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Impact of Hydrated Cement Paste Quality and Entrained Air-Void System on the Durability of Concrete: Final Report

Executive Summary

In cold climates, concrete used in pavements and bridges must be able to withstand cyclic
freezing and thawing (F-T). This study is designed to examine whether traditional limits used to
describe the air-void system still apply to concrete prepared with these new admixtures and
materials. Overall this research examines the relationship(s) between F-T durability and the
quality of hydrated cement paste (HCP) integral to the concrete. The HCP system is generally
thought of as hydration products from the chemical reaction of portland cement, supplementary
cementitious materials (SCMs), and water, but also including an engineered an air-void system
encapsulated within the hydration products to protect the hydration products, and ultimately the
concrete, from freezing and thawing damage.

The research used to establish the current air content requirements as espoused in the American
Concrete Institute (ACI) Guide to Durable Concrete [2008] was predominantly conducted prior
to 1970, and since that time many changes have occurred that significantly affect the
quality/characteristics of HCP as well as the entrained air-void system. Some changes that
directly impact the quality of HCP include the use of lower water-to-cementitious ratios (w/cm),
cements with a finer particle size distribution and an increased C;S/C,S ratio, the use of mixtures
with lower cementitious material content (CMC), and the extensive use of supplementary
cementitious materials SCMs such as fly ash, ground blast furnace slag (slag cement), etc. The
biggest change in the characteristics of the entrained air-void system has resulted from the
introduction of air entraining agents other than those based on vinsol resins.

For this research, the concrete mixtures prepared were thoroughly characterized, including the
measurement of air content, unit weight, air-void system parameters, calorimetric heat signature,
absorptivity, F-T performance, maturity, and strength at various ages. Emerging equipment used
to measure these properties were also evaluated as part of this research including the Air Void
Analyzer (AVA), the Cementometer™, AASHTO T 318 Standard Method of Test for Water
Content of Freshly Mixed Concrete Using Microwave Oven Drying, and a petrographic-based
fluorescent method of w/cm determination. All concrete mixtures were prepared using materials
that meet current MDOT specifications.

The research presented here was conducted in three phases. Phase I was a preliminary step to
acquire and calibrate equipment evaluated in this research, as described in this report. Phase II
was the initial matrix of mixtures tested for the purposes of establishing the properties of the
specified mixtures, but also to evaluate equipment as part of this research. Phase III was
established after Phase II and was intended to provide a more in-depth understanding of the
results obtained in Phase II. To investigate the utility of computer models in the interpretation
and prediction of cement paste capillary porosity, selected mixtures were modeled using the
National Institute of Standards and Technology (NIST) CEMHYD3D v3.0 Cement Hydration
and Microstructure Development Modeling Package [2005].

A total of 148 individual concrete mixtures were produced, and a total of sixteen different tests
were performed to characterize and assess the performance of the concrete mixtures. Although
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not all of the mixtures were subjected to all sixteen of the tests, in total, the results of well over
one thousand tests are summarized within this report.

Overall, the research showed that modern cements and the use of SCMs lead to a hardened
cement paste that can potentially have a higher tensile strength and lower permeability. Evidence
indicates that the traditional specifications for air content should provide a conservative estimate
of performance and incorporating SCMs into concrete mixtures does not necessarily require
deviation from these traditional air-void system thresholds. The production of paving concretes
with reduced CMC has become more common, and the durability of these concretes, in terms of
the laboratory ASTM C666 testing conducted in this study, is superior to the traditional 564
Ibs/yd> CMC concrete, especially for concrete that falls below the 6.5 £ 1.5 vol. % air
construction requirement.

There is general agreement between methods of measuring the total air content of a concrete
mixture, although the AVA generally does not perform well for this task. With current
admixtures, concrete produced with a conventionally accepted level of total air content (e.g. 6.5
+ 1.5 vol. %) can be expected to be F-T durable, but concrete produced with lower air contents
can also be durable. The classic limitation of an air-void system spacing factor less than or equal
to 0.2 mm is still a safe value to ensure F-T durability, but evidence exists that concrete mixtures
with a spacing factor greater than 0.2 mm can also be F-T durable.

