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ABSTRACT: The paper develops a linear regression model approach that can be applied to 
crash data to predict vehicle crashes. The proposed approach involves novice data aggregation 
to satisfy linear regression assumptions; namely error structure normality and homoscedasticity. 
The proposed approach is tested and validated using data from 186 access road sections in the 
state of Virginia. The approach is demonstrated to produce crash predictions consistent with 
traditional negative binomial and zero inflated negative binomial general linear models. It 
should be noted however that further testing of the approach on other crash datasets is required 
to further validate the approach.  

INTRODUCTION 

The current state-of-the-art for developing Crash Prediction Models (CPMs) is to adopt General 
Linear Models (GLMs) considering either a Poisson or a negative binomial error structure (Lord 
et al. 2004; Lord et al. 2005; Sawalha et al. 2006). Recently, researchers have also proposed the 
use of zero inflated negative binomial regression models in order to address the high propensity 
of zero crashes within typical crash data (Shankar et al. 1997; Shankar et al. 2003). The use of 
Linear Regression Models (LRMs) is not utilized because crash data typically do not satisfy the 
assumptions of such models, namely: normal error structure and constant error variance. 

The objectives of the research presented in this paper are two-fold. First, the paper 
demonstrates how through the use of data manipulation it is possible to satisfy the assumptions 
of LRMs and thus develop robust LRMs. Second, the paper compares the LRM approach to the 
traditional GLM approach considering a negative binomial error structure to demonstrate the 
adequacy of the proposed approach. The objectives of the paper are achieved by applying the 
models to crash, traffic, and roadway geometric data obtained from 186 freeway access roads in 
the state of Virginia in the U.S.  

In terms of the paper layout, initially a brief background of CPMs is presented. Subsequently, 
the unique characteristics of the crash, traffic, and roadway geometry data that are utilized to 
validate the proposed approach are described. Next, the two modeling approaches are described 
and applied to the access road data. Finally, the study conclusions are presented. 

BACKGROUND 

An earlier publication (Lord et al. 2004) indicated that “there has been considerable research 
conducted over the last 20 years focused on predicting motor vehicle crashes on transportation 
facilities. The range of statistical models commonly applied includes binomial, Poisson, 
Poisson-gamma (or Negative Binomial), Zero-Inflated Poisson and Negative Binomial Models 
(ZIP and ZINB), and Multinomial probability models. Given the range of possible modeling 



approaches and the host of assumptions with each modeling approach, making an intelligent 
choice for modeling motor vehicle crash data is difficult at best.” The authors further indicate 
that “in recent years, some researchers have applied “zero-inflated” or “zero altered” probability 
models, which assume that a dual-state process is responsible for generating the crash data.” The 
authors indicated that “these models have been applied to capture the ‘excess’ zeroes that 
commonly arise in crash data—and generally have provided improved fit to data compared to 
Poisson and Negative Binomial (NB) regression models.” 

Lord et al. (Lord et al. 2004) conducted a simulation experiment to demonstrate how crash 
data may give rise to “excess” zeroes. They demonstrated that under certain (fairly common) 
circumstances excess zeroes are observed—and that these circumstances arise from low 
exposure and/or inappropriate selection of time/space scales and not an underlying dual state 
process. They concluded that a careful selection of the time/space scales for analysis, including 
an improved set of explanatory variables and/or unobserved heterogeneity effects in count 
regression models, or applying small area statistical methods (observations with low exposure) 
represent the most defensible modeling approaches for datasets with a preponderance of zeros. 
We partially agree with these conclusions, however modelers my not have much choice in their 
time/space scale selection given the limitation of traffic and crash data. 

In this paper we present an alternative approach that combines novice data aggregation with 
LRMs to address the challenges of crash data that were described earlier. 

DATA DESCRIPTION 

As was mentioned earlier, the two approaches for developing CPMs are demonstrated using a 
database of crash, traffic, and geometric data obtained from 186 randomly selected arterial 
access roads connected to freeway ramps. The sections that were considered included the 
following: 

1. Areas designated as rural (79 observations) and others designated as urban (107 
observations), 

2. Sections with (76 observations) and without acceleration lanes (110 observations), 
3. Arterial facilities with a median (121 observations) versus without (65 observations), 
4. With 2, 4, or 6 lanes (57, 95, and 34 observations, respectively), 
5. First intersection either signalized, stop-sign controlled, or no control on the arterial, 

and 
6. Sections with a left turn bay (78 observations) versus without (108 observations). 

