A 3 (75)
7 F 2 (50) B 2 (50)

*For the B and F mix only, two slabs were prepared so that the effect of test temperature (104 and 140
°F (40 and 60°C)) could be evaluated. (A total of 9 slabs/aggregate type.)
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2.2.2 Aggregates

Two aggregates were used for this study as follows:

1) Riverbend, a gravel source with low fracture (within specification), this
aggregate was obtained from Salem, Oregon. Properties of the aggregate are
given in Table 2.3. To make the A-mix, 1% - % in. (38 - 17 mm) material was
obtained from a nearby source (Reed pit). Properties of this material are given
in Table 2.4.

2) Cake-Pit is a 100% crushed quarry stone from near Bend, Oregon. Properties

of this aggregate are given in Table 2.5.

2.3 Job-Mix Formula

All mix designs were obtained from the ODOT Materials Laboratory in Salem, Oregon. Mix
designs were developed following ODOT standard procedures (Quinn et al., 1987).
Summaries of the job-mix formulas for both aggregates are given in Tables 2.6 and 2.7. This

includes the following: aggregate gradation, asphalt content, and design Rice specific gravity.



Table 2.3. Properties of the River Bend Aggregate.

Property Coarse Fine
Sand Equivalent (ODOT TM 101) NA* 82
Specific Gravity Bulk 2.64 2.62
and Absorption
SSD 2.68 2.67
Absorption (%) 1.66 2.15
Sodium Sulfate Coarse 1.1 NA
Soundness )
(ODOT TM 206) Fine NA 2.0
LA Abrasion Grading B NA
ODOT T™ 211
( ) % Wear 15 NA
Average Fracture (ODOT TM 213) (%) 97** 100
*Not available
**Detailed fracture data:
Sieve Size % _Fracture
% in. 85
4 in. 98
3% in. 98
Y in, 98
#4 100



*Not available

Table 2.4. Properties of 1%2 to % Material from Reed Pit.

Property Coarse

Sand Equivalent (ODOT TM 101) NA*
Specific Gravity Bulk 2.61
and Absorption

SSD 2.65

Absorption (%) 1.59
Sodium Sulfate Coarse 23
Soundness
(ODOT TM 206)
LA Abrasion Grading A
(ODOT T™ 211)

% Wear 15.6
Fracture (ODOT TM 213) (%) 79**

**Detailed fracture data:

Sieve Size
1% in.

1 in,

% in.

% in.

% in.

Y in.

% Fracture
73

60

84

95

100

100

10




Table 2.5. Properties of Cake-Pit Aggregate.

Property Coarse Fine

Sand Equivalent (ODOT TM 101) NA* 81
Specific Gravity Bulk 2.69 2.56
and Absorption

SSD 2.74 2.65

Absorption (%) 1.81 3.7
Sodium Sulfate Coarse 1.2 NA
Soundness -
(ODOT TM 206) Fine NA 2.6
LA Abrasion Grading B NA
(ODOT TM 211)

% Wear 12.6 NA
Fracture (ODOT TM 213) (%) 100 100

*Not available

11



Table 2.6. Riverbend Mix Designs.

% Passing for each mix

Si

e A B-Single | B-Layered C E-Layered | F-Single | F-Layered
Mix Mix

1'% 100

1% 97.9

1 87.0 100 100 100 100

% 79.1 97.0 97.0 100 100 91.5 90.4

1A 64.5 85.3 85.4 98.2 95.2 69.9 67.7

Vs 56.0 75.1 74.9 80.1 69.6 41.8 423

Y 47.4 61.7 61.9 61.4 38.8 24.6 24.1

10 25.0 28.3 29.0 30.8 9.4 13.6 13.9

40 11.5 12.2 12.2 13.3 4.5 6.3 6.6

200 5.0 5.1 5.4 5.2 2.1 3.6 3.9

AC 5.8 5.5 5.8 6.5 6.0

% of

total mix

Rice 2.463 2.467 2.455 2.429 2.456

Specific

Gravity

12




Table 2.7. Cake-Pit Mix Designs.

