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INTRODUCTION 

In September 2005, the state of Minnesota instituted a 2% biodiesel mandate. Shortly after 

starting, widespread cold flow problems required two moratoriums. The failures were 

ultimately attributed to one producer with quality control problems. However, some of the 

problems could not be explained by poor fuel quality. In these cases, the vehicle fuel filters 

were plugged even though the fuel used met all specifications. Plant based sterol glucosides 

(SG) were found in these residues. These discussions were conducted in closed sessions, so 

documentation is limited. 

In the fall of 2009, eastern and central Oregon also experienced problems with cold flow 

properties with fuel that met all specifications. This occurred shortly after instituting a 2% 

biodiesel mandate. Prior to the biodiesel mandate, problems were reported with the 

incremental transition to an ultra low sulfur (15ppm) diesel fuel standard requiring full 

implementation in 2010. The time of the failures coincided with an abnormally rapid 

temperature drop. 

Multiple contaminants have been identified in blocked filters in otherwise high quality fuel. 

Currently, the only reliable method to prevent cold flow problems is to winterize the fuel. In 

this process, the fuel is cooled and sufficient time is allowed for crystallization events to 

occur. Then, the fuel is filtered to remove any non-liquid materials in the fuel. This is 

expensive, time consuming, requires specialized infrastructure, and high energy input for fuel 

production. During the course of this research project, a new American Society for Testing 

and Materials (ASTM) procedure similar to the winterization process was added to detect if 

any cold-precipitated residues will block a filter. 

The biodiesel industry assumes that SG present in neat biodiesel is the source of the problem. 

Sterol glucosides may act as seed crystals or agglomeration centers where contaminants can 

accumulate. Dr. Robert Moreau’s team at the United States Department of Agriculture 

(USDA) has identified sitosteryl-glucoside and campesteryl-glucoside in neat bulk biodiesel 

tanks and filter residues.1 
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Most occurrences of filter failure are difficult to trace back to the fuel source, oil processor, 

or oilseed crop. Acylated steryl glucosides (ASG) as shown in Figure 1 are present in plants 

and vegetable oils. The industry assumes that ASG are cleaved and esterified under 

anhydrous conditions during biodiesel production, forming SG like those shown in Figure 2. 

The hexane solvent extraction system is optimized to obtain maximum levels of triglycerides 

from oil feedstocks. The extraction efficiency of SG or ASG may change due to process or 

agronomic conditions, and this might be a way to control the level of SG in the oil and 

ultimately in the biodiesel.  

The actual level of ASG and SG present in oilseeds is not known for most oilseeds. The 

majority of studies report the total phytosterol content of oilseeds. There are limited 

analytical techniques for the evaluation of SG and ASG.2,3  In literature, the data available for 

phytosterol compounds has been obtained by extraction, multistep workup and derivatization, 

and evaluation with gas chromatography mass spectrometry (GC-MS). 

The University of Idaho (U of I) research team has developed an analytical method for the 

evaluation of SG. The goal of the project was to determine the levels of ASG and SG in 

agronomically significant oilseeds of the Pacific Northwest (PNW). With this information the 

industry can make more informed decisions about how to minimize low temperature 

problems when using biodiesel in the PNW. 

 

 

 

 

 

Figure 1: Acylated β-sitosteryl glucoside (palmitic) C51H90O7. 
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Figure 2: β-sitosteryl glucoside C35H60O6. 

 

Acylated sterol glucosides naturally occur in plant tissues. Acylation is typically assumed to 

occur at the 6th position of the glucose (see Figure 1). However, South Korean researchers 

have demonstrated that in tree extracts, the 4th position was acylated.4 1H NMR and 13C NMR 

will likely be required to positively identify the structures. For a pure analyte, a sweet of 

nuclear magnetic resonance (NMR) spectroscopy techniques can show the intermolecular 

relationship between protons and carbons, providing structural elucidation. This requires the 

isolation of purified analytes. This was beyond the scope of this initial research project. It’s 

important to note that the MS data presented in this paper does not distinguish stereo centers. 

There are multiple stereo centers present in the three SG identified. 

Glycolipids are natural products with carbohydrate and lipid moieties. SG and ASG fall into 

the class of glycolipids. Yamauchi evaluated glycolipids in red bell peppers using a technique 

called high performance liquid chromatography atmospheric pressure chemical ionization 

mass spectrometry (HPLC-APCI-MS).5 The glycolipids fraction of the extract underwent 

further separation with the HPLC prior to analysis with MS. Prior to MS the analytes of 

interest must be ionized. HPLC-MS instruments are commonly fitted with an Electrospray 

ionization (ESI) source. APCI is an alternative ionization method that for SG achieves higher 

ionization efficiency. Yamauchi showed that a distribution of fatty acids were found in ASG 

fatty acid moieties including palmitic 16:0, stearic 18:0, linoleic 18:2, α-linolenic 18:3. 

Additionally, the two ASG sterol moieties: campesterol and β-sitosterol were also identified.6  

In Figure 1, the fatty acid moiety depicted is palmitic acid.  
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VEGETABLE OIL PRODUCTION IN NORTH AMERICA 

The following oils are produced in significant quantities in North America: Soya, Argentine 

canola, Polish canola, sunflower, safflower, flax, almond, walnut, peanut, cotton seed, 

mustard, camelina, grape seed, meadowfoam, rapeseed, palm (Mexico), and Jatropha 

(preproduction Mexico). However, vegetable oil production in North America is dominated 

by soya oil and canola oil.  

In the Midwest, soya is typically grown in rotation with corn. Soybeans are a legume 

(nitrogen fixer). This organic nitrogen is bioavailable for the following crop, reducing the 

requirement for inorganic nitrogen-based fertilizers. Soybean meal and its protein 

concentrates are used for animal feed. The meal is heated during oil extraction and toasted 

after being defatted. This is done to denature and inactivate a group of mainly proteins that 

act as trypsin inhibitors. In particular these inhibitors reduce weight gains in swine and 

poultry.7 To make high protein concentrates, residual oligosaccharides are removed from 

defatted soya meal flours by an aqueous ethanol wash or acidified water.8 These trypsin 

inhibitors are only present in soya and this is a major advantage of canola meal.  

The majority of vegetable oil produced in the United States and Canada is processed via seed 

extraction, chemical refining, bleaching, deodorization, and filtration. This process starts 

when cleaned seed is run through a two-step mechanical extrusion press, flaked, and then the 

macerated seed tissue is subsequently solvent-extracted with food grade hexane. The hexane 

is recovered from this extract and reused.  

