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PREFACE

The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and New-
Developments (K-TRAN) Research Program funded this research project. It is an ongoing,
cooperative and comprehensive research program addressing transportation needs of the state of
Kansas utilizing academic and research resources from KDOT, Kansas State University and the
University of Kansas. Transportation professionals in KDOT and the universities jointly develop
the projects included in the research program.

NOTICE

The authors and the state of Kansas do not endorse products or manufacturers. Trade and
manufacturers names appear herein solely because they are considered essential to the object of
this report.

This information is available in alternative accessible formats. To obtain an alternative format,
contact the Office of Transportation Information, Kansas Department of Transportation, 700 SW
Harrison, Topeka, Kansas 66603-3754 or phone (785) 296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the views or the
policies of the state of Kansas. This report does not constitute a standard, specification or
regulation.
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Abstract

The analysis of concrete columns using unconfined concrete modelsis a well established
practice. On the other hand, prediction of the actua ultimate capacity of confined concrete
columns requires specialized nonlinear analysis. Modern codes and standards are introducing the
need to perform extreme event analysis. There has been a number of studies that focused on the
analysis and testing of concentric columns or cylinders. This case has the highest confinement
utilization since the entire section is under confined compression. On the other hand, the
augmentation of compressive strength and ductility due to full axial confinement is not
applicable to pure bending and combined bending and axial load cases simply because the area
of effective confined concrete in compression is reduced. The higher eccentricity causes smaller
confined concrete region in compression yielding smaller increase in strength and ductility of
concrete. Accordingly, the ultimate confined strength is gradually reduced from the fully
confined value f. (at zero eccentricity) to the unconfined value f’ ¢ (at infinite eccentricity) as a
function of the compression area to total area ratio. The higher the eccentricity, the smaller the
confined concrete compression zone. This paradigm is used to implement adaptive eccentric
model utilizing the well known Mander Model.

Generalization of the moment of area approach is utilized based on proportional loading,
finite layer procedure and the secant stiffness approach, in an iterative incremental numerical
model to achieve equilibrium points of P-¢ and M-¢ response up to failure. This numerical
anaysis is adapted to assess the confining effect in rectangular columns confined with
conventional lateral steel. This model is validated against experimental data found in literature.
The comparison shows good correlation. Finally computer software is developed based on the
non-linear numerical analysis. The software is equipped with an elegant graphics interface that
assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single
sheet. Options for preliminary design, section and reinforcement selection are seamlessly
integrated as well. The software generates 3D failure surface for rectangular columns and allows
the user to determine the 2D interaction diagrams for any angle o. between the x-axis and the
resultant moment. Improvements to KDOT Bridge Design Manual using this software with

reference to AASHTO LRFD are made. This study is limited to stub columns.
\'
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Chapter 1: Introduction

1.1 Background

Columns are considered the most critical elements in structures. The unconfined analysis
for columns is well established in the literature. Structural design codes dictate reduction factors
for safety. It wasn't until very recently that design specifications and codes of practice, like
AASHTO LRFD, started realizing the importance of introducing extreme event load cases that
necessitates accounting for advanced behavioral aspects like confinement. Confinement adds
another dimension to columns analysis as it increases the column’s capacity and ductility.
Accordingly, confinement needs special non linear analysis to yield accurate predictions.
Nevertheless the literature is till lacking specialized analysis tools that take into account
confinement despite the availability of all kinds of confinement models. In addition the literature
has focused on axially loaded members with less attention to eccentric loading. Although the
latter is more likely to occur, at least with misalignment tolerances, the eccentricity effect is not
considered in any confinement model available in the literature.

It is widely known that code Specifications involve very detailed design procedures that
need to be checked for a number of limit states making the task of the designer very tedious.
Accordingly, it is important to develop software that guide through the design process and

facilitate the preparation of reliable analysis/design documents.

1.2 Objectives

This study is intended to determine the actual capacity of confined reinforced concrete
columns subjected to eccentric loading and to generate the failure envelope at three different
levels. First, the well-known ultimate capacity analysis of unconfined concrete is developed as a
benchmarking step. Secondly, the unconfined ultimate interaction diagram is scaled down based
on the reduction factors of the AASHTO LRFD to the design interaction diagram. Finally, the
actual confined concrete ultimate analysis is developed based on a new eccentricity model
accounting for partial confinement effect under eccentric loading. The analyses are conducted for

rectangular columns confined with conventional transverse steel. It is important to note that the



present analysis procedure will be benchmarked against a wide range of experimental and

analytical studies to establish its accuracy and reliability.

It is also the objective of this study to furnish interactive software with a user-friendly

interface having analysis and design features that will facilitate the preliminary design of circular

columns based on the actual demand. The overall objectives behind this research are summarized

in the following points:

1.3 Scope

Introduce the eccentricity effect in the stress-strain modeling

Implement non-linear analysis for considering the confinement effects on
column’s actual capacity

Test the analysis for rectangular columns confined with conventional transverse
steel.

Generate computer software that helps in designing and analyzing confined
concrete columns through creating three levels of Moment-Force envelopes,
unconfined curve, design curve based on AASHTO-LRFD and confined curve.

This study is composed of four chapters covering the development of material models,

analysis procedures, benchmarking and practical applications.

Chapter one introduces the objectives of the study and the content of the different
chapters.
Chapter two reviews the literature through two independent sections:
Section 1: Reinforced concrete confinement models
Section 2. Rectangular Columns subjected to biaxia bending and Axial
Compression
Chapter three presents rectangular columns analysis for both the unconfined and
confined cases. Chapter three addresses the following subjects:

0 Finite Layer Approach (Fiber Model)

0 Present Confinement Model for Concentric Columns

0 Present Confinement Model for Eccentric Columns



o Moment of AreaTheorem
o0 Numerica Formulation
0 Results and Discussion

e Chapter four states the conclusions and recommendations.



Chapter 2: Literature Review

This chapter reviews two different topics; lateral steel confinement models and

rectangular columns subjected to biaxial bending and axial compression.

2.1 Steel Confinement Models

A comprehensive review of confined models for concrete columns under concentric axial
compression that are available in the literature is conducted. The models reviewed are
chronologically presented then compared by a set of criteria that assess consideration of different
factors in developing the models such as effectively confined area, yielding strength and
ductility.

2.1.1 Chronological Review of Models

The confinement models available are presented chronologically regardiess of their
comparative importance first. After that, discussion and categorization of the models are carried
out and conclusions are made. Common notation is used for al the equations for the sake of

consistency and comparison.

2.1.1.1 Notation

As the cross sectional area of longitudinal steel reinforcement

A the cross sectional area of transverse steel reinforcement

Ae theareaof effectively confined concrete

A the area of core within centerlines of perimeter spirals or hoops excluding area of
longitudinal steel

b: the confined width (core) of the section

h: the confined height (core) of the section

c. center-to-center distance between longitudinal bars

d's thediameter of longitudinal reinforcement

d «: the diameter of transverse reinforcement

D: the diameter of the column



ds the core diameter of the column

fee: the maximum confined strength

f’ . the peak unconfined strength

fi. thelateral confined pressure

f’1. theeffective jzea CcONfined pressure

fyn. the yield strength of the transverse steel

fs the stressin thelateral confining steel

ke the effective lateral confinement coefficient

g: the effectiveness of the transverse reinforcement

S. tiespacing

S: the vertical spacing at which transverse reinforcement is not effective in concrete
confinement

&o: the strain corresponding to the peak unconfined strength f'¢

&c: the strain corresponding to the peak confined strength fe.

gy. thestrain at yielding for the transverse reinforcement

ecu: the ultimate strain of confined concrete

ps. the volumetric ratio of lateral steel to concrete core

pi.- theratio of longitudinal steel to the gross sectional area

p: thevolumetric ratio of lateral + longitudinal steel to concrete core

Richart, Brandtzaeg, and Brown (1929)
Richart et al.’s (1929) model was the first to capture the proportional relationship
between the lateral confined pressure and the ultimate compressive strength of confined

concrete.

fe = fo+kf, Equation 2.1



The average value for the coefficient k; which was derived from a series of short column
specimen tests, came out to be (4.1). The strain corresponding to the peak strength & (see
Mander et al. 1988) is obtained using the following function:

f
€ = gc{l"' kz[f_lﬂ K, =5k, Equation 2.2

c

where & is the strain corresponding to f’c k; is the strain coefficient of the effective lateral

confinement pressure. No stress-strain curve graph was proposed by Richart et al. (1929).

Chan (1955)

A tri-linear curve describing the stress-strain relationship was suggested by Chan (1955)
based on experimental work. The ratio of the volume of steel ties to concrete core volume and
concrete strength were the only variables in the experimental work done. Chan assumed that OA
approximates the elastic stage and ABC approximates the plastic stage (Figure 2.1). The
positions of A, B and C may vary with different concrete variables. Chan assumed three different

slopes E;, A,E;, AE: for lines OA, AB and BC respectively. However no information about

Arand A,was provided.

f

f, ¢
B

fe Y1EA 1EC §2EC i

&

O ge 3 p 6'u

Strain
FIGURE 2.1

General Stress-Strain Curve by
Chan (1955)



Blume, Newmark, and Corning (1961)

Blume et a. (1961) were the first to impose the effect of the yield strength for the
transverse stedl fy, in different equations defining the model. The model generated, Figure 2.2,
has ascending straight line with steep slope starting from the origin till the plain concrete peak
strength ' and the corresponding strain ¢, then aless slope straight line connect the latter point

and the confined concrete peak strength f,. and &... Then the curve flatten till &g

Ast fyh

f. =085f, + 4.1? for rectangular columns Equation 2.3
3 0.22f_ +400psi .
co 108 psi Equation 2.4
Eq =08, Equation 2.5
Eq =9, Equation 2.6
fcc ————————- |
| |
| |
| |
| |
0.85f'c —— ‘ } }
| | |
6/ | |
= \
3/ | :
I I I
| | |
Eco Ecc . Eeu
Strain
FIGURE 2.2
General Stress-Strain Curve by Blume et
al. (1961)



where ¢, isthe strain at yielding for the transverse reinforcement, Aq is the cross sectional area of
transverse steel reinforcement, h is the confined cross sectional height, &, is the strain of

transverse spira reinforcement at maximum stress and &, is the ultimate concrete strain.

Roy and Sozen (1965)

Based on their experimental results, which were controlled by two variables; ties spacing
and amount of longitudinal reinforcement, Roy and Sozen (1965) concluded that there is no
enhancement in the concrete capacity by using rectilinear ties. On the other hand there was
significant increase in ductility. They proposed a bilinear ascending-descending stress strain
curve that has a peak of the maximum strength of plain concrete ' and corresponding strain g
with avalue of 0.002. The second line goes through the point defined by & till it intersects with
the strain axis. The strain e5p was suggested to be a function of the volumetric ratio of ties to
concrete core ps, tie spacing s and the shorter side dimension b’ (see Sheikh 1982).

3pb’

Exp :4—5 Equation 2.7

Soliman and Yu (1967)

Soliman and Yu (1967) proposed another model that emerged from experimental results.
The main parameters involved in the work done were tie spacing s, a new term represents the
effectiveness of ties s, the area of ties A¢, and finally section geometry, which has three different
variables, A the area of confined concrete under compression, A. the area of concrete under
compression and b. The model has three different portions as shown in Figure 2.3. The ascending
portion which is represented by a curve till the peak point (f', ). The flat straight-line portion
with its length varying depending on the degree of confinement. The last portion is a descending

straight line passing through (0.8 f'¢, &) then extending down till an ultimate strain.

q=[14% 05| A9 Equation 2.8
A A, s+0.0028Bs



f.=0.9f,(1+0.05q) Equation 2.9

£, =055f_*107 Equation 2.10
&, =0.0025(1+ Q) Equation 2.11
&4 =0.0045(1+ 0.85q) Equation 2.12

where q refers to the effectiveness of the transverse reinforcement, s, is the vertical spacing at
which transverse reinforcement is not effective in concrete confinement and B is the greater of b

and 0.7 h.

0.8f,
g
0]
gce gcs gcf
Sran
FIGURE 2.3

General Stress-Strain Curve by
Soliman and Yu (1967)

Sargin (1971)

Sargin conducted experimental work on low and medium strength concrete with no
longitudinal reinforcement. The transverse steel that was used had different size and different
yield and ultimate strength. The main variables affecting the results were the volumetric ratio of
lateral reinforcement to concrete core ps, the strength of plain concrete f’, the ratio of tie spacing

to the width of the concrete core and the yield strength of the transverse stee! fy.



- f.{ Ax+(m-1)x? }

© 1+ (A-2)x+ mx?

where mis a constant controlling the slope of the descending branch:

m=0.8—0.05f,

psfyh

i

k, =1+ 0.0146{1— 0.245b3}

f
£, =0.0024+ 0.0374{1— 0'7345} Ps Iy

T

f.=k,f,

cc 3'c
where ks is concentric loading maximum stress ratio.

Kent and Park (1971)

As Roy and Sozen (1965) did, Kent and Park (1971) assumed that the maximum strength
for confined and plain concrete is the same f'¢. The suggested curve, Figure 2.4, starts from the
origin then increases parabolically (Hognestad's Parabola) till the peak at f'c and the
corresponding strain & at 0.002. Then it descends with one of two different straight lines. For
the confined concrete, which is more ductile, it descends till the point (0.5 f’ ¢, es0c) and continues
descending to 0.2f’c followed by a flat plateau. For the plain concrete it descends till the point
(0.5 f'c, es04) and continue descending to 0.2f ¢ as well without a flat plateau. Kent and Park

assumed that confined concrete could sustain strain to infinity at a constant stress of 0.2 ' c:

10

Equation 2.13

Equation 2.14

Equation 2.15

Equation 2.16

Equation 2.17

Equation 2.18

Equation 2.19



| 26, &, ?
fo=1 - = for ascending branch

fo=f.[1-Z(e,—5,)| for descending branch Equation 2.20
3+0.002f,
€500 :W Equation 2.21
Ps = M Equation 2.22
hbs

Eson = €50c ~ Es0u Equation 2.23
3 b
Eeon = — Psa|— Equation 2.24
50h 4 s s
0.5
/=

Equation 2.25
Eson T €500 ~ €0 g

where ps is the ratio of lateral steel to the concrete core, Z is a constant controlling the slope of

descending portion.

gc gSOu gSOc gZOc
Sran

FIGURE 2.4
Stress-Strain Curve by Kent and Park (1971)
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Popovics (1973)
Popovics pointed out that the stress-strain diagram is influenced by testing conditions and

concrete age. The stress equation is:

f.= fmi% Equation 2.26
¢ £
* n—1+(°J
gCC
n=0.4*10"°f_+1.0 Equation 2.27
Eee = 2.7*1074 fee Equation 2.28

Vallenas, Bertero, and Popov (1977)

The variables utilized in the experimental work conducted by Vallenas et al. (1977) were
the volumetric ratio of lateral steel to concrete core ps, ratio of longitudinal steel to the gross area
of the section p,, ties spacing s, effective width size, strength of ties and size of longitudinal bars.
The model generated was similar to Kent and Park model with improvement in the peak strength

for confined concrete (Figure 2.5). For the ascending branch:

f
f_c- =k[1-Ze . (x=D] s <& <& Equation 2.29
Cc
f
f—c. =0.3k Eoa S &, Equation 2.30
C
gC
X=— Equation 2.31
gCC
foo = Kf¢ Equation 2.32

12



£ = c € S Eq Equation 2.33

For the descending branch:

s |:,0 + di?pl i| fyh
k=1+ 0.0091{1— 0.245—} > Equation 2.34
n|Jr
f
&, =0.0024+ 0.005{1— 0'7345} P y'? Equation 2.35
fC
Z= 0.5 : Equation 2.36
§Ps h N '3‘>+'O.002fC 0,002
4 S f. —1000

where k is coefficient of confined strength ratio, Z is the slope of descending portion, d's and d' g

are the diameter of longitudinal and transverse reinforcement, respectively.

Axial Stress

0.3kf"c

Ecc £0.3k

Axial Strain

FIGURE 2.5
Stress-Strain Curve by Vallenas et al. (1977)
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Wang, Shah, and Naaman (1978)

Wang et a. (1978) obtained experimentally another stress-strain curve describing the
behavior of confined reinforced concrete under compression, Figure 2.6. The concrete tested was
normal weight concrete ranging in strength from 3000 to 11000 psi (20.7 to 75.8 MPa) and light
weight concrete with strength of 3000-8000 psi (20.7 to 55 MPa). Wang et a. utilized an
equation, with four constants, similar to that of Sargin et al.

AX + BX?
Y= m Equation 2.37
where
fC
Y= f Equation 2.38
cc
£
X=— Equation 2.39

The four constant A, B, C, D were evaluated for the ascending part independently of the

descending one. The four conditions used to evaluate the constants for the ascending part were

dY/dX =Epss/Exc @ X=0 Esec = fod écc
Y=0.45 for X = 0.45/(Eq.45/Esc)
Y=1 for X=1
dy/dX=0at X=1
whereas for the descending branch:
Y=1 for X=1
dY/dX=0at X=1
Y =filfec for X= gleg

14
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Sran

FIGURE 2.6
Proposed Stress-Strain Curve by
Wang et al. (1978)

where f; and g are the stress and strain at the inflection point, f; and 4 refer to a point such that

&2 & = & ~ & and Eg 45 represents the secant modulus of elasticity at 0.45 fe.

Y = f2i/fcc f0r x = gj/gcc

Muguruma, Watanabe , Katsuta, and Tanaka (1980)
Muguruma et al. (1980) obtained their stress-strain model based on experimental work

conducted by the model authors, Figure 2.7. The stress-strain model is defined by three zones;

Zone 1 from O-A:

f:E.g-l—C_iCOg 2 <o <
26 (kgflcm?) O<e <&, Equation 2.40

Zone 2 fromA-D

2

f =f + (gc_gcc)

.= f. 5 (fC — fcc) (kgf/cm?) Eo < E. S &y Equation 2.41
(gco - gcc)

15



Zone 3 from D-E

f —f
— cc
fc - fcc +— (gc - gcc) (kgf/cmz) e < E. S &, Equation 2.42
Eou €

¢ 2!5— fccgcc!

2 .
u (kgf/cm®) Equation 2.43
gCC + gCU

&, = 0.00413(1— fc‘ / 2000) (kgf/cm?) Equation 2.44

| S
Cc= ps—.)’h(l— 05—) Equation 2.45

f wW

c

where S isthe area surrounded by the idealized stress-strain curve up to the peak stressand Wis
the minimum side length or diameter of confined concrete

For circular columns confined with circular hoops:

f . =(1+150Cc)f, (kgf/cm?) Equation 2.46
Eee = (l+ 1460CC)800 Equation 2.47
Ey = (1+ 990CC)6‘U Equation 2.48

whereas for square columns confined with square hoops:

f.. = (L+50Cc)f, (kgf/cm?) Equation 2.49
Epe = (1+ 450Cc)s,, Equation 2.50
Eoy = (1+ 450(:0)&'u Equation 2.51
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FIGURE 2.7

Proposed Stress-Strain Curve by Muguruma et al. (1980)

Scott, Park, Priestly (1982)

Scott et al. (1982) examined specimens by loading at high strain rate to correlate with the

seismic loading. They presented the results including the effect of eccentric loading, strain rate,

amount and distribution of longitudinal steel and amount and distribution of transverse steel. For

low strain rate Kent and Park equations were modified to fit the experimental data

2
fouf e [ & ¢, <0.002k
°~ 71 0,002k | 0.002

f.=kf.[1-Z, (¢, —0.002k)] &, > 0.002k

where

psfyh

k=1+

= 0.5 fcisin MPa

"™ 3+029f, 3 b
7+

. 2 P~ —0.002k
145f.-1000 4" *\'s

17

Equation 2.52

Equation 2.53

Equation 2.54

Equation 2.55



where b” isthe width of concrete core measured to outside of the hoops. For the high strain rate,

the k and Z, were adapted to
P f
k=1.251+ y ) Equation 2.56
7Z = 0.625 f'cisin MPa Equation 2.57

_3+029f, |3 ps\/B —0.002k
145f,-1000 4" °\'s

and the maximum strain was suggested to be:

f
£, =0.004 + 0-9/)5[3—(;;J Equation 2.58

It was concluded that increasing the spacing while maintaining the same ratio of lateral
reinforcement by increasing the diameter of spiras, reduce the efficiency of concrete
confinement. In addition, increasing the number of longitudinal bars will improve the concrete

confinement due to decreasing the spacing between the longitudinal bars.

Sheikh and Uzumeri (1982)

Sheikh and Uzumeri (1982) introduced the effectively confined area as a new term in
determining the maximum confined strength (Soliman and Yu (1967) had trial in effective area
introduction). In addition to that they, in their experimental work, utilized the volumetric ratio of
lateral steel to concrete core, longitudinal steel distribution, strength of plain concrete, and ties
strength, configuration and spacing. The stress-strain curve, Figure 2.8, was presented
parabolically up to (fe, ecc), then it flattens horizontally till e and finally it drops linearly
passing by (0.85fc, &gs) till 0.3 f, In that sense, it is conceptually similar to the earlier model of
Soliman and Yu (1967).

fec and e can be determined from the following equations:

18



fo =K f f,=k,f.

cc s 'cp cp p'c

k,=0.85 Equation 2.59

2 2 2
K =1+ 2.730 l:[l_ nc J(l_z_sbj }/ps fy Equation 2.60

P 5.5b?
&e =055k f *107° Equation 2.61
2 '
Ex = Eg 1+% 1—5(5) Psls Equation 2.62
c b \/Tc
b .
Egs = 0.225pS\E+ Ecs Equation 2.63
Z= 0.5 Equation 2.64
3 b
47\'s

where b is the confined width of the cross section, f'¢ isthe stressin the lateral confining bar, cis
center-to-center distance between longitudinal bars,&ss is the value of strain corresponding to
85% of the maximum stress on the unloading branch, n is the number of laterally supported
longitudinal bars, Z is the slope for the unloading part, fy is the equivalent strength of

unconfined concrete in the column, and Pocc = Kpf'o(Acc - As)
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FIGURE 2.8
Proposed General Stress-Strain Curve by
Sheikh and Uzumeri (1982)

Ahmad and Shah (1982)

Ahmad and Shah (1982) developed a mode based on the properties of hoop
reinforcement and the constitutive relationship of plain concrete. Normal weight concrete and
lightweight concrete were used in tests that were conducted with one rate of loading. No
longitudinal reinforcement was provided and the main two parameters varied were spacing and
yield strength of transverse reinforcement. Ahmed and Shah observed that the spirals become
ineffective when the spacing exceeds 1.25 the diameter of the confined concrete column. They
concluded also that the effectiveness of the spira is inversely proportional with compressive
strength of unconfined concrete.

Ahmad and Shah adapted Sargin model counting on the octahedral failure theory, the

three stress invariants and the experimental results:

AX +(D, -1)X?
= 1+(A -2)X + D, X 2 Equation 2.65
Y= i
- Equation 2.66

20



Equation 2.67

where focs is the most principal compressive stress, foen is the most principal compressive strength,

& isthe strain in thei-th principal direction and &, is the strain at the peak in the i-th direction.

E is the initial dope of the stress strain curve, D; is a parameter that governs the
descending branch. When the axial compression is considered to be the main loading, which is

typically the case in concentric confined concrete columns, Equations 2.65, 2.66, and 2.67

become:
2
:1+A(>'(A:(2|)D>Z_]3§X2 Equation 2.68
fC
Y = T Equation 2.69
cc
gC
X ==& Equation 2.70
EC
A= = Equation 2.71

Park, Priestly, and Gill (1982)

Park et al. (1982) modified Kent and Park (1971) equations to account for the strength
improvement due to confinement based on experimental work conducted for four square full
scaled columns (21.7 in® (14 000 mm?) cross sectional area and 10.8 ft (3292 mm) high (Figure
2.9). The proposed equations are as follow:
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2
f. =kf, 2%, __[_¢ for ascending branch
0.002k \ 0.002k

f.=kf.[1-Z, (s, —&,)]>0.2kf 'c for descending branch

~ 0.5

7 - ,
_3+0.29f, 3 ps\/B ~0.002k
145¢ 1000 4”\'s

Equation 2.72

Equation 2.73

Equation 2.74

Equation 2.75

fcc B N
m

fe c
g
)]
s
x
<

A

0.002K
Axial Strain

FIGURE 2.9

Proposed General Stress-Strain Curve by Park

et al. (1982)

Martinez, Nilson, and Slate (1984)

Experimental investigation was conducted to propose equations to define the stress strain
curve for spirally reinforced high strength concrete under compressive loading. The main
parameters used were compressive strength for unconfined concrete, amount of confinement and

specimen size. Two types of concrete where used; normal weight concrete with strength to about

22



12000 psi. (82.75 MPa) and light weight concrete with strength to about 9000 psi (62 MPa).
Martinez et al. (1984) concluded that the design specification for low strength concrete might be
unsafe if applied to high strength concrete. For normal weight concrete:

(fcc - fc‘): 4f| (1_i-) Equation 2.76
dst

and for light weight concrete:

(fcC - ]C(:'):1.8fI (1—%) Equation 2.77

st
where d' ¢ isthe diameter of the lateral reinforcement.