The length of the access roads varied from 3 to 1110 m with an average length of 169 m 
while the distance to the first intersection varied from 6 to 2285 m with an average value of 
298 m. The Average Annual Daily Traffic (AADT) varied from 112 to 117,314 with an average 
AADT of 19,456 veh/day. The number of crashes over 5 years varied from 0 to 169 crashes in a 
section with an average number of crashes of 12 over the 186 study sections. 

The crash data were extracted from the Highway Traffic Records Information System Crash 
Database (HTRIS) for the years 2001 through 2005. The traffic data were obtained from the 
Road inventory VDOT database. The data represents the AADT of the section with a few 
exceptions were the traffic data represent a 24 hour count. 



After fusing the crash, traffic, and geometric data it was possible to plot the data, as illustrated 
in Error! Reference source not found.. Specifically, the figure demonstrates a general increase 

in the number of crashes as the facility Average Annual Daily Traffic (AADT) increases. The 
figure also illustrates a high cluster of data at the short access road distances with minimum 
observations for access roads in excess of 400 m. Similarly, AADTs in excess of 8,000 veh/day 
are a rare occurrence. The figure does illustrate a number of sections with high AADTs and 
short access roads with a small number of crashes. Conversely, observations with high crashes 
are also observed for low AADTs and long access roads. 
Figure 1. Data Distribution. 

 
 
The crash frequency distribution demonstrates that the number of crashes ranges from a 

minimum of 0 to a maximum of 169 crashes over 5 years, as illustrated in Error! Reference 
source not found.. The higher frequency of zero crashes is typical of crash data when the 
exposure rate is low as was described in the literature (Lord et al. 2004). The higher propensity 
of zero observations has lead some researchers to apply zero-inflated negative binomial models 
to the modeling of crashes considering two underlying processes (Shankar et al. 1997; Shankar 
et al. 2003). The frequency distribution is consistent with a negative binomial distribution with a 
consistent decrease in the frequency as the number of crashes increases. 

A statistical analysis of the data demonstrated that the type of road (rural versus urban), 
number of lanes, the availability of a median, the type of signal control at the nearest 
intersection, and availability of an acceleration lane were not statistically significant. The details 
of these statistical tests are beyond the scope of this paper, but are provided elsewhere (Medina 
Flintsch et al. 2008).  

MODEL DEVELOPMENT 

This section describes the two approaches that were tested in the paper for developing crash 
prediction models. The first approach is the common approach that is reported in the literature, 
which is based on the use of Poisson, Negative Binomial (NB), Zero Inflated Poisson (ZIP), and 
Zero Inflated Negative Binomial (ZINB) regression models. An alternative approach that is 
developed in this paper is the use of LRMs. Initially, a discussion of the NB and ZINB 
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regression approach is presented followed by a discussion of the proposed LRM approach. Both 
approaches are then compared using crash data from 186 access roads in the state of Virginia in 
the U.S. 

Prior to describing the various models, the model structure is discussed. Specifically, the 
study considers a crash rate that is formulated as 

( )
( )

6

0 1 1
2

10
exp

365 5 pp
C

CR L
LV

β β= ⋅ = +
×

, [1] 

where CR is the crash rate (million vehicle crashes per vehicle kilometer of exposure over a 5 
year period), C is the total number of crashes over the study section of length L2 in the 5-year 
analysis period (crashes), L2 is the length of the section which is the distance between the 
freeway off-ramp and the first intersection (km), L1 is the distance between the freeway off-
ramp and the first access road (may equal L2 if the first access road is an intersection) (km), V is 
the section AADT (veh/day), B0 and B1 are the model constants. 

The model of Equation [1] can then be manipulated to produce a linear model of the 
form 

( )
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365 5
exp ln( ) ln( )
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C L L p V Eβ β
×

= ⋅ + + + +
. [2] 

Here E is a random error term that accounts for the error that is not captured in the 
model. The advantage of this model is that (a) it is linear in structure after applying a 
logarithmic transformation; (b) it ensures that the crashes are positive (greater than or equal to 
zero); and (c) it produces zero crashes when the exposure is set to zero (i.e. when L2 or V is 
zero). 

Poisson or Negative Binomial Model Approach 
The Poisson distribution is more frequently applied to models with count data. The probability 
mass function of a Poisson crash random variable (λ is the mean crashes per unit time) is given 
by 

( ) ; 0,1,...
!

C
CP C e C

C

λ −= =  [3] 

One feature of the Poisson random variable (C) is the identity of the mean and variance. 
The NB model overcomes this limitation by considering the λ parameter to be a random variable 
that is distributed following a Poisson distribution. Consequently, the negative binomial 
distribution has the same support (C=0,1,2, …) as the Poisson distribution but allows for greater 
variability within the data (variance can be greater than the mean). Consequently, a good 
alternative model for count data that exhibit excess variation compared to a Poisson model is the 
negative binomial model. 