The raw triglyceride oil is then refined. This may consist of two steps. The oil can be 

degummed by reacting with concentrated phosphoric acid and centrifuged to remove the 

precipitated gums. This degumming step strips the oil of phospholipids, solid particulates, 

and heavy metals that may be present in the oil. A lecithin product may be produced out of 

these phospholipids. The second refining step is neutralization. The oil is washed with 

caustic soda (NaOH); this base reacts with any free fatty acids in the oil producing soap 

stock. The soap stock is of low value and typically ends up in animal feed for disposal. 
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After refining, the heated oil is run through bleaching clays. The loading, exact composition, 

activity, temperature, and exposure time of this step affects the final color of the oil; although 

these effects are not visible until after deodorization. This step removes any other 

components that are not soluble in the oil.  

The oil is then run though deodorization columns. These large vacuum columns fractionate 

the oil and remove volatile compounds from the oil. Superheated steam is injected into the 

column to facilitate stripping of free fatty acids and pesticides during deodorizing. The hot 

oil finally runs through fine filtration and is distributed to the subsequent user. 

Depending on government incentives, significant quantities of canola/rapeseed and soya are 

converted into biodiesel at plants in North America. These plants may be situated at existing 

oil crushing/refining infrastructure or at destination locations. Some biodiesel producers 

crush some of their own vegetable oil and purchase the remainder. These two are typically 

run as independent businesses. This industry has grown to satisfy consumer and 

governmental incentives based on demand for green alternative biofuels.  

Biodiesel (fatty acid methyl ester-FAME) production is a relatively simple chemical process. 

Triglycerides (vegetable oils/animal fats) are reacted with strong alkoxide base in a methanol 

solvent, forming methyl esters and glycerin. Water has to be eliminated from the system to 

prevent solvent leveling. If water is present in the system, the reaction is limited by solvent 

leveling to the aqueous pH system where the strongest basic ion formed is the OH- species. 

This causes the reaction to proceed poorly and excessive soap formation occurs. In 

nonaqueous solvent systems lacking water significantly stronger acid and basic species are 

generated. When methanol is used as a solvent stronger basic species are generated CH3O
- 

due to the deprotonation of methanol in anhydrous sodium alkoxide. The reaction normally 

proceeds via a SN2 (backside attack) reaction mechanism. Commonly, in commercial 

systems, the reagents are heated to just below the boiling point of methanol with the goal of 

reducing the reaction time. 
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IDENTIFICATION OF SG IN INDUSTRIAL BIODIESEL FACILITY 

 
Figure 3: Crude residue that shut down Inland Empire Oilseeds, LLC. 

 
Our research team has worked with a local biodiesel producer, Inland Empire Oilseeds, LLC, 

and purified a residue that built up throughout their biodiesel plant. This crude residue is 

shown in Figure 3. This problematic residue resulted in the shutdown of the plant for over 

two weeks, and caused significant difficulty in restarting the plant. A railcar of refined and 

bleached (RB) canola oil was being processed. This oil was not deodorized. At the time of 

offloading the oil, a slight increase over normal turbidity was observed. Shortly after reacting 

the oil through the standard base catalyzed process, problems occurred. The residue built up 

systemically, depositing in piping, tanks, and the ion exchange resin towers. Our team was 

contacted shortly after this problem occurred. The crude and purified residues have been 

evaluated using a variety of analytical techniques. The target natural products have been 

identified in these residues.  

 

Residue

Sludge Responsible 
for closing a 

Biodiesel Plant for 
2‐3 weeks.
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Figure 4: Purified white powder from the problematic residue at the Inland Empire 
biodiesel plant. 

 

The Purified White Powered Residue 

 
The crude SG based residue from the Inland Empire biodiesel plant was purified for use as a 

standard. The following process was used. The residue was slurried with freshly distilled hot 

THF. Magnetic particles were removed with a Teflon stir bar, as this slurry was vacuum 

filtered through a glass frit. The crude product was rapidly precipitated out of solution with 

temperature reduction as the solvent was rapidly vaporized through a glass frit and the vapors 

removed by vacuum. The collected precipitate was subsequently washed twice with aliquots 

of fresh THF, centrifuged and the supernatant was pipetted off with yellow color bodies. 

Then, it was washed twice with aliquots of anhydrous ethanol, centrifuged and the 

supernatant was pipetted off. Finally, it was vacuum dried at 50mbar and 40ºC for over 12 

hours. After determining the high purity of product, the process was repeated with a large 

quantity of residue for use as standards for the remainder of the analytical work. The purity 

of these standards were validated with MS and NMR techniques. The NMR techniques used 

are beyond the scope of this report but will be included in the author’s thesis.  
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ANALYTICAL WORK UP OF RESIDUE 

Soft ionization techniques allow the identification of large molecular weight compounds like 

the natural products of interest ASG and SG. Soft ionization methods, like APCI and 

MALDI, produce high populations of unfragmented parent ions or adducts as opposed to 

hard ionization techniques which produce spectra dominated by fragments. With a sufficient 

population of a parent ion or adduct, the species can be further evaluated with Mass 

Spec/Mass Spec (MS/MS). Using a collision cell where parent ions are subjected to a high 

voltage producing fragments, those fragments can be evaluated with MS/MS. In MS/MS, the 

controlled generation of multiple daughter ions from these parent species allows for 

fingerprinting and determination of chemical substituents. Because it breaks molecules into 

fragments, mass spectrometry with hard ionization techniques is limited to spectra dominated 

by fragmentation patterns. For example, with phytosterols, a characteristic fragment can be 

related to a specific steroid moiety. However, with only the MS from only one characteristic 

fragment, it is difficult to discriminate sterol ester (SE), sterol glucoside (SG), acylated sterol 

glucoside (ASG), steryl ferulate (SF), and free sterols (FS) from the MS alone. Gas 

chromatography mass-spectrometry (GC-MS) methods for analyzing these compounds rely 

on complicated workup methods to isolate individual phytosterol compounds so each class of 

compounds requires its own sequential analysis.  

In any sample workup, there are losses and efficiencies. If an analyte of interest can be 

ionized, it can be directly analyzed with a soft ionization technique. If analytes are ionized, 

they can be discriminated by their parent ions/sodium adducts and further evaluated using 

MS/MS to provide a high certainty of identification. An additional technique the author has 

used is comparison of predicted isotopic abundance patterns to the observed patterns. For the 

characteristic SG sodium adducts observed with MALDI-TOF-MS isotopic abundance peaks 

were observed. A noise peak or contamination peak does not show the same isotopic 

abundance pattern and this allows for rapid screening. 
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Figure 5: Visual depiction of MALDI ionization source in positive mode analyzing for 

anions, using the thin film technique. 

