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Abstract Real-time information is important for travelers’ routing decisions in uncertain 

networks by enabling online adaptation to revealed traffic conditions. Usually there are spatial 

and/or temporal limitations in traveler information. In this research, a generic description of 

online information is provided based on which three types of partial online information and one 

no online information schemes are derived. A theoretical analysis shows that more error-free 

information is always better (or at least not worse) for optimal adaptive routing in flow-

independent networks.  For the empirical evaluation of information benefit in a general network, 

a heuristic algorithm is designed for the optimal adaptive routing problem with the three partial 

and no online information schemes, based on a set of necessary conditions for optimality. The 

effectiveness of the heuristic is shown to be satisfactory over the tested random networks. The 

work is potentially of interest for traveler information system evaluation and design. 

Keywords: Traveler Information; Stochastic Time-Dependent Network; Adaptive Routing; 
Value of Information; Routing Policy 
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Real-Time Traveler Information for Optimal Adaptive 
Routing in Stochastic Time-Dependent Networks 
 

1. Introduction 

An advanced traveler information system (ATIS) aims to provide travelers with real-time traffic 

conditions information, in the hope that better informed travelers could make better decisions.  In 

order to assess the effects of an ATIS, a comprehensive model is needed to take into account 

travelers’ decision making and the demand-supply interaction under the influence of ATIS. This 

research deals with the demand side of the problem, which describes the optimal within-day 

routing decisions a traveler can make with the help of real-time information on realized travel 

times and how much benefit can be obtained from traveler information. No demand-supply 

interaction is modeled in this research, i.e., travel times are not affected by travelers’ choices.  

No day-to-day learning is modeled – the traveler is assumed to have already formed a steady 

perception of the random travel times and the problem is how he/she uses the real-time 

information to update conditional distributions of travel times on a given day and make good 

decisions accordingly. 

The benefit of information depends on how decision makers make use of the information.  

For two information schemes to be comparable, we must ensure decision makers’ behavior under 

the two schemes are consistent.  For example, an in-vehicle GPS unit with the most up-to-date 

traffic information does not provide any benefit if the driver chooses to ignore it, while a radio 

message delayed for 20 minutes can help travelers divert if taken into account in a correct way.  

In this research, we assume decision makers optimize an objective function (e.g., minimal travel 

time, minimal variability) and make a series of optimal routing decisions based on time-of-day 

and realized link travel times during the trip.  The value of traveler information is therefore 

defined as the difference between optimal routing outcomes (e.g., minimal expected travel time) 

a traveler could obtain with and without the information.   

This definition of value of information is akin to that in decision analysis and information 

economics.  A general definition from Marschak and Miyasawa (1968) is as follows:  

“An information system is a set of potential messages to be received by the decision 

maker. It is characterized by the statistical relation of the messages to the payoff-relevant events, 



and also by the message cost.  Neglecting this cost, the (gross) value of an information system 

for a given user is the (gross) payoff that he would obtain, on the average, if he would respond to 

each message by the most appropriate decision.” 

Examples of studies of the value of traveler information consistent with the above 

definition include Arnott et al. (1996, 1999), Levinson (2003), Denant-Boemont and Petiot 

(2003), Chorus et al. (2006) and de Palma and Picard (2006).   

Traveler information can be characterized in a number of ways, e.g., quantitative or 

qualitative, historical, prevailing (realized) or predictive, and noise levels of the information.  In 

this research, quantitative error-free information is studied that reveals realized link travel times 

without error.  The focus is on the scope of information in time and space.  In Gao and Chabini 

(2006), perfect online information is studied that approximates an ideal in-vehicle system 

providing information on all links at all time periods up to the decision time.   However realistic 

information situations are generally limited in scope temporally and/or spatially.  For example, a 

variable message sign (VMS) is usually fixed in location providing information on a small 

number of routes, and only travelers passing it can obtain the information. Radio can provide 

information to travelers anywhere in the radio coverage, however the scope is usually limited to 

major highways and arterials. Limitations on the temporal side also prevail. For example, radio 

traffic reports could be delayed for 15 minutes, such that at 8:00am travelers only know the 

traffic conditions up to 7:45am.  Internet can provide travelers with access to traffic information, 

but might not be unavailable en route.  It can be treated as pre-trip information, available up to 

the departure time.  

In this research, three types of partial online information are introduced: delayed global 

information, global pre-trip information and radio information on a subset of links without delay.  

Compared with perfect online information, the first two are limited temporally and the last 

spatially.  The contributions of the research are threefold: 1) a theoretical proof that for optimal 

adaptive routing in a flow-independent stochastic time-dependent (STD) network, more error-

free information is always better (or at least not worse); 2) an analysis of the optimal adaptive 

routing problem with partial and no online information indicating that Bellman’s principle of 

optimality does not apply, and the proposal of a set of necessary conditions for optimality; and 3) 

a heuristic algorithm based on the necessary conditions with polynomial running time and 

satisfactory effectiveness tested computationally. 



The report is organized as follows. In Section 2, a literature review is given in two areas: 

value of traveler information and optimal routing policy problems. In Section 3, the optimal 

routing policy problem in an STD network is defined for partial online information situations. 

Section 4 presents a theoretical proof of the non-negative value of error-free traveler information. 

In Section 5, Bellman’s principle of optimality is shown to be invalid for the problem with 

partial and no online information.  A set of necessary conditions for optimality is then proposed 

and proved.  A heuristic algorithm is designed based on the necessary condition and 

computational test results are presented. Section 6 gives conclusions and future research 

directions. 

2. Literature Review 

There are a large number of studies on traveler information since two decades ago.  One critical 

problem is how to represent various types of information situations in a network.  Under a traffic 

equilibrium framework, some (e.g., Hall, 1996; Yang, 1998; Levinson, 2003) assume full 

information for travelers with access to ATIS, which is sometimes too ideal. In Mahmassani and 

Jayakrishnan (1991), Hall (1996) and Engelson (2003), travelers are assumed to switch routes 

based on instantaneous path travel times, rather than those that they will actually experience. 

This assumption circumvents the need to retrieve future link travel times. In Yin and Yang 

(2003) and Lo and Szeto (2004), the imperfection of various ATIS is represented through 

random errors added to the true path travel times, and different degrees of errors suggest 

different information systems.  Under a dynamic process framework, information could be 

included in travelers’ learning process to represent traffic conditions from the previous day or 

time period (e.g., Ben-Akiva et al., 1991; Friesz et al., 1994; Emmerink et al., 1995; Jha et al., 

1998; Mahmassani and Liu, 1999). A common shortcoming of these studies is that the 

information representation cannot be directly related to real life situations, e.g., the spatially or 

temporally limited information systems discussed in Section 1. 

There is another school of information theoretic studies on simplified networks.  Arnott et 

al. (1999) study effects of online information in a two-link network with random capacities under 

equilibrium in both departure time and route, using the bottleneck model to calculate congested 

travel times. Rigorous studies of zero information, full information, and imperfect information 

are carried out. Other studies in this school include Arnott et al. (1991, 1996), Emmerink et al. 