Fafitis and Shah (1985)

Fafitis and Shah (1985) assumed that the maximum capacity of confined concrete occurs
when the cover starts to spall off. The experimental work was done on high strength concrete
with varying the confinement pressure and the concrete strength. Two equations are proposed to

express the ascending and the descending branches of the model. For the ascending branch:

A
f, = fm{lbi] ] 0<eg <e&, Equation 2.78
8CC

and for the descending branch:

fo="1, expl— k(e — &, )1.15J Equation 2.79

The equations for the constant A and k:

A=—-C Equation 2.80
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k=0.17f_ exp(-0.01f,) Equation 2.81

fec and e can be found using the following equations:

f.=f, +(1.15+ %j f, Equation 2.82

C

£, =1.027*1077 f_ + 0.0296L +0.00195 Equation 2.83

cc

fi represents the confinement pressure and is given by the following equations:

2A, f .
f, = 2Adn for circular columns Equation 2.84
gjs
2A, f
f, = 'ZS‘ n for square columns Equation 2.85
s

e

ds is the core diameter of the column and d. is the equivalent diameter.

Yong, Nour, and Nawy (1988)
The model suggested by Yong et al. (1988) was based on experimental work done for

rectangular columns with rectangular ties (Figure 2.10).

c = Kfc Equation 2.86

0 0035(1_ 0'7:48j(ps £
&4 = 0.00265+

i

f

Equation 2.87
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' f
K=1+ 0.0091(1— 0'2:53)[/35 + nd, p|] il Equation 2.88

8sd, ) [
f, = fcc{O.Z{ff—iJ+O.4} Equation 2.89
£ = K[l.z;[%]m.ooos} Equation 2.90
f, = f{o.025(%j —0.065} >0.3f, Equation 2.91

Mander, Priestly and Park (1988)

Using the same concept of effective lateral confinement pressure introduced by Sheikh
and Uzumeri, Mander et a. (1988) developed a new confined model for circular spiral and hoops
or rectangular ties (Figure 2.11). In addition Mander et al. (1988) was the second group after
Bazant et al. (1972) to investigate the effect of the cyclic load side by side with monotonic one.

fCC
8¢
05 I
0.45f
| -
Ee & &
Sran
FIGURE 2.10
Proposed General Stress-Strain Curve by Yong
et al. (1988)
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foo = f{—l.254+ 2.254 1+ 7'24,]" —2:'} Equation 2.92

C c

Ece :gm[1+ 5{%—1}} Equation 2.93

01
fl = E keps fyh = ke fl Equation 2.94
¢ f Xr
= Equation 2.95
©or-1+X a
r :L Equation 2.96
Ec_ Esec
& :
X=— Equation 2.97

where ke is the effective lateral confinement coefficient:

(A
A

Equation 2.98

Ac is the area of effectively confined concrete, Es = foo/ &cc @and Acc iS area of core within

centerlines of perimeter spirals or hoops excluding area of longitudinal steel.

2
Kk — 2d, For circular hoops

1—
Pec Equation 2.99
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k = s For circular spiras

Equation 2.100

n \2 ' .
s wil, s Y, s _
~'6b h 2b 2h For rectangular ties
k =

Equation 2.101

where s’ is the clear spacing, o is the the ratio of longitudinal reinforcement to the core area
Zvvi2 is the sum of the squares of all the clear spacing between adjacent longitudinal steel bars

in a rectangular section. Mander et al. (1988) proposed calculation for the ultimate confined

concrete strain &, based on the strain energy of confined concrete.

fc ****** //Esec

@ ............

&

800 gCC gCU
Strain

FIGURE 2.11
Stress-Strain Model Proposed by Mander
et al. (1988)

Fujii, Kobayashi, Miyagawa, Inoue, and Matsumoto (1988)
Fujii et a. (1988) developed a stress strain relation by uniaxia testing of circular and
square specimen of 150 mm wide and 300 mm tall (Figure 2.12). The tested specimen did not

have longitudinal bars and no cover. The proposed stress strain model has four regions;
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Region 1 from 0-A

f.—Ee

2
i “co
c i“c 2 gc
gco

Region 4 from C-end

f =02f_

gcc < gc S 8020

‘9020 < gc

Equation 2.102

Equation 2.103

Equation 2.104

Equation 2.105

Fujii et a. (1988) defined three confinement coefficients for maximum stress C,

ff— =1.75C, +1.02

C

fe _50C_ +1.25
(900
0 = 417C, - 574

strength and corresponding strain are as follow:

28

corresponding strain C., and stress degradation gradient Cy. For circular specimens, the peak

Equation 2.106

Equation 2.107

Equation 2.108



f
S
Ccf = ps(l— 0.51d ] fyh Equation 2.109

CC&‘U:pS(l S }\/ﬂ

B 0.95d (fc )2 Equation 2.110

0= 1240C9 B 2720 Equation 2.111
S

Ca = ps(l— Ej Equation 2.112

Ccm = ps(l_éj m

\2 Equation 2.113
(f.)

Ce =1/ ps(fcl)zl fyh Equation 2.114

They showed that the proposed model has higher accuracy than Park et a. (1982) model
compared to the experimental work done by Fujii et al. (1988).

foc B
. A %
m PN
T
* 0.2fc

0

Eco Ecc £c20
Axia Strain

FIGURE 2.12
Proposed General Stress-Strain Curve by Fujii
et al. (1988)
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Saatcioglu and Razvi (1992)

Saatcioglu and Razvi (1992) concluded that the passive lateral pressure generated by
laterally expanding concrete and restraining transverse reinforcement is not always uniform.
Based on tests on normal and high strength concrete ranging from 30 to 130 MPa, Saatcioglu
and Razvi proposed a new model (Figure 2.13) that has exponentia relationship between the
lateral confinement pressure and the peak confinement strength. They ran tests by varying
volumetric ratio, spacing, yield strength, arrangement of transverse reinforcement, concrete
strength and section geometry. In addition, the significance of imposing the tie arrangement as a

parameter in determining the peak confined strength was highlighted

fo="f +kf for circular cross section Equation 2.115
k, =6.7(f,)*" Equation 2.116
2Af . :
f, = 2ATn for circular cross section Equation 2.117
d,s
f="f +kf, for rectangular cross section Equation 2.118
fie =k, Equation 2.119
f,Sna
f, = ZASTV“ for square columns Equation 2.120
hihy 1
k,=015| — | — | =— | =1 Equation 2.121
sAc f,
fle+ figh
= for rectangular columns Equation 2.122
° b+h
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Ex = Eco(l-‘r 5%] Equation 2.123

c

For the stress strain curve

DA

Egs = 260T——=& . + Epgs Equation 2.124

s(b+h)

where gog5 isthe strain at 0.85 f’ ¢ for the unconfined concrete

2 1/[1+2%]
& & c
1Ec = fcc 2(_c]—[—0] Equation 2.125
8CC 8CC

where c is spacing of longitudinal reinforcement and «is the angle between the transverse

reinforcement and b.

fCC
0.85f
8 f
£0.85f,
0.2f
Feo Eec Strain €20
FIGURE 2.13

Proposed Stress-Strain Curve by Saatcioglu and
Razvi (1992-1999)
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Sheikh and Toklucu (1993)

Sheikh and Toklucu (1993) studied the ductility and strength for confined concrete and
they concluded that ductility is more sensitive, than the strength, to amount of transverse stedl,
and the increase in concrete strength due to confinement was observed to be between 2.1 and 4

times the lateral pressure.

Karabinis and Kiousis (1994)
Karabinis and Kiousis (1994) utilized the theory of plasticity in evauating the
development of lateral confinement in concrete columns. However, no stress-strain equations

were proposed

Hsu and Hsu (1994)
Hsu and Hsu (1994) modified Carreira and Chu (1985) equation that was developed for
unconfined concrete, to propose an empirical stress strain equations for high strength concrete.

The concrete strength equation is:

WX
f.= fcc[ﬁj for 0<x<x, Equation 2.126
w—1+X
&, _
X=— Equation 2.127
gCC
1 .
w=——— for w>1 Equation 2.128
1- fe
e E

where @ and £ are materia properties. @ depends on the shape of the stress strain curve and ¢
depends on materia strength and it is taken equal to 1.0 and Xq is the strain at 0.6 f'c in the

descending portion of the curve.
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Rasheed and Dinno (1994)
Rasheed and Dinno (1994) introduced a fourth degree polynomial to express the stress

strain curve of concrete under compression.

f.=a, +ae, +a,e2 +a,ed +a,e! Equation 2.129

They evaluated the constants a,-a4 using the boundary conditions of the stress strain
curve. Similar to Kent and Park, they assumed no difference between the unconfined and

confined peak strength.

f =k f Equation 2.130

cc c'C

where

k.=1

C

They used expression taken from Kent and Park model to evaluate the slope of the
descending branch starting at strain of 0.003. A flat straight line was proposed when the stress

reaches 0.2 f. up to C.&.c where C.isthe ratio of maximum confined compressive strain to &
The five boundary conditions used are:

fe=0at &=0
dfc/dse=E.at &=0
fe=fca &= &0
dfe/de=0a &= &0

dfc/d 8(;: 'chat SC: 0.003
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El-Dash and Ahmad (1995)

El-Dash and Ahmad (1995) used Sargin et al. model to predict anaytically the behavior
of spiraly confined normal and high strength concrete in one series of equations. They used the
internal force equilibrium, properties of materials, and the geometry of the section to predict the
pressure. The parameters imposed in the analytical prediction where plain concrete strength,
confining reinforcement diameter and yield strength, the volumetric ratio of latera reinforcement

to the core, the dimension of the column and spacing.

_ AX+(B-DX?
1+ (A-2)X + BX?

Equation 2.131

where

Y=-—° Equation 2.132
fOC
&

X=— Equation 2.133
gCC

f.o=f +kf Equation 2.134

f
£ = Eq T K,y f—' Equation 2.135

A=—C%=_=¢ Equation 2.136
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0.33

B=——| L
f.| S
dy
. \05 . 1\025
H{ ch e
fyh ps
K = 66

S
f, =05p,f, (I- |—>
=030 = e )

where ds is the core diameter.

Cusson and Paultre (1995)

Unlike all the previous work, Cusson and Paultre (1995) built their model based on the

{z)
gCC

35

Equation 2.137

Equation 2.138

Equation 2.139

Equation 2.140

actual stress in the stirrups upon failure and they did not consider the yield strength, as the
experimental work have shown that the yield strength for the transverse steel is reached in case
of well confined columns. The ascending and the descending branches in the model curve are

expressed by two different equations (Figure 2.14). For the ascending portion:

Equation 2.141

Equation 2.142



For descending one:

f.=f exp(kl(gcsoc - ecc)kz) Eg 2 Eg Equation 2.143

In0.5

K = 1992
' (8050c — & )kz

Equation 2.144

N\ 1.4
k, = O.58+16(%] Equation 2.145

c

where &s0c 1S axia strain in confined concrete when stress drops to 0.5 fcc. It is observed that

equation (2.144) proposed by Cusson and Paultre is identical to equation (2.95) suggested by
Mander et al. (1988).

Following the same methodology of Sheikh and Uzumeri (1982) and Mander et al.

(1988) Cusson and Paultre considered the lateral confinement pressure f;.

— = Equation 2.146
S

¢ - A+ A
L b+h

where A and Ay, are the lateral cross sectional area of the lateral steel perpendicular to x and y

axes respectively and fc is the stress in the transverse reinforcement at the maximum strength of
confined concrete.

2
W, ) )
1- Z 1- 1-
6bh 2b 2h
e = Equation 2.147
1- P

fll = ke f| Equation 2.148

where Zvvi2 is the sum of the squares of all the clear spacing between adjacent longitudinal

steel barsin arectangular section. f.. and & can be found by the following equations
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\07
foo = fC'[1+ 2](:—'} ] Equation 2.149

N\ 1.7
f
S = €y + 0.21[—',} Equation 2.150
f. 11
Eesoe = 0.004+ O.l'i[f—',J Equation 2.151
fe
@ f
©
2 0.5f e
<
Eco Ecc &Ec50c
Axia Strain
FIGURE 2.14

Proposed Stress-Strain Curve by Cusson and
Paultre (1995)

Attard and Setunge (1996)
Attard and Setunge (1996) experimentally determined full stress-strain curve for concrete

with compressive strength of 60 —130 MPa and with confining pressure of 1-20 MPa, Figure
2.15. The main parameters used were peak stress; strain at peak stress, modulus of elasticity, and

the stress and strain at point of inflection. Attard and Setunge followed the same equation used

by Wang et al. (1978). and Sargin (1971):

AX +BX? ,
= m Equation 2.152
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where

Y=—°5 Equation 2.153
fCC
Ee .
X=— Equation 2.154
£

For the ascending branch, the four constant are determined by setting four conditions:

l1-a f, =0, i=Ec
de,

2-a f, = fcc,dfc =0
de

c

3-at fc: fcc’gc =é

cc

4-at f,=045f' ¢, = fe

0.45

The constants are given by:

A=—C0&%€ _—_¢ Equation 2.155
fCC Esec
: A5

B= (A-1) — + > 045 -1 Equation 2.156

E, (1_ 0.45fcj E, | 045f,(, 045f,

E0-45 fcc EO.45 fcc fcc
C=A-2 Equation 2.157
D=B+1 Equation 2.158

while for the descending curve the four boundary conditions were
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df,
de

=0

1- a f =f_,

2_aI fc:fcc’gc:gcc
3-a f, =f,e =¢
4-at f.=1,,6, =¢y

where f; and g refer to the coordinate of the inflection point.

The four constants for the descending curve are

A= o " & ¢a 6 - 4By Equation 2.159
€ (fcc_ fl) (fcc_ fzi)
B=(s, —¢ E ___E Equation 2.160
(foc_fi) (fcc_fZi)
C=A-2 Equation 2.161
D=B+1 Equation 2.162

The f,c came out to be a function of the confining pressure, the compressive and tensile

strength of concretef’, f;, fi, and a parameter k that reflects the effectiveness of confinement.

i () |
&£ = —4+1 Equation 2.163
fc ft
f \-0.
k= 1.25{1+ 0.062f—'1(fc) * MPa Equation 2.164
e _qy4 (17_0_06]‘0'{%] Equation 2.165
gCO C
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No lateral pressure equation was provided

fCC
E7L$ fi AL N
8 fy /
X !
<<
\\
Ecc Ei E2i
FIGURE 2.15

Proposed Stress-Strain Curve by Attard and Setunge (1996)

Mansur, Chin, and Wee (1996)

Mansur et a. (1996) introduced casting direction, if the member is cast in
place(vertically) or pre-cast (horizontally), as a new term among the test parameters, for high
strength concrete, which were tie diameter and spacing and concrete core area. They concluded
that the vertically cast confined fiber concrete has higher strain at peak stress and higher ductility
than the horizontally cast specimen. In addition, vertically cast confined non-fiber concrete has
larger strain than that of horizontally cast concrete with no enhancement in ductility. Mansur et
a. utilized the same equations found by Carreira and Chu for plain concrete with some

modifications. For the ascending branch, they used the exact same equation

&
ﬂU
f =f{— %7

Equation 2.166

where £ is a material parameter depending on the stress strain shape diagram and can be found

by :
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ﬂ=—f Equation 2.167

ki and k, are two constants introduced in the equation describing the descending branch:

&
oA &)
f — f cc

¢ cc kB
kp-1+ (SCJ

cc

Equation 2.168

)

for confined horizontally and vertically cast non-fiber concrete:

f

k = 2.77[%} Equation 2.169
f

k, = 2.19(/)5—7“} +0.17 Equation 2.170

for horizontally cast confined fiber concrete

f
k, = 3.3{%] +0.12 Equation 2.171
Ps fyh
k, =1.62 - +0.35 Equation 2.172

and the values of f. and & can be obtained from the following equations for confined

non-fiber concrete:
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; o f 123
o 14 0_6( S ,yhj Equation 2.173

for confined fiber concrete:

f f 1.23
f—"’? =1+ 11.63{%} Equation 2.174

Cc Cc

for vertically cast fiber concrete

f 2
Coe _ 14 62_2(’05]c ,V“) Equation 2.175
&

co C

for horizontally cast fiber concrete and vertically cast non-fiber concrete

p f 0.8
S 94 zg[sf_th Equation 2.176

&

co Cc

and for horizontally cast non-fiber concrete

f 15
e _q4 5_9[’05—)’“} Equation 2.177

Hoshikuma, Kawashima, Nagaya, and Taylor (1997)

Hoshikuma et a. (1997) developed their models to satisfy bridge column section design

in Japan. The model was based on series of compression loading tests of reinforced concrete
column specimens that have circular, square and wall type cross sections. The variables that

varied in the experimental wok were hoop volumetric ratio, spacing, configuration of the hook in

the hoop reinforcement and tie arrangement.
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Hoshikuma et al. (1997) asserted that the ascending branch represented in second degree

parabolais not accurate to satisfy four boundary conditions:

1. Initial condition fe= 0, .=0.
2. Initial stiffness condition df/d ec=E;at £=0.
3. Peak COI"IdItI on fc:fcc at Ec= Ecc

4. Peak stiffness condition dfy/ds.=0 at ec= ¢

The function that defines the ascending branch is:

1(e, Y
f. =E.&, 1——(i] Equation 2.178
ﬂ gCC

pf=—"— Equation 2.179

For the descending branch:

fo=f.—Eule. —&y) Equation 2.180

where Eqe is the deterioration rate that controls slope of the descending line and can be found

using the following equation

Eps = 11.2 Equation 2.181
psfyh
2

f

C

The peak stress and the corresponding strain for the circular section

f
if‘£=1+3.83psyh

Cc Cc

Equation 2.182
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ps fyh
&, =0.00218+ 0.0332 - Equation 2.183

C

while for the square section

f
< —1+ 0.73'05f o Equation 2.184
psfyh i
£ =0.00245+ 0.012270 Equation 2.185

c

Razvi and Saatcioglu (1999)

Razvi and Saatcioglu modified their model of Saatcioglu and Razvi (1992) to fit the high
strength concrete (30 — 130 MPa). The ascending zone is defined by Popovics equation as
follow:

f C

¢

&
Ll
& .
fo=——"" Equation 2.186
r—1+£g°]

gCC
and for the descending branch:

£ = €4 (14 5k,K) Equation 2.187

> A

g5 = 260K, —=——¢_[1+ 0.5k, (k, —1)]+ £es Equation 2.188

S(B+h)

k,=—<1.0 K, =_">10 K= klf,'e Equation 2.189

Razvi and Saatcioglu (1999) showed the good agreement of the model with some

experimental work available in the literature.
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Mendis, Pendyala, and Setunge (2000)
Mendis et a. (2000) modified Scott et al. (1982) equations to fit high strength concrete.
They empirically adjusted Scott et a. (1982) equations to the following ones:

2
f= kfc[28° _(ij ] for & <e, Equation 2.190
gCC gCC
fo=k.[1-Z (c.—6.)]> f.o fOr & >e, Equation 2.191
f o = RKf, Equation 2.192
f |
K=1+ BT Equation 2.193
Cc
0.5 , :
Z = >0 fcin MPa Equation 2.194

" 3+029f, 3 |b"
+

157, 1000 47\
£, =(0.24K%+0.76),, Equation 2.195
R=0.28-0.0032f, R>0 Equation 2.196
Z =0.018f, +0.55 Equation 2.197

fi is calculated according to Mander equations.

Assa, Nishiyama, and Watanabe (2001)

A new model was proposed for concrete confined by spira reinforcement based on
concrete-transverse steel interaction. The two main parameters were concrete strength and lateral
stress-lateral strain relationship that represents the response characteristics of the transverse steel

to the lateral expansion of concrete. Assa et al. (2001) modeled a confinement mechanism and
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limited the latera expansion of the confined concrete with the maximum lateral expansion

capacity. Assa et al. (2001) reached some relationships expressed in the following equations:

fc? =1+ 3_36% Equation 2.198
Coo =1+ 21_5f_" Equations 2.199
gCO fC

f
& = 0.0021+ 0.016f—', Equation 2.200

C

where g, is the maximum lateral concrete strain. The proposed stress-strain curve has one

eguation:

_ 2
f.= fm( X+(0-HX J Equation 2.201

1+(y = 2)X + X2

X=—" Equation 2.202

where y controls the stiffness of ascending branch and & controls the slope of the descending

branch:

y= = Equation 2.203

2
[%j ~(027+1.6)°® +0.8
&
5 — cc

2
0.2 Ze
gCC

Equation 2.204
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where ggisthe strain at 0.8fc. .

Lokuge, Sanjayan, and Setunge (2005)
A simple stress-strain model was proposed based on shear failure. The model was based

on the experimental results taken from Candappa (2000). Lokuge et al. (2005) proposed a
relationship between axial and lateral strain:

& & ' .
il B V{_J e<e¢ Equation 2.205
glcc ‘9cc

a
€| _ g ' .
—_— = — E>¢E Equation 2.206
glcc &

cc

where ¢ isastrain at a point where axial strain and lateral strain curves deviate, v is the initid
Poisson’sratio, and a is amaterial parameter which depends on the uniaxial concrete strength
v=8+%10"°(f, ]’ +0.0002f, +0.138

Equation 2.207

a=0.0177f, +1.2818 Equation 2.208

wheref’cisin MPa.
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Binici (2005)
Binici (2005) introduced a generalized formulas describing concrete under triaxial
compression. The proposed stress strain curve is defined by elastic region then non linear curve.

The axial compression is expressed using L eon-Paramono criterion as follow

f. = fc'(kqlc+ mg — (1-K)¢* +¢) Equation 2.209

Equation 2.210

where f’; is the uniaxia tensile strength, c is the softening parameter and is equal to one in
hardening region and zero for residual strength and k is the hardening parameter and is equal to
one at ultimate strength and softening region and is equal to 0.1 at the elastic limit. Binici (2005)
defined three equations for determining the stress in the elastic, hardening and softening zones as

follow:

For elastic zone;

f.=E., .S &, Equation 2.211

For the hardening zone:

& SE. <&, Equation 2.212

r=——=— g = E_e Eq = Sgw[—c?—O.SJ Equation 2.213

For the softening zone:
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2G - 2
a= 1 ( fc _ (fcc = flr) J Equation 2.214

where | is the length of the specimen and G is the compressive failure energy and is calculated

as follow:

2 2
0 E.—& (f —f )
=1 f —f _| Cc cc cc i : _
G C[Lm( cc 1r)exp{ ( o j ]d8C+ oF ] Equation 2.215

To fully define the stress strain curve for constant pressure, Equation 2.212 is used to

define the limit stresses. These stresses are imposed in Equations 2.215 and 2.217 to fully define

the stress strain curve. The lateral pressureis calculated using the lateral strain g found by:

& =V, Equation 2.216
Ve =V, for &S &, Equation 2.217
_ -
E.— & V,—=V
vo=v,—(v,-v, )Jexp -| ——=_| | for g,<g, p=—" Equation 2.218
Eoe — e Vi=Vo
J-Ing
where s is the secant Poisson’s ratio
V=V, +———— & <¢é, Equation 2.219
" (¢+0.85) ©

whereas in case of changing lateral pressure, the lateral pressure is solved by equating the lateral

strain in jacket to the lateral strain of concrete:
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gv (f)-——=0 Equation 2.220

where E; and p, is the modulus of elasticity and volumetric ratio of the jacket respectively.

2.1.2 Discussion

As stated by many research studies, like Mander et al. (1988), Scott et a. (1982), Sheikh
and Uzumeri (1980) and Shuhaib and Mallare (1993), the spirals or circular hoops are more

efficient than the rectangular hoops. The uniform pressure generated by the circular hoop is one

of the reasons of circular spirals advantage.

According to Eid and Dancygier (2005), there are four main approaches for the modeling

of confined concrete by lateral ties

1.

4.

The empirical approach: in which the stress-strain curve is generated based on the
experimental results. Fafitis and Shah (1985) and Hoshikuma et al. (1997)
followed that approach.

Physical engineering model based approach: the lateral pressure causing the
confined behavior of the concrete core, is provided by the arch action between the
lateral reinforcement ties. This approach was adopted by Sheikh and Uzumeri
(1980), and was followed by Mander et al. (1988).

The third approach is based either on the first approach or the second one, but it
does not assume the lateral ties yielding. Instead, It include computation of the
sted stress at concrete peak stress, either by introducing compatibility conditions,
solved by iterative process as Cusson and Paultre (1995) did, or by introducing
empirical expressions as Saatcigolu and Razvi (1992) followed.

A plasticity model for confined concrete core introduced by Karabinis and
Kiousis (1994). The shape of the confined core is based on the arching action.
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Based on the reviewed models, around 50% followed the empirical approach, whereas
10% used the physical engineering approach, and the rest combined between the empirical and
physical engineering approach.

According to Lokuge et al. (2005), the stress strain models can be classified as three
categories:

1. Sargin (1971) based models: Martinez et a. (1984), Ahmad and Shah (1982),
Eldash and Ahmad (1995) Assa et al. (2001).

2. Kent and Park (1971) based models: Sheikh and Uzumeri (1982), Saatcigolu and
Razvi (1992).

3. Popovics (1973) based models: Mander et al. (1988), Cusson and Paultre (1995)
and Hoshikuma et al. (1997).

Most of the confined models were developed by testing small specimens that did not
simulate the real cases for the actual column, and small portion used real columns to verify their
works such as Mander et a. (1988).