 
The soft ionization used for this research was achieved with a technique called matrix 

assisted laser desorption ionization time MALDI. Figure 5 depicts a visualization of this 

ionization process. Deposited on a stainless steel target plate, crystallized matrix and sample 

is positively charged with respect to the stainless steel ion guide plate. Under 5x10-2 mbar 

absolute vacuum conditions, a laser is fired on the crystallized matrix material in direct 

contact with the sample. As the matrix is ionized, some of the analytes and sample are also 

ionized. Then, the ionized species are pulled by pressure variations and a driving voltage into 

the ion optics of the instrument. This pressure drop is on the order of 5x10-2 mbar in the 

ionization chamber eventually dropping to 6x10 -7 mbar in the time of flight (TOF) detector. 

The mass separation and detection is conducted in the MS region of the instrument. Only the 

ionized species can be directed by the magnetic optics of the instrument. A TOF detector has 

very high mass resolution; however, it is prone to mass saturation. Resolution and resolving 

MALDI Ionization Diagram Positive Mode

Crystallized Matrix

Sample & Analyte

5x10‐2 mbar abs

SS MALDI Plate (+) Positively Charged 

V
(+) (‐)

Anion Species

Ion Guide Plate (‐) Charged

337nm Nitrogen Laser

3x10‐4 mbar mbar abs
(Ion Guide)
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power is a technical term that relates to the ability of a spectroscopy technique to distinguish 

discrete signal peaks. If the TOF reaches mass saturation, the detector signal plateaus. Figure 

5 depicts positive ionization mode for the detection of anions. Changing the polarity to 

negative ionization mode allows the detection of cations. The instrument’s detector reports 

species on a mass to charge ratio (M/Z) scale. For species with only one charge unit these 

correspond to Daltons (Da). Theoretical isotopic masses are also calculated in Daltons. The 

spectrum for multiply charged species is significantly more complicated to interpret. 

The mass spectroscopy work was conducted with a Waters MALDI-Q-T Premier instrument. 

A thin film technique was used, where the matrix and then the samples were spotted on the 

stainless steel MALDI plates. First, one microliter of matrix consisting of 3.1mg/ml 2-(4-

Hydroxyphenylazo) benzoic acid (HABA) dissolved in methanol is spotted. Second, after the 

matrix evaporates to dry crystals one microliter of sample is spotted. The matrix solvent was 

changed to THF after initial work. For all but Figure 7, the solvent used was THF. This 

change reduced the evaporation time and improved consistency in signal which is attributed 

to more uniform crystal formation. The ease of spotting also increased due to more desirable 

surface tension properties. A polyethylene glycol oligomers PEG 600 lock mass standard 

with 3,5-dihydroxybenzoic acid (DHB) matrix was spotted to center wells. PEG 600 is a 

group of oligomers that monomer units are joined in discreet units. They are commonly used 

as a standard in high-resolution mass spectroscopy. See Appendix A for the lock mass 

procedure. This procedure allows for accurate mass correction for the instrument without 

contaminating the samples. A complete description of the spotting procedure and instrument 

conditions is included in the appendix.  

An example MALDI plate is displayed in Figure 6. Samples have already been spotted on the 

matrix and lock mass standards spotted in center wells. Several of the wells have been 

evaluated, and a spiral pattern caused by laser ablation during firing can be observed on D2, 

D3, and D4 wells. The bottom most row H has not been spotted and is blank. 
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Figure 6: Example of a stainless steel MALDI sample plate. 

 
The stainless steel sample plate is inserted into a vacuum chamber in the instrument. Under 

an absolute 5x10-2 mbar vacuum, a pulsing nitrogen laser with an emission max of 337nm 

excites the matrix and analyte ions for subsequent MS or MS/MS. The collision cell voltage 

was set to 5KEV, and the mass to charge ratio measured in the range of 200-2000m/z. The 

preliminary work has been presented orally at the American Oil Chemistry Society (AOCS).9   
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Figure 7: MALDI-TOF-MS of (Matreya >98%) SG standards and purified residue, sodium adducts of sterol glucosides - 
sitosteryl-glucoside and campesteryl-glucoside, and characteristic fragments in the range of 370-630m/z.  
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The target natural products have been identified in these residues. Sitosteryl-glucoside, 

campesteryl-glucoside, and stigmasteryl-glucoside have been positively identified using a 

novel MALDI-TOF-MS technique. This soft ionization technique has produced sodium 

adducts and characteristic fragments as seen in Figure 7. These spectra match well to SG 

standards (Matreya >98%) and reported fragmentation patterns in the literature where APCI-

MS atmospheric pressure chemical ionization mass spectrometry has been used to form 

ammonium adducts and fragments.1 The three sterol glucosides (SG) detected are common in 

plants with only minor structural differences in the steroid moieties. See Appendix B for the 

full MS spectrum. 
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BULK PROPERTIES OF PURIFIED STEROL GLUCOSIDES 

To the best of our knowledge, due to the difficulty in purification, these may be the first 

reported bulk properties of sterol glucosides. Morris reports infrared absorption spectra for β-

sitosterol-D-glucoside purified from defatted peanut flour.10  

Fourier Transform Infrared Spectroscopy (FTIR) 

A Fourier transform infrared spectroscopy (FTIR) study of the purified SG powder was run. 

A Fourier transform (FT) is an algorithm that converts the sinusoidal data into discrete units. 

Infrared spectroscopy (IR) is a nondestructive technique that works by measuring the 

reflectance or absorbance of a sample of a broadband light source. These absorption bands 

correspond to specific molecular vibrational modes that can be correlated to discreet 

functional groups. These absorption bands can be used to identify the presence of specific 

chemical moieties, for example hydroxyl groups. 

 

 
Figure 8: FTIR spectrum of purified residue confirms SG functional groups. 

 
The powdered and purified sterol glucoside sample was put into a Nicolet Avatar 370 with an 

attenuated total reflectance cell. The FTIR trace and corresponding functional groups are 

‐OH

Aliphatic region
CH2 and or CH3

Ester linkage
R‐O‐R
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shown in Figure 8; evident in the spectrum are the hydroxyl, ester linkage, and an aliphatic 

region. The peaks presented mach well with Morris’s reported IR spectra.11  These data 

confirm the functional groups previously assigned from the mass spectra for a sterol 

glucoside.  
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DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

Differential scanning calorimetry (DSC) is an analytical technique used to measure 

thermodynamic events of samples when heated or cooled. The difference in the applied heat 

flux required to maintain a reference and sample at a predetermined heating and cooling 

profile is observed. As a sample undergoes a phase transition, the variation in the heating 

flux is observed. For example, detection of a solid to liquid transition is observed as an 

endothermic event. DSC is commonly used to measure molecular order in polymeric systems 

as a function of temperature. These transitions are commonly thermal history dependent. 