(1998), de Palma and Picard (2006) and Chorus et al. (2006). Denant-Boemont and Petiot (2003) 

evaluate travel information value using human subjects’ willingness to pay in an experimental 

setting with limited mode and route choices. 

It is difficult to generalize the results in a highly simplified network to a general network.  

While the optimal choice problem can be solved by observation in a simplified network, 

algorithms are needed in a general one. Two possible types of routing problems exist in 

stochastic networks: non-adaptive and adaptive. Non-adaptive routing ignores information 

available during a trip, and thus a fixed path is determined at the origin and followed regardless 

of the realizations of the stochastic network. On the contrary, adaptive routing considers 

intermediate decision nodes, and a next link (or sub-path) is chosen based on collected 

information at each decision node.  Adaptive routing is no worse than non-adaptive routing, 

since the latter can be viewed as a constrained version of the former.  In this review, routing 

policy is used to denote the adaptive routing process. The review focuses on problems in time-

dependent (as opposed to static) networks, as summarized in Table 1 with various assumptions 

on link stochastic dependencies and information access.  

Table 1. Taxonomy of the optimal routing policy problems 

                   Information 
Network 

Perfect online 
information 

Partial online 
information 

No online information 
(time-adaptive) 

No time-wise or link-wise 
dependency 

 
Opasanon and Miller-
Hooks (2006) 

See the note below* 

Complete dependency 
Gao and 
Chabini 
(2002, 2006) 

This research This research 

Partial dependency  

Psaraftis and Tsitsiklis 
(1993), 
Kim et al. (2005), 
Boyles (2006) 

 

*: Hall (1986), Miller-Hooks and Mahmassani (2000), Chabini (2000), Pretolani (2000), Miller-Hooks 

(2001), Bander and White (2002), Nielson et al. (2003), Yang and Miller-Hooks (2004), Fan et al. (2005), 

Fan and Nie (2006), Pretolani et al. (2009). 

 
In the studies of no time-wise or link-wise dependency and no online information, 

marginal distributions of link travel times are used and the routing is only adaptive to arrival 

times at decision nodes (hence the name time-adaptive). Hall (1986) studies for the first time the 

time-dependent version of the optimal routing policy problem, showing that in an STD network, 



routing policies are more effective than paths. Based on the concept of decreasing order of time, 

Chabini (2000) gives a dynamic programming algorithm, which is optimal in the sense that no 

algorithms with better time complexity exist. Miller-Hooks and Mahmassani (2000) develop a 

label-correcting algorithm, which Miller-Hooks (2001) compares with the dynamic programming 

algorithm (Chabini, 2000) computationally. Yang and Miller-Hooks (2004) extend the study to a 

signalized network.  

Pretolani (2000) uses a hyper-path formulation of the adaptive routing problem based on 

arrival times. Bander and White (2002) design a heuristic approach with a promising feature: it 

will terminate with an optimal solution if one exists, given that the heuristic function 

underestimates the true cost-to-go. Fan et al. (2005) maximize the probability of arriving on time 

with continuous probability density functions on link travel times. Later in Fan and Nie (2006), 

algorithmic issues are explored for the same problem. Nielson et al. (2003) study the bicriterion 

time-adaptive problem. 

In the case of partial online information, Opasanon and Miller-Hooks (2006) study the 

multicriterion adaptive routing problem with information on traversed link travel times in a 

statistically independent network. Later on Pretolani et al. (2009) distinguishes between time-

adaptive and history-adaptive routing in a multicriteron optimization context.  

Psaraftis and Tsitsiklis (1993) study networks where link costs evolve as Markov 

processes and travelers learn the current state of the Markovian chain at any time.  The network 

is assumed to be acyclic to enable the design of a polynomial-time algorithm.  Kim et al. (2005) 

study the problem in a general Markovian network with a wider information range. In Boyles 

(2006), conditional probabilities of adjacent link travel costs are utilized and travelers are 

assumed to remember only the travel time on the last link they traverse.  The objective function 

is a general piece-wise polynomial function of arrival time at the destination. 

Gao and Chabini (2002, 2006) study the problem in a general STD network with both 

time-wise and link-wise dependency with perfect online information. This research fills in the 

blank by a study of the optimal routing policy problem in the same general STD network with 

partial and no online information.  Note that a heuristic rather than an exact algorithm is 

designed. 



3. Problem Definition 

3.1. The Network 

 
Fig. 1. An illustrative small network 

Table 2. Support points for the small network (p1 = p2 = p3 = 1/3) 

Time Link C1 C2 C3 

0 
(a, b) 1 1 1 
(b, c) 2 2 1 
(a, c) 3 3 2 

1 
(a, b) 1 1 2 
(b, c) 1 2 1 
(a, c) 3 2 2 

 
Let G=(N,A,T, ˜ C ) denote an STD network. N is the set of nodes and A the set of links, with 

|N|=n and |A|=m. Assume there is at most one directional link from node j to k, denoted as (j,k). 

T is the set of time periods {0,1,…,K-1}. A support point is defined as a distinct value (vector of 

values) a discrete random variable (vector) can take. A probability mass function (PMF) of a 

random variable (vector) is a combination of support points and the associated probabilities. In 

this research, a symbol with a  over it is a random variable (vector), while the same symbol 

without the  is its support point. The travel time on each link (j,k) at each time t is a random 

variable ˜ C jk,t  with a finite number of discrete, positive and integral support points. The time 

period from 0 to K-1 is denoted as dynamic, while that beyond K-1 static. The peak hour period 

is generally modeled as dynamic, while off-peak as static when traffic is more stable. {C1,…,CR} 

is the universal set of support points for the joint probability distribution of all link travel times at 

all times, where Cr is a vector of time-dependent link travel times with a dimension of Km, 

r=1,2,…,R. C jk,t
r  is the travel time of link (j,k) at time t in the r-th support point, with probability 

pr, and pr

r1

R

 1. The travel time on a given link (j,k) at any time t>K-1 is equal to that at time 

K-1 for any support point: Cjk,t
r C jk,K1

r ,( j,k),t K 1,r . 

a

b

c



An example network is shown in Figure 1 and Table 2 with 3 nodes, 3 links and 2 time 

periods.  There are 3 support points, each with a probability of 1/3, for the joint distribution of 6 

travel time random variables (links (a, b), (b, c) and (a, c) over time periods 0 and 1). A support 

point can be viewed as a distinctive day. Travel times beyond time 1 are the same as those at 

time 1 in each of the 3 support points. 

The discrete distributions of link travel times are assumed for the convenience of defining 

routing policies (Section 3.4), which are based on realized travel times. Even if the underlying 

travel time distribution is continuous, in order to define a routing policy with finite number of 

states, one has to discretize the distribution.  The extension of routing policy definition to 

continuous travel time distribution is a challenging task and will be included in the future work.  

