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SUMMARY

In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP)
sandwich materials for various transportation construction applications, with particular emphasis
on highway bridge decks in cold regions, were developed and tested. The novelty integrates
advanced polymer composite materials with smart piezoelectric sensors and actuators to form
smart structures, and along with advanced material technologies and proposed damage
identification algorithms, it is capable of improving construction speed in cold climates and self-
monitoring structural conditions in remote sites. A combined experimental and analytical study
to develop, evaluate and test the S-FRP sandwich materials was conducted, and related studies
on dynamic response, temperature effect and scale-up of test results, development of viable and
effective damage identification algorithms and techniques more suitable for 2-D plate-type

structures, and experimental characterization were investigated.

Structural health monitoring and damage identification methods for composite beams and
plate-type structures were studied, especially for FRP sandwich beams and deck panels. A
literature review showed that research on 2-D damage identification method for plate-type
structures is relatively limited. The dynamic response of FRP sandwich beams with sinusoidal
core configuration along either the longitudinal or transverse direction was investigated based on
a high-order sandwich beam theory. The results were compared with Timoshenko’s beam theory,
numerical simulation and experimental test results to illustrate the improvement of the high-order
approach. The temperature effect on dynamic response of FRP sandwich beams/panels was also
studied for condition assessment. A series of FRP sandwich beams and an as-manufactured FRP
sandwich panel were investigated for dynamic response change under temperature effect based

on the material data obtained from dynamic mechanical analysis.



To make the integrated S-FRP sandwich system viable of structural health monitoring, two
dynamic response-based methods were developed for defect or damage identification of plate-
type of structures, like the bridge decks. First, the 2-D continuous wavelet transform (CWT)-
based method was proposed for damage localization. Then, a strain energy-based Damage
Severity Correction Factor (DSCF) method was proposed for damage localization and
quantification. In this method, a damage location factor matrix and a damage severity correction
factor matrix were generated from the curvature mode shape of a plate and then used for damage
localization and quantification. A structural health monitoring strategy was then proposed for
FRP sandwich panels using the combination of experimental modal testing technique and
damage identification method. Using this strategy, the two proposed methods were applied to
the modal testing data of an as-manufactured FRP sandwich deck panel for damage identification.
The 2-D CWT-based strategy used an accelerometer and an impact hammer modal testing
system, while the DSCF-based strategy adopted a polyvinylidence fluoride (PVDF) sensor
network and an impact hammer system which both simulates the proposed S-FRP deck panel
system and may eventually lead to development of integrated S-FRP sandwich materials. The
application of 2-D CWT method on mode shape data from experimental modal analysis showed
that it could effectively indicate the location and area of damage in the FRP sandwich deck panel.
The application of DSCF-based damage identification method on curvature mode shape data
from the FE/experimental modal analysis showed that it could not only effectively indicate the
location of damage but also approximate the damage severity in a FRP sandwich plate-type
structure. The potential integration of the proposed S-FRP sandwich materials system with
wireless communication technology and obstacles facing the implementation of wireless sensor

networks (WSNs) were discussed as well. Outcomes of this study deliver a viable technology



using integrated advanced polymer sandwich materials and smart piezoelectric sensors/actuators

to address transportation safety, security, and innovation in cold regions.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Commercial development and implementation of new, advanced and low-cost engineered
materials can alleviate major adverse effects to infrastructure deterioration worldwide. For
example, new nonferrous materials do not corrode, and the costs of labor for installation of these
lightweight products may be less. Other advantages may include reduced energy consumption,
less environmental pollution, and better response to the devastating effects of earthquakes.
Motivated by the need to improve and rehabilitate transportation infrastructure, advanced
polymer or fiber-reinforced polymer (FRP) composites have been increasingly used in civil
infrastructure applications and are being considered to partially replace and/or complement
conventional materials. This is mainly due to the advantageous properties of these materials.
The advantages include high strength, lightweight, improved resistance to corrosion and fatigue,
superior damage tolerance and the ability to be tailored to meet specific applications, compared

to traditional steel and reinforced concrete structures.

In the past few years, FRP composite decks have received significant attention for use in
rehabilitation and new construction. This is because of their inherent advantages in high
stiffness and strength to weight ratios, improved fatigue resistance, and superior damage
tolerance capability as compared to traditional steel reinforced concrete decks. FRP bridge decks
are commonly placed transverse to the supporting structure such as longitudinal girders, cross
beams, and stringers. FRP decks are typically connected to the underlying supports by using
shear studs or bolted connections. These connections often act simply supported and therefore

do not necessarily provide for composite action. The modular FRP bridge deck systems can
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either serve as bridge panels for 20- to 30-foot spans or be installed over supporting stringers for

longer spans.

The existing application of FRP composites in bridge decks is not fully developed. The
dynamic response of FRP decks which is useful for developing damage detection and health
monitoring strategies is encouraging but not fully utilized. On the other hand, effective and
reliable structural health monitoring (SHM) techniques for damage detection in composite
structures are highly in demand. Damages or defects, such as (1) manufacturing imperfection, (2)
delamination, fiber breaking and matrix cracking in composites, (3) debonding of face sheets
from core, face sheet crimping and dimpling, core crushing caused by excessive core buckling in
sandwich, and (4) debonding of adhesively bonded shapes, can be introduced in the FRP decks
during manufacturing process or during installation process and service life (i.e., impact and
service loading). Coupled with temperature, moisture, and environmentally-related aging effects,
structural defects are present and affect serviceability of the FRP bridge decks. Effective SHM
strategy is able to probe these long-standing undetected damages in FRP bridge decks and
recommend proper recommendations for repair or disuse, thus preventing rapid catastrophic

failures.

(b)

Figure 1.1 Typical FRP deck configurations

(a) Sandwich material panel, and (b) Adhesively bonded pultruded shapes
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Unlike standard materials, FRP composites are typically orthotropic or anisotropic, and
their analyses are much more difficult than traditional materials. For example, while changes in
the geometry of FRP shapes can be easily related to changes in stiffness, changes in the material
constituents do not lead to such obvious results. Structural geometric shapes of FRP decks are
also relatively complicated (e.g., a honeycomb sandwich deck with a sinusoidal core, see Figure
1.1(a)). Subsequently, conventional analytical approaches cannot be directly applied to these
uncommon geometries. Shear deformations for FRP composite materials (e.g., the transverse
shear in sandwich materials is primarily carried by the honeycomb cores) are usually significant,
and therefore, the modeling of FRP structural components should account for shear effects.

There are at least four major FRP bridge decks currently available for field applications: (1)
SuperDeck™, a cross-section of full-depth hexagons and half-depth trapezoids, forming an “H-
Deck”, which was developed by West Virginia University researchers and Creative Pultrusions,
Inc. (CP); (2) Honeycomb FRP sandwich deck, a polymer bridge deck based on sandwich
construction with a sinusoidal core element and top and bottom face sheets, which is produced
by the contact-molding process and manufactured by Kansas Structural Composites Inc. (KSCI);
(3) an FRP bridge deck, produced by SCRIMP - a resin infusion technology which was patented
by DuPont Composites; and (4) DuraSpan™, pultruded FRP bridge deck by Martin Marietta
Composites, consisting of "truss-type" tubes bonded with adhesive. These decks were designed
for minimum material weight to provide sufficient structural performance to withstand highway
bridge loads for both old and new bridges.

A honeycomb structure is the most efficient configuration to provide optimum mechanical
performance per unit weight. For this reason, honeycomb materials are widely used in the

aerospace and automotive industries. In civil infrastructure, a lightweight and heavy-duty
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honeycomb FRP panel for highway bridge decks was developed by the Kansas Structural
Composites Inc. (KSCI) (Plunkett 1997). This sandwich deck has a vertically-oriented sinusoidal
core configuration. An analytical model verified by Finite Element analyses and experimental
testing was developed by Davalos and Qiao et al. (2001). The use of honeycomb materials is not
new, and it is widely found in applications ranging from cardboard boxes to aircraft structures and
control surfaces. The honeycomb FRP sandwich panels with sinusoidal core configuration
proposed by KSCI were adopted in this study, and they were integrated with smart piezoelectric
sensors to form the so-called S-FRP sandwich materials.

FRP deck structures are susceptible to defects, which can be originated from imperfections
in the manufacturing process or developed during service life. Defects in composites like fiber
breakage, matrix crazing/cracking, debonding between core and face sheets or among bonded
pultruded FRP shapes, core crushing, and delamination in laminated panels are typical damages
in composite structures. Damage resulting in system defects can occur during service life from
impact of wheel loads to the structures (heavy service loads or fatigue), or due to environment-
induced effects in the FRP decks. These defects can significantly reduce structural strength and
may grow to failure. Accordingly, reliable and accurate SHM techniques are an important
proactive and cost effective way to prevent a catastrophic failure, which often leads to tragic
consequences. Further, SHM is a naturopathic approach to maintenance and repair of our
infrastructures. In other words, the SHM information can be used to ensure safety and enhance
structural life.

Structural health monitoring, especially structural damage identification technique, has
gained increasing attention from the scientific and engineering communities because the

unpredicted structural failure may cause catastrophic economic and human life loss. A reliable
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and effective non-destructive structural damage identification technique is crucial to maintain
safety and integrity of structures.

Damage identification algorithm is the core to SHM technique. The changes of physical
properties in the structure due to damage will alter the dynamic response, such as natural
frequencies, damping and mode shapes. Vibration-based damage identification algorithms try to
detect the damage by monitoring these dynamic responses. While wave-based damage
identification algorithms try to detect the damage by monitoring the reflection or scattering of
ultrasonic wave. The response information needed to evaluate structural condition immensely
depends on experimental data measurement, type and extent. Hence, the method of acquiring
data must be reliable and robust. Due to the unique sensing and actuating capabilities, smart
materials-based sensors are increasingly being integrated with base materials to form smart
structures, and they are used in structural control, vibration suppression and damping. Before
such materials can be applied to health and usage monitoring systems, appropriate analytical and
experimental techniques should be established, and the feasibility of applications should be
conducted.

As the current state of the art in SHM, the 1-D damage identification algorithms for
damage detection of beam-type structures have been extensively investigated and developed
(Fan and Qiao 2011). However, research on 2-D damage identification algorithms for damage
detection of plate-type structures, especially for plate-type sandwich structures, is still relatively

limited.

1.2 Objectives

With the aim to develop the S-FRP sandwich materials for bridge deck application with

integrated function of health and usage monitoring, the objectives of this project are three-fold:
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(1) To evaluate dynamic response analysis of FRP sandwich structures with smart
piezoelectric sensors and assess temperature effect (particularly the cold temperature)

on dynamic response of FRP sandwich structures;

(2) To develop viable and effective 2-D damage identification algorithms for plate-type

composite structures;

(3) To develop structural monitoring strategy and perform lab testing of the full size FRP
sandwich deck panel using dynamic response-based structural health monitoring

(SHM) techniques.

The overall goal of the project is to develop and test the proposed S-FRP sandwich materials
suitable for highway bridge application, particularly in cold climate. To make the S-FRP sandwich
materials as a viable technology for highway bridges, development and evaluation of effective and
reliable structural health monitoring strategy and damage identification algorithms for composite
structures are essential. The proposed damage identification should be able to detect the existence
of damage and approximate the location/magnitude of the damage. The proposed structural health
monitoring strategy should have the potential to be developed for on-site, automatic, real-time,

global health monitoring of structure.

1.3 Outline of report
This report consists of a total of ten chapters. A brief outline of the coming chapters and
their content is listed as follows:

Chapter 2 provides a comprehensive literature review on structural health monitoring
techniques and damage identification algorithms for beam-type or plate-type structures. Both the

vibration-based and wave-based damage identification algorithms were discussed in this chapter.
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Chapter 3 presents a detailed study on dynamic response of the proposed S-FRP sandwich
materials. The analytical analysis on dynamic response of FRP sandwich beams is based on a
high-order sandwich beam theory, and the modal testing of cantilevered FRP sandwich beams
was performed using the surface-bonded piezoelectric sensors. The results were compared with
Timoshenko’s beam theory, numerical simulation and experimental test results to illustrate the

effectiveness of the high-order approach.

Chapter 4 presents a study of temperature effect on dynamic response of FRP sandwich
beams/panels. In particular, the effect of low temperature on the dynamic response of FRP
sandwich structures was investigated. A series of FRP sandwich beams with either the
longitudinal or transverse sinusoidal core as well as an as-manufactured FRP sandwich panel
were investigated for dynamic response change under temperature effect. The dynamic
mechanical analysis (DMA) test was conducted as well, and the scale-up of test results to predict

the dynamic response of FRP sandwich materials at structural level was performed.

Chapter 5 proposes a 2-D CWT-based damage detection algorithm using “Dergauss2d”
wavelet for plate-type structures. The viability of this method was demonstrated by the analysis

of numerical and experimental mode shapes of a cantilevered plate.

Chapter 6 presents a comparative study based on the finite element model to evaluate five
extensively-used damage detection algorithms for beam-type structures and three damage

detection algorithms for plate-type structures.

Chapter 7 proposed a damage severity correction factor (DSCF)-based damage
identification method for plate-type structures. A damage location factor (DLF) matrix and a

DSCF matrix could be generated from the curvature mode shape of a plate. The damage
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identification method using DSCF and DLF were proposed for damage localization and

quantification. The viability of this method was demonstrated by the numerical investigation.

In Chapter 8, the damage identification methods proposed in Chapters 5 and 7 was applied
for damage identification of an as-manufactured FRP sandwich deck panel. Both data from
Finite Element (FE) simulation and experimental modal analysis were examined using the

proposed 2-D CWT-base method (Chapter 5) and DSCF-based method (Chapter 7).

Chapter 9 discusses the potential integration of the proposed S-FRP sandwich materials
system with wireless communication technology as well as the obstacles facing implementation

of wireless sensor networks (WSN5).

Finally, the conclusions and outcomes from this study are presented in Chapter 10.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

To develop the integrated S-FRP sandwich materials capable of assessing structural
condition and identifying potential damage, structural health monitoring techniques are essential.
Structural health monitoring, especially in the form of structural damage identification
techniques, has gained increasing attention from the scientific and engineering communities
because the unpredicted structural failure may cause catastrophic economic and human life loss.
A reliable and effective non-destructive structural damage identification technique is crucial to

maintain safety and integrity of structures.

Most non-destructive damage identification methods can be categorized as either local or
global damage identification techniques (Doebling et al. 1996). Local damage identification
techniques, such as ultrasonic methods and X-ray methods, require that the vicinity of damage is
known a priori and readily accessible for testing, which cannot be guaranteed for most cases in
civil or aerospace engineering. Hence, the global damage identification technique, such as

vibration-based damage identification method, is developed to overcome these difficulties.

Damage identification methods can also be classified as ‘model-based method’ or
‘response-based method’. The model-based method assumes that a detailed numerical model of
the structure is available for damage identification; while the response-based method depends

only on experimental response data from structures.

The objective of this chapter is to provide a review on damage identification algorithm for
beam-type or plate-type structures. There are two main reasons for the focus on simple

structures, such as beams or plates: (1) most structures or their major components in civil and
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mechanical engineering can be simplified as a beam or plate, and (2) the problem of identifying a
specific damage in a beam/plate provides an important benchmark for effectiveness and accuracy
of identification techniques. This chapter is intended to identify starting points for research in
damage identification and structural health monitoring and in choosing and implementing the
available damage identification algorithms and signal processing methods in damage

identification of simple structures.

The fundamental idea for the vibration-based damage identification is that the damage-
induced changes in the physical properties (e.g., mass, damping, and stiffness) will cause
detectable changes in modal properties (e.g., natural frequencies, modal damping and mode
shapes). For instance, reductions in stiffness result from the onset of cracks. Therefore, it is
intuitive that damage can be identified by analyzing the changes in vibration features of the

structure.

Although in vibration test, the excitation and response are always measured and recorded
in the form of time history, it is usually difficult to examine the time domain data for damage
identification. A more popular method is to examine the modal domain data through modal
analysis technique, in which the time domain data is transformed into the frequency domain, and
then the modal domain data can be farther extracted from the frequency domain data. During the
past three decades, great effort has been made in the researches within all three domains (i.e.,
time, frequency, and modal domains). It seems that this effort will continue since no single
existing method can solve all the damage identification problems from various types of damages
and structures. However, the modal domain methods attract more attention and play a dominant
role in the state-of-the-art of structural damage identification. The modal domain methods

evolve along with the rapid development of experimental modal analysis technique, and they
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gain their popularity because the modal properties (i.e., natural frequencies, modal damping,
modal shapes, etc.) have their physical meanings and are thus easier to be interpreted or
interrogated than those abstract mathematical features extracted from the time or frequency

domain.

During the last three decades, extensive research has been conducted in vibration-based
damage identification, and significant progress has been achieved in this highlight area. A broad
range of techniques, algorithms and methods are developed to solve various problems
encountered in different structures, from the basic structural components (e.g., beams and plates)
to complex structural systems (e.g., bridges and buildings). Doebling et al. (1996) presented an
extensive review of vibration-based damage detection methods up to 1996. Sohn et al. (2003)
then presented an updated version of this review on the literature up to 2001. In both the articles,
the features extracted for identification were considered to classify the damage identification
methods. Following closely this classification, Carden and Fanning (2004) presented a literature
survey with particular emphasis on the papers and articles published from 1996 to 2003.

The literature review on vibration-based damage identification is organized by the
classification using the features extracted for damage identification, and these damage
identification methods are categorized as follows:

e Natural frequency-based methods;

e  Mode shape-based methods;

e  Curvature/strain mode shape-based methods;

e  Other methods based on modal parameters.
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2.2 Natural frequency-based methods

Natural frequency-based methods use the natural frequency change as the basic feature for
damage identification. The choice of the natural frequency change is attractive because the
natural frequencies can be conveniently measured from just a few accessible points on the

structure and are usually less contaminated by experimental noise.

2.2.1 The forward problem

The forward problem of this issue is to determine the natural frequency changes of a given
structure based on damage location and severity, and it serves as a theoretical foundation for the
natural frequency-based methods. Gudmundson (1982) used an energy-based perturbation
approach and derived an explicit expression for the resonance frequencies of a wide range of
damaged structure. This method can account for a loss of mass in addition to a loss of stiffness.
Liang et al. (1992) addressed the issue of determining frequency sensitivity for simply supported
or cantilevered beam with one crack and developed analytical relationships between the first-
order changes in the eigenfrequencies and the location and severity of the damage. This method
requires symbolic computation of the characteristic equation. Morassi (1993) showed that the
frequency sensitivity of a cracked beam-type structure can be explicitly evaluated by using a
general perturbation approach. Frequency sensitivity turns to be proportional to the potential
energy stored at the cracked cross section of the undamaged beam. Moreover, the ratio of the
frequency changes of two different modes turns to be a function of damage location only. Both
Liang and Morassi’s methods were based on Euler-Bernoulli beam theory and modeled crack as
a massless, infinitesimal rotational spring. All of the above-mentioned three explicit expressions
are valid only for small defects. Kasper et al. (2008) derived the explicit expressions of

wavenumber shift and frequency shift for a cracked symmetric uniform beam. These
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expressions apply to beams with both shallow and deeper cracks. But the explicit expressions
are based on high frequency approximation, and therefore, they are generally inaccurate for the

fundamental beam mode and for a crack located in a boundary near field.

2.2.2 The inverse problem

The inverse problem of this issue is to determine damage location and size of a given
structure based on natural frequency measurement. The study on this inverse problem dates back
to 1978, when Adams et al. (1978) presented a method for detection of damage in a one-
dimensional component utilizing the natural frequencies of longitudinal vibrations. In 1997,
Salawu (1997) presented an extensive review of publications before 1997 dealing with the
detection of structural damage through frequency changes. In the conclusion of this review
paper, Salawu suggested that the natural frequency changes alone may not be sufficient for a
unique identification of the location of structural damage because cracks associated with similar
crack lengths but at two different locations may cause the same amount of frequency change.

Messina et al. (1998) proposed a correlation coefficient termed the Multiple Damage
Location Assurance Criterion (MDLAC) by introducing two methods of estimating the size of
defects in a structure. The method is based on the sensitivity of the frequency of each mode to
damage in each location. “MDLAC” is defined as a statistical correlation between the analytical

predictions of the frequency changes of and the measured frequency changes Af . The
analytical frequency change Jf can be written as a function of the damage extent vector oD .

The required damage state is obtained by searching for the damage extent vector 6D which

maximizes the MDLAC value:
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Two algorithms (i.e., the first and second order methods) were developed to estimate the
absolute damage extent. Both the numerical and experimental test results were presented to
show that the MDLAC approach offers the practical attraction of only requiring measurements of
the changes in a few of natural frequencies of the structure between the undamaged and damaged
states and provides good predictions of both the location and absolute size of damage at one or
more sites.

Liang et al. (1991) developed a method based on three bending natural frequencies for the
detection of crack location and quantification of damage magnitude in a uniform beam under
simply supported or cantilever boundary conditions. The method involves representing the crack
as a rotational spring and obtaining plots of its stiffness with crack location for any three natural
modes through the characteristic equation. The point of intersection of the three curves gives the
crack location and stiffness. The crack size is then computed using the standard relation between
stiffness and crack size based on fracture mechanics. This method had been extended to stepped
beams (1997) by Nandwana and Maiti and to segmented beams (2000) by Chaudhari and Maiti
using the Frobenius method to solve Euler-Bernoulli type differential equations. Chinchalkar
(2001) used a finite element-based numerical approach to mimic the semi-analytical approach
using the Frobenius method. This approach does not require quadruple precision computation,
and it is relatively easy to apply to different boundary conditions. Lele and Maiti (2002)
extended Nandwana and Maiti’s method to short beam, taking into account the effects of shear
deformation and rotational inertia through the Timoshenko beam theory. Patil and Maiti (2003)

proposed a frequency shift-based method for detection of multiple open cracks in an Euler-
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Bernoulli beam with varying boundary conditions. This method is based on the transfer matrix
method, and it extends the scope of the approximate method given by Liang et al. (1991) for a
single segment beam to multi-segment beams. Murigendrappa et al. (2004a; 2004b) later applied
Patil and Maiti's approach to single/multiple crack detection in pipes filled with fluid.

Morassi (2001) presented a single crack identification in a vibrating rod based on the
knowledge of the damage-induced shifts in a pair of natural frequencies. The analysis is based
on an explicit expression of the frequency sensitivity to damage and enables non-uniform bars
under general boundary conditions to be considered. Some of the results are also valid for
cracked beams in bending. Morassi and Rollo (2001) later extended the method to the
identification of two cracks of equal severity in a simply supported beam under flexural
vibrations. However, the inverse problem is ill-posed, just as many other frequency-based
methods; namely, even by leaving symmetrical positions aside, cracks with different severity in
two sets of different locations can produce identical changes in the first three natural frequencies.

Kim and Stubbs (2003) proposed a single damage indicator (SDI) method to locate and
quantify a crack in beam-type structures by using changes in a few natural frequencies. A crack
location model and a crack size model were formulated by relating fractional changes in modal
energy to changes in natural frequencies due to damage. In the crack location model, the

measured fractional change in the ith eigenvalue Z, and the theoretical (FEM-based) modal
sensitivity of the ith modal stiffness with respect to the jth element £, is defined, respectively.

The theoretical modal curvature is obtained from a third order interpolation function of

theoretical displacement mode shape, and they are expressed as

Z,=50 | o (2-2)
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Then, an error index e¢; is introduced to represent the localization error for the ith mode and the
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where NM denotes the number of measured vibration modes. To account for all available modes,

a single damage indicator (SDI) is defined to indicate the damage location

NM -1/2
SDI, = {Z e;} (2-5)
i=1

While in the crack size model, the damage inflicted a; at predefined locations can be
predicted using the sensitivity equation. The crack depth can be computed from a; and the crack
size model based on fracture mechanics. The feasibility and practicality of the crack detection
scheme were evaluated by applying the approach to the 16 test beams.