 
Figure 9: (A) The first DSC trace of purified residue with deep endothermic event at 

267ºC, and (B) the second DSC imposed on first trace lacking deep endothermic event. 
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A TA instruments Q200 was used, and scanned at 10ºC/min from 0 to 300ºC. The first and 

second DSC traces of the purified product are shown in Figure 9. For the first trace 

presented, there was a deep endothermic event at 267.33ºC. Figure 9B shows the second 

trace imposed on top of the first trace. The second trace lacks the deep endothermic event. 

The lack of the event in the second trace shows that a nonreversible phase transition occurs 

above 200ºC. Because this phase transition is nonreversible, a simple solid to liquid transition 

did not occur. It is possible that a phase change occurred and was directly followed by a 

degradation reaction or only a degradation reaction occurred. It was observed that the 

temperature of the phase transition is dependent on the heating rate. As the heating rate 

increased, the temperature of the endothermic event was depressed. For a pure compound 

heated at thermodynamic equilibrium, a discreet melting point is expected, making this rate 

dependent finding unusual. The melting point is commonly used as an assessment of purity. 

Impurities typically depress the melting point of pure compounds. Morris reports a melting 

point of 285-289ºC for β-sitosterol-D-glucoside extracted from defatted peanut flour.12 

Matrya LLC, as supplier of specialized lipid standards reports 283-287ºC for their (>98%) 

SG standards.13 These commercial SG standards were compared to in-house SG standards 

and found to have the same purity by NMR and MS. However, slight variations in the ratio 

of steroid composition were observed. These commercial standards were also used for the 

initial APCI-MS work presented later in this report. 
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THERMO GRAVIMETRIC ANALYSIS (TGA)  

Thermogravimetric Analysis (TGA) works by measuring the change in the mass of a sample 

as it is subjected to ramped heating. This can show how individual volatile components 

evolve off the sample. Oxidation is typically associated with an increase in mass. Comparing 

the TGA traces using an ambient atmosphere and a nitrogen atmosphere can show variations 

due to oxidation. A TGA Q50 TA instruments 2009 was used with aluminum pans (rated for 

use on samples up to 600ºC). 

  



 

Measurement and Control Strategies for Sterol Glucosides to Improve Biodiesel Quality – Yr 2 19 

 
 

 

 

 

 

 

 

 
Figure 10: Thermo Gravimetric Analysis TGA of purified extract; top under ambient, 

bottom under nitrogen Atmosphere. 

In Figure 10, TGA traces under nitrogen and air atmospheres show minimal differences. This 

indicates that the presence of oxidation is not significant to their decomposition kinetics. The 

decomposition is not occurring due to oxidation. This is complementary to DSC traces in 

Figure 9. These TGA and DSC traces indicate that SG compounds do not undergo melting or 

oxidation on heating, but may undergo polymerization or some other decomposition 
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reactions. Heating these compounds with the intention of causing decomposition will not 

remove these problematic compounds but will change them into some other product. 

 

 



 

Measurement and Control Strategies for Sterol Glucosides to Improve Biodiesel Quality – Yr 2 21 

X-RAY DIFFRACTION 

X-ray diffraction is an analytical technique used to measure lattice spacing in crystalline 

structures. Amorphous materials produce only a noise signal. To conduct the measurement, a 

sample is placed into a holder and exposed to an X-ray source. The sample or the source is 

moved, changing the angle of incidence. The signal response is measured at discreet angles 

of incidence and these can be related to the spacing of the crystal lattice. Crystallography of 

inorganic complexes is commonly done to elucidate structures by knowing these lattice 

spacings. DNA’s helically structure was first elucidated with a single crystal X-ray 

diffraction technique.  

 

 
Figure 11: Powder x-ray diffraction of crude and purified reduced crystallinity is 

present. 

 

66

Purified Reduce

Crude
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A Siemens D5000 powder X-ray diffractometer was used for this experiment. The X-ray 

diffraction patterns for the crude residue from bag filters at the Inland Empire biodiesel plant 

and the purified residue are shown in Figure 11. Discreet peaks are present indicating 

crystallinity. However, with this experiment the level of crystallinity is confounding; it could 

be a minor or major portion of the residue. On purification, the signal clarity improved as 

shown in the bottom trace. However, the thermal history of the crude residue is different than 

that of its initial conditions in the biodiesel plant. These peaks are at low angle of incident 

which indicates an organic compound.  

Second Phase Seed Extract Evaluation for Sterol Glucosides 

Seed Selection 

Amanda, a winter canola cultivar agronomically significant to the Palouse and the Colombia 

Basin of the Pacific Northwest, was selected for investigation of its sterol glucoside content. 

This new release, Brassica. napus L. cv. Amanda, from the University of Idaho Brassica 

breading program is expected to replace Brassica. napus L. cv. Athena. Canola is a biennial 

that is typically grown as an annual. Winter canola planted in fall germinates with two 

cotyledon leaves, then establishes five or more leaves in the rosette growth stage for 

sufficient winter survival before going dormant during the winter. It then produces the bulk 

of its vegetation in spring, flowers prior to the onset of high temperatures and the oilseed is 

harvested during the summer. Canola can be grown under irrigation or dryland conditions. 

Dryland canola typically has lower yield and a higher risk of crop failure. Under irrigation or 

in areas of high humidity like North Dakota, canola can have problems associated with 

blackleg and other pathogens.  

It should be noted that the seed evaluated looked visually mature, but the extract had the 

characteristic green color associated with chlorophyll usually found in immature seed. The 

seed lab acknowledged that the seed was swathed prematurely; however, the fatty acid 

profile was typical of other Amanda samples. The fatty acid profile of Amanda is dominated 

by oleic acid with three primary cis-isomers. Immature canola seed should have minimal 

difference in the fatty acid profile. However, for some immature seed from rapeseed cultivars 
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with high erucic acid (22:1), variations could be expected in profiles of longer chain fatty 

acids as they are incorporated in the seed just prior to harvest.  
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OVER VIEW OF SIZE EXCLUSION CHROMATOGRAPHY (SEC) 

An oil extract from the seed samples was fractionated with size exclusion chromatography 

(SEC) as a preparative procedure to resolve the low concentration of sterol glucosides from 

the triglycerides matrix. The collected fractions were evaluated using the MALDI-TOF-MS 

method developed for evaluation of sterol glucosides found in biodiesel production. SEC has 

the advantage that it allows for direct analysis of samples without derivation.  