Even without detailed measurements of the air void size distribution, the pressure meter air
content results and paste content estimates (as computed from the mix design, and defined as the
total concrete volume minus the aggregate volume and the air content) perform just as well as the
spacing factor calculation at predicting F-T performance.

Test results for water content by AASHTO T 318 compared well with the mixture designs when
the measured water content was corrected for aggregate absorption. Test results for w/cm by the
Cementometer™ were not as promising, but may be improved with further attention to the
calibration process. The petrographic fluorescent method of w/cm determination followed
general trends of increased fluorescence intensity with increased w/cm, but exhibited a wide
scatter on individual samples and would require standards with similar curing regimes and SCM
content for more accurate w/cm determinations. Semi-adiabatic calorimetry proved to be useful
tool for identifying delayed-set mixtures. The CEMHYD3D modeling showed the expected
pattern of increased porosity for the hydrated systems at elevated w/cm values. The model also
predicted the discontinuity of the pore system over a scale of 0.1 mm for the 0.45 w/cm at 25
days. Comparing model output to actual hydrated microstructure shows many similarities,
although it is clear that the model does not encompass the finer details of the microstructure due
to the limited resolution.
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1. Introduction

In cold climates, concrete used in highway infrastructure (e.g. pavements, bridges) is exposed to
harsh winter conditions being cyclically frozen and thawed in a saturated state in the presence of
chemical deicers. The durability of such concrete is dependent upon many things, including the
aggregate component, the hydrated cement paste (HCP) and the presence of a properly entrained
air-void system (small, dispersed and closely spaced air bubbles). The research used to establish
the current air content requirements as espoused in the American Concrete Institute (ACI) Guide
to Durable Concrete [2008] was predominantly conducted prior to 1970, and since that time
many changes have occurred that significantly affect the quality/characteristics of HCP as well
as the entrained air-void system. Some changes that directly impact the quality of HCP include
the use of lower water-to-cementitious ratios (w/cm), cements with a finer particle size
distribution, the use of mixtures with lower cementitious material content (CMC), and the
extensive use of supplementary cementitious materials (SCMs) such as fly ash, ground blast
furnace slag (slag cement), etc. The biggest change in the characteristics of the entrained air-void
system has resulted from the introduction of air entraining agents other than those based on
vinsol resins.

A major difficulty in predicting the effects to concrete from changes in the HCP quality is that
factors contributing to the quality of HCP, including the entrained air-void system, are diverse
and not perfectly understood. It is known, for instance, that lowering the w/cm will reduce
capillary porosity, therefore increasing strength and reducing the permeability of a given
concrete. But how changes in cement fineness and/or chemistry, the presence of various SCMs,
and the use of modern air entraining admixtures impacts the freeze-thaw (F-T) durability of HCP
is not fully understood.

The entrained air-void system is created through the addition of surface-active agents acting at
the water-air interface to create stable foams. Historically, naturally derived vinsol resin-based
air entraining admixtures (AEAs) were commonly used and thus specifications for air-entrained
concrete are based on these chemicals. As the use of AEAs derived from synthetic or other
natural sources increases, changes in the resulting air-void system may make past specification
practices incorrect for these concrete mixtures. The issue becomes more clouded in that AEAs
may interact in an unexpected manner with other concrete constituents (e.g. cement, SCMs,
admixtures), making it difficult to anticipate the quality of the HCP and air-void system in
advance of construction.