The structure of the GLM model that computes the expected number of crashes (E(C) 
can be written as 

( )
( )

( )2 0 1 16

365 5
E exp ln( )

10

p

C L L p Vβ β
⎛ ⎞⎟⎜ × ⎟⎜ ⎟⎜= ⋅ + +⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. [4] 

Two sets of Poisson and two NB models were developed, one a standard model (NB 
and Poisson) and one a zero inflated model (ZINB and ZIP), as summarized in Table 1. 
Unfortunately, the Poisson regression model suffered from over-dispersion as indicated by the 
value of the deviance divided by the degrees of freedom which was much greater than a value of 
1.0 (was 184.7). Consequently, a Modified Poisson Regression was also applied using an over-
dispersion parameter. The model produces the same parameter values; however, the deviance is 
reduced to 1.0 and thus is valid from a statistical standpoint. In the case of the NB model the 
value of the deviance divided by the degrees of freedom was close to a value of 1.0 (1.2063) and 



thus demonstrating the adequacy of the negative binomial error structure. It should be noted that 
the model predictions for the zero-inflated models are computed my multiplying the results of 
Equation [4] by ( )1 exp( ) 1 exp( )θ θ− +  as 

( )
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365 5 exp( )
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1 exp( )10
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⎛ ⎞⎟⎜ ⎛ ⎞× ⎟⎜ ⎟⎜⎟⎜ ⎟= ⋅ + + × −⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎝ + ⎠⎟⎟⎜⎝ ⎠
. [5] 

Table 1: Summary Results of Regression Models 
Parameter LRM NB Poisson ZINB ZIP 
B0 4.27 4.76 3.42 4.76 3.83 
B1 -6.88 -3.64 -6.90 -3.64 -2.00 
p 0.86 0.81 0.92 0.81 0.84 
θ 0.00 0.00 0.00 -16.00 -1.69 
SSE 365608 389589 437926 389589 254307 
SSE (%) 0% 7% 20% 7% -30% 
Slope 0.472 0.512 0.549 0.512 0.339 
Error (%) 2.12 1.95 1.82 1.95 2.95 

 
The results of Table 1 demonstrate that the model parameters a practically identical for 

both the NB and ZINB models except for the θ parameter. Given that the θ parameter is much 
less than zero the predictions of the NB and ZINB are very similar. In the case of the Poisson 
models (Poisson and ZIP) the model parameter values are significantly different, as 
demonstrated in Table 1. 

Linear Regression Modeling Approach 
In this section we consider a linear regression approach for the development of a model. If we 
consider the number of crashes per unit distance as our dependent variable the model of 
Equation [2] can be cast as 

( )
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×

′= = ⋅ + + . [6] 

Equation [6] is a linear model with two independent variables: V and L1. It should be 
noted that an analysis of crashes per unit distance ensures that the data are normalized across the 
different section lengths. The development of a LRM using the least squares approach requires 
that the data follow a normal distribution. A statistical analysis of the data revealed that there 
was insufficient evidence to conclude that the data were normal. Furthermore, the dispersion 
parameter, which measures the amount of variation in the data, was significantly greater than 1.0 
indicating that a negative binomial model would be appropriate for the data.  

Here we present an approach for normalizing the data in order to apply a least squared 
LRM to the data. The approach involves sorting the data based on one of the independent 
variables and then aggregating the data using a variable bin size to ensure that the second 
independent variable remains constant across the various bins. Data transformations can then be 
applied to the data to ensure normality and homoscedasticity (equal variance). Once the 
parameters of the first independent variable are computed, the data are sorted on the second 
independent variable. The data are then aggregated in order to ensure normality and 
homoscedasticity and then linear models are fit to the data to compute the variable coefficient. 
The approach is demonstrated using the access road crash data in the following sub-sections. 

Selecting Exposure Measures 
The typical exposure measure for crashes is million vehicle-miles or million vehicle-kilometers 
of travel. However, researchers have argued that the exponent of the volume variable (V) in the 
exposure measure is not necessarily equal to 1.0 [7, 8]. Consequently, the first step in the 
analysis was to compute the exponent of V (denoted as p).  



Given that the data vary as a function of two variables L1 and V, it was important to 
normalize one of the variables while analyzing the second variable. In order to estimate the 
volume exponent, the data were sorted based on their AADT values and aggregated using 
variable bin sizes to ensure that the L1 variable remained constant across the various bins, as 
illustrated in Figure 1. The figure demonstrates that by performing a linear regression of L1 
against V that the slope of the line is insignificant (p > 0.05) and thus there is insufficient 
evidence to conclude that the L1 variable varies across the aggregated data. 

