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PREFACE 
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Kansas utilizing academic and research resources from KDOT, Kansas State University and the 
University of Kansas. Transportation professionals in KDOT and the universities jointly develop 
the projects included in the research program. 
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this report.  
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contact the Office of Transportation Information, Kansas Department of Transportation, 700 SW 
Harrison, Topeka, Kansas 66603-3754 or phone (785) 296-3585 (Voice) (TDD). 
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Abstract 

The analysis of concrete columns using unconfined concrete models is a well established 

practice. On the other hand, prediction of the actual ultimate capacity of confined concrete 

columns requires specialized nonlinear analysis. Modern codes and standards are introducing the 

need to perform extreme event analysis. There has been a number of studies that focused on the 

analysis and testing of concentric columns or cylinders. This case has the highest confinement 

utilization since the entire section is under confined compression. On the other hand, the 

augmentation of compressive strength and ductility due to full axial confinement is not 

applicable to pure bending and combined bending and axial load cases simply because the area 

of effective confined concrete in compression is reduced. The higher eccentricity causes smaller 

confined concrete region in compression yielding smaller increase in strength and ductility of 

concrete. Accordingly, the ultimate confined strength is gradually reduced from the fully 

confined value fcc (at zero eccentricity) to the unconfined value f ’c (at infinite eccentricity) as a 

function of the compression area to total area ratio. The higher the eccentricity, the smaller the 

confined concrete compression zone. This paradigm is used to implement adaptive eccentric 

model utilizing the well known Mander Model.  

Generalization of the moment of area approach is utilized based on proportional loading, 

finite layer procedure and the secant stiffness approach, in an iterative incremental numerical 

model to achieve equilibrium points of P- and M- response up to failure. This numerical 

analysis is adapted to assess the confining effect in rectangular columns confined with 

conventional lateral steel. This model is validated against experimental data found in literature. 

The comparison shows good correlation. Finally computer software is developed based on the 

non-linear numerical analysis. The software is equipped with an elegant graphics interface that 

assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single 

sheet. Options for preliminary design, section and reinforcement selection are seamlessly 

integrated as well. The software generates 3D failure surface for rectangular columns and allows 

the user to determine the 2D interaction diagrams for any angle  between the x-axis and the 

resultant moment. Improvements to KDOT Bridge Design Manual using this software with 

reference to AASHTO LRFD are made. This study is limited to stub columns. 
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Chapter 1: Introduction 

1.1 Background 

Columns are considered the most critical elements in structures. The unconfined analysis 

for columns is well established in the literature. Structural design codes dictate reduction factors 

for safety. It wasn’t until very recently that design specifications and codes of practice, like 

AASHTO LRFD, started realizing the importance of introducing extreme event load cases that 

necessitates accounting for advanced behavioral aspects like confinement. Confinement adds 

another dimension to columns analysis as it increases the column’s capacity and ductility. 

Accordingly, confinement needs special non linear analysis to yield accurate predictions. 

Nevertheless the literature is still lacking specialized analysis tools that take into account 

confinement despite the availability of all kinds of confinement models. In addition the literature 

has focused on axially loaded members with less attention to eccentric loading. Although the 

latter is more likely to occur, at least with misalignment tolerances, the eccentricity effect is not 

considered in any confinement model available in the literature.  

It is widely known that code Specifications involve very detailed design procedures that 

need to be checked for a number of limit states making the task of the designer very tedious. 

Accordingly, it is important to develop software that guide through the design process and 

facilitate the preparation of reliable analysis/design documents.  

 
1.2 Objectives 

This study is intended to determine the actual capacity of confined reinforced concrete 

columns subjected to eccentric loading and to generate the failure envelope at three different 

levels. First, the well-known ultimate capacity analysis of unconfined concrete is developed as a 

benchmarking step. Secondly, the unconfined ultimate interaction diagram is scaled down based 

on the reduction factors of the AASHTO LRFD to the design interaction diagram. Finally, the 

actual confined concrete ultimate analysis is developed based on a new eccentricity model 

accounting for partial confinement effect under eccentric loading. The analyses are conducted for 

rectangular columns confined with conventional transverse steel. It is important to note that the 
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present analysis procedure will be benchmarked against a wide range of experimental and 

analytical studies to establish its accuracy and reliability. 

It is also the objective of this study to furnish interactive software with a user-friendly 

interface having analysis and design features that will facilitate the preliminary design of circular 

columns based on the actual demand. The overall objectives behind this research are summarized 

in the following points: 

 Introduce the eccentricity effect in the stress-strain modeling 

 Implement non-linear analysis for considering the confinement effects on 

column’s actual capacity  

 Test the analysis for rectangular columns confined with conventional transverse 

steel. 

 Generate computer software that helps in designing and analyzing confined 

concrete columns through creating three levels of Moment-Force envelopes; 

unconfined curve, design curve based on AASHTO-LRFD and confined curve. 

 
1.3 Scope 

This study is composed of four chapters covering the development of material models, 

analysis procedures, benchmarking and practical applications. 

 Chapter one introduces the objectives of the study and the content of the different 

chapters. 

 Chapter two reviews the literature through two independent sections: 

 Section 1: Reinforced concrete confinement models 

  Section 2: Rectangular Columns subjected to biaxial bending and Axial 

Compression 

 Chapter three presents rectangular columns analysis for both the unconfined and 

confined cases. Chapter three addresses the following subjects: 

o  Finite Layer Approach (Fiber Model)  

o  Present Confinement Model for Concentric Columns 

o Present Confinement Model for Eccentric Columns 
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o Moment of Area Theorem 

o Numerical Formulation 

o Results and Discussion 

 Chapter four states the conclusions and recommendations. 
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Chapter 2: Literature Review 

This chapter reviews two different topics; lateral steel confinement models and 

rectangular columns subjected to biaxial bending and axial compression. 

 
2.1 Steel Confinement Models 

A comprehensive review of confined models for concrete columns under concentric axial 

compression that are available in the literature is conducted. The models reviewed are 

chronologically presented then compared by a set of criteria that assess consideration of different 

factors in developing the models such as effectively confined area, yielding strength and 

ductility. 

 
2.1.1 Chronological Review of Models 

The confinement models available are presented chronologically regardless of their 

comparative importance first. After that, discussion and categorization of the models are carried 

out and conclusions are made. Common notation is used for all the equations for the sake of 

consistency and comparison. 

 
2.1.1.1 Notation 

As:   the cross sectional area of longitudinal steel reinforcement 

Ast:  the cross sectional area of transverse steel reinforcement 

Ae:   the area of effectively confined concrete 

Acc: the area of core within centerlines of perimeter spirals or hoops excluding area of 

longitudinal steel 

b:    the confined width (core) of the section 

h: the confined height (core) of the section 

c:   center-to-center distance between longitudinal bars 

d’s:   the diameter of longitudinal reinforcement  

d’st: the diameter of transverse reinforcement  

D:  the diameter of the column 
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ds   the core diameter of the column 

fcc:  the maximum confined strength 

f ’c:  the peak unconfined strength 

fl:     the lateral confined pressure 

f ’l:     the effective lateral confined pressure 

fyh:  the yield strength of the transverse steel 

fs:  the stress in the lateral confining steel 

ke:   the effective lateral confinement coefficient 

q:   the effectiveness of the transverse reinforcement 

s:  tie spacing 

so:  the vertical spacing at which transverse reinforcement is not effective in concrete 

confinement 

co:  the strain corresponding to the peak unconfined strength f ’c 

cc:  the strain corresponding to the peak confined strength fcc 

εy:   the strain at yielding for the transverse reinforcement 

εcu:  the ultimate strain of confined concrete 

ρs:  the volumetric ratio of lateral steel to concrete core 

ρl:   the ratio of longitudinal steel to the gross sectional area 

ρ:  the volumetric ratio of lateral + longitudinal steel to concrete core 

 

Richart, Brandtzaeg, and Brown (1929) 

Richart et al.’s (1929) model was the first to capture the proportional relationship 

between the lateral confined pressure and the ultimate compressive strength of confined 

concrete. 

 

lccc fkff 1
'     Equation 2.1 



6 

 

The average value for the coefficient k1, which was derived from a series of short column 

specimen tests, came out to be (4.1). The strain corresponding to the peak strength cc (see 

Mander et al. 1988) is obtained using the following function: 

 






















'21
c

l
cocc

f

f
k         12 5kk                                   Equation 2.2 

where co is the strain corresponding to f ’c, k2 is the strain coefficient of the effective lateral 

confinement pressure. No stress-strain curve graph was proposed by Richart et al. (1929).  

 

Chan (1955) 

A tri-linear curve describing the stress-strain relationship was suggested by Chan (1955) 

based on experimental work. The ratio of the volume of steel ties to concrete core volume and 

concrete strength were the only variables in the experimental work done. Chan assumed that OA 

approximates the elastic stage and ABC approximates the plastic stage (Figure 2.1). The 

positions of A, B and C may vary with different concrete variables. Chan assumed three different 

slopes Ec, Ec, Ec for lines OA, AB and BC respectively. However no information about 

and was provided.  
 

  

 

 

 

 

 

 

FIGURE 2.1 
General Stress-Strain Curve by 
Chan (1955) 
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Blume, Newmark, and Corning (1961) 

Blume et al. (1961) were the first to impose the effect of the yield strength for the 

transverse steel fyh in different equations defining the model. The model generated, Figure 2.2, 

has ascending straight line with steep slope starting from the origin till the plain concrete peak 

strength f ’c and the corresponding strain εco, then a less slope straight line connect the latter point 

and the confined concrete peak strength fcc and εcc. Then the curve flatten till εcu 

 

sh

fA
ff yhst

ccc 1.485.0 '           for rectangular columns   Equation 2.3 

psi

psifc
co 6

'

10

40022.0 
     Equation 2.4 

ycc  5                 Equation 2.5 

sucu  5     Equation 2.6 
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FIGURE 2.2 
General Stress-Strain Curve by Blume et 
al. (1961) 
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where εy is the strain at yielding for the transverse reinforcement, Ast is the cross sectional area of 

transverse steel reinforcement, h is the confined cross sectional height, su is the strain of 

transverse spiral reinforcement at maximum stress and cu is the ultimate concrete strain. 

 

Roy and Sozen (1965) 

Based on their experimental results, which were controlled by two variables; ties spacing 

and amount of longitudinal reinforcement, Roy and Sozen (1965) concluded that there is no 

enhancement in the concrete capacity by using rectilinear ties. On the other hand there was 

significant increase in ductility. They proposed a bilinear ascending-descending stress strain 

curve that has a peak of the maximum strength of plain concrete f ’c and corresponding strain co 

with a value of 0.002. The second line goes through the point defined by 50 till it intersects with 

the strain axis. The strain ε50 was suggested to be a function of the volumetric ratio of ties to 

concrete core ρs, tie spacing s and the shorter side dimension b’ (see Sheikh 1982). 

 

s

bs

4

'3
50

                Equation 2.7 

Soliman and Yu (1967) 

Soliman and Yu (1967) proposed another model that emerged from experimental results. 

The main parameters involved in the work done were tie spacing s, a new term represents the 

effectiveness of ties so, the area of ties Ast, and finally section geometry, which has three different 

variables; Acc the area of confined concrete under compression, Ac the area of concrete under 

compression and b. The model has three different portions as shown in Figure 2.3. The ascending 

portion which is represented by a curve till the peak point (f ’c, εce). The flat straight-line portion 

with its length varying depending on the degree of confinement. The last portion is a descending 

straight line passing through (0.8 f ’c, εcf) then extending down till an ultimate strain. 

 
 
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
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




    Equation 2.8 
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'
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ce cs cf

 qff ccc 05.019.0 '                             Equation 2.9 

610*55.0  ccce f                       Equation 2.10 

)1(0025.0 qcs                                                  Equation 2.11 

)85.01(0045.0 qcf                   Equation 2.12 

 

where q refers to the effectiveness of the transverse reinforcement, so is the vertical spacing at 

which transverse reinforcement is not effective in concrete confinement and B is the greater of b 

and 0.7 h. 
 

 

 

 

            

 

FIGURE 2.3 
General Stress-Strain Curve by 
Soliman and Yu (1967) 

 

Sargin (1971) 

Sargin conducted experimental work on low and medium strength concrete with no 

longitudinal reinforcement. The transverse steel that was used had different size and different 

yield and ultimate strength. The main variables affecting the results were the volumetric ratio of 

lateral reinforcement to concrete core ρs, the strength of plain concrete f ’c, the ratio of tie spacing 

to the width of the concrete core and the yield strength of the transverse steel fyh. 
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where m is a constant controlling the slope of the descending branch: 
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








    Equation 2.18 

'
3 ccc fkf      Equation 2.19 

where k3 is concentric loading maximum stress ratio. 

 

Kent and Park (1971) 

As Roy and Sozen (1965) did, Kent and Park (1971) assumed that the maximum strength 

for confined and plain concrete is the same f ’c. The suggested curve, Figure 2.4, starts from the 

origin then increases parabolically (Hognestad’s Parabola) till the peak at f’c and the 

corresponding strain co at 0.002. Then it descends with one of two different straight lines. For 

the confined concrete, which is more ductile, it descends till the point (0.5 f ’c, ε50c) and continues 

descending to 0.2f ’c followed by a flat plateau. For the plain concrete it descends till the point 

(0.5 f ’c, ε50u) and continue descending to 0.2f ’c as well without a flat plateau. Kent and Park 

assumed that confined concrete could sustain strain to infinity at a constant stress of 0.2 f ’c: 
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where ρs is the ratio of lateral steel to the concrete core, Z is a constant controlling the slope of 

descending portion. 

 

FIGURE 2.4 
Stress-Strain Curve by Kent and Park (1971) 
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Popovics (1973) 

Popovics pointed out that the stress-strain diagram is influenced by testing conditions and 

concrete age. The stress equation is: 

 

n

cc

ccc

c
ccc

n

n
ff





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











1

                    Equation 2.26 

0.110*4.0 3  
ccfn         Equation 2.27 

4410*7.2 cccc f    Equation 2.28 

Vallenas, Bertero, and Popov (1977) 

The variables utilized in the experimental work conducted by Vallenas et al. (1977) were 

the volumetric ratio of lateral steel to concrete core ρs, ratio of longitudinal steel to the gross area 

of the section ρl, ties spacing s, effective width size,  strength of ties and size of longitudinal bars. 

The model generated was similar to Kent and Park model with improvement in the peak strength 

for confined concrete (Figure 2.5). For the ascending branch: 
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c 3.0
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ccc kff      Equation 2.32 
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For the descending branch: 
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where k is coefficient of confined strength ratio, Z is the slope of descending portion, d’s and d’st 

are the diameter of longitudinal and transverse reinforcement, respectively. 
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FIGURE 2.5 
Stress-Strain Curve by Vallenas et al. (1977) 
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Wang, Shah, and Naaman (1978) 

Wang et al. (1978) obtained experimentally another stress-strain curve describing the 

behavior of confined reinforced concrete under compression, Figure 2.6. The concrete tested was 

normal weight concrete ranging in strength from 3000 to 11000 psi (20.7 to 75.8 MPa) and light 

weight concrete with strength of 3000-8000 psi (20.7 to 55 MPa). Wang et al. utilized an 

equation, with four constants, similar to that of Sargin et al.  

 

2

2

1 DXCX

BXAX
Y




    Equation 2.37 

where 

 

cc

c

f

f
Y      Equation 2.38 

cc

cX



     Equation 2.39 

The four constant A, B, C, D were evaluated for the ascending part independently of the 

descending one. The four conditions used to evaluate the constants for the ascending part were 

 
 dY/dX  = E0.45/Esec        at  X=0          Esec = fcc/cc 

 Y = 0.45   for X = 0.45/(E0.45/Esec)           

 Y=1  for X=1 

 dY/dX = 0 at  X=1 

whereas for the descending branch: 

 Y=1  for X=1 

 dY/dX = 0 at  X=1  

Y = fi/fcc  for    X = i/cc 
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FIGURE 2.6 
Proposed Stress-Strain Curve by 
Wang et al. (1978) 

 

where fi and i are the stress and strain at the inflection point, f2i and i refer to a point such that 

cciii  2 and E0.45 represents the secant modulus of elasticity at 0.45 fcc 

 

Y = f2i/fcc  for   X = i/cc 

Muguruma, Watanabe , Katsuta, and Tanaka (1980) 

Muguruma et al. (1980) obtained their stress-strain model based on experimental work 

conducted by the model authors, Figure 2.7. The stress-strain model is defined by three zones; 

Zone 1 from 0-A: 
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Zone 3 from D-E 
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                          (kgf/cm2) Equation 2.43 

 2000/100413.0 '
cu f         (kgf/cm2)   Equation 2.44 







 

W

s

f

f
Cc

c

yh

s 5.01
'

  Equation 2.45 

where S  is the area surrounded by the idealized stress-strain curve up to the peak stress and W is 

the minimum side length or diameter of confined concrete    

For circular columns confined with circular hoops: 

 

  '1501 ccc fCcf                            (kgf/cm2) Equation 2.46 

  cocc Cc  14601                     Equation 2.47 

  ucu Cc  9901                                  Equation 2.48 

whereas for square columns confined with square hoops: 

 

  '501 ccc fCcf                 (kgf/cm2) Equation 2.49 

  cocc Cc  4501      Equation 2.50 

  ucu Cc  4501              Equation 2.51 
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FIGURE 2.7 
Proposed Stress-Strain Curve by Muguruma et al. (1980) 

 

Scott, Park, Priestly (1982) 

Scott et al. (1982) examined specimens by loading at high strain rate to correlate with the 

seismic loading. They presented the results including the effect of eccentric loading, strain rate, 

amount and distribution of longitudinal steel and amount and distribution of transverse steel. For 

low strain rate Kent and Park equations were modified to fit the experimental data 
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where b” is the width of concrete core measured to outside of the hoops. For the high strain rate, 

the k and Zm were adapted to 
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  f’c is in MPa Equation 2.57 

and the maximum strain was suggested to be: 

 











300
9.0004.0 yh

scu

f
     Equation 2.58 

It was concluded that increasing the spacing while maintaining the same ratio of lateral 

reinforcement by increasing the diameter of spirals, reduce the efficiency of concrete 

confinement. In addition, increasing the number of longitudinal bars will improve the concrete 

confinement due to decreasing the spacing between the longitudinal bars. 

 

Sheikh and Uzumeri (1982) 

Sheikh and Uzumeri (1982) introduced the effectively confined area as a new term in 

determining the maximum confined strength (Soliman and Yu (1967) had trial in effective area 

introduction). In addition to that they, in their experimental work, utilized the volumetric ratio of 

lateral steel to concrete core, longitudinal steel distribution, strength of plain concrete, and ties 

strength, configuration and spacing. The stress-strain curve, Figure 2.8, was presented 

parabolically up to (fcc, εcc), then it flattens horizontally till εcs, and finally it drops linearly 

passing by (0.85fcc, ε85) till 0.3 fcc, In that sense, it is conceptually similar to the earlier model of 

Soliman and Yu (1967). 

fcc and εcc can be determined from the following equations: 
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5.0
     Equation 2.64 

where b is the confined width of the cross section, f ’st is the stress in the lateral confining bar, c is 

center-to-center distance between longitudinal bars,s85 is the value of strain corresponding to 

85% of the maximum stress on the unloading branch, n is the number of laterally supported 

longitudinal bars, Z is the slope for the unloading part, fcp is the equivalent strength of 

unconfined concrete in the column, and Pocc = Kpf'c(Acc - As) 
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FIGURE 2.8 
Proposed General Stress-Strain Curve by 
Sheikh and Uzumeri (1982) 

 

Ahmad and Shah (1982) 

Ahmad and Shah (1982) developed a model based on the properties of hoop 

reinforcement and the constitutive relationship of plain concrete. Normal weight concrete and 

lightweight concrete were used in tests that were conducted with one rate of loading. No 

longitudinal reinforcement was provided and the main two parameters varied were spacing and 

yield strength of transverse reinforcement. Ahmed and Shah observed that the spirals become 

ineffective when the spacing exceeds 1.25 the diameter of the confined concrete column. They 

concluded also that the effectiveness of the spiral is inversely proportional with compressive 

strength of unconfined concrete. 

Ahmad and Shah adapted Sargin model counting on the octahedral failure theory, the 

three stress invariants and the experimental results: 
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ip

iX

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     Equation 2.67 

where fpcs is the most principal compressive stress, fpcn is the most principal compressive strength, 

i is the strain in the i-th principal direction and ip is the strain at the peak in the i-th direction.  
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Ei is the initial slope of the stress strain curve, Di is a parameter that governs the 

descending branch. When the axial compression is considered to be the main loading, which is 

typically the case in concentric confined concrete columns, Equations 2.65, 2.66, and 2.67 

become: 
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secE
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A c     Equation 2.71 

 

Park, Priestly, and Gill (1982) 

Park et al. (1982) modified Kent and Park (1971) equations to account for the strength  

improvement due to confinement based on experimental work conducted for four square full 

scaled columns (21.7 in2 (14 000 mm2) cross sectional area and 10.8 ft (3292 mm) high (Figure 

2.9). The proposed equations are as follow: 
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FIGURE 2.9 
Proposed General Stress-Strain Curve by Park 
et al. (1982) 

 

Martinez, Nilson, and Slate (1984) 

Experimental investigation was conducted to propose equations to define the stress strain 

curve for spirally reinforced high strength concrete under compressive loading. The main 

parameters used were compressive strength for unconfined concrete, amount of confinement and 

specimen size. Two types of concrete where used; normal weight concrete with strength to about 
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12000 psi. (82.75 MPa) and light weight concrete with strength to about 9000 psi (62 MPa). 

Martinez et al. (1984) concluded that the design specification for low strength concrete might be 

unsafe if applied to high strength concrete. For normal weight concrete: 

 

  )1(4
'

'

st

lccc
d

s
fff     Equation 2.76 

and for light weight concrete: 
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fff     Equation 2.77 

where d’st is the diameter of the lateral  reinforcement. 