In a simplistic view, SEC or gel permeation chromatography (GPC) takes advantage of the 

greater mobility of lower molecular weight compounds to resolve compounds based on their 

molecular weight rather than their chemical properties. A visual representation of SEC is 

shown in Figure 12. This is typically done under isocratic (constant) flow and isothermal 

conditions. In polymer science, this physical separation process is commonly calibrated for a 

linear region where the bulk polymers can be resolved according to their chain length, and 

analyzed with light scattering detection. For this experiment, the larger triglyceride molecule 

is eluted first, and then the slightly lower molecular weight sterol glucoside is eluted off the 

column. A fraction collector was employed to collect the fractions in one ml increments from 

the constant flow rate column. These one ml samples were then evaluated with MS for SG 

and triglycerides. 
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Figure 12: Visual representation of SEC showing species resolved by molecular weight. 
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IN DEPTH EXPLANATION 

All glassware was heated to 450ºC for in excess of one hour to eliminate phthalate 

contamination. An Amanda seed cultivar from the University of Idaho Brassica breeding 

program was ground with a glass mortar and pestle and then mixed with acid treated sand to 

improve extraction efficacy in a Soxhlet crucible. Then, the sample was Soxhlet extracted to 

exhaustion with freshly distilled tetrahydrofuran (THF). This solvent was removed from the 

extract with a rotary evaporator at 50mbar and 35ºC.  

The SEC column was operated on a Hewlett Packard Series 1090 II HPLC, (1988). The THF 

mobile phase was sparged with helium. The mobile phase was held at 40ºC under isothermal 

conditions and at a 1ml/min isocratic flow rate. The chromatography column used was a 

Jordi Gel DVB 100Å, 250mm long, 10mm ID. See Appendix C for the manufacturers sample 

chromatogram. THF is commonly inhibited with antioxidants like butylated hydroxytoluene 

(BHT) to prevent the formation of peroxides. Uninhibited high purity HPLC grade 

tetrahydrofuran was used to lower the UV cutoff (background UV absorption of solvent) and 

prevent the inhibitory compound from contaminating later MS analyses. The limited 

solubility characteristics of SG restricted possible mobile phase solvents. SG has the highest 

solubility in pyridine and THF of any solvents used experimentally during the course of this 

work. Pyridine was not chosen because of its high toxicity. THF is also toxic and 

incompatible with the PEEK™ tubing commonly used in chromatography systems.  

To determine the T0 time for the SEC column, a 24,150 Dalton polystyrene standard was 

dissolved in THF and injected under the same conditions (1ml/min THF, 40Cº, 10-20µl 

injection volume). This T0 time represents the fastest rate that compounds will elute through 

the column. The T0 time was determined as 18.54-18.77 min. The analytes of interest eluted 

between 25 min and 29 min. The extracts were found to elute prior to 30 min, so a minimum 

of 150 min (5 x 30 min) was used between runs to insure that there was no cross 

contamination between SEC runs. 

After SEC, one ml fractions were collected, and the THF was evaporated under nitrogen at 

35ºC with a heating block. Then, the samples were dissolved into 20µL of THF and 1µL was 
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spotted onto the MALDI plates. Finally, analyses were performed with MALDI-TOF-MS. 

MS conditions were as previously described in this report. 
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METHOD VALIDATION 

The SEC method was validated to be sure that the SG and the triglyceride in the extract were 

sufficiently resolved by the difference in their molecular weight. A 3.15±0.03mg/ml triolein 

standard and 3.15±0.04mg/ml SG standard dissolved in THF was injected on the SEC 

column under the standard conditions (20µL). The triolein standard was obtained from Nu-

Chek Prep, Inc (>99% purity).  

 
Figure 13: Method validation for the 24th 1-ml to 30th 1-ml fractions showing 
characteristic sodium adducts for triglyceride standard and SG standards. 

 
MS traces for the 24th 1-ml fraction through the 30th 1-ml fractions are shown on a cascading 

scale in Figure 13 for the triolein standard and SG standard. The MS traces show that the two 

natural products of interest were sufficiently resolved which validates this method. As can be 

seen in the UV traces shown in Appendix D, only the peak for the triolein standard is 

observed on the 210nm trace. Both the triglyceride and SG are designated on the spectra. The 

highest intensity signal corresponds to the sodium adduct mass of the triglyceride occurred in 

the 25th 1-ml fraction and showed some peak tailing into the 26th 1-ml fraction. The signal 

corresponding to the SG sodium adduct reached its highest intensity at the 27th 1-ml fraction 
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with some tailing into the 30th 1-ml fractions. From the MS data, the location of the double 

bond cannot be differentiated. 

Matrix Effects  

It is possible for matrix effects in a complex mixture like a crude solvent seed extract to 

interfere with the chromatographic separation or ionization processes. Matrix effects describe 

all the effects of the unknown compounds present in a sample in addition to the analyte. 

These matrix compounds can significantly alter chromatographic separation and suppress or 

complicate analytical signals. In natural products, the matrix may bind to a target analyte 

making it inaccessible to detection. A relevant example is the use of acid hydrolysis with 6 

molar hydrochloric acid (HCl) in the workup of cereal grains to make phytosterols accessible 

to extraction prior to further workup, derivation, and GC-MS analyses. However, it is known 

that Δ7-sterols, a subclass of phytosterols with double bonds at the seventh carbon, are 

susceptible to decomposition or isomerism under acid hydrolysis conditions.14,15 

Spiked Extract 

A SG spiked extract was run to validate that the SG analyte of interest could be 

chromatographically resolved and detected with the MS analytical technique. A SG spiked 

canola extract in tetrahydrofuran was prepared. The sample was composed of 

35.80±.03mg/ml extract and 3.60±.03mg/ml SG standard. Ten microliters of this standard 

mixture were injected onto the SEC column. This sample was then run with the same 

chromatography and sample preparative procedures. 
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Figure 14: The SG adducts are fully resolved in the MS traces of the 22nd 1-ml to 28th    

1-ml fractions of the SG spiked THF canola extract. 