3.2. Online Information 

Let H be a trajectory of (node, time) pairs a traveler could experience in the network to the 

current node j and current time t: H={(j0,t0),…,(j,t)}, where j0 is the origin and t0 the departure 

time. Denote the information coverage over links and time periods as Q  A×T.  Information is 

represented as travel time realizations on time-dependent links of Q. No predictive information is 

assumed, i.e., Q cannot contain elements beyond the current time t.  It is assumed that there is no 

error in revealing the true travel times. An information scheme is defined as a mapping from 

trajectory H to information coverage Q, that is, information depends on traversed locations and 

times. Here are some examples of online information schemes with trajectory 

H={(j0,t0),…,(j,t)}: 

 Perfect online information: Q(H) = A×{0,1,…,t} (all links up to the current time t) 

 Delayed global information with time lag : Q(H) = A×{0,1,…,t-} (all links up to  

time units ago) 

 Global pre-trip information with departure time t0: Q(H) = A×{0,1,…,t0} (all links up to 

the departure time t0) 

 Radio information on BA with no time lag: Q(H) = B×{0,1,…,t} (a subset of links up to 

the current time t) 

 No online information: Q(H)= (no information on any link at any time) 



The example in Figure 1 and Table 2 is used to illustrate different information schemes. 

At time 0, a traveler with perfect online information knows the travel time realizations of 

{ 0,

~
abC , 0,

~
bcC , 0,

~
acC }: either {1,2,3} or {1,1,2}; a traveler with global information with 1 unit time 

lag (LAG1) does not know any travel time realization yet; a traveler with global pre-trip 

information with departure time 0 has the same knowledge as with perfect online information; a 

traveler with radio information on link (a, b) with no time lag knows the travel time realization 

of 0,

~
abC  that is 1; and a traveler with no online information simply does not know any travel time 

realization. At time 1, a traveler with perfect online information knows the travel time 

realizations of { ˜ C ab ,0 , ˜ C bc ,0 , ˜ C ac ,0 , ˜ C ab ,1, ˜ C bc ,1 , ˜ C ac ,1 }, which could be each of the 3 support points; 

a traveler with delayed information knows what happened at time 0 and gains the same 

information as with perfect online information at time 0; a traveler with pre-trip information does 

not gain any more information en route and thus his/her information remains unchanged; a 

traveler with radio information knows the travel time realization of { ˜ C ab ,0 , ˜ C ab ,1} that could be 

{1,1} or {1,2}; and a traveler with no online information still does not know any travel time 

realization. At time 2, only the traveler with delayed information will gain more useful 

information, as he/she now knows what happened in time 1. A traveler with perfect online, pre-

trip or radio information does not gain any more useful information, because the information 

he/she had at time 1 is enough for any time periods beyond 1 due to the static period assumption. 

A traveler with no online information does not gain any more information by definition.  Note 

that routing under no online information could still be adaptive to the arrival time at each 

decision node, which is random due to random travel times. 

3.3. Event Collection 

The concept of event collection is generalized from that in Gao and Chabini (2006) to the case of 

a general information scheme. Let QC
~

 be the vector of random travel times of time-dependent 

links in Q. For a given support point CQ, there exists one or more support points of the whole 

network that are expansions of CQ. In other words, for any possible revealed link travel times of 

Q, a set of support points of the network can be identified as compatible with the information. 

Such a set is defined as an event collection, EV.  It can be viewed as the conditional joint 

distribution of link travel times given realized link travel times in the coverage Q. With more 



information collected, information coverage Q grows and the size of EV decreases or remains 

unchanged. When EV becomes a singleton, a deterministic network (not necessarily static) is 

revealed to travelers. If a traveler has perfect online information, the network becomes 

deterministic no later than the start of static period K-1. If travelers have less than perfect online 

information, the network may remain stochastic beyond the dynamic period.   

All the possible event collections with information coverage Q, denoted as EV(Q), can be 

generated by performing a partition of {C1,…,CR} based on QC
~

. EV(Q)={EV1,EV2,…}, where 

Cjk,t
r  is invariant over rEVi, ((j,k),t)Q, i, and ((j,k),t)Q such thatCjk,t

r Cjk,t
r' , for rEVi, 

r’EVj, j  i. In other words, support points in an EV are undistinguishable in terms of revealed 

travel times of Q, but are distinctive from those in another EV. All the possible event collections 

for a given information scheme can be generated in preprocessing.  

The generation of event collection can be carried out in an increasing order of time, as the 

information is error-free and later information will not contradict earlier one. An example from 

Figure 1 and Table 2 is shown here for a traveler with up-to-date radio information on link (a,b). 

Since the information coverage in questions depends only on the current time t and not the whole 

trajectory, Q(H) is simplified as Q(t) and EV(Q) as EV(t). At time 0, information coverage 

Q(0)={(a,b)}×{0}. The travel time on link (a,b) at time 0 is 1 for all 3 support points, so the 

partition yields only one event collection and EV(0)={{C1,C2,C3}}. At time 1, information 

coverage Q(1)={(a,b)}×{0,1} where the incremental information is on {(a,b)}×{1}. The 

partition can be carried out on EV(0) based on travel time realizations of link (a,b) at time 1, 

which can be either 1 or 2. Therefore, EV(1)={{C1,C2},{C3}}. In the static period, no more 

useful information is available, so EV(t)={{C1,C2},{C3}}, for all t>1. The same logic can be 

applied to other information schemes. 

3.4. The Decision and the Optimal Routing Policy Problem 

It is assumed that travelers make decisions only at nodes. The decision is what node k to take 

next based on the state defined as a triplet {j, t, EV}, where j is the node, t is the time, and EV is 

the event collection.  

Definition 1. (Routing Policy) A routing policy  is a mapping from state to decision, for 

all possible states and all possible next nodes out of a given state,  :{j,t,EV}a k . 



A routing policy can be visualized as a contingence table with as many rows as the 

number of combinations of node, time and event collection, and for each combination, a next 

node is given. A path (e.g., as defined in Ahuja et al., 1993) is a purely topological concept and a 

special case of a routing policy, such that the same next node is given regardless of the time and 

event collection. The travel time by following a routing policy (sometimes terms routing policy 

travel time) from any origin and departure time to a destination is a random variable, with one 

realization in each support point.  The routing policy travel time then can be represented as a list 

of travel times in all support points with the associated probabilities.  The routing policy itself 

can also be viewed as a collection of paths with the associated probabilities.  

Definition 2. (Optimal routing policy problem) The optimal routing policy problem in an 

STD network is to find the routing policy that optimizes an objective function of routing policy 

travel times over all support points to a given destination, from a given origin and departure time.   

Note that an optimal routing policy is not necessarily ex post optimal for any given 

support point (day), but is optimal on average over all possible support points.  

The objective function could be, e.g., expected travel time, travel time variance, expected 

travel time schedule delay, or a combination of a number of criteria. The discussions in Section 4 

are not restricted to a particular objective functional form. It however does affect the algorithm 

design and as such only expected travel time is dealt with in Section 5. 