 

Fafitis and Shah (1985) 

Fafitis and Shah (1985) assumed that the maximum capacity of confined concrete occurs 

when the cover starts to spall off. The experimental work was done on high strength concrete 

with varying the confinement pressure and the concrete strength. Two equations are proposed to 

express the ascending and the descending branches of the model. For the ascending branch: 
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and for the descending branch: 
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The equations for the constant A and k: 
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 lcc ffk 01.0exp17.0     Equation 2.81 

 

fcc and εcc can be found using the following equations: 
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fl represents the confinement pressure and is given by the following equations: 
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ds is the core diameter of the column and de is the equivalent diameter. 

 

Yong, Nour, and Nawy (1988) 

The model suggested by Yong et al. (1988) was based on experimental work done for 

rectangular columns with rectangular ties (Figure 2.10). 
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Mander, Priestly and Park (1988) 

Using the same concept of effective lateral confinement pressure introduced by Sheikh 

and Uzumeri, Mander et al. (1988) developed a new confined model for circular spiral and hoops 

or rectangular ties (Figure 2.11). In addition Mander et al. (1988) was the second group after 

Bazant et al. (1972) to investigate the effect of the cyclic load side by side with monotonic one. 

 

FIGURE 2.10 
Proposed General Stress-Strain Curve by Yong 
et al. (1988) 
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where ke is the effective lateral confinement coefficient: 
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Ae is the area of effectively confined concrete, Esec = fcc/cc and Acc is area of core within 

centerlines of perimeter spirals or hoops excluding area of longitudinal steel. 
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For circular hoops 
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where s’ is the clear spacing, cc is the the ratio of longitudinal reinforcement to the core area

 2
iw  is the sum of the squares of all the clear spacing between adjacent longitudinal steel bars 

in a rectangular section. Mander et al. (1988) proposed calculation for the ultimate confined 

concrete strain cu based on the strain energy of confined concrete. 

 

FIGURE 2.11 
Stress-Strain Model Proposed by Mander 
et al. (1988)

 
 

Fujii, Kobayashi, Miyagawa, Inoue, and Matsumoto (1988) 

Fujii et al. (1988) developed a stress strain relation by uniaxial testing of circular and 

square specimen of 150 mm wide and 300 mm tall (Figure 2.12). The tested specimen did not 

have longitudinal bars and no cover. The proposed stress strain model has four regions; 
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Region 2 from A-B 

 

 
 

 ccc

ccco

ccc
ccc ffff 




 '
3

3




           cccco             Equation 2.103 

Region 3 from B-C 

 

 cccccc ff                                 20cccc        Equation 2.104 

Region 4 from C-end 

 

ccc ff 2.0                                                cc  20          Equation 2.105 

Fujii et al. (1988) defined three confinement coefficients for maximum stress Ccf, 

corresponding strain Ccu and stress degradation gradient C. For circular specimens, the peak 

strength and corresponding strain are as follow: 
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They showed that the proposed model has higher accuracy than Park et al. (1982) model 

compared to the experimental work done by Fujii et al. (1988). 
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FIGURE 2.12 
Proposed General Stress-Strain Curve by Fujii 
et al. (1988)  
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Saatcioglu and Razvi (1992) 

Saatcioglu and Razvi (1992) concluded that the passive lateral pressure generated by 

laterally expanding concrete and restraining transverse reinforcement is not always uniform. 

Based on tests on normal and high strength concrete ranging from 30 to 130 MPa, Saatcioglu 

and Razvi proposed a new model (Figure 2.13) that has exponential relationship between the 

lateral confinement pressure and the peak confinement strength. They ran tests by varying 

volumetric ratio, spacing, yield strength, arrangement of transverse reinforcement, concrete 

strength and section geometry. In addition, the significance of imposing the tie arrangement as a 

parameter in determining the peak confined strength was highlighted 
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For the stress strain curve 
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where 085 is the strain at 0.85 f ’c for the unconfined concrete 

 










































'
121/12

2
c

le

f

fk

cc

c

cc

c
ccc ff







                                         Equation 2.125 

where c is spacing of longitudinal reinforcement and is the angle between the transverse 

reinforcement and b. 

FIGURE 2.13 
Proposed Stress-Strain Curve by Saatcioglu and 
Razvi (1992-1999) 
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Sheikh and Toklucu (1993) 

Sheikh and Toklucu (1993) studied the ductility and strength for confined concrete and 

they concluded that ductility is more sensitive, than the strength, to amount of transverse steel, 

and the increase in concrete strength due to confinement was observed to be between 2.1 and 4 

times the lateral pressure. 

 

Karabinis and Kiousis (1994) 

Karabinis and Kiousis (1994) utilized the theory of plasticity in evaluating the 

development of lateral confinement in concrete columns. However, no stress-strain equations 

were proposed 

 

Hsu and Hsu (1994) 

Hsu and Hsu (1994) modified Carreira and Chu (1985) equation that was developed for 

unconfined concrete, to propose an empirical stress strain equations for high strength concrete. 

The concrete strength equation is: 
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where andare material properties.depends on the shape of the stress strain curve and  

depends on material strength and it is taken equal toand xd is the strain at 0.6 f'c. in the 

descending portion of the curve.  
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Rasheed and Dinno (1994)  

Rasheed and Dinno (1994) introduced a fourth degree polynomial to express the stress  

strain curve of concrete under compression. 
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21 ccccoc aaaaaf       Equation 2.129 

They evaluated the constants ao-a4 using the boundary conditions of the stress strain 

curve. Similar to Kent and Park, they assumed no difference between the unconfined and 

confined peak strength. 
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cccc fkf      Equation 2.130 

where  

 
1ck  

They used expression taken from Kent and Park model to evaluate the slope of the 

descending branch starting at strain of 0.003. A flat straight line was proposed when the stress 

reaches 0.2 fcc up to Cccc. where Cc is the ratio of maximum confined compressive strain to cc. 
The five boundary conditions used are: 

 
fc = 0 at  c=0 

d fc /dc = Ec at  c=0 

fc = f’c at  c= co 

d fc /dc = 0 at  c= co 

d fc /dc = -Z fc at  c =  

 

 



34 

 

El-Dash and Ahmad (1995) 

El-Dash and Ahmad (1995) used Sargin et al. model to predict analytically the behavior 

of spirally confined normal and high strength concrete in one series of equations. They used the 

internal force equilibrium, properties of materials, and the geometry of the section to predict the 

pressure. The parameters imposed in the analytical prediction where plain concrete strength, 

confining reinforcement diameter and yield strength, the volumetric ratio of lateral reinforcement 

to the core, the dimension of the column and spacing.  
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The values of A, B, k1, k2 and fl are defined by the following equations 
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where ds is the core diameter.  

 

Cusson and Paultre (1995) 

Unlike all the previous work, Cusson and Paultre (1995) built their model based on the 

actual stress in the stirrups upon failure and they did not consider the yield strength, as the 

experimental work have shown that the yield strength for the transverse steel is reached in case 

of well confined columns. The ascending and the descending branches in the model curve are 

expressed by two different equations (Figure 2.14). For the ascending portion: 
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For descending one: 
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where c50c  is axial strain in confined concrete when stress drops to 0.5 fcc. It is observed that 

equation (2.144) proposed by Cusson and Paultre is identical to equation (2.95) suggested by 

Mander et al. (1988). 

Following the same methodology of Sheikh and Uzumeri (1982) and Mander et al. 

(1988) Cusson and Paultre considered the lateral confinement pressure fl. 
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where Asx and Asy are the lateral cross sectional area of the lateral steel perpendicular to x and y 

axes respectively and fhcc is the stress in the transverse reinforcement at the maximum strength of 

confined concrete. 
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where  2
iw  is the sum of the squares of all the clear spacing between adjacent longitudinal 

steel bars in a rectangular section. fcc and cc can be found by the following equations 
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FIGURE 2.14 
Proposed Stress-Strain Curve by Cusson and 
Paultre (1995) 

 

Attard and Setunge (1996) 

Attard and Setunge (1996) experimentally determined full stress-strain curve for concrete 

with compressive strength of 60 –130 MPa and with confining pressure of 1-20 MPa, Figure 

2.15. The main parameters used were peak stress; strain at peak stress, modulus of elasticity, and 

the stress and strain at point of inflection. Attard and Setunge followed the same equation used 

by Wang et al. (1978). and Sargin (1971): 
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where 
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For the ascending branch, the four constant are determined by setting four conditions: 
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1 BD     Equation 2.158 

while for the descending curve the four boundary conditions were 
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1- at ccc ff  , 0
c

c

d

df


 

 2- at ccc ff  , ccc    

 3- at ic ff  , ic    

 4- at ic ff 2 , ic 2   

where fi and i refer to the coordinate of the inflection point. 

The four constants for the descending curve are 
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2 AC     Equation 2.161 

1 BD     Equation 2.162 

The fcc came out to be a function of the confining pressure, the compressive and tensile 

strength of concrete f ’c, fl, ft, and a parameter k that reflects the effectiveness of confinement. 
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No lateral pressure equation was provided 
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FIGURE 2.15 
Proposed Stress-Strain Curve by Attard and Setunge (1996) 

 

Mansur, Chin, and Wee (1996) 

Mansur et al. (1996) introduced casting direction, if the member is cast in 

place(vertically) or pre-cast (horizontally), as a new term among the test parameters, for high 

strength concrete, which were tie diameter and spacing and concrete core area. They concluded 

that the vertically cast confined fiber concrete has higher strain at peak stress and higher ductility 

than the horizontally cast specimen. In addition, vertically cast confined non-fiber concrete has 

larger strain than that of horizontally cast concrete with no enhancement in ductility. Mansur et 

al. utilized the same equations found by Carreira and Chu for plain concrete with some 

modifications. For the ascending branch, they used the exact same equation 

 












































 







cc

cc
ccc ff

1

   Equation 2.166 

where  is a material parameter depending on the stress strain shape diagram and can be found 

by : 



41 

 

 

ccc

cc

E

f







1

1
    Equation 2.167 

k1 and k2 are two constants  introduced in the equation describing the descending branch: 
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for confined horizontally and vertically cast non-fiber concrete: 
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for horizontally cast confined fiber concrete 
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and the values of fcc and cc can be obtained from the following equations for confined 

non-fiber concrete: 
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for confined  fiber concrete: 
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for vertically cast fiber concrete 

 
2

'
2.621 










c

yhs

co

cc

f

f



   Equation 2.175 

for horizontally cast fiber concrete and vertically cast non-fiber concrete 
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and for horizontally cast non-fiber concrete 
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Hoshikuma, Kawashima, Nagaya, and Taylor (1997) 

Hoshikuma et al. (1997) developed their models to satisfy bridge column section design 

in Japan. The model was based on series of compression loading tests of reinforced concrete 

column specimens that have circular, square and wall type cross sections. The variables that 

varied in the experimental wok were hoop volumetric ratio, spacing, configuration of the hook in 

the hoop reinforcement and tie arrangement. 
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Hoshikuma et al. (1997) asserted that the ascending branch represented in second degree 

parabola is not accurate to satisfy four boundary conditions: 

 
1. Initial condition fc= 0, εc=0. 

2. Initial stiffness condition dfc/d εc=Ec at εc=0. 

3. Peak condition fc=fcc at εc= εcc 

4. Peak stiffness condition dfc/dεc=0 at εc= εcc 

The function that defines the ascending branch is: 
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For the descending branch: 

 
 cccdesccc Eff                  Equation 2.180 

where Edes is the deterioration rate that controls slope of the descending line and can be found 

using the following equation 
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The peak stress and the corresponding strain for the circular section 
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while for the square section 
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Razvi and Saatcioglu (1999) 

Razvi and Saatcioglu modified their model of Saatcioglu and Razvi (1992) to fit the high 

strength concrete (30 – 130 MPa). The ascending zone is defined by Popovics equation as 

follow: 
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              Equation 2.186 

and for the descending branch: 
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Razvi and Saatcioglu (1999) showed the good agreement of the model with some 

experimental work available in the literature. 
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Mendis, Pendyala, and Setunge (2000) 

Mendis et al. (2000) modified Scott et al. (1982) equations to fit high strength concrete. 

They empirically adjusted Scott et al. (1982) equations to the following ones: 
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  cocc K  76.024.0 3     Equation 2.195 

'0032.028.0 cfR        0R    Equation 2.196 

55.0018.0 '  cfZ    Equation 2.197 

fl is calculated according to Mander equations. 

 

Assa, Nishiyama, and Watanabe (2001) 

A new model was proposed for concrete confined by spiral reinforcement based on 

concrete-transverse steel interaction. The two main parameters were concrete strength and lateral 

stress-lateral strain relationship that represents the response characteristics of the transverse steel 

to the lateral expansion of concrete. Assa et al. (2001) modeled a confinement mechanism and 
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limited the lateral expansion of the confined concrete with the maximum lateral expansion 

capacity. Assa et al. (2001) reached some relationships expressed in the following equations: 
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where lcu is the maximum lateral concrete strain. The proposed stress-strain curve has one 

equation: 
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where  controls the stiffness of ascending branch and  controls the slope of the descending 

branch: 
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where 80 is the strain at 0.8fcc . 

 

Lokuge, Sanjayan, and Setunge (2005) 

A simple stress-strain model was proposed based on shear failure. The model was based 

on the experimental results taken from Candappa (2000). Lokuge et al. (2005) proposed a 

relationship between axial and lateral strain: 
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where ’ is a strain at a point where axial strain and lateral strain curves deviate,  is the initial 

Poisson’s ratio, and a is a material parameter which depends on the uniaxial concrete strength 

 

  138.00002.010*8 '2'6  
cc ffv    Equation 2.207 

2818.10177.0 '  cfa    Equation 2.208 

where f’c is in MPa. 
  



48 

 

Binici (2005) 

Binici (2005) introduced a generalized formulas describing concrete under triaxial 

compression. The proposed stress strain curve is defined by elastic region then non linear curve. 

The axial compression is expressed using Leon-Paramono criterion as follow 
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where f’t is the uniaxial tensile strength, c is the softening parameter and is equal to one in 

hardening region and zero for residual strength and k is the hardening parameter and is equal to 

one at ultimate strength and softening region and is equal to 0.1 at the elastic limit. Binici (2005) 

defined three equations for determining the stress in the elastic, hardening and softening zones as 

follow: 

For elastic zone: 
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For the hardening zone: 
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For the softening zone: 
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where lc is the length of the specimen and Gfc is the compressive failure energy and is calculated 

as follow: 
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To fully define the stress strain curve for constant pressure, Equation 2.212 is used to 

define the limit stresses. These stresses are imposed in Equations 2.215 and 2.217 to fully define 

the stress strain curve. The lateral pressure is calculated using the lateral strain l found by: 
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where s is the secant Poisson’s ratio 
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whereas in case of changing lateral pressure, the lateral pressure is solved by equating the lateral 

strain in jacket to the lateral strain of concrete: 
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where Ej and j is the modulus of elasticity and volumetric ratio of the jacket respectively.  

 
2.1.2 Discussion  

As stated by many research studies, like Mander et al. (1988), Scott et al. (1982), Sheikh 

and Uzumeri (1980) and Shuhaib and Mallare (1993), the spirals or circular hoops are more 

efficient than the rectangular hoops. The uniform pressure generated by the circular hoop is one 

of the reasons of circular spirals advantage. 

According to Eid and Dancygier (2005), there are four main approaches for the modeling 

of confined concrete by lateral ties  

 

1. The empirical approach: in which the stress-strain curve is generated based on the 

experimental results. Fafitis and Shah (1985) and Hoshikuma et al. (1997) 

followed that approach. 

2. Physical engineering model based approach: the lateral pressure causing the 

confined behavior of the concrete core, is provided by the arch action between the 

lateral reinforcement ties. This approach was adopted by Sheikh and Uzumeri 

(1980), and was followed by Mander et al. (1988). 

3. The third approach is based either on the first approach or the second one, but it 

does not assume the lateral ties yielding. Instead, It include computation of the 

steel stress at concrete peak stress, either by introducing compatibility conditions, 

solved by iterative process as Cusson and Paultre (1995) did, or by introducing 

empirical expressions as Saatcigolu and Razvi  (1992) followed. 

4. A plasticity model for confined concrete core introduced by Karabinis and 

Kiousis (1994). The shape of the confined core is based on the arching action. 
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Based on the reviewed models, around 50% followed the empirical approach, whereas 

10% used the physical engineering approach, and the rest combined between the empirical and 

physical engineering approach.  

According to Lokuge et al. (2005), the stress strain models can be classified as three 

categories: 

 

1. Sargin (1971) based models: Martinez et al. (1984), Ahmad and Shah (1982), 

Eldash and Ahmad (1995) Assa et al. (2001). 

2. Kent and Park (1971) based models: Sheikh and Uzumeri (1982), Saatcigolu and 

Razvi (1992).  

3. Popovics (1973) based models: Mander et al. (1988), Cusson and Paultre (1995) 

and Hoshikuma et al. (1997). 

 

Most of the confined models were developed by testing small specimens that did not 

simulate the real cases for the actual column, and small portion used real columns to verify their 

works such as Mander et al. (1988). 

 
TABLE 2.1 

Lateral Steel Confinement Models Comparison 
 Long. 

steel 

spacing Lateral 

steel 

size 

Lateral 

steel 

config.

Effective 

area 

Section 

geometry

Lateral 

pressure 

Lateral 

steel 

stress 

Richart        *  

Chan *        

Blume   *   * * * 

Roy * *       

Soliman  *   *    

Sargin  * *    * * 
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 Long. 

steel 

spacing Lateral 

steel 

size 

Lateral 

steel 

config.

Effective 

area 

Section 

geometry

Lateral 

pressure 

Lateral 

steel 

stress 

Kent  * *    *  

Vallenas * * *    *  

Muguruma  * *   *   

Scott * * *    *  

Sheikh * * * *  * *  

Ahmed  *      * 

Park  * *    *  

Martinez  * *    *  

Fafitis  * *   * *  

Young * * *    *  

Mander * * * * * * * * 

Fujii  * *   * * * 

Saatcioglu * * * * * * * * 

El-Dash  * *    * * 

Cusson * * * * *  * * 

Attard  *     * * 

Mansur  *     * * 

Fujii  *    * * * 

Razvi * * * * * * * * 

Mendis * * * * *  * * 
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 Long. 

steel 

spacing Lateral 

steel 

size 

Lateral 

steel 

config.

Effective 

area 

Section 

geometry

Lateral 

pressure 

Lateral 

steel 

stress 

Assa       * * 

Binici       * * 

 

Table 2.1 shows that the most successful models considering the lateral pressure 

determination parameters are Mander et al. (1988) that lies in the third group according to 

Lokuge et al. (2005) comparison and Saatcioglu and Razvi (1992), second group (Razvi and 

Saatcioglu (1999) was developed for high strength concrete). For the sake of comparing three 

models, one from each group, with the experimental results, El-Dash and Ahmad Model (1995) 

is selected from the first group as the model that considered most of the contributing factors, 

Table 2.1, compared to Attard and Setunge (1996), Mansur et al. (1997), Martinez et al. (1984) 

and Sargin (1971) models. However El-Dash and Ahmad model was developed for spirally 

confined concrete, hence, it was eliminated from Rectangular column comparison. The model 

selected from group 2 is Mander et al. (1988) and that chosen from group 3 is Saatcioglu and 

Razvi (1992) as mentioned above. 

 
TABLE 2.2 

Experimental Cases Properties 
 Length 

(in.) 
Width 
(in.) 

Cover 
(in.) 

Fc 
(ksi)

Fy 
(ksi) 

Bars 
# 

Bars 
diameter 

(in.) 

Lateral 
steel 

diameter 
(in.) 

Spacing 
(in.) 

Fyh 
(ksi.)

Case1  19.69 Circular 0.98 4.06 42.8 12 0.63 0.47 1.61 49.3 

Case2 19.69 Circular 0.98 4.2 42.8 12 0.63 0.63 3.66 44.5 

Case3 17.7 17.7 0.787 3.65 57.13 8 0.945 0.394 2.83 44.8 
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The three models are compared with two experimental results, case 1 and case 2 for 

circular cross section columns, Table 2.2. All the three models are successfully capturing the 

ascending branch. However, Mander model is the best in expressing the descending one, Figure 

2.16 and 2.17.  
   

    

FIGURE 2.16 
Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995) 
Models Compared to Case 1 

 

 

 

 
FIGURE 2.17 
Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995) 
Models Compared to Case 2 
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For the case of rectangular column comparison, Figure 2.18, Saatcioglu and Razvi (1992) 

is better in capturing the ultimate compressive strength. Whereas Mander describes the softening 

zone better than Saatcioglu and Razvi model. Based on Table 2.1 and Figures 2.16, 2.17, and 

2.18, Mander model is seen to be the best in expressing the stress strain response for circular and 

rectangular columns. 

 
FIGURE 2.18 
Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995) 
Models Compared to Case 3 

 

2.2 Rectangular Columns Subjected to Biaxial Bending and Axial Compression 

Rectangular reinforced concrete columns can be subjected to biaxial bending moments 

plus axial force. When the load acts on one of the cross section bending axes the problem 

becomes uniaxial bending. However when the load is applied eccentrically on a point that is not 

along any of the bending axes the case becomes biaxial bending. The biaxial bending case can be 

found in many structures nowadays. This case is visited extensively in the literature disregarding 

the confinement effect. The failure surface of rectangular columns is 3D surface consisted of 

many 2D interaction diagrams. Each of the 2D interaction diagrams represents one angle 

between the bending moment about x-axis and the resultant moment. Many simplifications are 

introduced to justify the compressive trapezoidal shape of concrete, due to the two bending axes 

existence. This section reviews the previous work concerns rectangular columns subjected to 

biaxial bending and axial load chronologically. Hence, the review is classified according to its 

author/s.  
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2.2.1 Past Work Review 

2.2.1.1 A Study of Combined Bending and Axial Load in Reinforced 

Concrete Members (Hogenstad 1930) 

Hogenstad classified concrete failure subjected to flexure with or without axial load to 

five modes 

1. Failure by excessive compressive strain in the concrete with no yield in tensioned 

steel (compression failure). 

2. Tension failure where the tensioned steel yield cause excessive strain in the 

concrete. 

3. Balanced failure where tensioned steel yield at the same time compressive 

concrete fail. 

4. Compression failure where the tensioned steel pass the yield stress. 

5. Brittle failure caused by tensioned steel rupture after the cracks developed in the 

compressive concrete. 