 
MS traces for the 22nd 1-ml fraction through the 28th 1-ml fractions are shown on a cascading 

scale in Figure 14 for the SG spiked canola extract. See Appendix E for the 210 UV trace 

showing two resolved peaks. The MS traces in the region of interest, 580-620m/z, of the SG 

spiked canola extract show prominent peaks attributed to sitosteryl-glucoside, campesteryl-

glucoside, and stigmasteryl-glucoside. Sterol glucosides provide good resolution of the 

analyte species discreetly eluted in the 26th 1-ml fraction.  
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MS TRACES: SG STANDARD AND SPIKED CANOLA EXTRACT 26TH 1-ML  

 
Figure 15: MALDI-TOF-MS traces of a SG standard and a SG spiked canola extract 
sitosteryl-glucoside, campesteryl-glucoside, and stigmasteryl-glucoside are identified.  

   
In Figure 15, two MS traces are shown. First, a standard was directly spotted on the MALDI 

plate consisting of 1.05±0.03mg/ml triolein standard and 1.31±0.04mg/ml SG standard 

dissolved in THF. Second, the highest intensity signal for the SG sodium adduct (26th -1ml) 

trace of the 3.60±.03mg/ml SG with 35.80±.03mg/ml extract. Recall this second trace is the 

26th -1ml trace shown in Figure 14. Figure 15 is a close-up of the spectra in the region of 

interest for sterol glucosides [580 to 620m/z]. In both MS traces in Figure 15, sitosteryl-

glucoside, campesteryl-glucoside, and stigmasteryl-glucoside sodium adducts have been 

identified and their assigned peaks are designated.  
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HABA matrix for MALDI-TOF-MS. The raw data traces and the corrected masses are 

displayed in Figure 16 magnified in the region of interest 580-610 m/z for the three sterol 

glucosides. A lock mass correction was performed on the samples. The variation from this 

discreet PEG fragment [569.3149Da] and the observed m/z signal of the same fragment is 

used to generate a correction algorithm; and the corrected output from this is displayed as the 

lock mass corrected spectrum. The lock mass standard is in the center wells adjacent to the 

sample wells on the sample plate, as was displaced in Figure 6. This accurate mass correction 

is small, but corrects for slight measurement variations caused by factors like the effect of 

temperature variations on the instrument.  

 

Figure 16: Isotopic distribution of sterol glucosides MALDI-TOF-MS raw signal and 
lock mass corrected. 

 
The ISOFORM 1.02 NIST program was then used to calculate the isotopic abundance for all 
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Table 1: The Observed Isotopic Abundance Values Normalized to the Parent 
Monoisotopic Sodium Adduct 

 

 
In nature there is a distribution of isotopes for all elements. The monoisotopic peak 

corresponds to the exact mass of a particular formula. Larger organic compounds statistically 

will have cascading peak populations. For example in the simplest case, the masses will 

increase by M+1, M+2, and so on where additional neutrons are incorporated somewhere 

into the formula. These isotopic distributions are very predictable in natural systems without 

enrichment. The observed isotopic distribution patterns match closely with the theoretical 

isotopic distribution patterns. 

The use of isotopic patterns was found to be extremely useful for quickly assessing other 

unknown peaks and ascertaining if there were large organic compounds present in the sample 

rather than noise/contamination peaks. Several other compounds have been positively 

identified in the spectrum and these will be included in the thesis.  

Table 2: Accurate Mass of Identified Sterol Glucosides 

 

The accurate masses of the theoretical monoisotopic sodium adducts and lock mass corrected 

observed spectra are shown in Table 2. Both uses of accurate mass identification and isotopic 

distribution patterns had good correlation for sitosteryl-glucoside, campesteryl-glucoside, and 

stigmasteryl-glucoside. 

Monisotopic Na Adduct   2nd Isotopic Abundance        3nd Isotopic Abundance        

[M+Na] [M+Na+1]  [M+Na+2]

Theoretical (observed), [% Difference] Theoretical (observed), [% Difference]

Sitosteryl-glucoside   [C35H60O6+Na]+ 599.4888 39.98, (40.7), [1.8] 8.98, (13.6)[51]

Stigmasteryl-glucoside   [C35H58O6+Na+] + 597.4131 39.95, (42.4), [6.1] 8.97 (Masked) 

Campesteryl-glucoside   [C34H58O6+Na+]+ 585.41319 38.84, (39.2), [0.92] 8.54, (11.2), [31]

Sterol Glucoside Theoretical Monoisotopic Na Adduct (Da) Observed (M/Z) Mass Accuracy (PPM)

Sitosteryl-glucoside [C35H60O6+Na+]+ 599.4288 599.4315 4.50

Stigmasteryl-glucoside [C35H58O6+Na+] + 597.4131 597.4182 8.54

Campesteryl-glucoside [C34H58O6+Na+]+ 585.41319 585.4186 9.24
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Figure 17: MADI-TOF-MS of triolein standard and highest intensity signal 23rd -1ml 
fraction of SG spiked Brassica. napus L. cv. Amanda THF seed extract. 

 
Triglyceride: Brassica. napus L. cv. Amanda THF Seed Extract 

In the interest of being thorough, the highest intensity signal trace (23rd 1-ml) for the 

triglyceride in the SG spiked extract is compared to the same SG and triolein standard with 

the region of 885-945m/z enlarged. The MS traces in Figure 17 have the characteristic peak 

pattern corresponding to a triglyceride 18:1 Sodium Anion [M +Na] 907.7731Da as validated 

with standard and matching literature.16 Additional peaks are also present. In the triolein 

standard, an isotopic distribution for triolein 18:1 can be observed. In a seed extract, a 

distribution of triglycerides is expected in addition to the isotopic abundance patterns. These 
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masses correspond to the fatty acid profile of this seed lot observed by the plant breeding 

program. If peak 907m/z is assigned for a triglycerides composed of three fatty acids 18:1, 

then the mass change associated with additional double bonds can explain the observed peaks 

at 905, 903, and 901m/z. 
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CANOLA EXTRACT 

An aliquot of the same canola seed extract as used for the spiked sample was analyzed. A 

115.91±.05 mg/ml of extract in THF was run under the same SEC and MS conditions. See 

the SEC inline UV trace shown in Appendix F. In this UV trace, only a peak corresponding 

to the triglyceride is observed. 

 

Figure 18: MS traces for the 21st 1-ml fraction to 26th 1-ml fractions of the       
115.91±.05 mg/ml of THF canola extract with two sodium triglyceride anions resolved. 