Zhong et al. (2008) recently proposed a new approach based on the auxiliary mass spatial
probing using the spectral centre correction method (SCCM), to provide a simple solution for
damage detection by just using the output-only time history of beam-like structures. An SCCM
corrected high accurate natural frequency vs. auxiliary mass location curve is plotted along with
the curves of its derivatives (up to 3™ order) to detect the crack. However, only the FE
verification was provided to illustrate the method. Since it is not so easy to get a high resolution

natural frequency vs. auxiliary mass location curve in the experiment as in the numerical
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simulation, the method’s applicability and practicality in in-situ testing or even laboratory testing
are still in question.

There are also several frequency change-based methods using soft optimization process for
damage detection. Maity and Tripathy (2005) used the so-called Genetic Algorithm (GA) to
detect and assess the structural damage from changes in natural frequencies. Pawar and Ganguli
(2005) applied the genetic fuzzy system to detect the matrix crack in thin-walled composite

structures based on changes in natural frequencies.
2.2.3 Limitations of frequency-based methods

Although the use of natural frequency changes for crack detection has been extensively
studied in the past three decades, the aforementioned traditional damage detection methods based
on frequency change still have several common limitations.

One fundamental limitation lies in the modeling of structure and damage. Except the
approach in Zhong et al. (2008), all of the frequencies-based methods are model-based. Most
methods for damage identification in beam-type structures rely on Euler-Bernoulli beam theory
(except the shear deformable model in Lele and Maiti (2002)), and they model crack as a
rotational spring. It is well known that Euler-Bernoulli beam theory over-predicts natural
frequencies in short beams and high frequency bending modes. It is also known that modeling of
crack as a rotational spring based on fracture mechanics will lose its credibility in high frequency
modes or deep crack cases. Therefore, these methods are only applicable to a slender beam-type
structure with small cracks. Moreover, the range of vibration modes which are suited for
damage detection is narrowed to the first few modes due to the basic assumptions of these

methods.
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Another critical limitation is that the frequency changes due to damage are usually very
small and may be buried in the changes due to environmental and operational conditions. For
this reason, most successful damage identification methods using frequency are verified only in
controlled laboratory scale rather than testing of real structures in their operating environment.
Given that it is acknowledged that the in-situ measured frequency variation due to ambient
vibration and environmental effects can be as high as 5-10%, generally, it would be necessary
for a natural frequency to change by about 5% for damage to be detected with confidence
(Salawu 1997). To account for this effect, a statistical damage detection model using the pattern
recognition technique is needed to distinguish between damage-induced changes from
environment-induced changes. Ni et al. (2005) addresses the modeling of temperature effects on
modal frequencies based on a long-term structural health monitoring system of Ting Kau Bridge.
The support vector machine (SVM) technique is applied to formulate the regression models
which quantify the effect of temperature on modal frequencies. It shows that the SVM models
exhibit good capabilities of mapping between the temperature and modal frequencies. Kim et al.
(2007) presented a vibration-based damage monitoring scheme to give warning of the occurrence,
location, and severity of damage under the temperature-induced uncertainty conditions. A
damage warning model is selected to statistically identify the occurrence of damage by
recognizing the patterns of damage-driven changes in natural frequencies of the test structure and
by distinguishing temperature-induced off-limits.

Another limitation is that the damage identification problem is often ill-posed even without
noise pollution, which leads to non-uniqueness of the solutions of damage location and severity.
First, it is obvious that damage with same severity in symmetric locations of a symmetric

structure will cause identical frequency changes. Furthermore, damage with different severity in
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different locations can also produce identical changes in a few measured natural frequencies.
This problem is even more severe for detection of multiple cracks. To avoid non-uniqueness,
several damage detection methods require that the number of measurable modal frequencies
should be close to the number of system parameters required to characterize the damage.
However, the number of accessible vibration modes which is suited for damage detection is very
limited (typically the first few modes), usually much less than the number of system parameters
required. To overcome this difficulty, Dilena and Morassi (2004) suggested that an appropriate
use of frequencies and anti-resonances may avoid the non-uniqueness of the damage location
problem which occurs when only frequency measurements data is used in single crack
identification. Jiang et al. (2006) incorporated a tunable piezoelectric transducer circuitry into
the structure to enrich the modal frequency measurements, meanwhile implementing a high-
order identification algorithm to sufficiently utilize the enriched information. It is shown that the
modal frequencies can be greatly enriched by the inductance tuning, which, together with the
high-order identification algorithm, leads to a fundamentally-improved performance on the
identification of single and multiple damages with the usage of only lower-order frequency
measurements.

In summary, the frequency change-based damage identification method can be successfully
applied to simple structures with small crack (typically, a slender beam-type structure with
artificially induced cracks) in a controlled laboratory condition. However, due to its inherent
drawbacks, its applications for real complex structures or multiple/severe damage detection is

limited.
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2.3 Mode shape-based methods

Compared to using natural frequencies, the advantage of using mode shapes and their
derivatives as a basic feature for damage detection is quite obvious. First, mode shapes contain
local information, which makes them more sensitive to local damages and enables them to be
used directly in multiple damage detection. Second, the mode shapes are less sensitive to
environmental effects, such as temperature, than natural frequencies (Farrar and James 1997).
The disadvantage is also apparent. First, measurement of the mode shapes requires a series of
sensors; second, the measured mode shapes are more prone to noise contamination than natural
frequencies.

In the past three decades, many damage identification methods have been developed based
on direct or indirect use of measured mode shapes. These methods are roughly categorized into
two types. The traditional ‘mode shape change methods’ try to establish a relationship between
damage location/severity and mode shape change through a theoretical or finite element model.
Hence, they depend on mode shape data from both intact and damaged structure. With the
development of modern signal processing technique and its application in damage identification,
a series of relatively new damage identification methods have been developed. The modern
‘signal processing methods’ can be applied either to mode shape change or to mode shape data
from damaged structures alone. These methods take mode shape change or mode shape data as a
spatial-domain signal and use signal processing technique to locate damage by detecting the

local discontinuity of mode shape curve caused by damage.

2.3.1 Traditional mode shape change method

The traditional mode shape change method uses the mode shape change from intact and

damaged structures as a basic feature for damage identification. The baseline data from intact
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structure can be obtained from either an experimental test on the intact structure or an accurate
numerical model of the intact structure. When experimental data on the intact structure is not
available, a finite element model is usually adopted to generate the baseline data.

Shi et al. (2000a) extended the damage localization method based on multiple damage
location assurance criterion (MDLAC) (Messina et al. 1998) by using incomplete mode shape
instead of modal frequency. The two-step damage detection procedure is to preliminarily
localize the damage sites by using incomplete measured mode shapes and then to detect the
damage site and its extent again by using measured natural frequencies. No expansion of the
incomplete measured mode shapes or reduction of finite element model is required to match the
finite-element model, and the measured information can be used directly to localize damage sites.
The method was demonstrated in a simulated 2-D planar truss model. Comparison showed that
the new method is more accurate and robust in damage localization with or without noise effect
than the original MDLAC method. In this method, the use of mode shape is only for preliminary
damage localization, and the accurate localization and quantification of damage still rely on
measured frequency changes.

Lee et al. (2005) presented a neural networks-based technique for element-level damage
assessments of structures using the mode shape differences or ratios of intact and damaged
structures. The effectiveness and applicability of the proposed method using the mode shape
differences or ratios were demonstrated by two numerical example analyses on a simple beam
and a multi-girder bridge. Hu and Afzal (2006) proposed a statistical algorithm for damage
detection in timbers using difference of the mode shapes before and after damage. The different
severities of damage, damage locations, and damage counts were simulated by removing mass

from intact beams to verify the algorithm. The results showed that the algorithm is reliable for
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the detection of local damage under different severities, locations, and counts. Pawar et al. (2007)
investigated the effect of damage on beams with the clamped boundary conditions using Fourier
analysis of mode shapes in the spatial domain. The damaged mode shapes are expanded using a
spatial Fourier series, and a damage index in the form of a vector of Fourier coefficients is
formulated. A neural network is trained to detect the damage location and size using Fourier
coefficients as input. Numerical studies showed that the damage detection using Fourier
coefficients and neural networks has the capability to detect the location and damage size
accurately. However, the use of this method is limited to beams with the clamped-clamped
boundary condition. Abdo and Hori (2002) suggested that the rotation of mode shape is a
sensitive indicator of damage. Based on a finite element analysis of a damaged cantilevered
plate and a damaged simply-supported plate, the rotation of mode shape is shown to have better
performance of multiple damage localization than the displacement mode shape itself.

In general, the traditional mode shape change methods are not very sensitive to damages
and commonly subjected to several limitations. For example, they are only sensitive to damage
in certain area of the structures (e.g., around mid-span of a clamped-clamped beam); without
further signal processing or pattern recognition technique, they can only be adopted for
preliminary damage localization rather than accurate localization and quantification of damage;

their applications in in-situ structures are also very limited.
2.3.2 Modern signal processing methods using mode shape

In most in-situ cases, experiment on intact structures is not feasible. For the model-based
methods, the credibility of a numerical model must be established through careful model
verification and validation (Hemez 2004). The lacks of experimental data from intact structures

also increase the difficulty in establishing an accurate numerical model. Furthermore, numerical
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analysis requires considerable computational cost, especially when integrated in an iterative
optimization process. This limitation makes the model-based methods not suitable for real-time
structure damage detection.

In order to solve these problems, developing a response-based method that depends on
experimental data only from damaged structures has recently become a focused research topic in
damage identification. These methods do not require a theoretical or numerical model. Their
basic assumption is that the mode shape data from a healthy structure contains only low-
frequency signal in spatial domain compared to the damage-induced high-frequency signal
change. Several signal processing technique-based damage detection algorithms, such as fractal
dimension method and wavelet transform method, have been investigated. It should be noted
that the ‘signal processing method’ can be applied to both the mode shape change and damaged
mode shape data alone. When only the damaged mode shape data are used, these methods

cannot be used for damage quantification due to its inherent limitation.

Fractal dimension method
Hadjileontiadis et al. (2005; 2007) proposed a response-based damage detection algorithm
for beam and plate using fractal dimension (FD). For beam-type structures, the FD of a curve is

estimated by

FD — 10g10(n) , (2'6)
d
log,, (z) +log,,(n)

where 7 is the number of steps in the curve; d is the diameter estimated as the distance between

the first point of the sequence £, and the ith point P of the sequence that provides the farthest

distance; and L is the total length of the curve or the sum of distances between successive points.
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d =max dist(F, P)
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This method calculates the localized fractal dimension of the fundamental mode shape
directly. The damage features are established by employing a sliding window of length M across
the mode shape and estimating the FD at each position for the regional mode shape inside the
window. Damage location and size are determined by a peak on the FD curve indicating the
local irregularity of the fundamental mode shape introduced by the damage.

If the higher mode shapes were considered, this method might give misleading information
as demonstrated in their study. To overcome this shortcoming, Wang and Qiao (2007) proposed
a modified fractal dimension method termed ‘generalized fractal dimension’ (GFD) method by

introducing a scale factor S in the FD algorithm

GFD = log,,(n) ’
loglo(f) +log,,(n)
— 2 2 2
.= max (v )+ (3 =5) @9

M 2, 2
L = Z\/(ij _J’H_H) +S (xi+j _xi+_j—1>
=

Instead of directly applying the algorithm to the fundamental mode shape, GFD is applied
to the ‘uniform load surface’ (ULS) (Zhang and Aktan 1998) to detect the damage in the paper.
Three different types of damage in laminated composite beams have been successfully detected
by the GFD (Qiao et al. 2007b; Wang and Qiao 2007) . It should be pointed out that the GFD
bears no conventional physical meaning as compared to the FD, and it only serves as an
indicator of damage. A scale factor § has to be carefully chosen in order to detect damage

successfully.
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Recently, Qiao and Cao (2008) proposed a novel waveform fractal dimension-based
damage identification algorithm. An approximate waveform capacity dimension (AWCD) is
formulated first, from which an AWCD-based modal irregularity algorithm (AWCD-MAA) is
systematically established. Then, the basic characteristics of AWCD-MAA on irregularity
detection of mode shapes, e.g., crack localization, crack quantification, noise immunity, etc., are
investigated based on an analytical crack model of cantilever beams using the linear elastic
fracture mechanics. In particular, from the perspective of isomorphism, a mathematical solution
on the use of applying the waveform fractal dimension to higher mode shapes for crack
identification is originally proposed, from which the inherent deficiency of waveform fractal
dimension to identify crack when implemented to higher mode shapes is overcome. The
applicability and effectiveness of the AWCD-MAA is validated by an experimental program on
damage identification of a cracked composite cantilever beam using directly measured strain

mode shape from smart piezoelectric sensors.

Wavelet transform method

Wavelet analysis has shown its inherent merits in damage detection over traditional
methods due to its ability to closely examine the signal with multiple scales to provide various
levels of detail and approximations. The use of wavelet transform to identify damage from mode
shape has been one of the most popular techniques. These methods treat mode shape data as a
signal in spatial domain, and they use spatial wavelet transform technique to detect the signal
irregularity caused by damage.

Liew and Wang (1998) first used spatial wavelet coefficients for crack detection based on
the numerical solution for the deflection of a beam under oscillating excitation. Wang and Deng

(1999) considered Haar wavelet transforms to analyze spatially distributed signals (displacement
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and strain measurements) for damage detection of a cracked beam and plate. Quek et al. (2001)
examined the sensitivity of wavelet technique in the detection of cracks in beam structures.
Although their works focused on deflection under the static or impact loading other than the
mode shape, they demonstrated the potential of using wavelet transform on the mode shape for
damage detection.

Hong et al. (2002) showed that the continuous wavelet transform (CWT) of mode shape
using a Mexican hat wavelet is effective to estimate the Lipschitz exponent for damage detection
of a damaged beam. The magnitude of the Lipschitz exponent can be used as a useful indicator
of the damage extent. It is also proved in their work that the number of the vanishing moments
of wavelet should be at least 2 for crack detection in beams. Douka et al. (2003; 2004) applied
one-dimensional symmetrical 4 wavelet transform on the mode shape for crack identification in
beam and plate structures. The position of the crack is determined by the sudden change in the
wavelet coefficients. An intensity factor is also defined to estimate the depth of the crack from
the coefficients of the wavelet transform.

Gentile and Messina (2003) presented a comprehensive investigation on the application of
CWT on mode shape for damage detection of a cracked beam. It is shown that when the scale s
is small, CWT with m vanishing moment can be a good approximation of the mth derivatives of
the spatial domain signal except for the discrepancies at the boundaries. The Gaussian derivative
wavelet family (Gausl~4) was suggested due to its particular advantage in damage detection
because it will not cause an interruption of the singularity in the signal towards the finest scales.
The wavelets are shown to be able to de-noise the mode shape data and preserve the peaks
indicating damage location by adopting a tradeoft between the finest and larger scales. It is also

shown that weighting the mode shape through a window can effectively reduce the boundary
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effect caused by signal discontinuity. For application of classical Gaussian wavelets, a relatively
high density of sensors is required due to their natural difficulty to process a low number
sampling points.

Zhong and Oyadiji (2007) proposed a crack detection algorithm in symmetric beam-like
structures based on stationary wavelet transform (SWT) of mode shape data. Two sets of mode
shape data, which constitute two new signal series, are, respectively, obtained from the left half
and reconstructed right half of modal displacement data of a simply supported damaged beam.
The difference of the detail coefficients of the two new signal series is used for damage detection.
The method is verified using the modal shape data generated by a finite element analysis of 36
damage cases of a simply supported beam with an artificial random noise of 5% SNR. The
effects of crack size, depth and location as well as the effects of sampling interval were
examined. The results show that all the cases can provide evidence of crack existence at the
correct location of the beam and that the proposed method can be recommended for
identification of small cracks as small as 4% crack ratio in real applications with measurement
noise being present. However, there are two main disadvantages of this method. First, the use of
this method based on SWT requires fairly accurate estimates of the mode shapes. Second, the
method cannot tell the crack location from its mirror image location due to its inherent limitation.
Therefore, in applying the method, both the crack location predicted and its mirror image
location should be checked for the presence of a crack.

Chang and Chen (2005) presented a spatial Gabor wavelet-based technique for damage
detection of a multiple cracked beam. Given natural frequencies and crack positions, the depths
of the cracks are then solved by an optimization process based on traditional characteristic

equation. Analysis and comparison show that it can detect the positions of cracks and their
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depths and also has high sensitivity to the crack depth and the accuracy of this method is good.
The limitation of this method is very common in wavelet transform methods, i.e., there are peaks
near the boundaries in the wavelet plot caused by discontinuity and the crack cannot be detected
when the crack is near the boundaries. Chang and Chen (2004) also applied this technique to
detect damage in a rectangular plate.

Poudel et al. (2007) proposed a damage detection method for the beam-type structures
based on complex Gaussian wavelet transform of mode shape difference. The uses of three
different wavelet transforms (i.e., Gaussian wavelet, complex Gaussian wavelet, Morlet wavelet)
are compared. The determination of maximum and minimum scale to avoid edge effect and
noise effect was also discussed. The laboratory experiment on a simply supported beam using
the high-speed digital video camera was conducted to verify the method. Results show that the
wavelet transformation of the mode shape difference function provides an inspection-friendly
display of local changes due to structural damage. The maximum modulus and sign change of
phase angle in the wavelet coefficients indicate the damage locations.

Rucka and Wilde (2006) applied the respective Gaussian wavelet and reverse biorthogonal
wavelet transform on the fundamental mode shapes of beam and plate structures for damage
detection.

Recently, Cao and Qiao (2008) proposed a novel wavelet transform technique (so called
‘integrated wavelet transform’), which takes synergistic advantage of the stationary wavelet
transform (SWT) and the continuous wavelet transform (CWT), to improve the robustness of
irregularity analysis of mode shapes in damage detection. Two progressive wavelet analysis
steps are considered, in which the SWT-based multiresolution analysis (MRA) is first employed

to refine the retrieved mode shapes, followed by the CWT-based multiscale analysis (MSA) to
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magnify the effect of slight irregularity. The SWT-MRA is utilized to separate the multi-
component modal signal, eliminate random noise and regular interferences, and thus extract
purer damage information; while the CWT-MSA is employed to smoothen, differentiate or
suppress polynomials of mode shapes to magnify the effect of irregularity. The choice of the
optimal mother wavelet in damage detection was also elaborately discussed. The proposed
methodology was evaluated using the mode shape data from the numerical finite element
analysis and experimental testing of a cantilever beam with a through-width crack. The
methodology presented provides a robust and viable technique to identify minor damage in a

relatively lower signal-to-noise ratio environment.

2.4 Mode shape curvature/strain mode shape-based methods

It has been shown by many researchers that the displacement mode shape itself is not very
sensitive to small damage, even with the high density mode shape measurement (Huth et al. 2005;
Khan et al. 1999; Salawu and Williams 1994). As an effort to enhance the sensitivity of mode
shape data to the damage, the mode shape curvature is investigated as a promising feature for
damage identification. Once again, the modal curvature-based methods can be commonly
categorized into two types: (1) the traditional ‘modal curvature change methods’, and (2) the
modern ‘signal processing methods’. The curvature mode shapes also closely involve in the
modal strain energy-based method (Kim et al. 2003; Shi and Law 1998; Shi et al. 2000a; Stubbs

and Kim 1996; Stubbs et al. 1995) (see Section 2.4.3).
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2.4.1 Traditional modal curvature change method

Pandey et al. (1991) suggested for the first time that the mode shape curvature (MSC), i.e.,
the 2™ derivatives of mode shape, is highly sensitive to damage and can be used to localize it.
The curvature mode shapes are derived using a central difference approximation as follows

= (W + W —2w) I (2-9)
where / is the sensor spacing.

Results showed that the difference of curvature mode shapes from intact and damaged
structure can be a good indicator of damage location. It was also pointed out (Abdel Wahab and
De Roeck 1999) that for the higher modes, the difference in modal curvature shows several
peaks not only at the damage location but also at other positions, which may lead to a false
indication of damage. Hence, in order to reduce the possibility of a false alarm, only the first
few low curvature mode shapes can be used for damage identification.

Salawu and Williams (1994) compared the performance of both the curvature and
displacement mode shapes for locating damage and confirmed the mode shape curvature as a
sensitive indicator of damage. However, the sensitivity and effectiveness of mode shape
curvature method were also questioned by several researchers with experimental evidence
showing that the modal curvature by itself cannot locate small damages (Ratcliffe 2000). Abdel
Wahab and De Roeck (1999) investigated the accuracy of using the central difference
approximation to compute the mode shape curvature based on finite element analysis. The
authors suggested that a fine mesh is required to derive the modal curvature correctly for the
higher modes and the 1% mode will provide the most reliable curvature in practical application

due to the limited number of sensors needed. Then, a damage indicator called ‘“curvature

damage factor”, which is the average absolute difference in the intact and damaged curvature
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mode shapes of all modes, is introduced. The technique was further applied to a real structure,
namely bridge Z24, to show its effectiveness in multiple damage location. Just-Agosto et al.
(2007) used the mode shape curvature data and a properly trained neural network (NN) scheme
to implement a successful damage detection for composite sandwich beam.

Deriving the mode shape curvature from curve fitting or finite difference approximation
may introduce some considerable error. According to Euler-Bernoulli beam theory, the strain at
top surface of a beam under bending is proportional to the curvature of the beam. Therefore, the
curvature mode shape of a slender beam can be directly measured by measuring the strain mode
shape.

Swamidas and Chen (1995) performed a finite element-based modal analysis on a
cantilever plate with a small crack. It was found that the surface crack in the structure will affect
most of the modal parameters, such as the natural frequencies of the structure, amplitudes of the
response and mode shapes. Some of the most sensitive parameters are the difference of the
strain mode shapes and the local strain frequency response functions. By monitoring the changes
in the local strain frequency response functions and the difference between the strain mode
shapes, the location and severity of the crack that occurs in the structure can be determined.
Laboratory experiment by Zhou et al. (2007) showed that the direct measurement of curvature
using appropriately placed strain gauges was found to improve the localization resolution, a fact
attributed to the elimination of several data processing steps required when the acceleration data
are used. Li et al. (2005) presented a crack damage detection using a combination of natural
frequencies and strain mode shapes as input in artificial neural networks (ANN) for location and

severity prediction of crack damage in beam-like structures. In the experiment, several steel
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beams with six distributed surface-bonded strain gauges and an accelerometer mounted at the tip
were used to obtain modal parameters such as resonant frequencies and strain mode shapes.
Recently, Qiao and his coworkers (Hamey et al. 2004; Lestari and Qiao 2005; Lestari et al.
2007; Qiao et al. 2007a; Qiao et al. 2007b) conducted a series of studies on using the strain mode
shapes measured from the surface-bonded piezoelectric sensors to identify various damage in
composite beam or plate structures. Hamey et al. (2004) evaluated several damage detection
algorithms in carbon/epoxy composite beams with several possible damage configurations using
the directly measured curvature mode shape (strain mode shape). The results showed that all the
methods of the curvature modes measured by the piezoelectric strain sensors (PVDF) could be
used as a potential tool in damage detection techniques, and the damage index method (DIM)
(Stubbs et al. 1995) detected and isolated the damage better than other ones studied. Lestari and
Qiao (2005) adopted a similar approach of using the directly measured curvature mode shapes
from the PVDF sensor to detect debonding and core crushing in composite honeycomb sandwich

beams, and both the location and relative size of damage were evaluated.
2.4.2 Modern signal processing methods using modal curvature

Ratcliffe (1997) developed a response-based gapped smoothing method (GSM) to locate
the damage by fitting a localized cubic polynomial curve to the mode shape curvature and

calculating a difference between the cubic and Laplacian as
0 =(a, +ax+a,x’ +ax’) -k, (2-10)
where a,,a,,a,,a, are coefficients to be determined by fitting the mode shape curvature
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k;,, of damaged structure. The mode shape curvature can be obtained by a finite

difference approximation using equation (2-9) or by directly measuring the strain mode shape.