% Passing for each mix
Size R
A B-Single B-Layered C E-Layered F-Single F-Layered | B-BEQ
Mix Mix
14 100
1% 98.2
1 90.1 100 100 100 100 100
% 79.1 94.7 97.4 100 100 91.3 92.8 97.0
15 68.0 80.4 81.4 97.9 96.6 66.8 67.7 81.5
Yo 61.9 68.0 69.0 80.9 67.9 43.4 44.1 68.2
% 51.6 56.8 57.1 58.4 36.4 26.0 26.3 56.2
10 31.1 273 28.2 31.7 18.2 11.6 12.2 27.2
40 10.4 121 12.0 12.5 1.5 5.8 6.5 11.2
200 4.4 53 5.4 4.5 3.2 3.4 4.0 4.4
AC 6.2 5.8 6.5 7.0 6.5 5.8
% of total
mix
Rice 2.493 2.505 2.481 ™ 2.455 2.505
Specific
Gravity

*This gradation used for the BFQ (B-mix base, F-mix lift, quarry rock aggregate) base only. It replaced
the gradation used for the base of the BEQ (B-mix base, E-mix lift, quarry rock aggregate) slab.

*No Rice was specified by ODOT for this mix.

13




3.0 SPECIMEN PREPARATION

This chapter describes the procedures used to prepare the specimens, as well as selected properties

(gravities, voids) of the test samples.

3.1 Procedure

Specimen preparation for this research effort was accomplished by means of rolling wheel
compaction. The procedure is outlined in detail in Appendix A. The procedure was developed at OSU

for the purpose of preparing specimens for a previous study (see Table 3.1). The method proved to be

very effective and was retained for the ODOT study.

3.1.1 Mixing

The mixing process is shown schematically in Figure 3.1. The mixing device used consisted of
a conventional concrete mixer modified to include infrared propane heaters (see Figure 3.2) to preheat
the mixer prior to mixing as well as to minimize heat loss during the mixing process. The preheated and
preweighed aggregate were added to the mixer followed by the asphalt. The mix for a single-mix slab
was mixed in one batch, while a layered slab required two batches. After mixing, the dense-graded
asphalt-aggregate mix was placed in a forced-draft oven set to 275°F (135°C) and "short-term aged" for
4 hrs in order to simulate the aﬂlount of aging which occurs in a batch or drum dryer plant (Bell et al.,
1993). The mix was stirred once each hour to promote uniform aging. An attempt to cure an open-
graded mix in the same manner resulted in substantial asphalt run-off. This problem was alleviated by

curing the open-graded mixes at 140°F (60°C) for 15 hrs.

3.1.2 Compaction

At the completion of the aging process, the mix was placed in an adjustable mold and compacted
(Figure 3.3) to a predetermined density. The mold can accommodate several slab configurations: a 2
in. (50 mm) base and 2 in. (50 mm) lift or a 3 in. (75 mm) base with a 1 in. (25 mm) lift as well as a

4 in. (100 mm) single-mix slab. The compacted slab was then allowed to cool overnight (about 24 hrs).
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Table 3.1. Summary of a Specimen Preparation Procedure.

Step Description

1 Calculate the quantity of materials (asphalt and aggregate) needed based on
the volume of the mold, the theoretical maximum (Rice) specific gravity of
the mix, and the desired percent air voids. Batch weights ranged between 60
Ib (.3 kN) for a 1 in. lift and 210 1b (.9 kN) for a 4 in. (100 mm) slab.

2 Prepare the asphalt and aggregate for mixing.

3 Heat the materials to the mixing temperature, 318°F (159°C) for the dense-
graded mixes and 261°F (127°C) for the open-graded mixes.