Let e(j,t) be the objective function (to be minimized) of following routing policy  from 

origin node j at departure time t to a given destination. The optimal objective function value 

e*(j,t)=min e(j,t).  

Given an information scheme, a partition of the universal support point set {C1,…,CR} at 

(j, t) provides the initial set of event collections EV(Q(j,t)). Note that generally the event 

collection will change during the trip with more information (one exception being pre-trip 

information), as described in Section 3.3.  If the objective function is additive over support 

points, e.g., in the case of expected travel time or expected schedule delay, an optimal routing 

policy for the initial universal set of support points is also optimal for any of the initial event 

collections. In this case, finding an optimal routing policy for the universal set of support points 

is equivalent to finding an optimal routing policy for each of the initial event collection, and as 

such Section 5 deals with optimal routing policies with regard to initial event collections.  

However this is not necessarily true for a non-additive objective function, e.g., variance, and in 



such cases, solving an optimal routing policy problem cannot be broken down to solving a 

number of similar problems with initial event collections. 

4. Theoretical Analysis of the Value of Information 

We compare the optimal routing outcomes under two information schemes 1 and 2 in the 

same network with different coverage.   

Assumption 1. (A1) For any trajectory H, information scheme 2 has a larger coverage Q2 

than that of information scheme 1, Q1, that is, Q1(H) Q2(H). 

Definition 3. (S1 contains S2). Let S1 and S2 be two partitions of S. S1 is said to contain S2 

if for any yS2, there exists zS1, such that yz. In other words, any element of S2 is a subset of 

one and only one element of S1, and any element of S1 is the union of one or more elements of S1. 

See Figure 2 for a schematic representation. 

 

S a b c d e f g h 
S1 a b c d e f g h 
S2 a b c d e f g h 

Fig. 2. A schematic view of S1 containing S2 

Lemma 1. With assumption A1, EV(Q1) contains EV(Q2) for any trajectory H.  

Proof. EV(Q1) and EV(Q2) are partitions of the set of support points {C1,…,CR}. For any 

EV2EV(Q2), travel times on time-dependent links of Q2 are invariant across support points in 

EV2. Since Q1Q2, travel times on time-dependent links of Q1 are also invariant across support 

points in EV2. Therefore there must exist EV1EV(Q1) such that EV2EV1.  Q.E.D. 

With Lemma 1, we can proceed to compare the optimal objective function values under 

two different information schemes.  Note that two travelers with different information schemes 

generally do not have the same starting information coverage and thus not the same initial set of 

event collections, even with the same origin and departure time. For example, assume the radio 

only reports travel times on the highway, while a pre-trip information source (e.g. a website) 

reports travel times on both the highway and arterial. There are two initial event collections 

under radio with the highway being normal or congested, and four initial event collections under 

pre-trip information, with the additional combination with the arterial being normal or congested.  



The comparison of the two information schemes is based on all the possible initial event 

collections under each scheme.  

Theorem 1. With assumption A1, the optimal objective function value under information 

scheme 2 is no worse than that under information scheme 1, for the same origin j0 and departure 

time t0.  

e2
* ( j0, t0 )  e1

* ( j0, t0 ), j0 N,t0 T. 

Proof. Given an optimal routing policy 1 under information scheme 1, an equivalent 

feasible routing policy 2 under information scheme 2 can be constructed as follows. At the 

original node j0 and departure time t0, partition the universal set of support points based on the 

two information schemes to obtain the initial event collection sets: EV(Q1(j0,t0)) and 

EV(Q2(j0,t0)). For any EV2EV(Q2(j0,t0)), according to Lemma 1 there must exists 

EV1EV(Q1(j0,t0)), such that EV2EV1. We can then set 2(j0,t0,EV2)=1(j0,t0,EV1). As 1 and 2 

give exactly the same next node under any support point, they produce the same trajectory under 

any support point at the next decision node. Let the arrival at the next node j occur at time t, then 

the information coverage Q1 is a subset of Q2 from the same trajectory {(j0, t0), (j, t)}. By Lemma 

1, EV(Q1) contains EV(Q2), therefore we can set 2(j0,t0,EV’2)=1(j0,t0,EV’1), EV’2EV(Q2), 

EV’2EV’1. The process continues and a routing policy 2 is constructed with exactly the same 

trajectory as 1 under any support point, and thus the same objective function value.  The 

optimal objective function value under scheme 2 is at least as good as that from the feasible 

solution 2 by definition, and thus at least as good as the optimal objective function value under 

scheme 1, namely, e2
* ( j0, t0 )  e 2

( j0, t0 )  e1
( j0, t0 )  e1

* ( j0, t0 ). Q.E.D. 

The intuition behind Theorem 1 is that with larger information coverage throughout the 

trip, one has more flexibility in every decision node based on a finer partition of the possible 

outcomes (support points).  For example, instead of having to choose a next node based on 

whether the highway is congested, now one can make the decision based on whether both the 

highway and arterial are congested. One can always ignore the additional information on arterial 

and act as if only information on the highway was available, and this ensures that optimal actions 

under larger information coverage is at least as good. 

Theorem 1 also applies when only a subset of the universal set of support points is used 

to evaluate routing policies.  The proof is the same with the universal set replaced by the subset.   



The theorem can be alternatively stated as follows: more error-free information is always 

better (or at least not worse) for adaptive routing in a flow-independent network.  It is consistent 

with Marschak and Miyasawa (1968)’s Theorem 11.3 regarding noiseless information systems: if 

two information systems are noiseless and one is finer than (in this report’s terminology, 

contained by) the other, then it is also more informative in the sense that “it can never have 

smaller value than the other for any payoff function defined on a given set of events”.   The 

decision problem in Marschak and Miyasawa (1968) is however single-staged, and Theorem 1 

extends the result to a multi-staged routing decision situation in a network context.  

5. Solutions to the Partial and No Online Information Cases 

Theorem 1 provides a theoretical comparison between two information schemes, however it is 

applicable only when one coverage is larger or no smaller in both spatial and temporal 

dimensions.  In reality an information scheme can have larger coverage in one dimension but 

smaller coverage in the other. In order to evaluate the value of traveler information empirically 

for more complicated situations, computer algorithms to solve the optimal routing policy 

problem with partial and no online information are needed.  

Since a routing policy has a random travel time, there exist multiple optimization criteria.  

The expected travel time is used in the remainder of the report, as generally it is the primary 

criterion in routing choices. Other criteria regarding travel reliability, such as expected schedule 

delay and travel time variance will be explored in future research, yet some criteria are harder to 

deal with then others. 

In this section, it is shown that Bellman’s principle of optimality does not hold for the 

three partial or no online information problems.  A heuristic algorithm is then designed and 

computationally evaluated.  