Although the relationship between the F-T durability of concrete and the quality of the hydrated
cement paste and the air-void system are thought to be well established, there have been
sufficient changes in concrete mixtures (e.g. lower w/cm, the use of SCMs, synthetic versus
vinsol resin AEAs, lower CMC, etc.) and problems in the field to warrant a study to re-examine
the accepted relationships.
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2. Objective

In cold climates, concrete used in pavements and bridges must be able to withstand cyclic
freezing and thawing. Durability in these environments is achieved through the production of air-
entrained concrete. Admixtures used to achieve an air-void system have changed and current
concrete mixtures use more SCMs. This study is designed to examine whether traditional limits
used to describe the air-void system still apply to concrete prepared with these new admixtures
and materials. This report describes the production, characterization, and F-T testing of a series
of laboratory concrete mixtures that represent a variety of HCPs and air-void systems. In
addition, this report utilizes newly available test equipment to assess the w/cm and air-void
system in fresh concrete. Based on the results of this research, recommendations will be made to
improve the F-T durability and cost effectiveness of concrete mixtures currently being used in
Michigan. Furthermore, recommendations will be made regarding potential implementation of
new test equipment to improve construction quality control and quality assurance.

3. Scope

Overall this research examines the relationship(s) between F-T durability and the quality of HCP,
including the air-void system parameters, for various concrete mixtures. The concrete mixtures
prepared were thoroughly characterized, including the measurement of air content, unit weight,
air-void system parameters, calorimetric heat signature, absorptivity, F-T performance, maturity,
and strength at various ages. This report also examines the performance of new analytical
equipment and techniques for concrete characterization.

4. Methodology
4.1 Mixture Design Experimental Matrices
4.1.1 Phase Il Mixtures

The research presented here was conducted in three phases. Phase I was a preliminary step to
acquire and calibrate equipment evaluated in this research, as described in this report. Phase II
was the initial matrix of mixtures tested for the purposes of establishing the properties of the
specified mixtures, but also to evaluate equipment as part of this research. Phase III was

established after Phase II and was intended to provide a more in-depth understanding of the
results obtained in Phase II

To accomplish Phase II of the research, a combined full and partial-factorial experimental matrix
was established that resulted in a total of 68 different concrete mixtures. Each mixture was
prepared in duplicate. The mixture parameters used are shown in Table 1 and included:

e Two target air contents: 3 + 1 vol. % and 6.5 = 1.5 vol. %.

e AEAs: one vinsol resin and one synthetic.

e SCMs: none, fly ash (25 wt. % replacement level), slag cement (40 wt. % replacement
level).

e CMCs: 470 Ibs/yd’, 517 Ibs/yd’, and 564 Ibs/yd’.

e Target w/cm: 0.45, 0.50, and 0.52.
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The mixture identification used throughout this report indicates the key properties of each
mixture by using the following codes:

Target Air Content HI 6.5 vol. %

LO 3vol %

VLO 2vol. %
AEA Type VR  vinsol resin

SYN synthetic
Cementitious Material PC  portland cement only

FA 25 wt. % replacement level
SLG 40 wt. % replacement level

CMC xSK where x = number of sacks per cubic yard (i.e. 1 sack = 94 1b)
Water-cementitious ratio yWC where y = target w/cm *100
Example: The mixture ID LO-SYN-PC-5.5SK-52WC represents a mixture with a 3 vol. % target

air content, synthetic AEA, portland cement only, 5.5 sacks of cementitious material per cubic
yard (517 Ibs.yd’), and a target w/cm of 0.52.

4.1.2 Phase III Mixtures

In Phase III of the research, an additional full experimental matrix of 12 different mixtures was
designed to explore concrete with very low air contents (2 £1 vol. % air) and a w/cm of 0.46. The
mixture parameters used are shown in Table 2 and included:

e AEAs: one vinsol resin and one synthetic.
e SCMs: none, fly ash (25 wt. % replacement level), slag cement (40 wt. % replacement

level).
e CMCs: 564 Ibs/yd’, 490 Ibs/yd’.
4.2 Materials

4.2.1 Physical Properties of Materials

The following materials were used to produce the concrete mixtures. Table 3 summarizes the
physical properties of the materials used.

e Lafarge Type I/II portland cement from the Alpena, Michigan plant.