4 Mix the asphalt and aggregate for 2 min. in a conventional concrete mixer
fitted with infrared propane burners and preheated to the mixing temperature
for the mix.

5 Age the dense-graded mix at 275°F (135°C) in a forced-draft oven for 4 hrs

stirring the mix every hour. Age the open-graded mix for 15 hrs at 140°F
(60°C). This "short-term aging" representing the amount of aging which
occurs in the mixing plant.

6 Assemble and preheat the compaction mold using infrared heat lamps.

7 Place the mix in the compaction mold and level it using a rake while avoiding
segregation of the mix.

8 Compact the mix when it reaches the compaction temperature using a rolling
wheel compactor until the desired density is obtained. This is determined by
the thickness of the specimen (the only volumetric dimension that can be
varied during compaction for a set width and length of slab). Steel channels
with depth equal to the thickness of the slab prevent overcompaction of the
mix. Compaction temperature was 266°F (130°C) for the dense-graded
mixes, and 248°F (120°C) for the open-graded mixes.

9 Allow the compacted mix to cool to room temperature (about 24 hrs).

10 Disassemble the mold and remove the slab. Dry cut (saw) beams for the
OSU wheel trackers. Dry cut cores for the UCB shear study.
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To eliminate the effects of possible uneven compaction at the edge of the slab, approximately 1 in.

(25 mm) of material was trimmed off before the rutting specimens were extracted.

3.1.3 Cutting

After the slab had cooled it was pulled onto a pallet jack and taken outside where it was cut with
a walk behind saw. Three beams, 29% in. X 6% in. X 4 in. (743 mm X 168 mm X 100 mm) were cut
from the slab. Two were used in the wheel tracking device; cores were extracted from the third for use
in the shear device (see Figure 3.4). The 6 in. (150 mm) cores were also trimmed top and bottom to

eliminate any edge effects.

3.2 Void Determination
3.2.1 Procedure

The air voids were determined through a ratio of the bulk and Rice gravities (calculated in
accordance with ASTM D-3203). The bulk gravity is the density of the entire specimen, air voids
included, and can be determined through the saturated-surface-dried (SSD) method or the parafilm
wrapping method. The Rice gravity is the maximum specific gravity cf the asphalt-coated aggregate.
After the initial slabs were made, the void content of the rutting beams was determined using both the
SSD and parafilm bulking methods. The two methods yielded markedly different results. The voids
calculated using parafilm bulking were typically two to three percentage points higher than those using
the SSD method. A decision was made to use the results of the SSD bulk specific gravity for the void
determination of the dense-graded specimens. The decision was based on the fact that the SSD method
accounts for surface voids more accurately than does the parafilm method. The parafilm method was
used for the open-graded mixes (F mixes) because the nature of the SSD makes it impossible to take
accurate measurements on an open-graded specimen. Unless otherwise noted in the Tables 3.2 to 3.4,

the Rice gravity was determined by averaging the values from replicate specimens.
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a) Wheel Tracker Beams

b) Simple Shear Cylinders

Figure 3.4. Photos of Resulting Samples.
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Table 3.2. Void Summary for Riverbend Slabs.

Avg. Rice/ Asphalt Bulk Gravities Voids
# of Samples Content
Mix I.D. Averaged (%) SSD PF SSD PF
A | 1AGR1 2.456/3 5.8 2309 | 2.255 6.0 8.2
1AGR2 2.456/3 5.8 2.299 2.233 6.4 9.1
B | 2BGR1 2.459* 5.5 2.273 2.220 7.6 9.7
2BGR2 2.459" 5.5 2.260 2.206 8.1 10.3
2BGR3 2.459" 55 2.255 2.200 8.3 10.5
2BGR3 2.459* 5.5 2.257 2.189 8.2 11.0
2BGRS5 2.459/3 5.5 2.248 2.173 8.6 11.6
2BGR6 2.459/3 5.5 2.261 2.173 8.1 11.6
C | 3CGR1 2.449/2 5.8 2224 | 2.154 9.2 12.0
3CGR2 2.449/2 5.8 2.224 | 2.154 9.2 12.3
F | 4FGRI1 2.453/2 6.0 - 2.000 - 18.5
4FGR2 2.453/2 6.0 - 2.065 - 15.8
4FGR3 2.453* 6.0 - 1.998 - 18.5
4FGR4 2.453* 6.0 - 1.982 - 19.2

*Based on one sample.
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Table 3.3. Void Summary for Cake-Pit Slabs.