 
Figure 1. Effect of Access Section Length within AADT Binning. 

 
In estimating crash rates it is important that the measure of exposure ensures that the 

data are normalized. In doing so a multiplicative crash adjustment factor (Fi) for each bin i was 
computed as 
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where Cij is the number of crashes for section j in bin i and Lij is the length of section j in bin i. 
The Fi correction factor ensures that the maximum number of crashes remains constant (equal to 
the minimum number of crashes) across the various bins, which is by definition what an 
exposure measure is. The correction factor is also equal to 

i iF V βα= , [8] 

where Vi is the mean AADT volume across all observations j in bin i and α and β are model 
coefficients. By solving Equation [7] and [8] simultaneously we derive 
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Consequently, β is equivalent to -p and can be solved for by fitting a regression line to 
the logarithmic transformation of Equation [8] as 

( ) ( ) ( )ln ln lni iF Vα β= + . [10] 

After applying a least squared fit to the data, the model residual errors were tested for 
normality. As illustrated in Figure 2, although in the case of the original non-transformed data 
the residual error did not pass the normality test, the log-transformed residual errors did pass the 
test (p = 0.355).  
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                             (a) Normality Test on Fi 

 
             (b) Normality Test on Log-transformed Fi 
 

Figure 2. Test of Normality of AADT Adjustment Factors. 

 
 

A least squares LRM was then fit to the log-transformed data producing an R2 of 0.89, 
as illustrated in Figure 3. The model was statistically significant (p << 0.005) and both the 
intercept and slope coefficients were significant (p = 0.02 and 0.00, respectively). Consequently, 
the exponent of the AADT for utilization in the exposure measure is 0.86, which is very similar 
to what was derived from the negative binomial fit to the data (p = 0.81). 

 

Figure 3. Computation of Exposure Measure. 

 
 
Once the exponent of the AADT was estimated, the crash rate was computed for each of 

the 186 study sections. A linear regression model in a single independent variable of the form  

( ) 0 1 1ln CR Lβ β= +  [11] 
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was fit to the data. In order to satisfy data normality, the data were sorted based on L1 and 
aggregated into equally sized bins of 8 observations. It should be noted that the typical approach 
to binning is to use equal intervals for binning as opposed to equally sized bins. This unique data 
aggregation approach is equivalent to considering a longer analysis period (in this case 
considering an analysis period of 8×5=40 years). The data aggregation increases the level of 
exposure and thus reduces the number of zero crash observations (in this case zero observations 
are removed), given that it is highly unlikely to have no crashes over a 40-year period. For each 
bin the average section length (L1) and crash rate (CR) was computed. As demonstrated in 
Figure 4 there was insufficient evidence to reject the data error normality and homoscedasticity 
assumption for the log-transformed data (p=0.479) and thus a least squares GLM could be 
applied to the data. 
 

 
(a) Normality Test on Crash Rate 

 
(b) Normality Test on Log-transformed Crash 

Rate 
Figure 4. Test of Normality for Crash Rate Data. 

 
 
 

A robust linear regression was applied to the data to derive the model parameters and 
remove outlier data. This procedure dampens the effect of observations that would be highly 
influential if least squares were used [9]. The robust linear regression fit uses an iteratively re-
weighted least squares algorithm, with the weights at each iteration calculated by applying the 
bi-square function to the residuals from the previous iteration. This Matlab algorithm gives 
lower weight to points that appear to be outliers. Data that should be disregarded are given a 
weight of zero. Consequently, the regression model is less sensitive to outliers in the data as 
compared with ordinary least squares regression. Data observations with zero weights were 
removed from the analysis (in this case a single observation was removed).  

The results of the analysis demonstrate a statistically significant model (F=51.56 and 
p<<0.0005) with an R2 of 0.72. The intercept and L1 coefficients are statistically significant 
(p<<0.0005 and p<<0.0005, respectively) with values of 4.269 and -6.879, respectively. 
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Figure 5. Crash Prediction Model Considering Nearest Access Point. 

 
 
Similarly, a regression model was fit to the data considering the independent variable as 

the distance to the first intersection. A similar robust regression was applied to the data to derive 
the model intercept and slope. Given that the intercept confidence limits included the value of 
intercept of the first model, the intercept was kept constant in both models. A regression was 
then performed to estimate the optimum slope. The model is significant (F=111.44 and 
p<<0.0005) with an R2 of 0.85. The slope of the line is significant (p<<0.0005) with a value of -
4.135. 