In all the studied problems, information coverage Q is determined by the current time, 

instead of the whole trajectory, therefore EV(t) is used instead of EV(Q). Time lag  in delayed 

information, departure time t0 in pre-trip information and radio coverage B in radio information 

are treated as exogenous system parameters. In pre-trip information with departure time t0, EV(t) 

= EV(t0),  t  t0. 

Except for delayed information, in all other four cases no more useful information is 

available during static period, i.e., Q does not grow beyond K–1, because either no information is 



provided (pre-trip and no online information), or additional information will not enlarge Q (radio 

and perfect online information). In the case of delayed information, a traveler continues 

receiving information in the static period until K-1+, at which time Q=A×T.  Let T* denote the 

time beyond which a traveler receives no more useful information and Q remains unchanged. We 

then have T*=K-1+ for delayed information, and T*=K-1 for all other four cases.  

5.1.  Bellman’s Principle of Optimality 

Proposition 1. Bellman’s principle of optimality does not hold for the delayed, pre-trip, 

radio or no online information case. In other words, if * is optimal for a given initial event 

collection EV0 at (j0,t0), and (j,t,EV) is an intermediate state during the execution of *, then the 

remainder of * is not necessarily optimal when EV is  an initial event collection at (j,t).   

Proof. This can be shown through an example in Figure 3 and Table 3.  Note that only 

relevant link travel times are shown.  The travel time on link (d, c) is always 0 and not listed. No 

online information is assumed, such that the routing decision only depends on the arrival time at 

each decision node, i.e, EV = {C1, C2} at any node and time.   The problem is to find an optimal 

routing policy from node a to c for departure time 0.   

 
Fig. 3. An illustrative small network 

Table 3. Support points for the small network (p1 = p2 = 1/2) 

Time Link C1 C2 
0 (a, b) 1 2 

1 
(b, c) 1 10 
(b, d) 3 3 

2 
(b, c) 10 1 
(b, d) 3 3 

 
Link (a, b) has two possible travel times at time 0: 1 and 2, therefore the arrival time at 

node b can be either 1 or 2.  As there are two alternatives to go from node b to c at each of the 

two possible arrival times, altogether there are four routing policies, listed in Table 4 along with 

the corresponding expected travel times.  

a b c

d



Table 4. Routing policies from node a at time 0 

 At node a At node b Expected 
travel time Arrival time 1 Arrival time 2 

Routing policy 1 Node b Node c Node c 2.5 
Routing policy 2 Node b Node c Node d 3.5 
Routing policy 3 Node b Node d Node c 3.5 
Routing policy 4 Node b Node d Node d 4.5 

 

The optimal routing policy from node a to c at departure time 0 is therefore a-b-c 

(actually a path).  However, the optimal routing policy from node b to c at either departure time 1 

or 2 is not the policy b-c with mean travel time 0.5(1+10), but b-d-c with mean travel time 3.   

The key here is the treatment of the possibly large travel time on link (b, c).  The travel 

time of 10 on link (b, c) can never be realized if the traveler leaves node a at time 0, due to the 

stochastic dependency between link (a, b) and (b, c).  However if b is the origin, then the travel 

time of 10 is possible and should be taken into account.  If link travel times are time-wise and 

link-wise independent, Bellman’s optimality principle will hold and the no online information 

problem reduces to the ones studied by Miller-Hooks and Mahmassani (2000), Chabini (2000) 

and Miller-Hooks (2001).  

Examples for the three partial online information cases can be constructed similarly. If j 

is an origin with EV, the calculation of expected travel time from j is not conditional on the past 

and thus includes all support points in EV. However, if j is an intermediate node, the calculation 

must be conditional on the traversed link travel times from the origin to the current node, which 

are not necessarily covered by the online information. Since link travel times are stochastically 

dependent, the conditional expected travel time might be different from the unconditional one. 

Examples can be constructed so that this discrepancy will lead to different optimal policies based 

on whether the node is an origin. Details of these examples are not presented due to space limit. 

Q.E.D.  

Bellman’s principle of optimality is valid for the perfect online information case (stated 

formally later by combining Propositions 2 and 3). Note that in this case the online information 

covers everything that happened in the past, including the traversed link travel times to any 

intermediate node. Therefore the expected travel time with perfect online information does not 

depend on whether the node is an origin.  



5.2. Necessary Conditions for Optimality 

Proposition 1 indicates that we cannot generate an optimal routing policy by compositing the 

optimal next node and the optimal policy from the next node.  We then present the necessary 

conditions for the optimal solutions in Proposition 2.  Any feasible solution to the optimal 

routing policy problem provides an upper bound on the minimal expected travel time, yet one 

that satisfies the necessary conditions for optimality conceivably provides a tighter upper bound 

than an arbitrary solution.  Therefore a heuristic algorithm is proposed to solve for the necessary 

conditions, and its effectiveness in terms of closeness to optimal solutions evaluated 

computationally.  The heuristic is a generalization of the algorithm for the perfect online 

information problem in Gao and Chabini (2006), with a distinction in the major recursive 

equation. 

Let e(j,t,EV) be the expected travel time to the destination node d by following routing 

policy , if the departure from origin node j happens at time t with the event collection EV. 

S(j,t,r) is the travel time to the destination node d if support point r is realized with a departure 

from node j (origin or intermediate) at time t by following routing policy . The relationship 

between e(j,t,EV) and S(j,t,r) is as follows: 





EVr

EVrrtjSEVtje )|Pr(),,(),,( 
                                    

(1) 

where Pr(A) is the probability of event A. Note that the algorithm in Gao and Chabini (2006) for 

perfect online information deals with e(j,t,EV) only, while S(j,t,r) is needed for partial and no 

online information cases to correctly calculate expected travel times.  

A routing policy is defined based on event collections, not support points, where an event 

collection includes a number of support points compatible with revealed information at the 

decision node and time. Conceivably an event collection is equivalent to a support point if the 

traveler is omnipotent and knows exactly what will happen in each day at the beginning of the 

day.  Generally this is impossible and one has to deal with a set of possible support points, 

although the set size will likely decrease over time during the trip.  For each support point (at the 

end of a day), a routing policy is manifested as a path with a deterministic travel time. For a 

given time t and support point r, there is one and only one corresponding event collection 

EV(t,r), since EV(t) is a partition of the universal set of support points. This ensures that the next 

node of routing policy µ at (j,t,r) can be uniquely retrieved as (j,t,EV(t,r)), and Sµ(j,t,r) can be 

obtained by executing µ in support point r. In the example of Figure 1 and Table 2, for a traveler 



with radio information on (a,b), the routing decision at node a and time 0 can only be made 

based on the event collection {C1,C2,C3}. Let µ{a,0,{C1,C2,C3}}=c. The travel time by following 

routing policy  starting from node a at time 0 is a random variable with possible different 

outcomes in different support points: Sµ(a,0,C1)=3, Sµ(a,0,C2)=3, and Sµ(a,0,C3)=2.  