Asphalt Bulk Gravities Voids
Content
Mix LD. Rice Gravity" (%) SSD PF SSD PF
A 1AQR1 2.485 6.2 2.273 2.207 8.5 11.2
1AQR2 2.485 6.2 2.275 2.214 8.4 10.9
B 2BQR1 2.522 5.8 2.277 2.227 9.7 11.7
2BQR2 2.522 5.8 2.282 2.231 9.5 11.5
2BQR3 2.522 5.8 2.340 2.301 7.2 8.8
2BQR3 2.522 5.8 2.328 2.283 7.7 9.5
2BQR5 2.522 5.8 2.315 2.268 8.2 10.1
2BQR6 2.522 5.8 2.309 2.251 8.4 10.8
C 3CQR1 2.483 6.5 2.290 2.228 7.8 10.3
3CQR2 2.483 6.5 2.291 2.247 7.7 9.5
F 4FQR1 2.505 6.5 - 1.982 - 20.8
4FQR2 2.505 6.5 - 1.979 - 21.0
4FQR3 2.505 6.5 - 2.061 - 17.7
4FQR4 2.505 6.5 - 2.070 - 17.4

*Based on one sample.
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Table 3.4. Void Summary for Layered Slabs.

No. of Bulk Gravities Voids
Rices
Mix Avg. Rice | Averaged | Base Lift® A.C.
(Base/Lift)| I.D.* (Base/Lift) | (Base/Lift) (SSD) | (Parafilm) | Base | Lift Base/Lift
A/E 6AEGR3 | 2.467/2.438 2/2 2.297 2.053 6.9 15.8 | 5.8/6.5
6AEGR4 | 2.467/2.438 22 2.308 - 6.4 - 5.8/6.5
6AEQRI1 | 2.455/2.480 171 2.272 2.000 7.5 19.4 | 6.2/7.0
6AEQR2 | 2.455/2.480 171 2.269 -- 7.6 - 6.2/7.0
B/E 5BEGRI1 | 2.430/2.373 22 2.235 2.019 8.0 149 | 5.5/6.5
5BEGR2 | 2.430/2.373 2/2 2.347 1.992 7.5 16.1 | 5.5/6.5
5BEQRI1 | 2.443/2.440 171 2.276 2.033 6.8 16.7 | 5.8/7.0
5BEQR2 | 2.443/2.440 171 ¢ -- - - 5.8/7.0
B/F TBFGR1 | 2.404/2.425 272 2.277 1.976 53 18.5 | 5.5/6.0
TBFGR2 | 2.404/2.425 2/2 2.271 1.997 5.5 17.6 | 5.5/6.0
7BFQR1 | 2.463/2.525 1/2 2.323 1.995 5.7 21.0 | 5.8/6.5
7BFQR2 | 2.463/2.525 172 2.318 - 59 - 5.8/6.5

*Bulk gravity and void calculations were not made for the actual rutting beams whose ID numbers appear.
To calculate voids for those specimens, a larger slab was made so extra beams could be extracted
specifically for void determination. The beams used for void content determination were sawed apart so
that bulk gravity could be conducted on the bases and lifts individually.

0n a 1 or 2 in. thick specimen (the thickness of the lifts), surface voids can greatly increase the apparent
air voids as calculated with the parafilm bulking method. For this reason, some specimens with excessive

surface voids were not tested. As a result, for some beam types (e.g. the 6AEGR beams), there is only
one value for lift void content rather than two.