6. Hogenstad (1930) suggested designing by the ultimate failure theory in his report 

as opposed to the linear elastic theory (standard theory) that was widely 

applicable up to nearly fifty years. He discussed some of the available inelastic 

theories that were limited to uniaxial stress according to him. The theories 

discussed were E. Suenson (1912), L. Mensch (1914), H. Dyson (1922), F. Stussi 

(1932). C. Schreyer (1933). S. Steuermann (1933). G. Kazinczy (1933). F. 

Gebauer (1934) O. Baunmann (1934). E. Bittner (1935). A. Brandtzxg (1935). F. 

Emperger (1936). R. Saliger (1936). C. Witney (1937), USSR specifications OST 

90003, (1938). V. Jensen1943. R. Chambaud (1949). Also Hognestad (1930) 

introduced his new theory of inelastic flexural failure. He sat equations for tension 

failure and compression one. 

 
2.2.1.2 A Simple Analysis for Eccentrically Loaded Concrete Sections 

(Parker and Scanlon 1940) 

Parker and Scanlon (1940) used elastic theory. 
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   Equation 2.221 

They developed a procedure by first calculating stresses at the four corners, then 

checking if all stresses are positive, no further steps are needed, otherwise, calculating center of 

gravity and recalculating moment of inertia then recalculating stress and determining the new 

position of the neutral axis. These steps are repeated till the internal forces converge with the 

applied one. 

 
2.2.1.3 Reinforced Concrete Columns Subjected to Bending about Both 

Principal Axes (Troxell 1941) 

Troxell (1941) Suggested that portion of the applied axial load can be used with the 

bending moment about one axis to find the maximum compressive and tensile strength in the 

cross section. Then the remaining load along with the other bending moment about the other axis 

can be used the same way, using the method of superposition. The summation stresses are the 

stresses generated from the section. He also suggested taking equivalent steel area in each side to 

facilitate the calculation procedure. 

 
2.2.1.4 Design Diagram for Square Concrete Columns Eccentrically 

Loaded in Two Directions (Anderesen 1941) 

Andersen (1941) implemented a new procedure for determining maximum compressive 

and tensile stresses on cross sections without determining the location of the neutral axis. The 

limitation of this procedure that it is just applied on square cross sections and the steel has to be 

symmetric. Based on the linear elastic theory and the perpendicularity of the neutral axis to the 

plane of bending which was proven in a previous study, Andersen derived stresses coefficients 

equations basically for cross sections reinforced with four bars, and then represented them 

graphically. This derivation was set after classifying the problem into three different cases based 

on the neutral axis location. 
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   Equation 2.222 
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kD

d
T



   Equation 2.223 

c1 = is a coefficient that is fully determined in his paper for each case of the three cases 

n = modular ratio 

P = steel ratio 

k = distance from apex of compression area to neutral axis divided by diagonal length  

D= diagonal length 

d = distance from corner to reinforcing bar 

These two values can be substituted in the following equations to determine the 

maximum compressive strength and tensile strength respectively 

 

2Ca

P
f c 

        Equation 2.224  

cs nTff 
    Equation 2.225 

where a  is the side length of cross section and P is force magnitude.
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FIGURE 2.19 
Relation between T and C by 
Andersen (1941) 

 

Anderesen (1941) plotted graphs relating T and C; Figure 2.19. It should be noted that the 

graphs differ with angle  and the ratio d/D variations. Andersen adapted his procedure to fit the 

8 bar reinforcement, as well as 16 bar one. That was done by finding the location of the 

equivalent four bars in the same cross section that yields the same internal moment and moment 

of inertia. 

 
2.2.1.5 Reinforced Concrete Columns under Combined Compression and 

Bending (Wessman 1946) 

Wessman (1946) introduced algebraic method under a condition of the plane of the 

bending coincides with the axis of symmetry. Based on the elastic theory, Wessman (1946) found 

that the distance between the applied load and the neutral axis a: 

 

p

p

Q

I
a 

    Equation 2.226 
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Ip = moment of inertia of the effective area with respect to the load axis 

Qp = the first moment of the effective area. 

 

The procedure proposed has very limited applicability since it required the applied load 

lies on the axis of symmetry, which consider a very special case. In addition it relies on the 

elastic theory. 

 
2.2.1.6 Analysis of Normal Stresses in Reinforced Concrete Section 

under Symmetrical Bending (Bakhoum 1948) 

Using the elastic theory and equating the internal forces and moments to the applied one, 

Bakhoum (1948) developed procedure in locating the neutral axis. This procedure was set for 

uniaxial bending. He also intensified the importance of taking the tensioned concrete into 

account while analyzing.  
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    Equation 2.227 

t

H
H '

    Equation 2.228 

3bt

nI
i ps

    Equation 2.229 

2bt

nS
s ps

    Equation 2.230 

H = distance between the load and the neutral axis 

N= modular ratio 

b= section width 

t = section height 
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Ips = Moment of inertia of the total reinforcement steel about the line parallel to the 

neutral axis through the point of application of the external force. 

Sps = Statical moment of the total reinforcement steel about the line parallel to the neutral 

axis through the point of application of the external force. 

The relation between  and  is plotted graphically; Figure 2.20.    
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FIGURE 2.20 
Relation between c and byBakhoum (1948) 

 

For the case of unsymmetrical bending, Bakhoum (1948) suggested three solutions; 

methods of center of action of steel and concrete, product of inertia method and method of 

mathematical successful trial. It is noted that the first two methods are trial and error methods, 

and all the three methods were built on the elastic linear theory. 
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2.2.1.7 Design of Rectangular Tied Columns Subjected to Bending with 

Steel in All Faces (Cervin 1948) 

The Portland cement association published “continuity in concrete frames” (third edition) 

that has an equation that relates the maximum load to the actual applied load and moment. It can 

be applied on a cross section: 

 

t

M
CDNP 

   Equation 2.231 

P = total allowable axial load on column section 

N= actual axial load on column section 

M = moment 

T = section height 

 

'45.0 c

a

f

f
C 

    Equation 2.232 

fa = the average allowable stress on axially loaded reinforced concrete column 

 

2

2

2R

t
D 

    Equation 2.233 

R = radius of gyration 

This equation is limited to reinforcement on the end faces. Crevin (1948) redefined the 

term D in the equation to fit reinforcement in the four faces as follow 

 
 

   22 1167.0

11

pgnyzx

pn
D





    Equation 2.234 
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    Equation 2.235 



63 

 

p = reinforcement ratio 

g = ratio between extremities of column steel and overall column depth 

x = ratio of total column steel at one end 

y = ratio of total column steel between centroid and one end 

z = arm from cetroid of steel ratio y to centroid of column 

t gt

gt
2 Z

y

X

CENTROID OF COLUMN

b

 

FIGURE 2.21 
Geometric Dimensions in Crevin Analysis (1948) 

 

He showed that x+yz2 vary from 0.25 to 0.5. The limitation of this equation applicability 

is that the ratio e/t has to be less than one. 

 
2.2.1.8 The Strength of Reinforced Concrete Members Subjected to 

Compression and Unsymmetrical Bending (Mikhalkin 1952) 

Mikhalkin (1952) performed studies on determination of the allowable load and ultimate 

load of biaxially loaded rectangular members. He developed design and analysis procedure for 

tension and compression failure according to ultimate theory, as he generated charts for design 

simplification based on the elastic theory using simple compatibility equations Figure 2.22 and 

2.23. These charts locate the concrete and steel centers of pressure with respect to the neutral 

axis.  
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FIGURE 2.22 
Concrete Center of 
Pressure versus Neutral 
Axis Location, Mikhalkin 
1952 
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FIGURE 2.23 
Steel Center of Pressure versus Neutral Axis 
Location, Mikhalkin 1952 
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2.2.1.9 Eccentric Bending in Two Directions of Rectangular Concrete 

Columns (Hu 1955) 

Hu (1955) followed the elastic assumption in building his analysis. He showed 

numerically that the slope of the neutral axis for non homogeneous section can be replaced by 

that of homogeneous one with small error percentage. He found algebraically the equilibrium 

equations 
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  Equation 2.238 

   npnqnqmQ yx  2

   Equation 2.239 

N = the normal compressive force 

b = section width 

d = section height 

fc = maximum concrete strength 

h and k define the position of the neutral axis 

c, cb, cd coefficients (functions of h) 

Ax = cover in x direction coefficient 

Ab = cover in y direction coefficient 

ex = load eccentricity from the geometric centroid (in x-direction) 

ey= load eccentricity from the geometric centroid (in y-direction) 
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    Equation 2.240 
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    Equation 2.243 

The previous equations are plotted graphically to obtain the unkown values k, n/bdf’c, 

Figure 2.24. 
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FIGURE 2.24 
Bending with Normal Compressive Force 
Chart np = 0.03, Hu (1955). In His Paper the 
Graphs Were Plotted with Different Values 
of np  0.03,0.1 ,0.3 

 

The first obvious interest in the ultimate strength of the structural members appeared in 

the first half of the past century. Prior to that, there were some designations to the importance of 

designing with ultimate strength. While Thullies’s flexural theory (1897) and Ritter’s 

introduction of the parabolic distribution of concrete stresses (1899) were introduced prior to the 
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straight line theory of Coignet and Tedesco (1900). The straight line theory became accepted due 

to its simplicity and the agreement with the tests’ requirements that time. Coignet’s theory grew 

widely till it was contradicted by some experimental work done on beams by Lyse, Slatter and 

Zipprodt in 1920’s, and on columns by McMillan (1921), as the concrete’s construction 

applicability was spreading out (ACI-ASCE committee 327(1956)). After 1950 there was a call 

to start working with the ultimate strength design as it was adopted in several countries in Europe 

and others, as the reinforced concrete design has advanced. This led the ACI-ASCE committee 

327 to propose the first report on ultimate strength design in 1956 (ACI-ASCE committee 

327(1956)). The committee members showed in their studies that the ultimate strength design 

load can be found accurately. 

They defined the maximum load capacity for concentric load 

 

yststgco fAAAfP  )(85.0 '

   Equation 2.244 

gA  = the gross area of the section. 

stA = steel bars area 

The committee considered minimum eccentricity value to design with. For tied columns 

the value was 0.1 times the section’s depth. 

For combined axial load and bending moment 
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uP = axial load on the section 

e= eccentricity of the axial load measured from the centroid of tensile reinforcement. 

sf = stress in the tensile reinforcement. 

udk = distance from extreme fiber to neutral axis, where uk is less than one 



68 

 

1k  = ratio of the average compressive stress to 0.85 '
cf , where 1k  is not greater than 0.85 

and is to be reduced at the rate of 0.5 per 1000 psi for concrete strength over 5000 psi. 

2k = ratio of distance between extreme fiber and resultant of compressive stresses to 

distance between extreme fiber and the neutral axis. 

1

2

k

k
 should not be taken less than 0.5. 

After ultimate strength design was released, the ACI committee 318 in their “Building 

code requirements for reinforced concrete (ACI 318-56)” approved the usage of the ultimate 

strength method for designing reinforced concrete members along with the standard method in 

1956. They conditioned that: 
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   Equation 2.247 

Given that the ratio e/t does not exceed 2/3 where 

byf
= the bending moment about y-axis divided by section modulus of the transformed 

section relative to y-axis. 

bzf = the bending moment about y-axis divided by section modulus of the transformed 

section relative to y-axis. 

e   = eccentricity of the load measured from the geometric centroid 

t    = overall depth of the column 

af = nominal axial unit stress. 

bf = allowable bending unit stress = 
 gsc pff '225.0*8.0

 

gp
= steel ratio to the gross area. 

sf = nominal allowable stress in reinforcement. 

 
2.2.1.10  Guide for Ultimate Strength Design of Reinforced Concrete 

(Whitney and Cohen 1957) 

Following this massive change in paradigm, Charles Whitney and Edward Cohen 

released their paper “ guide for ultimate strength design of reinforced concrete” which served as 
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a supplement to the ACI building code  (318-56). They suggested a linear relationship between 

the case of the pure bending and that of concentric load in the following equation 
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   Equation 2.248 

Mu = total moment of the plastic centroid of the section. 

Po  =  ultimate direct load capacity for a concentrically loaded short column. 

Pu  =   ultimate direct load capacity for an eccentrically loaded short column. 

Mo = the moment capacity without thrust as controlled by compressin assuming enough 

tensile steel to develop it in full and it is equal to  
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   Equation 2.249 

They limited the maximum moment allowed for design to Mu using the following 

equation 
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   Equation 2.251 

bdAp s /'' 
    Equation 2.252 

As
’ = compressive steel area. 

d = distance from extreme compressive fiber to centroid of tension force in tensile   

reinforcement. 

d’ = distance from extreme compressive fiber to centroid of tension force in compressive 

reinforcement. 

b = column width. 
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FIGURE 2.25 
Linear Relationship between Axial 
Load and Moment for Compression 
Failure Whitney and Cohen 1957 

 
2.2.1.11  Ultimate Strength Design of Rectangular Concrete Members 

Subjected to Unsymmetrical Bending (Au 1958) 

Au (1958) generated charts to calculate the equivalent compressive depth of the stress 

block based on assumed values of section’s dimensions and bars arrangements. The design 

equations were created complying with the ACI-ASCE assumptions. 

He showed that when a member is subjected to compressive force as well as bending, the 

section can be controlled either by tension or compression failure depending on the magnitude of 

eccentricities. 

His procedure is to first approximate the location of the neutral axis that can be made by 

observing that the applied load, the resultant of the tensile force in steel and the resultant of the 

compressive forces in compressive steel and concrete must all lie in the same plane. This 

classifies the problem as one of the three cases: 

1. Neutral axis intersects with two opposite sides 

2. Neutral axis intersects with two adjacent sides forming a compression zone bigger 

than half of the cross sectional area 
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3. Neutral axis intersects with two adjacent sides forming a compression zone 

smaller than half of the cross sectional area 

 

Equilibrium equations plus compatibility equations are needed when the section is 

controlled by compression (concrete crush). Whereas, equilibrium equations are sufficient in 

tension controlled cases. Tung specified two conditions based on ACI-ASCE report, that are the 

average stress  sf    is assigned to each tensioned bar and the resultant tensile force is considered 

the tensile bar group centroid. Based on that, the bars close to the neutral axis are ignored in 

computations. Having equilibrium equations, Tung denoted six dimensionless variables, two for 

each case of the three cases mentioned above and plotted charts relating each two associated 

variables Figures 2.26, 2.27, and 2.28. The charts generated have an output of determining the 

neutral axis position. The dimensionless variables utilized are: 
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FIGURE 2.26 
Section and Design Chart for Case 1(rx/b = 0.005), Au (1958) 
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FIGURE 2.27 
Section and Design Chart for Case 2, Au (1958) 
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FIGURE 2.28 
Section and Design Chart for Case 3(dx/b = 0.7, dy/t = 0. 7), Au (1958) 

 

t = total depth of rectangular section 

dy = distance from extreme compressive corner to centroid of tensile reinforcement 

measured in the direction of y-axis 

p’ = A’s/bt 

b = width of rectangular section 

m’ = m-1  , m =fy/0.85f’c 

d’y = distance from extreme compressive corner to centroid of compressive reinforcement 

measured in the direction of y-axis. 

Pu = ultimate direct load capacity for the member subject to bending in two directions 

ry = distance from centroid of tensile reinforcement to x’-axis. 

rx = distance from centroid of tensile reinforcement to y’-axis. 

e’y = eccentricity of ultimate direct load measured from centroid of rectangular section in 

the direction of y-axis 

d’x = distance from extreme compressive corner to centroid of compressive reinforcement 

measured in the direction of x-axis 
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dx = distance from extreme compressive corner to centroid of tensile reinforcement 

measured in the direction of x-axis 

e’x = eccentricity of ultimate direct load measured from centroid of rectangular section in 

the direction of x-axis. 

 
2.2.1.12 Design of Symmetrical Columns with Small Eccentricities in One 

or Two Directions (Wiesinger 1958) 

Using the section moment of inertia and the section modulus, Wiesinger (1957) 

introduced a new designing equation for the gross sectional area required by design for columns 

subjected to small eccentricities in one direction or two. Wiesinger (1957) proposed gross section 

equation: 
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and the capacity of a given column is calculated using the following equation 
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    Equation 2.262 

Ag = gross area 

As= Steel area 

t = column length in the direction of bending 
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Ig= gross moment of inertia in the bending direction 

Is= moment of inertia of steel in the bending direction 

e’ = eccentricity of the resultant load measured to center of gravity 

N= applied axial load 

Q= reduction factor = 0.8 for short tied column 

pg = As/Ag 

Fb= allowable bending unit stress that is permitted if bending stress existed = 0.45 f’c 

G = center to center steel in the direction of bending divided by column length in the 

direction of bending 

 
2.2.1.13 Biaxially Loaded Reinforced Concrete Columns (Chu and 

Pabarcius 1958)  

In 1958 Chu and Pabarcius introduced a new numerical procedure to determine the actual 

stresses for a give section. Their procedure was based on the inelastic theory showed earlier by 

Hogenstad. Initially, they assumed the cross section is in the elastic range, and assumed a 

location for the neutral axis. Then used the following formula that was found by Hardy Cross 

(1930), to solve for stresses 
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   Equation 2.263 

f = stress 

Ae = Area of the elastic portion. 

Iox = moment of inertia about x-axis 

Ioy = moment of inertia about y axis 

Ioxy = product of inertia 

M”oy =moment of the elastic portion about the y axis 

M”ox =moment of the elastic portion about the x axis 
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P” = axial force taken by the elastic portion. 

If the concrete and steel stresses lie in the elastic range, the above equation was used to 

locate a new position for the neutral axis, and comparing it with the assumed one. The whole 

process is repeated till the position of the calculated neutral axis coincides with the assumed one. 

On the other hand if any of the concrete or steel are beyond the elastic range, the plastic load and 

moments are calculating, then deducted from the total load and moments. The reminder is used, 

as the elastic portion of the load, to locate the neutral axis.  

 
2.2.1.14 Design Criteria for Reinforced Columns under Axial Load and 

Biaxial Bending (Bresler 1960) 

Bresler (1960) proposed a new approach of approximations of the failure surface in two 

different forms. He showed the magnitude of the failure load is a function of primary factors; 

column dimensions, steel reinforcement, stress-strain curves and secondary factors; concrete 

cover, lateral ties arrangement. He introduced two different methods. The first method named 

reciprocal load method  
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   Equation 2.264 

Pi =approximation of Pu 

Px = load carrying capacity in compression with uniaxial eccentricity x. 

Py = load carrying capacity in compression with uniaxial eccentricity y. 

Pu = load carrying capacity under pure axial compression 

The second method is the load contour  
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and this can be simplified to 
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By equating  and  for more simplification the interaction diagram can be plotted as 

shown in Figure 2.31 Bresler (1960) well correlated Equation 2.270 to experimental studies 

formed from eight columns, and analytically showed the strength criteria can be approximated by 
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FIGURE 2.29 
Graphical Representation of Method One by 
Bresler (1960) 
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FIGURE 2.30 
Graphical Representation of Method Two 
by Bresler (1960) 
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Interaction Curves Generated from Equating  
and by Bresler (1960) 
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2.2.1.15  Rectangular Concrete Stress Distribution in Ultimate Strength 

Design (Mattock and Kritz 1961) 

Mattock and Kritz (1961) determined five cases for the position of the neutral axis with 

respect to the rectangular cross section; when the neutral axis cut through two adjacent sides with 

small and big compression zone, the neutral axis intersect with the section length or width and 

when it lies outside the cross section. They implemented formulas for calculating the position of 

the neutral axis based on the load and moment equilibrium and the geometry of the compression 

zone. 

 
2.2.1.16 Square Columns with Double Eccentricities Solved by 

Numerical Methods (Ang 1961) 

Ang (1961) introduced a numerical method to solve the problem. He proposed iterative 

process to find equilibrium between internal forces and applied ones, by assuming a position for 

the neutral axis. The location of the neutral axis kept changing till equilibrium. However, he 

calculated stresses based on Bernoulli’s plane theorem which was built upon straight line theory 

(elastic theory). The stress of the extreme compression fiber was approximately calculated 

according to the specification of AASHTO 1957 “Standard specifications for highway bridges”. 

 
2.2.1.17 Ultimate Strength of Square Columns under Biaxially Eccentric 

Load (Furlong 1961) 

Furlong (1961) analyzed square columns that have equal reinforcement in the four sides 

and reinforcement in two sides only, to visualize the behavior of rectangular columns that has 

unsymmetrical bending axis. He used a series of parallel neutral axis with the crushing ultimate 

strain of 0.003 at one of the section corners to develop a full interaction diagram at one angle. 

And by using different angles and locations of the neutral axis a full 3D interaction surface can 

be developed. He was the first to introduce this procedure. Furlong (1961) concluded that the 

minimum capacity of a square column, having equal amount of steel in all sides, exists when the 

load causes bending about an axis of 45 degree from a major axis. He also concluded that 
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Mx = moment component in direction of major axis. 

My = moment component in direction of minor axis. 

Mx = moment capacity when the load acts along the major axis. 

My= moment capacity when the load acts along the minor axis. 

 
2.2.1.18 Tie Requirements for Reinforced Concrete Columns (Bresler 

and Gilbert 1961) 

Bresler (1961) introduced the importance of the tie confinement in columns as objects to 

hold the longitudinal bars in place and prevent them from buckling after the cover spalling off. 

No concrete strength improvement was discussed. 

 
2.2.1.19 Analytical Approach to Biaxial Eccentricity (Czerniak 1962) 

Czerniak (1962) proved that the slope of the neutral axis is depending on the relative 

magnitude of moment about the X axis to the moment about the Y axis and the geometry of the 

sections and it is independent of the magnitude of bending moment and the applied force for the 

elastic range. According to the effective compressive concrete, Czerniak (1962) determined five 

cases based on the location of the neutral axis, Figure 2.44.  

(a) (b) (c) (d) (e)

 
FIGURE 2.32 
Five Cases for the Compression Zone Based on the Neutral 
Axis Location Czerniak (1962) 

 

He developed an iterative procedure for locating the neutral axis position for a given 

cross section, by using equations 2.272 and 2.273 to determine the initial position of the neutral 

axis 
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a = x-intercept of the neutral axis line 

b  = y-intercept of the neutral axis line 

xyI = elastic product of inertia of the area about the origin  

oxI =elastic moment of inertia of the area about the x-axis 

oyI =elastic moment of inertia of the area about the y-axis

 
oxQ  = moment area about x-axis (within elastic region) 

oyQ  = moment area about y-axis (within elastic region) 

A = area of transformed section (within elastic regions)

 pY = y-coordinate of the applied eccentric load 

pX = x-coordinate of the applied eccentric load 

then calculating the new section properties, effective concrete and transformed steel, and 

finding the new values of Xp and Yp. 
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and solving for a, b again and repeat the procedure up till convergence. 