TABLE 2.1
Lateral Steel Confinement Models Comparison

Long. | spacing | Lateral | Lateral | Effective | Section | Lateral | Lateral
steel steel steel area geometry | pressure | steel
size config. stress
Richart *
Chan *
Blume * * * *
Roy * *
Soliman * *
Sargin * * * *
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Lateral
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steel
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Kent

Valenas

Muguruma

Scott

Sheikh

Ahmed

Park

Martinez

Fefitis

Y oung

Mander

Fujii

Saatcioglu

El-Dash

Cusson

Attard

Mansur

Fujii

Razvi

Mendis
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Long. | spacing | Lateral | Lateral | Effective | Section | Lateral | Lateral
steel steel steel area geometry | pressure | steel
size config. stress
Assa * *
Binici * *

Table 2.1 shows that the most successful models considering the lateral pressure
determination parameters are Mander et al. (1988) that lies in the third group according to
Lokuge et al. (2005) comparison and Saatcioglu and Razvi (1992), second group (Razvi and
Saatcioglu (1999) was developed for high strength concrete). For the sake of comparing three
models, one from each group, with the experimental results, El-Dash and Ahmad Model (1995)
is selected from the first group as the model that considered most of the contributing factors,
Table 2.1, compared to Attard and Setunge (1996), Mansur et al. (1997), Martinez et a. (1984)
and Sargin (1971) models. However El-Dash and Ahmad model was developed for spiraly
confined concrete, hence, it was eliminated from Rectangular column comparison. The model
selected from group 2 is Mander et al. (1988) and that chosen from group 3 is Saatcioglu and
Razvi (1992) as mentioned above.

TABLE 2.2
Experimental Cases Properties

Length | Width | Cover | Fc Fy |Bas| Bars Lateral | Spacing | Fyh
(in.) (in.) (in) | (ks) | (ks) | # |diameter | steel @in) | (ks.)
(in.) | diameter

(in)

Casel | 19.69 | Circular | 0.98 | 406 | 428 | 12 0.63 0.47 161 | 493

Case2 | 19.69 | Circular | 098 | 4.2 | 428 | 12 0.63 0.63 366 | 445

Case3 | 17.7 177 | 0.787 | 3.65|57.13| 8 0.945 0.394 283 | 448
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The three models are compared with two experimental results, case 1 and case 2 for
circular cross section columns, Table 2.2. All the three models are successfully capturing the
ascending branch. However, Mander model is the best in expressing the descending one, Figure

2.16and 2.17.
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FIGURE 2.16

Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995)
Models Compared to Case 1

8.00

7.00
— 6.00 m:\ Experimental
0 \
= 5.00 NN N
w } | — T, ..
E 4.00 - \ — = = Theoreticall Mander
- J - —
2 ; h."".' —
E 3.00 e
X ] o Theoretical El-Dash and
< 2.00 4

) o Ahmed
1.00
[ L N Theoretical Saatciogluand
0.00 Razvi
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Axial Strain

FIGURE 2.17

Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995)
Models Compared to Case 2



For the case of rectangular column comparison, Figure 2.18, Saatcioglu and Razvi (1992)
IS better in capturing the ultimate compressive strength. Whereas Mander describes the softening
zone better than Saatcioglu and Razvi model. Based on Table 2.1 and Figures 2.16, 2.17, and
2.18, Mander model is seen to be the best in expressing the stress strain response for circular and

rectangular columns.
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FIGURE 2.18

Mander et al. (1988), Saatcioglu and Razvi (1992) and El-Dash and Ahmad (1995)
Models Compared to Case 3

2.2 Rectangular Columns Subjected to Biaxial Bending and Axial Compression

Rectangular reinforced concrete columns can be subjected to biaxial bending moments
plus axial force. When the load acts on one of the cross section bending axes the problem
becomes uniaxial bending. However when the load is applied eccentrically on a point that is not
along any of the bending axes the case becomes biaxial bending. The biaxial bending case can be
found in many structures nowadays. This case is visited extensively in the literature disregarding
the confinement effect. The failure surface of rectangular columns is 3D surface consisted of
many 2D interaction diagrams. Each of the 2D interaction diagrams represents one angle
between the bending moment about x-axis and the resultant moment. Many simplifications are
introduced to justify the compressive trapezoidal shape of concrete, due to the two bending axes
existence. This section reviews the previous work concerns rectangular columns subjected to
biaxia bending and axial load chronologically. Hence, the review is classified according to its

author/s.
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2.2.1 Past Work Review
2.2.1.1 A Study of Combined Bending and Axial Load in Reinforced
Concrete Members (Hogenstad 1930)

Hogenstad classified concrete failure subjected to flexure with or without axial load to
five modes

1. Failure by excessive compressive strain in the concrete with no yield in tensioned
steel (compression failure).

2. Tension failure where the tensioned steel yield cause excessive strain in the
concrete.

3. Balanced failure where tensioned steel yield at the same time compressive
concrete fail.

4. Compression failure where the tensioned steel pass the yield stress.

5. Brittle failure caused by tensioned steel rupture after the cracks developed in the
compressive concrete.

6. Hogenstad (1930) suggested designing by the ultimate failure theory in his report
as opposed to the linear elastic theory (standard theory) that was widely
applicable up to nearly fifty years. He discussed some of the available inelastic
theories that were limited to uniaxial stress according to him. The theories
discussed were E. Suenson (1912), L. Mensch (1914), H. Dyson (1922), F. Stussi
(1932). C. Schreyer (1933). S. Steuermann (1933). G. Kazinczy (1933). F
Gebauer (1934) O. Baunmann (1934). E. Bittner (1935). A. Brandtzxg (1935). F.
Emperger (1936). R. Saliger (1936). C. Witney (1937), USSR specifications OST
90003, (1938). V. Jensen1943. R. Chambaud (1949). Also Hognestad (1930)
introduced his new theory of inelastic flexural failure. He sat equations for tension

failure and compression one.

2.2.1.2 A Simple Analysis for Eccentrically Loaded Concrete Sections
(Parker and Scanlon 1940)

Parker and Scanlon (1940) used elastic theory.
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M. c . M,c
I I
X y Equation 2.221

O'ZEi
A

They developed a procedure by first calculating stresses at the four corners, then
checking if all stresses are positive, no further steps are needed, otherwise, calculating center of
gravity and recalculating moment of inertia then recalculating stress and determining the new
position of the neutral axis. These steps are repeated till the internal forces converge with the

applied one.

2.2.1.3 Reinforced Concrete Columns Subjected to Bending about Both
Principal Axes (Troxell 1941)

Troxell (1941) Suggested that portion of the applied axia load can be used with the
bending moment about one axis to find the maximum compressive and tensile strength in the
cross section. Then the remaining load along with the other bending moment about the other axis
can be used the same way, using the method of superposition. The summation stresses are the
stresses generated from the section. He also suggested taking equivalent steel areain each side to
facilitate the calculation procedure.

2.2.1.4 Design Diagram for Square Concrete Columns Eccentrically
Loaded in Two Directions (Anderesen 1941)

Andersen (1941) implemented a new procedure for determining maximum compressive
and tensile stresses on cross sections without determining the location of the neutral axis. The
[imitation of this procedure that it is just applied on square cross sections and the steel has to be
symmetric. Based on the linear elastic theory and the perpendicularity of the neutral axis to the
plane of bending which was proven in a previous study, Andersen derived stresses coefficients
equations basically for cross sections reinforced with four bars, and then represented them
graphically. This derivation was set after classifying the problem into three different cases based

on the neutral axis location.
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c Gt 3np(2k — cosé)cos26

6k cos24 Equation 2.222
- :(1_gjcos¢9_l
D K Equation 2.223

c1 = isacoefficient that isfully determined in his paper for each case of the three cases

n = modular ratio

P = stedl ratio

k = distance from apex of compression areato neutral axis divided by diagonal length 6
D= diagonal length

d = distance from corner to reinforcing bar

These two values can be substituted in the following equations to determine the

maximum compressive strength and tensile strength respectively

P
fo=—
Ca Equation 2.224
fo =nTf, Equation 2.225

where a isthe side length of cross section and P is force magnitude.
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Relation between T and C by
Andersen (1941)

Anderesen (1941) plotted graphs relating T and C; Figure 2.19. It should be noted that the
graphs differ with angle 8 and the ratio d/D variations. Andersen adapted his procedure to fit the
8 bar reinforcement, as well as 16 bar one. That was done by finding the location of the
equivalent four bars in the same cross section that yields the same internal moment and moment

of inertia.

2.2.1.5 Reinforced Concrete Columns under Combined Compression and
Bending (Wessman 1946)

Wessman (1946) introduced algebraic method under a condition of the plane of the
bending coincides with the axis of symmetry. Based on the elastic theory, Wessman (1946) found
that the distance between the applied load and the neutral axis a

Equation 2.226
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|, = moment of inertia of the effective area with respect to the load axis

Q= the first moment of the effective area

The procedure proposed has very limited applicability since it required the applied load
lies on the axis of symmetry, which consider a very special case. In addition it relies on the
elastic theory.

2.2.1.6 Analysis of Normal Stresses in Reinforced Concrete Section
under Symmetrical Bending (Bakhoum 1948)

Using the elastic theory and equating the internal forces and moments to the applied one,
Bakhoum (1948) developed procedure in locating the neutral axis. This procedure was set for
uniaxial bending. He aso intensified the importance of taking the tensioned concrete into

account while analyzing.

H - I+,
s+A Equation 2.227
. H
H=—
t Equation 2.228
B Nl
o 3
bt Equation 2.229
NS,
- 2
bt Equation 2.230

H = distance between the load and the neutral axis
N= modular ratio
b= section width

t = section height
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lps = Moment of inertia of the total reinforcement steel about the line parallel to the
neutral axis through the point of application of the external force.

Ss = Statical moment of the total reinforcement steel about the line parallel to the neutral
axis through the point of application of the external force.

The relation between « and gis plotted graphically; Figure 2.20.
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FIGURE 2.20
Relation between ¢ and o by Bakhoum (1948)

For the case of unsymmetrical bending, Bakhoum (1948) suggested three solutions;
methods of center of action of steel and concrete, product of inertia method and method of
mathematical successful trial. It is noted that the first two methods are trial and error methods,

and all the three methods were built on the elastic linear theory.
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2.2.1.7 Design of Rectangular Tied Columns Subjected to Bending with
Steel in All Faces (Cervin 1948)

The Portland cement association published “continuity in concrete frames’ (third edition)

that has an equation that relates the maximum load to the actual applied load and moment. It can

be applied on a cross section:

P=N+ CDM
t Equation 2.231

P = total alowable axia load on column section
N= actual axial load on column section
M = moment

T = section height

fa
0.45f, Equation 2.232

fa = the average allowable stress on axially loaded reinforced concrete column

t2
= 2
2R Equation 2.233

R = radius of gyration
This equation is limited to reinforcement on the end faces. Crevin (1948) redefined the

term D in the equation to fit reinforcement in the four faces as follow

1+(n-1p
D - 2 2
0.167+ (X+ A Xn—l)pg Equation 2.234
ES
n=—
Ec Equation 2.235
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p = reinforcement ratio

g = ratio between extremities of column steel and overall column depth
X = ratio of total column steel at one end

y = ratio of total column steel between centroid and one end

z=arm from cetroid of steel ratio y to centroid of column

b
,jﬁ e © o o 4LX
ot ,Liiii_ffﬁyfff
2 ° o | Vv 7
t gt %Lki 77777
* : CENTROID OF COLUMN
°
vy | e e e e

FIGURE 2.21
Geometric Dimensions in Crevin Analysis (1948)

He showed that x+yZ vary from 0.25 to 0.5. The limitation of this equation applicability

is that the ratio e/t has to be less than one.

2.2.1.8 The Strength of Reinforced Concrete Members Subjected to
Compression and Unsymmetrical Bending (Mikhalkin 1952)

Mikhalkin (1952) performed studies on determination of the allowable load and ultimate
load of biaxially loaded rectangular members. He developed design and analysis procedure for
tension and compression failure according to ultimate theory, as he generated charts for design
simplification based on the elastic theory using smple compatibility equations Figure 2.22 and
2.23. These charts locate the concrete and steel centers of pressure with respect to the neutral

axis.
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2.2.1.9 Eccentric Bending in Two Directions of Rectangular Concrete
Columns (Hu 1955)

Hu (1955) followed the elastic assumption in building his analysis. He showed
numerically that the slope of the neutral axis for non homogeneous section can be replaced by

that of homogeneous one with small error percentage. He found algebraically the equilibrium

equations
N  chk ( 1 1 j
- = np - =
bdf., 6 2h 2k Equation 2.236
_ l-a
f, :nfc(l—l A ; y]
Equation 2.237
N ey(1+m2)=%{”{1—%j+(1—cdﬂ+%
baf . 6 2 2 12k Equation 2.238
I )
Q= (m ng, + nqy)/(np) Equation 2.239

N = the normal compressive force

b = section width

d = section height

fc = maximum concrete strength

h and k define the position of the neutral axis

C, Cn, Cq COefficients (functions of h)

A = cover in x direction coefficient

A, = cover iny direction coefficient

e, = load eccentricity from the geometric centroid (in x-direction)

e~ load eccentricity from the geometric centroid (in y-direction)

n=—2
E ,
c Equation 2.240
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Equation 2.241

s = I_SX |
CcX qy = I_Sy
o Equation 2.242
m=%
e .
Y Equation 2.243

The previous equations are plotted graphically to obtain the unkown values k, n/bdf’
Figure 2.24.
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The first obvious interest in the ultimate strength of the structural members appeared in
the first half of the past century. Prior to that, there were some designations to the importance of
designing with ultimate strength. While Thullies's flexural theory (1897) and Ritter’'s

introduction of the parabolic distribution of concrete stresses (1899) were introduced prior to the
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straight line theory of Coignet and Tedesco (1900). The straight line theory became accepted due
to its smplicity and the agreement with the tests' requirements that time. Coignet’s theory grew
widely till it was contradicted by some experimental work done on beams by Lyse, Slatter and
Zipprodt in 1920's, and on columns by McMillan (1921), as the concrete’'s construction
applicability was spreading out (ACI-ASCE committee 327(1956)). After 1950 there was a call
to start working with the ultimate strength design as it was adopted in several countriesin Europe
and others, as the reinforced concrete design has advanced. This led the ACI-ASCE committee
327 to propose the first report on ultimate strength design in 1956 (ACI-ASCE committee
327(1956)). The committee members showed in their studies that the ultimate strength design
load can be found accurately.

They defined the maximum load capacity for concentric load
Fo :0'85f°(A9 —A&)+A§fy Equation 2.244

A, =thegross area of the section.
A, = steel bars area
The committee considered minimum eccentricity value to design with. For tied columns

the value was 0.1 times the section’s depth.

For combined axial load and bending moment

P, =0.85f bdk k, + A f, — A f, Equation 2.245

. k . d
P.e=0.85f bd 2kukl[1—k—2kukl) + A fyd(l—FJ

1 Equation 2.246

P, = axial load on the section

€= eccentricity of the axial load measured from the centroid of tensile reinforcement.
f = stressin the tensile reinforcement.

dk, = distance from extreme fiber to neutral axis, where K, islessthan one
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k, = ratio of the average compressive stress to 0.85 f_, where k, is not greater than 0.85

and isto be reduced at the rate of 0.5 per 1000 psi for concrete strength over 5000 psi.
k,= ratio of distance between extreme fiber and resultant of compressive stresses to
distance between extreme fiber and the neutral axis.

% should not be taken less than 0.5.

After ultimate strength design was released, the AClI committee 318 in their “Building
code requirements for reinforced concrete (ACI 318-56)" approved the usage of the ultimate
strength method for designing reinforced concrete members along with the standard method in
1956. They conditioned that:

f
£+£+ﬂ£1
F, F, F

a

Equation 2.247

Given that the ratio e/t does not exceed 2/3 where
fby: the bending moment about y-axis divided by section modulus of the transformed
section relative to y-axis.
f,,= the bending moment about y-axis divided by section modulus of the transformed
section relative to y-axis.
e = eccentricity of the load measured from the geometric centroid

t = overal depth of the column
f,=nominal axial unit stress.

. .
f, = allowable bending unit stress = O (0:225%, + f.p,

Py = steel ratio to the gross area.
f,=nomina allowable stress in reinforcement.

2.2.1.10 Guide for Ultimate Strength Design of Reinforced Concrete
(Whitney and Cohen 1957)

Following this massive change in paradigm, Charles Whitney and Edward Cohen

released their paper “ guide for ultimate strength design of reinforced concrete” which served as
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a supplement to the ACI building code (318-56). They suggested a linear relationship between

the case of the pure bending and that of concentric load in the following equation

Equation 2.248

M, = total moment of the plastic centroid of the section.
Po
Py

M, = the moment capacity without thrust as controlled by compressin assuming enough

ultimate direct load capacity for a concentrically loaded short column.

ultimate direct load capacity for an eccentrically loaded short column.

tensile steel to develop itin full and itisequal to

—_— 2 ' ' ' J— '
M, =0.3330d°f, + A f,(d - d') Equation 2.249

They limited the maximum moment allowed for design to My using the following

equation

D4 -0306F +p fy'[l—%j
Equation 2.250

f, = f, - 0.85f, .
Equation 2.251

p = Aslbd Equation 2.252

As = compressive steel area.

d = distance from extreme compressive fiber to centroid of tension force in tensile
reinforcement.

d’ = distance from extreme compressive fiber to centroid of tension force in compressive
reinforcement.

b = column width.
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FIGURE 2.25

Linear Relationship between Axial
Load and Moment for Compression
Failure Whitney and Cohen 1957

2.2.1.11 Ultimate Strength Design of Rectangular Concrete Members
Subjected to Unsymmetrical Bending (Au 1958)

Au (1958) generated charts to calculate the equivalent compressive depth of the stress
block based on assumed values of section’s dimensions and bars arrangements. The design
equations were created complying with the ACI-ASCE assumptions.

He showed that when a member is subjected to compressive force as well as bending, the
section can be controlled either by tension or compression failure depending on the magnitude of
eccentricities.

His procedure is to first approximate the location of the neutral axis that can be made by
observing that the applied load, the resultant of the tensile force in steel and the resultant of the
compressive forces in compressive steel and concrete must al lie in the same plane. This
classifies the problem as one of the three cases:

1. Neutra axisintersects with two opposite sides
2. Neutral axis intersects with two adjacent sides forming a compression zone bigger

than half of the cross sectional area
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3. Neutral axis intersects with two adjacent sides forming a compression zone

smaller than half of the cross sectional area

Equilibrium equations plus compatibility equations are needed when the section is
controlled by compression (concrete crush). Whereas, equilibrium equations are sufficient in

tension controlled cases. Tung specified two conditions based on ACI-ASCE report, that are the

average stress  f, isassigned to each tensioned bar and the resultant tensile force is considered

the tensile bar group centroid. Based on that, the bars close to the neutral axis are ignored in
computations. Having equilibrium equations, Tung denoted six dimensionless variables, two for
each case of the three cases mentioned above and plotted charts relating each two associated
variables Figures 2.26, 2.27, and 2.28. The charts generated have an output of determining the

neutral axis position. The dimensionless variables utilized are:

o

d

Y _
t

y

t

d'}r

P

u

0.85f bt

|

Iy
t

Equation 2.253

t| . (d d P (r, e
0.85fbt( b b ,
Equation 2.254

Equation 2.255

Equation 2.256

Equation 2.257

Equation 2.258
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Section and Design Chart for Case 1(rx/b = 0.005), Au (1958)
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t = total depth of rectangular section

dy = distance from extreme compressive corner to centroid of tensile reinforcement
measured in the direction of y-axis

p'= AJbt

b = width of rectangular section

m =m1l ,6 m=f/0.85f"

d'y = distance from extreme compressive corner to centroid of compressive reinforcement
measured in the direction of y-axis.

Py = ultimate direct load capacity for the member subject to bending in two directions

ry = distance from centroid of tensile reinforcement to x’-axis.

r« = distance from centroid of tensile reinforcement to y’-axis.

€'y = eccentricity of ultimate direct |oad measured from centroid of rectangular section in
the direction of y-axis

d’x = distance from extreme compressive corner to centroid of compressive reinforcement

measured in the direction of x-axis

73



dx = distance from extreme compressive corner to centroid of tensile reinforcement
measured in the direction of x-axis
€ x = eccentricity of ultimate direct load measured from centroid of rectangular section in

the direction of x-axis.

2.2.1.12 Design of Symmetrical Columns with Small Eccentricities in One

or Two Directions (Wiesinger 1958)

Using the section moment of inertia and the section modulus, Wiesinger (1957)
introduced a new designing equation for the gross sectional area required by design for columns
subjected to small eccentricities in one direction or two. Wiesinger (1957) proposed gross section

equation:

B N . Ne /t
A= Ql0.225f, + f,p,| Fula, +a.(n-2)gp,]

Equation 2.259

and the capacity of a given column is calculated using the following equation

1
N = | -
) e e/t | Equation 2.260
Qlo.225f, + f.p,] " Fle, +a.(n-1)g%p,]

2l
Ay =33 °
t?A, |
Equation 2.261
21,
g =—
(gt)° A Equation 2.262

Ag = gross area
A<= Stedl area
t = column length in the direction of bending
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| &= gross moment of inertiain the bending direction

|= moment of inertia of steel in the bending direction

€ = eccentricity of the resultant load measured to center of gravity

N= applied axia load

Q= reduction factor = 0.8 for short tied column

Py = AJAg

Fp= allowable bending unit stress that is permitted if bending stress existed = 0.45f’ ¢

G = center to center steel in the direction of bending divided by column length in the

direction of bending

2.2.1.13 Biaxially Loaded Reinforced Concrete Columns (Chu and
Pabarcius 1958)

In 1958 Chu and Pabarcius introduced a new numerical procedure to determine the actual
stresses for a give section. Their procedure was based on the inelastic theory showed earlier by
Hogenstad. Initialy, they assumed the cross section is in the elastic range, and assumed a
location for the neutral axis. Then used the following formula that was found by Hardy Cross

(1930), to solve for stresses

oxy " oxy
" oy_Mox MOX_MOY
f _ P IQX X IOX Y
A I 12
_ oy | -
oy I (04 I
ox oy Equation 2.263

f = stress

Ac = Areaof the elastic portion.

lox = moment of inertia about x-axis

loy = moment of inertia about y axis

loxy = product of inertia

M” oy =moment of the elastic portion about the y axis
M” ox =moment of the elastic portion about the x axis
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P” = axial force taken by the elastic portion.

If the concrete and steel stresses lie in the elastic range, the above equation was used to
locate a new position for the neutral axis, and comparing it with the assumed one. The whole
process is repeated till the position of the calculated neutral axis coincides with the assumed one.
On the other hand if any of the concrete or steel are beyond the elastic range, the plastic load and
moments are calculating, then deducted from the total load and moments. The reminder is used,

asthe elastic portion of the load, to locate the neutral axis.

2.2.1.14 Design Criteria for Reinforced Columns under Axial Load and
Biaxial Bending (Bresler 1960)

Breder (1960) proposed a new approach of approximations of the failure surface in two
different forms. He showed the magnitude of the failure load is a function of primary factors;
column dimensions, steel reinforcement, stress-strain curves and secondary factors; concrete
cover, lateral ties arrangement. He introduced two different methods. The first method named

reciprocal load method
i X y ° Equation 2.264
P; =approximation of Py
Px = load carrying capacity in compression with uniaxial eccentricity Xx.
Py = load carrying capacity in compression with uniaxial eccentricity y.

Py = load carrying capacity under pure axial compression

The second method is the load contour

a B
M M
X + y =1
M X0 M yo
Equation 2.265

and this can be simplified to
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a X ﬂ
[L] {_J _1
yO XO .
Equation 2.266

By equating « and g for more simplification the interaction diagram can be plotted as
shown in Figure 2.31 Bresler (1960) well correlated Equation 2.270 to experimental studies
formed from eight columns, and analytically showed the strength criteria can be approximated by

[L} {AJ 1
yO XO .
Equation 2.267

IIp

FIGURE 2.29
Graphical Representation of Method One by

Bresler (1960)
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2.2.1.15 Rectangular Concrete Stress Distribution in Ultimate Strength
Design (Mattock and Kritz 1961)

Mattock and Kritz (1961) determined five cases for the position of the neutral axis with
respect to the rectangular cross section; when the neutral axis cut through two adjacent sides with
small and big compression zone, the neutral axis intersect with the section length or width and
when it lies outside the cross section. They implemented formulas for calculating the position of
the neutral axis based on the load and moment equilibrium and the geometry of the compression

Zone.

2.2.1.16 Square Columns with Double Eccentricities Solved by
Numerical Methods (Ang 1961)

Ang (1961) introduced a numerical method to solve the problem. He proposed iterative
process to find equilibrium between internal forces and applied ones, by assuming a position for
the neutral axis. The location of the neutral axis kept changing till equilibrium. However, he
calculated stresses based on Bernoulli’s plane theorem which was built upon straight line theory
(elastic theory). The stress of the extreme compression fiber was approximately calculated

according to the specification of AASHTO 1957 “ Standard specifications for highway bridges’.

2.2.1.17 Ultimate Strength of Square Columns under Biaxially Eccentric
Load (Furlong 1961)

Furlong (1961) analyzed square columns that have equal reinforcement in the four sides
and reinforcement in two sides only, to visualize the behavior of rectangular columns that has
unsymmetrical bending axis. He used a series of parallel neutral axis with the crushing ultimate
strain of 0.003 at one of the section corners to develop a full interaction diagram at one angle.
And by using different angles and locations of the neutral axis a full 3D interaction surface can
be developed. He was the first to introduce this procedure. Furlong (1961) concluded that the
minimum capacity of a square column, having equal amount of steel in all sides, exists when the

load causes bending about an axis of 45 degree from amajor axis. He also concluded that

2 m 2
m
(MX] +(_MyJ <1
X Y Equation 2.268
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My = moment component in direction of major axis.
My = moment component in direction of minor axis.
My = moment capacity when the load acts along the major axis.