 
Shown in Figure 18 are the MS traces for the 21st 1-ml fraction to the 26th 1-ml fractions of 

the canola extract. As observed on previous MS traces, a sodium triglyceride anion is 

designated as the 907m/z ion. Resolved in the next trace is a second sodium triglyceride 

anion; its mass 905m/z indicates that it is lacking one additional unit of saturation. It was not 

anticipated that the SEC would be able to resolve triglycerides differing by only one unit of 

saturation.  
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It should be noted that significant counts were obtained for the peaks of interest to obtain an 

accurate mass, however their signal intensities were not sufficiently resolved above the 

background. From the accurate mass data in the 26th 1-ml ms trace, sitosteryl-glucoside 

sodium adduct (42.5ppm) and campesteryl-glucoside sodium adduct (6.99ppm) were 

observed with the corresponding mass accuracy with respect to their calculated theoretical 

masses. To obtain qualitative data relating the concentration of SG in the trace, and 

ultimately back to the seed, will require additional method development. A more precise 

calibration curve and accompanying validation experiments will be required.  
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GLYCOLIPIDS ISOLATED WITH SILICA GEL FROM CAMELINA SEED: 

Cleaned camelina seed was manually macerated with a mortar and pestle, and subsequently 

Soxhlet extracted to exhaustion with 1,2-dimethoxyethane (DME or glyme). The preparative 

procedure was modeled after the procedures of Moreau and Yamauchi.17,18 An aliquot of this 

concentrated extract was run on a silica gel column. The silica gel used was Fisher Chem 

silica gel, 230-400 mesh (S825-1). All solvents used were HPLC grade or higher in purity. 

An excess of one and a half bed volumes of each elution solvent was run to condition the 

silica. The column was equilibrated with chloroform and an aliquot of seed extract was 

added. Then, sequential elutions with chloroform, acetone, and methanol were performed. 

Each solvent was expected to resolve triglycerides, glycolipids, and phospholipids 

respectively, as reported. 19 

 
 

 

 
 

Figure 19: Proposed β-sitosterol derivative and isotopic distribution (C29H54O, 
[M+Na+]+ 441.4072). 
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The glycolipid fraction was analyzed using MALDI-TOF-MS and its spectrum is shown in 

Figure 19 in the range of 375-600M/Z. The isotopic distribution is labeled in this MS spectra. 

This spectrum is not lock mass corrected. See Appendix G for the full MS spectrum of the 

proposed β-sitosterol derivative.  

The exact mass from the mass spectrum was used with “formula calculator” a USDA 

software program from which the formula C29H54O was calculated.20 The variation between 

the observed mass and the theoretical mass for C29H54O is 92.9 PPM. The ISOFORM 1.02 

NIST program was then used to calculate the isotopic abundance that is expected for this 

formula. This formula matches the theoretical value for this formula to within a percentage 

point for the first abundance. 21 From the literature, the most common phytosterol in refined 

camelina oil is β-sitosterol C29H50O.22 If the double bond was cleaved and saturated, an 

additional four hydrogen atoms could be present forming a β-sitosterol derivative C29H54O. 

No theoretical explanation for the formation of this product is proposed. An attempt to 

acquire a HNMR spectrum was made, but it was unsuccessful, possibly due to a breakdown 

of the analyte.  

  
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Structure for β-sitosterol C29H50O a free sterol common in plants and a 
proposed β-sitosterol derivative C29H54O. 

 
In Figure 20, the structure of β-sitosterol and the proposed β-sitosterol derivative are shown. 

From the isotope calculator, the theoretical isotopic distribution for the sodium adduct of the 

proposed β-sitosterol derivative is shown in Table 3. 

OH

 β-Sitosterol C29H50O 
OH

β-Sitosterol Derivative C29H54O
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Table 3: Theoretical and Observed Isotopic Distribution for Proposed β-Sitosterol 
Derivative Na Adduct [C29H54ONa]+ 

 

 

β-Sitosterol Derivative Na Adduct   

[C29H54ONa]+ 

Monisotopic Na Adduct   
[M+Na]

2nd Isotopic Abundance    
[M+Na+1]

3nd Isotopic Abundance    
[M+Na+2]

Theoretical 441.4072 33.04 5.480
Observed 441.4482 30.4 5.90
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Figure 21: HPLC-APCI-MS of solvent blank, SG standard and ASG standard. 
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During the initial phases of this project, a method modeled after Moreau’s HPLC-APCI-MS 

method for SG was evaluated. Additionally, ASG (also esterified sterol glucoside - ESG) 

were evaluated with the same conditions on the same instrument. Three total ion 

chromatogram traces are shown in Figure 21. First, a solvent blank (1,2-dimethoxyethane) is 

shown. Then, a SG standard 0.1mg/ml (chloroform) was analyzed and shown below the 

solvent blank. Third, an ASG standard 2.5mg/ml (1,2-dimethoyethane) is also shown. These 

standards were obtained from Matreya, LLC both were represented as greater than 98% pure. 

In the blank, a significant phthalate peak was observed with a characteristic 149 m/z 

fragment. The 149 Da mass is one of the characteristic fragments of phthalates which have 

been extensively examined.23 The presence of the phthalate contamination is problematic if 

the contaminate elutes at the same time as an analyte of interest. It can act as anion 

suppressant and prevent the analyte from sufficiently ionizing. In ion suppression, the 

deleterious compound either preferentially ionizes or in some other way inhibits the ability of 

the analyte species to ionize. Ion suppression leads to poor and inconstant spectra. This 

contaminant also eluted in the two subsequent SG and ASG standards runs. See Appendix H 

for the procedure used. 

Ammonium adducts of sterol glucosides and characteristic fragments for campesterol and 

sitosterol moieties are identified in Figure 19. There are several peaks resolved in the ASG 

spectrum. The total ion chromatogram (TIC) of the ASG standard was scanned for the mass 

fragments 398.39, and 384.37 corresponding to the sitosterol and campesterol moieties. From 

these mass scans, multiple peaks were resolved. For a given phytosterol multiple, ASG 

compounds were resolved by retention time.  

As reported by Moreau, a strong signal at 205nm was detected for SG above the baseline.24 

Additionally the ASG was also detected at 205nm. Due to the solvent gradient as the 

proportion of methanol increases, the baseline changes to the UV cutoff of methanol. This 

baseline shift is reproducible, but significant change is observed at 205nm.  

This experiment was repeated with the same instrument with the comparable column with the 

same chromatographic conditions, and standards with a change of the mass spectrometry 

source to electro spray ionization (ESI). However, the results were poor, which was 
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attributed to poor ionization efficiency of these analytes under ESI conditions. See Appendix 

I for the procedure used. Moreau conveyed that they also had poor ionization efficiency with 

ESI as compared to APCI for SG analytes. (R. A. Moreau, personal communication, AOCS 

2010) 
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CONCLUSION 

Sterol glucosides (SG) were identified in residues that shut down a commercial biodiesel 

plant. Biodiesel plant operators, biodiesel distributors and vegetable oil crushing facilities in 

the biodiesel supply chain should be alert for tank residues that may contain these 

compounds. Methods for evaluation of SG have been reviewed, and a new preparatory 

procedure and a MALDI-TOF-MS technique has been developed and validated for these 

analytes.  