This method was verified by a laboratory experiment on a slotted steel beam under free-free
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boundary condition. The GSM is similar to Pandey et al.’s curvature mode shape difference
method in both using the mode shape curvature, but it does not require the baseline mode shape.
Ratcliffe also suggested that the mode shape data from the fundamental mode are most suited to
this technique. Ratcliffe and Bagaria (1998) successfully applied the GSM to locate a
delamination in a composite beam. A damage index defined as the square of the difference
between the curvature and the gapped cubic was used to determine the location and size of the
damage. Ratcliffe (2000) later extended the GSM to broadband the operating shape curvature.
The separate gapped cubic polynomials are calculated for each of the real and imaginary parts of
the complex curvature functions. The damage index at each point is determined as the squared
magnitude of the difference between the two cubic polynomials and the experimental curvatures.
It is shown in experiment that using the broadband data can offer a better damage detection
sensitivity than using the resonant data due to higher data accuracy. Yoon et al. (2001) expands
the GSM by introducing a 'globally optimized smooth shape' from the analytic mode shape
function. Yoon et al. (2005) generalized the one-dimensional GSM to two dimensional plate-
like structural applications. Local features in the vibration curvature shapes are extracted using a
two-dimensional localized surface fit. A structural irregularity index is defined to represent the
structural stiffness variability for each test point on the structure. A statistical-based outlier
detection method is applied to the indices to detect damaged areas. The procedure can either use
the mode shape data, or broadband the operating shape data. The results confirm Ratcliffe’s
conclusion that using the broadband data can offer a better damage detection sensitivity than
using the resonant data.

Amaravadi et al. (2001) proposed a orthogonal wavelet transform technique that operates

on the curvature mode shape for enhancing the sensitivity and accuracy in damage location.
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First, the curvature mode shape is calculated by the central difference approximation from the
mode shapes experimentally obtained from the scanning laser vibrometer (SLV). Then, a
threshold wavelet map is constructed for the curvature mode shape to detect the damage. The
experimental results are reasonably accurate.

Kim et al. (2006b) proposed a curvature mode shape-based damage identification method
for beam-like structures using wavelet transform. Using a small damage assumption and the
Haar wavelet transformation, a set of linear algebraic equations is given by damage mechanics.
With the aid of singular value decomposition, the singularities in the damage mechanism were
discarded. Finally, the desired damage index was reconstructed using the pseudo-inverse
solution. The performance of the proposed method was compared with two existing NDE
methods (i.e., the mode shape curvature (MSC) method by Pandey et al. (1991) and the damage
index (DI) method by Stubbs et al. (1996; 1995)) for an axially loaded beam without any special
knowledge about the mass density and applied axial force. The effect of random noise on the
performance was examined. The proposed method was verified by a finite element model of a
clamped-pinned pre-stressed concrete beam and by field test data on the 1-40 Bridge over the
RioGrande. The proposed method resolves some existing deficiencies of the MSC method and
the DI method, including the mode selection problem, the singularity problem, the axial force
consideration, and the estimation of the absolute severity of damage. Despite its strong features,
the proposed method still has at least the following two weaknesses. First, a dense measurement
of grid is needed for good accuracy. Second, the accurate extraction of the mode shapes is

considered to be a prerequisite.
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2.4.3 Modal strain energy-based methods

Another category of widely used damage identification methods is modal strain energy
method. These methods use the fractional modal strain energy change for damage detection.
For beam-type or plate-type structures, the modal strain energy can be directly related to (and are
usually derived from) the mode shape curvatures. Hence, the modal strain energy-based method
can also be considered as a special case of mode shape curvature-based method in the context of
beam-type or plate-type structures.

Stubbs et al. (1996; 1995) developed a damage index (DI) method based on the change in
the modal strain energy. This method assumes that if the damage is primarily located at a single
sub-region, then the fractional strain energy will remain relatively constant in sub-regions. For
beam-type structures, the bending stiffness £/ is assumed to be essentially constant over the

length of the beam for both the undamaged and damaged modes. The damage index £ at sub-

region j can be obtained by
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B, = (2-11)

where F} and F; are the fractional strain energy of undamaged and damaged beam for ith mode

at sub-region j; &, andk; are the curvature mode shapes of undamaged and damaged beam for

ith mode, respectively; and m is the number of measured bending modes. The curvature mode
shape can be obtained from a third order interpolation function of displacement mode shape.

Then, assuming that the damage indices g at different sub-regions is a normally

distributed random variable, a normalized damage index Z at sub-region j can be obtained using
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(2-12)

where E and o, represent the mean and standard deviation of the damage indices /5, ,

respectively. Usually, a damage detection criterion can be set as the normalized damage index

Z, larger than 2.

Cornwell et al. (1999) generalized the DI method for one-dimensional beam-type structure
into plate-type structures. Shi and Law (1998; 2000b) presented a damage localization method
for beam, truss or frame type structures based on the modal strain energy change. The Modal
Strain Energy Change (MSEC) at the element level is suggested as an indicator for damage
localization. Law et al. (1998) applied this strain energy method to detect the damage location in
a structure with incomplete and noisy measured modal data. The method consists of three stages:
expansion of the measured mode shapes, localization of the damage domain using the elemental
energy quotient difference, and damage quantification based on sensitivity of the modal
frequency. The complete procedure of analysis is evaluated by several damage case studies of a
finite element model of European Space Agency structure and verified by a laboratory
experiment on a two-story steel plane frame structure. Results indicate that this method is
effective and practical in detecting and quantifying single or multiple damages in the structure.
Au et al. (2003) followed a similar approach as proposed by Law et al. (1998) in damage
detection using the incomplete and noisy modal test data, but adopted a micro-genetic algorithm
in damage quantification stage instead of the traditional iterative algorithm based on minimum

rank update.
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2.5 Other methods based on modal parameters

Topole and Stubbs (1995) presented for the first time a damage detection method to locate
and size structural damage from the measured natural frequencies and mode shapes of damaged
structure without a priori knowledge of the modal characteristics of a baseline structure.
However, its application is limited by several requirements which are difficult to meet in real
experiment, such as the knowledge of baseline mass and stiffness, measurement of mode shapes
from all DOFs and many modes. Since then, in order to find an effective and accurate damage
identification method, extensive research effort has also been put into damage identification
methods utilizing both the mode shapes and frequencies or modal parameters derived from mode

shapes and frequencies, such as the modal flexibility and uniform load surface.
2.5.1 Modal flexibility-based methods

Pandey and Biswas (1994) suggested using changes in modal flexibility for damage
detection. Zhang and Aktan (1998) studied the modal flexibility and its derivative “‘uniform load
surface’ (ULS). It is easy to note that the ULS is essentially a weighted average of mode shapes.
Consequently, it is less sensitive to noise compared to the mode shapes. Wu and Law (2004;
2005) applied the ULS curvature to plate structures for damage localization and quantification.
It is found that the ULS curvature is sensitive to the presence of local damages, even with the
truncated, incomplete, and noisy measurements. Wang and Qiao (2007) modified the gapped
smoothing method proposed by Ratcliff (1997) to locate delamination in a composite beam. A
simplified gapped-smoothing (SGS) method using a fourth order polynomial is considered to fit
the ULS curve of a damaged beam, and the difference between the polynomial and ULS curves

is squared to obtain the damage index.

51



2.5.2 Optimization algorithm based methods

There are also several methods that formulate the damage identification method as an
optimization problem and use multiple modal parameters as objective function.

Ren and De Roeck (2002a; 2002b) proposed a damage identification technique based on
finite element model using the frequencies and mode shape change. The element damage
equations have been established through the eigenvalue equations that characterize the dynamic
behavior. Several solution techniques were discussed and compared. The results showed that
The SVD-R method based on the singular value decomposition (SVD) is most effective. The
method has been verified by a simple beam and a continuous beam numerical model with
numbers of simulated damage scenarios. The method is further verified by a laboratory
experiment of a reinforced concrete beam.

Rahai et al. (2007) presents a finite element-based approach for damage detection in
structures utilizing the incomplete measured mode shapes and natural frequencies. Mode shapes
of a structure are characterized as a function of structural stiffness parameters. More equations
were obtained using the elemental damage equation which requires the complete mode shapes.
This drawback is resolved by presenting the mode shape equations and dividing the structural
degrees of freedom to measured and unmeasured parts. The non-linear optimization problem is
then solved by the sequential quadratic programming (SQP) algorithm. Monte Carlo simulation
is applied to study the sensitivity of this method to noise in the measured modal displacements.

Since the ill-posed nature of this type of optimization problems, the soft optimization
algorithms, such as the genetic algorithm, simulation annealing or neural network algorithm, are
considered useful tools for solving these problems. Ruotolo and Surace (1997) utilized the

genetic algorithm to solve the optimization problem. The objective function is formulated by
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introducing terms related to global damage and the dynamic behavior of the structure, i.e., the
natural frequencies, mode shapes and modal curvature. The damage assessment technique has
been applied both to the simulated and experimental data related to cantilevered steel beams,
each one with a different damage scenario. It was demonstrated that this method can detect the
presence of damage and estimate both the crack positions and sizes with satisfactory precision.
The problems related to the tuning of the genetic search and to the virgin state calibration of the
model are also discussed. Hao and Xiao (2002) applied a genetic algorithm with real number
encoding to minimize the objective function, in which three criteria were considered: the
frequency changes, the mode shape changes, and a combination of the two. A laboratory tested
cantilever beam and a frame structure were used to verify the proposed technique. The algorithm
does not require an accurate analytical model and provides better damage detection results for

the beam than the conventional optimization method.

2.6 Literature on comparative study of damage identification method

Farrar and Jaurequi (1998a; 1998b) conducted a comprehensive experimental and
numerical study of different methods of damage detection (i.e., damage index, curvature mode
shape, change in flexibility, change in uniform load surface curvature, and change in stiffness)
on the interstate 40 bridge.

Ndambi et al. (2002) presented a comparative study of damage detection methods based on
laboratory test of two cracked RC beam. The damage detection methods based on
eigenfrequencies, MAC, COMAC, flexibility matrices and strain energy are evaluated. The
results showed that (1) the eigenfrequency evolutions can follow the damage severity but are not
influenced by the crack damage locations; (2) the MAC factors are, in contrast, less sensitive to

crack damage compared with eigenfrequencies; (3) With the COMAC factor evolution, it is
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possible to detect and locate damage in the tested RC beams but difficult to follow severity and
spreading; (4) The change in flexibility matrices allows also detection of the crack damage in RC
beams, but the damage localization is difficult; and (5) Damage index method based on the strain
energy appears to be more precise than the others in damage localization, but the difficulty
remains when the damage is spread out over a certain length of the RC beam.

Huth et al. (2005) compared several response-based identification techniques based on test
data on a progressive damaged prestressed concrete bridge. Although the bridge was severely
cracked, natural frequencies as well as mode shapes display only minor changes. However, the
relative changes of mode shapes are larger than those observed for the natural frequencies. A
novel damage indicator, called the mode shape area index, based on changes of mode shapes,
was developed and found as a sensitive damage detection approach. Damage detection or
localization via changes of the flexibility matrix performed better than the natural frequencies or
mode shapes alone.

Zhou et al. (2007) conducted a laboratory experiment and finite element analysis study to
evaluate five different vibration-based damage detection methods in detection and localization of
small-scale damage on the deck slab of a simply supported bridge. The five methods include
three curvature-based (i.e., mode shape curvature method, strain energy method and flexibility
curvature method) and two other methods (i.e., mode shape method and flexibility method). The
mode shape curvatures are obtained from a natural cubic spline interpolation of mode shape.
The comparative study showed that the three curvature-based methods tend to predict damage
location at the measurement point due to its piecewise linear distribution caused by cubic spline
interpolation. They produced virtually identical results, displaying a maximum error in damage

localization of approximately half of the sensor spacing. The other two methods performed
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better when the finite element data were used, but were similar to the curvature methods when
the experimental data were used. The performance of all five methods investigated declined
when damage was located in a near-support region. An increase in the number of measurement
points led to a proportional improvement in localization resolution for the three curvature-based
methods, but increasing the number of modes considered from one to three did not significantly
improve the performance of the techniques.

Qiao et al. (2007b) evaluate three response-based damage detection algorithms (i.e.,
simplified gapped smoothing method (GSM), generalized fractal dimension (GFD), and strain
energy method (SEM)) for composite laminated plates using the data acquired from these two
measurement systems (i.e., a surface-bonded piezoelectric sensor PVDF system and a scanning
laser vibrometer SLV system). From the damage detection outcomes, it is observed that the SLV
system proves to be more convenient and effective, and it is capable of scanning high-density
mode shape data over the entire plate specimens; while the PVDF system, in which the curvature
mode shapes are directly acquired, exhibits good sensitivity to damage. The damage detection
algorithms like GSM, GFD and SEM based on the utilization of three consecutive mode
curvatures (modes 3-5) and resulting ULS curvature successfully identify the presence, location,

and relative size of delamination in the composite plate.

2.7 Temperature effect on composite sandwich structures

The review in this Section focuses on temperature effect on composite sandwich structures.
The temperature effect may substantially change the dynamic behavior of the GFRP materials
and in turn cause potential failure of the GFRP sandwich beams/panels under working load,

particularly in low temperature.
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Literature on the effect of low temperature (around -60°C) on dynamic response of
composites materials is relatively limited. It is interesting to note that the low temperature record
in U.S. is -62.11°C in northern Alaska in the Endicott Mountains on January 23, 1971. Some
related studies on the effect of temperature on the behavior of composite materials are
summarized as follows.

Icten et al. (2009) investigated the low temperature effects on impact response of E-
glass/epoxy laminated plates with stacking sequence [0/90/45-45]; at 20°C, -20°C, and -60°C,
respectively. The impact energy was ranged from 5] to 70J. They found that the perforation
threshold increase with decrease of test temperature. They also noticed that up to the impact
energy of 20J the impact response and the damage tolerance of the composite is practically the
same for all temperatures and beyond 20J the temperature affects significantly variation of
impact characteristics.

Ibekwe et al. (2007) studied on glass fiber reinforced unidirectional and cross-ply
laminated composite beams subjected to low velocity impact and compression after impact
testing at low temperatures ranging from 20°C to -20°C. They concluded that the temperature
has a significant effect on impact responses of laminated composites and more impact damage
was induced in specimens with decreasing temperature.

Wu et al. (2006) examined the durability of FRP composite Bridge Deck materials to
freeze-thaw cycling between 4.4°C and -17.8°C in different type of air (dry, distilled water,
saltwater) and constant freeze at -17.8°C. Experimental results showed that the freeze-thaw
cycling caused very insignificant or no change and the constant freeze at -17.8°C results in a

minor increase in the flexural strength and storage modulus.
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2.8 Concluding remarks on literature review

This Chapter provides a summary review on modal parameters-based damage
identification algorithms for beam-type or plate-type structures as well as the effect of
temperature on sandwich structures. The modal parameters-based damage identification
methods are categorized as the natural frequency-based methods, mode shape-based methods,

curvature mode shape-based methods and methods using both the mode shape and frequencies.

The frequency change-based damage identification method can be successfully applied to
locate and quantify damage in simple structures with small damage (typically, a slender beam-
type structure with artificially induced cracks) in a controlled laboratory condition. However,
due to its inherent limitations, in general it is not reliable for damage detection in real complex
structures or multiple/severe damage cases. Most mode shape-based and curvature-based
methods only focus on damage localization. The direct use of mode shape change can only
roughly locate the damage. In order to precisely locate the damage, the mode shape-based
methods have to rely on optimization algorithms or signal processing techniques. The curvature-
based methods are in general a very effective type of damage localization algorithms. A
curvature-based algorithm, either using direct change in curvature or applying signal processing

techniques on curvature, usually can successfully locate the damage.

There are still many questions to be addressed in this area. In particular, the following
research topics of interest need immediate attention:

(1) Development of robust multiple damage identification methods under environmental

noise. Among all available techniques, the pattern recognition technique has shown its

great potential in building a robust statistical model to distinguish multiple damages in

different locations and/or different types under environmental noise.
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3)

Development of quantification techniques for damage magnitude. The localization of
the damage is primarily studied in the literature; while the quantification of the
damage, as the follow-up step in damage identification, is still in a relatively immature
stage, worth immediate attention and investigation.

Development of viable damage identification methods for 2-D plates. There are only
limited studies available for plates, with most of them being generalized from the 1-D
algorithms. It should be mentioned that the methods using the novel signal processing
techniques, such as the 2-D wavelet transform, show their potential to be a powerful

tool in damage identification of plates and thus demand further research.
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CHAPTER 3

DYNAMIC RESPONSE OF HONEYCOMB FRP SANDWICH STRUCTURES

3.1 Introduction

In the past few years, FRP composite decks have received considerable attention for use in
rehabilitation and new construction of highway bridges. This is because of their inherent
advantages in high stiffness and strength to weight ratios, improved fatigue resistance, and
superior damage tolerance capability as compared to traditional steel reinforced concrete decks.
Due to lightweight constituent materials and thin-walled/cellular configuration, FRP bridge
decks promote rapid new constructions and replacements of existing deteriorated concrete decks.
FRP bridge decks are commonly honeycomb FRP sandwich structures placed transversely to the

supporting structures.

Before developing any damage identification method for sandwich beams or plates, it is
crucial to examine the static/dynamic mechanical properties of FRP sandwich structures.
Sandwich structures, which are typically constructed by two thin face sheets and a soft and thick
core, have been widely used in civil, mechanical and aerospace engineering. The core is usually
made of soft materials and/or in the form of foams or honeycombs for weight reduction and
energy absorption purpose. In such a configuration, the stiffness of the core is usually very low
and its compressible deformation cannot simply be neglected in accurate dynamic analysis of the

whole sandwich systems.

For the analysis of sandwich beams, there are mainly two types of theories: (1) equivalent
single layer theory, and (2) layer-wise lamination theory. In the equivalent single layer
displacement-based theories, one single expansion of each displacement component is used

through the thickness of the laminates. The classical beam theory (Tauchert 1975) of this type is
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based on the Euler-Bernoulli assumption that the planes initially normal to the mid-plane remain
plane and normal to the mid-plane after bending. This method leads to high level of error due to
completely neglecting of the transverse shear deformation. An improved one of this type is
Timoshenko beam theory, also known as the first-order shear deformable theory, which assumes
the transverse shear stress/strain distribution is constant through the beam thickness.
Gordaninejad and Bert (1989) adopted this theory for the analysis of laminated beams. While in
the layer-wise theories, each layer is treated as a separate beam, and the transverse shear effects
in discrete layers are introduced into the assumed displacement field. There are many theories of
this type, e.g., the layer-wise Euler-Bernoulli laminated beam theory (Murty 1985; Ojalvo 1977),
first-order shear deformable laminate beam theory (Davalos et al. 1994), and higher-order
laminate beam theory (Lu and Liu 1992; Reddy 1987). Lately, Frostig et al. (Frostig et al. 1992;
Frostig and Thomsen 2004) presented a high-order sandwich panel theory approach for the free
vibration analysis of sandwich panels with a flexible core. The formulation uses the classical
thin plate theory for the face sheets and a three-dimensional elasticity theory for the core. The
full dynamic effects, including both the horizontal vibration and rotary inertia of the core, are
taken into consideration. Yang and Qiao (2005) used a similar approach to solve the impact
problems of the sandwich beam. Only the cases with simply supported boundary conditions

were presented in Frostig and Thomsen (2004) and Yang and Qiao (2005).

In this chapter, the dynamic response of an as-manufactured FRP honeycomb sandwich
beam is analytically and experimentally evaluated. The analytical study follows the similar
sandwich beam formulation as in Frostig and Thomsen (2004) and Yang and Qiao (2005).
However, without the derivation of the details of the equations of motions in the form of

differential equations, the problem is formulated by Hamilton’s variational principle and solved
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directly by the Ritz method. Then, the solutions are compared with the Timoshenko beam theory,
numerical finite element simulation and experimental modal testing results. The rest of the
chapter is organized as follows. The derivation of the equivalent elastic properties for face
laminate and honeycomb core is introduced in Section 3.2. The formulation of the high-order
sandwich beam theory and the solutions for cantilevered beams by the Ritz method are given in
Section 3.3. The finite element analysis and the experimental program are described in Section
3.4. The results of analytical/numerical solutions and experimental tests are discussed in Section
3.5, and a parametric study is also presented to show the effects of soft core materials and beam

length in Section 3.5.

3.2 Modeling of FRP honeycomb sandwich beams

Using a micro/macro mechanics approach for the face laminates and a mechanics of
material approach for honeycomb core, the modeling of equivalent elastic properties for the face

laminate and honeycomb core is presented in this section.

3.2.1 Geometry of FRP sandwich materials

The FRP sandwich materials used in this study were manufactured by Kansas Structural
Composites, Inc. (KSCI) (Davalos and Qiao et al. 2001). Originated from the basic concept of
sandwich structures, the geometry of the FRP structure is designed as an FRP honeycomb core
sandwiched by two FRP face laminates (see Fig. 3.1). It should be noted that the thermosetting
property of the polyester resins used in the FRP panel distinguishes the honeycomb cores from
their metal counterparts in both manufacturing and consequent corrugated shapes. Unlike the
traditional metal honeycomb cores with hexagonal or circular shape configuration, the shape of

the FRP corrugated cell wall follows a sinusoidal function in the panel (see Fig. 3.2). The curved
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walls are produced by forming FRP sheets to a corrugated mold with a sinusoidal configuration.
Then, the flat FRP sheets and corrugated sheets are sequentially bonded together to produce the
combined flat and curved core wall. The assembled honeycomb core is then co-cured with the

top and bottom face laminates to build a sandwich beam.

The wave function of corrugated core wall can be defined as
y=21-cos ™) (3-1)
2 a

The dimensions of the sinusoidal core are a = 50.8 mm, b = 50.8 mm, #;=¢,=2.28 mm, as

shown in Fig. 3.2.

Two types of sandwich beams are investigated in this study: one with the longitudinal core,
the other with transverse core. The only difference is that the length direction of the longitudinal
core beam is in the x direction; while the length direction of the transverse core beam is in the y

direction, as shown in Fig. 3.1.

The FRP sandwich beams in this study are 0.203 m in width. The beams have two unit
cells in width. The unit cell is shown in Fig. 3.2. The thickness of face laminates and
honeycomb core are 11 mm and 83 mm, respectively, so the total thickness of the FRP panel is
105 mm. The constituent materials used for the honey-comb sandwich panel (both face

laminates and core) are E-glass fiber and polyester resins.
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Figure 3.1 Configuration of FRP sandwich beam

(a) longitudinal core; (b) transverse core; (c) cross-section of core
(h¢ = hp =11 mm, ¢ =83 mm).
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Figure 3.2 Geometry of sinusoidal core in honeycomb structures

(a=50.8mm, b =50.8mm, t; = t,= 2.08 mm).
3.2.2 Modeling of face laminates

The lay-up of the face laminates and the properties of each ply are given in (Davalos et al.
2001) and shown here in Fig. 3.3 and Table 3.1. The apparent engineering properties of the face
sheets of the FRP sandwich beams were predicted by Davalos, Qiao et al. (2001) using a
combined micro- and macro-mechanics approach. A set of equivalent laminate stiffness
properties can be defined for approximately balanced symmetric face laminates, and they are
given in Table 3.2. These elastic constants for face laminates represent the stiffness of an

equivalent, orthotropic plate that behaves like the actual laminates under in-plane loads.
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EE—— /M- 1810 (0° roving + ContSM)
N M- 1810 (0° roving + ContSM)
R (M- 1810 (0° roving + ContSM)
— (M- 1810 (0° roving + ContSM)

_ CM-3205 (0°90 °SF + ContSM)

J Bonding Layer (ChopSM)

Inte for Face

Figure 3.3 Face laminates lay-up.