As for ultimate strength design, Czerniak (1962) proved with some simplification that the 

neutral axis is parallel to concrete plastic compression line and steel plastic tension and 
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compression line, so they can be found by multiplying the location of the neutral axis by some 

values. The ultimate eccentric load and its moment about x and y axis can be found from: 
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 xsxsxcoxux mQQmQQQ  '' )1(
   Equation 2.276  
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   Equation 2.277 

of  = stress intensity at the origin

 
and the x-axis and y-axis intercept of the neutral axis are found: 
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where 
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xcQ = moment of area about x-axis of the plastic portion of the concrete effective section 

ycQ = moment of area about y-axis of the plastic portion of the concrete effective section 

xsQ  = moment of area about x-axis of the plastic portion of the yielded tensile 

reinforcement 

ysQ  = moment of area about y-axis of the plastic portion of the yielded tensile 

reinforcement 
'
xsQ = moment of area about x-axis of the plastic portion of the yielded compressive 

reinforcement 
'
ysQ = moment of area about y-axis of the plastic portion of the yielded compressive 

reinforcement 
'
uA = equivalent plastic transformed area. 

ucA  = area of concrete under plastic compression 

usA = area of yielded tensile reinforcement 
'
usA = area of yielded compressive reinforcement. 

uP  = ultimate strength of eccentrically loaded cross section 

uxM = moment of the ultimate load about x-Axis 

uyM = moment of the ultimate load about y-Axis 

''
cf  = maximum concrete stress at ultimate loads (assumed as 0.85 f’c) 

"
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y

f

f
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2.2.1.20 Failure Surfaces for Members in Compression and Biaxial 

Bending (Pannell 1963) 

Pannell implemented a relation between the failure moment about y-axis for a given load 

and the y component of radial moment with the same load. The formula was found based on 

deviation study between the actual load contour curve and an imaginary curve found from the 

revolution of the failure point about y axis, with the same load, about the z axis. The equation 

found for sections that have equal steel in each face: 
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             Equation 2.283 
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     Equation 2.284 

Mfy = failure moment for some load in plane y 

= angle between y and the transformed failure plane 

He showed that his formula is more accurate and conservative than that of Bresler. He 

also developed a chart for N for unequal steel distribution; Figure 2.33.  
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FIGURE 2.33 
Values for N for Unequal Steel Distribution by Pannell (1963) 
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2.2.1.21 Ultimate Strength of Column with Biaxially Eccentric Load 

(Meek 1963) 

Meek (1963) assumed constant ratio of moment about the x-axis and the y-axis. 

Consequently, increasing the force will increase the moment proportionally.  
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   Equation 2.285 

Using the above relation a location of  the neutral axis is selected. Then this location is 

adjusted until the following relation is satisfied 
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   Equation 2.286 

He also showed set of experimental points correlated well to the theoritical interaction 

diagram developed. 

 
2.2.1.22 Biaxial Eccentricities in Ultimate Load Design (Aas-Jakobsen 

1964) 

To comply with local design code, Aas-jakbosen (1964) replaced biaxially eccentric load 

acts on a regtangular cross section with an equivelant load acts on the main axis of symmetry 

with an equivelant moment. He showed , using moment and force equilibrium, that the eqivelant 

moment  Me: 

 
 mcMPeM xe 1

   Equation 2.287 

yx

xy

te

te
c 

               Equation 2.288 

21 cm      Equation 2.289 
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The moment M1 is small additional moment depends on failure mode and some other 

factors. And in most cases it is equal to zero.  

 
2.2.1.23 Design of Columns Subjected to Biaxial Bending (Fleming and 

Werner 1965) 

Fleming and Werner (1965) utilized the formulas found by Mattock (1961) for locating 

the neutral axis in the different cases of the compression zone shape along with Furlong (1961) 

method, by varying the location and inclination angle of the neutral axis, to plot the interaction 

diagram. Fleming and Werner (1965) plotted dimensionless interaction diagram for a square 

cross section for fourteen cases using parameters that is commonly used. 
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FIGURE 2.34 
Design Curve by Fleming et al. (1961) 

 
2.2.1.24 Investigation of the Ultimate Strength of Square and Rectangular 

Column under Biaxially Eccentric Loads (Ramamurthy 1966) 

Ramamurthy (1966) proposed a new method for defining the load contour for sections 

having eight or more bars distributed evenly. He mentioned that the available methods of design 

of biaxially loaded column are trial and error procedure and determination of ultimate load from 

failure surface. He showed that columns containing four bars behave differently than those 

containing eight or more bars with the same reinforcement ratio. He found theoretically for 

square columns that the neutral axis inclination angle and the angle formed between the load ray 
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and y-axis are almost equal. And the relation between the moment and the moment about x-axis 

in any load contour level is equal to 

 
 3sin1 uxoux MM

   Equation 2.290 

Mux =ultimate moment about x-Axis 

Muxo = uniaxial moment on the same load contour of Mux 

 = inclination of the neutral axis to x-axis angle 

Equation 2.293 can be simplified to  

 
   secsin1 3 uxou MM

   Equation 2.291 

Mu =ultimate radial load about z axis 

and with plotting the previous equation against some actual load contour he found the 

following relation is more accurate especially for small angle () 

 







 

45
1.01


uxou MM
    Equation 2.292 

Similarly for rectangular columns, by finding the transformed shape of the rectangular 

interaction diagram to the square ones using   some similar triangles calculations 
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     Equation 2.293 

 = transformed equivalent angle of  

K = transformation factor equal to  
uyo

uxo

M

M

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Also he showed that the upper equation is in good comparison with experimental actual 

load contour. He plotted the relation between  and  for different ratios of length to width for 

rectangular columns. 


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FIGURE 2.35 
Relation between  and  
by Ramamurthy (1966)  

 

 
2.2.1.25 Capacity of Reinforced Rectangular Columns Subjected to 

Biaxial Bending (Parme, Nieves, and Gouwens 1966) 

 

Parme et.al (1966). suggested relating the biaxial bending to the uniaxial resistance. They 

restated Bresler equation  
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   Equation 2.294 

Mx =  uniaxial ultimate moment capacity about x-axis  

Muy = uniaxial ultimate moment capacity about y-axis 

Mx= biaxial bending capacity component about x-axis. 

My= biaxial bending capacity component about y-axis. 
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 is a function of reinforcement position, column dimension and the materialistic 

properties of steel and concrete. Parme et.al (1966) used a computer program to obtain values for 

. Then  was represented graphically in four charts, Figure 2.37, 2.38, 2.39, 2.40.  
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FIGURE 2.36 
Biaxial Moment Relationship by 
Parme et al. (1966) 
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FIGURE 2.37 
Biaxial Bending Design Constant (Four Bars Arrangement) by Parme et al. 
(1966) 
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FIGURE 2.38 
Biaxial Bending Design Constant (Eight Bars Arrangement) by Parme et al. 
(1966) 
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FIGURE 2.39 
Biaxial Bending Design Constant (Twelve Bars Arrangement) by Parme 
et al. (1966) 
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FIGURE 2.40 
Biaxial Bending Design Constant (6-8-10 Bars Arrangement) by Parme et 
al. (1966) 

 Parme et al. (1966) showed agreement between the suggested Equation 2.297 and the 

theoretical one calculated with equilibrium equations. Furthermore, they simplified the 

exponential representation of the upper equation by introducing two equations for two straight 

line starting from My/Muy =1 and Mx/ Mux =1 intersecting at the point of equal relative 

moment Figure 2.41. The equations of the two straight lines are as follow: 
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   Equation 2.296 
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FIGURE 2.41 
Simplified Interaction Curve by Parme et al. 
(1966)

  

2.2.1.26 Ultimate Strength Design Charts for Columns with Biaxial 

Bending (Weber1966) 

Based on Furlong conclusion that the most critical bending axes is the 45 degree ones 

after the major and minor axes in the case of biaxial bending. Weber (1966) generated sixteen 

chart for the 45 degree interaction diagrams for square columns. the columns are having 

symmetrical reinforcement with different amount of steel bars. Design aids in the 1970 ACI SP-

17A Handbookl2 and the 1972 CRSI Handbookl3 were based on interaction diagrams developed 

be Weber (1966). 

 

 
2.2.1.27 Working Stress Column Design Using Interaction Diagrams 

(Mylonas 1967) 

Mylonas (1967) adapted the interaction diagrams charts generated in the ACI Design 

handbook (1965), that were mainly for columns subjected to axial load and uniaxial bending and 

the steel is distributed on two faces parallel to the bending axis, to fit cases of biaxial bending 

and steel distributed along the four faces. Two reduction factors were introduced , one for each 

zone (Figure 2.42).  
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FIGURE 2.42 
Working Stress Interaction Diagram for 
Bending about X-Axis by Mylonas (1967) 

 

for zone 2: 

 

x
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    Equation 2.297

 

kx  is the moment of the steel distributed on two faces and is equal to 

 

 


2

2

5.0s
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

   Equation 2.298 

  gxx pgnw 2123 
   Equation 2.299

 

gx =bars center 

pg = steel ratio 

as = section area of arbitrary bar  

 x = bar distance from x-axis divided by gx t(section height) 
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For zone 3 

 

 oxx
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P

N
kr 

'

'
'

   Equation 2.300 

Kox is the moment reduction factor for pure bending about x-axis  
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   Equation 2.301 

P’bx = load at balance failure 

N’ = normalized axial load 

Mylonas (1967) also suggested that the applied bending moment should be compared to 

the reduced moment capacity, the moment capacity found from uniaxial bending interaction 

chart, of the section in form 
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   Equation 2.302 

M’x ,M’y are the applied moment 

M’xx ,M’yy moment capacity 

 

 

 
2.2.1.28 Comparison of Experimental Results with Ultimate Strength 

Theory for Reinforced Concrete Columns in Biaxial Bending 

(Brettle and Taylor 1968) 

Brettle and Taylor (1968)  suggested partitioning the cross section into small size area, 

and using the limiting strain and the neutral axis position in calculating stresses in each filament 

using  curvilinear stress distribution or rectangular stress distribution or trapezoidal stress 
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distribution for concrete. They generated ultimate strength design charts relating  Pu/Po to er/b for 

different t/b ratios and different inclination angle beween the line conecting the load to the 

centroid and the x-axis.  
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FIGURE 2.43 
Comparison of Steel Stress Variation for 
Biaxial Vending When  = 30 and q = 
1.0

Brettle and Taylor (1968)   
 

           er = resultant eccentricityed  

            t = section height 

            b  = section width 

            Po = theoretical ultimate load with no eccentricities 

 Pu= theoretical ultimate load with eccentricities 

 
2.2.1.29 Biaxial Flexure and Axial Load Interaction in Short Rectangular 

Reinforced Concrete Columns (Row and Paulay 1973) 

Row and Paulay (1974) introduced six charts relating the m to Pu/f’cbh to facilitate the 

design process. However these charts are applicable to limited cases only based on the material 

properties required for design 
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2.2.1.30 Biaxial Bending Simplified (Gouwens 1975) 

Gouwens (1975) proposed simplified analytical equations for design column subjected to 

biaxial bending. He utilized Parme et al. (1966) simplified moment Equations 2.298 and 2.299. 

He found that   approaches 1 for 0.25 f’c bh by examining 67 column cases. Based on that he 

proposed  equations as follow: 

For   P ≥ 0.25 Cc 
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For   P < 0.25 Cc 
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2.2.1.31 Analysis of Short Rectangular Reinforced Concrete Columns 

Subjected to Biaxial Moments (Sallah 1983) 

Sallah (1983) evaluated the Parameter  , found by Parme et al. (1966) and found that it 

was most affected by fy, f ’c , r, Pu/Puo and less affected by the number of bars. Sallah (1983) 

introduced number of charts similar to Parme et al.’s (1966) for finding 

 
2.2.1.32 Design Contour Charts for Biaxial Bending of Rectangular 

Reinforced Concrete Columns Using Bresler Method (Taylor 

and Ho 1984)  

Taylor and Ho (1984) developed a computer program to generate the two main 

interaction diagrams (with uniaxial bending-one for each axis). These two charts were used to 

generate the whole biaxial failure surface (and the failure contours)using Bresler equations. 

Different positions of parallel neutral axis and crushing strain of concrete were used to generate 

strain profile. The stresses were generated by stress block or other accepted formulas. And forces 

and moments were calculated. They plotted chart showing the load tracing on the cross section. 
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FIGURE 2.44 
Non Dimensional Biaxial Contour on 
Quarter Column by Taylor and Ho (1984) 
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2.2.1.33 Radial Contour Method of Biaxial Short Column Design (Hartley 

1985) 

Hartley (1985) proposed two design procedure, one for finding the cross sectional length 

and the other to calculate the steel reinforcement, given all other desin parametes. He showed an 

optimum point to exist on the 3 D. interaction diagram that relates to the smallest area of the 

cross section. Initially, he showed the relation between the load and eccentricity in the form: 

 
















b

e
C

P

P

o

uln
   Equation 2.310 

where c is a curve constant,b is section length and e is force eccentricity the initial value of the 

cross section length can be found by 
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   Equation 2.311 

Hartley (1985), using computer program, plotted graphically the relation between the 

cross sectional area and the ratio of Pu/Po. These charts can be used to determine the suitable 

length in design. 
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FIGURE 2.45 
Pu/Puo to A Relation for 4bars Arrangement by Hartley (1985) (left) 
Non-Dimensional Load Contour (Right) 
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 Hartley (1985)  also showed the relation between the R and  in the load contour by 

 
2sin1 nAR                    Equation 2.312

 

where R and  are showen in Figure 2.45 (right). 

 
2.2.1.34 Expert Interactive Design of R/C Columns under Biaxial 

Bending (Sacks snd Buyukozturk 1986) 

Sacks and Buyukozturk (1986) developed computer software EIDOCC (Expert 

interactive design of concrete columns)  to analyse and design columns subjected to biaxial 

bending. The procedure as follow 

1. Finding the neutral axis location, according to Ramamurthy procedure, such that 
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   Equation 2.313 

eux = ultimate eccentricity measured parallel to x-axis      

euy = ultimate eccentricity measured parallel to y-axis      

ex = eccentricity measured parallel to x-axis      

ey = eccentricity measured parallel to y-axis 

 

2. Using the neutral axis depth,c, for the balanced failure as initial value 

3. Calculating Pu and iterating for c using modified secant numerical method till the 

load is very close to Pu 

4. Calculating euy, eux and comparing them to ey, ex to check section adequacy.  
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2.2.1.35 Interactive Design of Reinforced Concrete Columns with Biaxial 

Bending (Ross and Yen 1986) 

Ross and Yen (1986) developed a computer program to analyze and design rectangular 

columns subjected to biaxial bending. The procedure is to change the inclination angle of the 

neutral axis to find adequate relation between Mnx, Mny, and then change the position of the 

neutral axis to solve for the axial load. The section capacity is calculated using a predifined 

postion of the neutral axis and crushing strain equal to 0.003 for concrete. They suggested using 

four bars initially in the design process and keep increasing according to the applied loads with 

limiting the number of bars as stated by ACI code. 

 
2.2.1.36 Design of Columns Subjected to Biaxial Bending (Horowitz 

1989) 

Horowitz (1989) developed a computer program for columns with any cross section 

subjected to biaxial bending. He relied on finding the least possible location of steel bars that 

make the section capacity more than the applied load. 

 
2.2.1.37 Strength of Reinforced Concrete Column in Biaxial Bending 

(Amirthandan 1991) 

Amirthandan et.al (1991) showed good corelation between the experimental work done 

before and the method propsed in the austrailian standard for concrete structures AS 3600 for 

short columns. The load contour in the standard is approximated by bresler equation. They 

adopted the beta value from the British standard 

 
 NuoN 6.0/7.17.0                Equation 2.314 

N = design axial force 

Nuo = ultimate axial load. 
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2.2.1.38 Computer Analysis of Reinforced Concrete Sections under 

Biaxial Bending and Longitudinal Load (Zak 1993) 

Zak (1993) proposed solving  the equilibrium equation with the modification of the 

secant modulus method. The ultimate strain was not determined. However, it was found using 

maximization  method. 

 
2.2.1.39 Analysis and Design of Square and Rectangular Column by 

Equation of Failure Surface Hsu (1994) 

Hsu (1994) proposed equation that covers columns subjected to biaxial bending and axial 

compression or tension. The proposed equation is as follow: 
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Equation 2.315 

 

Pn = nominal axial compression or tension 

Mnx, Mny= nominal bending moments about x and y axis 

Po = maximum nominal axial compression or axial tension 

Pnb = nominal axial compression at balanced strain condition 

Mnbx, Mnby  = nominal bending moments about x and y axis at balanced strain 

condition. 
 

2.2.1.40 Biaxial Interaction Diagrams for Short RC Columns of Any 

Cross Section (Rodriguez and Ochoa 1999) 

Rodriguez and Ochoa (1999) proposed a general method for analyzing any cross section 

subjected to biaxial bending. They developed closed form solution for nominal total axial force 

strength and nominal bending moment strengths about the global X and Y-axes. Quasi-Newton’s 

method was used to solve these coupled nonlinear equations to locate the neutral axis position. 
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Equation 2.318 

Pn= Nominal axial force strength. 

Mnx = nominal bending moment strength about x axis 

Mny = nominal bending moment strength about x axis 

Xa, Ya = coordinates of origin with respect to global x, xaxes 

 = angle of inclination of neutral axis with respect to Xaxis; 

n = number of reinforcement bars; 

nbc = number of rebars located on compression side of cross section; 

nt = number of trapezoids used to approximate concrete under compression; 

Abi = area of steel rebar i; 

fci = concrete stress at reinforcement bar i 

fsi = steel stress at reinforcement bar i 

Pci = force for each trapazoid.  

Mciy = Moment of each trapazoid about y axis. 

Mcix = Moment of each trapazoid about x axis. 

 
2.2.1.41 Short Reinforced Concrete Column Capacity under Biaxial 

Bending and Axial Load (Hong 2000) 

Hong (2000) did not assume any crushing strain limit. He proposed two equation from 

equating forces and moments: 
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    Equation 2.319 

0e - 
P

M
 yL

n

x 
    Equation 2.320

 

where exl , eyl is the load eccentricity to x and y axes respectively.The two equations has three 

unknows; the curvature, neutral axis inclination angle and the neutral axis intercipt with the y-

axis. Hong (2000) used the sequential quadratic programming method to solve the case as a 

nonlinearly constrained optimization problem. 

 
2.2.1.42 Reliability of Reinforced Concrete Columns under Axial Load 

and Biaxial Bending (Wang and Hong 2002)  

Wang and Hong (2002) evaluated the parameter  (Parme et al. 1966) and fount that it is 

insensitive to the reinforced ratio, it is more sensitive to biaxial bending than uniaxial bending, it 

increases withload and concncrete compressive strength.  

 
2.2.1.43 Analysis and Design of Concrete Columns for Biaxial Bending: 

Overview (Furlong, Hsu, and Mirza 2004) 

Furlong et al. (2004) reviewed many of the proposed formulas for analysis. These 

formulas were compared to experimental work. They concluded that the equations of Bresler 

(1960), although simple, are not very conservative, while Hsu equation is much more 

conservative. As Hsu equation can be used in biaxial bending and tension as well. However, both 

Hsu equation and Bresler reciprocal load equation can not be used in selecting cross section, 

unlike Bresler load contour equation.  

 
2.2.1.44 New Method to Evaluate the Biaxial Interaction Exponent for RC 

Columns (Bajaj and Mendis 2005) 

Bajaj and Mendis (2005) suggested new equations to evaluate the biaxial interaction 

exponenet a found by Bresler (1960). The proposed equations are as follow 
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              Equation 2.322 

Bajaj and Mendis (2005) benchmarked their equastion by comparing the results with 

experimental work done on 8 (150* 150 mm) columns. 

 
2.2.1.45 Analysis of Reinforced Concrete Columns Subjected to Biaxial 

Loads (Demagh, Chabil, and Hamzaoui 2005) 

Demagh et al. (2005) suggested solving for the three equations of equilibrium to find the 

nominal force Pn, the inclination angle of the neutral axis  and the depth of the neutral axis b. 

The three equation are: 

 
  sicisicin AffPP  

   Equation 2.323 

  sisicisiciciciynnx yAffPYxMyMePM    cossin
 Equation 2.324 

  sisicisicicicixnny yAffPXxMyMePM    sincos
 Equation 2.325 

where the subscript i refers to a concrete layer or steel bar element. 

 
2.2.1.46 Analytical Approach to Failure Surfaces in Reinforced Concrete 

Sections Subjected to Axial Loads and Biaxial Bending (Bonet, 

Miguel, Fernandez, and Romero 2006) 

Bonet et al. (2006) developed a new method for the surface failure based on numerical 

simulation. The numerical simulation was generated using a computer program capable of 

analysing moment-curvature diagram for given axial load and moment ratio. The maximum 

value was used as a failure point for the given loads. The failure surface is defined by two 
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directrix curves and generatrix curves. The directrix curves are the curve corresponds to zero 

axial force and the one corresponds to balance failure.the generatix curves are defined in 

Muy/Mux plane, the first curve connects the pure tension axial load to balnce failure load. 

Whearas the second curve connects the balnce failure load to the pure compression load. The 

equations for the four curves are as follow 

Directrix 1 
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Md1= absolute value of the nominal bending moment of the section in simple flexure 

corresponding to angle beta 

Md1,x, Md1,y= nominal bending moments of the section in simple flexure for the x and y 

axes, respectively. 

Md2 = absolute value of the nominal bending moment corresponding to the maximum 

bending capacity 

of the section for a particular angle  

Md2,x, Md2,y = nominal bending moments corresponding to the maximum flexure capacity 

of the section for the x and the y axes, respectively. 

, =exponents of the directrices. 