M,= moment capacity when the load acts along the minor axis.

2.2.1.18 Tie Requirements for Reinforced Concrete Columns (Bresler
and Gilbert 1961)

Bresler (1961) introduced the importance of the tie confinement in columns as objects to
hold the longitudinal bars in place and prevent them from buckling after the cover spalling off.

No concrete strength improvement was discussed.

2.2.1.19 Analytical Approach to Biaxial Eccentricity (Czerniak 1962)

Czerniak (1962) proved that the slope of the neutral axis is depending on the relative
magnitude of moment about the X axis to the moment about the Y axis and the geometry of the
sections and it is independent of the magnitude of bending moment and the applied force for the
elastic range. According to the effective compressive concrete, Czerniak (1962) determined five

cases based on the location of the neutral axis, Figure 2.44.

B

(€Y (b) (0) (d ®

FIGURE 2.32
Five Cases for the Compression Zone Based on the Neutral
Axis Location Czerniak (1962)

He developed an iterative procedure for locating the neutral axis position for a given
cross section, by using equations 2.272 and 2.273 to determine the initial position of the neutral
axis
(I Xy Yony )(' xy X onx )_ (I ox Yonx XI oy X ony)

(Qu = Yo ALl = X, Q0 )= Q= X, Al - Y,Q,)

a=

Equation 2.269
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b= (l Xy _YPQOYXI v prox)_(I ox _Yonxxl oy Xony)
(Qox -X prl Xy _Yony)_ (Qox _Yprl oy X ony)

Equation 2.270

a = x-intercept of the neutral axisline

b = y-intercept of the neutral axisline
|, = elastic product of inertia of the area about the origin

| «=€lastic moment of inertia of the area about the x-axis

| ,,=€lastic moment of inertia of the area about the y-axis

Q.. = moment area about x-axis (within elastic region)

Q,, = moment area about y-axis (within elastic region)

A = area of transformed section (within elastic regions)
Y, = y-coordinate of the applied eccentric load

X, = x-coordinate of the applied eccentric load

then calculating the new section properties, effective concrete and transformed steel, and

finding the new values of X, and Y,.

Equation 2.271

Equation 2.272

and solving for a, b again and repeat the procedure up till convergence.
Asfor ultimate strength design, Czerniak (1962) proved with some simplification that the

neutral axis is parallel to concrete plastic compression line and steel plastic tension and
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compression line, so they can be found by multiplying the location of the neutral axis by some

values. The ultimate eccentric load and its moment about x and y axis can be found from:

p,= f{ph' —&—%}
a Equation 2.273
- | -
M o fo qu T ;X = PUYP
L a J Equation 2.274
| oy Ixy—
M= b Q=g = |7 0%
L - Equation 2.275
Qu = Qo +|Q +(M-1)Q,, - mQ,| Equation 2.276

Qtlly - Qoy + a[ch + (m_l)Q;/s - mst]

Equation 2.277

f, = stressintensity at the origin

and the x-axis and y-axis intercept of the neutral axis are found:

(1 o = YoQu NIy = X,Qq)- I o —Yonx.)(l o = %5 Q)
(qu _YpAJXI Xy X pPox)_(Quy - XpAJXI ox _Yonx) Equation 2.278

(' o) —Yonyxl x prox)_(l ox _YPQO'XXI oy XPQOV)
(Quy - XpA,X| Xy —Yony)_(qu _YpAJXI oy XPQOV) Equation 2.279

where

A\IJ = A+;_C[Ajc + (m_l)AJS - rnA\Js]

Equation 2.280
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QL',IX = Qox +f_C[Qxc +(m_1)st - rans]

fO Equation 2.281

Q, =Q, + = [Q,. +(m-1Q, - mQ,.]

f° Equation 2.282

Q.. = moment of area about x-axis of the plastic portion of the concrete effective section

Q,.= moment of area about y-axis of the plastic portion of the concrete effective section
Q.. = moment of area about x-axis of the plastic portion of the yielded tensile

reinforcement
Q, = moment of area about y-axis of the plastic portion of the yielded tensile

reinforcement
Q..= moment of area about x-axis of the plastic portion of the yielded compressive

reinforcement
Q'yS: moment of area about y-axis of the plastic portion of the yielded compressive

reinforcement

A, = equivalent plastic transformed area

A, = areaof concrete under plastic compression
A, = area of yielded tensile reinforcement

A = areaof yielded compressive reinforcement.
P

M .= moment of the ultimate |oad about x-Axis

= ultimate strength of eccentrically loaded cross section

u

M, = moment of the ultimate |oad about y-Axis
¢

c

" = maximum concrete stress at ultimate |oads (assumed as 0.85 ')
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2.2.1.20 Failure Surfaces for Members in Compression and Biaxial
Bending (Pannell 1963)

Pannell implemented a relation between the failure moment about y-axis for a given load
and the y component of radial moment with the same load. The formula was found based on
deviation study between the actual load contour curve and an imaginary curve found from the
revolution of the failure point about y axis, with the same load, about the z axis. The equation

found for sections that have equal steel in each face:

M y
Y1 Nsin?29 -
Equation 2.283
M
N=1-—1¢
fy Equation 2.284

My, = failure moment for some load in planey
6 = angle between y and the transformed failure plane
He showed that his formula is more accurate and conservative than that of Breder. He

also developed a chart for N for unequal steel distribution; Figure 2.33.
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Values for N for Unequal Steel Distribution by Pannell (1963)
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2.2.1.21 Ultimate Strength of Column with Biaxially Eccentric Load
(Meek 1963)

Meek (1963) assumed constant ratio of moment about the x-axis and the y-axis.

Consequently, increasing the force will increase the moment proportionally.

x Y Equation 2.285

Using the above relation a location of the neutral axis is selected. Then this location is

adjusted until the following relation is satisfied

Pu :zp\:fc+zAscfsc_zAsf$

Equation 2.286

He also showed set of experimental points correlated well to the theoritical interaction

diagram devel oped.

2.2.1.22 Biaxial Eccentricities in Ultimate Load Design (Aas-Jakobsen
1964)

To comply with local design code, Aas-jakbosen (1964) replaced biaxially eccentric load
acts on a regtangular cross section with an equivelant load acts on the main axis of symmetry
with an equivelant moment. He showed , using moment and force equilibrium, that the eqgivelant

moment Me:

Equation 2.287

Xy Equation 2.288

_ 2
m=+1l+c Equation 2.289
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The moment M; is small additional moment depends on failure mode and some other

factors. And in most casesit is equal to zero.

2.2.1.23 Design of Columns Subjected to Biaxial Bending (Fleming and
Werner 1965)

Fleming and Werner (1965) utilized the formulas found by Mattock (1961) for locating
the neutral axis in the different cases of the compression zone shape along with Furlong (1961)
method, by varying the location and inclination angle of the neutral axis, to plot the interaction
diagram. Fleming and Werner (1965) plotted dimensionless interaction diagram for a sgquare

cross section for fourteen cases using parameters that is commonly used.

07
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FIGURE 2.34
Design Curve by Fleming et al. (1961)

2.2.1.24 Investigation of the Ultimate Strength of Square and Rectangular

Column under Biaxially Eccentric Loads (Ramamurthy 1966)

Ramamurthy (1966) proposed a new method for defining the load contour for sections
having eight or more bars distributed evenly. He mentioned that the available methods of design
of biaxially loaded column are trial and error procedure and determination of ultimate load from
failure surface. He showed that columns containing four bars behave differently than those
containing eight or more bars with the same reinforcement ratio. He found theoreticaly for

sguare columns that the neutral axis inclination angle and the angle formed between the load ray
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and y-axis are almost equal. And the relation between the moment and the moment about x-axis

in any load contour level isequal to

_ _qnd
My =M UXO(l SN 0) Equation 2.290
Mux =ultimate moment about x-AXis
Muxo = uniaxial moment on the same load contour of M
6= inclination of the neutral axisto x-axis angle
Equation 2.293 can be simplified to

_ _and
M, =M Uxo(l SN (Z)SeCa Equation 2.291

M, =ultimate radial load about z axis

and with plotting the previous equation against some actual load contour he found the

following relation is more accurate especialy for small angle ()

M, = Muxo(l— o.1ﬁj
45 Equation 2.292

Similarly for rectangular columns, by finding the transformed shape of the rectangular

interaction diagram to the square onesusing some similar triangles calculations

]
M, = Muxo(l— o.1ﬁj\/cos2 p+ 3P
45 K

Equation 2.293

L= transformed equivalent angle of

. M
K = transformation factor equal to =—=°

uyo
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Also he showed that the upper equation is in good comparison with experimental actual
load contour. He plotted the relation between 6 and « for different ratios of length to width for

rectangular columns.

10 20 30 40 950 60 70 80 90

FIGURE 2.35
Relation between a¢and @
by Ramamurthy (1966)

2.2.1.25 Capacity of Reinforced Rectangular Columns Subjected to
Biaxial Bending (Parme, Nieves, and Gouwens 1966)

Parme et.al (1966). suggested relating the biaxial bending to the uniaxial resistance. They
restated Bredler equation

log0.5 log0.5

M log g M log s
X + y =1
M M

ux uy

Equation 2.294

My = uniaxia ultimate moment capacity about x-axis
Myy = uniaxial ultimate moment capacity about y-axis
M,= biaxia bending capacity component about x-axis.

M,= biaxial bending capacity component about y-axis.
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p is a function of reinforcement position, column dimension and the materialistic
properties of steel and concrete. Parme et.al (1966) used a computer program to obtain values for

LS. Then S was represented graphically in four charts, Figure 2.37, 2.38, 2.39, 2.40.
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FIGURE 2.36

Biaxial Moment Relationship by
Parme et al. (1966)
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FIGURE 2.37
Biaxial Bending Design Constant (Four Bars Arrangement) by Parme et al.
(1966)
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1.0

¥ 6<g<1.0
3,000<fc'<6,000
1.0<t/b<4.0
9 q= Pt fy/fc'
Pt=Ast/tb
.8
B q+rl3
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FIGURE 2.38

Biaxial Bending Design Constant (Eight Bars Arrangement) by Parme et al.
(1966)
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FIGURE 2.39

Biaxial Bending Design Constant (Twelve Bars Arrangement) by Parme
et al. (1966)
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FIGURE 2.40
Biaxial Bending Design Constant (6-8-10 Bars Arrangement) by Parme et
al. (1966)

Parme et al. (1966) showed agreement between the suggested Equation 2.297 and the
theoretical one calculated with equilibrium equations. Furthermore, they simplified the
exponential representation of the upper equation by introducing two equations for two straight
line starting from My/Muy =1 and Mx/ Mux =1 intersecting at the point of equa relative
moment Figure 2.41. The equations of the two straight lines are as follow:

M, + M, o B=F)

y X ﬂ uy
ux Equation 2.295

M +M Mux CL_ﬂ)ZM

X yM ﬂ ux

uy

Equation 2.296
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exponential contour
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(Mx/Mux)(1-B/B)+My/Muy = 1
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P
s
(Mx/Mux)(My.Muy)+(1-B/B) = 1
[s=8
0 Mx/My

FIGURE 2.41
Simplified Interaction Curve by Parme et al.
(1966)

2.2.1.26 Ultimate Strength Design Charts for Columns with Biaxial
Bending (Weber1966)

Based on Furlong conclusion that the most critical bending axes is the 45 degree ones
after the mgjor and minor axes in the case of biaxial bending. Weber (1966) generated sixteen
chart for the 45 degree interaction diagrams for square columns. the columns are having
symmetrical reinforcement with different amount of steel bars. Design aids in the 1970 ACI SP-
17A Handbookl2 and the 1972 CRSI Handbook!3 were based on interaction diagrams devel oped

be Weber (1966).

2.2.1.27 Working Stress Column Design Using Interaction Diagrams

(Mylonas 1967)

Mylonas (1967) adapted the interaction diagrams charts generated in the ACl Design
handbook (1965), that were mainly for columns subjected to axial load and uniaxial bending and
the steel is distributed on two faces paralléel to the bending axis, to fit cases of biaxial bending

and steel distributed along the four faces. Two reduction factors were introduced , one for each

zone (Figure 2.42).
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FIGURE 2.42

Working Stress Interaction Diagram for
Bending about X-Axis by Mylonas (1967)

for zone 2

_1+kw,
1+w,

X

Equation 2.297

ky 1sthe moment of the steel distributed on two faces and is equal to

L Yak

X = 2
> a,(05) Equation 2.298

_ _ 2
w, =3(2n-1)g:p, Equation 2.299

Ox =bars center
py = steel ratio
as = section area of arbitrary bar

A x= bar distance from x-axis divided by gx t(section height)
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For zone 3

r>; = kox +l(rx - kox)
bx

Equation 2.300

Kox IS the moment reduction factor for pure bending about x-axis

. - > agd,
* > al05)

Equation 2.301
P’ ox = load at balance failure
N’ = normalized axial |load

Mylonas (1967) also suggested that the applied bending moment should be compared to

the reduced moment capacity, the moment capacity found from uniaxial bending interaction
chart, of the section in form

Equation 2.302

M’y ,M’yare the applied moment

M’y ,M’yy moment capacity

2.2.1.28 Comparison of Experimental Results with Ultimate Strength
Theory for Reinforced Concrete Columns in Biaxial Bending
(Brettle and Taylor 1968)

Brettle and Taylor (1968) suggested partitioning the cross section into small size area,
and using the limiting strain and the neutral axis position in calculating stresses in each filament

using curvilinear stress distribution or rectangular stress distribution or trapezoidal stress
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distribution for concrete. They generated ultimate strength design chartsrelating P./P, to e/b for
different t/b ratios and different inclination angle beween the line conecting the load to the

centroid and the x-axis.
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0.7 \ :
0.6 4=10

fsy=30000ps ———
\\ o
0.5

0.4

&
J\
8 2

p

t=2b

0.3

0.2

0.1

0 02 04 06 08 10 12 14
el/b

FIGURE 2.43

Comparison of Steel Stress Variation for
Biaxial Vending When y=30and q =

1.0

Brettle and Taylor (1968)
er = resultant eccentricityed

t = section height
b = section width
Po = theoretical ultimate load with no eccentricities

Pu= theoretical ultimate load with eccentricities

2.2.1.29 Biaxial Flexure and Axial Load Interaction in Short Rectangular

Reinforced Concrete Columns (Row and Paulay 1973)

Row and Paulay (1974) introduced six charts relating the m, to Py/f’ cbh to facilitate the
design process. However these charts are applicable to limited cases only based on the material

properties required for design
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m=——-———— Equation 2.303

k=—2" Equation 2.304

2.2.1.30 Biaxial Bending Simplified (Gouwens 1975)

Gouwens (1975) proposed simplified analytical equations for design column subjected to
biaxial bending. He utilized Parme et a. (1966) ssimplified moment Equations 2.298 and 2.299.
He found that /£ approaches 1 for 0.25 ' bh by examining 67 column cases. Based on that he
proposed S equations as follow:

For P>0.25C,

% ~0.25

= +0.2
f= b 0.85+C,/C,

Equation 2.305

For P<0.25C;

2
B =Bos +o.z(o.25— D ) (0.85+C,/2C,) Equation 2.306
C.= fc'bh C,=Af, Equation 2.307
C. C, .
P =0.485+0.03— —2>05 Equation 2.308
C, C,
2
C C .
P =0.545+0.3 0.5—C—C —<05 Equation 2.309

96



2.2.1.31 Analysis of Short Rectangular Reinforced Concrete Columns
Subjected to Biaxial Moments (Sallah 1983)

Sallah (1983) evaluated the Parameter £, found by Parme et a. (1966) and found that it
was most affected by fy, f'c , r, Pu/Py and less affected by the number of bars. Sallah (1983)

introduced number of charts similar to Parme et al.’s (1966) for finding .

2.2.1.32 Design Contour Charts for Biaxial Bending of Rectangular
Reinforced Concrete Columns Using Bresler Method (Taylor
and Ho 1984)

Taylor and Ho (1984) developed a computer program to generate the two main
interaction diagrams (with uniaxial bending-one for each axis). These two charts were used to
generate the whole biaxial failure surface (and the failure contours)using Bresler equations.
Different positions of parallel neutral axis and crushing strain of concrete were used to generate
strain profile. The stresses were generated by stress block or other accepted formulas. And forces

and moments were calculated. They plotted chart showing the load tracing on the cross section.
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FIGURE 2.44

Non Dimensional Biaxial Contour on
Quarter Column by Taylor and Ho (1984)
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2.2.1.33 Radial Contour Method of Biaxial Short Column Design (Hartley
1985)

Hartley (1985) proposed two design procedure, one for finding the cross sectional length
and the other to calculate the steel reinforcement, given al other desin parametes. He showed an
optimum point to exist on the 3 D. interaction diagram that relates to the smallest area of the

cross section. Initially, he showed the relation between the load and eccentricity in the form:

In(z—“] = C(gj
0 Equation 2.310

where c is a curve constant,b is section length and e is force eccentricity the initial value of the

cross section length can be found by

3.580” —| 3.26+1In R b b+c M, =0
P/A, t P, _
Equation 2.311

Hartley (1985), using computer program, plotted graphically the relation between the

cross sectional area and the ratio of Py/P,. These charts can be used to determine the suitable

length in design.
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FIGURE 2.45
P./Pyo to A Relation for 4bars Arrangement by Hartley (1985) (left)
Non-Dimensional Load Contour (Right)
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Hartley (1985) also showed the relation between the R and €in the load contour by

R=1- Asin" 20 Equation 2.312

where R and 8 are showen in Figure 2.45 (right).

2.2.1.34 Expert Interactive Design of R/C Columns under Biaxial
Bending (Sacks snd Buyukozturk 1986)

Sacks and Buyukozturk (1986) developed computer software EIDOCC (Expert
interactive design of concrete columns) to analyse and design columns subjected to biaxial

bending. The procedure as follow
1. Finding the neutral axislocation, according to Ramamurthy procedure, such that

e e
tan(—”yj = tan(—yj
Cx & Equation 2.313

e = ultimate eccentricity measured parallel to x-axis
ey = ultimate eccentricity measured parallel to y-axis
e = eccentricity measured parallel to x-axis

e, = eccentricity measured parallel to y-axis

2. Using the neutral axis depth,c, for the balanced failure asinitial value
3. Caculating P, and iterating for ¢ using modified secant numerical method till the

load isvery closeto Py
4. Calculating ey, e and comparing them to g,, e, to check section adequacy.
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2.2.1.35 Interactive Design of Reinforced Concrete Columns with Biaxial
Bending (Ross and Yen 1986)

Ross and Yen (1986) developed a computer program to analyze and design rectangular
columns subjected to biaxial bending. The procedure is to change the inclination angle of the
neutral axis to find adequate relation between My, My, and then change the position of the
neutral axis to solve for the axial load. The section capacity is calculated using a predifined
postion of the neutral axis and crushing strain equal to 0.003 for concrete. They suggested using
four bars initially in the design process and keep increasing according to the applied loads with

limiting the number of bars as stated by ACI code.

2.2.1.36 Design of Columns Subjected to Biaxial Bending (Horowitz
1989)

Horowitz (1989) developed a computer program for columns with any cross section
subjected to biaxial bending. He relied on finding the least possible location of steel bars that
make the section capacity more than the applied load.

2.2.1.37 Strength of Reinforced Concrete Column in Biaxial Bending
(Amirthandan 1991)

Amirthandan et.al (1991) showed good corelation between the experimental work done
before and the method propsed in the austrailian standard for concrete structures AS 3600 for
short columns. The load contour in the standard is approximated by bresler equation. They
adopted the beta value from the British standard

B =0.7+1.7(N/0.6Nuo) Equation 2.314

N = design axial force

Nuo = ultimate axial load.
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2.2.1.38 Computer Analysis of Reinforced Concrete Sections under
Biaxial Bending and Longitudinal Load (Zak 1993)

Zak (1993) proposed solving the equilibrium equation with the modification of the
secant modulus method. The ultimate strain was not determined. However, it was found using

maximization method.

2.2.1.39 Analysis and Design of Square and Rectangular Column by
Equation of Failure Surface Hsu (1994)

Hsu (1994) proposed equation that covers columns subjected to biaxial bending and axial

compression or tension. The proposed equation is as follow:

P_p MY (M)
(Pn_Pnb]_i_(Mnx] +(MWJ =1.0
o~ b nbx nby Equation 2.315

Pn = nominal axial compression or tension

Mnx, Mny= nominal bending moments about x and y axis

Po = maximum nominal axial compression or axial tension

Pnb = nominal axial compression at balanced strain condition

Mnbx, Mnby = nominal bending moments about x and y axis at balanced strain

condition.

2.2.1.40 Biaxial Interaction Diagrams for Short RC Columns of Any
Cross Section (Rodriguez and Ochoa 1999)

Rodriguez and Ochoa (1999) proposed a general method for analyzing any cross section
subjected to biaxial bending. They developed closed form solution for nominal total axial force
strength and nomina bending moment strengths about the global X and Y-axes. Quasi-Newton’s

method was used to solve these coupled nonlinear equations to locate the neutral axis position.
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m n

P.=2_ P+ Aify _Zbc‘,pbifs'
=1 =1 1

Equation 2.316

Mhe

n n n n
My =sinad Mg, +cosad Mg, +Y, > P+ A fY, =D ALY,
i=1 i=1 i=1 i=1 i=1 Equation 2.317

n n n n e
M, =cosa) Mg, —sinad Mg, + X, > P+ D A T Xy =D A fa Xy
i1 i=1 i=1 i=1 i=1 Equation 2.318

Pr= Nominal axial force strength.

Mnx = nominal bending moment strength about x axis

Mny = nominal bending moment strength about x axis

Xa, Ya = coordinates of origin with respect to global x, xaxes

o = angle of inclination of neutral axis with respect to Xaxis;

n = number of reinforcement bars;

Npe = NUMber of rebars located on compression side of cross section;
n; = number of trapezoids used to approximate concrete under compression;
A = area of steel rebar i;

fo = concrete stress at reinforcement bar i

fs = steel stress at reinforcement bar i

P = force for each trapazoid.

My = Moment of each trapazoid about y axis.

Mcix = Moment of each trapazoid about x axis.

2.2.1.41 Short Reinforced Concrete Column Capacity under Biaxial
Bending and Axial Load (Hong 2000)

Hong (2000) did not assume any crushing strain limit. He proposed two equation from

equating forces and moments:
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y —
?-exL =0
n Equation 2.319
M
~-e, =0
P
n Equation 2.320

where e, , g, is the load eccentricity to x and y axes respectively.The two equations has three
unknows; the curvature, neutral axis inclination angle and the neutral axis intercipt with the y-
axis. Hong (2000) used the sequential quadratic programming method to solve the case as a

nonlinearly constrained optimization problem.

2.2.1.42 Reliability of Reinforced Concrete Columns under Axial Load
and Biaxial Bending (Wang and Hong 2002)

Wang and Hong (2002) evaluated the parameter £ (Parme et al. 1966) and fount that it is
insensitive to the reinforced ratio, it is more sensitive to biaxial bending than uniaxial bending, it

increases withload and concncrete compressive strength.

2.2.1.43 Analysis and Design of Concrete Columns for Biaxial Bending:

Overview (Furlong, Hsu, and Mirza 2004)

Furlong et a. (2004) reviewed many of the proposed formulas for analysis. These
formulas were compared to experimental work. They concluded that the equations of Bresler
(1960), athough simple, are not very conservative, while Hsu equation is much more
conservative. As Hsu equation can be used in biaxial bending and tension as well. However, both
Hsu equation and Bresler reciprocal load equation can not be used in selecting cross section,

unlike Bredler load contour equation.

2.2.1.44 New Method to Evaluate the Biaxial Interaction Exponent for RC
Columns (Bajaj and Mendis 2005)

Bajg and Mendis (2005) suggested new equations to evaluate the biaxial interaction
exponenet afound by Bresler (1960). The proposed equations are as follow
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+
,B _ M nox noy
2 Equation 2.321
o—K log0.5
log g

Equation 2.322

Bajg and Mendis (2005) benchmarked their equastion by comparing the results with
experimental work done on 8 (150* 150 mm) columns,

2.2.1.45 Analysis of Reinforced Concrete Columns Subjected to Biaxial

Loads (Demagh, Chabil, and Hamzaoui 2005)

Demagh et al. (2005) suggested solving for the three equations of equilibrium to find the
nominal force P,, the inclination angle of the neutral axis « and the depth of the neutral axis b.

The three equation are:

P, :chi +Z(fsi - fci)A%i

Equation 2.323

M, =Pe, =sina) Myy+cosad Mgx+YD P+ > (fs— f o)A Yy Equation 2.324

M, =Pe =cosad Mgy+sinad M x+X> P+ > (fs = fo)Ayq Equation 2.325

where the subscript i refers to a concrete layer or steel bar element.