Table 3.1 Ply stiffness obtained from micromechanics model

Ply name orientation £ £, s O 1% v
y (GPa)  (GPa) (GPa) (GPa) 2 »

Bond layer random 9.72 9.72  3.50 2.12 0394 0.401
CM 0° or 90° 27.72 8.00 3.08 2.88  0.402 0.390
3205 random 11.79  11.79 4.21 236  0.402 0.400
UM 0° 30.06 855 3.30 3.08 0.293 0.386
1810 random 1593 1593 5.65 296  0.409 0.388

ChopSM
308 random 11.79  11.79 4.21 297  0.402 0.388

Table 3.2 Material properties of face laminates

! f 7 f 7
pf’ Ex 9 Ey s ny > ze s Gyz >

glem* GPa GPa GPa GPa GPa

Face laminates 1.592 19.62 12.76 3.76 3.75 3.68 0.302
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3.2.3 Modeling of honeycomb core

The microstructure of core walls, either the flat or the curved walls, consists of two layers
of ChopSM (ChopSM308). The ChopSM can be modeled as an isotropic layer, and its stiffness
properties are listed in Table 3.1. So the core wall can also be modeled as an isotropic layer with
double thickness of the ChopSM and the same stiffness properties as the ChopSM. To predict
the equivalent stiffness properties of the sinusoidal core, a mechanics of material approach
proposed by Qiao and Wang (2005) is adopted. The solution for the equivalent stiffness can be

expressed as follows:

EC =" E" =0.0449E"
b

E‘f:ﬂ:3.81x10’3E{”
T bA,

’ g (3-2)
Ee =70 pr g 1108

ab

2Fh

Gy, = e 2.01x10°E)

where E" is the longitudinal Young’s modulus of solid core wall (i.e., ChopSM 308); S is the

length of the segment AB in Fig. 3.2.

The solutions for the core effective transverse shear moduli are available in Xu et al. (2001)

G- = (% ¥ %)G;; = 0.0755G,
Y (3-3)
G;. =22G1 =0.0307G,

where G}, is the in-plane shear modulus of solid core wall (i.e., ChopSM 308); S is the length of

the segment AB in Fig. 3.2.

The Equivalent stiffness properties of sinusoidal honeycomb core are listed in Table 3.3.

66



Table 3.3 Equivalent stiffness properties of honeycomb core

c c c c c c

e, ES, E), E' Gy G..., G, .
Vx
kgm’  GPa GPa GPa  GPa GPa GPa g
Sinusoidal
149 0529  0.0449 130 00237 0318 0129 0291
core

3.2.4 One layer model of the sandwich beam

In order to predict the natural frequencies of the sandwich beam using Timoshenko beam
theory, the equivalent stiffness properties of the sandwich beam are derived from the properties
of face sheets and core given in Sections 3.2.2 and 3.2.3. The derivation of the equivalent
material properties of the sandwich beams were given by Lestari and Qiao (2006). The stiffness
properties in Table 3.4 represent the stiffness of an equivalent, homogeneous one layer beam that
behaves like the actual sandwich beam under bending. The natural frequencies of the equivalent
homogeneous beam can be calculated using Timoshenko beam theory. The results are listed in

Table 3.6 for comparison with the high order sandwich beam theory.

Table 3.4 The equivalent material properties adopted in Timoshenko beam theory

Core pA(kg | m) pl (kg -m) EI(x10°N -m?) KkGA(x10° N)
Longitudinal 9.6204 0.0172 0.3018 8.15
Transverse 9.6204 0.0172 0.1933 3.34

3.3 High-order sandwich beam theory for cantilevered beams
3.3.1 Mathematical formulation

The High-order sandwich beam theory considered in this study follows the same model of

sandwich beams as in Yang and Qiao (2005). The top and bottom face sheets are modeled as
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classical Euler-Bernoulli beam, and the core are modeled as a three-dimensional elastic body.
The geometry and coordinate system of the sandwich beam are shown in Fig. 3.4(a). The
internal resultants and stresses are shown in Fig. 3.4(b). The mathematical formulation is derived

by finding the extremum of the integral over the Lagrangian. The Hamilton principle reads:
5[2 V+U-T)dt =0 (3-4)

where T,U,V are the kinetic energy, the strain energy and the potential of the external loads of
the whole sandwich beam, respectively; ¢ is the time coordinate between the time ¢; and 7, ; &
denotes the variation operator.

The total kinetic energy of the sandwich beam 7 can be expressed as
T=T+T,+T = lptj O +a,2)dV+lpbj (b, +ub2)dV+lp,j w2 +a2)dV  (3-5)
c 2 v, 2 v, 2 c v, c c

where p, , p, , p. is the density of the top and bottom face sheets and the core, respectively; u; , W,
(i=t,b,c) are the velocities in the longitudinal direction (x-direction) and transverse direction
(z-direction), respectively; V, (i =t¢,b,c ) is the volume of each part of the beam.

The total potential of the external loads V' of the sandwich beam under free vibration is 0.

The strain energy of the core and the face sheets are

UCZ%J‘AJ‘Z(G .. to & +T

CXX ~ CXX czz ~czz CXZ}/CXZ

YdzdA, (3-6)

1
Uf - EL J‘Z (fongm +r_ﬁzyfxz)dsz
(3-7)

_ % [ (N 0u,, 1ax—M 0w, | 0x*)dA,

where U, ( f =t,b) and U, are the strain energy of the top and bottom face sheets and the core,

respectively; N and M, ( f =t¢,b) are the stress resultants in the face sheets.
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For the core, the strain compatibility equations and constitutive equations give

auc O-cxx
= gCXX =
ox E,
aWC = ECZZ = O-CZZ , (3'8)
Oz E.
Ou, oOw, o

Substituting equation (3-8) into equation (3-6), we obtain

ow, ) +G. (%Jr%)z]dsz (3-9)
z 0z Oox

— 1 auc 2
Uc _EJ.AJ.Z[Ecx(g) +Ecz(
For the face sheets, from the basic assumptions of the Euler-Bernoulli beam theory, u, and

u, are given as

o, (x) Sy (x,z) = ”0b(x)_ZM

3-10
Ox Oox ( )

u,(x,z) =u,, (x) -z

where u,, and u,, are the longitudinal displacement of the mid-plane of the top and bottom face

sheets, respectively.

The constitutive equations (including the bending-stretching coupling effects) give,

Ouy o’w,

Oty 0*w, A 1
N :Afll o —DPm o ’fo:BfIIF_ fll? (3-11)

f

where 4, , B, ;and D, ( f'=t,b) are the extensional, extensional-bending coupling and

bending stiffness of the face sheets, respectively.
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Figure 3.4 The coordinate systems of sandwich beam

(a) geometry and coordinates, and (b) internal resultants and stresses.
Substituting Eq. (3-11) into Eq. (3-8), we obtain

2
Oty O Wy

1 2
-2B
) m 5x 8x2

U, :EJ.A[Afu(

Oty
ox

+Df“(£vzf)2]dA (3-12)
ox
The total strain energy of the sandwich beam is given as
U=U,+U,+U, (3-13)
From equations (3-4), (3-9) and (3-12), Lagrangian in the Hamilton principle can be
expressed as
M=U-T=TI(w,,w,,u,,, Uy, W.,U,) (3-14)
To further simplify the problem, the following assumptions are made for the core:

(1) The vertical displacement of the core w, takes a quadratic pattern through the thickness of

the core, i.e., w, is a quadratic function of z:
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W, =w, (%)z” +w, (x)2' +w,y(x) (3-15)

(2) The longitudinal displacement of the core u, takes a cubic pattern through the thickness of
the core, i.e., u, is a cubic function of z:

u, =u,(x)z° +u,(x)z" +u, (x)z' +u,(x) (3-16)

Based on the coordinate system showed in Fig. 3.4, the continuity conditions at the two

core-face sheet interfaces give

w.(x,z=0)=w,w.(x,z=c)=w, (3-17)
ht hb
uc(x,z=0):u0,—Ew,,uc(x,ZZC):uOb—?wb (3-18)

Substituting equation (3-16) into equation (3-18), we obtain

w, —W, —CW
b t cl 2
w, == Z 4+ w,z+w, (3-19)

Substituting equation (3-17) into equation (3-19), we obtain

=102 =) b2 =)+ g, ) ) (3-20)
C C

Using equations (3-20) and (3-21), Lagrangian in the Hamilton principle can be
further expressed as a function of seven variables:

H=T-U=TI(w,,W,,uy,,Uy,, W, U, U.) (3-21)
3.3.2 Cantilevered beam solution using Ritz method

For the sandwich beam with one end clamped and the other end free, the Rayleigh-Ritz
method is used to solve the problem. In order to satisfy the boundary conditions, the shape

functions for the displacements are assumed to be

71



w0 =e"S C,, (cos 2n-rzx _1+(2’;;1)3(sinn7£—x—@))
n=1

2n-Dzx . 2n nITxX NITXx
2L

14( 2;1>3<sin7——»

(2n —1)7z'x 2n—-1,, B
5L ( ) (cos =~ 1)),

w,(x,1) = e Z C,,,(cos

Uy, (X t) - e””fz utn

n=1

oot (2n -Dzx  2n-1, niwx
u, (x,t)=e + cos -1)), 3-22
)= 32 C (s D (0 os ) (3-22)
i (2n-1rzx 2n—1, . nmxx nrx
w.(x,t)=e”" Y C . (cos————=—1+ sin - ,
cl( ) Z Wcln( L ( 2}’1 ) ( L L ))

(2n—1)7zx 2n—-1,, nwx
+ cos -1)),
i ( > ) ( 7 )

(2n— 1)7z'x 2n—
L

c2(x t) - e’“’tz uc2n

iy (6,0) = €3, (sin 0 os ™)

n=1

where C, (i =win,wbn,utn,ubn,wcln,uc2n,uc3n) are the amplitude coefficients of

displacements for the nth term, and m is the total mode of interest.
Based on the principle of extremum energy, the Lagrangian I1 is minimized with respect
to the unknown coefficients in the shape functions of the displacements

oI1/6C, =0 (3-23)

From equation (3-23), the governing equations in the matrix form are given as

Kll K12 K13 K14 KIS K16 K17 Mll M12 M13 M14 MIS M16 M17 thn
K22 K23 K24 K25 K26 K27 M22 M23 M24 M25 M26 M27 Cwbn
K33 K34 K35 K36 K37 M33 M34 M35 M36 M37 Curn
K44 K45 K46 K47 -’ M44 M45 M46 M47 Cuhn
KSS KSG K57 MSS M56 M57 Cucln
K66 K67 MGG M67 Cchn
L K77 _ L M77 _ _CuCBn B
=0
(3-24)
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2 2
OU_ 0T
acoc,” 7 acac,

where K, =

By solving the eigenvalues of [K ] and [ ] matrix, the modal frequencies can be obtained.

The mode shapes can be subsequently obtained from the eigenvectors.
Substituting the equivalent elastic properties of the sandwich beam obtained in Section 3.2

into equation (3-24), the modal frequencies are extracted as shown in Tables 3.5 and 3.6.
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Table 3.5 Comparison of the natural frequencies of the cantilever beams using different

methods (Longitudinal core)

Mode FEA Test Timoshenko beam theory High-order sandwich beam theory
L=0.762
1 126.5 87.9 149.0 127.9
2 534.3 369.1 606.7 554.6
3 1125.5 1004.0 1268.2 1069.1
4 1702.3 14120 1901.0 1801.1
5 >2000 >2000 >2000 >2000
L=1.016
1 74.6 56.6 88.6 75.3
2 352.6 267.6 405.0 363.4
3 774.9 748.0 879.5 802.1
4 1210.0 1148.0 1361.3 1276.4
5 1648.0  1563.0 1846.5 1750.7
L=1.270m
1 48.9 50.8 58.3 53.5
2 249.2 218.8 288.8 273.6
3 568.8 572.3 649.9 627.9
4 913.1 882.8 1033.4 1014.9
5 1265.0 1174.0 1423.9 1412.6
L=1.524m
1 34.4 37.1 41.1 34.7
2 184.5 162.1 2154 188.3
3 4353 449.2 500.5 449.9
4 716.0 705.1 814.7 750.1
5 1008.0 974.6 1139.7 1067.2
L=1.778m
1 25.5 21.5 30.5 25.7
2 141.5 127.0 166.1 144.0
3 343.3 349.6 397.0 353.6
4 576.9 544.9 659.9 602.4
5 824.6 773.4 936.2 871.7
L=2.032m
1 19.6 13.7 23.5 19.8
2 111.7 99.6 131.7 1134
3 2772 257.8 322.1 284.6
4 474.6 490.2 545.4 494.1
5 687.6 658.2 784.0 726.1
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Table 3.6 Comparison of the natural frequencies of the cantilever beams using different

methods (Transverse core)

Mode FEA Test Timoshenko beam theory High order sandwich beam theory
L=0.508
1 169.2 - 212.2 188.6
2 561.2 - 698.6 659.3
3 1081.9 - 1351.4 1237.9
4 1542.2 - 1925.2 1886.4
5 - - - -
L=1.016
1 54.1 - 68.2 58.2
2 225.8 - 286.1 260.1
3 474.2 - 602.3 559.4
4 714.9 - 909.8 862.1
5 956.5 - 1218.1 1167.5
L=1.524m
1 31.34 25.39 32.27 27.2
2 152.17 144.53 158.2 139.9
3 339.10 325.18 353.6 321.5
4 534.70 532.21 559.5 520.4
5 732.53 707.98 768.3 724.6
L=2.032m
1 18.06 18.56 18.6 15.62
2 95.71 84.96 99.3 86.3
3 224.21 216.81 233.7 208.8
4 366.96 356.46 383.8 310.9
5 514.93 505.88 539.9 503.8

3.4 Finite element analysis and experimental test

3.4.1 Finite element analysis

The commercial Finite Element Analysis package ABAQUS is used to conduct an

eigenvalue analysis to extract the natural frequencies and the mode shapes of the cantilevered

sandwich beam. The sandwich beam was modeled as two face sheets and a detailed sinusoidal
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core. The face sheets and the sinusoidal core walls are modeled as 4-node first-order plate
elements S4 and 3-node first-order plate elements S3. The lay-ups and corresponding material
properties of face sheets and core walls are the same as shown in Fig. 3.3 and Table 3.1. The
sandwich beam is clamped at one end and free at the other end. The beams with different
lengths are considered in the modeling. Fig. 3.5 gives the first five mode shapes for the span of
the 2.032 m long cantilevered beam with transverse core. The natural frequencies obtained by
FEM of the cantilever beams with the transverse and longitudinal cores are listed in Table 3.5

and 3.6, respectively, for comparison.

Figure 3.5 First five mode shapes of beam with transverse core by FE.

3.4.2 Experimental test

The FRP sandwich beams tested in this experiment were manufactured by Kansas
Structural Composites, Inc. (KSCI). The sandwich beams were clamped and tested at different

lengths. To simulate a cantilevered condition, one end of the beam was clamped in a tightened
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steel frame such that the beam specimen posed well in place. This condition was considered as

the clamped boundary condition for both the face sheet and the core at this particular end.

The modal testing of the beam is conducted with an impact hammer and a piezoelectric
sensor. The beams were subjected to a dynamic pulse load applied at the free end using the
modally tuned hammer (PCB 652B10). One polyvinylidence fluoride (PVDF) film (a
piezoelectric-based material) bonded to the surface of the beam at the free end was used as a
sensor to record the response signals. The analog excitation/response signals then passed a low-
pass anti-aliasing filter to prevent the aliasing problem. The maximum frequency of interest was
1 kHz, so that at least the first five natural frequencies of the beam could be measured. A Krohn-
Hite 3382 8-pole dual channel filter was employed to filter out the high frequency signals above
the cut-off frequency of 2 kHz. The filtered signals were then digitized and collected by the data
acquisition system dSPACE CP1103 at the sampling frequency of 4 kHz. The measurements at
each point were repeated 16 times, and the synchronized time histories from the excitation and
response measurements were averaged to enhance the signal-to-noise ratio (SNR). From these
synchronized excitation and response time-histories, the frequency-response functions (FRFs) of
these tested points are calculated. Then, the natural frequencies of the beam can be identified

from the peaks of the FRF curves.

The experimental set-up is shown in Fig. 3.6. Results of natural frequency from modal

testing of sandwich beams with different lengths are presented in Tables 3.5 and 3.6 for

comparison.
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3.5 Results and Discussion

The results of natural frequencies from the finite element analysis (FEA), experimental test,
Timoshenko’s beam theory (TBT) and high-order sandwich beam theory (HSBT) are listed in
Tables 3.5 and 3.6 for the transverse and longitudinal cores, respectively. In Tables 3.5 and 3.6,
it can be noticed that the experimental test shows good agreement with the FEA results in the
beams with the longitudinal core. Since in the experiment the ideal fully-clamped boundary
condition could not be achieved, the experimental test generally gives lower natural frequencies
than FEA, especially for the 1** and 2™ modes in the short beam cases. Due to the complexity of
the sinusoidal core sandwich beam, an exact theoretical solution is very difficult, if not
impossible. Therefore, the FEA with a detailed model of sinusoidal core is considered as an

exact solution in this study.
3.5.1 Validation of high-order sandwich beam model

Based on Tables 3.5 and 3.6, the high-order sandwich beam theory (HSBT) shows close
agreement with the FEA results and gives better prediction of natural frequencies than
Timoshenko’s beam theory (TBT). In general, using the equivalent material properties given by
micro/macro mechanics, the HSBT can accurately predict the natural frequencies of a sinusoidal

core sandwich beam.

In the longitudinal core case, the HSBT shows very close agreement with the FEA at all
investigated length to depth ratios (L/h) and gives an approximation of natural frequencies

between the FEA and the TBT in most cases, as shown in Fig. 3.7(a).

In the transverse core case, although the prediction by HSBT is not as close to the FEA as

in the longitudinal core case, the HSBT results still considerably improve the TBT results,
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especially at a length to depth ratio (L/h) less than 10, as the effect of transverse shear

deformation become more significant.

In conclusion, for short sandwich beams, using HSBT instead of TBT to predict the free

vibration behavior is necessary to improve the accuracy.
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Figure 3.7 Natural frequencies from sandwich beam with different length to depth ratio
(L/h)

3.5.2 Parametric study
A parametric study of the free vibration of the cantilevered sinusoidal core sandwich beam
is conducted to investigate the effect of varying parameters, such as transverse shear modulus of

core and compressional/extensional modulus of core in z-direction.

3.5.2.1 Effect of shear modulus of core
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From the basic mechanics of sandwich beam, it is well known that the face sheets provide
the main bending stiffness while the core provides the major shear resistance. Since the
sinusoidal core is hollow and the composite material usually has a lower shear modulus than the
conventional metallic materials, the transverse shear deformation may take a considerable

portion of the total deformation of the beam, especially in short beam case. Hence, the effect of

the variation of the shear modulus Gyzc of the transverse core is investigated in this parametric

study, with other parameters unchanged.

The variation of natural frequencies of the transverse core beam with different core shear
modulus Gyzc are shown in Fig. 3.8. For simplicity, the core shear modulus Gyzc 1S non-
dimensionlized with face sheet extensional modulus Eyf in Fig. 3.8. It should be noted that in

the case Gyzc in Table 3.3 is used, Gyzc/Eyf = 0.010. As we can see in Fig. 3.8, using the
equivalent material properties derived by micro/macro mechanics, both HSBT and TBT will
over-predict the natural frequencies of the sandwich beam, especially for higher modes.
Furthermore, due to the discrepancy introduced by the equivalent material properties during
homogenization process, the FEA, TBT and HSBT will converge to different values when the
core shear modulus reaches infinite large. However, it can be easily noticed that HSBT is in
closer agreement with FEA than TBT. It can also be concluded from the figure that the TBT
tends to exaggerate the effect of core shear modulus. In general, the effect of variation of core
shear modulus on the free vibration behavior of the sandwich beam cannot be neglected,
especially for higher modes as well as very short beams. Hence, it should be taken into careful
consideration in analysis. HSBT is recommended to be adopted to improve the accuracy of the

prediction when compared to TBT.
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3.5.2.2 Effect of core compressional modulus in z-direction

The variation of natural frequencies of the transverse core beam with different core
compressional modulus in the z direction Ezc based on HSBT are shown in Fig. 3.9. For
simplicity, E. is non-dimensionlized with the face sheet extensional modulus Eyf in Fig. 3.9.
Since TBT cannot take Ezc into consideration, only HSBT results are shown here. It should be
noted that in the case E. in Table 3.3 is used, EZC/Eny 0.102. It can be seen from Fig. 3.9 that
the natural frequencies are insensitive to the variation of EZC except in the case of mode 5 and

extremely low EZc value. In all other cases, the results are very close to the case when EZC
reaches infinity large. Hence, it can be concluded that for the sandwich beams investigated in
this study and most of other honeycomb core cases made of similar composite materials, the core

can be considered as incompressible.
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3.6 Summary

In this chapter, a detailed analytical and experimental study on dynamic response of the
cantilevered sinusoidal core FRP sandwich beam was conducted. Two types of beams were
investigated, one with the transverse sinusoidal core, and the other with the longitudinal
sinusoidal core. A micro/macro mechanics and mechanics of material approach were adopted to
derive the equivalent mechanical properties of the face sheets and sinusoidal core. The free
vibration analysis is based on a high-order sandwich beam theory. The analytical solutions using
the high-order sandwich beam theory were compared with Timoshenko’s beam theory,
numerical simulation and experimental test results to illustrate the effectiveness of the high-order
approach. The surface-bonded piezoelectric sensors (PVDF films) were used to measure the
dynamic response of FRP sandwich beams, from which the frequencies and mode shapes were
obtained. The results show that in combination with micro/macro mechanics, the high-order

sandwich beam theory (HSBT) can accurately predict the natural frequencies of a sinusoidal core
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sandwich beam. For the short sinusoidal core sandwich beams, especially for transverse core,
HSBT greatly improves the accuracy of the prediction of natural frequencies from TBT. The
results demonstrated the validity of the high order beam theories, which improve the accuracy of
sandwich beam analysis without a high cost of evaluation. HSBT can be used effectively as a
versatile tool to analyze, design and optimize the composite sandwich structures for dynamic
response, and it also shows its potential in application of structure health monitoring and damage

identification of sandwich structures.

Furthermore, a parametric study was conducted to discuss the effect of core transverse
shear modulus and core compressional modulus in the z-direction. The study shows that in
general the dynamics of sinusoidal core sandwich beam depend more on the shear stiffness but
less on the compressional stiffness in the z direction. Hence, its dynamic response is sensitive to
the variation of core transverse shear modulus but insensitive to the variation of compressional

stiffness.
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CHAPTER 4
TEMPERATURE EFFECT ON DYNAMIC RESPONSE OF S-FRP SANDWICH

STRUCTURES

4.1 Introduction

Fiber-reinforced plastic (FRP) composites are advanced engineering materials with the
combination of high-strength, high-stiffness fiber (e.g., E-glass and carbon) and low-cost, light
weight, environmentally resistant matrix (e.g., polyester, polyurethane, vinylester, and epoxy
resins). FRP composites have gain popularity in high-performance products which require being
lightweight yet strong and taking harsh environmental condition. Wide applications of FRP
composites have been found in civil, mechanical and aerospace engineering. Carbon Fiber-
Reinforced Plastic (CFRP) is a key material in today’s launch vehicles, spacecraft and solar
panel substrates. First developed in the mid 1930's, Glass Fiber Reinforced Plastic (GFRP) has
increasingly become popular in the building industry. Recently, GFRP composite sandwich
beams/panels have also been used in highway bridge deck construction. However, the dynamic
response of GFRP honeycomb sandwich beams/panels has not been thoroughly investigated,
especially for applications in cold regions with extreme weather conditions. The temperature
effect may substantially change the dynamic behavior of the GFRP materials and in turn cause
potential failure of the GFRP sandwich beams/panels under working load, particularly in low

temperature.