°Only one extra beam was made for this slab for void determination.
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3.2.2 Results

Summaries of the voids for all mixes are given in Tables 3.2 to 3.4. Target air voids were 8%
for all dense-graded specimens, 15% for all E-mix specimens, and 17.5% for all F-mix specimens. A
few slabs were redone due to low air voids. The air voids of accepted specimens ranged from 6.0% to
9.2% for all dense-graded single-mix specimens. Those on the dense-graded bases of layered specimens

ranged from 5.3% to 8.0%. E-mix voids ranged from 14.9% to 19.4% and F-mix voids ranged from
18.5% t0 21.0%.

3.3 Storage and Labeling

The beams were then stored at ambient temperature until the rutting tests were conducted. The
open-graded and layered beams (since they all have an open-graded layer) were individually boxed
because the open-graded mixes have a tendency to fall apart if not confined. The open-graded and
layered cores are wrapped in metal sheeting to prevent them from falling apart during storage.

All the specimens were then labeled for identification. A unique five or six symbol code was
designated for each specimen. The first two or three symbols indicate the mix type. The next digit
denotes the type of aggregate used. The next digit designates if the specimen was for rutting or simple
shear. The last digit represents a sequence number for the specimens. For example the label, 1AQRI1,

designates a class A mix made from the quarry rock for the rutting test and was the first specimen made.
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4.0 LCPC TEST RESULTS

This chapter addresses procedural aspects of the LCPC wheel track testing and the influence of
mix test conditions (temperature, confinement) and mix parameters (mix type, aggregate type) on the test
results. Furthermore, an evaluation of the ODOT mixes is made with respect to the LCPC rutting

criteria.

4.1 Procedure

After compaction, cutting, and void content determination, the slabs were ready for testing in the
OSU-LCPC rutting testing machine (Figure 4.1). The day before the test was performed, the test
specimen was loaded into the molds used to hold the specimen during the test. Thin sheets of expanded
foam were placed between the specimen and the mold to prevent movement of the beam specimen under
the action of the rolling wheel. Similarly, a Ye-in. (3 mm) thick piece of teflon sheeting, the same size
as the specimen, was placed between the specimen and the wheel tracker platen to provide a frictionless
surface. The mold-specimen assembly was then placed into the machine and bolted down. The testing
machine was then set to the test temperature for a minimum of 12 hours to ensure temperature equilibri-
um.

Prior to testing, talcum powder was spread over the top of the specimen to prevent particles from
the top of the specimen from sticking to the wheel. At this point, 50 preconditioning wheel passes were
applied to the specimen. The specimen was preconditioned to eliminate the high plastic deformation
characteristics of asphalt-aggregate mixes at the onset of loading. After the preconditioning wheel passes,
measurements were made on the specimen with the electronic displacement transducer developed at OSU.
These initial data were recorded by a personal computer and used as a zero determination for the
subsequent readings. Subsequent deformation measurements were made at 100, 200, 500, 1000, 2000,
5000, 10,000, 20,000, 30,000, 40,000, and 50,000 wheel passes. After 50,000 passes, the specimen was
removed from the testing machine. A detailed test procedure is included as Appendix B. Shown in

Figure 4.2 are typical specimens after testing.
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4.2 Test Results

Al test results were reported using the format shown in Figure 4.3. The total rut depth consists

of three components:

1)
2)

3)

Initial consolidation. This is due in part to composition of the slab.
Second stage deformation. This is defined in terms of a rutting potential (rut
depth per 1000 wheel passes).

Third stage deformation. This is associated with the failure of the mix.

A comparison of the results for the replicate samples indicates that the repeatability of the test is very

good. The largest difference between rut depth at 50,000 wheel passes for duplicate specimens was 0.05

inches (1.3 mm); the average difference in rut depth between duplicate specimens was only 0.026 inches

(0.7 mm). Table 4.1 summarizes the average rut depth and rut potential for each of the mix types.