2.2.1.46 Analytical Approach to Failure Surfaces in Reinforced Concrete
Sections Subjected to Axial Loads and Biaxial Bending (Bonet,

Miguel, Fernandez, and Romero 2006)

Bonet et a. (2006) developed a new method for the surface failure based on numerical
simulation. The numerical simulation was generated using a computer program capable of
analysing moment-curvature diagram for given axial load and moment ratio. The maximum

value was used as a failure point for the given loads. The failure surface is defined by two
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directrix curves and generatrix curves. The directrix curves are the curve corresponds to zero
axial force and the one corresponds to balance fallure.the generatix curves are defined in
Muy/Mux plane, the first curve connects the pure tension axia load to balnce failure load.
Whearas the second curve connects the balnce failure load to the pure compression load. The

equations for the four curves are as follow

Directrix 1
71 . 72
{Mdl.cosﬂ} j{Mdl.snﬁ} _1
Mdl,x Mdlyy Equation 2.326
Directrix 2
7l . n2
{Mi\z.cosﬂ} {Mﬁﬂz.snﬂ} _1
d2,x d2y Equation 2.327
generatix 1

! dl[l suj N N N
ut ( u~ Nut J*( u j 0
N,,—N N
Mdz - Mdl(l—Nd2] d2 ut d2
Equation 2.328

Equation 2.329
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Mg= absolute value of the nominal bending moment of the section in simple flexure
corresponding to angle beta

Md; 5, Mdy,= nominal bending moments of the section in simple flexure for the x and y
axes, respectively.

Mg, = absolute value of the nominal bending moment corresponding to the maximum
bending capacity

of the section for a particular angle S

Md.x, Md.,, = nominal bending moments corresponding to the maximum flexure capacity
of the section for the x and the y axes, respectively.

v, n=exponents of the directrices.
y=13w+2

n =-0.220+1.15

o = steel reinforcement

N, = axial load applied

Nyc = the ultimate axial load in pure compression

Ng =balance failure load.

¢ =(08*w- o.7){w} +0.95
uc ~— "Vlim

Equation 2.330

Niim = nominal axial compression at the balanced strain condition

2.2.1.47 Biaxial Bending of Concrete Columns: an Analytical Solution
(Cedolin, Cusatis, Eccheli, Roveda 2006)

Cedolin et a. (2006) introduced analytical solution of the failure envelope of rectangular
R/C cross sections subjected to biaxial bending and to an axial force by approximating the

rectangle to equivalent square section. The analysis was for unconfined concrete and the solution

outcome was dimensionless.
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2.2.1.48 Comparative Study of Analytical and Numerical Algorithms for
Designing Reinforced Concrete Sections under Biaxial Bending
(Bonet, Barros, Romero 2006)

Bonet et a. (2006) introduced analytical and numerical methods for designing circular
and rectangular cross sections subjected to bi-axial bending. The analytical method uses the
heviside function (Barros et a. 2004) to define the failure strain, then integrate the stress based
on that failure. The numerical method breaks the section into multi thick layers parallel to the
nuteral axis. The internal forces are found by numerical integration of each layer using Gausss-
Legendre quadrature (Barros et al. 2004). They concluded that the two method are effeicint for
circular cross section’s analysis and the modified thick layer integration is more efficient for the

rectangular cross section’s analysis.

2.2.1.49 Investigation of Biaxial Bending of Reinforced Concrete
Columns through Fiber Method Modeling (Lejano 2007)

Leano (2007) expanded the finite element method found by Kaba and Mahin (1984). To
predict the behavior of unconfined rectangular columns subjected to biaxial bending. The
analysis was limited to uniform semmetric square columns. Lejano (2007) utilized Bazant’s

Endochronic theory for concrete and Ciampi model for steel.

2.2.1.50 Variation of Ultimate Concrete Strain at RC Columns Subjected
to Axial Loads with Bi-Directional Eccentricities (Yoo and Shin
2007)

Yoo and Shin (2007) introduced the modified rectangular stress block (MRSB) to account
for non-rectangular compression zone induced by bi-axial bending. They showed experimentally
that the ultimate strain of concrete exposed to bi-directional eccentricities can reach up to 0.0059.
Based on this finding they introduced new equation for the unconfined ultimate strain as follow:

—0.003 R,

£, = 0.003+ 0%
045 P

(o]

<0.45 Equation 2.331

JU|5T
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&y =0.003+ LO'OOS 1—5 5 >0.45 Equation 2.332
0.55 P, P,
Eoas =0.003+M0 0O<f<tan™ h Equation 2.333
' 1( h) b
tan—| —
b
045 = 0.003+ 0.0025 (90-6) tan[ M <o <00 Equation 2.334
' 4(h b
90— tan b

No definition for 8 was provided.

2.2.1.51 Capacity of Rectangular Cross Sections under Biaxially
Eccentric Loads (Cedolin, Cusatis, Eccheli, Roveda 2008)

Cedolin et a. (2008) utilized the work of Cedolin et al. 2006 to generate more accurate
moment failure contour through creating one extra points on the contour. This point correspond
to the load acting on rectangle diagonlas and was approximated by using equivelant square to
benefit from symmetry. The developed moment contour was used for better evaluating the

parameter « found by Bresler (1960).

2.2.1.52 Development of a Computer Program to Design Concrete
Columns for Biaxial Moments and Normal Force (Helgason
2010)

Helgason 2010 developed a computer program using Matlab for designing unconfined
rectangular hollow or solid columns subjected to axia force and bending moment. Helgason
2010 used the predefined strain profile to generate the interaction diagram and the equivelant
stress block equal to 80% of the compression zone depth. The outcome was compared to

Eurocode.
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2.2.2 Discussion

According to the literature review, there are five different approaches that treated the

columns under axia load and bending moment problem. These ways are summarized as follow:

1.

Tria for locating the neutral axis position such as Parker and Scanlon (1941), Ang
(1961) and Czerniak (1962) works.

Implementing closed form equations for special cases such as Andersen (1941),
Wiesinger (1958), Cedolin et al. (2006) and Yoo and Shin (2007) works.
Generating charts that relate two or more variable to facilitate the design process,
such as Mikhalkin, Au (1958), Fleming and Werner (1965) and Brettle and Taylor
(1968) works.

Developing ssmplified Interaction diagrams by using coefficients for curve
defining. This method was adopted by some researchers like Whitney and Cohen
(1957), Breder (1960), Furlong (1961), Parme (1966), Mylons (1967), Bonet et
al. (2006).

Generating Sets of ready Interaction diagrams to be used directly by designers,
Weber (1966) and others.

There are some conclusions that can be drawn as follow

The finite layer approach is successful in analysis. This approach was
adopted by some authors such as Brettle and Taylor (1968), Bonet et al.
(2006) and Lejano (2007).

The Bresler Method is one of the most well known and successful method
in predicting the unconfined interaction diagrams and load contours. This
method was utilized and refined by many such as Rammamurthy (1966),
Parme et al. (1966), Gouwens (1975), Sallah (1983) Amirthandan (1991),
Wang and Hong (2002) and Bajgj and Mendis (2005). However it is very
conservative for some cases as shown by Furlong et al. (2004) and others.
Software applications on columns spread and became popular in the

beginning of 1980s.Taylor and Ho (1984) developed computer program
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based on Bresler Method. Sacks and Bugukoztruck (1986) developed their
program based on iterating for neutral axis and load converge. Ross and
Yen (1986) used the predefined strain profile in their software. Horowitz
(2989) incremented the steel bars till the column capacity exceeded the
load applied. This transition in relying on machines for facilitates
calculations. Hence more accurate and precise analysis is needed to define
exactly the unconfined and confined capacity of different sections.

The predefined strain profile is seen to be one of the most effective and
fast procedure foe unconfined anaysis. This method was suggested by
Furlong (1961) and utilized by many, such as Ross and Yan (1986).

There is lack of confinement effect analysis on columns capacity.
Nowadays, there is a need in predicting columns extreme events as stated
by some structural codes like AASHTO-LRFD.
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Chapter 3: Rectangular Columns Subjected to Biaxial
Bending and Axial Compression

3.1 Introduction

Rectangular reinforced concrete columns can be subjected to biaxia bending moments
plus axia force. When the load acts directly on one of the cross section bending axes the
problem becomes of uniaxial bending and axia force. However when the load is applied
eccentrically on a point that is not along any of the bending axes the case is generaly biaxial
bending and axial force. The biaxial bending case can be found in many structures nowadays.
This case is visited extensively in the literature aside from the confinement effect. The failure
surface of rectangular columns is 3D surface consisted of many adjacent 2D interaction
diagrams. Each of the 2D interaction diagrams represents one angle between the bending
moment about x-axis and the resultant moment. Many simplifications are introduced to justify
the compressive trapezoidal shape of the concrete compression zone, due to the existence of the
two bending axes. Approximations also were presented to depict the 3D failure shape from the
principal interaction diagrams, in the two axes of symmetry. The most effective procedure found
in the literature is the predefined ultimate strain profile that determines a certain position of the
neutral axis and assigns crushing ultimate strain (typically 0.003) in one of the column corners.
With the advance in technology and the enormous speed of computations, analysis is needed to
plot a more accurate failure interaction diagram for both the unconfined and confined cases.

The methodology in this study is based on two different approaches; the adjusted
predefined ultimate strain profile and the moment of area generalization approaches described
below. The two methods are compared to benchmark the moment of area generalization method
that will be used in the actual capacity analysis (Confined analysis). This analysisis compared to

experimental data from the literature.
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3.2 Unconfined Rectangular Columns Analysis
3.2.1 Formulations
3.2.1.1 Finite Layer Approach (Fiber Method)

The column cross section is divided into finite small-area filaments (Figure 3.1a). The
force and moment of each filament is calculated and stored. The rebars are treated as discrete
objects in their actual locations. The advantage of that is to avoid inaccuracy generated from
using the approximation of the stress block method, as a representative of the compression zone
and to well treat cases that have compressive trapezoidal or triangular shapes generated from the

neutral axisinclination (Figure 3.1b).

|
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FIGURE 3.1
a) Using Finite Filaments in Analysis b)Trapezoidal Shape of Compression Zone

3.2.1.2 Concrete Model

Concrete is analyzed using the model proposed by Hognestad that was adopted from
Ritter’'s Parabola 1899 (Hognestad 1951). Hognestad model is used extensively in numerous
papers as it well explains concrete stress-strain behavior in compression. In addition, it was
utilized by widely used concrete models such as Kent and Park model (1971). The stress-strain
model is expressed using the following equation (Figure 3.2):

112



f. = stressin concrete in compression.

f. = maximum compressive strength of the concrete.

g =strainat f,

g,=drainat f,

As shown in Figure 3.2a concrete carries tension up to

neglected in calculation beyond that.

Equation 3.1

cracking strength, then it is

Axial stress =

Axial stress

Eo 0.003

— fe Axial strain

FIGURE 3.2
a) Stress-Strain Model for Concrete by Hognestad b) Steel Stress-Strain Model

3.2.1.3 Steel Model

Axial strain

Steel is assumed to be elastic up to the yield stress then perfectly plastic as shown in

assumed to be distributed linearly.
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Figure 3.2b. It is assumed that there is perfect bond between the longitudinal steel bars and the

concrete. According to Bernoulli’s Hypothesis, strains along the depth of the column are



3.2.2 Analysis Approaches

The process of generalization of the moment-force interaction diagram is developed
using two different approaches; the adjusted predefined ultimate strain profile and the
generalized moment of area methods. The common features of the two approaches are described

as follow:

3.2.2.1 Approach One: Adjusted Predefined Ultimate Strain Profile

The first approach is the well known method that was used by many researchers and
practicing engineers. The procedure is to assign compressive failure strain at one of the column
corners (0.003) and to vary the position and the inclination angle of the neutral axis that ranges
from zero degree, parallel to the width of the column, to ninety degrees paralel to the height as
shown in Figure 3.3.

0.003

\\\\\\\\\\

|
<

o

FIGURE 3.3
Different Strain Profiles Due to Different Neutral Axis Positions

Each set of the parallel neutral axes of a certain orientation represents approximately one
2D interaction diagram, and all of the sets from zero to ninety degrees represent the 3D failure

surface in one quadrant, which is identical to the other three quadrants due to the existence of
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two axis of symmetry with respect of concrete and steel. The procedure is described in the

following steps:

1. Defining the strain profile for each neutral axis position and corner ultimate strain
applied.
2. Calculating strain and the corresponding stress in each filament of concrete and

doing the same for each steel bar Figure 3.4.

O O O
O O
O O
N.A
®) o)
2 O
O O O
FIGURE 3.4
Defining Strain for Concrete Filaments and Steel Rebars from Strain
Profile
3. Caculating the force and the moment about the geometric centroid for each
filament and steel bar Figure 3.5.
for concrete: for steel
P, = f,wt, P, = g A Equation 3.2
— * 1 — * 1
Mx =R *Y _I Mx; =R *Y_s Equation 3.3
— * 1 — * '
Myg =Ry * X _I My; =R * X _s Equation 3.4

115



_ir—Xi— 0.003 'X_SﬁXSV 0.003
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FIGURE 3.5

Filaments and Steel Rebars Geometric Properties
with Respect to Crushing Strain Point and Geometric
Centroid

Summing up the forces and moments, from steel bars and concrete filaments, to get the
internal force and moment about x-axis and y-axis. The resultant force and moments represent

one point on the unconfined interaction diagram (Figure 3.6).

Start
&

Define
Neutral axis
position & orientation

N2
Determine strain

profile based on
0.003 at a corner
N
Cdculate
SC,Ss,f c,f s
N

Sum up internal
New Point “« | forces and moments
FZ,GM cx,GM cy,GMR

End

FIGURE 3.6

Method One Flowchart for the
Predefined Ultimate Strain Profile
Method
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The problem arising from this procedure is that the points developed from one set of
parallel neutral axes are close to but not lined up in one plane. However, they are scattered
tightly near that plane (Figure 3.7). To correct for that, an average angle of a =cos™(M,/My)is
calculated and another run is established by dlightly changing the inclination angle y of the
neutral axis of the section with respect to the y-axis and iterating till the angle determined for
each point converges to the average angle o . The average angle o istaken as the average of all

o angles obtained for a certain ¥ angle orientation of the neutral axis (Figure 3.3 and Figure 3.7).

P

—— Hared theaverageagea
@ Point before correction
@ Roint ate correction

MIX /< My

Figure 3.7
2D Interaction Diagram from Approach One Before and
After Correction

The iterations mentioned above converge fast in all cases. This approach yields a very
fast computation since it directly evaluates the ultimate unconfined strain profile. However, no

moment curvature or load-strain history response is available with this approach.

3.2.2.2 Approach Two: Generalized Moment of Area Theorem

Moment of Area Theorem
The very general axial stress equation in an unsymmetrical section subjected to axial
force P and biaxial bending My and My (Hardy Cross 1930):
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x'y Ty X'y T lxy Equation 3.5

o, =normal stress at any point (a) in cross section

P =applied load.
A = cross sectional area
M, = bending moment about the geometric x-axis

M, = bending moment about the geometric y-axis

X = distance between the point (a) and y-axis
y = distance between the point (a) and x-axis
I, =moment of inertia about the geometric x-axis
I, = moment of inertia about the geometric y-axis

I, = product moment of inertiain xy plane

Rewriting Equation 3.5 to determine the strain at any point in the cross section:

P ME,-MEl, ME ~ME,
&, =—+ Y+ >
EA ElEl, -EI? ElEl,—El}

Equation 3.6

In case of linear elastic analysis, E in EA or El expressions is constant (E=E.). However,
if the section has linear strain but nonlinear stress profile, it will amount to variable E profile (per

layer or filament) in nonlinear analysis. Accordingly, the section parameters must include
> EA, Y El for amore generalized theory (Rasheed and Dinno 1994). Note that the linear

strain profile of the section from Equation 3.6 yields two distinct constant curvatures:

_M,El,-M,El,
X 2
B Equation 3.7
_MElL,-M,El
y 2
B Equation 3.8
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@, = curvature about the x-axis

¢, = curvature about the y-axis
2 2

B =ElEl —El

To prove Equations 3.7 and 3.8 above, invoke the coupled equations of moments about

the actual or current centroid (Bickford 1998).

|

?x
by

}

M, = El g, +El 4,

X

Equation 3.9

=El + El
M y xy¢x y¢y Equation 3.10

In amatrix form:

My Ely B9 Equation 3.11
Inverting Equation 3.11

1 { El, —EIW}{MX}
=
B Ely Bl M,y Equation 3.12

which reproduces Equations 3.7 and 3.8. Rewriting Equation 3.6 in terms of ¢ and ¢,

P
E,=—+@,y+o,X
* EA T ’ Equation 3.13

Finding &; at the actual or current centroid, sincex =y =0.

_ F
80 = — .
EA Equation 3.14

Finding &; a the geometric centroid, y = y
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+ o Y+, X

— P
o= ——
EA

Solving for P at the geometric centroid,;

P = EAz, — EAyg, — EAXg,

But
EAMx:EAY/ Y/ZYG_YC
EAM, = EAX X=Xg - X,

Equation 3.15

Equation 3.16

Y is the vertical distance to the geometric centroid measured from bottom, X is the

Thus,

P = EAz, - EAM, ¢, - EAM g,

distance to the geometric centroid measured from the cross section’s left side, Y is the vertical
distance to the inelastic centroid measured from the bottom and X, is the horizontal distance to

the inelastic centroid measured from the cross section’s |eft side (Figure 3.8).

Equation 3.17

The general formula of the moments about the geometric x-axis and the geometric y-axis

isderived as follows;

when the moment is transferred from the centroid to the geometric centroid (Figure 5.8a)

M, =M, —Py

Substituting Equations 3.9 and 3.16 in 3.17 yields:
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M, =El g, +El ¢, - EAs,y+EAM 4, y+ EAM y¢y§/

Equation 3.18

Equation 3.19



M_X =-EAM Xg*‘ (E| , + EAM x9)¢x + (El w + EAM V§)¢y Equation 3.20

Similarly (Figure 3.8b):

a)

Y. o

e |
FIGURE 3.8

Transferring Moment from Centroid to the Geometric Centroid

M, =M, - Px .
y y Equation 3.21

M y = El xy¢x +El y¢y - EA£0X+ EAM X¢XX+ EAM Y¢YX Equation 3.22

M, =—EAM, z, +(EI , + EAM, x}g, + (EI, + EAM X}, cquation 5.3
The terms El,+EAM,yand El +EAM x represent the El, and El, about the
geometric centroid respectively using the parallel axis theorem. And the terms El, + EAMXQ
and El +EAM y are equa given tha:EAM,x=EAyx and EAM, y=EAyx. Using
Equations 3.16, 3.19, and 3.22 yields the extended generalized moment of area equation:
P EA -EAM, -EAM,

&
Wi |- -EAM, B, E, |,
M,| |-EAM, EI El, |¢

Equation 3.24

Xy
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Since the moment of area about the inelastic centroid vanishes (Rasheed and Dinno
1994), Equation 3.23 reduces to a partially uncoupled set when it is applied back at inelastic the
centroid since EAM, and EAMy vanish about that centroid.

P EA O 0 | &
M, |=| O EI, El,|¢
M y

X Xy

0 El El
I v L9 Equation 3.25

which issimply Equations 3.9, 3.10, and 3.14

3.2.2.3 Method Two

This approach simulates the radial loading of the force and moments by keeping the
relative proportion between them constant during the loading. Accordingly, all the points
comprising an interaction diagram of angle « will be exactly on that 2D interaction diagram. In
addition to the ultimate points, the complete load deformation response is generated. The cross
section analyzed is loaded incrementally by maintaining a certain eccentricity between the axial
force P and the resultant moment Mg. Since Mg is generated as the resultant of M, and My, the
anglea = tan'l(My/Mx) iskept constant for a certain 2D interaction diagram. And since increasing
the load and resultant moment proportionally causes the neutral axis to vary unpredictably, the
generalized moment of area theorem is devised. This method is based on the general response of
rectangular unsymmetrical section subjected to biaxial bending and axial compression. The
asymmetry stems from the different behavior of concrete in compression and tension.

The method is developed using incremental iterative analysis algorithm, secant stiffness
approach and proportional or radial loading. It is explained in the following steps. (Figure 3.12

presents a flowchart of the outlined procedure):

1. Calculating theinitial section properties:
e Elastic axial rigidity EA:
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EA= Z Ecvviti +Z(Es - Ec)As

Equation 3.26

E. = initial modulus of elasticity of the concrete
E.= initial modulus of elasticity of the steel rebar

e The depth of the elastic centroid position from the bottom fiber of the section

Y. and from the left side of the section X

SEW(H-Y)+ X (E,~E)A(H-Y,)

Y, =
EA Equation 3.27
ZEC\Niti (B- Xi)+Z(Es —E)A(B—Xy)
Xc: i i
EA Equation 3.28

where Y; and Yy are measured to the top extreme fiber, X; and X4 are measured to the right most
extreme fiber, see Figure 3.9.

e Elastic flexural rigidity about the elastic centroid El:

El, =D Ewt,(H=Y, =Y)?+ > (E,—E)A;(H =Y, -Y,)?
i i Equation 3.29

El, =Y Ewt (B— X, - X,)*+ > (E,—E)A; (B— X4 — X,)?
i i Equation 3.30

El :ZEcWiti(H _Yi _Yc)(B_ Xi - Xc)+Z(Es - Ec)'%(H _Ysi _Yc)(B_ XSi N XC)

Equation 3.31

Typically theinitia elasticYc= H/2, X. = B/2 and El,y, =0
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FIGURE 3.9

Geometric Properties of Concrete Filaments and Steel Rebars with Respect
to Geometric Centroid and Inelastic Centroid

The depth of the geometric section centroid position from the bottom and left fibers of
the section Yo, Xa:

v _H
© 2 Equation 3.32
B
Xg=—
¢ 2

Equation 3.33

2. Defining the eccentricity e, which specifies the radial path of loading on the
interaction diagram. Also, defining the angle o in between the resultant moment
GMR and GMX
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Axial Force

Load Step~AGP
Resultant Moment

FIGURE 3.10
Radial Loading Concept

3. Defining the loading step AGPas a small portion of the maximum load, and

computing the axial force at the geometric centroid.

GR, =GRy +AGP Equation 3.34

4. Calculating the moment GMg about the geometric centroid.

€= GC':/IPR GM =e*GP Equation 3.35
GM, =GMcosa Equation 3.36
GM, =GM  tana Equation 3.37
5. Transferring the moments to the inelastic centroid and calculating the new
transferred moments TMx and TMy :
™, =GM, +GP(Y; - Y;) Equation 3.38
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T™, =GM, +GP(X; - X,) Equation 3.39

The advantage of transferring the moment to the position of the inelastic centroid is to

eliminate the coupling effect between the force and the two moments, since
EAM, = EAM =0 about the inelastic centroid

P | |EA O 0 |Je

(0]

™, |= 0 El, EIXy ¢X
™, O Ely B4 Equation 3.40
n =
GM, >
- ‘ Yc
Yo
—X¢—
VXGA
N 5
GM,, 'TM,,
FIGURE 3.11

Moment Transferring from Geometric
Centroid to Inelastic Centroid

6. Finding: Curvatures ¢x and ¢v

™ ™
¢x :—ZX*EIY_ 2Y*EIXY
B Equation 3.41
™ ™ .

Y
¢Y=—2* Ely - > El,
p B Equation 3.42

126



pB?=ElEl, -El} Equation 3.43

Strain at the inelastic centroid e, , the extreme compression fiber straing,,, and strain at

the extreme level of steel intensioneg,, are found as follow:

(0]
EA Equation 3.44

Ee =+ (H-Y)+4,(B-X) Equation 3.45

Ee = &, — P, (Y, —Cover) — g, (X —Cover) Equation 3.46

where cover is up to center of bars
1. Cdculating strain &4 and corresponding stress fg in each filament of concrete

section by using Hognestad's model (Equation 3.1) in case of unconfined analysis

- TMX(B—XC—Xi) TMy(H—Y =Y,
d EA+ ,82 y ﬂz x ﬂz Elxy_ ﬁz xy
Equation 3.47

2. Caculating strain ¢, and corresponding stress fs in each bar in the given section

by using the steel model shown in Figure 3.2b.

™ (H-=-Y -Y, ™, (B- X, - X ™ (B-X_ - X, ™, (H =Y, =Y,
gg:G_Ei+ x( ﬂzc S)E|y+ y( ﬂz SI)EIX_ x( ﬂzc S)Elxy_ y( ﬂzc S)Elxy
Equation 3.48

C

1. Caculating the new section properties: axial rigidity EA flexural rigidities about
the inelastic centroid Ely, Ely, Ely, moment of axia rigidity about inelastic
centroid EAM,, EAMy, internal axial force F, internal bending moments about the

inelastic centroid Moy ,Moy:
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EA= ZECI ,,+Z(E ~E,)A,

Equation 3.49

EAM, = > Eqwit, (H =Y, -Y)+ > (E; —E-)A (H-Y, -Y,)
i i Equation 3.50

EAM ZECI ||(B_xc_xi)+Z(Esi_Eci)Asi(B_Xc_Xsi)
i Equation 3.51

F, z fawt, +z(f9 —T)A Equation 3.52

ZECI i |(H _Yc _Yi)2 +Z(Esi - Eu)p‘s(H _Yc _Ys')z

Equation 3.53

:ZECiV\,iti(B_Xc_Xi)2+Z(Esi _Eci)AEi(H _Xc _Xsi)2

Equation 3.54

ZEC. G (H =Y =¥)(B= X = X))+ (Es —E) A (H -Y, - Y,) (B— X, - X,)

Equation 3.55

z fu i |(H _Yc _Yi)+2(fsi - fm)As(H _Yc _Ysi) Equation 3.56

Moy :Z fawit (B- X, - Xi)+Z(fsi - fci)A&(B_ Xe— Xsi) Equation 3.57

where E = secant modulus of elasticity of the concrete filament.