23.1    

15.122.0    

 = steel reinforcement 

Nu = axial load applied 

Nuc = the ultimate axial load in pure compression 

Nd2 =balance failure load. 
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     Equation 2.330

 

Nlim = nominal axial compression at the balanced strain condition 

 
2.2.1.47 Biaxial Bending of Concrete Columns: an Analytical Solution 

(Cedolin, Cusatis, Eccheli, Roveda 2006) 

Cedolin et al. (2006) introduced analytical solution of  the failure envelope of rectangular 

R/C cross sections subjected to biaxial bending and to an axial force by approximating the 

rectangle to equivalent square section. The analysis was for unconfined concrete and the solution 

outcome was dimensionless.  
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2.2.1.48 Comparative Study of Analytical and Numerical Algorithms for 

Designing Reinforced Concrete Sections under Biaxial Bending 

(Bonet, Barros, Romero 2006) 

Bonet et al. (2006) introduced analytical and numerical methods for designing circular 

and rectangular cross sections subjected to bi-axial bending. The analytical method uses the 

heviside function (Barros et al. 2004) to define the failure strain, then integrate the stress based 

on that failure. The numerical method breaks the section into multi thick layers parallel to the 

nuteral axis. The internal forces are found by numerical integration of each layer using Gausss-

Legendre quadrature (Barros et al. 2004). They concluded that the two method are effeicint for 

circular cross section’s analysis and the modified thick layer integration is more efficient for the 

rectangular cross section’s analysis. 

 
2.2.1.49 Investigation of Biaxial Bending of Reinforced Concrete 

Columns through Fiber Method Modeling (Lejano 2007) 

Lejano (2007) expanded the finite element method found by Kaba and Mahin (1984). To 

predict the behavior of unconfined rectangular columns subjected to biaxial bending. The 

analysis was limited to uniform semmetric square columns. Lejano (2007) utilized Bazant’s 

Endochronic theory  for concrete and Ciampi model for steel. 

 
2.2.1.50 Variation of Ultimate Concrete Strain at RC Columns Subjected 

to Axial Loads with Bi-Directional Eccentricities (Yoo and Shin 

2007) 

Yoo and Shin (2007) introduced the modified rectangular stress block (MRSB) to account 

for non-rectangular compression zone induced by bi-axial bending. They showed experimentally 

that the ultimate strain of concrete exposed to bi-directional eccentricities can reach up to 0.0059. 

Based on this finding they introduced new equation for the unconfined ultimate strain as follow: 
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No definition for  was provided. 

 
2.2.1.51 Capacity of Rectangular Cross Sections under Biaxially 

Eccentric Loads (Cedolin, Cusatis, Eccheli, Roveda 2008) 

Cedolin et al. (2008) utilized the work of Cedolin et al. 2006 to generate more accurate 

moment failure contour through creating one extra points on the contour. This point correspond 

to the load acting on rectangle diagonlas and was approximated by using equivelant square to 

benefit from symmetry. The developed moment contour was used for better evaluating the 

parameter  found by Bresler (1960). 

 
2.2.1.52 Development of a Computer Program to Design Concrete 

Columns for Biaxial Moments and Normal Force (Helgason 

2010) 

Helgason 2010 developed a computer program using Matlab for designing unconfined 

rectangular hollow or solid columns subjected to axial force and bending moment. Helgason 

2010 used the predefined strain profile to generate the interaction diagram and the equivelant 

stress block equal to 80% of the compression zone depth. The outcome was compared to 

Eurocode. 
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2.2.2 Discussion 

According to the literature review, there are five different approaches that treated the 

columns under axial load and bending moment problem. These ways are summarized as follow: 

1. Trial for locating the neutral axis position such as Parker and Scanlon (1941), Ang 

(1961) and Czerniak (1962) works. 

2. Implementing closed form equations for special cases such as Andersen (1941), 

Wiesinger (1958), Cedolin et al. (2006) and Yoo and Shin (2007) works. 

3. Generating charts that relate two or more variable to facilitate the design process, 

such as Mikhalkin, Au (1958), Fleming and Werner (1965) and Brettle and Taylor 

(1968) works. 

4. Developing simplified Interaction diagrams by using coefficients for curve 

defining. This method was adopted by some researchers like Whitney and Cohen 

(1957), Bresler (1960), Furlong (1961), Parme (1966), Mylons (1967), Bonet et 

al. (2006). 

5. Generating Sets of ready Interaction diagrams to be used directly by designers, 

Weber (1966) and others. 

 

There are some conclusions that can be drawn as follow 

 The finite layer approach is successful in analysis. This approach was 

adopted by some authors such as Brettle and Taylor (1968), Bonet et al. 

(2006) and Lejano (2007). 

 The Bresler Method is one of the most well known and successful method 

in predicting the unconfined interaction diagrams and load contours. This 

method was utilized and refined by many such as Rammamurthy (1966), 

Parme et al. (1966), Gouwens (1975), Sallah (1983) Amirthandan (1991), 

Wang and Hong (2002) and Bajaj and Mendis (2005). However it is very 

conservative for some cases as shown by Furlong et al. (2004) and others. 

 Software applications on columns spread and became popular in the 

beginning of 1980s.Taylor and Ho (1984) developed computer program 
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based on Bresler Method. Sacks and Bugukoztruck (1986) developed their 

program based on iterating for neutral axis and load converge. Ross and 

Yen (1986) used the predefined strain profile in their software. Horowitz 

(1989) incremented the steel bars till the column capacity exceeded the 

load applied. This transition in relying on machines for facilitates 

calculations. Hence more accurate and precise analysis is needed to define 

exactly the unconfined and confined capacity of different sections. 

 The predefined strain profile is seen to be one of the most effective and 

fast procedure foe unconfined analysis. This method was suggested by 

Furlong (1961) and utilized by many, such as Ross and Yan (1986). 

 There is lack of confinement effect analysis on columns capacity. 

Nowadays, there is a need in predicting columns extreme events as stated 

by some structural codes like AASHTO-LRFD. 
 

  



111 

 

Chapter 3: Rectangular Columns Subjected to Biaxial 
Bending and Axial Compression 

3.1 Introduction 

Rectangular reinforced concrete columns can be subjected to biaxial bending moments 

plus axial force. When the load acts directly on one of the cross section bending axes the 

problem becomes of uniaxial bending and axial force. However when the load is applied 

eccentrically on a point that is not along any of the bending axes the case is generally biaxial 

bending and axial force. The biaxial bending case can be found in many structures nowadays. 

This case is visited extensively in the literature aside from the confinement effect. The failure 

surface of rectangular columns is 3D surface consisted of many adjacent 2D interaction 

diagrams. Each of the 2D interaction diagrams represents one angle between the bending 

moment about x-axis and the resultant moment. Many simplifications are introduced to justify 

the compressive trapezoidal shape of the concrete compression zone, due to the existence of the 

two bending axes. Approximations also were presented to depict the 3D failure shape from the 

principal interaction diagrams, in the two axes of symmetry. The most effective procedure found 

in the literature is the predefined ultimate strain profile that determines a certain position of the 

neutral axis and assigns crushing ultimate strain (typically 0.003) in one of the column corners. 

With the advance in technology and the enormous speed of computations, analysis is needed to 

plot a more accurate failure interaction diagram for both the unconfined and confined cases.  

The methodology in this study is based on two different approaches; the adjusted 

predefined ultimate strain profile and the moment of area generalization approaches described 

below. The two methods are compared to benchmark the moment of area generalization method 

that will be used in the actual capacity analysis (Confined analysis). This analysis is compared to 

experimental data from the literature. 
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3.2 Unconfined Rectangular Columns Analysis 

3.2.1 Formulations 

3.2.1.1 Finite Layer Approach (Fiber Method) 

The column cross section is divided into finite small-area filaments (Figure 3.1a). The 

force and moment of each filament is calculated and stored. The rebars are treated as discrete 

objects in their actual locations. The advantage of that is to avoid inaccuracy generated from 

using the approximation of the stress block method, as a representative of the compression zone 

and to well treat cases that have compressive trapezoidal or triangular shapes generated from the 

neutral axis inclination (Figure 3.1b).  

 

                 

Mx

My

 

FIGURE 3.1 
a) Using Finite Filaments in Analysis    b)Trapezoidal Shape of Compression Zone 

 
3.2.1.2 Concrete Model 

Concrete is analyzed using the model proposed by Hognestad that was adopted from 

Ritter’s Parabola 1899 (Hognestad 1951). Hognestad model is used extensively in numerous 

papers as it well explains concrete stress-strain behavior in compression. In addition, it was 

utilized by widely used concrete models such as Kent and Park model (1971). The stress-strain 

model is expressed using the following equation (Figure 3.2): 

 

a)      b) 



113 

 
























2

' 2
o

c

o

c
cc ff







   Equation 3.1 

cf  = stress in concrete in compression. 
'

cf = maximum compressive strength of the concrete. 

c  = strain at cf  

o = strain at '
cf  

As shown in Figure 3.2a concrete carries tension up to cracking strength, then it is 

neglected in calculation beyond that. 
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FIGURE 3.2 
a) Stress-Strain Model for Concrete by Hognestad    b) Steel Stress-Strain Model 

 
3.2.1.3 Steel Model 

Steel is assumed to be elastic up to the yield stress then perfectly plastic as shown in 

Figure 3.2b. It is assumed that there is perfect bond between the longitudinal steel bars and the 

concrete. According to Bernoulli’s Hypothesis, strains along the depth of the column are 

assumed to be distributed linearly. 

 

a)      b) 
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3.2.2 Analysis Approaches 

The process of generalization of the moment-force interaction diagram is developed 

using two different approaches; the adjusted predefined ultimate strain profile and the 

generalized moment of area methods. The common features of the two approaches are described 

as follow:  

 
3.2.2.1 Approach One: Adjusted Predefined Ultimate Strain Profile 

The first approach is the well known method that was used by many researchers and 

practicing engineers. The procedure is to assign compressive failure strain at one of the column 

corners (0.003) and to vary the position and the inclination angle of the neutral axis that ranges 

from zero degree, parallel to the width of the column, to ninety degrees parallel to the height as 

shown in Figure 3.3.  

0.003



 

FIGURE 3.3 
Different Strain Profiles Due to Different Neutral Axis Positions 

 

Each set of the parallel neutral axes of a certain orientation represents approximately one 

2D interaction diagram, and all of the sets from zero to ninety degrees represent the 3D failure 

surface in one quadrant, which is identical to the other three quadrants due to the existence of 
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two axis of symmetry with respect of concrete and steel. The procedure is described in the 

following steps: 

 

1. Defining the strain profile for each neutral axis position and corner ultimate strain 

applied. 

2. Calculating strain and the corresponding stress in each filament of concrete and 

doing the same for each steel bar Figure 3.4. 

 
0.003

N.A

 

FIGURE 3.4 
Defining Strain for Concrete Filaments and Steel Rebars from Strain 
Profile 

 

3. Calculating the force and the moment about the geometric centroid for each 

filament and steel bar Figure 3.5.  

 
for concrete:                                                  for steel  

iicici twfP                                                   sisisi AfP 
   

Equation 3.2 

iYPMx cici _*                                            siYPMx sisi _*
  Equation 3.3

 

iXPMy cici _*                                           siXPMy sisi _*
  Equation 3.4
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FIGURE 3.5 
Filaments and Steel Rebars Geometric Properties 
with Respect to Crushing Strain Point and Geometric 
Centroid 

 

Summing up the forces and moments, from steel bars and concrete filaments, to get the 

internal force and moment about x-axis and y-axis. The resultant force and moments represent 

one point on the unconfined interaction diagram (Figure 3.6). 
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FIGURE 3.6 
Method One Flowchart for the 
Predefined Ultimate Strain Profile 
Method 
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The problem arising from this procedure is that the points developed from one set of 

parallel neutral axes are close to but not lined up in one plane. However, they are scattered 

tightly near that plane (Figure 3.7). To correct for that, an average angle of )/(cos 1
Rx MM is 

calculated and another run is established by slightly changing the inclination angle  of the 

neutral axis of the section with respect to the y-axis and iterating till the angle determined for  

each point converges to the average angle   . The average angle   is taken as the average of all 

 angles obtained for a certain  angle orientation of the neutral axis (Figure 3.3 and Figure 3.7). 

 

P
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Plane of the average angle 


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My



 

Figure 3.7 
2D Interaction Diagram from Approach One Before and 
After Correction 

 

The iterations mentioned above converge fast in all cases. This approach yields a very 

fast computation since it directly evaluates the ultimate unconfined strain profile. However, no 

moment curvature or load-strain history response is available with this approach. 
 

3.2.2.2 Approach Two: Generalized Moment of Area Theorem  

Moment of Area Theorem 

The very general axial stress equation in an unsymmetrical section subjected to axial 

force P and biaxial bending Mx and My (Hardy Cross 1930): 
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   Equation 3.5 

z  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 

xM  = bending moment about the geometric x-axis 

yM = bending moment about the geometric y-axis 

x    = distance between the point (a) and y-axis 

y    = distance between the point (a) and x-axis  

xI   = moment of inertia about the geometric x-axis 

yI   = moment of inertia about the geometric y-axis 

xyI  = product moment of inertia in xy plane  

Rewriting Equation 3.5 to determine the strain at any point in the cross section: 
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   Equation 3.6 

In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, 

if the section has linear strain but nonlinear stress profile, it will amount to variable E profile (per 

layer or filament) in nonlinear analysis. Accordingly, the section parameters must include


i

ii AE , 
i

ii IE
 
for a more generalized theory (Rasheed and Dinno 1994). Note that the linear 

strain profile of the section from Equation 3.6 yields two distinct constant curvatures: 
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   Equation 3.8 
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x = curvature about the x-axis 

y = curvature about the y-axis 
22
xyyx EIEIEI    

To prove Equations 3.7 and 3.8 above, invoke the coupled equations of moments about 

the actual or current centroid (Bickford 1998). 
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   Equation 3.9 

yyxxyy EIEIM  
   Equation 3.10 

In a matrix form: 
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   Equation 3.11 

Inverting Equation 3.11 
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   Equation 3.12 

which reproduces Equations 3.7 and 3.8. Rewriting Equation 3.6 in terms of x and y 

 

xy
EA

P
yxz  

   Equation 3.13

 

Finding z at the actual or current centroid, since x = y = 0. 

 

 
EA

P
= o

            Equation 3.14 

Finding z at the geometric centroid, ݕ ൌ  തݕ
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xy yxo  
EA

P
=  

   Equation 3.15 

Solving for P at the geometric centroid;  

 

yxo xEAyEAEAP  
   Equation 3.16

 

 

But  

 

yEAEAM x 
                  

cG YYy   

xEAEAM y 
                  

cG XXx   

YG is the vertical distance to the geometric centroid measured from bottom, XG is the 

distance to the geometric centroid measured from the cross section’s left side, Yc is the vertical 

distance to the inelastic centroid measured from the bottom and Xc is the horizontal distance to 

the inelastic centroid measured from the cross section’s left side (Figure 3.8).

 Thus,  

 

yyxxo EAMEAMEAP      Equation 3.17

 

 

The general formula of the moments about the geometric x-axis and the geometric y-axis 

is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid (Figure 5.8a) 

 

yPMM xx 
   Equation 3.18 

Substituting Equations 3.9 and 3.16 in 3.17 yields:          
 

yEAMyEAMyEAEIEIM yyxxoyxyxxx  
  Equation 3.19 
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    yyxyxxxoxx yEAMEIyEAMEIEAMM  
  Equation 3.20 

Similarly (Figure 3.8b): 
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FIGURE 3.8 
Transferring Moment from Centroid to the Geometric Centroid 

 

xPMM yy 
   Equation 3.21 

xEAMxEAMxEAEIEIM yyxxoyyxxyy  
  Equation 3.22 

    yyyxxxyoyy xEAMEIxEAMEIEAMM  
  Equation 3.23 

The terms yEAMEI xx  and xEAMEI yy   represent the xEI and yEI  about the 

geometric centroid respectively using the parallel axis theorem. And the terms xEAMEI xxy   

and yEAMEI yxy   are equal given that: xyEAxEAM x   and xyEAyEAM y  . Using 

Equations 3.16, 3.19, and 3.22 yields the extended generalized moment of area equation: 
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a) b) 
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Since the moment of area about the inelastic centroid vanishes (Rasheed and Dinno 

1994), Equation 3.23 reduces to a partially uncoupled set when it is applied back at inelastic the 

centroid since EAMx and EAMy vanish about that centroid. 
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   Equation 3.25 

which is simply Equations 3.9, 3.10, and 3.14 

 
3.2.2.3 Method Two 

This approach simulates the radial loading of the force and moments by keeping the 

relative proportion between them constant during the loading. Accordingly, all the points 

comprising an interaction diagram of angle  will be exactly on that 2D interaction diagram. In 

addition to the ultimate points, the complete load deformation response is generated. The cross 

section analyzed is loaded incrementally by maintaining a certain eccentricity between the axial 

force P and the resultant moment MR. Since MR is generated as the resultant of Mx and My, the 

angle  = tan-1(My/Mx) is kept constant for a certain 2D interaction diagram. And since increasing 

the load and resultant moment proportionally causes the neutral axis to vary unpredictably, the 

generalized moment of area theorem is devised. This method is based on the general response of 

rectangular unsymmetrical section subjected to biaxial bending and axial compression. The 

asymmetry stems from the different behavior of concrete in compression and tension. 

 The method is developed using incremental iterative analysis algorithm, secant stiffness 

approach and proportional or radial loading. It is explained in the following steps. (Figure 3.12 

presents a flowchart of the outlined procedure): 

 

1. Calculating the initial section properties: 

 Elastic axial rigidity EA: 
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   Equation 3.26 

= initial modulus of elasticity of the concrete  

= initial modulus of elasticity of the steel rebar 

 The depth of the elastic centroid position from the bottom fiber of the section 

Yc and from the left side of the section Xc 

 

   Equation 3.27 

EA

XBAEEXBtwE
X i i

sisicsiiic

c

  


)()()(

   Equation 3.28 

where Yi and Ysi are measured to the top extreme fiber, Xi and Xsi are measured to the right most 

extreme fiber, see Figure 3.9. 

 Elastic flexural rigidity about the elastic centroid EI: 

 

 Equation 3.29 

22 )()()( csisic
i

sciii
i

cy XXBAEEXXBtwEEI  
 Equation 3.30 

   csicsisic
i

sciciii
i

cxy XXBYYHAEEXXBYYHtwEEI   )()()(
   

    Equation 3.31 

Typically the initial elastic Yc = H/2, Xc = B/2 and EIxy = 0 
  

 
i

sicsii
i

c AEEtwEEA )(

cE

sE

EA

YHAEEYHtwE
Y i i

sisicsiiic

c

  


)()()(

22 )()()( csisic
i

sciii
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cx YYHAEEYYHtwEEI  
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FIGURE 3.9 
Geometric Properties of Concrete Filaments and Steel Rebars with Respect 
to Geometric Centroid and Inelastic Centroid 

 

The depth of the geometric section centroid position from the bottom and left fibers of 

the section YG, XG: 

 

    Equation 3.32 

2

B
X G 

    Equation 3.33 

2. Defining the eccentricity e, which specifies the radial path of loading on the 

interaction diagram. Also, defining the angle  in between the resultant moment 

GMR and GMX 

2

H
YG 
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FIGURE 3.10 
Radial Loading Concept 

 

3. Defining the loading step as a small portion of the maximum load, and 

computing the axial force at the geometric centroid. 
 

   Equation 3.34 

4. Calculating the moment GMR about the geometric centroid. 

 

GP

GM
e R                             GPeGM R *    Equation 3.35 

cosRX GMGM     Equation 3.36 

tanXY GMGM     Equation 3.37 

5. Transferring the moments to the inelastic centroid and calculating the new 

transferred moments TMX and TMY : 

 
)( cGXX YYGPGMTM 

   Equation 3.38 

e

Resultant Moment
A

xi
al

 F
or

ce
Load Step   GP

GP

GPGPGP oldnew 
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)( cGYY XXGPGMTM 
   Equation 3.39 

The advantage of transferring the moment to the position of the inelastic centroid is to 

eliminate the coupling effect between the force and the two moments, since   

0 yx EAMEAM
 
about the inelastic centroid   
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   Equation 3.40 
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FIGURE 3.11 
Moment Transferring from Geometric 
Centroid to Inelastic Centroid 

 

6. Finding: Curvatures   X and   Y 

 

XY
Y

Y
X

X EI
TM
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**
22 

 
   Equation 3.41 

XY
X

X
Y

Y EI
TM

EI
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**
22 

 
   Equation 3.42 


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22
xyYX EIEIEI     Equation 3.43 

Strain at the inelastic centroid , the extreme compression fiber strain , and strain at 

the extreme level of steel in tension  are found as follow: 

 

    Equation 3.44 

)()( cycxoec XBYH  
   Equation 3.45 

)()( CoverXCoverY cycxoes            Equation 3.46 

where cover is up to center of bars 

1. Calculating strain and corresponding stress fci in each filament of concrete 

section by using Hognestad’s model (Equation 3.1) in case of unconfined analysis 

 
       

2 2 2 2

y c i y c ix c i x c i
ci y x xy xy

TM B X X TM H Y YTM H Y Y TM B X XGP
EI EI EI EI

EA


   
      

    

    Equation 3.47 

2. Calculating strain and corresponding stress fsi in each bar in the given section 

by using the steel model shown in Figure 3.2b. 

 
       

2 2 2 2

y c si y c six c si x c si
si y x xy xy

TM B X X TM H Y YTM H Y Y TM B X XGP
EI EI EI EI

EA


   
      

    

    Equation 3.48 

1. Calculating the new section properties: axial rigidity EA, flexural rigidities about 

the inelastic centroid EIx,, EIy, EIxy moment of axial rigidity about inelastic 

centroid EAMx, EAMy, internal axial force Fz, internal bending moments about the 

inelastic centroid Mox ,Moy: 

o ec

es

EA

GP
o 

ci

si
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 
i

sicisiii
i

ci AEEtwEEA )(
   Equation 3.49 

)()()( sicsici
i

siicii
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cix YYHAEEYYHtwEEAM  
 Equation 3.50 

)()()( sicsici
i

siicii
i

ciy XXBAEEXXBtwEEAM  
 Equation 3.51 

  sicisiiiciz AfftwfF )(
   Equation 3.52 

22 )()()( sicsici
i

siicii
i

cix YYHAEEYYHtwEEI  
 Equation 3.53 

22 )()()( sicsici
i

siicii
i

ciy XXHAEEXXBtwEEI  
  Equation 3.54 

   ( ) ( ) ( )xy ci i i c i c i si ci si c si c si
i i

EI E w t H Y Y B X X E E A H Y Y B X X             

    

Equation 3.55

 

 sicsici
i

siicii
i

ciox YYHAffYYHtwfM   )()(  Equation 3.56
 

 sicsici
i

siicii
i

cioy XXBAffXXBtwfM   )()(  Equation 3.57 

where  Eci = secant modulus of elasticity of the concrete filament. 