 

Regression Statistics
Multiple R 0.849
R2 0.721
R2 (Adj) 0.707
SE 0.479
Obs. 22

ANOVA
df SS MS F Sig. F

Regression 1 11.819 11.819 51.563 0.000
Residual 20 4.584 0.229
Total 21 16.403

Coeff. SE t Stat P-value Low 95% Up 95%
Intercept 4.269 0.163 26.222 0.000 3.930 4.609
L1 -6.879 0.958 -7.181 0.000 -8.877 -4.881

ln(CR) = -6.8789L1 + 4.2694
R2 = 0.7205

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5
Distance to Nearest Access (km)

Ln
(C

ra
sh

 R
at

e)

CR = 71.478e-6.879L1

R2 = 0.7205

0
20
40
60
80

100
120
140
160
180
200

0.0 0.1 0.2 0.3 0.4 0.5

Distance to Nearest Access (km)

C
ra

sh
 R

at
e



 

 
Figure 6. Crash Prediction Model Considering Nearest Intersection. 

 
In summary, the final models that were developed are of the form 

( )
( )0 1 1 26

365 5
E( ) exp ln( ) ln( )

10

p

C L L p Vβ β
×

= ⋅ + + + , or [12] 

( )
( ) ( ) ( )0 1 1 2 1 1 26

365 5
E( ) exp exp exp

10

p

p pC L LV L LVβ β γ β
×

= ⋅ ⋅ = ⋅ ⋅ . [13] 

The expected number of crashes in a single year (C´´) can be computed by adjusting the 
model intercept by the (p-1)×ln(5) as 

( ) ( )0 1 1 26

365
E exp ( 1)ln 5 ln( ) ln( )

10

p

C p L L p Vβ β′′ = ⋅ + − + + + . [14] 

The expected crash rate for a single year in million vehicle kilometers where the traffic 
volume is raised to the exponent p (CR’) can be computed as 

( ) ( )0 1 1E exp ( 1) ln 5CR p Lβ β′ = + − + . [15] 

The expected crash rate in vehicle-miles traveled (VMT) considering an exponent of 1.0 
(CR”) is computed as 

( ) ( ) ( ) 1
0 1 1E exp ( 1) ln 5 1.6 365

p
CR p L Vβ β

−′′ = + − + × , or 

( ) ( )0 1 1E exp ln1.6 ( 1) ln 5 ( 1) ln 365 ( 1) lnCR p p L p Vβ β′′ = + + − + − + + − . [16] 

A number of researchers have argued for the need to calibrate the exposure AADT 
exponent. Consequently, a sensitivity analysis was conducted to study the impact of alternative 
exponents on the CPM predictions. Exponent values ranging from 0.6 to 1.2 were evaluated 

Regression Statistics
Multiple R 0.921
R2 0.848
R2 (Adj) 0.801
SE 0.558
Obs. 22

ANOVA
df SS MS F Sig. F

Regression 1 36.552 36.552 117.436 0.000
Residual 21 6.536 0.311
Total 22 43.088

Coeff. SE t Stat P-value Low 95% Up 95%
Intercept 4.269 #N/A #N/A #N/A #N/A #N/A
L2 -4.135 0.382 -10.837 0.000 -4.928 -3.341
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based on values reported in the literature [7], as illustrated in Figure 7. The results clearly 
indicate that the crash predictions increase as the exponent increases, however the variation in 
crash predictions as a function of V and L1 remains fairly consistent. 

 
Figure 7. Variation in Expected Crashes as a Function of AADT Exponent. 

 
It should be noted that for a constant AADT the expected crashes initially increases as 

the length of the spacing between the freeway ramp and the first access road section increases 
before decreasing again, as demonstrated in Figure 8. The maximum expected crashes occurs at 
an access road spacing of approximately 150 m (500 ft). The observed behavior might appear to 
be counter intuitive at first glance, however can be explained by the fact that as the study section 
increases the expected number of crashes per unit distance decreases, as illustrated in Figure 9 
and Figure 10, while the level of exposure increases. Initially, the rate of increase in the level of 
exposure exceeds the rate of decrease in the crash rate producing an increase in the number of 
crashes. Consequently, decisions should be made using either a crash rate or the expected 
number of crashes per unit distance, as illustrated in Figure 10. Noteworthy is the fact that the 
expected number of crashes for an access road spacing of 30 and 150 m is highlighted to 
demonstrate the current criteria for access road spacing.  

The average number of crashes across all 186 study sections was 2.45 crashes/year with 
an average AADT of 19,456 and an average access road spacing of 169 m (550 ft). The 
expected number of crashes derived from the model for the same AADT and access road 
spacing is estimated by the linear regression model at 2.43 crashes/year (highlighted in Figure 8) 
and thus demonstrating the validity of the model results. Alternatively, the both the NB and 
Poisson models over-estimate the expected number of crashes to be 2.96 and 2.66 crashes/year, 
respectively. 
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Figure 8. Variation in the Expected Number of Yearly Crashes as a Function of the Access Section 
Length and AADT. 