This chapter is concerned with the temperature effect on dynamic response of GFRP
honeycomb sandwich beams/panels, particularly in low temperature. The main focus of this
study is the development of reliable and effective scale-up techniques to predict the temperature

effect based on Dynamic Mechanical Analysis (DMA). The rest of the chapter is organized as
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follows. The DMA test of the small GFRP composite coupon samples from the sandwich beams
are described in Section 4.2. A series of analytical analysis of GFRP sandwich beams under
different temperature are conducted based on the DMA test data to predict the temperature effect
on the modal frequency of the panels in Section 4.3. The frequency response tests of the
sandwich panels under different temperatures are described in Section 4.4. An as-manufactured

FRP sandwich deck panel is further investigated in Section 4.5.

4.2 DMA test of the polyester resin samples

DMA is a thermo-analytical technique used to test the mechanical properties of different
materials. The DMA applies a small sinusoidal deformation in a cyclic manner to a rectangular
sample to measure the stiffness and damping (such as dynamic modulus and tangent delta). In
this study, the TA Instrument Q800 Dynamic Mechanical Analyzer (Q800 DMA) was adopted to
investigate the thermal effect on the mechanical properties of the polyester resin samples cut
from the resin-rich layer of sandwich beams. An overview of the installation is shown in Fig. 4.1.
The DMA instrument uses a Gas Cooling Accessory (GCA) to perform sub-ambient DMA
experiment, as shown in Fig. 4.1. The GCA utilizes liquid nitrogen, stored in a holding tank, to
control the temperature of the testing chamber in the Q800 DMA. There is also an air filter

regulator assembly to help remove any oil, water, and particulates from the air.

In this experiment, two samples cut from the resin-rich layer of the composite sandwich
face sheets were used, as shown in Fig. 4.2. The dimensions of the samples are 52 mm in length,
12 mm in width, and 3.2 mm in thickness. These samples were tested at a temperature range
from 80°C to -80°C. The result of this experiment is the dynamic modulus variation under
temperature effect. The DMA test results are shown in Fig. 4.3. It is shown that the dynamic

modulus of polyester resin obtained in DMA test at room temperature is consistent with the
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Young’s modulus (5.06 GPa at 25 °C). In this study, it is assumed that the Young’s modulus

used in vibration analysis is the same as the dynamic modulus obtained from the DMA test.

R S

~— Controliér —
i

Liquid nitrogen tank

Figure 4.1 DMA test set-up.

Figure 4.2 Two DMA samples cut from sandwich beams.
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Figure 4.3 Temperature effect on dynamic modulus of polyester resin

4.3 Prediction of modal frequencies of FRP sandwich beams
4.3.1 Finite element analysis based on DMA test data

The commercial Finite Element Analysis package ABAQUS is used to conduct an
eigenvalue analysis to extract the natural frequencies and the mode shapes of the sandwich beam
with free-free boundary condition. The sandwich beam is modeled as two face sheets and a
detailed sinusoidal core. The face sheets and the sinusoidal core walls are modeled as 4-node
first-order plate elements S4 and 3-node first-order plate elements S3. The lay-ups and
corresponding material properties at room temperature (25°C) of face sheets and core walls are
the same as presented in Section 3.2 (see Chapter 3). The equivalent stiffness properties of face
sheets and honeycomb core at room temperature are also presented in Section 3.2. The beams at
different temperatures are considered in the modeling. The temperature effect is considered

significant for polyester resin and negligible for glass fiber. The corresponding equivalent
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stiffness properties of face sheets and honeycomb core can be derived from the resin modulus at

different temperatures obtained in DMA test, as described in Section 4.2.

Fig. 4.4 gives the first three global mode shapes of the sandwich beam with longitudinal
core. The natural frequencies obtained by FEM of the sandwich beams with transverse core and

longitudinal core at different temperature are shown in Fig. 4.5.

Figure 4.4 First three global mode shapes of the free-free sandwich beam with longitudinal

core at 0 °C from FEM
4.3.2 Analytical solution based on high-order sandwich beam theory

The analytical solution of free vibration based on high-order sandwich beam theory (HSBT)
is presented in detail in Chapter 3. The beams at different temperatures are analyzed following
this approach. As in the finite element analysis, the corresponding equivalent stiffness properties
of face sheets and honeycomb core can be derived from the resin modulus at different
temperatures obtained in DMA test. The natural frequencies obtained by HSBT of the sandwich
beams with the transverse and longitudinal cores at different temperature are also shown in Fig.

4.5.
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Figure 4.5 Temperature effect on modal frequencies of composite sandwich beams

(experimental data, FEM and high-order sandwich beam theory)
4.4 Experimental modal testing of sandwich beams

4.4.1 Experimental set-up

To verify the prediction of temperature effect on the modal frequency, two sandwich
beams with the longitudinal core and two with the transverse core were experimentally tested in
an environmental chamber. The four beams were put on soft foams to permit a free vibration at

free boundary conditions, as shown in Fig. 4.6.
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Figure 4.7 FRP sandwich beams under modal testing.
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This experiment was conducted in a conditioning chamber between -50°C and 50°C at
every 10°C. The modal testing in the conditioning chamber follows the procedure:

(1) The temperature ramps from room temperature to -50°C in 3.5 hours;

(2) The temperature stays at -50°C for half an hour; the modal tests of all beams are
conducted in the last 10 minutes of the half hour;

(3) The temperature ramps from -50°C to -40°C in 1.5 hours;

(4) The temperature stays at -40°C for half an hour; the modal tests of all beams are
conducted in the last 10 minutes of the half hour;

(5) Repeat step 3~4 to increase the temperature and conduct a modal testing at every 10°C

interval until the temperature reaches 50°C.

The modal testing of the sandwich beams was conducted using a piezoelectric sensor and a
modally tuned impact hammer as shown in Fig. 4.7. The beams were subjected to a dynamic
pulse load using the modally tuned hammer (PCB 652B10). The response measurements were
made using the accelerometer (PCB 352C68) to record the response of the structure. The analog
excitation/response signals then pass a low-pass anti-aliasing filter to prevent the aliasing
problem. A Krohn-Hite 3382 8-pole dual channel filter was employed to filter out the high
frequency signals above the cut-off frequency of 2,000 Hz. The filtered signals were then
digitized and collected by the data acquisition system dSPACE CP1103 at the sampling
frequency of 4000Hz. The measurements for each beam were repeated 6 times, and the
synchronized time histories from the excitation and response measurements were averaged to

enhance the signal-to-noise ratio (SNR).
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4.4.2 Experimental results

After collecting the excitation and response time-histories from each beam, the frequency-
response functions (FRFs) of the tested beams are calculated from these excitation and response
time-histories. Then, the modal frequencies of each beam are identified from the peaks of the
FRF curves and listed in Fig. 4.5, where the abbreviation “tc” and “Ic” denotes beams with the
transverse and longitudinal cores, respectively. In Fig. 4.5, both the FEM and HSBT predictions
show close agreement with the experimental data in all three modes. It is shown that the
proposed DMA test-based approach can accurately predict the trend of modal frequencies change
under the temperature effect and can effectively approximate the modal frequencies at different
temperature. It should also be noted that both the FEM and HSBT slightly under-predict the
temperature effect on the modal frequencies of higher mode because the temperature effect on

glass fiber is completely neglected.

4.5 Temperature effect on FRP sandwich deck panel

In order to further investigate the temperature effect on the FRP sandwich deck panel, the
modal analysis of FRP sandwich beams based on the DMA test data is scaled-up to analyze an
as-manufactured FRP sandwich deck panel. FRP bridge decks are commonly placed
transversely to the supporting structure such as the longitudinal girders, cross beams, and
stringers. FRP decks are connected to the underlying supports by using the bolted connections.
These connections are considered to act as the simply supported boundary condition. The FRP
sandwich deck panel is exactly the same panel as experimentally investigated in Chapter 8, with

the same boundary condition.
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4.5.1 Finite element analysis of FRP sandwich deck panel

The commercial Finite Element Analysis package ABAQUS is used to conduct an
eigenvalue analysis to extract the natural frequencies and the mode shapes of the sandwich deck
panel with simply supported-simply supported (SS-SS) boundary condition at both the
longitudinal ends. The lay-ups and corresponding material properties of face sheets and core
walls are the same as the sandwich beams with the longitudinal core studied in Section 4.2.
Hence, the corresponding equivalent stiffness properties of face sheets and sinusoidal core can be
directly applied to sandwich deck panel. The only difference is that the sandwich deck panel is a

plate-type structure with a length of 1.9812 m and a width of 1.4945 m

Fig. 4.8 gives the first five global mode shapes of the sandwich panel. The modal
frequencies obtained by FEM of the sandwich panel at different temperature are shown in Fig.

4.9.

Figure 4.8 First five global mode shapes of the SS-SS sandwich panel from FEM.
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4.5.2 Experimental modal testing of FRP sandwich deck panel

To verify the prediction of modal frequency, an as-manufactured FRP sandwich deck panel
was experimentally tested. The FRP sandwich panel was placed transversely to the supporting
concrete beams. The sandwich panel was connected to two underlying concrete supports using

steel studs, which are considered to provide a simply supported boundary condition.

The same modal testing technique was applied to test the FRP sandwich deck panel as
shown in Section 4.4. However, due to the large size of the panel, it is impossible to test the
panel under the controlled temperature within a conditioning chamber. Therefore, only the
modal data at room temperature (25°C) is available for comparison with the scale-up results

using the DMA data, and they are shown in Fig. 4.9.

The comparison between the FEM results and modal testing data shows that the proposed
DMA test-based approach can also be effectively applied to approximate the modal frequencies
at different temperature. The FEM results also suggest that the temperature effect may introduce
a 2%-3% modal frequency shift of the FRP sandwich panel over a 100°C temperature change,

which is consistent with the FRP sandwich beam case.
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4.6 Summary

In this Chapter,
sandwich beams/panels is presented. A series of FRP sandwich beams with the longitudinal and

transverse cores and an as-manufactured FRP sandwich panel were investigated for dynamic
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a detailed study of temperature effect on the dynamic response of FRP

response change under temperature effect.

It is shown that the proposed modal analysis approach based on the DMA test data and FE

analysis or HSBT analysis can accurately predict the trend of modal frequencies change under
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the temperature effect and can effectively approximate the modal frequencies at different
temperature. The study suggests that the proposed DMA-based approach is a reliable and
effective technique to predict the temperature effect on dynamic response of FRP sandwich
beams/panels. It is also suggested in this study that the temperature effect may only introduce a
2%-3% modal frequency shift to the FRP sandwich beam/panel over a 100°C temperature
change. Hence, using the modal frequency shift alone for the damage identification and
condition assessment of FRP sandwich structures may not be reliable, especially in cold region,
since the temperature effect may introduce some other considerable properties changes to FRP

sandwich structures.
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CHAPTER 5
2-D WAVELET-BASED DAMAGE IDENTIFICATION METHOD FOR PLATE-TYPE

STRUCTURES

5.1 Introduction

A reliable and effective non-destructive damage detection method is crucial to maintain the
safety and integrity of structures. Most non-destructive damage identification methods can be
categorized as either local or global damage detection techniques (Doebling et al. 1996). Local
damage detection techniques, such as ultrasonic methods and X-ray methods, have their
limitations in that the vicinity of damage must be known a priori and readily accessible for
testing. Hence, the vibration response-based global damage identification method has been
developed to overcome these difficulties. The fundamental idea for dyanmic response-based
damage detection is that the damage-induced changes in the physical properties (mass, damping,
stiffness, etc.) will cause detectable changes in modal properties (natural frequencies, modal

damping, mode shapes, etc.).

To detect damage using the natural frequency shift is the earliest global vibration response
method. Salawu (1997) presented a comprehensive review on damage detection methods using
the natural frequency shift. Compared to using the natural frequencies, the advantages of using
the mode shapes and their derivatives as a basic feature for damage detection are obvious. First,
the mode shapes contain local information, which makes them more sensitive to local damages
and enables them to be used directly in multiple damage localization. Second, the mode shapes
are less sensitive to environmental effects, such as temperature, than natural frequencies (Farrar
and James 1997). Significant work has been done in localizing damage in beam-type structures

using the mode shapes and their derivatives (Hadjileontiadis et al. 2005; Pandey et al. 1991;
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Ratcliffe 1997; Stubbs and Kim 1996; Wang and Qiao 2008). Many viable damage detection
methods for beams have been also successfully extended from one-dimensional (1-D) to two-
dimensional (2-D) algorithms for damage detection of plates. Yoon et al. (Yoon et al. 2005)
generalized the 1-D gapped smoothing method (GSM) by Ratcliffe (1997) to 2-D plate-like
structural applications. Cornwell et al. (1999) generalized the strain energy-based damage index
(DI) method for 1-D beam-type structure by Stubbs and Kim (1996) into 2-D plate-type
structures. Hadjileontiadis and Douka (2007) extended the fractal dimension-based crack

detection algorithm (Hadjileontiadis et al. 2005) to 2-D for detecting cracks in plate structures.

The application of 1-D wavelet transform to displacement mode shape for damage
detection of beam-type structures has been extensively investigated (Douka et al. 2003; Gentile
and Messina 2003; Liew and Wang 1998; Quek et al. 2001). Some researchers also extended the
application of 1-D wavelet transform to damage detection of plate. Chang and Chen (2004)
applied the 1-D wavelet transform on the mode shape data in x- and y-direction separately to
detect stiffness loss in plate. Douka et al. (2004) applied a 1-D continuous wavelet analysis on
mode shape to localize an all-over part-through crack parallel to one edge of the plate. However,
these damage detection techniques are still 1-D in nature because the mode shape data along
different linear lines are treated separately. Recently, the 2-D version of the wavelet transform
approach has also become a promising technique for damage detection of plates. Loutridis et al.
(2005) applied a 2-D discrete wavelet transform (DWT) of the flexural mode shape to detect
cracks in plate. The wavelet coefficients of the detail of the first level decomposition were used
to determine the location, length and depth of the crack. Kim et al. (2006a) introduced a damage
detection technique based on the 2-D multi-resolution analysis of the flexural DI equation by the

Haar wavelet. Numerical experiments showed that the wavelet transformation approach could
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be successfully applied to localize and quantify small damage in the plate using only a few lower
mode shapes. Rucka and Wilde (2006) employed the 2-D wavelet transform of the fundamental
mode shape of plate using the reverse biorthogonal wavelet to locate damage in plate. The
wavelet was constructed using the formulation of 2-D discrete wavelet. Both the horizontal and
vertical wavelets were taken as tensor products of a 1-D scaling function and a 1-D wavelets
function. Then, the transform in two directions were implemented separately. A modulus and
angle of the wavelet transform were defined to combine the information of two transforms and

adopted as the indicator of damage.

It should be noted that there are two different versions of the wavelet transform, i.e., the
continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). The CWT
provides precise resolution of wavelet coefficients for damage detection, and it is hence mostly
used for feature detection and analysis in signals; whereas the DWT offers a fast algorithm of
evaluating wavelet coefficients in discrete resolutions, and it is thus more appropriate for data
compression and signal reconstruction (Antoine et al. 2004). Although both the versions have
been adopted in aforementioned works, the CWT is obviously more suitable for damage

detection problems, due to its excellent performance as a singularity scanner.

The apparent limitation of wavelet transform method is that the rational evaluation of the
wavelet transform requires the mode shape measurement with a relatively high spatial resolution.
With the traditional sensors such as accelerometers, a large number of modal tests are required to
achieve such measurement with sufficient spatial resolution and reasonable accuracy. However,
with advanced measurement instrument, such as scanning laser vibrometer (SLV) (Qiao et al.

2007a; Qiao et al. 2007b), this difficulty can be overcome by its capability of scanning a large
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number of measurement points synchronously. In addition, the spatial resolution can be further

enhanced by the interpolation technique (Rucka and Wilde 2006).

In this chapter, a 2-D continuous wavelet transform (CWT)-based method is proposed for
damage detection in plate-type structures. In particular, the 2-D CWT of the vibration mode
shapes of plates is applied and evaluated to identify the location and shape of damage in the
plates. The rest of the chapter is organized as follows. The 2-D CWT formulated by Antoine et
al. (2004) is briefly introduced in Section 5.2. The application of the 2-D CWT in damage
detection is thoroughly examined using a numerical plate model using finite element analysis in
Section 5.3. The effectiveness and applicability of the 2-D CWT-based damage detection

method is validated in Section 5.4 via an experimental program using smart piezoelectric sensors.

5.2 2-D CWT in damage detection

The 2-D continuous wavelet transform (CWT) considered in this study is based on the
formulation by Antoine et al. (2004). Some of its basic concepts are briefly introduced here. For
more information, interested readers are recommended to refer to the literature (Antoine et al.

2004).
5.2.1 2-D continuous wavelet transform

As in the 1-D case, a 2-D wavelet is an oscillatory, real or complex-valued function
w(¥)e L’(R*,d*X) satisfying the admissibility condition on real plane X e R*. [*(R* d’X)
denotes the Hilbert space of measurable, square integrable 2-D functions. If y is regular enough

as in most cases, the admissibility condition can be expressed as:

y(0)=0< ij w(¥)d’% =0 (5-1)
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where l/?(/g) is the Fourier transform of y/(X), and k e R? is the spatial frequency.

Function w(X) is called a mother wavelet and usually localized in both the position and

frequency domains. The mother wavelet i can be transformed in the plane to generate a family

of wavelet Wiao A transformed wavelet Vi a0 under translation by a vector b , dilation by a
scaling factor a, and rotation by an angel  can be derived as

Vi@ =ay(ar,(3-0) (5-2)

Given a 2-D signal s(¥)e L*(R*,d’%), its 2-D CWT (with respect to the wavelet v )

S(b,a,0) = T, s is the scalar product of s with the transformed wavelet y; , and considered as

a function of (l;, a,0) as:

S(l;,a,é’) = <l//5’a’9,s>
=a ij w(a'r (F—b))s(¥)d’%

=af ytar ()" 5(k)a*k

(5-3)

Because equation (5-3) is essentially a convolution of a 2-D signal s with a function v,

of zero mean, the transform S(b,a,6) is appreciable only in regions of parameter space (b,a,0)

where y; . matches the features of signals. When y is well localized in the spatial frequency

domain and position domain, the 2-D CWT acts as a local filter in parameter space.

In the 1-D wavelet analysis, due to its intrinsic characteristic of keeping constant relative
bandwidth, the wavelet analysis is more advantageous in detecting singularities at high
frequency or small scale than, e.g., the windowed Fourier transform. The same argument applies

to the 2-D wavelet analysis. When appropriately designed, the 2-D wavelet transform is also an
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effective singularity scanner for 2-D signals. As in the 1-D case, the vanishing moments of the

wavelet play an important role in detection of singularities. A wavelet y usually has vanishing

moments N >1:
[ xVy@d*5=0,%=(x,y),0<a+B<N (5-4)

This property improves its efficiency at detecting singularities. A wavelet with vanishing

moments N will not see the smooth part of the signal but only detects singularities in the

(N + l)th derivatives of the signal.

One typical example of 2-D wavelets is the 2-D Mexican hat wavelet (Antoine et al. 2004),
which is simply the Laplacian of a 2-D Gaussian. Another example is the 2-D morlet wavelet,
which is the product of a plane wave and a Gaussian window. Both the wavelets can find their
well-known counterpart in the 1-D wavelet analysis. Their expressions in the position domain

are given as follows:

- - 1 -
The 2-D Mexican hat wavelet: w(X)=(02—-|X |2)exp(—5 | %) (5-5)
- - | ,
The 2-D Morlet wavelet: w(X) =exp(ik, - X) exp(—E | X ")+ correction term (5-6)

5.2.2 2-D CWT-based differentiation and filtering

Many researchers have shown that the displacement mode shape itself is not very sensitive
to small damage either in beams or plates, even with the high density mode shape measurement
(Huth et al. 2005; Khan et al. 1999). As an effort to enhance the sensitivity of mode shape data
to the damage, the derivatives of mode shape are investigated for damage detection (Yoon et al.
2005). In practical damage detection situations, the mode shape derivatives cannot be obtained

directly, often requiring the numerical differentiation methods, such as Laplace operator (Cao
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and Qiao 2009). An important feature of these numerical differentiation methods is that this
process tends to enhance the high frequency noise, therefore requiring a filtering process to
compensate for such an effect. Gaussian filtering is one of the most widely used approaches to
filter out these high frequency noises. In this case, the desired signal can be obtained by
convolving the differentiated mode shape s(x, y) with a Gaussian g(x,y) as:

§=g(x,y)*[a—ij [%] 5(x.y) (5-7)

where (*) denotes the convolution operator. The 2-D Gaussian is defined as

X+’
207

2
X
glx,y)= eXp(——| |2 ) =exp(—
20

), X=(x,) (5-8)

Using the well-known property of convolution, we obtain

fzg(x,w*(%j {%} S(xy)

oY'( o) .
—(aj (5J g(x,y)*s(x,y)

If we adopt the derivative of 2-D Gaussian as the mother wavelet and rewrite equation (5-3)
as a convolution, we can see

S(b,a,6) —(wa,g*s)@—[(a—ij (%] g0 *s](z?)—fa,g(i?) (5-10)

Hence, the desired differentiated and filtered signal can be obtained by a 2-D wavelet
transform of the original mode shape with the derivative of 2-D Gaussian (Dergauss2d) as the
wavelet. An example of the derivative of 2-D Gaussian is shown in the position and spatial

frequency domains, respectively, in Fig. 5.1.

105



0.5

0.45
0.4
10.35
10.3
10.25
P 10.2

0.15
0.1
0.05

(a) (b)

Figure 5.1 A Dergauss2d wavelet in (a) position domain and (b) spatial frequency domain

(6/0x)" (0/0y)" g, withn=2,m=2,a=4,0=0)
5.2.3 Choice of 2-D wavelet for damage detection in plates
Due to its differentiation and filtering effect, the “Dergauss2d” wavelet becomes an ideal
candidate for 2-D CWT-based damage detection in mode shapes of plates. However, which
wavelet in the family of Dergauss2d is the most appropriate one for damage detection in plate

structures is still a question to be addressed, i.e., the determination of the parameters m,n in the

Dergauss2d wavelet (0/ox)" (6/0y)" g, , is crucial to the success of the algorithm.

One guideline for choosing m and » is that both x and y should be equally weighted to
avoid potential false indication of damage area and shape. Therefore, the parameters should be
chosen as m =n. Another guideline is that the wavelet coefficients of the mode shape from an
intact plate should be trivial so that the singularities induced by small damage will be easier to
detect. Therefore, the wavelet should have enough vanishing moments (i.e., large enough m and

n) so that it is blind to the “healthy” mode shape which appears in the low frequency region. In
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addition, m and n should also be as small as possible so that it will not significantly magnify

the high frequency noises during differentiation.