e Holcim Class C fly ash from the Detroit Edison Belle River 1 near St. Clair, Michigan.

e Lafarge NewCemge Grade 120 slag cement.

e Coarse aggregate from the Presque Isle limestone quarry near Alpena, Michigan.

e Fine aggregate from the Lindberg Co. Rd. 480 pit near Marquette, Michigan, and fine
aggregate from the Superior Sand & Gravel pit near Hancock, Michigan.

e Master Builders MicroAirg AEA.

e Master Builders MB VR Standardes AEA.

e Master Builders Polyheed 997 mid-range water reducing admixture.
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Table 3: Physical properties of materials.

Bulk Specific ~ Absorption

Material Gravity (wt. %)
o Lafarge Type I/II portland cement 3.15
Cementitious Holcim Class C fly ash 2.60
components Lafarge NewCemg slag cement 2.90
Presque Isle limestone, MDOT 6A/6AA 2.53 1.88
Presque Isle limestone, optimized gradation 2.53 1.94
Phase Il aggregate Lindberg Co. Rd. 480, MDOT 2NS 2.67 1.01
sourees Superior S&G, MDOT 2NS 2.64 136
Presque Isle limestone, MDOT 6A/6AA 2.55 2.01
Phase 11T aggregate Presque Isle limestone, optimized gradation 2.55 2.01
sourees Superior S&G, MDOT 2NS 2.65 0.87

4.2.2 Aggregate Gradations

Figure 1 shows the fine aggregate gradations used to produce the Phase II and Phase III
mixtures. The Phase IT 517 lbs/yd3 and 564 lbs/yd> CMC mixtures used fine aggregate from the
Lindberg Co. Rd. 480 pit, while the Phase II 470 lbs/yd> CMC mixtures used fine aggregate from
the Superior Sand & Gravel pit. All Phase III mixtures used fine aggregate from the Superior
Sand & Gravel pit. The change in fine aggregate source was done simply to facilitate
procurement (i.e. the Superior Sand & Gravel pit is in the Houghton area). A petrographic
examination and sieve analysis was performed to confirm the similarity between the two sources.
From a mineralogical perspective, they were quite similar both being glacial sands. In terms of
grading, the differences were insignificant. The 517 lbs/yd’ and 564 Ibs/yd> CMC mixtures from
both Phase II and Phase III used an MDOT 6A/6AA gradation coarse aggregate produced at the
Presque Isle limestone quarry, as shown in Figure 2.
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Figure 1: MDOT 2NS gradation limits and as-received fine aggregate gradations from Superior
S&G pit and Lindberg Co. Rd. 480 pit.
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Figure 2: MDOT 6A/6AA gradation limits and as-received coarse aggregate gradations from
Presque Isle limestone quarry.

Figure 3 shows the coarse aggregate gradations used to produce the 470 Ibs/yd® and 490 Ibs/yd’
CMC concrete mixtures. Both the Phase IT 470 lbs/yd®> CMC mixtures and the Phase III 490
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Ibs/yd> CMC mixtures used coarse aggregate from the Presque Isle limestone quarry. The
MDOT gradation limits shown on Figures 2 and 3 require a minimum percentage of material to
be retained on the 1-inch sieve. However, the dimensions of the molds used for the laboratory
hardened concrete test specimens precluded the use of a 1-inch top size aggregate, and thus a ¥-
inch top size was used for all concrete mixtures.

Figure 4 plots the combined aggregate gradation for the 517 Ibs/yd’ and 564 lbs/yd® CMC
mixtures on a percent retained chart (i.e. “haystack™ chart). Figure 5 plots the location of the
combined aggregate gradations on a Shilstone coarseness factor - workability factor (CF/WF)
chart (Shilstone 1990). For the Phase II high air content target concrete mixtures (6.5 vol. % air)
the coarse and fine aggregates were combined together at a ratio of approximately 55/45 by
weight. For the Phase II low air content target concrete mixtures (3 vol. % air) and the Phase 11
very low air content target concrete mixtures (2 vol. % air) the coarse and fine aggregate were
combined at a ratio of approximately 52/48, coarse to fine respectively, by weight. In most cases
the absolute ratio of coarse to fine aggregate was varied slightly depending on the specifics of the
concrete mixture (i.e. w/cm, SCM content) in an effort to maintain workable mixtures.