Esi = secant modulus of elasticity of the steel bar. 

 

2. Transferring back the internal moment about the geometric centroid 

 

   Equation 3.58 

)( cGoyoy XXGPMGM 
   Equation 3.59  

)( cGoxox YYGPMGM 
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3. Checking the convergence of the inelastic centroid  

 

   Equation 3.60 

cyy XEAEAMTOL //
   Equation 3.61 

4. Comparing the internal force to applied force, internal moments to applied 

moments, and making sure the moments are calculated about the geometric 

centroid : 

 
510*1  zFGP
   Equation 3.62 

510*1  oxx GMGM
 

510*1  oyy GMGM   Equation 3.63 

510*1 xTOL  
510*1 yTOL

   Equation 3.64
 

If Equations 3.61, 3.62, and 3.63 are not satisfied, the location of the inelastic centroid is 

Updated by EAMx/EA and EAMy/EA and steps 5 to 12 are repeated till Equations 3.61, 3.62 and 

3.63 are satisfied. 

 

   Equation 3.65 

EA

EAM
XX y

cc oldnew


   Equation 3.66 

 

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete   and 

steel  not to exceed 0.003 and 0.05 respectively, then it increases the loading by  and 

runs the analysis for the new load level using the latest section properties. Otherwise, if   
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equals 0.003 or  equals 0.05, the target force and resultant moment are reached as a point on 

the failure surface for the amount of eccentricity and angle  used. 
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FIGURE 3.12 
Flowchart of Generalized Moment of Area Method Used for Unconfined Analysis 
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3.2.3 Results and Discussion 

3.2.3.1 Comparison between the Two Approaches  

The two approaches are compared to each other in the following. The column used in 

comparison has the following properties: 

Section Height = 20 inches 

Section Width = 10 inches 

Clear Cover   = 2 inches 

Steel Bars in x direction = 3 # 4  

Steel Bars in x direction = 6 # 4  

Hoop #3 

f’c = 4 ksi 

fy = 60 ksi.  

 

 

FIGURE 3.13 
Comparison of Approach One and Two ( = 0) 
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FIGURE 3.14 
Comparison of Approach One and Two ( = 4.27) 

 

 

    

FIGURE 3.15 
Comparison of Approach One and Two ( = 10.8) 
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FIGURE 3.16 
Comparison of Approach One and Two ( = 52) 
 

The excellent correlation between the two approaches appears in Figure 3.13 through 

3.16. The resultant moment angle is shown below each graph. This is evidence that approach two 

effectively compared to the well known predefined ultimate strain profile approach. Accordingly, 

method two can be used in the confined analysis for analyzing the actual capacity of the 

rectangular columns. 
 

3.2.3.2 Comparison with Existing Commercial Software 

KDOT Column Expert is compared with CSI Col 8 of computers and structures Inc. and 

SP column Software of structure point LLC. The case is selected from Example 11.1 in “Notes 

on ACI 318-05 Building code Requirements for structural concrete” by PCA. The column details 

are as follow (Figure 3.17): 

Section Height = 24 inches 

Section Width = 24 inches 

Clear Cover   = 1.5 inches 
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FIGURE 3.17 
Column Geometry 
Used in Software 
Comparison 

      

 

FIGURE 3.18 
Unconfined Curve Comparison between KDOT Column Expert and SP Column ( = 0) 
      

Figure 3.18 shows the match between the two programs in axial compression calculations 

and in tension controlled zone. However KDOT Column Expert shows to be slightly more 

conservative in compression controlled zone. This might be due to using finite layer approach in 

calculations that has the advantage of accuracy over other approximations like Whitney stress 

block. 
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FIGURE 3.19 
Design Curve Comparison between KDOT Column Expert and CSI Col 8 Using ACI 
Reduction Factors 

 

The design curves in Figure 3.19 and Figure 3.20 were plotted using ACI reduction 

factors that use a reduction factor of 0.65 in compression controlled zone as opposed to 0.75 used 

by AASHTO. There is a good correlation between the KDOT Column Expert curve and CSI Col 

8 and SP Columns curves as shown in Figure 3.19 and Figure 3.20. 

 

 

FIGURE 3.20 
Design Curve Comparison between KDOT Column Expert and SP Column Using ACI 
Reduction Factors  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

A
xi
al
 F
o
rc
e
   
k.

Resultant Moment  k‐ft.

Design curve (KDOT 
Column Expert)

Design curve (CSI Col 8)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000

A
xi
al
 F
o
rc
e
   
k.

Resultant Moment  k‐ft.

Design Curve (KDOT 
Column Expert)

Design curve (SP 
Column)



136 

 

3.3 Confined Rectangular Columns Analysis 

3.3.1 Formulations 

3.3.1.1 Finite Layer Approach (Fiber Method) 

The column cross section is divided into finite small-area filaments (Figure 3.21a). The 

force and moment of each filament is calculated and stored. The rebars are treated as discrete 

objects in their actual locations. The advantage of that is to avoid inaccuracy generated from 

using the approximation of the stress block method, as a representative of the compression zone 

and to well treat cases that have compressive trapezoidal or triangular shapes generated from the 

neutral axis inclination (Figure 3.21b).  

                 

Mx

My

 

FIGURE 3.21 
a) Using Finite Filaments in Analysis     b)Trapezoidal Shape of Compression Zone 

  
3.3.1.2 Confinement Model for Concentric Columns 

Mander Model for Transversely Reinforced Steel 

Mander model (1988) was developed based on the effective lateral confinement pressure, 

f’l, and the confinement effective coefficient, ke which is the same concept found by Sheikh and 

Uzumeri (1982). The advantage of this procedure is its applicability to any cross section since it 

defines the lateral pressure based on the section geometry. Mander et al. (1988) showed the 

adaptability of their model to circular or rectangular sections, under static or dynamic loading, 

either with monotonically or cyclically applied loads. In order to develop a full stress-strain 

a)      b) 
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curve and to assess ductility, an energy balance approach is used to predict the maximum 

longitudinal compressive strain in the concrete. 

Mander derived the longitudinal compressive concrete stress-strain equation from 

Popovics model that was originally developed for unconfined concrete (1973): 

 

r
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1
   Equation 3.67 
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     Equation 3.69 

'4723 cc fE       in MPa    Equation 3.70 

cc
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E


sec     Equation 3.71 

and as suggested by Richart et al. (1928) the strain corresponding to the peak confined 

compressive strength, f’cc, is:  
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The different parameters of this model are defined in Figure 3.22. 
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FIGURE 3.22 
Axial Stress-Strain Model Proposed by Mander 
et al. (1988) for Monotonic Loading 

  

As shown in Figure 3.22 Mander et al. (1988) model has two curves; one for unconfined 

concrete (lower curve) and the other for confined concrete (upper one). The upper one refers to 

the behavior of confined concrete with concentric loading (no eccentricity). It is shown that it has 

ascending branch with varying slope starting from Ec decreasing till it reaches the peak confined 

strength at (fcc, cc). Then the slope becomes slightly negative in the descending branch 

representing ductility till the strain of cu where first hoop fractures. The lower curve expresses 

the unconfined concrete behavior. It has the same ascending branch as the confined concrete 

curve till it peaks at (f’c, co). Then, the curve descends till 1.5-2co. A straight line is assumed 

after that till zero strength at spalling strain sp. 

Mander et al. (1988) utilized an approach similar to that of Sheik and Uzumeri (1982) to 

determine effective lateral confinement pressure. It was assumed that the area of confined 

concrete is the area within the centerlines of perimeter of spiral or hoop reinforcement Acc as 

illustrated in Figure 3.23.  
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FIGURE 3.23 
Effectively Confined Core for Rectangular Hoop 
Reinforcement (Mander Model) 

  

Figure 3.23 shows that effectively confined concrete core Ae  is smaller than the area of 

core within center lines of perimeter spiral or hoops excluding longitudinal steel area, Acc, and to 

satisfy that condition the effective lateral confinement pressure f’l should be a percentage of the 

lateral pressure fl: 

 

lel fkf '
    Equation 3.73 

and the confinement effectiveness coefficient ke is defined as the ratio of the effective 

confined area Ae to the area enclosed by centerlines of hoops excluding the longitudinal bars Acc: 
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e
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A
k      Equation 3.74 
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 ccccc AA  1    Equation 3.77 
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where Ac is the area of the section core enclosed by hoops, Asl is the area of longitudinal steel and 

cc is the ratio of longitudinal steel to the area of the core.  
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FIGURE 3.24 
Effective Lateral Confined Core for Rectangular Cross Section 

 

The total ineffective confined core area in the level of the hoops when there are n bars: 
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                    Equation 3.78 

Given that the arching formed between two adjacent bars (Figure 3.24) is second degree 

parabola with an initial tangent slope of 45o, the ratio of the area of effectively confined concrete 

to the core area at the tie level: 
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where Ac = bc* dc, The area of confined concrete in the midway section between two consecutive 

ties: 
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Hence, the effective area at midway: 
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Using Equation 3.73 
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and the ratio of the volume of transverse steel in x any y directions to the volume of 

confined core area x and y  is defined as: 
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Asx, Asy are the total area of lateral steel in x and y direction respectively. The effective 

lateral confining pressure in x and y directions are given by: 

 

yhxelx fkf '
   Equation 3.87 

yhyely fkf '
   Equation 3.88 
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FIGURE 3.25 
Confined Strength Determination 
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Figure 3.25 was developed numerically using multiaxial stress procedure to calculate 

ultimate confined strength from two given lateral pressures. The numerical procedure is 

summarized in the following steps: 

1. Determining f’lx and f’ly using Equations 3.86 and 3.87 

2. Converting the positive sign of f’lx and f’ly from positive to negative to represent 

the major and intermediate principal stresses (These values are referred to as 1 

and 2 so that 1 > 2). 

3. Estimating the confined strength f cc (3) as the minor principal stress 

4. Calculating the octahedral stress oct, octahedral shear stress oct and lode angle  

as follows: 
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   Equation 3.91 

1. Determining the ultimate strength meridian surfaces T,C (for  =60o and 0o 

respectively) using the following equations derived by Elwi and Murray (1979) 

from data by Scickert and Winkler (1977): 

 
2

0.069232 0.661091 0.049350oct octT    
  

Equation 3.92 

2

0.122965 1.150502 0.315545oct octC       Equation 3.93 

'/oct oct cf                 Equation 3.94 
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2. Determining the octahedral shear stress using the interpolation function found by 

Willam and Warnke (1975): 
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   Equation 3.95 

 2 2 24 cosD C T               Equation 3.96 

'
coctoct f      Equation 3.97 

3. Recalculating f cc using the following equation (same as Equation 3.89) but 

solving for 3: 

 

 221
221
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   Equation 3.98
 

4. If the value from Equation 3.97 is close to the initial value then there is 

convergence. Otherwise, the value from Equation 3.97 is reused in steps 4 

through 8. 

 

Equations 3.91 and 3.92 that define the tension and compression meridians are compared 

with different equations for different unconfined compressive strength. The results are shown in 

section 3.3.3.2. 

Mander et al. (1988) proposed an energy balancing theory to predict the ultimate 

confined strain, which is determined at the first hoop fracture. They stated that the additional 

ductility for confined concrete results from the additional strain energy stored in the hoops Ush. 

Therefore from equilibrium: 

 

cogsh UUU     Equation 3.99 
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where Ug is the external work done in the concrete to fracture the hoop, and Uco is the work done 

to cause failure to the unconfined concrete. Ush can be represented by the area under the tension 

stress strain curve for the transverse steel between zero and fracture strain sf. 




dfAU
sf

sccssh 
0

   Equation 3.100 

while Ug is equal to the area under the confined stress strain curve plus the area under the 

longitudinal steel stress strain curve: 
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   Equation 3.101 

similarly, it was proven experimentally that Uco is equal to:  
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Substituting Equations 3.100, 3.101, and 3.102 into Equation 3.98: 
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   Equation 3.104 

where fsl is the stress in the longitudinal steel. Equation 3.103 can be solved numerically for cu. 
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3.3.1.3 Confinement Model for Eccentric Columns 

Unlike concentric loading, the eccentric loading generates bending moment in addition to 

axial loading. Columns subjected to eccentric loading behave differently from those 

concentrically loaded, as the shape of the stress strain curve for fully confined reinforced 

concrete (concentric loading) shows higher peak strength and more ductility than the unconfined 

one (infinite eccentricity). Most of the previous studies were based on the uniform distribution of 

compressive strain across the column section. 

 

 
FIGURE 3.26 
Effect of Compression Zone Depth on Concrete Stress 

 

Figure 3.26 illustrates three different sections under concentric load, combination of axial 

load and bending moment and pure bending moment, the highlighted fiber in the three cases has 

the same strain. Any current confinement model yields the same stress for these three fibers. So 

the depth or size of compression zone does not have any role in predicting the stress. Hence, it is 

more realistic to relate the strength and ductility in a new model to the level of confinement 

utilization and compression zone size. 



147 

 

              
FIGURE 3.27 
Amount of Confinement Engaged in Different Cases 

  

By definition, confinement gets engaged only when member is subjected to compression. 

Compressed members tend to expand in lateral direction, and if confined, confinement will 

prevent this expansion to different levels based on the degree of compressive force and 

confinement strength as well. For fully compressed members (Figure 3.27), confinement 

becomes effective 100% as it all acts to prevent the lateral expansion. Whereas members 

subjected to compression and tension, when the neutral axis lies inside the section perimeter, 

only confinement adjacent to the compression zone gets engaged. Accordingly, members become 

partially confined.  

In literature, various models were implemented to assess the ultimate confined capacity 

of columns under concentric axial load. On the other hand the effect of partial confinement in 

case of eccentric load (combined axial load and bending moments) is not investigated in any 

proposed model. Therefore, it is pertinent to relate the strength and ductility of reinforced 

concrete to the degree of confinement utilization in a new model. 

The two curves of fully confined and unconfined concrete in any proposed model are 

used in the eccentricity-based model as upper and lower bounds. The upper curve refers to 

concentrically loaded confined concrete (zero eccentricity), while the lower one refers to pure 

bending applied on concrete (infinite eccentricity). In between the two boundaries, infinite 

numbers of stress-strain curves can be generated based on the eccentricity. The higher the 

eccentricity the smaller the confined concrete region in compression. Accordingly, the ultimate 

confined strength is gradually reduced from the fully confined value fcc to the unconfined value 

f’c as a function of eccentricity to diameter ratio. In addition, the ultimate strain is gradually 
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reduced from the ultimate strain cu for fully confined concrete to the ultimate strain for 

unconfined concrete 1.5co.  

The relation between the compression area to whole area ratio and normalized 

eccentricity is complicated in case of rectangular cross sections due to the existence of two 

bending axes. The force location with respect to the two axes causes the compression zone to 

take a trapezoidal shape sometimes if the force applied is not along one of the axes. Hence the 

relation between the compression area and the load eccentricity needs more investigation as 

oppose to the case of circular cross section which was shown to be simpler.  

The normalized eccentricity is plotted against the compression area to cross sectional area 

ratio for rectangular cross sections having different aspect ratio (length to width) at the 

unconfined failure level. The aspect ratios used are 1:1, 2:1, 3:1, 4:1 as shown in Figures 3.28, 

3.29, 3.30, and 3.31. Each curve represents specific  angle (tan  = My/Mx) ranging from zero 

to ninety degrees. It is seen from these figures that there is inversely proportional relation 

between the normalized eccentricity and compression zone ratio regardless of the  angle 

followed.  

 

                     

FIGURE 3.28 
Normalized Eccentricity versus Compression Zone to Total Area Ratio 
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(Aspect Ratio 1:1) 

                     

FIGURE 3.29 
Normalized Eccentricity versus Compression Zone to Total Area Ratio 
(Aspect Ratio 2:1) 

 

                     

FIGURE 3.30 
Normalized Eccentricity versus Compression Zone to Total Area Ratio 
(Aspect Ratio 3:1) 
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FIGURE 3.31 
Normalized Eccentricity versus Compression Zone to Total Area Ratio 
(Aspect Ratio 4:1) 

 

 

                   

FIGURE 3.32 
Cumulative Chart for Normalized Eccentricity against Compression 
Zone Ratio (All Data Points) 
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In order to find accurate mathematical expression that relates the compression zone to 

load eccentricity, the data from Figures 3.28 through 3.31 are replotted as scatter points in Figure 

3.32. 

The best fitting curve of these points based on the least square method has the following 

equation: 
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

   Equation 3.105 

where CR refers to compression area to cross sectional area ratio. 

 

Eccentric Model based on Mander Equations 

The equation that defines the peak strength ccf  according to the eccentricity is:  
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whereas the equation developed for circular cross sections 
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   Equation 3.107 

where e is the eccentricity, b and h is the column dimensions and ccf is the peak strength at the 

eccentricity (e). The corresponding strain cc  is given by 
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and the maximum strain corresponding to the required eccentricity will be a linear 

function of stress corresponding to maximum strain for confined concrete fcu and the maximum 

unconfined concrete fcuo at cuo = 0.003: 
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   Equation 3.110 

In order to verify the accuracy of the model at the extreme cases, the eccentricity is first 

set to be zero. The coefficient of f’c will be zero in Equation 3.105 and Equations 3.105, 3.106 

and 3.107 will reduce to be: 

 

cccc ff      Equation 3.111 

cccc       Equation 3.112 

cucu       Equation 3.113 

On the other hand, if the eccentricity is set to be infinity the other coefficient will be zero, 

and the strength, corresponding strain and ductility equations will be: 
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FIGURE 3.33 
Eccentricity Based Confined Mander Model 

 

Any point on the generated curves the stress-strain function can be calculated using the 

following equation: 
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where: 
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To show the distinction between the Eccentric model designed for rectangular cross 

sections, Figure 3.34 and that of circular cross sections, Figure 3.35, Equations 3.105 to 3.107 
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and 3.114 to 3.117 are used in plotting a set of Stress-Strain curves with eccentricity ranging 

from 0 inches to ∞. The column cross sectional properties used to plot these curves is 36 in *36 

inches, steel bars are 13 #11, spiral bar is # 5, spacing is 4 inches, f’c is equal to 4 ksi, fy is equal 

to 60 ksi and fyh is equal to 60 ksi. This case is used in plotting the Eccentric Stress-Strain curve 

that are developed for rectangular cross sectional concrete columns; Figure 3.34 while the same 

case is used in plotting the eccentric Stress-Strain curves that are developed for circular cross 

section, Figure 3.35. The eccentric stress-Strain curves in Figure 3.35 are almost parallel and 

equidistant to each other. Whereas, the leap from one curve to the next one in Figure 3.34 is 

varying. This is due to the effect of the coefficient CR, that is used in Equation 3.105, which has 

non linear impact on the compression zone as opposed to the linear relation between the 

eccentricity and compression zone for circular cross sections (Figure 3.35)  

 

 

FIGURE 3.34 
Eccentric Based Stress-Strain Curves Using Compression Zone Area to Gross 
Area Ratio 
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FIGURE 3.35 
Eccentric Based Stress-Strain Curves Using Normalized Eccentricity Instead of 
Compression Zone Ratio 
 

3.3.1.4 Generalized Moment of Area Theorem 

The very general axial stress equation in an unsymmetrical section subjected to axial 

force P and biaxial bending Mx and My (Hardy Cross 1930): 
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   Equation 3.121 

z  = normal stress at any point (a) in cross section 

P   = applied load. 

A    = cross sectional area. 

xM  = bending moment about x-axis 

yM = bending moment about y-axis 

x    = distance between the point (a) and y-axis 
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y    = distance between the point (a) and x-axis  

xI   = moment of inertia about x-axis 

yI   = moment of inertia about y-axis 

xyI  = product moment of inertia in xy plane  

Rewriting Equation 3.118 to determine the strain at any point in the cross section: 

 

x
EIEIEI

EIMEIM
y

EIEIEI

EIMEIM

EA

P

xyyx

xyxxy

xyyx

xyyyx
z 22 









   Equation 3.122 

In case of linear elastic analysis, E in EA or EI expressions is constant (E=Ec). However, 

if the section has linear strain and nonlinear stress profile, it will amount to variable E profile 

(per filament) in nonlinear analysis. Accordingly, the section parameters must include


i
ii AE
, 


i

ii IE
 for a more generalized theory (Rasheed and Dinno 1994). Note that the linear strain 

profile of the section from Equation 3.119 yields two distinct constant curvatures: 

 

2
 xyyyx

x

EIMEIM 


   Equation 3.123 

2
 xyxxy

y

EIMEIM 


   Equation 3.124 

x = x- curvature 

y = y- curvature 
22
xyyx EIEIEI    

To prove Equations 3.120 and 3.121 above, invoke the coupled equations of moments 

about the centroid (Bickford 1998). 

 

yxyxxx EIEIM  
   Equation 3.125 

yyxxyy EIEIM  
   Equation 3.126 
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In a matrix form: 

 



























y

x

yxy

xyx

y

x

EIEI

EIEI

M

M




   Equation 3.127 

 

Inverting Equation 3.124 

 




















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







y

x

xxy

xyy

y

x

M

M

EIEI

EIEI
2

1




   Equation 3.128 

which reproduces Equations 3.120 and 3.121. Rewriting Equation 3.119 in terms of x 

and y 

 

xy
EA

P
yxz  

   Equation 3.129 

 

Finding z at the centroid, since x = y = 0. 