 

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 75000
0.0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15.3 50 0.19 0.35 0.49 0.63 0.76 0.89 1.02 1.14 1.26 1.38 1.96
30.6 100 0.34 0.62 0.88 1.13 1.37 1.61 1.83 2.06 2.28 2.49 3.53
45.9 150 0.46 0.84 1.20 1.53 1.86 2.17 2.48 2.78 3.08 3.37 4.77
61.2 200 0.56 1.01 1.44 1.84 2.23 2.61 2.98 3.34 3.69 4.04 5.73
76.5 250 0.63 1.14 1.62 2.07 2.51 2.93 3.35 3.76 4.16 4.55 6.45
91.7 300 0.68 1.23 1.75 2.24 2.71 3.17 3.62 4.06 4.49 4.92 6.97

107.0 350 0.71 1.29 1.83 2.35 2.85 3.33 3.80 4.26 4.72 5.17 7.32
122.3 400 0.73 1.33 1.89 2.42 2.93 3.43 3.91 4.39 4.86 5.32 7.54
137.6 450 0.74 1.35 1.91 2.45 2.97 3.47 3.96 4.45 4.92 5.39 7.63
152.9 500 0.74 1.35 1.91 2.45 2.97 3.47 3.97 4.45 4.92 5.39 7.64
168.2 550 0.74 1.34 1.89 2.43 2.94 3.44 3.93 4.41 4.88 5.34 7.57
183.5 600 0.72 1.31 1.86 2.38 2.89 3.38 3.86 4.33 4.79 5.24 7.43
198.8 650 0.71 1.28 1.82 2.33 2.82 3.30 3.76 4.22 4.67 5.12 7.25
214.1 700 0.68 1.24 1.76 2.26 2.73 3.20 3.65 4.09 4.53 4.96 7.03
229.4 750 0.66 1.20 1.70 2.18 2.64 3.08 3.52 3.95 4.37 4.79 6.78
244.6 800 0.63 1.15 1.63 2.09 2.53 2.96 3.38 3.79 4.20 4.60 6.52
259.9 850 0.61 1.10 1.56 2.00 2.42 2.83 3.24 3.63 4.02 4.40 6.23
275.2 900 0.58 1.05 1.49 1.91 2.31 2.70 3.09 3.46 3.83 4.19 5.94
290.5 950 0.55 1.00 1.41 1.81 2.20 2.57 2.93 3.29 3.64 3.99 5.65
305.8 1000 0.52 0.95 1.34 1.72 2.08 2.43 2.78 3.12 3.45 3.78 5.36
321.1 1050 0.49 0.89 1.27 1.62 1.97 2.30 2.63 2.95 3.26 3.57 5.06
336.4 1100 0.46 0.84 1.20 1.53 1.86 2.17 2.48 2.78 3.08 3.37 4.78
351.7 1150 0.44 0.79 1.13 1.44 1.75 2.04 2.33 2.62 2.90 3.17 4.50
367.0 1200 0.41 0.75 1.06 1.36 1.64 1.92 2.19 2.46 2.72 2.98 4.23
382.3 1250 0.39 0.70 0.99 1.27 1.54 1.80 2.06 2.31 2.55 2.80 3.96
397.5 1300 0.36 0.66 0.93 1.19 1.44 1.69 1.93 2.16 2.39 2.62 3.71
412.8 1350 0.34 0.61 0.87 1.11 1.35 1.58 1.80 2.02 2.24 2.45 3.47
428.1 1400 0.32 0.57 0.81 1.04 1.26 1.47 1.68 1.89 2.09 2.29 3.24
443.4 1450 0.29 0.53 0.76 0.97 1.17 1.37 1.57 1.76 1.95 2.13 3.02
458.7 1500 0.27 0.50 0.71 0.90 1.09 1.28 1.46 1.64 1.81 1.99 2.82

L (ft) AADT (veh/day)L (m)

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250 300 350 400 450 500

Distance to First Access Road (m)

E(
C

ra
sh

es
/y

ea
r)

5000
20000
50000
75000



 
Figure 9. Variation in Expected Crashes/Km as a Function of AADT Exponent. 
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Figure 10. Variation in the Expected Number of Yearly Crashes per Kilometer as a Function of the 
Access Section Length and AADT. 