Figure 6 plots the combined aggregate gradation for the 470 lbs/yd® and 490 Ibs/yd® CMC
mixtures on a haystack chart, and Figure 7 plots the location of the combined aggregate
gradations on a Shilstone CF/WF chart. For all Phase II 470 lbs/yd’ CMC concrete mixtures the
coarse and fine aggregate were combined at a ratio of approximately 55/45 by weight. For the
Phase IIT 490 Ibs/yd®> CMC concrete mixtures the coarse and fine aggregate were combined at a
ratio of approximately 52/48 by weight. The recommended limits shown in Figures 4-7 reflect
the MDOT Special Provision for High Performance Portland Cement Concrete Grade P1

(Modified).
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Figure 3: MDOT 6AAA gradation limits and manufactured optimized coarse aggregate gradations
from Presque Isle limestone.
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Figure 4: Percent retained “haystack” chart with recommended MDOT optimized gradation limits,
and combined aggregate gradations for the gap-graded concrete mixtures.
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Figure 5: Shilstone coarseness factor - workability factor chart with recommended MDOT
optimized gradation limits, and locations of the gap-graded concrete mixtures. Roman numerals I-
V indicate zones of predicted properties (Richardson, 2005): (I) — coarse, gap graded, (II) — well-
graded 1 — 1-1/2 inch top-size, (III) - well-graded minus % inch top-size, inch top-size, (IV) — over
sanded, (V) — rocky.
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Figure 6: Percent retained “haystack” chart with recommended MDOT optimized gradation limits,

and combined aggregate gradations for the optimized concrete mixtures.
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Figure 7: Shilstone coarseness factor - workability factor chart with recommended MDOT
optimized gradation limits, and locations of the optimized concrete mixtures. Roman numerals
refer to Shilstone. Roman numerals I-V indicate zones of predicted properties (Richardson, 2005):
(I) — coarse, gap graded, (II) — well-graded 1 — 1-1/2 inch top-size, (III) - well-graded minus % inch
top-size, inch top-size, (IV) — over sanded, (V) — rocky.
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5. Test Results

5.1 Fresh Concrete Tests

5.1.1 Standard Fresh Concrete Tests

A variety of fresh concrete tests were performed to assess the quality of the mixtures, including:

e ASTM C1064 Standard Test Method for Temperature of Freshly Mixed Hydraulic-
Cement Concrete.

e ASTM C143 Standard Test Method for Slump of Hydraulic-Cement Concrete.

e ASTM C173 Standard Test Method for Air Content of Freshly Mixed Concrete by the
Volumetric Method.

e ASTM C231 Standard Test Method for Air Content of Freshly Mixed Concrete by the
Pressure Method.

e ASTM C138 Standard Test Method for Density (Unit Weight), Yield, and Air Content
(Gravimetric) of Concrete.

e AASHTO T 318 Standard Method of Test for Water Content of Freshly Mixed Concrete
Using Microwave Oven Drying.

The fresh concrete tests results for the Phase II high air content and low air content mixtures are
summarized in Tables 4 and 5. The fresh concrete tests results for the Phase III very low air
content mixtures are summarized in Table 6. The AVA-3000, Cementometer™ , and AASHTO
T 318 microwave oven drying test was not performed on any Phase III mixtures given that Phase
IT was focused on the performance of the mixtures, not to further evaluate emerging equipment.
Figures 8-12 plot the results of slump tests for all Phase III mixtures. Figure 13 plots the results
of pressure meter air content tests.