Using the new analytical techniques developed, the occurrence and accumulation of sterol 

glucoside compounds can be determined. Significant variations in the broader category of 

phytosterol compounds are expected due to soil and other agronomic factors. In addition, a 

more thorough understanding of phytosterol extraction and accumulation in vegetable oil 

production is needed to determine if these compounds can be left in the seed meals, or 

collected as a high-value co-product. Understanding the mass balance of these compounds 

from seed crop to biodiesel production is necessary to optimize phytosterol removal for 

winter operation.  

The following conclusions can be drawn from this study. 

 A MALDI-TOF-MS method was developed for the detection of sterol glucosides (SG). 
 

 In a residue that shut down a commercial biodiesel plant, sitosteryl-glucoside, 
campesteryl-glucoside, and stigmasteryl-glucoside were identified. 
 

 Material properties of purified sterol glucosides are reported including DSC traces, 
TGA traces, FTIR, and X-ray diffraction. 
 

 A preparative method to separate triglycerides in seed extract from sterol glucosides 
with size exclusion chromatography (SEC) was developed. 
 

 The SEC preparative method developed was able to identify sitosteryl-glucoside and 
campesteryl-glucoside with exact mass in a winter canola seed sample (Brassica. 
napus L. cv. Amanda). Further method refinement is required to obtain quantitative 
data. 
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APPENDIX  

Appendix A: Lock Mass Procedure 

 
This lock mass procedure is a modified version of a Waters procedure for measuring the 
monoisotopic masses of sodium adducts of polyethylene glycol oligomers for lock mass 
correction. 

10mg/ml PEG 600 in 1:1 water:acetonitrile 
2mg/ml NaI in 1:1 water:acetonitrile 
Mix PEG and NaI30:6 v/v 
 

Matrix 3mg/ml DHB 

Mix 1:1 with mix/matrix 

 

Spot 1µl on lock mass wells (targets) allow to air dry.  
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Appendix B: SG Standards and Purified Residue 

 

 

 

MALDI-TOF-MS of (Matreya >98%) SG standards and purified residue, sodium 
adducts of sterol glucosides: sitosteryl-glucoside and campesteryl-glucoside, 
stigmasteryl-glucoside, and characteristic fragments 200-2000 M/Z.  
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Appendix C: Sample SEC Chromatogram 
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Appendix D: 210nm UV Trace Triolein & SG Standards 

 

 
A 210nm UV trace on top for a 3.15±0.03mg/ml triolein standard and 3.15±0.04mg/ml 
SG standard dissolved in THF.  
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Appendix E: 210nm UV Trace SG Spiked Canola Extract  

 

 

 
Top a 210nm UV trace and bottom 215nm inverted UV trace for the 35.80±.03mg/ml 
extract and 3.60±.03mg/ml SG standard. 
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Appendix F: 210nm UV Trace Canola Extract  

 

 

Top a 210nm and bottom 215nm inverted UV traces for a 22.542mg/ml canola extract.  
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Appendix G: SG Standards and Purified Residue 

 
 
MS spectrum of the proposed β-sitosterol derivative (C29H54O, [M+Na+]+441.4072) in 
the range of [200-2000M/Z]. 

GLYCOLIPIDS

m/z
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950

%

0

100

KEEGAN_091710_3A 42 (4.154) Cm (1:102) TOF MS LD+ 
4.22e4441.4482

42205

225.1327
7756

287.1410
6381

809.4003
21677

455.4684
13735

793.4263
6286545.2690

6170
529.2900

4508
738.7961

4893
719.7017

4226551.2834
2879

703.7521
2687

810.4086
10708

959.9073
9936

864.9505
8998

889.8190
5720

891.8347
4313

961.9092
9285

963.9362
7513

964.9334
4945 1073.5369

4741

966.9521;3479 1074.5530;3182
1202.2198

2397



 

Measurement and Control Strategies for Sterol Glucosides to Improve Biodiesel Quality – Yr 2 52 

Appendix H: HPLC-APCI-MS Procedure 

 
Colum: Agilent XDB-C18 Ultra High Pressure 1.8µm, 4.6x50mm, 927975-902, 
USWDYD4362 
 
HPLC Gradient: 
T=0 min,  60°C  1ml/min,  H2O:MeOH, 3:7 
T=0min, 80°C  1ml/min,  100%MeOH 
T=30min,  80°C,  1.3ml/min,  100%MeOH 
T=60min,  60°C,  1.3ml/in,  100%MeOH 
 
Both mobile phase solvents have 0.1% ammonium formate to promote ammonium adduct 
formation. 
 
Injection: 0.5 µL 
 
APCI Mass Spec Positive mode: 
Gas Temperature  350°C 
Vaporizer  350°C 
Dry Gas  5.0L/min 
Capillary 200V 
Skimmer 60V 
Corona  4.0µA 
OCT RFV  250 
DAD-UV  230-700nm 
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Appendix I: HPLC-ESI-MS Procedure 

 
Colum: Phenomenex, Kinetex 2.6µm, C18, 100A, 150x2.1mm 
 
HPLC Mobile Phase:  
A: H2O      17.7mΩ   premixed 1.5% (23.788mM) ammonium formate 
B: MeOH                  premixed 1.5% (23.788mM) ammonium formate 
 
Gradient: 
T=0 min,   50°C  .4ml/min,  H2O:MeOH,  9:1 
T=1min,  50°C  .4ml/min,  H2O:MeOH,  9:1 gradient 
T=11min,  50°C  .4ml/min,  100%MeOH  gradient flow rate 
T=25min,   50°C,  .75ml/min,  100%MeOH gradient flow rate 
T=26.50min,   50°C,  .4ml/in,  H2O:MeOH,  9:1 
T=30min,   50°C,  .4ml/in,  H2O:MeOH,  9:1 
 
Injection: 5 µL 
 
ESI Mass Spec Negative & Positive mode: 
Gas temperature  350°C 
Vaporizer  350°C 
Dry Gas  5.0L/min 
Capillary  3000V 
Fragmentation voltage four channels  
 (100, 200, 300, 400V) 
Skimmer  60V 
OCT RFV  250 
DAD-UV 2 30-700nm 
Mass Range 100-3500mz 
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