To determine the appropriate parameters m and n, the Dergauss2d wavelets with different
parameters (m =n=1,2,3) are tested on the numerically simulated fundamental mode shape of a
healthy rectangular steel plate which is clamped on one side. The results are shown in Fig. 5.2.
It can be seen that for m =n > 2, the Dergauss2d wavelets are blind to the “healthy” mode shape
except the singularity at four corners caused by the boundary conditions. Furthermore, the
parameters m =n =2 are better than m =n =3 because m=n =3 gives a rougher surface and
causes sharper peaks at boundaries due to its higher order differentiation. Therefore, when the
first mode shape is used, the Dergauss2d wavelet with m =n =2 is most appropriate for damage

detection in plates.
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Figure 5.2 The 2-D CWT of mode shape of a healthy plate using different Dergauss2d

wavelets
(a) mode shape of the healthy plate clamped on one side; (b) Wavelet coefficients using
Dergauss2d with m,n=1; (c) Wavelet coefficients using Dergauss2d with m,n=2; (d) Wavelet

coefficients using Dergauss2d with m,n=3.
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5.3 Numerical investigation of damage detection using 2-D CWT
5.3.1 Description of numerical model

The commercial Finite Element Analysis package ABAQUS is used to conduct an
eigenvalue analysis to generate the mode shapes of the damaged plate. For simplicity, the
structure is assumed to be a cantilevered steel plate of 1 m width x 0.125 m depth x 2 m length
with damage. The material is assumed to be steel with Young’s modulus £ = 200 GPa,
Poisson’s ratio v = 0.2 and density p = 7,850 kg/m3. The plate is uniformly divided into
approximately 5,000 4-node first-order plate elements S4 of size 0.02 m x 0.02 m and a few 3-
node first-order plate elements S3. The mode shape data are extracted from all the 101 x 51
nodes in the model. Three different damage cases are independently induced in the finite
element models: (A) a 0.17 m % 0.17 m rectangular damaged area centered at x = 0.52 m, y = 0.4
m with an angle 45° to x-axis; (B) a 0.06 m X 0.06 m rectangular damaged area centered at x =
0.45 m, y = 0.25 m; and (C) a 0.1 m length through-thickness crack centered at x = 0.46 m, y =
0.35 m. For cases (A) and (B), the Young’s modulus of the elements in the damaged area is
reduced by 30% to simulate the damage-induced stiffness loss. The finite element models with
three types of damage scenarios are shown in Fig. 5.3. The displacement-normalized
fundamental mode shapes of the plate with damage A (i.e., Case (A)) are shown in Fig. 5.4.
Comparison between the damaged and healthy plate shows that the displacement mode shape

reveals no local features capable of directly indicating the location or shape (area) of the damage.
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Figure 5.3 Finite Element models of the plate with three types of damage.
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Figure 5.4 The fundamental mode shape of the plate with damage A.
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5.3.2 Damage detection using the Dergauss2d wavelet

The 2-D CWT is applied to the fundamental mode shape with a Dergauss2d wavelet

(m=n=2),
S(b,a,0) == LRZS(X')(%j (%J g,0d°%
oY (o) . )
—Kaj (5] a0 S](b)

The fundamental mode shape is treated as a 2-D spatially-distributed signal, in the form of

(5-11)

a matrix with 101 rows and 51 columns, corresponding to the displacement at the element nodes
along the plate length and width directions, respectively. The spatial resolution of the mode
shape is further enhanced by a bivariate cubic spline interpolation. The bivariate cubic spline is
constructed as the tensor product of two univariate cubic splines. It can be expressed as the

weighted sum of products of two cubic spline functions:

S, y)== Zza(i,j)gi(X)h, () (5-12)

where g,(x) and /;(y) are the cubic spline function in x and y direction, respectively. By using
the bivariate cubic spline interpolation, the mode shape is oversampled to 1001 rows and 501
columns. The spatial resolution of the data is thus enhanced from 0.02 m to 0.002 m accordingly.

The 2D-CWT is implemented in Matlab® using the YAW (Yet Another Wavelet) toolbox

(Antoine et al. 2004; Jacques et al. 2007) developed by Jacques et al. Once the 2-D CWT is

computed, we face a problem of visualization of wavelet coefficients because S(E, a,0) is a

function of four variables: its position (x, y), scale a, and angle #. Since the plate in this study is

a rectangular oriented in x and y direction, the most effective angle € for our damage detection
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algorithm should align with x- or y-axis, i.e., =0 or 7 /2. Hence, for simplicity, the variable

0 is fixed at € =0 in this study. The influence of choice of & will not be our focus in this

research. Then, the function S (I; ,a,0) becomes a function S (l; ,a) of the rest three variables.

If both of variables a and @ are fixed, the wavelet coefficients obtained from the CWT
can also be viewed as a 2-D spatially distributed signal. The wavelet coefficients of the mode

shape in the three given damage cases with @ =10,0 =0 are shown in Fig. 5.5. As shown in Fig.

5.5, all three types of damage can be correctly detected and located using the chosen variables of

a=10,0 =0. However, the effectiveness of the singularity detection can only be guaranteed by

a carefully chosen scale a. When the scale a is not appropriate, the singularity caused by
damage can be buried by the numerical errors, measurement noise or boundary distortion. Fig.
5.6(a) shows the wavelet coefficients in which the singularity induced by damage B is
overshadowed by the peaks at corners as a =1. When a = 40, the bump in damaged area can
barely be noticed as shown in Fig. 5.6(b). Therefore, simply choosing one single scale a can
lead to false indication of damage. A more effective algorithm is thus needed to make full use of
the wavelet coefficients with the continuous scale resolution from the 2-D CWT for damage

detection and localization.
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Figure 5.5 Wavelet coefficient of fundamental mode shape in three damage cases
(a) damage A, (b) damage B, and (c) damage C
(with Dergauss2d wavelet,a =10, =0)
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Figure 5.6 Wavelet coefficients of the fundamental mode shape in damage B
(@a=1;and (b)a=40

To develop a viable algorithm, there are two main problems to be addressed. One is to
alleviate the distortion of coefficients caused by the boundary condition. Since the CWT is in
fact a convolution of a wavelet and a signal of finite length, the wavelet coefficients will be
inevitably distorted by the discontinuity of mode shapes at their ends. The wavelet coefficients
could reach an extremely high/low value near the boundaries, although no damage appears in
those regions. Those extreme values can even overshadow the singularity caused by damage and
make small damage difficult to be detected as shown in Fig. 5.6(a). This boundary distortion
problem has been investigated in the 1-D CWT cases by many researchers (Gentile and Messina
2003; Poudel et al. 2007; Rucka and Wilde 2006). There are commonly two methods to reduce
the boundary effect. One method is to extend the mode shape data beyond its original boundary
by the cubic spline extrapolation based on the points near the boundaries. It should be noted that
the cubic spline extrapolation is merely a way to treat the boundary distortions. Another method

is simply to ignore those wavelet coefficients near the boundaries. From the definition of the
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convolution, it is clear that the boundary distortion can affect the coefficients as far as a half-
width of the wavelet away from the boundary. To prevent the extremely distorted value from
overshadowing the damage-induced singularity, all the wavelet coefficients in these “boundary
effect regions” are cut off or set to zeros. For simplicity, the second method was adopted in this
study to treat the boundary distortion problem. The effect of this boundary distortion treatment,
i.e., the cut-off of the boundary effect regions, is demonstrated in Fig. 5.7. As we can see, the
elimination of coefficients near boundaries greatly helps the detection of damage in the plate. It
should be noted that both the extrapolation method and the “set-to-zero” method will not be
capable of detecting the damages close to the boundaries, since both of them smooth out the

coefficients information near the boundaries.

x10" x10

(@) (b)

Figure 5.7 Wavelet coefficients of the fundamental mode shape in damage B (a = 6)
before and after boundary distortion treatment
(a) original wavelet coefficients; (b) wavelet coefficients after the boundary
distortion treatment.
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Another problem for detecting damage using the wavelet coefficients with the continuous

scale resolution is how to visualize a function S(l;, a) with three independent variables. To

solve this problem, an algorithm is proposed to visualize only the singular part of the coefficients

instead of visualizing all of the coefficients. The algorithm can be divided into the following

four steps:

(1

2

3)

“4)

Step 1: 2-D CWT. The 2-D CWT of the plate mode shape is computed using
MATLAB in continuous scale variation.

Step 2: Boundary distortion treatment. All the wavelet coefficients in the “boundary
effect regions™ are set to zeros.

Step 3: Threshold value calculation. The maximum and minimum values of the
updated wavelet coefficients are calculated. The one with the larger absolute value is

multiplied with a threshold ratio between 0 and 1 to generate a threshold value.

Step 4: Isosurface generation. The points (l;, a) with the threshold value are

connected to form an “isosurface” as the way of contour lines connecting points of
equal elevation. The isosurface can be directly used to indicate the location and area

of the damage.

A MATLAB" code is written to realize this algorithm. For damage detection in all three

damage cases, the isosurfaces are generated using this algorithm as shown in Fig. 5.8. Because

the singularity part of the signal lies in the high spatial frequency range, only the wavelet

coefficients of low scales are of interest. In this case, the range of the scales in this study is

chosen as from a =1 to 10. The threshold ratio is adjusted to 0.3 based on a few trial analyses to

obtain a clear isosurface, although another threshold ratio ¢ in range from 0.1 to 0.4 will also

work for the damage detection. It can be seen that in all three damage cases the damage can be
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correctly located. The isosurface marks the edges of the damaged area, demonstrating that this
algorithm is capable of not only locating the damage but also indicating the area and shape of the

damage, which is crucial to identify the size and type of the damage.

This algorithm is more advantageous than the one simply using wavelet coefficients from
one scale, and the reason is two-fold: first, it avoids the false indication of damage caused by an
inappropriate choice of a single scale because only the singularities shared by most of the scales
can be identified as a damage; second, its noise immunity is more robust because some randomly
distributed singular points caused by noise cannot form an clear isosurface. Furthermore, even if
an isosurface is formed by noise, a damage-induced isosurface can be easily distinguished from a

noise-induced isosurface by its consistency in most of the scales.

Further investigation shows that this algorithm can not only be applied on the fundamental
bending mode shape but also works on the other mode shapes of the cantilevered plate including
the torsional mode shape. Fig. 5.9 shows the isosurface generated in damage B using the first
torsional mode shape. In the torsional mode case, Steps 3 and 4 in the algorithm are slightly
adjusted, i.e., the isosurfaces defined by the threshold values from both the maximum and
minimum values are overlaid to reflect the complete shape damage; otherwise, only half of the

damaged area is shown.
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Figure 5.8 Isosurfaces generated by the proposed damage detection algorithm
(the actual damages are marked in dash lines): (a) 3-D view and (b) top view of isosurface
for damage A; (c) 3-D view and (d) top view of isosurface for damage B; (¢) 3-D view and (f)

top view of isosurface for damage C.
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Figure 5.9 Isosurface in damage B using the first torsional mode shape
(a) The first torsional mode shape; (b) 3-D view of the isosurface; (c) top view of the

isosurface.

119



5.4 Experimental verification

5.4.1 Experimental set-up and modal analysis

To demonstrate the 2-D CWT-based damage detection algorithm, a 0.508 x 0.254 x
0.00318 m (20 x 10 x 0.125 in.) FRP composite plate was experimentally tested. The plate is
clamped at one end by a steel anchor beam. An artificially-induced and visible impact damage
with an approximate diameter of 20.3 mm (0.8 in.) was induced in the plate before the modal

testing.

The modal testing of the damaged plate was conducted with a roving excitation test. The
plate is uniformly divided into 20x10 elements by the grid lines as shown in Fig. 5.10. The plate
is subjected to a dynamic pulse load applied at each grid point using modally tuned hammer
(PCB 652B10). A total of 20x9 grid points were tested corresponding to an actual spatial
sampling distance of 25.4 mm (1.0 in.). The response measurements were made using one
accelerometer (PCB 352C68) to record the response of the structure. The analog signals then
pass a low-pass anti-aliasing filter to prevent the aliasing problem. A Krohn-Hite 3382 8-pole
dual channel filter is employed to filter out the high frequency signals above the cut-off
frequency of 250 Hz. The filtered signals are then digitized and collected by the data acquisition
system dSPACE CP1103 at the sampling frequency of 500 Hz. The measurements at each point
are repeated 16 times, and the synchronized time histories from the excitation and response
measurements are averaged to enhance the signal-to-noise ratio (SNR). The complete
experimental set-up is shown in Fig. 5.11. Then, the frequency-response functions (FRFs) of
these tested points are calculated from these excitation and response time-histories. A typical
FRF curve and its coherence curve from the test are illustrated in Fig. 5.12. Then, these FRF

curves are imported to the modal analysis program ME’Scope for curve fitting and modal
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extraction. Fig. 5.13 shows the 5™ mode shape of the composite plate, which is used for the

damage detection.
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Figure 5.10 A cantilevered FRP composite plate with artificially-induced impact damage
for model testing

(a) test specimen and (b) grid for response measurement using accelerometer.
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Figure 5.12 FRF and coherence curves for acceleration measurement at a typical point.
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Figure 5.13 The 5" mode shape of the composite plate from the experimental modal

analysis.

5.4.2 Damage identification using 2-D CWT-based algorithm

The proposed 2-D CWT-based algorithm is applied to the experimentally obtained 5™
mode shape of the composite plate (see Fig. 5.13) for damage detection. First, the mode shape
data is oversampled by 10 using the bivariate cubic spline interpolation to enhance the spatial
sampling distance from 25.4 mm (1.0 in.) to 2.54 mm (0.10 in.). Then, the 2-D CWT-based
damage detection algorithm is applied to the oversampled data. The investigation shows that in
this case a scale from 1 to 10 is sufficient for damage detection. The threshold value is set to 0.4
in this case, although any threshold value between 0.3 and 0.5 can give a relatively clear
isosurface indicating the damage. The results from the algorithm are shown in Fig. 5.14. The
isosurface in Fig. 5.14 accurately indicate the location of the damage and illustrate the

approximate shape of the damage. Although there is a small piece of noise-induced isosurface in
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Fig. 5.14, it can be easily distinguished from the “real” damage-induced isosurface by its pattern
as mentioned in Section 5.5.2. In conclusion, the results of this experiment demonstrate the
validity and effectiveness of the 2-D CWT-based damage detection algorithm being applied to

the experimental mode shape data.
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Figure 5.14 Isosurface of 2-D CWT using the 5™ mode shape data from experimental

modal analysis.
5.5 Summary

In this Chapter, a 2-D CWT-based damage identification algorithm using “Dergauss2d”
wavelet for plate-type structures is presented. An isosurface of 2-D wavelet coefficients at
continuous scales is generated to indicate the location and approximate shape (or area) of the
damage. The proposed algorithm is a dynamic response-based damage detection technique
which only requires the mode shapes of the plate after damage. The viability of this method is

demonstrated by analyzing the numerical and experimental mode shapes of a cantilevered plate.

This chapter paves some foundation for the application of 2-D CWT-based damage

detection algorithm for plate- or shell-type structures (as demonstrated later in the experimental
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evaluation of a full-scale deck panel in Chapter 8). However, more experiments are needed to
demonstrate the practicality of this method for full-scale structures and in-situ damage detection

application.
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CHAPTER 6

COMPARATIVE STUDY OF DAMAGE DETECTION ALGORITHMS

6.1 Introduction

As reviewed in Chapter 2, extensive research has been conducted in the vibration or
dynamic response-based 1-D damage detection algorithms for beam-type structures, and a broad
range of algorithms and methods have been developed in this highlighted area. However, the
research on the vibration-based 2-D damage identification algorithms for plate-type structures is
relatively limited. In particular, for bridge deck type application, the damage identification

algorithms for 2-D plate-type structures are in need.

In order to better understand the characteristics and advantages of different damage
detection algorithms, comparative studies were conducted on the algorithms for the beam-type
structures and plate-type structures. The study was based on the finite element simulation to
evaluate the damage detection algorithms for beam-type and plate-type structures. First, a
comparative study on the five extensively used damage detection algorithms for beam-type
structure is presented in Section 6.2. Then, a comparative study of the proposed 2-D CWT based
algorithm with two other 2-D damage detection algorithms, i.e., 2-D GSM and 2-D SEM, is

presented in Section 6.3.

6.2 Comparative study of damage detection algorithm for beams

In this section, a comparative study based on the finite element model was conducted to
evaluate the five extensively used damage detection algorithms for the beam-type structures.
The five damage detection algorithms considered are (1) frequency-based Single Damage

Indicator (SDI) method, (2) mode shape-based Generalized Fractal Dimension (GFD) method, (3)
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curvature-based Mode Shape Curvature (MSC) method, (4) Gapped Smoothing Method (GSM),
and (5) strain energy-based Damage Index Method (DIM). Although some of these methods are
eligible for both damage localization and identification, only its damage localization ability was
investigated here. For the SDI, MSC and DIM methods, the modal parameters from the first five
modes are adopted. For the GFD and GSM methods, only the fundamental mode shape data are

used. The characteristics of these five methods are summarized in Table 6.1.

The commercial FE analysis package ABAQUS is used to perform an eigenvalue analysis
to generate the natural frequencies and mode shapes of the healthy and damaged beam. For
simplicity, the structure is assumed to be a cantilevered beam of 0.01 m width x 0.01 m depth x
I m length. The material is assumed to be isotropic with Young’s modulus £ = 1 GPa and
Poisson’s ratio v = 0.25. The beam is evenly divided into 50 3-node quadratic beam elements
B32. The mode shape data are extracted from the 101 nodes along the beam length. At the
damage location, the Young’s modulus of the element(s) is reduced to simulate the damage-
induced stiffness loss. The different damage severities are simulated by different bending
stiffness reductions in the damaged element, i.e., when the damage severity is a, the Young’s

modulus of the damaged element £’ is set to (1-a) E.
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Table 6.1 Characteristics of five damage detection algorithms

Algorithms | Type Modal parameters requirement Basic Damage index
assumption

SDI Model-based Measured natural frequencies in Single damage | Defined at
healthy and damaged beam, or element/sub-
theoretical mode shape in healthy region
beam model

GFD Response-based, Measured fundamental mode shape in | - Defined at

damaged state damaged beam node/sensor

response only

MSC Response-based Measured mode shape curvatures in - Defined at
healthy and damaged beam node/sensor

GSM Response-based, Measured fundamental mode shape - Defined at
damaged state curvature in damaged beam node/sensor

response only

DIM Model-based Measured mode shape curvatures in Single damage | Defined at
damaged beam, or theoretical mode element/sub-
shape in healthy beam model region

6.2.1 Single damage detection

First, a single damage with three different severities is considered. The damage is assumed
to be at the 20" element which locates 0.38~0.40 m away from the cantilever clamped end (x =
0). The simulated natural frequency change ratio and damage severity relationship in the first
five modes is given in Table 6.2. The natural frequency change ratio suggests that mode 5

should be the most sensitive mode to this specific damage.
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Since the damage index/indicator from each algorithm has its unique physical meaning, it
is meaningless to compare them directly. For comparison, assuming that the damage index at a
different location is a normally distributed random variable, a Normalized Damage Index (NDI)
can be obtained using Eq. (2-11). A threshold value NDI = 2 is usually used to detect damage,

i.e., a NDI larger than the threshold value indicates the location of potential damage.

Table 6.2 Natural frequency change ratio in three damage severities

Damage severity, | Bending stiffness ratio, Natural frequency change ratio = ( fi=f )/ 1,
a EVEL Mode | Mode |Mode |Mode | Mode
1 2 3 4 5

0.1 0.9 0.001 | 0.0014 | 0.0011 | 0.0004 | 0.0022
0.2 0.8 0.0023 | 0.0032 | 0.0026 | 0.0007 | 0.0049
0.3 0.7 0.0038 | 0.0054 | 0.0043 | 0.0012 | 0.0083
0.5 0.5 0.0089 | 0.0125 | 0.0098 | 0.0027 | 0.0183
0.7 0.3 0.0204 | 0.0279 | 0.0214 | 0.0059 | 0.0385
0.9 0.1 0.0726 | 0.0888 | 0.0617 | 0.0175 | 0.0980

It should also be noted that for the GFD method (Wang and Qiao 2007), the damage index
is subjected to the choice of scale parameter S (see Eq. (2-8)). In this study, the investigation
showed that an S value larger than 100 should be adopted in order to detect the damage and the
normalized damage index varies little when S is chosen between 10° and 10°. Hence, a constant

scale parameter S = 1,000 is chosen for all cases when the GFD algorithm is implemented.
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A comparison of NDI for all the five algorithms in the case of a single damage with
severity a = 0.1 are shown in Fig. 6.1. For the SDI and DIM method with element-wise damage
indices other than node-wise indices, their indices are placed at the midpoint of the
corresponding element. It can be seen that all the five algorithms can detect and locate the
damage correctly. Further results show that these algorithms can successfully locate the damage
in all three damage severity cases. It is interesting to note that there is a small bump in the SDI
curve around x = 0.6 m, since due to the frequency-based nature of SDI method, this bump will
become an equally sharp peak as the one at x = 0.4 m if the boundary condition is symmetric.
The peak values of NDI in three different cases of damage severities are collected in Fig. 6.2. It
shows that all the methods give satisfactory damage indices, except the GFD. The GFD method
gives relatively low NDI and drops below zero when a = 0.3, which indicates that this method is
not so sensitive to small damage and may lead to a false negative indication of damage in some
cases of damage severity. The MSC method always gives the largest peak values, and its peak
values are insensitive to damage severity. The SDI method gives peak values decreasing with
the damage severity, which indicates that this method may gradually lose its effectiveness when
damage severity increase. It is also not surprising to see that the GSM gives oscillating peak
values since the NDI from the GSM should not be expected to correlate with damage severities

when only the damaged state data are used.
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Figure 6.1 NDI along beam length for five algorithms in the case of single damage

(damage location x = 0.38~0.40 m, damage severity a = 0.1).
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Figure 6.2 Peak values of NDI for five algorithms at different severities
(a=0.1,0.2and 0.3).
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6.2.2 Multiple damage detection

Second, two multiple damage cases with two separate damage elements are considered.
For the first case, the multiple damages with the same severity a = 0.1 are assumed to be at the
3 and 20™ elements which locate 0.04~0.06 m and 0.38~0.40 m, respectively, away from the
cantilever clamped end (x = 0). For the second case, the multiple damages are assumed to be at
the 20™ and 30™ elements, which locate 0.38~0.40 m and 0.58~0.60 m, respectively, away from
the cantilever clamped end (x = 0).The comparison of NDI in two multiple damage cases are
shown in Fig. 6.3. It shows that MSC, GSM and DIM can locate the multiple damages
successfully. It is interesting to note that the DIM methods can correctly locate the multiple
damages even though it is originally derived from the single damage assumption. Our first
attempt in using the GSM to detect the multiple damages shows that the GSM cannot locate the
multiple damages if the fundamental mode is adopted as suggested in the literature (Ratcliffe
1997). However, further investigation shows that the higher modes actually work better than the
fundamental modes in this case. Therefore, the NDI curve of the GSM shown in Fig. 6.3 is
evaluated from the fifth mode shape curvature. However, using the fifth mode expands the
irregular bump area, which leads to inaccuracy in damage localization. For different modes,
there is a trade-off between the sensitivity and the damage localization accuracy in the GSM
method. The GFD method, on the other hand, can locate damages in the first case, but it can
only locate one of the two damages in the second case. It can be seen from the NDI curve that
the sensitivity of the GFD to damage highly depends on the location of damage. The bump in
the NDI curve is more obvious in the 3" element than in the 20" element; while the bump in 30"
element can barely be noticed. Hence, it is more effective for the GFD to detect the damage near

the cantilever end than that near the free end. Although the frequency-based SDI method is
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derived from a single damage assumption and designed mainly for single damage detection,
surprisingly it can still approximately locate both damages in the second case with both the peaks
shift toward each other a little. But it is obviously not a reliable algorithm for multiple damage
detection, e.g., it cannot detect the damage at 20™ element in the first case. The reason of the
failure in the first case for the frequency-based SDI method is that in a cantilevered beam the
natural frequency change is more sensitive to damage near the cantilevered end than that near the
free end if their damage severities are similar. Due to its single damage assumption and
frequency-based nature, the SDI method tends to predict the damage location at the primary
damage which dominates the damage-induced frequency change. To support this conclusion, it
can also be noticed in the second case that the peak values at the 20" element are higher than the
30™ element. In summary, MSC and GSM work well for localizing multiple damages if the
mode is carefully chosen. DIM also works well in the separated multiple damage case even
though using it for multiple damage detection violates its single damage assumption, while GFD

and SDI are not suitable for multiple damage localization.
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Figure 6.3 NDI along beam length for five algorithms in two multiple-damage cases
(Damage case 1: located at 3™ (0.04~0.06 m) and 20" (0.38~0.40 m) elements, and damage
case 2: 20™ (0.38~0.40 m) and 30" (0.58~0.60 m) elements).