Es = secant modulus of elasticity of the steel bar.

2. Transferring back the internal moment about the geometric centroid

GMox = Mox _GP(YG _Yc)

Equation 3.58

GM, =M, —GP(Xg — X,) Equation 3.59

128



3. Checking the convergence of theinelastic centroid

TOL, = EAM, / EA/Y, Equation 3.60

TOL, = EAM, /EA/ X, |
Equation 3.61

4. Comparing the internal force to applied force, interna moments to applied
moments, and making sure the moments are calculated about the geometric

centroid :

GP - F |<1*10°

Equation 3.62

IGM, -GM | <1*10°°

‘GI\/Iy -GM,,|<1* 10° Equation 3.63

TOL,| <1*10°° [ToL,| <1*10° .
Equation 3.64

If Equations 3.61, 3.62, and 3.63 are not satisfied, the location of the inelastic centroid is
Updated by EAM,/EA and EAM,/EA and steps 5 to 12 are repeated till Equations 3.61, 3.62 and
3.63 are satisfied.

EAM
YCnew = Cold EAX
Equation 3.65
EAM,
chew = Cold EA
Equation 3.66

Once equilibrium is reached, the algorithm checks for ultimate strain in concrete ¢, and
steel ¢, not to exceed 0.003 and 0.05 respectively, then it increases the loading by AGP and

runs the analysis for the new load level using the latest section properties. Otherwise, if ¢,
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equals 0.003 or ¢, equals 0.05, the target force and resultant moment are reached as a point on

the failure surface for the amount of eccentricity and angle « used.

Start

L
Calculate initial
section properties

EAElx, Ely,Elxy
Yc,YG,X c,XG

L
Input P,
e& a
ND

Transfer moment
to inelastic centroid

TMx=GM x+P(Yc-Yc)
TMy=GM y+P(Xc-X¢)
N2
Calculate
Dx,DBy,E0,Eec,Ees
N2
Calculate
Sci,asi,f ci, fsi

€L
Calculate new
section properties
EA,Elx, Ely, EAM x
EAMy,Elx
N2

Calculate internal
force and moments

FZ,M OX.M oy
N No convergence
Transfer moment achieved. stop
back to G.C.

GM ox=M ox-P(YG-Yc)
GM oy:M oy-P(XG-Xc

|GP-Fz|< 107
|GM x-GM ox|<10*
|IGM y-GM oy|< 10 °

gec > 0.003
ges > 0.05

yes

Yc+- EAMX/EA
Xc+= EAMY/EA

New eccintricity P & M achieved

yes

no
New a End

yes

FIGURE 3.12
Flowchart of Generalized Moment of Area Method Used for Unconfined Analysis
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3.2.3 Results and Discussion
3.2.3.1 Comparison between the Two Approaches

The two approaches are compared to each other in the following. The column used in
comparison has the following properties:

Section Height = 20 inches

Section Width = 10 inches

Clear Cover =2inches

Steel Barsin x direction =3#4

Steel Barsin x direction =6 #4

Hoop #3

f'c=4ks

fy = 60 ksi.

1000
900 -~~
800 o

600 \
500 N
400 \ - = =Method 1

300 ‘) Method 2

200 /

"

100
0 //

0 500 1000 1500 2000 2500
Resultant Moment (k.in)

Force (k.)

FIGURE 3.13
Comparison of Approach One and Two (a = 0)
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FIGURE 3.14
Comparison of Approach One and Two (a = 4.27)
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\

800 .
700 N

600 SN
500 \

400 \ — = =Method 1

Force (k.)

300 7) Method 2
200 /’/
100 ==

0 =

0 500 1000 1500 2000 2500
Resultant Moment (k.in)

FIGURE 3.15
Comparison of Approach One and Two (a = 10.8)
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Resultant Moment (k.in)
FIGURE 3.16

Comparison of Approach One and Two (a =52)

The excellent correlation between the two approaches appears in Figure 3.13 through
3.16. The resultant moment angle is shown below each graph. Thisis evidence that approach two
effectively compared to the well known predefined ultimate strain profile approach. Accordingly,
method two can be used in the confined analysis for analyzing the actual capacity of the

rectangular columns.
3.2.3.2 Comparison with Existing Commercial Software

KDOT Column Expert is compared with CSl Col 8 of computers and structures Inc. and
SP column Software of structure point LLC. The case is selected from Example 11.1 in “Notes
on ACI 318-05 Building code Requirements for structural concrete” by PCA. The column details
are asfollow (Figure 3.17):

Section Height = 24 inches

Section Width = 24 inches

Clear Cover =1.5inches

Steel Bars= 16 # 7 evenly distributed

Hoop #3

f'c=6ks

fy = 60 ksi.
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FIGURE 3.17
Column Geometry
Used in Software

Comparison
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FIGURE 3.18

Unconfined Curve Comparison between KDOT Column Expert and SP Column (a = 0)

Figure 3.18 shows the match between the two programs in axial compression calcul ations
and in tension controlled zone. However KDOT Column Expert shows to be dlightly more
conservative in compression controlled zone. This might be due to using finite layer approach in
calculations that has the advantage of accuracy over other approximations like Whitney stress
block.
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FIGURE 3.19
Design Curve Comparison between KDOT Column Expert and CSI Col 8 Using ACI

Reduction Factors

The design curves in Figure 3.19 and Figure 3.20 were plotted using ACI reduction
factors that use a reduction factor of 0.65 in compression controlled zone as opposed to 0.75 used
by AASHTO. There is a good correlation between the KDOT Column Expert curve and CSI Col

8 and SP Columns curves as shown in Figure 3.19 and Figure 3.20.
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FIGURE 3.20

Design Curve Comparison between KDOT Column Expert and SP Column Using ACI
Reduction Factors
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3.3 Confined Rectangular Columns Analysis
3.3.1 Formulations
3.3.1.1 Finite Layer Approach (Fiber Method)

The column cross section is divided into finite small-area filaments (Figure 3.21a). The
force and moment of each filament is calculated and stored. The rebars are treated as discrete
objects in their actua locations. The advantage of that is to avoid inaccuracy generated from
using the approximation of the stress block method, as a representative of the compression zone
and to well treat cases that have compressive trapezoidal or triangular shapes generated from the

neutral axisinclination (Figure 3.21b).

a) FT [ F b)
: v
3 5 Mx
S
i a
Al ) e ®
=l Lo B o1 MEs
w—

FIGURE 3.21
a) Using Finite Filaments in Analysis b)Trapezoidal Shape of Compression Zone

3.3.1.2 Confinement Model for Concentric Columns

Mander Model for Transversely Reinforced Steel

Mander model (1988) was devel oped based on the effective lateral confinement pressure,
f’1, and the confinement effective coefficient, ke which is the same concept found by Sheikh and
Uzumeri (1982). The advantage of this procedure is its applicability to any cross section since it
defines the lateral pressure based on the section geometry. Mander et al. (1988) showed the
adaptability of their model to circular or rectangular sections, under static or dynamic loading,

either with monotonically or cyclically applied loads. In order to develop a full stress-strain
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curve and to assess ductility, an energy balance approach is used to predict the maximum
longitudinal compressive strain in the concrete.
Mander derived the longitudinal compressive concrete stress-strain equation from

Popovics model that was originally developed for unconfined concrete (1973):

¢ f o Xr
= Equation 3.67
©or-1+x
& :
X=— Equation 3.68
8cc
EC
=——" Equation 3.69
Ec - Esec
E.=4723/f, inMPa Equation 3.70
fCC
ESec =— Equation 3.71
8CC

and as suggested by Richart et al. (1928) the strain corresponding to the peak confined

compressive strength, f' ¢, is:

Eq = gm{1+ S(%—lj:l Equation 3.72

The different parameters of this model are defined in Figure 3.22.
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FIGURE 3.22
Axial Stress-Strain Model Proposed by Mander
et al. (1988) for Monotonic Loading

As shown in Figure 3.22 Mander et al. (1988) model has two curves; one for unconfined
concrete (lower curve) and the other for confined concrete (upper one). The upper one refers to
the behavior of confined concrete with concentric loading (no eccentricity). It is shown that it has
ascending branch with varying slope starting from E. decreasing till it reaches the peak confined
strength at (fee, &c). Then the slope becomes dlightly negative in the descending branch
representing ductility till the strain of &, where first hoop fractures. The lower curve expresses
the unconfined concrete behavior. It has the same ascending branch as the confined concrete
curve till it peaks at (f'c, &0). Then, the curve descends till 1.5-2¢, A straight line is assumed
after that till zero strength at spalling strain s,

Mander et al. (1988) utilized an approach similar to that of Sheik and Uzumeri (1982) to
determine effective lateral confinement pressure. It was assumed that the area of confined
concrete is the area within the centerlines of perimeter of spiral or hoop reinforcement A as

illustrated in Figure 3.23.
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FIGURE 3.23

Effectively Confined Core for Rectangular Hoop
Reinforcement (Mander Model)

Figure 3.23 shows that effectively confined concrete core Ae is smaller than the area of
core within center lines of perimeter spiral or hoops excluding longitudinal steel area, A, and to
satisfy that condition the effective lateral confinement pressure f’| should be a percentage of the

lateral pressure fi:

fI = ke fl Equation 3.73

and the confinement effectiveness coefficient ke is defined as the ratio of the effective

confined area Ae to the area enclosed by centerlines of hoops excluding the longitudinal bars Ac:

ke = i Equation 3.74
€ A:C uati .
Atc = A: - Asl Equation 3.75
as =1- A Equation 3.76
Ac Ac quation 3.
A%c = Ab(l_ pcc) Equation 3.77
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where A is the area of the section core enclosed by hoops, Ayg is the area of longitudinal steel and

peciStheratio of longitudinal steel to the area of the core.
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FIGURE 3.24
Effective Lateral Confined Core for Rectangular Cross Section

The total ineffective confined core areain the level of the hoops when there are n bars.

Equation 3.78

Given that the arching formed between two adjacent bars (Figure 3.24) is second degree
parabola with an initial tangent slope of 45°, the ratio of the area of effectively confined concrete

to the core area at the tie level:

1

M-

6

1]
5N

Equation 3.79

&
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where A; = bc* dc, The area of confined concrete in the midway section between two consecutive

A= (b _ZJ(d —2] b.d { 2bl ]{ ZZ j Equation 3.80

Hence, the effective area at midway:

Aezlbcdc[l_zsgcj(l_;] bd[ 21( >] [ Zb](lzd) Equation 361

ties:

SOANER -
=lbd - 2 |1- Equation 3.82
&(26]( ZbJ( ZdJ
Using Equation 3.73
\2 .
oo 13 WY s Y, s
U = 6b.d_ 2b, 2d _
k Equation 3.83
° bcdc(l_pcc)
\2 . '
1_i(wi) LS\, s
= 6b.d, 2b, 2d, .
k. = Equation 3.84
(1_:000)

and the ratio of the volume of transverse steel in x any y directions to the volume of

confined core area p,and py is defined as:

0, = Abe _ A« _
X Sbcdc Sdc Equation 3.85
Al A .
IOy Equation 3.86

shd, sh

c
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As, Ay are the total area of lateral steel in x and y direction respectively. The effective

lateral confining pressure in x and y directions are given by:

fI = kepx fyh Equation 3.87

X

fly = kepy fyh Equation 3.88

Confined Strength ratio f'cc/f'co
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Largest confining Stressratio f11/f'co

FIGURE 3.25

Confined Strength Determination
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Figure 3.25 was developed numerically using multiaxial stress procedure to calculate

ultimate confined strength from two given lateral pressures. The numerical procedure is

summarized in the following steps:

1.
2.

Oot =

Toct —

CoSY = {Gl — o }

1 2 2 2;
loi-0.F +(0: -0 + 0=

Determining f’|x and f’y using Equations 3.86 and 3.87

Converting the positive sign of f'ix and ', from positive to negative to represent
the magjor and intermediate principal stresses (These values are referred to as o3
and o, so that 61> 65).

Estimating the confined strength f . (c3) as the minor principal stress

Calculating the octahedral stress oy, Octahedral shear stress 7, and lode angle &

asfollows:

1
3 Equation 3.89

Equation 3.90

Vor,

Equation 3.91

1. Determining the ultimate strength meridian surfaces T,C (for @ =60° and 0°
respectively) using the following equations derived by Elwi and Murray (1979)
from data by Scickert and Winkler (1977):
— —2
T =0.069232-0.6610915 _, —0.0493500 Equation 3.92
— —2
C =0.122965-1.1505025, —0.3155450 Equation 3.93
O'_OCt =0y / fcl Equation 3.94
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2. Determining the octahedral shear stress using the interpolation function found by
Willam and Warnke (1975):

1
— . 0.5D/cos¢+(2T —C)[ D +5T% —4TC |2

T = .
ot 2 Equation 3.95
° D+ (2T -C)
2 2 2
D= 4(C -T )COS 0 Equation 3.96
Tost = Tout Tc Equation 3.97

3. Recalculating f . using the following equation (same as Equation 3.89) but

solving for os:

O, = % - \/4.52'5Ct ~0.75(c, — o, )2

Equation 3.98

4. If the value from Equation 3.97 is close to the initial value then there is
convergence. Otherwise, the value from Equation 3.97 is reused in steps 4

through 8.

Equations 3.91 and 3.92 that define the tension and compression meridians are compared
with different equations for different unconfined compressive strength. The results are shown in
section 3.3.3.2.

Mander et a. (1988) proposed an energy balancing theory to predict the ultimate
confined strain, which is determined at the first hoop fracture. They stated that the additional
ductility for confined concrete results from the additional strain energy stored in the hoops Ug.

Therefore from equilibrium:

Equation 3.99
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where Uy is the external work done in the concrete to fracture the hoop, and U, is the work done
to cause failure to the unconfined concrete. Ug, can be represented by the area under the tension

stress strain curve for the transverse steel between zero and fracture strain &s.

&y
U sh — psA:c J. fsd‘9 Equation 3.100
0

while Ug is equal to the area under the confined stress strain curve plus the area under the

longitudinal steel stress strain curve:

Escu Escu

Ug = J. foAcde + _[ fsAyde Equation 3.101
0 0

similarly, it was proven experimentally that U, isequal to:

Espall
Uco = Atc J. fcdg = AtcO-O]-?\/ fc in MPa Equation 3.102
0
and
Uy = pA, [ f,ds =110p,A, Equation 3.103
0

Substituting Equations 3.100, 3.101, and 3.102 into Equation 3.98:

Eeu Eey

110p, = j f.de+ J. fyde — 0-017\/]7; Equation 3.104
0 0

where fd isthe stressin the longitudinal steel. Equation 3.103 can be solved numerically for &,
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3.3.1.3 Confinement Model for Eccentric Columns

Unlike concentric loading, the eccentric loading generates bending moment in addition to
axial loading. Columns subjected to eccentric loading behave differently from those
concentrically loaded, as the shape of the stress strain curve for fully confined reinforced
concrete (concentric loading) shows higher peak strength and more ductility than the unconfined
one (infinite eccentricity). Most of the previous studies were based on the uniform distribution of

compressive strain across the column section.

.

%

FIGURE 3.26
Effect of Compression Zone Depth on Concrete Stress

Figure 3.26 illustrates three different sections under concentric load, combination of axial
load and bending moment and pure bending moment, the highlighted fiber in the three cases has
the same strain. Any current confinement model yields the same stress for these three fibers. So
the depth or size of compression zone does not have any role in predicting the stress. Hence, it is
more realistic to relate the strength and ductility in a new model to the level of confinement

utilization and compression zone size.
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FIGURE 3.27
Amount of Confinement Engaged in Different Cases

By definition, confinement gets engaged only when member is subjected to compression.
Compressed members tend to expand in lateral direction, and if confined, confinement will
prevent this expansion to different levels based on the degree of compressive force and
confinement strength as well. For fully compressed members (Figure 3.27), confinement
becomes effective 100% as it all acts to prevent the lateral expansion. Whereas members
subjected to compression and tension, when the neutral axis lies inside the section perimeter,
only confinement adjacent to the compression zone gets engaged. Accordingly, members become
partially confined.

In literature, various models were implemented to assess the ultimate confined capacity
of columns under concentric axial load. On the other hand the effect of partial confinement in
case of eccentric load (combined axial load and bending moments) is not investigated in any
proposed model. Therefore, it is pertinent to relate the strength and ductility of reinforced
concrete to the degree of confinement utilization in a new model.

The two curves of fully confined and unconfined concrete in any proposed model are
used in the eccentricity-based model as upper and lower bounds. The upper curve refers to
concentrically loaded confined concrete (zero eccentricity), while the lower one refers to pure
bending applied on concrete (infinite eccentricity). In between the two boundaries, infinite
numbers of stress-strain curves can be generated based on the eccentricity. The higher the
eccentricity the smaller the confined concrete region in compression. Accordingly, the ultimate
confined strength is gradually reduced from the fully confined value f. to the unconfined value

f’c as a function of eccentricity to diameter ratio. In addition, the ultimate strain is gradually
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reduced from the ultimate strain &, for fully confined concrete to the ultimate strain for
unconfined concrete 1.5&.

The relation between the compression area to whole area ratio and normalized
eccentricity is complicated in case of rectangular cross sections due to the existence of two
bending axes. The force location with respect to the two axes causes the compression zone to
take a trapezoidal shape sometimes if the force applied is not along one of the axes. Hence the
relation between the compression area and the load eccentricity needs more investigation as
oppose to the case of circular cross section which was shown to be simpler.

The normalized eccentricity is plotted against the compression areato cross sectional area
ratio for rectangular cross sections having different aspect ratio (length to width) at the
unconfined failure level. The aspect ratios used are 1:1, 2:1, 3:1, 4:1 as shown in Figures 3.28,
3.29, 3.30, and 3.31. Each curve represents specific « angle (tan o = My/MXx) ranging from zero
to ninety degrees. It is seen from these figures that there is inversely proportional relation

between the normalized eccentricity and compression zone ratio regardless of the o angle

followed.
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Normalized Eccentricity versus Compression Zone to Total Area Ratio
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- 120 o angles
£ 0
-% -==10| |
(7 B N (R R BELTTELY 30
@ - = 30
g - o =40 | |
@9 —— =50
s ¢ B
s s 70 |—
g5 80
pd = 90
2
a <
E ------
a = ===
€ 20 P — —
]
o
0
0 0.5 1 1.5 2 2.5
eccentricity/(bh)*0.5
FIGURE 3.29

Normalized Eccentricity versus Compression Zone to Total Area Ratio
(Aspect Ratio 2:1)
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Aspect ratio 4:1
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Normalized Eccentricity versus Compression Zone to Total Area Ratio
(Aspect Ratio 4:1)
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Cumulative Chart for Normalized Eccentricity against Compression
Zone Ratio (All Data Points)
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In order to find accurate mathematical expression that relates the compression zone to
load eccentricity, the data from Figures 3.28 through 3.31 are replotted as scatter pointsin Figure
3.32.

The best fitting curve of these points based on the least square method has the following

eguation:
e
0.2* ——+0.1
c . Abh
" e
vbh Equation 3.105

where Ci refers to compression areato cross sectional arearatio.

Eccentric Model based on Mander Equations
The equation that defines the peak strength f_Cc according to the eccentricity is:

Equation 3.106

== 1+
bh € Equation 3.107

where e is the eccentricity, b and h is the column dimensions and f_CC is the peak strength at the

eccentricity (e). The corresponding strain a isgiven by

§=5co[1+5{f—c-c—1ﬂ Equation 3.108
f
Cc
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and the maximum strain corresponding to the required eccentricity will be a linear

function of stress corresponding to maximum strain for confined concrete f, and the maximum
unconfined concrete foyo @ &cu0 = 0.003:

- 1
—=r
L ESSC,U v fcu - fcuo
E = € -r+1 Eeeu = Equation 3.109
C 1 " &, —0.003
gcu
fo = Egey ¥0.008 —  f - E
C= d EseC = é r= <
Eecu Ec E. - E.

Equation 3.110

In order to verify the accuracy of the model at the extreme cases, the eccentricity is first

set to be zero. The coefficient of ' will be zero in Equation 3.105 and Equations 3.105, 3.106
and 3.107 will reduce to be:

fe =T Equation 3.111
€ =€ Equation 3.112
Eu = Equation 3.113

On the other hand, if the eccentricity is set to be infinity the other coefficient will be zero,

and the strength, corresponding strain and ductility equations will be:

c fc Equation 3.114
« = € Equation 3.115
£, =0.003

Equation 3.116
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Eccentricity Based Confined Mander Model

Any point on the generated curves the stress-strain function can be calculated using the

following equation:

¢ fo Xr
c _ —r Equation 3.117
r—-1+x
where:
— gc
X== Equation 3.118
gCC
_ Ec
=——— Equation 3.119
Ec - Esec
fCC
EseC == Equation 3.120
&

To show the distinction between the Eccentric model designed for rectangular cross

sections, Figure 3.34 and that of circular cross sections, Figure 3.35, Equations 3.105 to 3.107
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and 3.114 to 3.117 are used in plotting a set of Stress-Strain curves with eccentricity ranging
from 0 inches to c. The column cross sectional properties used to plot these curvesis 36 in * 36
inches, steel bars are 13 #11, spiral bar is# 5, spacing is 4 inches, f'¢ isequal to 4 ks, fy is equal
to 60 ksl and fy, is equal to 60 ksi. This case is used in plotting the Eccentric Stress-Strain curve
that are developed for rectangular cross sectional concrete columns; Figure 3.34 while the same
case is used in plotting the eccentric Stress-Strain curves that are developed for circular cross
section, Figure 3.35. The eccentric stress-Strain curves in Figure 3.35 are amost parallel and
equidistant to each other. Whereas, the leap from one curve to the next one in Figure 3.34 is
varying. Thisis due to the effect of the coefficient Cg, that is used in Equation 3.105, which has
non linear impact on the compression zone as opposed to the linear relation between the

eccentricity and compression zone for circular cross sections (Figure 3.35)
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FIGURE 3.34
Eccentric Based Stress-Strain Curves Using Compression Zone Area to Gross
Area Ratio
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Eccentric Based Stress-Strain Curves Using Normalized Eccentricity Instead of
Compression Zone Ratio

3.3.1.4 Generalized Moment of Area Theorem

The very general axial stress equation in an unsymmetrical section subjected to axial
force P and biaxial bending My, and My (Hardy Cross 1930):

o P M ML, ML ML
AT LI, -2 N

|2 X
y o Equation 3.121

o, =normal stress at any point (&) in cross section

P =applied load.

A = cross sectional area
M, = bending moment about x-axis

M, = bending moment about y-axis
X = distance between the point (a) and y-axis
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y = distance between the point (a) and x-axis

I . = moment of inertia about x-axis

X

|, = moment of inertia about y-axis

|, = product moment of inertiain xy plane

Rewriting Equation 3.118 to determine the strain at any point in the cross section:

P ME,-ME, ME,-ME,
g,=—+ Y+ 5
EA  ElLEl, -El} ElEl,-El?

Equation 3.122

In case of linear elastic analysis, E in EA or El expressions is constant (E=Ec). However,

if the section has linear strain and nonlinear stress profile, it will amount to variable E profile

>EA

(per filament) in nonlinear analysis. Accordingly, the section parameters must include i ,

D El

i for a more generalized theory (Rasheed and Dinno 1994). Note that the linear strain

profile of the section from Equation 3.119 yields two distinct constant curvatures:

_M,El,-MEl,
X 2
p Equation 3.123
_M,El,-MEl,
y 2
B Equation 3.124

@, = X- curvature

¢,=y- curvature

ﬁzzEIXEIy—EIfy

To prove Equations 3.120 and 3.121 above, invoke the coupled equations of moments
about the centroid (Bickford 1998).

X

M, = El ¢ +El
P+ ElLd, Equation 3.125

M, =El + El
y ><y¢>< Y¢Y Equation 3.126
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In amatrix form:
M y El Xy El y ¢Y Equation 3.127

Inverting Equation 3.124

2|
¢y B El Xy El, M y Equation 3.128

which reproduces Equations 3.120 and 3.121. Rewriting Equation 3.119 in terms of ¢
and ¢y

P
E,=—<+4Yy+PX
EA Equation 3.129

Finding &, at the centroid, sincex =y =0.