The recursive relationship between Sµ at node j and the succeeding node k by following µ 

is critical to solving the optimal routing policy problem. Sµ(j,t,r) is defined for a trip leaving node 

j at time t. For all the information schemes except for pre-trip, the information coverage is not a 

function of departure time, and thus event collections at time t and node j are the same no matter 

whether j is an origin or intermediate node. In this case, 

S( j,t,r) Cjk,t
r  S(k,t Cjk,t

r ,r), where k=(j,t,EV(t,r)).             (2) 

With perfect online information, the travel time on the next link (j,k) at time t, C jk,t
r  is the 

same for all support points in a given EV (denoted as  jk ,t
EV ), and thus taking an expectation of 

both sides of (2) over EV gives the following: 

  

e( j,t,EV)  S( j,t,r)Pr(r | EV)
rEV



  jk,t
EV  S (k,t   jk,t

EV ,r) 
rEV

 Pr(r | EV)

  jk,t
EV  S (k,t   jk,t

EV ,r)Pr(r | EV ')Pr(EV ' | EV)
rEV '


EV 'EV (t jk,t

EV )



 jk,t
EV  e (k,t   jk,t

EV ,EV ')Pr(EV ' | EV)
EV 'EV (t jk,t

EV )



   (3) 

where k=(j,t,EV). In the third equality, support points at a later time t   jk,t
EV

 is re-partitioned 

into finer event collections EV’. In the fourth equality, support point travel times in each EV’ are 

summarized as the expected travel time.  

Such a relationship between expected travel times at adjacent nodes generally does not 

exist for partial or no online information, since the derivation in (3) depends on the fact that the 

travel time on the next link given the current EV is fixed. 

For the pre-trip information, the information coverage depends on the departure time, and 

thus there is an ambiguity as to which event collection r belongs to at a given time t.  A different 

variable Sµ(j,t,r;t0) can be defined as the travel time from node j and time t to the destination 

node if support point r is realized by following routing policy , with a departure time t0.  

Similarly eµ(j,t,EV;t0) and µ(j,t,EV;t0) can be defined. In this case, 



S( j,t,r;t0) C jk,t
r  S (k,t C jk,t

r ,r;t0)
 
where k=(j,t,EV(t,r);t0);  

e ( j,t,EV;t0)  S ( j,t,r;t0)Pr(r | EV )
rEV



 

We propose the following system of recursive equations to solve for the perfect online, 

delayed, radio and no online information problems based on the recursive equation in (2). 

e*( j, t,EV )  min
kA( j )

 (C jk,t
r  S*(k, t C jk,t

r ,r))Pr(r | EV )
rEV








             

 

(4) 

*( j,t,EV )  arg min
kA( j )

 (C jk,t
r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV








       

(5) 

jN\{d}, t, EVEV(t) 

where A(j) the set of downstream nodes out of node j.  The boundary conditions are:  

a) At the destination: Sµ*(d,t,r)=0, µ*(d,t,EV)=d, t, EVEV(t), rEV. 

b) Beyond T*: *(j,t≥T*,EV)=*(j,T*,EV), j, EVEV(T*), T*=K-1+ for delayed 

information, and T*= K–1 for other three cases (radio, perfect and no online information). 

Note that, S*( j,t,r) C jk*,t
r  S*(k*,t C jk*,t

r ,r) , where k*=*(j,t,EV(j,t)). Sµ*(d,t,r) is 

the travel time of the solution routing policy * in support point r, not the minimum travel time 

calculated using a deterministic shortest path algorithm in support point r. Sµ*(d,t,r) is obtained 

by executing * after * is generated.  

For the pre-trip problem, a similar system of equations can be solved to obtain a solution 

from all nodes and all possible event collections, but with departure time t0  only.   

Proposition 2. Conditions (4) and (5) are necessary for * to be an optimal routing 

policy for all possible initial states for the perfect online, delayed, radio and no online 

information problems.  

Proof. Trivially, if the boundary conditions at the destination node are not satisfied, * is 

not optimal. 

At time period T* and beyond, information coverage includes all links at all time periods.  

Therefore there are R event collections, each with one support point.  The optimal routing policy 

beyond T* is not a function of time t, as travel times and event collections do not change over 

time. *(j,t≥T*,EV)=*(j,T*,EV), j, EVEV(T*).  Conditions (4) and (5) become 

e*( j,T*,{r})  min
kA( j )

 {C jk,T *
r  e*(k,T*,{r})}

                          
(6) 



*( j,T*,{r}) arg min
kA( j )

 {C jk,T*
r  e*(k,T*,{r})}                      (7) 

jN\{d}, r 

plus boundary conditions. These are the optimality conditions of a static shortest path problem in 

a deterministic network where link travel times are C jk,T *
r , (j,k).  If * is optimal, it must 

manifest as a shortest path in each deterministic network defined by a support point beyond T*, 

and thus (6) and (7) must be satisfied.  

Assume by contradiction that (4) and (5) are not satisfied for some state with a departure 

time earlier than T*. Let (j,t,EV) be such a state. Therefore there must exist an outgoing node 

kA(j), such that 

(C jk ,t
r  S* (k, t  C jk ,t

r ,r))Pr( r | EV )
rEV

  (C jk*, t
r  S* (k*, t  C jk*, t

r ,r)) Pr( r | EV )
rEV

 A different 

routing policy  can be constructed such that (j,t,EV)=k, and =* for all other states. Then the 

following is obtained: 

e ( j,t,EV )  S ( j,t,r)Pr(r | EV )
rEV

  (C jk,t
r  S (k,t C jk,t

r ,r))Pr(r | EV )
rEV



 (C jk,t
r  S*(k,t C jk,t

r ,r))Pr(r | EV )
rEV



 (C jk*,t
r  S*(k*,t C jk*,t

r ,r))Pr(r | EV )
rEV

  e*( j,t,EV )

 The third equality is due to the fact that  and * are the same at all times later than t.  

The equation contradicts with the fact that * is optimal, therefore (4) and (5) must be satisfied 

for t < T*.  Q.E.D. 

Proposition 3. Conditions (4) and (5) are sufficient for * to be an optimal routing policy 

for all possible initial states in the perfect online information problem, and equivalent to the 

optimality conditions in Gao and Chabini (2006). 

Proof. With perfect online information, C jk ,t
r  is the same for all support points in a given 

EV, and thus taking expectations of both sides of (4) over EV and changing (5) accordingly gives 

the optimality conditions in Gao and Chabini (2006), similar to the derivation in (3). The 

sufficiency of (4)(5) then follows from the optimality of the conditions in Gao and Chabini 

(2006). 