 
P/EA  = o

        
   Equation 3.130 

Solving for P at the geometric centroid;  

 

yxo xEAyEAEAP  
   Equation 3.131

 

o  is the axial strain at the geometric centroid 

But  

 

yEAEAM x 
                  

cG YYy                                   

xEAEAM y 
                  

cG XXx   
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YG is the vertical distance to the geometric centroid measured from bottom, XG is the 

distance to the geometric centroid measured from the cross section’s left side, Yc is the vertical 

distance to the inelastic centroid measured from the bottom and Xc is the horizontal distance to 

the inelastic centroid measured from the cross section’s left side 

 Thus,  

 

yyxxo EAMEAMEAP      Equation 3.132

  

 

The general formula of the moments about the geometric x-axis and the geometric y-axis 

is derived as follows: 

when the moment is transferred from the centroid to the geometric centroid (Figure 

3.36a) 

 

yPMM xx 
   Equation 3.133 

Substituting Equations 3.122 and 3.129 into 3.130 yields:     

 
yEAMyEAMyEAEIEIM yyxxoyxyxxx  

  Equation 3.134 

    yyxyxxxoxx yEAMEIyEAMEIEAMM  
  Equation 3.135 

Similarly, Figure 3.36b: 



159 

 

             

G

Cy

P

Mx

Mx GC

P

MyMy

xy
y
G

c
x

x
c

G
 

FIGURE 3.36 
Transferring Moment from Centroid to the Geometric Centroid 

 

xPMM yy 
   Equation 3.136 

xEAMxEAMxEAEIEIM yyxxoyyxxyy  
  Equation 3.137 

    yyyxxxyoyy xEAMEIxEAMEIEAMM  
  Equation 3.138 

The terms yEAMEI xx  and 
xEAMEI yy   represent the xEI and yEI

 about the 

geometric centroid respectively using the parallel axis theorem. And the terms 
xEAMEI xxy   

and 
yEAMEI yxy   are equal given that: xyEAxEAM x   and 

xyEAyEAM y 
. Using 

Equations 3.129, 3.132 and 3.135 yields the extended general moment of area equation: 
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


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x

yxyy

xyxx

yx

y EIEIEAM

EIEIEAM

EAMEAMEA

M

Mx

P





   

Equation 3.139 

Since the moment of area about the centroid vanishes (Rasheed and Dinno 1994), 

Equation 3.136 reduces to a partially uncoupled set when it is applied back at the centroid since 

EAMx and EAMy vanish about the centroid. 

a) b) 
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



0
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00

   Equation 3.140 

which is simply Equations 3.122, 3.123, and 3.127 

 
3.3.2 Numerical Formulation 

This approach simulates the radial loading of the force and moments by keeping the 

relative proportion between them constant during the loading. Accordingly, all the points will be 

exactly on the 2D interaction diagram. In addition to the ultimate points, the complete load 

deformation response is generated. The cross section analyzed is loaded incrementally by 

maintaining a certain eccentricity between the axial force P and the resultant moment MR. Since 

MR is generated as the resultant of Mx and My, the angle  = tan-1(My/Mx) is kept constant for a 

certain 2D interaction diagram. Since increasing the load and resultant moment cause the neutral 

axis to vary nonlinearly, the generalized moment of area theorem is devised. This method is 

based on the general response of rectangular unsymmetrical section subjected to biaxial bending 

and axial compression. The asymmetry stems from the different behavior of concrete in 

compression and tension. 

 The method is developed using the incremental iterative analysis algorithm, secant 

stiffness approach and proportional or radial loading. It is explained in the following steps Figure 

3.40: 

 

1. Calculating the initial section properties: 

 Elastic axial rigidity EA: 

 
   Equation 3.141 

= initial secant modulus of elasticity of the concrete  

= initial modulus of elasticity of the steel rebar 

 
i

sicsii
i

c AEEtwEEA )(

cE

sE
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 The depth of the elastic centroid position from the bottom fiber of the section 

Yc and from the left side of the section Xc, Figure 3.37 
 

   Equation 3.142 

EA

XBAEEXBtwE
X i i

sisicsiiic

c

  


)()()(

   Equation 3.143 

 Elastic flexural rigidity about the elastic centroid EI: 

 

 Equation 3.144 

22 )()()( csisic
i

sciii
i

cy XXHAEEXXBtwEEI  
 Equation 3.145 

   cicsisic
i

sciciii
i

cxy XXBYYHAEEXXBYYHtwEEI   )()()(
 

    Equation 3.146 

Typically the initial elastic Yc = H/2, Xc = B/2 and EIxy = 0 
         

EA

YHAEEYHtwE
Y i i

sisicsiiic

c

  


)()()(

22 )()()( csisic
i

sciii
i

cx YYHAEEYYHtwEEI  
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FIGURE 3.37 
Geometric Properties of Concrete Filaments and Steel Rebars with Respect 
to Crushing Strain Point, Geometric Centroid and Inelastic Centroid 

 

The depth of the geometric section centroid position from the bottom and left fibers of 

the section YG, XG, Figure 3.37: 

 

    Equation 3.147 

2

B
X G 

    Equation 3.148  

2. Defining eccentricity e, which specifies the radial path of loading on the 

interaction diagram. Also, defining the angle  in between the resultant moment 

GMR and GMX 

2

H
YG 
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FIGURE 3.38 
Radial Loading Concept 

 

3. Defining loading step as a small portion of the maximum load, and 

computing the axial force at the geometric centroid. 

 

   Equation 3.149 

4. Calculating moment GM about the geometric centroid. 

 

GP

GM
e R                             GPeGM R *    Equation 3.150 

cosRX GMGM     Equation 3.151 

tanXY GMGM     Equation 3.152 

5. Transferring moment to the current inelastic centroid and calculating the new 

transferred moment TMX and TMY : 

 
)( cGXX YYGPGMTM 

   Equation 3.153 

e

Resultant Moment

A
xi

al
 F

or
ce

Load Step   GP

GP

GPGPGP oldnew 
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)( cGYY XXGPGMTM 
   Equation 3.154 

The advantage of transferring the moment to the position of the inelastic centroid is to 

eliminate the coupling effect between the force and moments, since 0 yx EAMEAM
 
about 

the inelastic centroid 
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   Equation 3.155 
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FIGURE 3.39 
Moment Transferring from Geometric 
Centroid to Inelastic Centroid 

 

6. Finding:  Curvatures   X and   Y 

 

XY
Y

Y
X

X EI
TM

EI
TM

**
22 

 
   Equation 3.156 

XY
X

X
Y

Y EI
TM

EI
TM

**
22 

 
   Equation 3.157 

22
xyYX EIEIEI     Equation 3.158 


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Strain at the inelastic centroid , the extreme compression fiber strain , and strain at 

the extreme level of steel in tension  are found as follow: 

 

    Equation 3.159 

)()( cycxoec XBYH  
   Equation 3.160 

)()( CoverXCoverY cycxoes            Equation 3.161 

where cover is up to the centers of bars 

 

7. Calculating strain and corresponding stress fci in each filament of concrete 

section by using Eccentric Based Model (Mander Equations)  
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  Equation 3.162 

8. Calculating strain and corresponding stress fsi in each bar in the given section 

by using the steel model shown in Figure 3.2b. 
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Equation 3.163 

 

9. Calculating the new section properties: axial rigidity EA, flexural rigidities about 

the inelastic centroid EIx,, EIy, EIxy moment of axial rigidity about inelastic 

o ec

es

EA

GP
o 

ci

si



166 

 

centroid EAMx, EAMy, internal axial force Fz, internal bending moments about the 

inelastic centroid Mox ,Moy: 

 

 
i

sicisiii
i

ci AEEtwEEA )(
   Equation 3.164 

)()()( sicsici
i

siicii
i

cix YYHAEEYYHtwEEAM  
 Equation 3.165 

)()()( sicsici
i

siicii
i

ciy XXBAEEXXBtwEEAM  
Equation 3.166 

  sicisiiiciz AfftwfF )(
   Equation 3.167 

22 )()()( sicsici
i

siicii
i

cix YYHAEEYYHtwEEI  
 Equation 3.168 

22 )()()( sicsici
i

siicii
i

ciy XXHAEEXXBtwEEI  
 Equation 3.169 

   sicsicsici
i

siicicii
i

cixy XXBYYHAEEXXBYYHtwEEI   )()()(  

    Equation 3.170 

 Equation 3.171 

)()()( sicsicisiiciicioy XXBAffXXBtwfM    Equation 3.172 

where  Eci = secant modulus of elasticity of the concrete filament ൌ ௙೎೔
ఌ೎೔

. 

Esi = secant modulus of elasticity of the steel bar ൌ ௙ೞ೔
ఌೞ೔

. 

 

10. Transferring back the internal moments about the geometric centroid 

 

)()()( sicsicisiiciiciox YYHAffYYHtwfM  
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   Equation 3.173 

)( cGoyoy XYGPMGM 
   Equation 3.174 

11. Checking the convergence of the inelastic centroid  

 

   Equation 3.175 

cyy XEAEAMTOL //
   Equation 3.176 

12. Comparing the internal force to applied force, internal moments to applied 

moments, and making sure the moments are calculated about the geometric 

centroid : 

 
510*1  zFGP
   Equation 3.177

 

510*1  oxx GMGM
 

510*1  oyy GMGM   Equation 3.178 

510*1 xTOL   
510*1 yTOL

   Equation 3.179
 

If Equations 3.174, 3.175 and 3.176 are not satisfied, the location of the inelastic centroid 

is updated by EAMx/EA and EAMy/EA and steps 5 to 11 are repeated till Equations 3.174, 3.175 

and 3.176 are satisfied. 

 

   Equation 3.180 

EA

EAM
XX y

cc oldnew


   Equation 3.181 

)( cGoxox YYGPMGM 

cxx YEAEAMTOL //

EA

EAM
YY x

cc oldnew




168 

 

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete   and 

steel  not to exceed ߝ௖௨തതതത and 0.05 respectively. Then it increases the loading by  and runs 

the analysis for the new load level using the latest section properties. Otherwise, if   equals 

 ௖௨തതതത  or  equals 0.05, the target force and resultant moment are reached as a point on the failureߝ

surface for the amount of eccentricity and angle  used. 

This method can be used combined with Approach One in the unconfined analysis, 

section 3.2.2.1: Predefined Ultimate Strain Profile, for processing time optimization. Initially 

unconfined analysis is utilized. The sectional properties, EA, EIx, EIy, EIxy, EAMx, EAMy,Yc,Xc Fz, 

Mox and Moy are calculated from the unconfined failure point and used as section properties for 

the following step. So instead of loading the section from the beginning, The equilibrium is 

sought at unconfined failure point, Then, knowing the internal force capacity of the section, P 

is added and the cross section is analyzed using the proposed numerical formulation of this 

section until failure of the confined section. 

ec

es GP

ec

es
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FIGURE 3.40 
Flowchart of Generalized Moment of Area Method 
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3.3.3 Results and Discussion 

Interaction diagrams generated by KDOT Column Expert Software are plotted and 

compared to the corresponding experimental work found in the literature. Interaction diagrams 

are generated using the numerical formulation described in section 3-3-2.  

 
3.3.3.1 Comparison with Experimental Work Case 1 

A Study of combined bending and axial load in reinforced concrete members (Eivind 

Hogenstad) 

Section Height = 10 inches                           

Section Width = 10 inches 

Clear Cover   = 0.8575 inches 

Steel Bars in x direction = 2    

Steel Bars in y direction = 4  

Steel Diameter = 0.785 inches             

Tie Diameter = 0.25 inches 

  f’c = 5.1 ksi     fy = 60 ksi. fyh = 61.6 ksi. Spacing = 8 inches                  
 

 

 

 

 

 

FIGURE 3.41 
Hognestad Column 
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FIGURE 3.42 
Comparison between KDOT Column Expert with Hognestad 
Experiment ( = 0)  

 
3.3.3.2 Comparison with Experimental Work Case 2 

Design criteria for reinforced columns under axial load and biaxial bending (Boris 

Bresler) 

Section Height = 8 inches                                                                                        

SectionWidth = 6 inches 

Clear Cover   = 1.1875 inches 

Steel Bars in x direction = 2#5    

Steel Bars in y direction = 2#5  

Tie Diameter = 0.25 inches 
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FIGURE 3.43 
Bresler Column 

 

f ’c = 3.7 ksi     fy = 53.5 ksi. fyh = 53.5 ksi. Spacing = 4 in                            

             

 

FIGURE 3.44 
Comparison between KDOT Column Expert with Bresler 
Experiment ( = 90) 
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FIGURE 3.45 
Comparison between KDOT Column Expert with Bresler 
Experiment ( = 0) 

 

3.3.3.3 Comparison with Experimental Work Case 3 

Investigation of the ultimate strength of square and rectangular columns under biaxially 

eccentric loads (L.N. Ramamurthy) 

Section Height = 12 inches                                                                                                                             

Section Width = 6 inches 

Clear Cover   = 1.2375 inches 

Steel Bars in x direction = 3#5    

Steel Bars in y direction =3#5  

Tie Diameter = 0.25 inches                 

f’c = 3.8 ksi     fy = 46.79 ksi  fyh = 46.79 ksi. Spacing = 6 inches                                        
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FIGURE 3.46 
Ramamurthy Column 

 

          

FIGURE 3.47 
Comparison between KDOT Column Expert with Ramamurthy Experiment 
( = 26.5) 

 

3.3.3.4 Comparison with Experimental Work Case 4  

Confined columns under eccentric loading 

(Murat Saatcioglu. Amir Salamat and Salim Razvi ) 
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Section Height = 8.27 inches                           

Section Width =8 .27 inches 

Clear Cover   = 0. 5 inches 

Steel Bars in x direction = 3    

Steel Bars in y direction = 3                                                       

Steel Area = 0.155 inches2 

Tie Diameter = 0.364 inches 

f’c = 5.1 ksi     fy = 75 ksi. fyh = 59.45 ksi. Spacing = 1.97 inches 
 

 

 

 

 
 
FIGURE 3.48 
Saatcioglu Column 

 
 

 

FIGURE 3.49 
Comparison between KDOT Column Expert with Saatcioglu et al. 
Experiment ( = 0) 
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3.3.3.5 Comparison with Experimental Work Case 5  

Confined columns under eccentric loading 

(Mural Saatcioglu. Amir Salamat and Salim Razvi ) 

Section Height = 8.27 inches                           

Section Width =8 .27 inches 

Clear Cover   = 0. 5 inches 

Steel Bars in x direction = 4    

Steel Bars in y direction = 4 

Steel Area = 0.155 in2.            

Tie Diameter = 0.364 inches 

f’c = 5.1 ksi     fy = 75 ksi. fyh = 59.45 ksi. Spacing = 1.97 inches 
 

 

 

 

 

 

FIGURE 3.50 
Saatcioglu Column 
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FIGURE 3.51 
Comparison between KDOT Column Expert with Saatcioglu et al. 
Experiment 1 ( = 0) 

 
3.3.3.6 Comparison with Experimental Work Case 6 

Stress strain behavior of concrete confined by overlapping hoops at low and high strain 

rate: 

(B. Scott, R Park and M. Priestly) 

Section Height = 17.7 inches                           

Section Width =17 .7 inches 

Clear Cover   = 0. 787 inches 

Steel Bars in x direction = 4    

Steel Bars in y direction = 4 

Steel Area = 0.49 inches2                   

Tie Diameter = 0.394 inches 

f’c = 3.67 ksi     fy = 63 ksi. fyh = 44.8 ksi. Spacing = 2.83 inches 
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FIGURE 3.52 
Scott Column 

 

 

FIGURE 3.53 
Comparison between KDOT Column Expert with Scott et al. Experiment ( = 0) 
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3.3.3.7 Comparison with Experimental Work Case Case 7  

Stress strain behavior of concrete confined by overlapping hoops at low and high strain 

rate 

(B. Scott, R Park and M. Priestly) 

Section Height = 17.7 inches                           

Section Width =17 .7 inches 

Clear Cover   = 0. 787 inches 

Steel Bars in x direction = 3   

Steel Bars in y direction = 3 

Steel Area = 0.7 inches2. 

Spiral Diameter = 0.394 inches                  

f’c = 3.67 ksi     fy = 57.13 ksi. fyh = 44.8 ksi. Spacing = 2.83 inches 
 

 

 

 

 

 

 

 
FIGURE 3.54 
Scott Column 
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FIGURE 3.55 
Comparison between KDOT Column Expert with Scott et al. Experiment ( = 0) 

 

The analyzed seven cases cover the three Interaction diagram zones of; compression 

controlled, tension controlled and balanced zones. There is good agreement between the 

theoretical interaction diagram and the corresponding experimental data as shown in Figures 

3.42, 3.44, 3.45, 3.47, 3.49, 3.51, 3.53, and 3.55. 

It is shown from Figures 3.49, 3.51, 3.53, and 3.55 that interaction diagrams plotted using 

Equation 3.105 that is representative of the compression zone area are more accurate compared 

to those plotted using Equation 3.105a that is a function of eccentricity. Also the experimental 

data correlate well to its associated interaction diagrams. 

Figure 3.53 and 3.55 show more accuracy and conservative interaction diagram when the 

analysis account for the cover spalling when the unconfined crushing strain is considered. This is 

represented by the most inner curve in Figures 3.53 and 3.55. Also in Figure 3.53 and 3.55 the 

experimental points 1 and 2 are having the same eccentricity but the loading strain rate is 

different. The loading strain rate for point 1 is 0.0000033, whereas it is 0.0167 for point 2. Points 

3 and 4 also have the same loading strain rate. It is seen that the loading strain rate for points 1 
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and 3 are extremely small. Hence points 2 and 4 are more realistic and they are captured well by 

the theoretical interaction diagram. In conclusion, the strain rate is a parameter that needs further 

investigation.  
 

3.3.3.8 Comparison between the Surface Meridians T&C Used in Mander 

Model and Experimental Work 

The ultimate strength surface meridians equations for compression C and tension T 

derived by Elwi and Murray (1979) from the data of Scickert and Winkler (1977), that are 

utilized by Mander et al. (1988) to predict the ultimate confined axial strength using the two 

lateral confined pressures, are compared herein to some experimental data found from Mills and 

Zimmerman (1970). The equations used by Mander are developed originally for concrete that 

has unconfined strength of 4.4 ksi. They have the following formulas  

 
2

049350.0661091.0069232.0 octoctT  
  

Equation 3.182
 

2
315545.0150502.1122965.0 octoctC     Equation 3.183 

 
FIGURE 3.56 
T and C Meridians Using Equations 3.182 and 3.183  used in Mander 
Model for f’c = 4.4 ksi 
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The T and C meridians adopted by Mander from Elwi and Murray (1979) work are reported on 

in Figure 3.56. Mills and Zimmerman (1970) developed three sets of multiaxial tests for concrete 

with unconfined strength of 3.34, 3.9 and 5.2 ksi. For each set, the values of ߪ௢௖௧തതതതത and ߬௢௖௧തതതതത are 

extracted at unconfined strength f’c, the cracking tensile strength f’t, equibiaxial compressive 

strength f’cb and two extra points; one on each of the meridians. These five points are used to plot 

the T and C meridians as shown in Figures 3.57, 3.58 and 3.59. 

 

 

FIGURE 3.57 
T and C Meridians for f’c = 3.34 ksi 
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FIGURE 3.58 
T and C Meridians for f’c = 3.9 ksi 

 

 

FIGURE 3.59 
T and C Meridians for f’c = 5.2 ksi 

 

The T and C equations for Figures 3.57 through 3.59 are as follow: 

for f’c = 3.34 ksi: 
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2
0169.06172.00851.0 octoctT      Equation 3.184 

2
1865.00471.11431.0 octoctC      Equation 3.185 

for f’c = 3.9 ksi: 

 
2

0151.06479.00825.0 octoctT      Equation 3.186 

2
112.00472.11348.0 octoctC      Equation 3.187 

for f’c = 5.2 ksi: 

 
2

0603.06658.00719.0 octoctT      Equation 3.188 

2
2768.01332.11244.0 octoctC      Equation 3.189 

Equations 3.181 through 3.186 are used in generating confined strength values for 

different lateral pressures as shown in Appendix A. Equations 3.179 and 3.180 are used also in 

developing confined strength values for the same lateral pressure values. It is seen from the 

tables that Equations 3.179 and 3.180 give conservative values compared to Equations 3.181 

through 3.186. Accordingly, Equations 3.179 and 3.180 are used herein to predict the ultimate 

confined axial strength values for any given unconfined strength (f’c) value. 
 

TABLE 3.1 
Data for Constructing T and C Meridian 

Curves for f’c Equal to 3.34 ksi 

Control Parameter � Oct � Oct 

f'c= 3.34 ksi -0.33333 0.471405

f't 0.043258 0.061176

f'cb -0.81497 0.576271

triaxial on C -1.15968 1.10653

triaxial on T -1.50898 0.978094
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TABLE 3.2 
Data for Constructing T and C Meridian 

Curves for f’c Equal to 3.9 ksi 

Control Parameter � Oct � Oct 

f'c= 3.9 ksi -0.33333 0.471405

f't 0.040006 0.056578

f'cb -1.0904 0.771027

triaxial on C -1.06018 1.119058

triaxial on T -1.26248 0.876414

 
TABLE 3.3 

Data for Constructing T and C Meridian 
Curves for f’c Equal to 5.2 ksi 

Control Parameter � Oct � Oct 

f'c= 5.2 ksi -0.33333 0.471405

f't 0.034553 0.048865

f'cb -0.80229 0.567306

triaxial on C -0.68386 0.76993

triaxial on T -0.88634 0.614725
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Chapter 4: Conclusions and Recommendations 

4.1 Conclusions 

This study accomplished several objectives at the analysis, material modeling, design 

implications and software development levels. It may be concluded that: 

1. Based on the extensive review of the confined model available in the literature, 

Mander Model is found to be the most suitable concentric loading model 

expressing the stress-strain behavior of circular and rectangular columns confined 

with convenient lateral steel and steel tubes as well.  

2. The eccentric based stress-strain model developed in this study provides more 

accuracy compared to the available concentric confined models in the literature as 

it is shown through comparison with experimental data.  

3. For rectangular columns, the ratio of the area of compression zone to the sectional 

gross area is more representative than the normalized alone eccentricity in 

correlating eccentric behavior. 

4. The non-linear numerical procedure introduced, using the eccentric model and the 

finite layer approach, successfully predicted the ultimate capacity of rectangular 

reinforced concrete columns confined with steel. 

5. A computer program named “KDOT Column Expert” is developed based on the 

non-linear approach implemented for analyzing and designing rectangular 

columns confined with lateral steel hoops. 