&, = PIEA Equation 3.130

Solving for P at the geometric centroid,;

P=EAs, - EAyp, — EAXJ, Equation 3.131

5_0 isthe axial strain at the geometric centroid

But
EAM, = EAy y=Ye-Y,
EAM , = EAX X=Xg - X,
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Y is the vertical distance to the geometric centroid measured from bottom, X is the
distance to the geometric centroid measured from the cross section’s left side, Y. is the vertical
distance to the inelastic centroid measured from the bottom and X, is the horizontal distance to
the inelastic centroid measured from the cross section’s |l eft side

Thus,

P= EAE_O— EAM, ¢, — EAM y¢y Equation 3.132

The general formula of the moments about the geometric x-axis and the geometric y-axis
isderived asfollows:

when the moment is transferred from the centroid to the geometric centroid (Figure
3.36a)

M,=M,-Py Equation 3.133

Substituting Equations 3.122 and 3.129 into 3.130 yields:

M, =ElL g, +El ¢, - EAE_0§/+ EAM x¢x§/+ EAM y¢y§/ Equation 3.134

M, =-EAM xa"' (El « + EAM x§)¢x + (EI w + EAM yy);by Equation 3.135

Similarly, Figure 3.36b:
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Transferring Moment from Centroid to the Geometric Centroid

M, =M, —Px .
y y Equation 3.136

M y = El xy¢x + El y¢y - EA£0X+ EAM X¢XX+ EAM y¢yx Equation 3.137

M y = —EAMygo +(E| w T EAMXX)¢X +(E| y T EAMVX)¢V Equation 3.138

x and Ely about the

El,, + EAM, X

El, +EAM, Y El, + EAM, x El

The terms represent the

geometric centroid respectively using the paralel axis theorem. And the terms

and Ely +EAM,y are equal given that; FAMAX=BAYX 4 EAMyy:EAyx' Using

Equations 3.129, 3.132 and 3.135 yields the extended general moment of area equation:

P EA -EAM, -EAM,| &
Mx|=|-EAM, EI, El, | ¢ Equation 3.139
M,| |-EAM, B, B, |4

Since the moment of area about the centroid vanishes (Rasheed and Dinno 1994),
Equation 3.136 reduces to a partially uncoupled set when it is applied back at the centroid since
EAM, and EAMy vanish about the centroid.
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P
M |=| 0 EI, El_|4
My

Equation 3.140

which issimply Equations 3.122, 3.123, and 3.127

3.3.2 Numerical Formulation

This approach simulates the radial loading of the force and moments by keeping the
relative proportion between them constant during the loading. Accordingly, al the points will be
exactly on the 2D interaction diagram. In addition to the ultimate points, the complete |oad
deformation response is generated. The cross section analyzed is loaded incrementally by
maintaining a certain eccentricity between the axial force P and the resultant moment Mg. Since
Mg is generated as the resultant of M, and My, the angle o = tan'l(My/Mx) is kept constant for a
certain 2D interaction diagram. Since increasing the load and resultant moment cause the neutral
axis to vary nonlinearly, the generalized moment of area theorem is devised. This method is
based on the general response of rectangular unsymmetrical section subjected to biaxial bending
and axial compression. The asymmetry stems from the different behavior of concrete in
compression and tension.

The method is developed using the incrementa iterative analysis algorithm, secant
stiffness approach and proportional or radial loading. It is explained in the following steps Figure
3.40:

1. Calculating theinitial section properties:
e Elastic axial rigidity EA:

EA=Y Ewt + > (E,—E)A Equation 3.141
E. = initial secant modulus of elasticity of the concrete

E,= initial modulus of elasticity of the steel rebar
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e The depth of the elastic centroid position from the bottom fiber of the section

Y. and from the left side of the section X, Figure 3.37

ZEcwt|(H _Yi)+Z(Es_ EC)AE(H _Ysj)

YC
EA Equation 3.142
D Ewt (B=X)+> (E,~E)A;(B-X,)
XC= i i
EA Equation 3.143

e Elastic flexura rigidity about the elastic centroid El:

Bl = 2 Eowt (H =Y =0+ 2 (B~ E)A (H =Y, =)
! Equation 3.144

El, :ZECWiti (B—X, —X.)? +Z(ES ~E.)A, (H-X,-X,.)?
i i Equation 3.145

Ly = X EWt (H =Y, ~Y)(B= X, ~ X )+ X (E,~E)A(H Y, -Y,)(B-X, - X,)

Equation 3.146

Typically theinitial elastic Yc= H/2, X; = B/2and El,y =0
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FIGURE 3.37

Geometric Properties of Concrete Filaments and Steel Rebars with Respect
to Crushing Strain Point, Geometric Centroid and Inelastic Centroid

The depth of the geometric section centroid position from the bottom and Ieft fibers of
the section Yg, Xg, Figure 3.37:

v _H
° 2 Equation 3.147
B
Xg=—
¢ 2

Equation 3.148
2. Defining eccentricity e, which specifies the radia path of loading on the

interaction diagram. Also, defining the angle o in between the resultant moment
GMg and GMyx
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Axial Force

Load StepaGP
Resultant Moment

FIGURE 3.38
Radial Loading Concept

3. Defining loading step AGPas a small portion of the maximum load, and

computing the axial force at the geometric centroid.

GRey = GRyq +AGP Equation 3.149

4. Calculating moment GM about the geometric centroid.

e= GC';VIPR GMg =e*GP Equation 3.150
GM, =GMcosa Equation 3.151
GM, =GM, tana Equation 3.152
5. Transferring moment to the current inelastic centroid and calculating the new
transferred moment TMyand TMy :
™, =GM, +GP(Y; - Y) Equation 3.153
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T™, =GM, +GP(X; - X,) Equation 3.154

The advantage of transferring the moment to the position of the inelastic centroid is to
eliminate the coupling effect between the force and moments, since EAM, = EAM =0 about

the indlastic centroid

™, |=| 0 El, El,|g
TMy 0 EIXY EIY ¢y Equation 3.155
T 2
GM, >
- ‘ Yc
Yo
—XC—
VXGA
A
GM,, ''T™M,,
FIGURE 3.39

Moment Transferring from Geometric
Centroid to Inelastic Centroid

6. Finding: Curvatures ¢x and ¢vy

™ ™
¢x :—X*EIY_ ZY*EIXY

2
B p Equation 3.156

™ ™
s :ﬂ—zY* El, — ﬂzx *El

Equation 3.157

pB?=ElEl,—El Equation 3.158
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Strain at the inelastic centroide,, the extreme compression fiber straing,., and strain at

the extreme level of steel intensione,, are found as follow:

[0}
EA Equation 3.159

Ee =&+ P (H-Y)+4,(B-X,) Equation 3.160

£ = &, — @ (Y, —Cover) — g, (X, —Cover) Equation 3.161
where cover is up to the centers of bars

7. Calculating strain &4 and corresponding stress fg in each filament of concrete

section by using Eccentric Based Model (Mander Equations)

Y. -Y ™, (B- X, - X,
f OP MLH-Y Y ,( X. .)EIX
EA p p Equation 3.162
™, (B-X,-X,) ™, (H-Y,-Y,)
- : El,, - - El,
s

8. Calculating strain ¢, and corresponding stress fs in each bar in the given section

by using the steel model shown in Figure 3.2b.

_GP TMX(H _Yc _Ysi) TMy(B_Xc_Xsi)

—a-i- 5 El, + 5 El,
™, (B- X, - X,) ™, (H-Y,-Y,)
o= sy El

Xy ,6’2 Xy )
Equation 3.163

&

s

9. Calculating the new section properties. axial rigidity EA flexural rigidities about
the inelastic centroid El,, Ely, El,, moment of axia rigidity about inelastic

165



centroid EAM,, EAMy, internal axial force F,, internal bending moments about the
inelastic centroid Mox ,Moy:

EA= ZEC, ,,+Z(E ~E,)A

Equation 3.164

EAM ZECI i |(H _Yc_Yi)+Z(Es'_Eci)A§j(H _Yc_Ysi)
i Equation 3.165

EAM ZECI ||(B_Xc_xi)+Z(Esi_Eci)As'(B_xc_Xsi)
i Equation 3.166

F, z fawit, +z(f9 —T)A Equation 3.167

ZECI i |(H _Yc _Yi)2 +Z(Esi - Eu)As(H _Yc _Ysi)2

Equation 3.168

ZECI i |(B_XC_Xi)2+Z(Esi _Eci)Asi(H _Xc_xsi)2

Equation 3.169

ZECI i (H _Yc_Yi)(B_XC_Xi)+Z(Esi _Eci)A‘a'(H _Yc_Ysi)(B_Xc _Xsi)

Equation 3.170

Z fCI i |(H _Yc _Yi)+Z(fsi - fC|)A§(H _Yc_Ysi)

Equation 3.171
My, =D fowt (B— X, — Xi)+ D (fy - fi)A(B— X, - X4)  Equation 3.172

where E = secant modulus of elasticity of the concrete filament = Lei,

Eci

Eq = secant modulus of elasticity of the stedl bar = s

Esi
10. Transferring back the internal moments about the geometric centroid
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GM,, = Mox _GP(YG _Yc)

(04

Equation 3.173

GM,, =M,, —GP(Y; — X,) Equation 3.174

11. Checking the convergence of the inelastic centroid

TOLX = EAMX / EA/Yc Equation 3.175

TOL, = EAM, / EA/ X, |
Equation 3.176

12. Comparing the internal force to applied force, internal moments to applied
moments, and making sure the moments are calculated about the geometric

centroid :

GP - F |<1*10°

Equation 3.177

IGM, -GM | <1*10°°

‘GM , —GM,, [<1*10°° Equation 3.178

ToL, | <1*10° ToL,|<1*10° .
Equation 3.179

If Equations 3.174, 3.175 and 3.176 are not satisfied, the location of the inelastic centroid
is updated by EAM,/EA and EAM,/EA and steps 5 to 11 are repeated till Equations 3.174, 3.175
and 3.176 are satisfied.

EAM
YCnew = Cold EAX
Equation 3.180
EAM,
chew = Cold EA
Equation 3.181
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Once equilibrium is reached, the algorithm checks for ultimate strain in concrete ¢, and
steel ¢ not to exceed €., and 0.05 respectively. Then it increases the loading by AGP and runs
the analysis for the new load level using the latest section properties. Otherwise, if &, equals

€. O &, equals0.05, the target force and resultant moment are reached as a point on the failure

surface for the amount of eccentricity and angle « used.

This method can be used combined with Approach One in the unconfined analysis,
section 3.2.2.1: Predefined Ultimate Strain Profile, for processing time optimization. Initially
unconfined analysis is utilized. The sectional properties, EA, Ely Ely, Ely, EAM,, EAMy, Y, X F,
Mox and Mgy are calculated from the unconfined failure point and used as section properties for
the following step. So instead of loading the section from the beginning, The equilibrium is
sought at unconfined failure point, Then, knowing the internal force capacity of the section, AP
is added and the cross section is analyzed using the proposed numerical formulation of this

section until failure of the confined section.
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N
Calculate initial
section properties
EA,Elx, Ely,Elxy
Ye,Yo,Xc,XG

L
Input P,

e& a
N

Transfer moment
to inelastic centroid

TMx=GM x+P(Yc-Yc)
TMy=GM y+P (X -X¢)
N2
Calculate
Dx,dy,€0,Eec,Ees
L
Calculate
Sci,Ssi,f ci, fsi

N2
Calculate new
section properties
EA,Elx, Ely, EAM x

EAMy,Ely
N2

Calculate internal
force and moments

Fz,M oxM oy
L No convergence
Transfer moment achieved. stop
back to G.C.

GM ox=M ox-P(Ya-Yc)
GM oy=M oy -P(X 6 -Xc

IGP-Fz|< 107
|GM x-GM ox|<10°

Yc+= EAMX/EA
Xc+= EAM y/EA

New eccintricity
yes

yes

|IGMy-GM oy|< 10>

€ec >= gcu
ges >= 0.05

yes

P & M achieved

New a

FIGURE 3.40
Flowchart of Generalized Moment of Area Method
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3.3.3 Results and Discussion

Interaction diagrams generated by KDOT Column Expert Software are plotted and
compared to the corresponding experimental work found in the literature. Interaction diagrams

are generated using the numerical formulation described in section 3-3-2.

3.3.3.1 Comparison with Experimental Work Case 1

A Study of combined bending and axial load in reinforced concrete members (Eivind
Hogenstad)

Section Height = 10 inches

Section Width = 10 inches

Clear Cover = 0.8575 inches

Steel Barsin x direction = 2

Steel Barsiny direction =4

Steel Diameter = 0.785 inches

Tie Diameter = 0.25 inches

f'c=51ks fy=60ks. fyn=61.6 ksi. Spacing = 8 inches

10.00

10,00 7.00

FIGURE 3.41
Hognestad Column
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Interaction diagram
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FIGURE 3.42
Comparison between KDOT Column Expert with Hognestad
Experiment (a = 0)

3.3.3.2 Comparison with Experimental Work Case 2

Design criteria for reinforced columns under axial load and biaxial bending (Boris
Breder)

Section Height = 8 inches

SectionWidth = 6 inches

Clear Cover =1.1875 inches

Steel Barsin x direction = 2#5

Steel Barsiny direction = 2#5

Tie Diameter = 0.25 inches
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f'c=3.7ks

240 =

Fomce kip

FIGURE 3.44

6.00

FIGURE 3.43
Bresler Column

fy = 53.5ks. fy,=53.5ksi. Spacing =4in

Interaction diagram
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Comparison between KDOT Column Expert with Bresler

Experiment (a = 90)
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Interaction diagram
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FIGURE 3.45
Comparison between KDOT Column Expert with Bresler
Experiment (= 0)

3.3.3.3 Comparison with Experimental Work Case 3

Investigation of the ultimate strength of square and rectangular columns under biaxially
eccentric loads (L.N. Ramamurthy)

Section Height = 12 inches

Section Width = 6 inches

Clear Cover = 1.2375inches

Steel Barsin x direction = 3#5

Steel Barsiny direction =3#5

Tie Diameter = 0.25 inches

f'c=38ks fy=46.79ks fyn=46.79 ks.. Spacing = 6 inches
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6.00

12,00 @ @ | 840

FIGURE 3.46
Ramamurthy Column

Interaction diagram
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FIGURE 3.47
Comparison between KDOT Column Expert with Ramamurthy Experiment
(a=26.5)

3.3.3.4 Comparison with Experimental Work Case 4

Confined columns under eccentric loading
(Murat Saatcioglu. Amir Salamat and Salim Razvi )
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Section Height = 8.27 inches

Section Width =8 .27 inches

Clear Cover = 0. 5inches

Steel Barsin x direction = 3

Steel Barsiny direction =3

Steel Area= 0.155 inches?

Tie Diameter = 0.364 inches

f'c=51ks f,=75ks. fy,=59.45ksi. Spacing = 1.97 inches

27

1

FIGURE 3.48
Saatcioglu Column

700 H Experimental points

600

--------- Interaction diagram " e relation"

Interaction diagram "CR relation"
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%400 \\ ....... _
g 300 \
200 S e
00 e

0 20 40 60
Moment (k.in.)

FIGURE 3.49
Comparison between KDOT Column Expert with Saatcioglu et al.
Experiment (a = 0)
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3.3.3.5 Comparison with Experimental Work Case 5

Confined columns under eccentric loading

(Mura Saatcioglu. Amir Salamat and Salim Razvi )

Section Height = 8.27 inches

Section Width =8 .27 inches

Clear Cover =0.5inches

Steel Barsin x direction = 4

Steel Barsiny direction = 4

Steel Area=0.155in”

Tie Diameter = 0.364 inches

f'c=51ks f,=75ks. fyn=59.45ksi. Spacing = 1.97 inches

3.27

IZ\

FIGURE 3.50
Saatcioglu Column
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8 400
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100
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FIGURE 3.51
Comparison between KDOT Column Expert with Saatcioglu et al.
Experiment 1 (= 0)

3.3.3.6 Comparison with Experimental Work Case 6

Stress strain behavior of concrete confined by overlapping hoops at low and high strain
rate:

(B. Scott, R Park and M. Priestly)

Section Height = 17.7 inches

Section Width =17 .7 inches

Clear Cover = 0. 787 inches

Steel Barsin x direction = 4

Steel Barsiny direction =4

Steel Area= 0.49 inches’

Tie Diameter = 0.394 inches

f'c=3.67ks f,=63ks. fyn=44.8 ksi. Spacing = 2.83 inches
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FIGURE 3.52
Scott Column
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FIGURE 3.53

Comparison between KDOT Column Expert with Scott et al. Experiment (a = 0)
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3.3.3.7 Comparison with Experimental Work Case Case 7

Stress strain behavior of concrete confined by overlapping hoops at low and high strain
rate

(B. Scott, R Park and M. Priestly)

Section Height = 17.7 inches

Section Width =17 .7 inches

Clear Cover =0. 787 inches

Steel Barsin x direction =3

Steel Barsiny direction =3

Steel Area= 0.7 inches’.

Spiral Diameter = 0.394 inches

f'c=3.67ks fy=57.13ks. fyh =44.8ks. Spacing = 2.83 inches

17,70

FIGURE 3.54
Scott Column
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B Experimental points
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FIGURE 3.55
Comparison between KDOT Column Expert with Scott et al. Experiment (a = 0)

The analyzed seven cases cover the three Interaction diagram zones of; compression
controlled, tension controlled and balanced zones. There is good agreement between the
theoretical interaction diagram and the corresponding experimental data as shown in Figures
3.42,3.44, 3.45, 3.47, 3.49, 3.51, 3.53, and 3.55.

It is shown from Figures 3.49, 3.51, 3.53, and 3.55 that interaction diagrams plotted using
Equation 3.105 that is representative of the compression zone area are more accurate compared
to those plotted using Equation 3.105a that is a function of eccentricity. Also the experimental
data correlate well to its associated interaction diagrams.

Figure 3.53 and 3.55 show more accuracy and conservative interaction diagram when the
analysis account for the cover spalling when the unconfined crushing strain is considered. Thisis
represented by the most inner curve in Figures 3.53 and 3.55. Also in Figure 3.53 and 3.55 the
experimental points 1 and 2 are having the same eccentricity but the loading strain rate is
different. The loading strain rate for point 1 is 0.0000033, whereasit is 0.0167 for point 2. Points

3 and 4 also have the same loading strain rate. It is seen that the loading strain rate for points 1
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and 3 are extremely small. Hence points 2 and 4 are more realistic and they are captured well by
the theoretical interaction diagram. In conclusion, the strain rate is a parameter that needs further

investigation.

3.3.3.8 Comparison between the Surface Meridians T&C Used in Mander

Model and Experimental Work

The ultimate strength surface meridians equations for compression C and tension T
derived by Elwi and Murray (1979) from the data of Scickert and Winkler (1977), that are
utilized by Mander et a. (1988) to predict the ultimate confined axia strength using the two
lateral confined pressures, are compared herein to some experimental data found from Mills and
Zimmerman (1970). The equations used by Mander are developed originaly for concrete that

has unconfined strength of 4.4 ksi. They have the following formulas

T = 0.069232 - 0.6610915. — 0.0493500 Equation 3.182

C = 0.122965 - 1.1505020 — 0.3155450__ - Equation 3.183

=
No

~.

N

[REY

=-0.3155x7 - 1.15x + 0,122
AN

\\ \ T (theta = 0)
\\ ' — = C(theta = 60)
Poly. (T ( theta = 0))

y =-0/0493x2 - 0.661x + 0.069

for)
o

(e}
(<)}

T oct

D

q
N F'S

Poly. (C (theta = 60))

v

-1.5

'
[N

-0.5

o

0.5

o oct

FIGURE 3.56
T and C Meridians Using Equations 3.182 and 3.183 used in Mander
Model for f'c = 4.4 ksi
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The T and C meridians adopted by Mander from Elwi and Murray (1979) work are reported on
in Figure 3.56. Mills and Zimmerman (1970) developed three sets of multiaxial tests for concrete
with unconfined strength of 3.34, 3.9 and 5.2 ksi. For each set, the values of o, and 7, are
extracted at unconfined strength f'¢, the cracking tensile strength f';, equibiaxial compressive
strength f' o, and two extra points, one on each of the meridians. These five points are used to plot

the T and C meridians as shown in Figures 3.57, 3.58 and 3.59.

12
1z

1
T

\ \\v = -0.11865x2 - 1.0471x + 0.1431
A 08

N

‘g N\ 06 T (theta=0)
(5

\ == == C(theta=0)

Poly. (T ( theta = 0))

S

o FA
W

y =-0/0169x? - 0.6172x +|0.0851

Poly. (C ( theta = 0))

o oct

FIGURE 3.57
T and C Meridians for f'c = 3.34 ksi
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y =-0/0151x% - 0.6479x + 0.082
)\ ——Poly. (C ( theta = 60))
\
AN
-1.5 -1 -0.5 0 0.5
o oct
FIGURE 3.58

T and C Meridians for f'c. = 3.9 ksi

0.8
N\ 07
Ny =-0.2768x2 - 1.1332x + 0.1244
\\ \ 0.6
"8' \ \ \v e T ( theta = 0)
|P ,\ \:3‘4 = = C(theta = 60)
Poly. (T ( theta = 0))
y = -0/0603x2 - 0.6658x +°\Q§\
Poly. (C ( theta = 60))
1 0.5 0 0.5
o oct
FIGURE 3.59

T and C Meridians for f'. = 5.2 ksi

The T and C equations for Figures 3.57 through 3.59 are as follow:

for f'c=3.34 ksi:
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T =0.0851- 0.61720,, —0.01690 ., Equation 3.184

C=0.1431-1.04715_ - 0.18650, Equation 3.185
for f'c=3.9ks:

T = 0.0825- 0.6479 . — 0.0151 - Equation 3.186
C =0.1348-1.04720, - 0.1120, Equation 3.187
forf'c=5.2ksi:

T = 0.0719 - 0.66580, — 0.06030, - Equation 3.188
C=0.1244-1.13320,_ - 0.27680, Equation 3.189

Equations 3.181 through 3.186 are used in generating confined strength values for
different lateral pressures as shown in Appendix A. Equations 3.179 and 3.180 are used also in
developing confined strength values for the same lateral pressure values. It is seen from the
tables that Equations 3.179 and 3.180 give conservative values compared to Equations 3.181
through 3.186. Accordingly, Equations 3.179 and 3.180 are used herein to predict the ultimate

confined axial strength values for any given unconfined strength (f'¢) value.

TABLE 3.1
Data for Constructing T and C Meridian
Curves for f'; Equal to 3.34 ksi

Control Parameter | O Oct O Oct

f'c= 3.34 ksi -0.33333 | 0.471405
f't 0.043258 | 0.061176
f'ch -0.81497 | 0.576271
triaxial on C -1.15968 | 1.10653
triaxial on T -1.50898 | 0.978094
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TABLE 3.2
Data for Constructing T and C Meridian
Curves for f’c Equal to 3.9 ksi

Control Parameter | [0 Oct O Oct

f'c=3.9ks -0.33333 | 0.471405

f't 0.040006 | 0.056578

f'cbh -1.0904 | 0.771027

triaxial on C -1.06018 | 1.119058

triaxial on T -1.26248 | 0.876414
TABLE 3.3

Data for Constructing T and C Meridian
Curves for f'; Equal to 5.2 ksi

Control Parameter | 00 Oct 0 Oct

f'c=5.2 ks -0.33333 | 0.471405
f't 0.034553 | 0.048865
f'cb -0.80229 | 0.567306
triaxial on C -0.68386 | 0.76993
triaxial on T -0.88634 | 0.614725
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Chapter 4: Conclusions and Recommendations

4.1 Conclusions

This study accomplished severa objectives at the analysis, material modeling, design

implications and software development levels. It may be concluded that:

1.

Based on the extensive review of the confined model available in the literature,
Mander Model is found to be the most suitable concentric loading model
expressing the stress-strain behavior of circular and rectangular columns confined
with convenient lateral steel and steel tubes as well.

The eccentric based stress-strain model developed in this study provides more
accuracy compared to the available concentric confined models in the literature as
it is shown through comparison with experimental data.

For rectangular columns, the ratio of the area of compression zone to the sectional
gross area is more representative than the normalized alone eccentricity in
correlating eccentric behavior.

The non-linear numerical procedure introduced, using the eccentric model and the
finite layer approach, successfully predicted the ultimate capacity of rectangular
reinforced concrete columns confined with steel.

A computer program named “KDOT Column Expert” is developed based on the
non-linear approach implemented for analyzing and designing rectangular
columns confined with lateral steel hoops.

The unconfined concrete analysis carried out by KDOT Column Expert is
benchmarked successfully against well-established commercial software for a
range of design parameters.

The confined concrete analysis implemented by KDOT Column Expert is well
correlated to experimenta data.

4.2 Recommendations

Thiswork should be extended to address the following areas:

1.

Model the effect of FRP wrapping on confinement for rectangular columns.,
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Model corrosion of longitudinal and transverse steel for circular and rectangular
columns.

Model CFST for circular columns,

Model CFST for rectangular columns.