5.1.2 Additional Fresh Concrete Tests

In addition to the standard tests, the following fresh-concrete tests were also performed on the
Phase II mixtures:

e Air-void system parameters of fresh concrete using a Germann Instruments AVA-3000.
e Semi-adiabatic calorimetry using a Grace Adiacal™.
e w/cm ratio using a James Cementometer™ Type R microwave moisture meter.

The AVA-3000 air-void parameters and Cementometer™ w/cm readings are included in Tables
4 and 5, calorimetry curves are included in Figures 14-17.
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Figure 8: Slump of fresh concrete for Phase 11 0.45 w/cm 564 Ibs/yd® CMC mixtures. From top to
bottom, high air content and low air content mixtures. From left to right, straight portland cement
mixtures, 40 wt. % substitution slag cement mixtures, and 25 wt. % substitution fly ash mixtures.

Striped bars denote mixtures with vinsol resin AEA; solid bars denote mixtures with synthetic
AEA.
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Figure 9: Slump of fresh concrete for Phase 11 0.45 w/cm 470 Ibs/yd® CMC mixtures. From top to
bottom, high air content and low air content mixtures. From left to right, straight portland cement
mixtures and 40 wt. % substitution slag cement mixtures. Striped bars denote mixtures with vinsol
resin AEA; solid bars denote mixtures with synthetic AEA.
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Figure 10: Slump of fresh concrete for Phase IT 0.50 w/cm 564 1bs/yd> CMC mixtures. From top to
bottom, high air content and low air content mixtures. From left to right, straight portland cement
mixtures and 40 wt. % substitution slag cement mixtures. Striped bars denote mixtures with vinsol
resin AEA; solid bars denote mixtures with synthetic AEA.
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Figure 11: Slump of fresh concrete for Phase II 0.52 w/cm 517 lbs/yd> CMC mixtures. From top to
bottom, high air content and low air content mixtures. From left to right, straight portland cement
mixtures and 40 wt. % substitution slag cement mixtures. Striped bars denote mixtures with vinsol
resin AEA; solid bars denote mixtures with synthetic AEA.
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Figure 12: Slump of fresh concrete for Phase II1 0.46 w/cm very low air content mixtures. From top
to bottom, 564 Ibs/yd’ and 490 Ibs/yd* CMC mixtures. From left to right, straight portland cement
mixtures, 40 wt. % substitution slag cement mixtures, and 25 wt. % substitution fly ash mixtures.
Striped bars denote mixtures with vinsol resin AEA; solid bars denote mixtures with synthetic
AEA.
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Figure 13: Air content pressure meter test results grouped according to mixture design target air
contents. From top to bottom: Phase II high air content mixtures, (6.5 vol. % target) Phase II low
air content mixtures, (3 vol. % target) and Phase I1I very low air content mixtures, (2 vol. %

target).
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Figure 14: Calorimetry plots for the Phase II 0.45 w/cm 564 Ibs/yd’ CMC mixtures. From left to
right, high air content mixtures vs. low air content mixtures. From top to bottom: straight portland
cement mixtures, 40 wt. % substitution slag cement mixtures, and 25 wt. % substitution fly ash

mixtures. Dashed lines denote mixtures with vinsol resin AEA; dotted lines denote mixtures with
synthetic AEA.

23



Impact of Hydrated Cement Paste Quality and Entrained Air-Void System on the Durability of Concrete: Final Report