 
 

In an attempt to validate the developed model, the AADT and access road spacing 
parameters for each of the 186 sites were input to the various models and the expected number 
of crashes was estimated. A comparison between the observed and estimated crashes revealed a 
reasonable level of correlation (Pearson correlation coefficient of 0.24) between the observed 
and linear regression model estimated crash rates, as illustrated in Figure 11. However, a high 
level of variability is observed in the data. The figure also clearly demonstrates that all models 
tend to under-estimate the expected number of crashes is slopes ranging from 0.339 to 0.549, as 
summarized in Table 1. The results of Table 1 demonstrate that the ZIP model produces the least 
Sum of Squared Error (SSE) between the estimated and observed number of crashes followed 
by the proposed LRM model. The ZIP model, however, in reducing the SSE results in a slope 
that is only 0.339 and thus greatest under-estimation error compared to the other models. 
Alternatively, the Poisson model produces a slope that is closest to 1.0 (0.549), however, the 

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 75000
0.0 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

15.3 50 12.49 22.67 32.14 41.16 49.88 58.35 66.62 74.73 82.70 90.55 128.35
30.6 100 11.25 20.42 28.94 37.07 44.91 52.54 59.99 67.29 74.47 81.54 115.57
45.9 150 10.13 18.38 26.06 33.38 40.44 47.31 54.02 60.60 67.06 73.42 104.07
61.2 200 9.12 16.56 23.47 30.06 36.42 42.60 48.64 54.57 60.38 66.11 93.71
76.5 250 8.21 14.91 21.13 27.06 32.79 38.36 43.80 49.13 54.37 59.53 84.39
91.7 300 7.39 13.42 19.03 24.37 29.53 34.54 39.44 44.24 48.96 53.61 75.99

107.0 350 6.66 12.09 17.13 21.95 26.59 31.11 35.52 39.84 44.09 48.27 68.42
122.3 400 6.00 10.88 15.43 19.76 23.94 28.01 31.98 35.88 39.70 43.47 61.61
137.6 450 5.40 9.80 13.89 17.79 21.56 25.22 28.80 32.31 35.75 39.14 55.48
152.9 500 4.86 8.83 12.51 16.02 19.41 22.71 25.93 29.09 32.19 35.25 49.96
168.2 550 4.38 7.95 11.26 14.43 17.48 20.45 23.35 26.19 28.99 31.74 44.99
183.5 600 3.94 7.16 10.14 12.99 15.74 18.42 21.03 23.59 26.10 28.58 40.51
198.8 650 3.55 6.44 9.13 11.70 14.18 16.58 18.93 21.24 23.51 25.74 36.48
214.1 700 3.20 5.80 8.23 10.53 12.76 14.93 17.05 19.13 21.17 23.17 32.85
229.4 750 2.88 5.23 7.41 9.49 11.49 13.45 15.35 17.22 19.06 20.87 29.58
244.6 800 2.59 4.71 6.67 8.54 10.35 12.11 13.83 15.51 17.16 18.79 26.63
259.9 850 2.33 4.24 6.01 7.69 9.32 10.90 12.45 13.96 15.45 16.92 23.98
275.2 900 2.10 3.82 5.41 6.93 8.39 9.82 11.21 12.58 13.92 15.24 21.60
290.5 950 1.89 3.44 4.87 6.24 7.56 8.84 10.09 11.32 12.53 13.72 19.45
305.8 1000 1.70 3.09 4.38 5.62 6.81 7.96 9.09 10.20 11.28 12.35 17.51
321.1 1050 1.53 2.79 3.95 5.06 6.13 7.17 8.19 9.18 10.16 11.12 15.77
336.4 1100 1.38 2.51 3.56 4.55 5.52 6.46 7.37 8.27 9.15 10.02 14.20
351.7 1150 1.24 2.26 3.20 4.10 4.97 5.81 6.64 7.44 8.24 9.02 12.79
367.0 1200 1.12 2.03 2.88 3.69 4.47 5.23 5.98 6.70 7.42 8.12 11.51
382.3 1250 1.01 1.83 2.60 3.33 4.03 4.71 5.38 6.04 6.68 7.31 10.37
397.5 1300 0.91 1.65 2.34 2.99 3.63 4.24 4.85 5.44 6.02 6.59 9.34
412.8 1350 0.82 1.49 2.11 2.70 3.27 3.82 4.36 4.89 5.42 5.93 8.41
428.1 1400 0.74 1.34 1.90 2.43 2.94 3.44 3.93 4.41 4.88 5.34 7.57
443.4 1450 0.66 1.20 1.71 2.19 2.65 3.10 3.54 3.97 4.39 4.81 6.82
458.7 1500 0.60 1.08 1.54 1.97 2.39 2.79 3.19 3.57 3.96 4.33 6.14
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SSE is 20% higher than the proposed LRM model SSE. Consequently, the proposed LRM 
model appears to offer the best compromise in terms of SSE and model prediction.  