Test results are summarized in Figures 4.4 to 4.11. Two samples were tested for each mix type

and for each type of aggregate. All test data are given in Appendix C.

4.3 Discussion of Results

Effect of mix type. The results clearly indicate that mix type influences rut depth and
rut potential. The B and C mixes performed the best as measured by both average rut
depth at 50,000 wheel passes and average rut potential. The large stone A-mix also
performed well, with slightly larger values for rut depth and rut potential. This is likely
due to the low amount of % in. (17 mm) maximum material in the mix. The open-
graded F-mix did not perform well despite its success in the field. When this project was
started, a target void level of 17 to 20% was the target for the F-mix slabs. It was later
discovered that actual field voids for an F-mix section were more on the order of 12 to
15%. Due to the fact that the F-mix voids in the lab specimens were not representative
of the field voids of a typical F-mix, the results obtained in the LCPC and the simple

shear test do not match the field performance of the in situ sections. It is shown in
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Table 4.1. Summary of LCPC Test Results.

Average Rut Depth Average Rut Potential*
@ 50,000 reps (in.) (X 109
Mix Type Gravel Quarry Gravel Quarry
A-40 0.23 0.20 2.2 2.0
B-40 0.18 0.19 1.3 1.4
B-60 0.38 0.28 3.62 2.47
C-40 0.19 0.21 1.4 1.58
F-40 0.48 0.44 6.46 3.42
F-60 0.61 0.77 5.52 47.0
@ 5000 reps
BE-40 0.27 0.29 1.98 2.80
AE-40 0.28 0.38 2.48 2.75
BF-40 0.22 0.32 1.25 2.07
F-40 0.199 0.23 1.47 1.0
(low void foam)
F-40 0.03 0.11 0.2 0.62
(plaster)

1 inch = 25.4 mm

« Rut depth @ 50,000 wheel passes - Rut depth @ 10,000 wheel passes
50,000 - 10,000
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Rut Depth vs. Wheel Pass
1AQR - A mix, Quarry
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Figure 4.4. Rut Depth vs. Number of Repetitions for A-Mix (40°C).
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Rut Depth vs. Wheel Pass
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Figure 4.5. Rut Depth vs. Number of Repetitions for B-Mix (40°C).
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Rut Depth vs. Wheel Pass
2BQR-60°C - B mix, Quarry
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Figure 4.6. Rut Depth vs. Number of Repetitions for B-Mix (60°C).
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- Rut Depth vs. Wheel Pass
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Rut Depth vs. Wheel Pass
4FQR - F mix, Quarry
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Figure 4.8. Rut Depth vs. Number of Repetitions for F-Mix (40°C).
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Rut Depth vs. Wheel Pass
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Figure 4.9. Rut Depth vs. Number of Repetitions for F-Mix (60°C).
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Rut Depth vs. Wheel Pass
4FQ - F mix, Quarry
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Figure 4.10. Rut Depth vs. Number of Repetitions for F-Mix (40°C - Low Voids).
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Rut Depth vs. Wheel Pass
5BEQR - B mix / E mix, Quarry
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Figure 4.11. Rut Depth vs. Number of Repetitions for Layered Mixes.
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Rut Depth vs. Wheel Pass
6AEQR - A mix / E mix, Quarry
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Figure 4.11. Rut Depth vs. Number of Repetitions for Layered Mixes (cont.).
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' Rut Depth vs. Wheel Pass
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Figure 4.11. Rut Depth vs. Number of Repetitions for Layered Mixes (cont.).
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This report is to large to link the entire report at one time, to continue
viewing the rest of the report, click here.


http://www.oregon.gov/ODOT/TD/TP_RES/docs/Reports/EvalOfRuttingPotentialP2.pdf