6. The unconfined concrete analysis carried out by KDOT Column Expert is 

benchmarked successfully against well-established commercial software for a 

range of design parameters. 

7. The confined concrete analysis implemented by KDOT Column Expert is well 

correlated to experimental data. 

 
4.2 Recommendations 

This work should be extended to address the following areas: 

1. Model the effect of FRP wrapping on confinement for rectangular columns. 
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2. Model corrosion of longitudinal and transverse steel for circular and rectangular 

columns. 

3. Model CFST for circular columns. 

4. Model CFST for rectangular columns. 

5. Expand the software application to include the CFST columns. 
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Appendix A: Ultimate Confined Strength Tables 

Table A.1 is developed for f’c of 3.3 using Equations 3.181 and 3.182. Table A.2 is for 

f’c of 3.9 using Equations 3.183 and 3.184. Table A.3 is developed using Mander procedure that 

utilizes Scickert and Winkler (1977) formulas. Table A.4 is for f’c of 5.2 using Equations 3.185 

and 3.186. Tables A.5 through A.7 show the confined values for the same lateral pressure using 

Scickert and Winkler (1977) equations. Tables A.5 through A.7 give conservative values 

compared to table A.1, A.2 and A.4. This indicates that Equations 3.179 and 3.180 found by 

Scickert and Winkler (1977) and utilized by Mander et al. (1988) are conservative enough to be 

used in the analysis 
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TABLE A.1 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 3.3 ksi 

 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 3.7260 3.9001 4.0336 4.1442 4.2396 4.3238 4.3994 4.4680 4.5309 4.5888 4.6424 4.6924 4.7389 4.7825 4.8233

0.04 3.9001 4.1298 4.2988 4.4318 4.5436 4.6408 4.7273 4.8054 4.8768 4.9424 5.0032 5.0598 5.1128 5.1624 5.2091

0.06 4.0336 4.2988 4.5141 4.6779 4.8098 4.9220 5.0205 5.1086 5.1887 5.2621 5.3299 5.3930 5.4520 5.5074 5.5596

0.08 4.1442 4.4318 4.6779 4.8808 5.0396 5.1700 5.2821 5.3812 5.4705 5.5519 5.6269 5.6965 5.7614 5.8223 5.8797

0.1 4.2396 4.5436 4.8098 5.0396 5.2316 5.3855 5.5140 5.6257 5.7250 5.8150 5.8974 5.9736 6.0445 6.1109 6.1734

0.12 4.3238 4.6408 4.9220 5.1700 5.3855 5.5679 5.7172 5.8436 5.9544 6.0537 6.1440 6.2271 6.3041 6.3761 6.4436

0.14 4.3994 4.7273 5.0205 5.2821 5.5140 5.7172 5.8910 6.0358 6.1600 6.2698 6.3687 6.4591 6.5425 6.6201 6.6928

0.16 4.4680 4.8054 5.1086 5.3812 5.6257 5.8436 6.0358 6.2019 6.3424 6.4643 6.5728 6.6712 6.7614 6.8450 6.9230

0.18 4.5309 4.8768 5.1887 5.4705 5.7250 5.9544 6.1600 6.3424 6.5015 6.6380 6.7575 6.8647 6.9623 7.0522 7.1357

0.2 4.5888 4.9424 5.2621 5.5519 5.8150 6.0537 6.2698 6.4643 6.6380 6.7907 6.9233 7.0405 7.1462 7.2428 7.3322

0.22 4.6424 5.0032 5.3299 5.6269 5.8974 6.1440 6.3687 6.5728 6.7575 6.9233 7.0703 7.1991 7.3139 7.4180 7.5137

0.24 4.6924 5.0598 5.3930 5.6965 5.9736 6.2271 6.4591 6.6712 6.8647 7.0405 7.1991 7.3407 7.4660 7.5784 7.6810

0.26 4.7389 5.1128 5.4520 5.7614 6.0445 6.3041 6.5425 6.7614 6.9623 7.1462 7.3139 7.4660 7.6026 7.7245 7.8347

0.28 4.7825 5.1624 5.5074 5.8223 6.1109 6.3761 6.6201 6.8450 7.0522 7.2428 7.4180 7.5784 7.7245 7.8566 7.9753

0.3 4.8233 5.2091 5.5596 5.8797 6.1734 6.4436 6.6928 6.9230 7.1357 7.3322 7.5137 7.6810 7.8347 7.9753 8.1031
 
 
 
 

1* 
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TABLE A.2 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 3.9 ksi 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 4.4819 4.7318 4.9351 5.1101 5.2656 5.4063 5.5355 5.6552 5.7670 5.8721 5.9712 6.0651 6.1544 6.2394 6.3206

0.04 4.7318 5.0412 5.2854 5.4880 5.6642 5.8217 5.9649 6.0969 6.2196 6.3345 6.4427 6.5450 6.6422 6.7347 6.8230

0.06 4.9351 5.2854 5.5802 5.8187 6.0197 6.1962 6.3548 6.4998 6.6337 6.7587 6.8759 6.9865 7.0914 7.1911 7.2862

0.08 5.1101 5.4880 5.8187 6.1005 6.3333 6.5323 6.7083 6.8674 7.0134 7.1488 7.2753 7.3943 7.5068 7.6136 7.7154

0.1 5.2656 5.6642 6.0197 6.3333 6.6037 6.8308 7.0273 7.2024 7.3616 7.5081 7.6443 7.7720 7.8923 8.0062 8.1145

0.12 5.4063 5.8217 6.1962 6.5323 6.8308 7.0908 7.3125 7.5063 7.6802 7.8389 7.9855 8.1222 8.2506 8.3718 8.4868

0.14 5.5355 5.9649 6.3548 6.7083 7.0273 7.3125 7.5631 7.7795 7.9704 8.1427 8.3007 8.4471 8.5840 8.7128 8.8346

0.16 5.6552 6.0969 6.4998 6.8674 7.2024 7.5063 7.7795 8.0215 8.2328 8.4208 8.5913 8.7483 8.8942 9.0310 9.1599

0.18 5.7670 6.2196 6.6337 7.0134 7.3616 7.6802 7.9704 8.2328 8.4670 8.6733 8.8582 9.0269 9.1827 9.3279 9.4644

0.2 5.8721 6.3345 6.7587 7.1488 7.5081 7.8389 8.1427 8.4208 8.6733 8.9002 9.1018 9.2837 9.4503 9.6048 9.7492

0.22 5.9712 6.4427 6.8759 7.2753 7.6443 7.9855 8.3007 8.5913 8.8582 9.1018 9.3219 9.5190 9.6978 9.8624 10.0154

0.24 6.0651 6.5450 6.9865 7.3943 7.7720 8.1222 8.4471 8.7483 9.0269 9.2837 9.5190 9.7328 9.9255 10.1014 10.2638

0.26 6.1544 6.6422 7.0914 7.5068 7.8923 8.2506 8.5840 8.8942 9.1827 9.4503 9.6978 9.9255 10.1334 10.3220 10.4948

0.28 6.2394 6.7347 7.1911 7.6136 8.0062 8.3718 8.7128 9.0310 9.3279 9.6048 9.8624 10.1014 10.3220 10.5243 10.7080

0.3 6.3206 6.8230 7.2862 7.7154 8.1145 8.4868 8.8346 9.1599 9.4644 9.7492 10.0154 10.2638 10.4948 10.7080 10.9060
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TABLE A.3 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 4.4 ksi (used by Mander et al. (1988)) 

  
0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24  0.26  0.28  0.3 

0.02  5.0255  5.2550  5.4259  5.5656 5.6849 5.7895 5.8829 5.9674 6.0444  6.1152 6.1806 6.2412 6.2976 6.3502 6.3993

0.04  5.2550  5.5622  5.7791  5.9460 6.0845 6.2040 6.3096 6.4044 6.4906  6.5695 6.6423 6.7098 6.7728 6.8315 6.8866

0.06  5.4259  5.7791  6.0569  6.2623 6.4247 6.5613 6.6803 6.7860 6.8815  6.9686 7.0487 7.1230 7.1920 7.2566 7.3171

0.08  5.5656  5.9460  6.2623  6.5164 6.7112 6.8688 7.0030 7.1209 7.2263  7.3218 7.4094 7.4903 7.5654 7.6355 7.7012

0.1  5.6849  6.0845  6.4247  6.7112 6.9456 7.1307 7.2834 7.4150 7.5313  7.6359 7.7312 7.8188 7.9000 7.9756 8.0464

0.12  5.7895  6.2040  6.5613  6.8688 7.1307 7.3486 7.5248 7.6726 7.8012  7.9157 8.0193 8.1140 8.2013 8.2825 8.3582

0.14  5.8829  6.3096  6.6803  7.0030 7.2834 7.5248 7.7283 7.8964 8.0394  8.1650 8.2775 8.3797 8.4735 8.5604 8.6413

0.16  5.9674  6.4044  6.7860  7.1209 7.4150 7.6726 7.8964 8.0875 8.2480  8.3864 8.5089 8.6193 8.7200 8.8127 8.8989

0.18  6.0444  6.4906  6.8815  7.2263 7.5313 7.8012 8.0394 8.2480 8.4282  8.5818 8.7156 8.8350 8.9431 9.0422 9.1338

0.2  6.1152  6.5695  6.9686  7.3218 7.6359 7.9157 8.1650 8.3864 8.5818  8.7522 8.8994 9.0289 9.1451 9.2510 9.3483

0.22  6.1806  6.6423  7.0487  7.4094 7.7312 8.0193 8.2775 8.5089 8.7156  8.8994 9.0610 9.2022 9.3276 9.4408 9.5443

0.24  6.2412  6.7098  7.1230  7.4903 7.8188 8.1140 8.3797 8.6193 8.8350  9.0289 9.2022 9.3560 9.4916 9.6130 9.7231

0.26  6.2976  6.7728  7.1920  7.5654 7.9000 8.2013 8.4735 8.7200 8.9431  9.1451 9.3276 9.4916 9.6383 9.7687 9.8861

0.28  6.3502  6.8315  7.2566  7.6355 7.9756 8.2825 8.5604 8.8127 9.0422  9.2510 9.4408 9.6130 9.7687 9.9087 10.0343

0.3  6.3993  6.8866  7.3171  7.7012 8.0464 8.3582 8.6413 8.8989 9.1338  9.3483 9.5443 9.7231 9.8861 10.0343 10.1683

 
 
 
 
 
 
 

1* 

2* 
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TABLE A.4 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 5.2 ksi 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 5.9070 6.1647 6.3409 6.4785 6.5923 6.6891 6.7730 6.8467 6.9120 6.9700 7.0217 7.0679 7.1091 7.1458 7.1783

0.04 6.1647 6.5586 6.8072 6.9847 7.1258 7.2436 7.3448 7.4332 7.5113 7.5810 7.6435 7.6996 7.7502 7.7959 7.8370

0.06 6.3409 6.8072 7.1633 7.4023 7.5789 7.7215 7.8417 7.9458 8.0373 8.1187 8.1917 8.2574 8.3170 8.3710 8.4201

0.08 6.4785 6.9847 7.4023 7.7279 7.9573 8.1317 8.2746 8.3962 8.5020 8.5957 8.6794 8.7548 8.8231 8.8853 8.9420

0.1 6.5923 7.1258 7.5789 7.9573 8.2579 8.4780 8.6495 8.7917 8.9137 9.0206 9.1157 9.2010 9.2782 9.3485 9.4126

0.12 6.6891 7.2436 7.7215 8.1317 8.4780 8.7576 8.9688 9.1369 9.2778 9.3996 9.5070 9.6028 9.6893 9.7678 9.8395

0.14 6.7730 7.3448 7.8417 8.2746 8.6495 8.9688 9.2303 9.4332 9.5975 9.7367 9.8579 9.9652 10.0615 10.1486 10.2280

0.16 6.8467 7.4332 7.9458 8.3962 8.7917 9.1369 9.4332 9.6790 9.8740 10.0344 10.1716 10.2917 10.3987 10.4951 10.5826

0.18 6.9120 7.5113 8.0373 8.5020 8.9137 9.2778 9.5975 9.8740 10.1061 10.2937 10.4501 10.5850 10.7039 10.8102 10.9063

0.2 6.9700 7.5810 8.1187 8.5957 9.0206 9.3996 9.7367 10.0344 10.2937 10.5135 10.6941 10.8465 10.9790 11.0964 11.2019

0.22 7.0217 7.6435 8.1917 8.6794 9.1157 9.5070 9.8579 10.1716 10.4501 10.6941 10.9029 11.0770 11.2255 11.3555 11.4713

0.24 7.0679 7.6996 8.2574 8.7548 9.2010 9.6028 9.9652 10.2917 10.5850 10.8465 11.0770 11.2759 11.4438 11.5885 11.7159

0.26 7.1091 7.7502 8.3170 8.8231 9.2782 9.6893 10.0615 10.3987 10.7039 10.9790 11.2255 11.4438 11.6338 11.7959 11.9367

0.28 7.1458 7.7959 8.3710 8.8853 9.3485 9.7678 10.1486 10.4951 10.8102 11.0964 11.3555 11.5885 11.7959 11.9776 12.1342

0.3 7.1783 7.8370 8.4201 8.9420 9.4126 9.8395 10.2280 10.5826 10.9063 11.2019 11.4713 11.7159 11.9367 12.1342 12.3084
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TABLE A.5 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 3.3 ksi (using Scickert and Winkler (1977)) 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

0.02 3.7369 3.9076 4.0347 4.1385 4.2272 4.3050 4.3745 4.4373 4.4946 4.5472 4.5958 4.6408 4.6827 4.7218 4.7584

0.04 3.9076 4.1360 4.2973 4.4214 4.5244 4.6133 4.6918 4.7623 4.8263 4.8850 4.9391 4.9894 5.0361 5.0799 5.1208

0.06 4.0347 4.2973 4.5039 4.6566 4.7773 4.8789 4.9674 5.0460 5.1170 5.1818 5.2414 5.2966 5.3479 5.3959 5.4410

0.08 4.1385 4.4214 4.6566 4.8456 4.9904 5.1076 5.2074 5.2950 5.3734 5.4445 5.5096 5.5697 5.6255 5.6777 5.7266

0.1 4.2272 4.5244 4.7773 4.9904 5.1647 5.3023 5.4159 5.5137 5.6002 5.6780 5.7489 5.8140 5.8744 5.9306 5.9832

0.12 4.3050 4.6133 4.8789 5.1076 5.3023 5.4643 5.5954 5.7053 5.8009 5.8861 5.9631 6.0335 6.0984 6.1588 6.2151

0.14 4.3745 4.6918 4.9674 5.2074 5.4159 5.5954 5.7467 5.8717 5.9780 6.0714 6.1551 6.2311 6.3009 6.3654 6.4256

0.16 4.4373 4.7623 5.0460 5.2950 5.5137 5.7053 5.8717 6.0138 6.1332 6.2361 6.3271 6.4092 6.4841 6.5531 6.6171

0.18 4.4946 4.8263 5.1170 5.3734 5.6002 5.8009 5.9780 6.1332 6.2671 6.3813 6.4809 6.5696 6.6500 6.7237 6.7918

0.2 4.5472 4.8850 5.1818 5.4445 5.6780 5.8861 6.0714 6.2361 6.3813 6.5081 6.6175 6.7138 6.8003 6.8789 6.9513

0.22 4.5958 4.9391 5.2414 5.5096 5.7489 5.9631 6.1551 6.3271 6.4809 6.6175 6.7377 6.8427 6.9359 7.0201 7.0970

0.24 4.6408 4.9894 5.2966 5.5697 5.8140 6.0335 6.2311 6.4092 6.5696 6.7138 6.8427 6.9571 7.0579 7.1481 7.2300

0.26 4.6827 5.0361 5.3479 5.6255 5.8744 6.0984 6.3009 6.4841 6.6500 6.8003 6.9359 7.0579 7.1669 7.2639 7.3512

0.28 4.7218 5.0799 5.3959 5.6777 5.9306 6.1588 6.3654 6.5531 6.7237 6.8789 7.0201 7.1481 7.2639 7.3681 7.4614

0.3 4.7584 5.1208 5.4410 5.7266 5.9832 6.2151 6.4256 6.6171 6.7918 6.9513 7.0970 7.2300 7.3512 7.4614 7.5611
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TABLE A.6 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 3.9 ksi (Using Scickert and Winkler (1977)) 

  
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 4.4163 4.6181 4.7683 4.8909 4.9958 5.0877 5.1698 5.2441 5.3118 5.3740 5.4314 5.4846 5.5342 5.5804 5.6236

0.04 4.6181 4.8880 5.0786 5.2253 5.3470 5.4520 5.5448 5.6281 5.7038 5.7732 5.8372 5.8965 5.9518 6.0035 6.0519

0.06 4.7683 5.0786 5.3228 5.5032 5.6460 5.7660 5.8705 5.9635 6.0474 6.1239 6.1944 6.2596 6.3203 6.3770 6.4302

0.08 4.8909 5.2253 5.5032 5.7266 5.8977 6.0362 6.1542 6.2577 6.3504 6.4344 6.5113 6.5824 6.6484 6.7100 6.7677

0.1 4.9958 5.3470 5.6460 5.8977 6.1038 6.2664 6.4006 6.5162 6.6184 6.7104 6.7941 6.8711 6.9424 7.0089 7.0711

0.12 5.0877 5.4520 5.7660 6.0362 6.2664 6.4578 6.6127 6.7426 6.8557 6.9563 7.0473 7.1305 7.2072 7.2785 7.3452

0.14 5.1698 5.5448 5.8705 6.1542 6.4006 6.6127 6.7916 6.9392 7.0650 7.1753 7.2742 7.3640 7.4465 7.5228 7.5939

0.16 5.2441 5.6281 5.9635 6.2577 6.5162 6.7426 6.9392 7.1072 7.2483 7.3699 7.4775 7.5745 7.6630 7.7445 7.8202

0.18 5.3118 5.7038 6.0474 6.3504 6.6184 6.8557 7.0650 7.2483 7.4066 7.5416 7.6592 7.7641 7.8591 7.9462 8.0267

0.2 5.3740 5.7732 6.1239 6.4344 6.7104 6.9563 7.1753 7.3699 7.5416 7.6913 7.8207 7.9345 8.0367 8.1297 8.2152

0.22 5.4314 5.8372 6.1944 6.5113 6.7941 7.0473 7.2742 7.4775 7.6592 7.8207 7.9628 8.0868 8.1970 8.2964 8.3874

0.24 5.4846 5.8965 6.2596 6.5824 6.8711 7.1305 7.3640 7.5745 7.7641 7.9345 8.0868 8.2220 8.3412 8.4478 8.5446

0.26 5.5342 5.9518 6.3203 6.6484 6.9424 7.2072 7.4465 7.6630 7.8591 8.0367 8.1970 8.3412 8.4700 8.5846 8.6878

0.28 5.5804 6.0035 6.3770 6.7100 7.0089 7.2785 7.5228 7.7445 7.9462 8.1297 8.2964 8.4478 8.5846 8.7077 8.8175

0.3 5.6236 6.0519 6.4302 6.7677 7.0711 7.3452 7.5939 7.8202 8.0267 8.2152 8.3874 8.5446 8.6878 8.8175 8.9358
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Table A.7 
Ultimate Confined Strength to Unconfined Strength Ratio for f’c = 5.2 ksi (Using Scickert and Winkler (1977)) 

  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

0.02 5.8885 6.1574 6.3577 6.5213 6.6610 6.7836 6.8931 6.9921 7.0823 7.1652 7.2418 7.3128 7.3788 7.4405 7.4980 

0.04 6.1574 6.5173 6.7715 6.9671 7.1294 7.2694 7.3931 7.5042 7.6051 7.6976 7.7829 7.8620 7.9357 8.0046 8.0692 

0.06 6.3577 6.7715 7.0970 7.3376 7.5279 7.6880 7.8274 7.9513 8.0632 8.1652 8.2592 8.3461 8.4270 8.5027 8.5736 

0.08 6.5213 6.9671 7.3376 7.6354 7.8636 8.0483 8.2056 8.3437 8.4672 8.5792 8.6818 8.7765 8.8645 8.9467 9.0237 

0.1 6.6610 7.1294 7.5279 7.8636 8.1384 8.3552 8.5342 8.6883 8.8246 8.9472 9.0588 9.1615 9.2566 9.3452 9.4281 

0.12 6.7836 7.2694 7.6880 8.0483 8.3552 8.6105 8.8169 8.9902 9.1409 9.2750 9.3963 9.5073 9.6096 9.7047 9.7935 

0.14 6.8931 7.3931 7.8274 8.2056 8.5342 8.8169 9.0554 9.2523 9.4200 9.5671 9.6989 9.8187 9.9286 10.0304 10.1251 

0.16 6.9921 7.5042 7.9513 8.3437 8.6883 8.9902 9.2523 9.4763 9.6644 9.8265 9.9700 10.0994 10.2174 10.3261 10.4270 

0.18 7.0823 7.6051 8.0632 8.4672 8.8246 9.1409 9.4200 9.6644 9.8755 10.0554 10.2123 10.3522 10.4789 10.5949 10.7023 

0.2 7.1652 7.6976 8.1652 8.5792 8.9472 9.2750 9.5671 9.8265 10.0554 10.2551 10.4276 10.5793 10.7155 10.8396 10.9536 

0.22 7.2418 7.7829 8.2592 8.6818 9.0588 9.3963 9.6989 9.9700 10.2123 10.4276 10.6170 10.7824 10.9293 11.0619 11.1832 

0.24 7.3128 7.8620 8.3461 8.7765 9.1615 9.5073 9.8187 10.0994 10.3522 10.5793 10.7824 10.9627 11.1216 11.2637 11.3928 

0.26 7.3788 7.9357 8.4270 8.8645 9.2566 9.6096 9.9286 10.2174 10.4789 10.7155 10.9293 11.1216 11.2934 11.4462 11.5838 

0.28 7.4405 8.0046 8.5027 8.9467 9.3452 9.7047 10.0304 10.3261 10.5949 10.8396 11.0619 11.2637 11.4462 11.6103 11.7574 

0.3 7.4980 8.0692 8.5736 9.0237 9.4281 9.7935 10.1251 10.4270 10.7023 10.9536 11.1832 11.3928 11.5838 11.7574 11.9144 
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