5.3. Algorithm DOT-PART 

In this section we design a heuristic algorithm to solve the system of equations (4)(5). The 

evaluation of e*(j,t,EV) only depends on Sµ*(j,t’,r) from a later time t’>t, due to the positive and 

integral link travel time assumption.  Therefore the labels can be set in a decreasing order of 

time, making use of the acyclic property of the network along the time dimension (Chabini, 

1998). At time T* and beyond, any deterministic static shortest path algorithm can be used to 

compute e*(j,t,EV), jN, tT*, EVEV(T*). The procedure to generate event collections 

carry out partitions of the universal set of support points in an increasing order of time.  At time 

t, a partition is made on EV(t-1) based on each (link, time) pair in the incremental information 

coverage, Q(t)\Q(t-1). Note that Q is written as a function of t, because in all the five cases, Q 

only depends on t, not the trajectory. 

 

Generate_Event_Collection 
D = {C1, …,CR} 
If information scheme = no online, EV(t)  D, t = 0 to K-1, STOP. 
For t = 0 to T* 

If information scheme = perfect online, Q(t) = A × {0,1,…,t } 
If information scheme = delayed, Q(t) = A × {0,1,…,t - } 
If information scheme = pre-trip, Q(t) = A × {0} 
If information scheme = radio, Q(t)  = B × {0,1,…,t} 

Q(-1) =  //a proxy for convenience of representation 
For t = 0 to T* 

For each (link, time) pair ((j,k),t’)  Q(t) \ Q(t-1) 
For each disjoint subset SD 

D’  A partition of S based on ˜ C jk,t '  
D  Union of all D’ 

EV(t)  D; 
Algorithm DOT-PART 

(Generic for perfect online, delayed, pre-trip, radio and no online information) 
Initialization 
Step 1: 
If information scheme = delayed, T* = K – 1 + ; else T* = K – 1. 
Construct EV(t), t=0,…,T* by calling Generate_Event_Collection. 
Step 2: 
Compute eµ*(j,T*,EV) and µ*(j,T*,EV), jN, EVEV(T*) with a static deterministic shortest 
path algorithm in a converted static deterministic network where link travel times are replaced by 
their means at time T*. 
Compute Sµ*(j,T*,r) by executing µ* in the original static stochastic network, jN, rEV; set 
Sµ*(j,t>T*,r)=Sµ*(j,T*,r)  



Step 3: 
e* (j, t, EV)  +, jN\{d}, t<T*, EVEV(t)  
e* (d, t, EV)  0, S* (d, t, r)  0, t<T*, EVEV(t), rEV 
 
Main Loop 
For t = T*-1 down to 0 and for each EVEV(t) 

For each link (j, k)A 
temp  (C jk,t

r  S*(k, t  C jk,t
r ,r))Pr(r | EV )

rEV


 

If  temp < e*(j, t, EV) then 
e*(j, t, EV) = temp 
*(j, t, EV) = k 

For each rEV and each jN 
k* = µ*(j, t, EV) 
S*( j,t,r) Cjk*,t

r  S*(k*,t Cjk*,t
r ,r)

 
 

According to Propositions 2 and 3, Algorithm DOT-PART is exact for the perfect online 

information case. It generates approximate solutions with all initial states for delayed, radio and 

no online information, and with departure time 0 for pre-trip information. In order to solve pre-

trip case with all departure times, a loop over all departure times t0 has to be added outside the 

main loop, and the main loop will be executed from T*-1 to t0 (not shown in the algorithm 

statement). 

Following a similar analysis as in Gao and Chabini (2006), Algorithm DOT-PART 

(including Generate_Event_Collection) has a time complexity of O(mKRlnR+R×SSP) except for 

pre-trip information and O(mK2RlnR+R×SSP) for pre-trip information, where SSP is the time 

complexity of the static deterministic shortest path algorithm. The algorithm is strongly 

polynomial in R, the number of support points. For real life applications, time-dependent travel 

time observations on all (random) links from each day can be viewed as one support point. Such 

data are available with the advent of advanced sensor and surveillance technologies, such as GPS 

and probe vehicles. The number of support points might seem exponential in the number of links, 

however, if we consider the high stochastic dependencies among link travel times and use 

observations from each day as a support point, we can safely have several years’ data with the 

number of support points in the thousands, similar to the number of links in a medium-sized 

network and much less than its exponential. Running time tests are conducted with randomly 

generated networks that confirm the complexity analysis.  The reader is referred to Gao and 

Huang (2009) for a detailed account of the running time test results.   



5.4. Computational Tests 

The objectives of the computational tests are to 1) systematically investigate the effectiveness of 

the heuristic, Algorithm DOT-PART in generating optimal solutions to the partial and no online 

information problems; and 2) study the (approximate) value of information empirically as a 

complement to the theoretical study in Section 4.  

Algorithm DOT-PART provides upper bounds of the minimal expected travel times in 

partial and no online information cases since it generates (conceivably good) feasible solutions. 

The upper bound however can be arbitrarily loose by constructing an example similar to that in 

Proposition 1.  We are more interested in its effectiveness on average through a systematic test 

over a large number of instances.  We do not have an exact solution algorithm to the partial or no 

online information cases.  However, Theorem 1 states that the optimal solution under perfect 

online information scheme is at least as good as the optimal solution under any partial or no 

online information scheme, since the former coverage is larger with any given trajectory.  

Therefore the optimal solution with perfect online information, which can be computed exactly 

by Algorithm DOT-PART, provides a lower bound of the optimal solution with any partial or no 

online information.  The error of the heuristic, which is difference between the unknown exact 

solution to a partial or no online information case and the heuristic solution, is then bounded 

above by the difference between the perfect online information solution and the heuristic 

solution.  Furthermore, we can also view the same difference as an upper bound on the value of 

perfect information compared to partial or no online information.  A schematic view of these 

relationships for any given partial or no online information case is shown in Figure 4. 
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Fig. 4. Relationships between heuristic and exact solutions 

The first test network is shown in Fig. 5 with 6 nodes and 8 directed links. There are 

diversion possibilities at nodes O, 1 and 2. The study period is from 6:30am to 8:00am. The time 

resolution is 1 minute for departures and arrivals at intermediate nodes, and there are 90 time 

periods in total. The travel time is in seconds. 

 
Fig. 5. The test network 

The link travel time distribution is generated through an exogenous simulation with the 

mesoscopic supply simulator of DynaMIT (Ben-Akiva et al., 2001). The demand between the 

origin and destination is low from 6:30am to 7:00am and higher later on. There are random 

incidents in the network that result in 37 support points.  Details of the network can be found in 

Gao (2005). 

Algorithm DOT-PART is run for the three partial online, no online and perfect online 

information cases to derive the (upper bounds of) minimum expected travel times for each of 

them from node O to D for all departure times and all event collections. The results are 

aggregated by departure time, by taking expectations over all event collections at a given time. 