Figure 11. Comparison of Actual and Expected Crashes over a 5-year Period (All 186 Sites). 

SUMMARY FINDINGS 

A key desire of departments of transportation is to identify the minimum distance from a 
freeway ramp to provide access to local businesses. The model developed as part of this 
research effort was utilized to compute the crash rate associated with alternative section spacing, 
as summarized in Error! Not a valid bookmark self-reference.. The results demonstrate an 
eight-fold decrease in the crash rate over an access road spacing ranging from 0 to 300 m. An 
increase in the minimum spacing from 90 m (300 ft) to 180 m (600 ft) results in a 50% reduction 
in the crash rate. 
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Table 2. Impact of Access Road Spacing on Annual Crash Rate (AADT = 20,000 veh/day). 

CONCLUSIONS 

The paper demonstrates that a least square LRM approach can be applied to crash data to 
develop crash prediction models. The proposed approach involves creative manipulation of the 
data to satisfy the least square LRM assumptions; namely normality and homoscedasticity. The 
approach can be summarized as follows:  

(a) Consider the use of an exponential function. This function ensures that the 
number of crashes equals zero when the exposure is zero; that the number of 
crashes are always positive; and that the model reverts to a linear function after 
performing a logarithmic transformation. 

(b) Sort and aggregate the data based on the AADT using a variable bin size while 
ensuring that the second independent variable remains constant across the 
various bins.  

(c) Compute crash adjustment factors to normalize the maximum number of 
crashes across the various bins. 

(d) Perform a logarithmic transformation on the crash adjustment factors to 
compute the AADT exponent using a LRM while ensuring that the data satisfy 
the LRM assumptions of normality and homoscedasticity. 

(e) Compute crash rates using the AADT exponent that was computed earlier and 
then sort and aggregate the crash rate data based on the second independent 
variable using an equally sized bin structure (equal number of observations in 
each bin).  

(f) Compute the average dependent and independent variable for each bin.  
(g) Perform a logarithmic transformation of the data and ensure normality and 

homoscedasticity to develop the final crash prediction model. 
 
The proposed approach was tested and validated using data from 186 access road 

sections in the state of Virginia. The approach was demonstrated to be superior to traditional 
negative binomial models because it is not influenced (through data aggregation) by the 
prevalence of the large number of zero observations that are typical of crash data.  

Further testing of the proposed approach on other datasets is needed to validate the 
proposed approach. Furthermore, a sensitivity analysis of the sensitivity of results on different 
binning approaches for task (b) on the model outcomes is required. 

Distance to First Access Road Distance to First Intersection
L (ft) L (m) Crashes per 106 VMT Relative Relative L (ft) L (m) Crashes per 106 VMT Relative Relative

0 0.0 10.07 1.00 8.14 0 0.0 10.07 1.00 3.53
50 15.2 9.07 0.90 7.33 50 15.2 9.46 0.94 3.31

100 30.5 8.17 0.81 6.60 100 30.5 8.88 0.88 3.11
150 45.7 7.35 0.73 5.94 150 45.7 8.34 0.83 2.92
200 61.0 6.62 0.66 5.35 200 61.0 7.83 0.78 2.74
250 76.2 5.96 0.59 4.82 250 76.2 7.35 0.73 2.57
300 91.4 5.37 0.53 4.34 300 91.4 6.90 0.69 2.42
350 106.7 4.83 0.48 3.91 350 106.7 6.48 0.64 2.27
400 121.9 4.35 0.43 3.52 400 121.9 6.08 0.60 2.13
450 137.2 3.92 0.39 3.17 450 137.2 5.71 0.57 2.00
500 152.4 3.53 0.35 2.85 500 152.4 5.36 0.53 1.88
550 167.6 3.18 0.32 2.57 550 167.6 5.04 0.50 1.76
600 182.9 2.86 0.28 2.31 600 182.9 4.73 0.47 1.66
650 198.1 2.58 0.26 2.08 650 198.1 4.44 0.44 1.55
700 213.4 2.32 0.23 1.88 700 213.4 4.17 0.41 1.46
750 228.6 2.09 0.21 1.69 750 228.6 3.91 0.39 1.37
800 243.8 1.88 0.19 1.52 800 243.8 3.67 0.36 1.29
850 259.1 1.69 0.17 1.37 850 259.1 3.45 0.34 1.21
900 274.3 1.53 0.15 1.23 900 274.3 3.24 0.32 1.13
950 289.6 1.37 0.14 1.11 950 289.6 3.04 0.30 1.07
1000 304.8 1.24 0.12 1.00 1000 304.8 2.86 0.28 1.00
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