-- HI-VR-PC-5SK-45WC - HI-SYN-PC-5SK-45WC -- LO-VR-PC-5SK-45WC - LO-SYN-PC-5SK-45WC
105 - 105 -
i 100 1 i 100 1
® 95 ® 95 7,
gg) 0 ° gg) 0 ° f \\
g 85 g8 S
E 80 - ‘c')_’ 80 I— &
£ 75 1 £ 75 1
P 70 - P 70 -
65 : T T T T T T T 1 65 : T T T T T T T 1
0 12 24 36 48 0 12 24 36 48
Time (hours) Time (hours)
-- HI-VR-SLG-5SK-45WC - HI-SYN-SLG-5SK-45WC -- LO-VR-SLG-5SK-45WC -+ LO-SYN-SLG-5SK-45WC
105 - 105 -
100 100
& 95 - & 95 -
5 90 5 90 T
% 85 ; SAeTRERRRS S ~ % 85 ; =====-""_-.\s .................... o
5 807 5 807 T,
£ 75 E -'.'..'.:..'.-‘-'-'h' g 75 E E——
8 7017 S 70
65 : T T T T T T T 1 65 : T T T T T T T 1
0 12 24 36 48 0 12 24 36 48
Time (hours) Time (hours)

Figure 15: Calorimetry plots for the Phase II 0.45 w/cm 470 Ibs/yd’ CMC mixtures. From left to
right, high air content mixtures vs. low air content mixtures. From top to bottom: straight portland
cement mixtures, and 40 wt. % substitution slag cement mixtures. Dashed lines denote mixtures
with vinsol resin AEA; dotted lines denote mixtures with synthetic AEA.
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Figure 16: Calorimetry plots for the Phase IT 0.50 w/cm 564 Ibs/yd’ CMC mixtures. From left to
right, high air content mixtures vs. low air content mixtures. From top to bottom: straight portland
cement mixtures, and 40 wt. % substitution slag cement mixtures. Dashed lines denote mixtures
with vinsol resin AEA; dotted lines denote mixtures with synthetic AEA.
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Figure 17: Calorimetry plots for the Phase IT 0.52 w/cm 517 Ibs/yd’ CMC mixtures. From left to
right, high air content mixtures vs. low air content mixtures. From top to bottom: straight portland
cement mixtures, and 40 wt. % substitution slag cement mixtures. Dashed lines denote mixtures
with vinsol resin AEA; dotted lines denote mixtures with synthetic AEA.
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5.1.3 Calorimetry Curves from Exploration of Delayed Set Mixture

Calorimetry is used to monitor the progress of cement hydration in a concrete mixture. Generally
speaking, heat evolution as a result of cement hydration begins with an initial rapid spike and
then subsequent rapid decrease in concrete temperature at the time of mixing (duration ~ 15
minutes), a dormancy period where the concrete is plastic and remains slightly above ambient
temperature (duration ~ 2-4 hours), and then a hardening period where a steady increase in
concrete temperature is observed as the concrete stiffens, commencing with the initial set and
finalizing at final set (duration ~ 2-4 hours). These are followed by periods of cooling and then
further densification through hydration. For the calorimetry plots shown in this report, the initial
spike at mixing is not recorded.

As shown in Figure 14, the LO-SYN-SLG-6SK-45WC mixture experienced an approximate 24-
hour delay in both initial and final set. The mixture was repeated at a later date, but at a lower
laboratory ambient temperature, (74°F versus 78°F) and the previously observed delay of set did
not occur. When the room temperature was higher, (81°F) two additional mixtures were
repeated, one at room temperature, and another where the aggregates were heated prior to
mixing, (86°F). Again, a delay in set did not occur for either elevated temperature mixtures.
Figure 18 shows the calorimetry curves for the original delayed set mixture, and the subsequent
attempts at repeating the delayed set phenomenon. The delay in set was suspected to be due to a
complex interaction between the admixtures, temperature, and the chemical composition of the
slag and the portland cement. Two additional elevated temperature mixtures were repeated, one
at room temperature (84°F) and one with heated aggregates (92°F) but with double the dosage of
water reducer as in the original delayed set mixture. Again, a delay in set did not occur in either
increased dosage water reducer mixtures. Figure 19 shows the calorimetry curves for the original
delayed set mixture and the increased dosage water reducer mixtures.
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Figure 18: Calorimetry curves for delayed initial and final set mixture and repeat mixtures.
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Figure 19: Calorimetry curves for delayed set mixture and repeat mixtures with double the water
reducer dosage.
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