 

Fig. 6. Results for the 15-min delayed (LAG15) vs. perfect (POI) and no online information (NOI) 
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Fig. 7. Results for delayed information with 5 (LAG5), 10 (LAG10) and 15-min time lags 

 

Fig. 8. Results for pre-trip (PRE) vs. perfect and no online information 

 

Fig. 9. Results for radio on link 4 vs. perfect and no online information 



 

Fig. 10. Results for radio information with different radio coverage 

Figures 6 through 10 show the expected OD travel times for the no online, 5-min delay, 

10-min delay, 15-min delay, pre-trip, radio on link 4 and radio on links 4&5 cases. RADIO4 

indicates that only traffic condition information on link 4 is available and RADIO45 on links 4 

and 5.  It is shown that the upper bounds generated by Algorithm DOT-PART are relatively 

tight: within 3% of the (unknown) exact solution.  Also shown is that in the specific settings, 

global pre-trip information is nearly as good as perfect online information. Another interesting 

observation is that although the solutions to partial and no online information are not exact, they 

do exhibit the trend that “more error-free information is better in a flow-independent network”.  

For example, the expected travel times with delayed information decreases when the delay 

decreases from 15 to 10 and from 10 to 5 minutes; and those with radio covering both links 4 and 

5 are better than with radio covering only link 4.  However this should not be viewed as a 

verification of Theorem 1.  

Additional tests are conducted on larger randomly generated networks to investigate the 

effectiveness of the heuristics. The random network generator takes the following as input: 1) the 

number of nodes; 2) the number of links; and 3) the number of time periods. Four levels of the 

number of nodes are considered: 50, 100, 250, and 500. The number of links is always three 

times of the number of nodes, i.e., 150, 300, 750, and 1500. Three levels of the duration of the 

peak period are considered: 25, 50, and 100 time intervals. Other parameters include the number 

of support points fixed as 300, the range of link travel time fixed as [0, 10], and the maximum in-

degree and out-degree fixed as 5. The topology of the network is randomly generated. The travel 

time on each link at each time interval for each support point is generated from a uniform 



distribution within the fixed range. More details on the random network generation can be found 

in Gao (2005). 

Table 5. Upper bounds of heuristic errors (% difference from perfect online information) 

Nodes Links 
Time 

Periods (K) 
No 

Online 
Pre-
trip 

Delayed by 
0.5K 

Delayed by 
0.25K 

Radio on 
link 1 

50 150 25 40.3 0 14.9 6.1 2.2 
50 150 50 26.6 0 11.2 4.2 0.5 
50 150 100 22.3 0 10.5 4.9 0.3 

100 300 25 13.8 0 5.3 2.3 0.9 
100 300 50 24.4 0 10.5 4.1 0.6 
100 300 100 26.0 0 12.8 6.1 0.4 
250 750 25 31.4 0 12.0 5.1 1.8 
250 750 50 33.9 0 14.3 5.6 0.8 
250 750 100 27.0 0 12.4 5.6 0.3 
500 1500 25 21.6 0 6.5 2.3 0.8 
500 1500 50 26.5 0 11.4 4.5 0.7 
500 1500 100 28.8 0 13.3 6.0 0.3 

  Average 26.9 0 11.2 4.7 0.8 
 

There are 12 different combinations of inputs, and 10 random networks are generated for 

each combination. Table 5 shows the upper bounds of heuristic errors, defined as the percentage 

difference of partial or no online information result from that of perfect online information. The 

errors are averaged over all departure times (except for pre-trip where only departure time 0 

results are reported) and all origins to a single destination for each network, and then averaged 

over the 10 networks. The radio information covers only one link, randomly sampled 10 times 

for each of the 10 random networks. Thus in the radio column, the errors are averages over 100 

runs. 

Algorithm DOT-PART as a heuristic performs better than predicted by the theoretical 

worst case (arbitrarily large errors), with errors within 15% for partial online cases and 30% for 

most no online information. Note that these are upper bounds of errors, and the heuristic might 

perform better than these bounds. Future research is needed to design an exact algorithm and a 

more comprehensive evaluation of the effectiveness of the heuristic can then be carried out.  It 

will also be interesting to investigate the effectiveness of the heuristic with real-world data, 

which is an important step towards its practical application.  

We also see the same trend that “more error-free information is better in a flow-

independent network”. For example, information delayed for 0.25K unit time produces smaller 



expected travel time than information delayed for 0.5K unit time, which in turn is smaller than no 

online information.  Pre-trip information is as good as perfect online information in all test 

scenarios, and radio information is almost as good. On the other hand, delayed information 

seems to perform not as well.  This might suggest that up-to-date information is more valuable 

than information that covers a large area.  However, again, since the solutions are not exact, 

these observations should be viewed with caution.   

6. Conclusions and Future Directions 

In this research a generic representation of online information in a general stochastic network is 

developed, based on which three types of information schemes are specialized: delayed global 

information, global pre-trip information, and radio information on a subset of links without time 

lag. The scope limitations of an information system on both the temporal and spatial dimensions 

are taken into account.  A theoretical proof of the non-negative value of error-free traveler 

information for adaptive routing in a flow-independent stochastic network is presented.  It is 

shown that Bellman’s principle of optimality does not apply to the optimal routing policy 

problem with partial or no online information.  A heuristic algorithm is then designed based on a 

set of necessary conditions for optimality and its effectiveness is tested empirically and shown to 

be satisfactory.  

Other interesting information schemes will be studied in the future, e.g., VMS, which is 

one of the most common types of ATIS.  The problem with VMS is more involved than those 

discussed in this report, as the information is trajectory-based rather time-based only. This could 

significantly complicate the algorithm design. The noise level of the information will also be 

considered, such that the information is no longer error-free.  Theoretical studies will be 

conducted to establish the conditions (if existing) under which noisy information systems are 

comparable. 

Predictive information (Bovy and van der Zijpp, 1999; Bottom, 2000; and Dong et al., 

2006) that provides estimates of future travel times is not explicitly studied under the online 

information framework in this research. Mathematically one can easily build an information 

scheme where the coverage Q(t) contains realized travel times beyond t, and all the analyses and 

algorithm in this research apply.  The more fundamental question is whether an analysis 

framework built upon error-free information assumption is good for predictive information. 



Although the error in measuring realized travel times can be reasonably assumed approaching 

zero with the ever-increasing accuracy of traffic surveillance, the same cannot be said for 

predictive information. Therefore the effort to model predictive information should be joined 

with that on noisy information as mentioned in the previous paragraph. 

As mentioned in the introduction, the interaction between demand and supply needs to be 

considered to assess the value of real-time information with a large market penetration of 

information.  In a congested un-priced network, information could be detrimental, as shown in 

Gao (2005) and many other studies (e.g., Arnott et al., 1991, 1999, Levinson, 2003). The next 

step of the research would be studies of the value of various types of information systems in a 

congested network.   An equilibrium dynamic traffic assignment model or a day-to-day dynamic 

process model is to be applied.   

Another interesting direction would be a theoretical quantification of the value of traveler 

information as a function of an array of information system and network characteristics.  This 

would enable the cross comparison of different types of information systems.  For example, is 

up-to-date spatially-limited information better than delayed global information? Answers to this 

type of questions can be obtained computationally as shown in Section 6, however a theoretical 

solution would provide valuable insights and guidelines for, e.g., optimal investment in ATIS. 
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