6.2.3 Large-area damage detection

After the single damage and multiple damage cases, a large-area damage case is considered.
Large-area damage can be caused by impact damage or delamination in composite laminates. In
this study, the damage is assumed to be at the region from the 20" element to 23™ element which
locates 0.38~0.46 m away from the cantilevered end (x = 0). The damage severity of each

damaged element is assumed to be a = 0.1.

A comparison of NDI for the five considered algorithms in the large-area damage case is

shown in Fig. 6.4. It shows that both the MSC and DIM can locate the large-area damage
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successfully; the GFD method is not very sensitive to the large-area damage although the slight
irregularity in its NDI curve around the damaged region can still be noticed; the GSM and SDI
methods show only one major peak in their curves which indicates the approximate location of

damage, but they fail to identify the exact location and the length of the damage.
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Figure 6.4 NDI along beam length for five algorithms in large-area damage case
(damage located from the 20™ to 23™ elements (0.38~0.46 m)).

6.2.4 Evaluation of measurement noise effect

In experimental modal analysis, measurement noises are inevitable. To evaluate the
robustness of damage detection algorithms under measurement noise, the simulated mode shape
data are contaminated with certain level of artificial random noise to generate “measured” mode

shapes. The original simulated mode shapes are extracted from a single-damage case with a
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damage severity a = 0.5 at the 20" element. Only the mode shape-based and curvature-based
methods are studied here for comparison. The frequency-based SDI method is excluded because
it is difficult to find a common ground to compare the level of noise from the frequency and
mode shape measurement. The mode shape curvatures are obtained from two methods: derived

from the displacement mode shape data or directly measured from the strain mode shape.

The contaminated mode shapes are represented as
Q; = (0,‘/‘ + ’/;'jpgorms,j (6_1)

where (pl; and @, are the displacement mode shape or strain mode shape components of the jth

mode at the ith DOF with noise and without noise, respectively; » is the normally distributed

random variables with a mean equal to zero and a variance equal to 1; p is the random noise level;

and @, ;is the root-mean-square of the jth displacement mode shape or strain mode shape.

When the mode shape curvatures are derived from the displacement mode shape, the
comparison of damage detection resulted from the different algorithms are shown in Fig. 6.5. It
should be noted that for the GSM and GFD methods, it is difficult to detect damage using the
fundamental mode in this case. Since the most sensitive mode to this damage location is the 5t
mode as suggested by the frequency change ratio in Table 6.2, the 5™ mode shape instead of the
first mode shape is used. When p = 0.0001, all four methods can locate the damage correctly.
When p = 0.001, only the GFD method is capable of locating the damage; while both the GSM
and DIM methods give the false indication of damage location; the MSC method indicates the
correct damage location but also gives a false indication with the small peak at x = 0.18 m.
When p = 0.01, all the methods fail to correctly locate damage. Although the GFD shows a peak

at the damage location, it also gives a false positive indication of damage at x = 0.62 m. This
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result shows that the GFD method is more robust than the MSC method; while the MSC method
is better than the other two remaining methods (i.e., GSM and DIM) under measurement noise.
The main reason is that the mode shape curvatures used in the MSC method are derived from the
displacement mode shape by the central difference approximation (see equation (2-9)), while the
damaged state curvatures used in the DIM are derived by cubic spline interpolation. For the
GSM method, the damaged state curvatures are derived by the central difference approximation,
while the baseline curvature derivation involves the cubic polynomial interpolation. This
derivation process, no matter by the central difference approximation or the cubic interpolation,
will greatly magnify the measurement error. This processing error weakens the robustness of the
curvature-based algorithms under measurement noise. The results also show that the cubic
interpolation will introduce larger processing error than the finite difference approximation,

which makes the GSM and DIM methods very sensitive to measurement noise.

To manifest this conclusion, a similar damage detection case is studied, in which the mode
shape curvatures are directly obtained from the simulated strain mode shape and then
contaminated by artificial measurement noise to generate the “measured” strain mode shape.
Again, the original simulated mode shape are extracted from a single-damage case with a
damage severity a = 0.5 at the 20™ element (0.38~0.40 m from the cantilever clamped end of x =
0). The comparison of curvature-based damage detection algorithms are shown in Fig. 6.6. The
result shows that when the directly measured curvature mode shape is used, the GSM method
can correctly locate damage even under level of noise p = 0.1; the MSC method can correctly
locate damage under level of noise p = 0.2; while the DIM method can even locate damage under
level of noise p = 0.4. All the three methods perform much better than the mode shape-based

GFD method when the processing-induced error is eliminated. Therefore, for the curvature-
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based methods, if at the similar noise level, the directly measured curvature has a great

advantage over the derived curvatures in laboratory or in-situ experiments.
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Figure 6.5 Measurement noise effect on damage detection algorithms case 1
(Curvature derived from the displacement mode shape; single damage at 0.38~0.40 m and

a=0.5).
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Figure 6.6 Measurement noise effect on damage detection algorithms case 2
(Curvature directly measured from the strain mode shape; single damage at 0.38~0.40 m, a
=0.5).

6.2.5 Evaluation of sensor spacing effect

In experimental modal analysis, the mode shapes usually can only be measured at a
relatively small number of locations, especially for in-situ experiments. The sparse distribution

of sensors will often pose difficulties for damage detection algorithms to detect and locate the
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damage. Even though novel measurement systems, such as scanning laser vibrometer (SLV),
can be employed to obtain high-density mode shape data in laboratory-scale experiments, the
robustness of damage detection algorithms under limited measured data points is still of interest

for their practicality for in-situ experiment.

To simulate the data acquisition process, the “measured” mode shape data are extracted
from the FE-generated mode shapes at uniformly spaced locations. The effect of sensor spacing
on the algorithms was studied. The mode shape curvatures are again obtained from two methods:
derived from the displacement mode shape data or directly measured from the strain mode shape.

Three cases with sensor spacing of s = 0.02, s = 0.05 and s = 0.10 were studied.

When the derived curvatures are used, the results are illustrated in Fig. 6.7. The GFD
cannot detect the damage when the sensor spacing reaches s = 0.05. When s = 0.10, the DIM
method gives a false indication of damage at the cantilevered end of beam, and it tends to give
the periodical false indication along the beam; the MSC and GSM can barely detect the damage,
and the GSM also tends to give the ambiguous prediction at x = 0.6 m. Another feature can also
be noticed as pointed out by Zhou et al. (2007), that the GSM and MSC tends to predict damage
location at the sensor location due to the piecewise nature of derived curvatures and can only

predict the damage location with the accuracy of half of the sensor spacing.

When the directly measured curvatures are used, the results are illustrated in Fig. 6.8. The
results show that all three curvature-based methods (i.e., the GSM, MSC and DIM) can correctly
locate the damage without any false indication. For the GSM method, all the five modes can be
used independently to locate the damage. Therefore, for the curvature-based methods, the

directly measured curvature has its advantage over the derived curvatures in the case of large
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sensor spacing. With the increase of sensor spacing, the predicted damage zone tends to spread,

and the accuracy of damage location prediction will decrease accordingly.
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Figure 6.7 Sensor spacing effect on damage detection algorithms case 1
(Curvature derived from displacement mode shape; single damage at 0.38~0.40 m, a = 0.5).
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Figure 6.8 Sensor spacing effect on damage detection algorithms case 2
(curvature directly measured from the strain mode shape; single damage at 0.38~0.40 m, a
=0.5).

6.2.6 Summary on comparative study

Based on the above case illustrations and discussions, the capabilities of the
aforementioned five damage detection algorithms in terms of their single and multiple damage
identification, large-area damage identification, degree of noise immunity, and tolerance for

sensor spacing are summarized in Table 6.3. The following conclusions are drawn from the
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comparisons among the five damage detection algorithms in terms of single vs. multiple

damages, damage area, methods of acquiring mode shape curvatures, noise, and sensor spacing:

(1

2

3)

“4)

)

In noise-free and small sensor spacing condition, all five methods are capable of
locating single damage; while only the MSC, GSM and DIM methods can locate the
multiple damages, and only the MSC and DIM can locate the large-area damage.

The fundamental mode may not always be the most effective mode for damage
detection in the GFD and GSM methods, as suggested by others. A higher mode may
be more sensitive to damage detection in some cases. The natural frequency change
ratio can be a good indicator of sensitivity of certain modes to the damage.

When the mode shape curvatures are derived from the displacement mode shape, the
mode shape-based GFD method is more robust under the measurement noise than the
curvature-based methods due to their processing-induced errors. However, when
curvatures are directly measured from the strain mode shape, the curvature-based
methods are much more robust and promising than the mode shape-based GFD
method.

When the mode shape curvatures are derived from the displacement mode shape, the
MSC and GSM methods are more robust than others in the large sensor spacing case.
For the curvature-based methods, the directly measured curvature has great advantage
over derived curvatures in the case of large sensor spacing. If at the same noise level,
the directly measure curvatures are preferred than the derived curvatures for damage
detection in all studied cases.

In general, the GFD method is not a very sensitive damage detection method, and it

requires high density mode shape measurement and low-noise level. The MSC and
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DIM methods are relatively robust in high measurement noise and large sensor

spacing condition. Although the GSM is not as robust as the MSC and DIM methods,

it is still a good choice for damage detection algorithm when only the damaged state

structures are available for test as in most in-sifu experiment.

Table 6.3 Capabilities of five damage detection algorithms

Algorithm | Single damage | Multiple damage | Large-area Noise immunity | Sensor spacing
detection detection damage detection tolerance

SDI Yes No No N/A N/A

GFD Yes No No Excellent Fair

MSC Yes Yes Yes Good (Good*) Good (Good*)

GSM Yes Yes No Fair (Good*) Good (Good*)

DIM Yes Yes Yes Fair (Excellent*) | Fair (Excellent*)

*Note: The results from directly measured curvature mode shape are shown in parentheses.

6.3 Comparative study of damage detection algorithms for plates

To further evaluate performance of the proposed 2-D CWT-based damage detection

algorithm as introduced in Chapter 5, a comparative study of this algorithm with other two

established damage detection methods for a plate was conducted. The two other damage

detection methods considered are: (1) the two-dimensional Gapped Smoothing Method (2-D

GSM) by Yoon et al. (Yoon et al. 2005), and (2) the two-dimensional Strain Energy Method (2-

D SEM) by Cornwell et al. (Cornwell et al. 1999). The comparative study is based on the

numerically simulated fifth mode shape of a damaged plate (i.e., damage B in Section 5.3.1).

The choice of this mode is based on its natural frequency change ratio which is a good indicator

of the mode sensitivity to the damage event. The natural frequency change ratio in the fifth
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mode is the largest in the first five modes, and it is hence considered as the most sensitive mode

to this specifically given damage (i.e., damage B in this study).
6.3.1 2-D GSM and 2-D SEM

The 2-D gapped smoothing method (GSM) adopts the one-dimensional GSM by Ratcliffe

to two dimensional plate-like structural applications. The curvature mode shape Vzwij 1s first
calculated from the displacement mode shape w; by the central difference approximation at grid
point (i, ) as:

Vzwl.j =W, Wy, —2wl.’j)/hf +(w ., +w

i,j+1 i,j—1

2
Yy =2w, )/ h; (6-2)
where A, and A, are the horizontal and vertical grid increments, respectively.
Then, a smoothed surface is generated based on the curvature values at its neighboring grid

points using the bivariate curve fitting. The smoothed curvature shape is evaluated at grid point

(i, j) on the smoothed surface. The damage index f at point (i, /) can be then obtained by
B, =[V*w, - C,| (6-3)
where C; is the smoothed curvature at point (%, /).
While the 2-D strain energy method (SEM) subdivides the plate into N, subdivisions in the
x direction and N, subdivisions in the y direction. It assumes that if the damage is primarily
located at a single sub-region, then the fractional strain energy will remain relatively constant in

undamaged sub-regions. For plates, the Young’s modulus and the Poisson’s ratio are assumed to

be essentially constant over the whole plate for both the undamaged and damaged modes. The

fractional strain energy f;, in sub-region (i, j) for the k&th mode is given by classic plate theory

as:
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where w, is the kth bending mode shape of the plate; a and b are the dimensions of the plate in x

(6-4)

and y directions, respectively; the sub-region (i, j) is the rectangular region enclosed by x = a;, x
=ai+;, Yy = bj andy= bj +].

The damage index £ at sub-region (7, j) can be obtained by

NgE

i
: (6-5)
i

S
Il
M§ T

=~
Il

1
where f, and f,;{ are the fractional strain energy from the healthy and damaged plate,
respectively.

For the sake of comparison, both the damage index in the 2-D GSM and 2-D SEM are

normalized. A normalized damage index Z at point (for the 2-D GSM) or sub-region (i, j) (for

the 2-D SEM) can be obtained using

z =10 (6-6)

where ,E and o, represent the mean and standard deviation of the damage indices, respectively.
Usually, a damage detection criterion can be set when the normalized damage index Z; is larger

than 2. The main characteristics of three damage detection algorithms are summarized in Table

6.4.
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Table 6.4 Characteristics of three damage detection algorithms

Algorithms | Type Modal parameter requirement Damage index
2-D CWT | Response-based, only | Mode shape data in damaged beam Defined at
damaged state node/sensor

response required

2-D GSM | Response-based, only | Mode shape data in damaged beam Defined at
damaged state node/sensor

response required

2-D SEM | Model-based Measured mode shape data in damaged beam and Defined at
experimental/theoretical/numerical mode shape data in element/sub-
healthy plate model region

The 2-D GSM and 2-D SEM are directly applied to the numerical finite element mode
shape of the damaged plate to verify their ability to detect the damage. The normalized damage
indices are shown in Fig. 6.9. The results show that both the methods are able to detect the
location of damage B in the ideal situation. Like the 2-D CWT, the 2-D GSM also works in
sizing the damage area, although without special treatment, a similar boundary distortion

problem occurs at the clamped end of the plate.
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Figure 6.9 Damage detection for damage B using the 5™ mode shape
(a) the 5™ displacement mode shape; (b) normalized damage indices by 2-D GSM; (c)
normalized damage indices by 2-D SEM; and (d) isosurface by 2-D CWT.
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6.3.2 Effect of measurement noise

In experimental modal testing, measurement noises are inevitable. To evaluate the
robustness of a damage detection method, it is essential to investigate its noise immunity
performance. In order to simulate the effect of measurement noise, a series of normally
distributed random numbers are added to the numerical mode shapes to generate the noise-
contaminated mode shapes. The original numerical mode shape data are extracted from all the
101x51 nodes in the finite element model. The new mode shape data can be expressed as:

W(x, y) =w(x, )+ p-r-w,, (6-7)
where w' and w are the displacement mode shapes with and without noise, respectively; r is the
normally distributed random variables with a mean equal to zero and a variance equal to 1; p is

the random noise level; and w,

rms

is the root-mean-square of the displacement mode shape.

Based on the noisy mode shape data established by equation (6-1), the effect of

measurement noise at different levels is illustrated in Figs. 4.10 to 4.12. As shown in Fig. 6.10,
the 2-D GSM can only correctly detect the damage when p=1x10", with a large boundary
distortion at the clamped end. After the noise level reaches p=5x10", the 2-D GSM cannot
detect the damage anymore. Fig. 6.11 indicates that the 2-D SEM offers a better noise immunity
than the 2-D GSM. The damage can be correctly localized when p =5x107, if the boundary
distortion is neglected. But in the case of p=1x10", the damage can barely be noticed.

Compared to both the 2-D GSM and 2-D SEM, the 2-D CWT clearly exhibits its superior noise

immunity. As shown in Fig. 6.12, the damage location can be successfully identified when

p=1x10". Further investigation shows that the 2-D CWT is effective in detecting the given

damage with noise level as high as p=2.5x10"". Although in the case of p=2.5x107*, some
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pieces of isosurface caused by noise begin to appear, it is not difficult to distinguish these
isosurfaces from the one caused by real damage by its pattern. Since these isosurfaces are
caused by random noise, their existence and shapes are not as consistent from the low scale to

high scale as the real one.

Normalized damage index
Normalized damage index

Normalized damage index
et IL‘! o (] £ (=Y

(c)
Figure 6.10 Normalized damage indices of 2-D GSM using the 5™ mode shape data with

different noise levels

(@) p=1x107; (b) p=5x10";and (c) p=1x10"*,
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Figure 6.11 Normalized damage indices of 2-D SEM using the 5" mode shape data with

different noise levels

(@) p=1x107; (b) p=5x10";and (c) p=1x10"".
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Figure 6.12 Isosurfaces of 2-D CWT using the 5™ mode shape data with different noise

levels

(@) p=1x107; (b) p=5%x107"; (c) p=1x107"*; and (d) p=2.5x10"".

6.3.3 Effect of sensor spacing

In experimental modal analysis, the mode shapes can be only measured at a relatively
small number of locations, especially for in-situ experiments. The sparse distribution of sensors

will often pose difficulties for damage detection algorithms to effectively detect and localize the
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damage. Even though the novel measurement systems, such as scanning laser vibrometer (SLV),
can be adopted to obtain high-density mode shape data in laboratory-scale experiments, the
robustness of the damage detection algorithms under the limited measured data points is still of

interest for their practicality for in-situ experiment.
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Figure 6.13 Normalized damage indices of 2-D GSM using the 5™ mode shape data with

different sensor spacing

(@) s=0.04m:; (b) s=0.08m; and (c) s=0.1m.
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Figure 6.14 Normalized damage indices of 2-D SEM using the 5" mode shape data with

different sensor spacing
(@) s=0.04m; (b) s=0.08m;and (c) s=0.1m.
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Figure 6.15 Isosurfaces of 2-D CWT using the 5" mode shape data with different sensor
spacing
(@) s=0.04m; (b) s=0.08m;and (c) s=0.1m.

In order to evaluate the effect of different sensor spacing, the mode shape data are
extracted from in the finite element model with three different intervals (s = 0.04 m, 0.08 m and

0.10 m) for the numerically simulated plate with in-plane dimensions of 1 m x 2 m. In these
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three cases, the extracted mode shape data form a matrix of 51x26, 26x13, and 21x11,
respectively, for s = 0.04 m, 0.08 m, and 0.10 m. Figs. 6.13~6.15 illustrate the effect of different
sensor spacing. As shown in Fig. 6.13, the 2-D GSM can only correctly detect the damage when
s = 0.08 m if the large boundary distortion at the clamped end is neglected. But the damage-
induced singularity can barely be noticed after the noise level reaches s =0.10 m. In Fig. 6.14,
the 2-D SEM can correctly indicate the damage in all three sensor spacing cases. However, its
ability to localize the damage gradually decreases when the sensor spacing increases. As shown
in Fig. 6.15, the 2-D CWT shows its ability to detect and localize the damage before the sensor
spacing reaches s = 0.08 m. But it fails to detect the damage when s = 0.10 m, similar to the case
of the 2-D GSM. The results show that the robustness of the 2-D CWT damage detection
algorithms under the limited measured data points is as good as the 2-D GSM, but not as good as
the 2-D SEM. However, it should be noted that both the 2-D GSM and 2-D CWT are the
response-based algorithms; while the 2-D SEM is a model-based algorithm, requiring a relatively
accurate numerical/analytical model of the healthy structure, which is not feasible for almost all

the in-situ structural tests.

6.4 Summary

In this chapter, a comparative study of damage detection algorithms for beam-type
structures is first presented. The study is based on the finite element model to evaluate the five
extensively-used 1-D damage detection algorithms. The MSC and DIM methods are more
robust than the GFD method in high measurement noise and large sensor spacing condition.
Although the GSM is not as robust as the MSC and DIM methods, it is still a good choice for
damage detection algorithm when only the damaged state structures are available for test as in

most in-situ experiment.

156



Then, a comparative study of the proposed 2-D CWT based algorithm with two other 2-D
damage detection algorithms, i.e., 2-D GSM and 2-D SEM, shows that the proposed 2-D CWT-
based algorithm as introduced in Chapter 5 is superior in noise immunity and robust under
limited sensor data. The proposed algorithm is a response-based damage detection technique
which only requires the mode shapes of the plate after damage. Therefore, the proposed 2-D
CWT-based algorithm is more advantageous in laboratory or in-situ damage detection

experiment, and it can be used in damage identification of bridge deck structures.
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CHAPTER 7
DAMAGE SEVERITY CORRECTION FACTOR-BASED DAMAGE IDENTIFICATION

METHOD FOR PLATE-TYPE STRUCTURES

7.1 Introduction

A reliable and effective non-destructive damage identification method is crucial to
maintain the safety and integrity of structures. The most common non-destructive damage
identification techniques are visual inspection and conventional nondestructive testing (NDT).
However, the visual inspection techniques are unable to detect damage which is embedded in a
structure or invisible to human eyes; while the conventional nondestructive testing (NDT) have
their limitations in which the vicinity of damage must be known a priori and readily accessible
for testing. Hence, worldwide research efforts have been focused on vibration response-based
damage identification method to overcome these difficulties. The basic idea for vibration
response-based damage detection is that the damage-induced changes in the physical properties
(mass, damping, stiffness, etc.) will cause detectable changes in modal properties (natural
frequencies, modal damping, mode shapes, etc.) (Doebling et al. 1996). Therefore, it is intuitive

that damage can be identified by analyzing the changes in vibration features of the structure.

In order to find effective and accurate damage identification methods, extensive research
effort has focused on damage identification methods utilizing mode shapes, frequencies or modal
parameters derived from mode shapes and frequencies, such as modal strain energy, modal
flexibility and uniform load surface. As discussed in the literature review (see Chapter 2), most
of the popular damage identification methods are initially developed in the context of one-
dimensional (1-D) beam-type structures, such as the modal curvature-based Mode Shape

Curvature method (Pandey et al. 1991), Gapped Smoothing Method (Ratcliffe 1997), modal
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strain energy-based Damage Index Method (Stubbs et al. 1995) and modal compliance-based
Modal Compliance Method (Choi et al. 2005). Even though many methods have been developed,
no single method is completely effective in all situations. A comparative study by Farrar and
Jauregui (1996) based on experimental data showed that the strain energy-based damage index

performed best among some popular existing damage identification methods.

Modal strain energy-based method is a widely used category of damage identification
methods. These methods use the fractional modal strain energy change for damage detection.
For beam-type or plate-type structures, the modal strain energy can be directly related to (and are
usually derived from) the strain mode shape. Stubbs et al. (Stubbs and Kim 1996; Stubbs et al.
1995) developed a damage index (DI) method based on the modal strain energy. This method
assumes that if the damage is primarily located at a single sub-region, then the fractional strain
energy will remain relatively constant in sub-regions. For beam-type structures, the bending
stiffness EI is assumed to be essentially constant over the length of the beam for both the
undamaged and damaged modes. Shi and Law (Shi and Law 1998; Shi et al. 2000b) presented a
damage localization method for beam, truss or frame type structures based on the modal strain
energy change. The Modal Strain Energy Change (MSEC) at the element level is suggested as
an indicator for damage localization. Law et al. (1998) applied this strain energy method to
detect the damage location in a structure with incomplete and noisy measured modal data. The
method consists of three stages: expansion of the measured mode shapes, localization of the
damage domain using the elemental energy quotient difference, and damage quantification based

on sensitivity of the modal frequency.