Expand the software application to include the CFST columns.
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Appendix A: Ultimate Confined Strength Tables

Table A.1 is developed for f'c of 3.3 using Equations 3.181 and 3.182. Table A.2 is for
f’c of 3.9 using Equations 3.183 and 3.184. Table A.3 is developed using Mander procedure that
utilizes Scickert and Winkler (1977) formulas. Table A.4 isfor f'c of 5.2 using Equations 3.185
and 3.186. Tables A.5 through A.7 show the confined values for the same lateral pressure using
Scickert and Winkler (1977) equations. Tables A.5 through A.7 give conservative values
compared to table A.1, A.2 and A.4. This indicates that Equations 3.179 and 3.180 found by

Scickert and Winkler (1977) and utilized by Mander et al. (1988) are conservative enough to be
used inthe analysis
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TABLEA.1
Ultimate Confined Strength to Unconfined Strength Ratio for f'c = 3.3 ksi

o1
o2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.02

3.7260

3.9001

4.0336

4.1442

4.2396

4.3238

4.3994

4.4680

4.5309

4.5888

4.6424

4.6924

4.7389

4.7825

4.8233

0.04

3.9001

4.1298

4.2988

4.4318

4.5436

4.6408

4.7273

4.8054

4.8768

4.9424

5.0032

5.0598

5.1128

5.1624

5.2091

0.06

4.0336

4.2988

4.5141

4.6779

4.8098

4.9220

5.0205

5.1086

5.1887

5.2621

5.3299

5.3930

5.4520

5.5074

5.5596

0.08

4.1442

4.4318

4.6779

4.8808

5.0396

5.1700

5.2821

5.3812

5.4705

5.5519

5.6269

5.6965

5.7614

5.8223

5.8797

0.1

4.2396

4.5436

4.8098

5.0396

5.2316

5.3855

5.5140

5.6257

5.7250

5.8150

5.8974

5.9736

6.0445

6.1109

6.1734

0.12

4.3238

4.6408

4.9220

5.1700

5.3855

5.5679

5.7172

5.8436

5.9544

6.0537

6.1440

6.2271

6.3041

6.3761

6.4436

0.14

4.3994

4.7273

5.0205

5.2821

5.5140

5.7172

5.8910

6.0358

6.1600

6.2698

6.3687

6.4591

6.5425

6.6201

6.6928

0.16

4.4680

4.8054

5.1086

5.3812

5.6257

5.8436

6.0358

6.2019

6.3424

6.4643

6.5728

6.6712

6.7614

6.8450

6.9230

0.18

4.5309

4.8768

5.1887

5.4705

5.7250

5.9544

6.1600

6.3424

6.5015

6.6380

6.7575

6.8647

6.9623

7.0522

7.1357

0.2

4.5888

4.9424

5.2621

5.5519

5.8150

6.0537

6.2698

6.4643

6.6380

6.7907

6.9233

7.0405

7.1462

7.2428

7.3322

0.22

4.6424

5.0032

5.3299

5.6269

5.8974

6.1440

6.3687

6.5728

6.7575

6.9233

7.0703

7.1991

7.3139

7.4180

7.5137

0.24

4.6924

5.0598

5.3930

5.6965

5.9736

6.2271

6.4591

6.6712

6.8647

7.0405

7.1991

7.3407

7.4660

7.5784

7.6810

0.26

4.7389

51128

5.4520

5.7614

6.0445

6.3041

6.5425

6.7614

6.9623

7.1462

7.3139

7.4660

7.6026

7.7245

7.8347

0.28

4.7825

5.1624

5.5074

5.8223

6.1109

6.3761

6.6201

6.8450

7.0522

7.2428

7.4180

7.5784

7.7245

7.8566

7.9753

0.3

4.8233

5.2091

5.5596

5.8797

6.1734

6.4436

6.6928

6.9230

7.1357

7.3322

7.5137

7.6810

7.8347

7.9753

8.1031
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TABLEA.2

Ultimate Confined Strength to Unconfined Strength Ratio for f'. = 3.9 ksi

o1

oo 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 4.4819 | 4.7318 | 4.9351 | 5.1101 | 5.2656 | 5.4063 | 5.5355 | 5.6552 | 5.7670 | 5.8721 | 59712 | 6.0651 | 6.1544 | 6.2394 | 6.3206
0.04 | 4.7318 | 5.0412 | 5.2854 | 5.4880 | 5.6642 | 5.8217 | 5.9649 | 6.0969 | 6.2196 | 6.3345 | 6.4427 | 65450 | 6.6422 | 6.7347 | 6.8230
0.06 | 4.9351 | 5.2854 | 5.5802 | 5.8187 | 6.0197 | 6.1962 | 6.3548 | 6.4998 | 6.6337 | 6.7587 | 6.8759 | 6.9865| 7.0914| 7.1911| 7.2862
0.08 | 5.1101 | 5.4880 | 5.8187 | 6.1005 | 6.3333 | 6.5323 | 6.7083 | 6.8674 | 7.0134 | 7.1488 | 7.2753 | 7.3943 | 7.5068 | 7.6136 | 7.7154

0.1 ] 5.2656 | 5.6642 | 6.0197 | 6.3333 | 6.6037 | 6.8308 | 7.0273 | 7.2024 | 7.3616 | 7.5081 | 7.6443 | 7.7720| 7.8923 | 8.0062 | 8.1145
0.12 | 5.4063 | 5.8217 | 6.1962 | 6.5323 | 6.8308 | 7.0908 | 7.3125 | 7.5063 | 7.6802 | 7.8389 | 7.9855| 8.1222 | 82506 | 8.3718 | 8.4868
0.14 | 5.5355 | 5.9649 | 6.3548 | 6.7083 | 7.0273 | 7.3125 | 7.5631 | 7.7795 | 7.9704 | 8.1427 | 83007 | 8.4471 | 85840 | 8.7128 | 8.8346
0.16 | 5.6552 | 6.0969 | 6.4998 | 6.8674 | 7.2024 | 7.5063 | 7.7795 | 8.0215 | 8.2328 | 8.4208 | 85913 | 8.7483 | 8.8942 | 9.0310 | 9.1599
0.18 | 5.7670 | 6.2196 | 6.6337 | 7.0134 | 7.3616 | 7.6802 | 7.9704 | 8.2328 | 8.467/0 | 8.6733 | 8.8582 | 9.0269 | 9.1827 | 9.3279 | 9.4644

0.2 | 5.8721 | 6.3345 | 6.7587 | 7.1488 | 7.5081 | 7.8389 | 8.1427 | 8.4208 | 8.6733 | 8.9002 | 9.1018 | 9.2837 | 9.4503 | 9.6048 | 9.7492
0.22 | 5.9712 | 6.4427 | 6.8759 | 7.2753 | 7.6443 | 7.9855 | 8.3007 | 8.5913 | 8.8582 | 9.1018 | 9.3219 | 9.5190 | 9.6978 | 9.8624 | 10.0154
0.24 | 6.0651 | 6.5450 | 6.9865 | 7.3943 | 7.7720 | 8.1222 | 8.4471 | 8.7483 | 9.0269 | 9.2837 | 9.5190 | 9.7328 | 9.9255 | 10.1014 | 10.2638
0.26 | 6.1544 | 6.6422 | 7.0914 | 7.5068 | 7.8923 | 8.2506 | 8.5840 | 8.8942 | 9.1827 | 9.4503 | 9.6978 | 9.9255 | 10.1334 | 10.3220 | 10.4948
0.28 | 6.2394 | 6.7347 | 7.1911 | 7.6136 | 8.0062 | 8.3718 | 8.7128 | 9.0310 | 9.3279 | 9.6048 | 9.8624 | 10.1014 | 10.3220 | 10.5243 | 10.7080

0.3 | 6.3206 | 6.8230 | 7.2862 | 7.7154 | 8.1145 | 8.4868 | 8.8346 | 9.1599 | 9.4644 | 9.7492 | 10.0154 | 10.2638 | 10.4948 | 10.7080 | 10.9060
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TABLE A.3
Ultimate Confined Strength to Unconfined Strength Ratio for f'c = 4.4 ksi (used by Mander et al. (1988))

1*

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 5.0255 | 5.2550 | 5.4259 | 5.5656 | 5.6849 | 5.7895 | 5.8829 | 5.9674 | 6.0444 | 6.1152 | 6.1806 | 6.2412 | 6.2976 | 6.3502 | 6.3993
0.04 | 5.2550 | 5.5622 | 5.7791 | 5.9460 | 6.0845 | 6.2040 | 6.3096 | 6.4044 | 6.4906 | 6.5695 | 6.6423 | 6.7098 | 6.7728 | 6.8315 | 6.8866
0.06 | 5.4259 | 5.7791 | 6.0569 | 6.2623 | 6.4247 | 6.5613 | 6.6803 | 6.7860 | 6.8815 | 6.9686 | 7.0487 | 7.1230 | 7.1920 | 7.2566 | 7.3171
0.08 | 5.5656 | 5.9460 | 6.2623 | 6.5164 | 6.7112 | 6.8688 | 7.0030 | 7.1209 | 7.2263 | 7.3218 | 7.4094 | 7.4903 | 7.5654 | 7.6355 | 7.7012
0.1 | 5.6849 | 6.0845 | 6.4247 | 6.7112 | 6.9456 | 7.1307 | 7.2834 | 7.4150 | 7.5313 | 7.6359 | 7.7312 | 7.8188 | 7.9000 | 7.9756 | 8.0464
0.12 | 5.7895 | 6.2040 | 6.5613 | 6.8688 | 7.1307 | 7.3486 | 7.5248 | 7.6726 | 7.8012 | 7.9157 | 8.0193 | 8.1140 | 8.2013 | 8.2825 | 8.3582
0.14 | 5.8829 | 6.3096 | 6.6803 | 7.0030 | 7.2834 | 7.5248 | 7.7283 | 7.8964 | 8.0394 | 8.1650 | 8.2775 | 8.3797 | 8.4735 | 8.5604 | 8.6413
0.16 | 5.9674 | 6.4044 | 6.7860 | 7.1209 | 7.4150 | 7.6726 | 7.8964 | 8.0875 | 8.2480 | 8.3864 | 8.5089 | 8.6193 | 8.7200 | 8.8127 | 8.8989
0.18 | 6.0444 | 6.4906 | 6.8815 | 7.2263 | 7.5313 | 7.8012 | 8.0394 | 8.2480 | 8.4282 | 8.5818 | 8.7156 | 8.8350 | 8.9431 | 9.0422 | 9.1338
0.2 | 6.1152 | 6.5695 | 6.9686 | 7.3218 | 7.6359 | 7.9157 | 8.1650 | 8.3864 | 8.5818 | 8.7522 | 8.8994 | 9.0289 | 9.1451 | 9.2510 | 9.3483
0.22 | 6.1806 | 6.6423 | 7.0487 | 7.4094 | 7.7312 | 8.0193 | 8.2775 | 8.5089 | 8.7156 | 8.8994 | 9.0610 | 9.2022 | 9.3276 | 9.4408 | 9.5443
0.24 | 6.2412 | 6.7098 | 7.1230 | 7.4903 | 7.8188 | 8.1140 | 8.3797 | 8.6193 | 8.8350 | 9.0289 | 9.2022 | 9.3560 | 9.4916 | 9.6130 | 9.7231
0.26 | 6.2976 | 6.7728 | 7.1920 | 7.5654 | 7.9000 | 8.2013 | 8.4735 | 8.7200 | 8.9431 | 9.1451 | 9.3276 | 9.4916 | 9.6383 | 9.7687 | 9.8861
0.28 | 6.3502 | 6.8315 | 7.2566 | 7.6355 | 7.9756 | 8.2825 | 8.5604 | 8.8127 | 9.0422 | 9.2510 | 9.4408 | 9.6130 | 9.7687 | 9.9087 | 10.0343
0.3 | 6.3993 | 6.8866 | 7.3171 | 7.7012 | 8.0464 | 8.3582 | 8.6413 | 8.8989 | 9.1338 | 9.3483 | 9.5443 | 9.7231 | 9.8861 | 10.0343 | 10.1683
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Ultimate Confined Strength to Unconfined Stren

TABLE A4

gth Ratio for f’c = 5.2 ksi

?'02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
G2

0.02 | 5.9070 | 6.1647 | 6.3409 | 64785 | 6.5923 | 6.6891 | 6.7730 | 6.8467| 69120 | 6.9700| 7.0217| 7.0679| 7.1091| 7.1458 | 7.1783
0.04 | 6.1647 | 6.5586 | 6.8072 | 6.9847 | 7.1258 | 7.2436 | 7.3448 | 74332 | 75113 | 75810| 7.6435| 7.6996 | 7.7502| 7.7959 | 7.8370
0.06 | 6.3409 | 6.8072 | 7.1633 | 7.4023 | 7.5789 | 7.7215| 7.8417 | 79458 | 8.0373| 81187 | 81917 | 82574| 83170| 83710 8.4201
0.08 | 6.4785 | 6.9847 | 7.4023 | 7.7279 | 7.9573 | 8.1317 | 82746 | 83962 | 85020 | 85957 | 8.6794| 8.7548| 8.8231| 8.8853 | 8.9420

0.1 65923 | 7.1258 | 7.5789 | 7.9573 | 8.2579 | 84780 | 8.6495| 8.7917| 8.9137| 9.0206 | 9.1157 | 9.2010 | 9.2782 | 9.3485| 9.4126
0.12 | 6.6891 | 7.2436 | 7.7215 | 8.1317 | 8.4780 | 8.7576 | 89688 | 9.1369| 92778 | 9.3996| 9.5070| 9.6028 | 9.6893 | 9.7678 | 9.8395
0.14 | 6.7730 | 7.3448 | 7.8417 | 8.2746 | 8.6495 | 8.9688 | 9.2303 | 9.4332| 9.5975| 9.7367 | 9.8579| 9.9652 | 10.0615 | 10.1486 | 10.2280
0.16 | 6.8467 | 7.4332 | 7.9458 | 8.3962 | 8.7917 | 9.1369 | 9.4332| 9.6790| 9.8740 | 10.0344 | 10.1716 | 10.2917 | 10.3987 | 10.4951 | 10.5826
0.18 | 6.9120 | 7.5113 | 8.0373 | 8.5020 | 8.9137 | 9.2778 | 9.5975 | 9.8740 | 10.1061 | 10.2937 | 10.4501 | 10.5850 | 10.7039 | 10.8102 | 10.9063

0.2 | 6.9700 | 7.5810 | 8.1187 | 8.5957 | 9.0206 | 9.3996 | 9.7367 | 10.0344 | 10.2937 | 10.5135 | 10.6941 | 10.8465 | 10.9790 | 11.0964 | 11.2019
0.22 | 7.0217 | 7.6435 | 8.1917 | 8.6794 | 9.1157 | 9.5070 | 9.8579 | 10.1716 | 10.4501 | 10.6941 | 10.9029 | 11.0770 | 11.2255 | 11.3555 | 11.4713
0.24 | 7.0679 | 7.6996 | 8.2574 | 8.7548 | 9.2010 | 9.6028 | 9.9652 | 10.2917 | 10.5850 | 10.8465 | 11.0770 | 11.2759 | 11.4438 | 11.5885 | 11.7159
0.26 | 7.1091 | 7.7502 | 8.3170 | 8.8231 | 9.2782 | 9.6893 | 10.0615 | 10.3987 | 10.7039 | 10.9790 | 11.2255 | 11.4438 | 11.6338 | 11.7959 | 11.9367
0.28 | 7.1458 | 7.7959 | 8.3710 | 8.8853 | 9.3485 | 9.7678 | 10.1486 | 10.4951 | 10.8102 | 11.0964 | 11.3555 | 11.5885 | 11.7959 | 11.9776 | 12.1342

0.3 ] 7.1783 | 7.8370 | 8.4201 | 8.9420 | 9.4126 | 9.8395 | 10.2280 | 10.5826 | 10.9063 | 11.2019 | 11.4713 | 11.7159 | 11.9367 | 12.1342 | 12.3084
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TABLE A.5
Ultimate Confined Strength to Unconfined Strength Ratio for f'¢ = 3.3 ksi (using Scickert and Winkler (1977))

1*
G2+

0.02

0.04

0.06

0.08

01

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.02

3.7369

3.9076

4.0347

4.1385

4.2272

4.3050

4.3745

4.4373

4.4946

4.5472

4.5958

4.6408

4.6827

4.7218

4.7584

0.04

3.9076

4.1360

4.2973

4.4214

4.5244

4.6133

4.6918

4.7623

4.8263

4.8850

4.9391

4.9894

5.0361

5.0799

5.1208

0.06

4.0347

4.2973

4.5039

4.6566

4.7773

4.8789

4.9674

5.0460

5.1170

5.1818

5.2414

5.2966

5.3479

5.3959

5.4410

0.08

4.1385

4.4214

4.6566

4.8456

4.9904

5.1076

5.2074

5.2950

5.3734

5.4445

5.5096

5.5697

5.6255

5.6777

5.7266

0.1

4.2272

4.5244

4.7773

4.9904

5.1647

5.3023

5.4159

5.5137

5.6002

5.6780

5.7489

5.8140

5.8744

5.9306

5.9832

0.12

4.3050

4.6133

4.8789

5.1076

5.3023

5.4643

5.5954

5.7053

5.8009

5.8861

5.9631

6.0335

6.0984

6.1588

6.2151

0.14

4.3745

4.6918

4.9674

5.2074

5.4159

5.5954

5.7467

5.8717

5.9780

6.0714

6.1551

6.2311

6.3009

6.3654

6.4256

0.16

4.4373

4.7623

5.0460

5.2950

5.5137

5.7053

5.8717

6.0138

6.1332

6.2361

6.3271

6.4092

6.4841

6.5531

6.6171

0.18

4.4946

4.8263

5.1170

5.3734

5.6002

5.8009

5.9780

6.1332

6.2671

6.3813

6.4809

6.5696

6.6500

6.7237

6.7918

0.2

4.5472

4.8850

5.1818

5.4445

5.6780

5.8861

6.0714

6.2361

6.3813

6.5081

6.6175

6.7138

6.8003

6.8789

6.9513

0.22

4.5958

4.9391

5.2414

5.5096

5.7489

5.9631

6.1551

6.3271

6.4809

6.6175

6.7377

6.8427

6.9359

7.0201

7.0970

0.24

4.6408

4.9894

5.2966

5.5697

5.8140

6.0335

6.2311

6.4092

6.5696

6.7138

6.8427

6.9571

7.0579

7.1481

7.2300

0.26

4.6827

5.0361

5.3479

5.6255

5.8744

6.0984

6.3009

6.4841

6.6500

6.8003

6.9359

7.0579

7.1669

7.2639

7.3512

0.28

4.7218

5.0799

5.3959

5.6777

5.9306

6.1588

6.3654

6.5531

6.7237

6.8789

7.0201

7.1481

7.2639

7.3681

7.4614

0.3

4.7584

5.1208

5.4410

5.7266

5.9832

6.2151

6.4256

6.6171

6.7918

6.9513

7.0970

7.2300

7.3512

7.4614

7.5611
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TABLE A.6
Ultimate Confined Strength to Unconfined Strength Ratio for f'. = 3.9 ksi (Usin

Scickert and Winkler (1977))

0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
o7
®02 | 44163 | 4.6181 | 47683 | 4.8909 | 4.9958 | 5.0877 | 5.1698 | 5.2441 | 5.3118 | 5.3740 | 5.4314 | 5.4846 | 5.5342 | 5.5804 | 5.6236
0.04 | 4.6181 | 4.8880 | 5.0786 | 52253 | 5.3470 | 5.4520 | 5.5448 | 5.6281 | 5.7038 | 5.7732 | 5.8372 | 5.8965 | 5.9518 | 6.0035 | 6.0519
0.06 | 4.7683 | 5.0786 | 5.3228 | 55032 | 5.6460 | 5.7660 | 5.8705 | 5.9635 | 6.0474 | 6.1239 | 6.1944 | 6.2596 | 6.3203 | 6.3770 | 6.4302
0.08 | 4.8909 | 5.2253 | 55032 | 5.7266 | 5.8977 | 6.0362 | 6.1542 | 6.2577 | 6.3504 | 6.4344 | 6.5113 | 6.5824 | 6.6484 | 6.7100 | 6.7677
0.1 | 49958 | 5.3470 | 5.6460 | 5.8977 | 6.1038 | 6.2664 | 6.4006 | 6.5162 | 6.6184 | 6.7104 | 6.7941 | 6.8711 | 6.9424 | 7.0089 | 7.0711
0.12 | 5.0877 | 5.4520 | 5.7660 | 6.0362 | 6.2664 | 6.4578 | 6.6127 | 6.7426 | 6.8557 | 6.9563 | 7.0473 | 7.1305 | 7.2072 | 7.2785 | 7.3452
0.14 | 5.1698 | 5.5448 | 5.8705 | 6.1542 | 6.4006 | 6.6127 | 6.7916 | 6.9392 | 7.0650 | 7.1753 | 7.2742 | 7.3640 | 7.4465 | 7.5228 | 7.5939
0.16 | 52441 | 5.6281 | 5.9635 | 6.2577 | 65162 | 6.7426 | 6.9392 | 7.1072 | 7.2483 | 7.3699 | 7.4775 | 7.5745 | 7.6630 | 7.7445 | 7.8202
0.18 | 5.3118 | 5.7038 | 6.0474 | 6.3504 | 6.6184 | 6.8557 | 7.0650 | 7.2483 | 7.4066 | 7.5416 | 7.6592 | 7.7641 | 7.8591 | 7.9462 | 8.0267
0.2 | 53740 | 5.7732 | 6.1239 | 6.4344 | 6.7104 | 6.9563 | 7.1753 | 7.3699 | 7.5416 | 7.6913 | 7.8207 | 7.9345 | 8.0367 | 8.1297 | 8.2152
0.22 | 54314 | 58372 | 6.1944 | 65113 | 6.7941 | 7.0473 | 7.2742 | 7.4775| 7.6592 | 7.8207 | 7.9628 | 8.0868 | 8.1970 | 8.2964 | 8.3874
0.24 | 5.4846 | 5.8965 | 6.2596 | 6.5824 | 6.8711 | 7.1305| 7.3640 | 7.5745| 7.7641 | 7.9345 | 8.0868 | 8.2220 | 8.3412 | 8.4478 | 8.5446
0.26 | 55342 | 5.9518 | 6.3203 | 6.6484 | 6.9424 | 7.2072 | 7.4465 | 7.6630 | 7.8591 | 8.0367 | 8.1970 | 8.3412 | 8.4700 | 8.5846 | 8.6878
0.28 | 5.5804 | 6.0035 | 6.3770 | 6.7100 | 7.0089 | 7.2785 | 7.5228 | 7.7445| 7.9462 | 8.1297 | 8.2964 | 8.4478 | 8.5846 | 8.7077 | 8.8175
0.3 | 5.6236 | 6.0519 | 6.4302 | 6.7677 | 7.0711| 7.3452 | 7.5939 | 7.8202 | 8.0267 | 8.2152 | 8.3874 | 8.5446 | 8.6878 | 8.8175 | 8.9358
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Table A.7
Ultimate Confined Strength to Unconfined Strength Ratio for f'c = 5.2 ksi (Using Scickert and Winkler (1977))

1*
o2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.02 | 5.8885 | 6.1574 | 6.3577 | 6.5213 | 6.6610 | 6.7836 | 6.8931 | 6.9921 | 7.0823 | 7.1652| 7.2418 | 7.3128| 7.3788| 7.4405| 7.4980
0.04 | 6.1574 | 6.5173 | 6.7715 | 6.9671 | 7.1294 | 7.2694 | 7.3931| 75042 | 76051 | 7.6976 | 7.7829 | 7.8620| 7.9357| 8.0046 | 8.0692
0.06 | 6.3577 | 6.7715 | 7.0970 | 7.3376 | 7.5279 | 7.6880 | 7.8274 | 7.9513 | 8.0632 | 8.1652 | 8.2592 | 8.3461 | 8.4270| 8.5027 | 8.5736
0.08 | 6.5213 | 6.9671 | 7.3376 | 7.6354 | 7.8636 | 8.0483 | 8.2056 | 8.3437 | 84672 | 85792 | 8.6818 | 8.7765| 8.8645| 8.9467 | 9.0237
0.1 | 6.6610 | 7.1294 | 7.5279 | 7.8636 | 8.1384 | 8.3552 | 85342 | 8.6883 | 8.8246 | 8.9472| 9.0588 | 9.1615| 9.2566 | 9.3452 | 9.4281
0.12 | 6.7836 | 7.2694 | 7.6880 | 8.0483 | 8.3552 | 8.6105 | 8.8169 | 8.9902 | 9.1409 | 9.2750| 9.3963 | 9.5073| 9.6096 | 9.7047 | 9.7935
0.14 | 6.8931 | 7.3931 | 7.8274 | 8.2056 | 8.5342 | 8.8169 | 9.0554 | 9.2523 | 9.4200 | 9.5671| 9.6989 | 9.8187 | 9.9286 | 10.0304 | 10.1251
0.16 | 6.9921 | 7.5042 | 7.9513 | 8.3437 | 8.6883 | 8.9902 | 9.2523 | 9.4763 | 9.6644 | 9.8265| 9.9700 | 10.0994 | 10.2174 | 10.3261 | 10.4270
0.18 | 7.0823 | 7.6051 | 8.0632 | 8.4672 | 8.8246 | 9.1409 | 9.4200 | 9.6644 | 9.8755 | 10.0554 | 10.2123 | 10.3522 | 10.4789 | 10.5949 | 10.7023
0.2 ] 7.1652 | 7.6976 | 8.1652 | 8.5792 | 8.9472 | 9.2750 | 9.5671 | 9.8265 | 10.0554 | 10.2551 | 10.4276 | 10.5793 | 10.7155 | 10.8396 | 10.9536
0.22 | 7.2418 | 7.7829 | 8.2592 | 8.6818 | 9.0588 | 9.3963 | 9.6989 | 9.9700 | 10.2123 | 10.4276 | 10.6170 | 10.7824 | 10.9293 | 11.0619 | 11.1832
0.24 | 7.3128 | 7.8620 | 8.3461 | 8.7765 | 9.1615 | 9.5073 | 9.8187 | 10.0994 | 10.3522 | 10.5793 | 10.7824 | 10.9627 | 11.1216 | 11.2637 | 11.3928
0.26 | 7.3788 | 7.9357 | 8.4270 | 8.8645 | 9.2566 | 9.6096 | 9.9286 | 10.2174 | 10.4789 | 10.7155 | 10.9293 | 11.1216 | 11.2934 | 11.4462 | 11.5838
0.28 | 7.4405 | 8.0046 | 8.5027 | 8.9467 | 9.3452 | 9.7047 | 10.0304 | 10.3261 | 10.5949 | 10.8396 | 11.0619 | 11.2637 | 11.4462 | 11.6103 | 11.7574
0.3 | 7.4980 | 8.0692 | 8.5736 | 9.0237 | 9.4281 | 9.7935 | 10.1251 | 10.4270 | 10.7023 | 10.9536 | 11.1832 | 11.3928 | 11.5838 | 11.7574 | 11.9144
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