There have been very limited theoretical studies on the damage identification method for

two-dimensional (2-D) plate-type structures, suitable for bridge deck type applications. Also,

159



most of the damage identification methods for plates mainly focus on detecting damage location.
Either they cannot quantify damage severity or rely heavily on numerical model for
quantification. Cawley and Adams (1979) were probably the first to locate the defects within a
rectangular plate using the natural frequency changes only. Dos Santos et al. (2000) used the
natural frequencies and mode shapes to locate and quantify the damage within a laminated
rectangular plate. Ge and Lui (2005) recently proposed a damage identification method capable
of identifying the location and computing the severity of the damage. The method made use of
the stiffness and mass properties of undamaged structures and the eigenvalues and eigenvectors
of damaged structures to locate and quantify the damage. It should be noted that the above
mentioned methods (Cawley and Adams 1979; dos Santos et al. 2000; Ge and Lui 2005) are all

the numerical FEM model-based.

Some viable damage identification methods for beams have been also successfully
extended from 1-D to 2-D algorithms for damage detection of plates, but these methods are not
able to quantify damage. Yoon et al. (2005) generalized the 1-D GSM by Ratcliffe (1997) to 2-
D plate-like structural applications. Hadjileontiadis and Douka (2007) extended the fractal
dimension-based crack detection algorithm (Hadjileontiadis et al. 2005) to 2-D for detecting
cracks in plate structures. Cornwell et al. (1999) generalized the strain energy-based damage

index (DI) method for 1-D beam-type structure by Stubbs (1995) into 2-D plate-type structures.

The objective of this chapter is to propose a modal strain energy-based damage severity
correction factor method for damage identification of plate-type of structures. The proposed
method can be easily implemented in experimental testing and used to locate and quantify
damage. The method is a response-based one; thus, it does not require a numerical model of the

structure. This method requires that the modal frequencies and curvature mode shapes before
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and after damage be known, but the normalized mode shape are not required. The rest of this
chpateris organized as follows. The theoretical background of the proposed damage correction
factor method is presented in Section 7.2. The application of the proposed method is thoroughly
examined and discussed based on a numerical plate model in Section 7.3. The effectiveness and
applicability of the damage detection method is validated in Section 7.4 via an experimental
program on an FRP sandwich bridge panel using a smart piezoelectric sensor network. Finally,

the concluding remarks are given in Section 7.5.

7.2 Theory
7.2.1 Free vibration of healthy and damaged structure

The equation of motion for free vibration of an undamped structural dynamic system leads

to the following eigenvalue problem:

(K-AM)¢ =0 (7-1)
where K is the stiffness matrix; M is the mass matrix; A is the eigenvalue of the ith mode,
A = (27z f )2 ; f; 1s the modal frequency of the system; and ¢, is the vibration mode shape vector

of the ith mode. Note that both K and M are symmetric matrices.

Structural damage, such as cracks, delamination and barely visible impact damage (BVID),
usually cause a loss in stiffness but not a loss in mass. The change of structural stiffness matrix
AK introduced by structural damage can be modeled by a proportional damage model, i.e., AK

can be expressed as a function of the undamaged element stiffness by the equation

AK=->a K, (7-2)
j=1
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where n is the total element number; K is the stiffness matrix of the jth element; «; is the
damage severity of the jth element. The damage severity is defined as the fractional change in

elemental stiffness (a, =0 for healthy element).
Assuming the mass loss is negligible, the eigenvalue problem of a damaged structure can
be expressed as
[(K+AK) = (4 +AL)M (4 +A¢) =0 (7-3)
Expanding equation (7-3) and premultiplying ¢’ leads to
@' (K—AM +AK —ALM)($ +Ad)=0 (7-4)
Note that ¢" (K —A.M) equals to zero by taking transpose of euation (7-1). Equation (7-4) can
be simplified to
#" (AK —AIM)(p+Ag) =0 (7-5)
Expanding equation (7-5) and using equation (7-1), we have

A4, AZ,
0K~ K+ AKAG — = 4T KA, =0 (7-6)

7.2.2 Modal strain energy

For a plate-type structure, the elemental modal potential energy can be expressed by the
elemental modal strain energy. The potential energy of jth element in the ith mode of the healthy

plate can be expressed as

XX, yy,i ) i

1
4K ¢=U, = > [[hlte. +x, 0 +2vk, ik, +20-v)x, Ddxdy =ky, =ky,  (7-T)
4;

where k, =(EI), is the bending stiffness of the jth element in the healthy plate, which is a

constant k over the plate; and y,, is defined as
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xyi

7y = | [ 1007 5,7+ 2vk i+ 2(1=v)ie, ) ldxdy (7-8)
4;

where the curvature mode shape «_, K., can be derived from the displacement mode shape

o
data using the finite difference approximation, or they can be directly measured as the strain
mode shape using piezoelectric sensors such as PZT and PVDF. Deriving the curvature mode
shape from the displacement mode shape data using the finite difference approximation may
introduce considerable processing error. Therefore, using the directly measured strain mode
shape data is advantageous (Fan and Qiao 2011).

Combining equations (7-2) and (7-7), we have
¢ AK ¢, = _Z ajqﬁiTKjQ. = _kz a7y (7-9)
Jj=1 Jj=1

Similarly, the total potential energy of all elements in the ith mode of healthy plate is

T 1 2 2 2
¢i K¢l = Ui = Ej‘j[k[(l(vm +Kyyi + 2VKxxiKyyi + 2(1 _V)K-xyi )]dXdy = k71 (7_10)
where y; 1s defined as
7o= 20y = [ [l e, + v e, + 201- )k, ]dedy (7-11)
J=1 4

The potential energy of jth element in the ith mode of the damaged plate can be expressed

as
(6" +A§TK, +AK )4, +Ad) =k, 7, =(1-a))ky; (7-12)
where the superscript * denotes the damaged state.
Neglecting the high-order terms of A¢. in equation (7-12) and using equations (7-2), (7-7)

and (7-9), we have
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* T T T T
(I—a)ky, =4 K ¢ +26"K Mg+ ¢ AK 4, + 267 AK Ag,

. (7-13)
=(l-a)ky; +2(1-a,)¢ K A,
So we can derive
¢iTKjA¢i :k(yg/*_yg/)/z (7'14)
It can be further derived from equation (7-14) that
¢ AKAG ==k o (v, —7,)/2 (7-15)
=
T k *
) KAQ:E(%‘ =7 (7-16)

7.2.3 Damage severity correction factor

Consider a plate with a small damage severity, in which all the high order terms in

equation (7-6) are negligible. In this case, equation (7-6) can be rewritten as

# AR S5 4K =0 1)

1

Substituting equations (7-9) and (7-10) into equation (7-17), we obtain

"oy AL
Yt =2 (7-18)
=1 Vi i

1

AL
In equation (7-18), o is the ith modal eigenvalue change ratio, which reflects the global effect

i

of damage on the ith mode. i is defined as the damage location factor (DLF), which reflects

Vi
the sensitivity of the ith vibration mode to the damage at the jth element. DLF is an important

factor for damage localization and damage quantification. In the case of a small damage severity,
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it can be seen from equation (7-18) that the modal eigenvalue change ratio is a linear function of

damage severity ; for a given mode and damage location.

Consider a plate with a moderate/large damage severity, in which the high order terms in
equation (7-6) are not negligible. Substituting equations (7-9), (7-10), (7-15), (7-16) into

equation (7-6) and simplifying the equation, we obtain

"y, +1 .
S Gt A (7-19)

Jj=1 7/1 /}/z+1 7/1 ’ ﬂ“

In the case of a moderate damage severity, it can be seen from equation (7-19) that the

modal eigenvalue change ratio is a nonlinear function of damage severity ¢, for a given damage
location. Here, a Damage Severity Correction Factor (DSCF) is defined as

7,--*/7 +1
vy +1

DSCF, = (7-20)

DSCF given in equation (7-20) represents the nonlinear effect of damage severity «; at the

jth element on the ith modal eigenvalue change ratio. It is a function of damage location and
severity and can be easily calculated from the modal strain energy. In the case of a small
damage, the nonlinear model equation (7-19) can be reduced to linear model as given in equation
(7-18) by approximately setting DSCF ~1.

It should be noted that DSCF is related to the curvature mode shape normalization. If the
curvature mode shape data from healthy and damaged state are not normalized on the same basis
(e.g., mass-normalized), the value of DSCF may differ depending on the normalization. In this
case, in order to keep DSCF consistent, the total modal strain energies from the healthy and

damaged state are assumed to be the same. Then, the curvature mode shapes can be normalized
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so that the total modal strain energy from healthy and damaged state are the same. Based on this

assumption, DSCF can be approximated from the unnormalized curvature mode shape by

DSCF, = (L2 1y /2 (7-21)

iy

DSCF can be shown as a good damage location indicator and an important factor in
damage quantification. In this study, a damage identification method based on DSCF was

proposed for damage localization and quantification.
7.2.4 Damage identification method

The DSCF-based damage identification method consists of three steps: modes selection,
damage localization, and damage quantification.

Step 1: Sensitive modes selection: selecting vibration modes for damage identification using the

modal eigenvalue change ratio —.

Before applying any damage identification algorithm to modal parameters obtained in
modal testing, the sensitivity of the vibration modes to the existing damage should be evaluated

to ensure the effectiveness and accuracy of damage localization and damage quantification. The

1

A
modal eigenvalue change ratio o is widely adopted as a mode sensitivity indicator.

Step 2: Damage localization: locating damage using DSCF and DLF.

The strain energy-based DSCF is proposed as a good indicator for damage location. A

damage index ,BU at the jth element in the ith mode can be defined as:
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DSCF,  if DLF, > S0,
n
B = (7-22)
1 if DLF, < 29,
’ n

where 7 is the total element number. Since DLF} is the damage location factor which reflects

the sensitivity of the ith vibration mode to the damage at the jth element, a vibration mode is
insensitive to damage at an element with extremely low damage location factor in this mode.
Therefore, this mode is inadequate to detect damage at this element even if the damage exists.

The damage index with extremely low DLF} is directly set to 1 correspondingly to avoid the
potential numerical error. In this study, the criterion for extremely low DLF is set as 5% of the
average DLF, in the ith mode.

Then, assuming that the damage indices S° at different elements is a normally distributed

random variable, the damage index f3," can be normalized as

(7-23)

where Ei and o, represent the mean and standard deviation of the damage indices in the ith
mode, respectively. A damage detection criterion can be set as the normalized damage index

Z;" larger than 2, to filter out small damage indices induced by measurement noise.

z, =0if |z,

<2 (7-24)

Furthermore, in order to eliminate the false positive indication of damaged element

induced by measurement error and numerical error at those elements with low strain energy. A

modified damage indices /3, at the jth element can be derived from DLF, and Z,”.
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B,=>.Z, xDLF, (7-25)
i=1

Finally, a normalized damage index Z, can be generated from £, ,

Z = M (7-26)
Op
and the same damage detection criterion can be set as in equation (7-26).
Z,=0if Z, <2 (7-27)

Step 3: Damage quantification: quantifying damage severity using modal eigenvalue change
ratio, DLF and DSCF.
Once the damaged element is detected in Step 2, DSCF can be further used to calculate

damage severity. If multiple modes are available, equation (7-19) can be written in the matrix

form as
RA=F (7-28)
_A4
DLF, xDSCF,, DLF,xDSCF,, .. DLF, A xDSCEF, o A/Et
R DLF, xDSCF,,  DLF,, xDSCF,, .. DLF, xDSCF,, A= a, P - 122
DLF,, >.<“DSCFm1 DLF,, >.<;)SCFm2 DLF,, >.<“DSCFW, an A/i
_ ,1mm

where m is the total number of vibration modes; 7 is the total damaged element number; DLF is

the damage location factor y, /7, .

For a unique solution, the number of the used vibration modes should equal to the total
number of unknown parameters (elemental damage severities). However, for laboratory test or

in-situ application, the number of accessible vibration modes which is suitable for damage
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identification is very limited (typically the first few modes), usually much less than the number
of unknown parameters required. Furthermore, due to the existence of measurement errors, more
measured modes than unknown parameters are required to construct a system of over-determined
equations to improve the accuracy of damage severities estimation. Therefore, to avoid non-
uniqueness, appropriate assumptions on damage location or damage severity distribution have to
be made to reduce the number of unknown parameters. For example, in damage identification
with large sensor spacing, it is usually assumed that the damage only happens in a single element;
in delamination identification case, it is reasonable to assume that the damage severity is the
same for one delaminated area if the delamination propagates between the same layers inside a
composite plate.
When the number of measured modes is larger than the total number of unknown
parameters, the least square fitting method is used to obtain the best solution.
A=R'R)Y'R'F (7-29)
It should be noted that the three steps in the DSCF method are independent of each other.
Each single step can be used in combination with other damage detection/quantification method
for damage identification. For example, the third step of damage quantification can be used
independently to estimate the damage severity based on the damage localization results from
other damage detection algorithm. But it is still advantageous to follow the three steps as a
whole set since the modal eigenvalue change ratio and DSCF generated in the first two steps can

be directly used in Step 3.
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7.3 Numerical study

7.3.1 Finite element model

An eigenvalue analysis of a rectangular plate with 600 mm in length x 288 mm in width
x0.001 mm in thickness was conducted using the commercial finite element code ABAQUS, and
the model is shown in Fig. 7.1. The material is assumed to be isotropic with Young’s modulus £
= 20 GPa, Poisson’s ratio v = 0.25 and density p = 2,400 kg/m3. The plate is uniformly
discretized into 1,200 4-node first-order plate elements S4 of size 12 mm % 12 mm. The plate is
with simply-supported boundary conditions at two edges y=2300 mm. The damage is
simulated by reducing stiffness of 16 elements in the region 48 <x <96 and 84 < y <132 with
the center of the damage atx =72,y =108. Six different cases with damage severity o = 0~0.5
are simulated in the finite element analysis. The curvature mode shape data are extracted from
all the 51 x 25 nodes in the model. The first five displacement mode shapes of the healthy plate
are shown in Fig. 7.2. Comparison between the damaged and healthy plate shows that the
displacement mode shape reveals no local features capable of directly indicating the location or

area of the damage.

Damaged area

Eis

f—Y

X

Figure 7.1 Finite element modeling of a plate with damage.

170



Mode 1 Mode 2 Mode 3

Mode 4 Mode 5

Figure 7.2 The first five mode shapes of the healthy plate.
7.3.2 Damage identification

The DSCF method is applied to the curvature mode shape generated in FEA for damage
identification. The aforementioned three steps of the damage identification method are discussed

based on the numerical simulation results.

In order to apply the method, the damage location factor (DLF) and damage severity
correction factor (DSCF) should be derived from the curvature mode shape generated from the
healthy and damaged plate. First, a bivariate cubic spline interpolation function is constructed

for the curvature mode shape. The bivariate cubic spline is constructed as the tensor product of
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two univariate cubic splines. It can be expressed as the weighted sum of products of two cubic

spline functions:

S y)== Zza(i,j)gi ()h;(y) (7-30)

where g,(x) and £,;(y) are the cubic spline function in x and y direction, respectively. Then,
using the bivariate cubic spline function, y; and 71’1'* can be calculated from equation (7-8).

Finally, DLF and DSCF can be calculated from y, and 7y*- It should be noted that DLF can be

calculated from the damage curvature mode shape data only, and it is constant for a given
element and vibration mode; while DSCF requires both the healthy and damaged curvature mode
shape data, and it is a nonlinear function of damage severity for a given element and vibration

mode.

Mode sensitivity

First, the forward problem is investigated. Assuming the damage severity is constant over
all the 16 damaged elements, the modal eigenvalue change ratio at different damage severity can
be calculated using DLF and DSCF, as shown in Fig. 7.3. The linear model and the nonlinear
model are used to predict the modal eigenvalue change ratio using equations (7-18) and (7-19),
respectively. It can be seen from Fig. 7.3 that the linear model gives accurate prediction of all
modal eigenvalue change ratios at low severity (< 10%) but has high error at moderate/high
severity (> 10%). The error of the linear model increases with the increase of damage severity.
The nonlinear model performs much better than the linear model in all damage severity and
vibration modes, especially in the high damage severity and in the 1% and 3 modes. It can be

noticed that compared to other modes, modes 1 and 3 are more sensitive to the damage at this
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specific location since they have higher modal eigenvalue change ratio at all damage severity
level.

Then, the inverse problem is investigated. The modal eigenvalue change ratio, DLF and
DSCF are calculated from the numerical data and then used to estimate the damage severity,
assuming that the damage location is known and damage severity is constant over all the 16
damaged elements. When data from a single mode is used for damage quantification, the
severity estimation results are shown in Fig. 7.4. It can be seen that the damage severity can be
accurately estimated in the modes with the high eigenvalue change ratio. Significant error in
damage severity estimation may be induced from the modes with the low eigenvalue change
ratio. The nonlinear model performs better in damage quantification in all modes and damage
severity than the linear model. Using the nonlinear model may improve the accuracy of severity
estimation for those modes with the low eigenvalue change ratio.

As discussed above, using modes with the low modal eigenvalue change ratio may lead to
high error in damage quantification. Therefore, it is necessary to use the modal eigenvalue

change ratio as a mode sensitivity indicator to ensure the quality of damage quantification.
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Figure 7.3 Modal eigenvalue change ratio at different damage severity.
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Figure 7.4 Estimation of damage severity with data from different vibration mode.
Damage localization

Based on the numerical simulation data, the DSCF-based damage index Z distribution over
the plate was investigated as an attempt to locate damage. The strain energy-based Damage

Index (DI) method (Cornwell et al. 1999) is also applied to the same set of data for comparison.

First, the curvature mode shape data from mode 1~5 are used for damage localization. The
simulated data from plate with damage severity & =0.5 are adopted. The results are show in Fig.
7.5. Both the DI and DSCF methods can correctly approximate the location of the damage. The
DI method gives three false positive and three false negative indications of elements, while the

DSCF method gives three false positive and four false negative indications of elements.

Then, the curvature mode shape data from modes with the high eigenvalue change ratio,

i.e., mode 1 and mode 3, are used. The simulated data from plate with damage severity o =0.1
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are adopted. The results are shown in Fig. 7.6. It can be seen that both the results from the DI
and DSCF methods are improved by using the sensitive mode only. Both the methods give two
false positive and three false negative indications of elements. Therefore, it further manifests
that the modal eigenvalue change ratio can be used as a mode sensitivity indicator to ensure the
quality of damage localization.

Damage index Methoao

Damayge Index Methoo

—1 Damased area
HHt
(@)
DSCF Methoa
DSCF Methoa
A tDamaged area
(b)

Figure 7.5 Normalized damage index using 1°~5" modes for (a) DI method and (b) DSCF
method.

It can also be noticed that the normalized damage index from the DI and DSCF methods
shows close agreement with each other. Further investigation shows that the normalized damage
index from the DI method, DSCF method, and Modal Strain Energy Change (MSEC) method are

the same when the data from only one mode are used. This is because they are all the strain
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energy-based method. For a given plate, their damage indices are essentially a linear function of

the elemental strain energy of the damaged plate.

Damage Index Methoo
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Figure 7.6 Normalized damage index using 1° and 3" modes for (a) DI method and (b)
DSCF method.

Damage quantification

After damage location is identified, the third step of the DSCF damage identification
method can be applied to the numerical data for damage quantification. In order to examine the
accuracy of the damage quantification, it is assumed that the damage localization step correctly

identified all the 16 damaged elements and damage severity is constant for all damaged elements.
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The damage quantification results of DSCF method are presented in Fig. 7.7. The results
using 19~5™ mode based on the linear and nonlinear models are shown in Fig. 7.7 for
comparison. It is obvious that the linear model gives acceptable damage severity estimation at
low severity range (<10%) but has poor performance in higher severity range (>10%). While the
nonlinear model performs better than the linear model and gives accurate estimation over all
range. This is consistent with the results from the single mode.

The results based on all 1¥~5™ modes and the ones based on the sensitive modes only (1*
and 3™ mode) are also compared in Fig. 7.7. It is shown that including the modes with the low
eigenvalue change ratio may slightly deteriorate the quality of damage quantification. Therefore,
using the sensitive modes only can further improve the accuracy of damage quantification.

In conclusion, the nonlinear model and sensitive modes should be used in the DSCF

damage method to ensure the quality of damage quantification.
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Figure 7.7 Damage quantification results comparison.
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7.3.3 Effect of measurement noise

In experimental modal testing, measurement noises are inevitable. To evaluate the
robustness of a damage identification method, it is essential to investigate its noise immunity
performance. In order to simulate the effect of measurement noise, a series of normally
distributed random numbers are added to the numerical mode shapes to generate the noise-
contaminated mode shapes. The new curvature mode shape data can be expressed as:

K'(x,3) =Kk, y)+ P71 K,, (7-31)
where k' and x are the curvature mode shapes with and without noise, respectively; r is the
normally distributed random variables with a mean equal to zero and a variance equal to 1; p is
the random noise level; and x,, is the root-mean-square of the curvature mode shape.

Based on the 1% and 3™ mode shape data with artificially-induced noise, the effect of
measurement noise on damage localization and damage quantification was investigated
separately.

An example of damage localization of plate with damage severity & =0.3 and noise level
p =0.3 is shown in Fig. 7.8. The damage localization results at various severity and noise levels
are shown in Table 7.1. When a =0.1 and p =0.3, the damage localization results are still able

to detect the damage but fail to approximate the area of the damage. In all the other cases listed,

the damage area can be approximated with some false positive/negative element indications.
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(c) DLF in 1* Mode (d) DLF in 3" Mode
DSCF Methoa

(¢) Damage index Z; from DSCF method

Figure 7.8 Damage localization under measurement noise

(damage severity a =0.3, noise level p=0.3).
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Table 7.1 Damage localization results at different noise level

Damage severity False indication

Noise level

p=0 p=01 p=02 p=03

False positive 2 8 0 0
a=0.1

False negative 4 4 9 15

False positive 2 8 0 5
a=0.2

False negative 4 4 8 4

False positive 3 2 2 2
a=03

False negative 4 4 5 4

False positive 3 3 3 0
a=04

False negative 3 5 5 5

False positive 2 3 2 1
a=0.5

False negative 3 5 5 4

Then, assuming the damage location and area is correctly identified, the damage

quantification was investigated based on the curvature mode shape data with different levels of

noise. It is shown in Fig. 7.9 that the DSCF-based damage quantification algorithm gives error

within 20% up to noise level p=0.3.
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Figure 7.9 Damage quantification at different noise levels.
7.3.4 DSCF using partial strain energy

The elemental modal strain energy of a plate can be derived from the curvature mode shape

K

- K,, andx, . Obtaining the curvature mode shape from the directly measured strain mode
shape using the piezoelectric sensors such as PZT and PVDF is more accurate than deriving it
from the displacement mode shape data using the finite difference approximation, due to the
potential high error of finite difference approximation induced by measurement error. However,
one PVDF or PZT sensor can only be used to measure the strain response in one direction at a
time. Therefore, a sensor array positioned in one direction can only capture the strain/curvature
mode shape in that direction at a time. Hence, there is a need to explore the possibility of

damage identification using the partial modal strain energy from the modal strain/curvature mode

shape in one direction.
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The partial modal strain energy in y direction can be derived from equation (7-8) by setting

vy =[x, dedy (7-32)

4

The DSCF-based damage localization results using the 1% and 3™ mode partial strain
energy in the y-direction are listed in Table 7.2. The same set of curvature mode shape data with
the artificially-induced noise as used in Section 5.3.3 is adopted here. The results from the full
strain energy are listed in parentheses for comparison. It is shown that using the partial strain
energy in the y-direction gives similar (sometimes even better) indications of damaged elements
as using the full strain energy.

Table 7.2 Damage localization using partial strain energy at different noise level

Noise level
Damage severity False indication

p=0 p=01 p=02 p=03

False positive 32 7@ 0(0) 0(0)

a=0.1
False negative 44) 44 10 (9) 15 (15)
False positive 32) 7@ 0(0) 3(5)
a=0.2
False negative 44) 44 8 (8) 4 (4)
False positive 33) 32 2(2) 3(2)
a=03
False negative 44) 54 4(5) 5(5)
False positive 33 303 33) 0(0)
a=04
False negative 33) 45 5(5) 50)
False positive 2(2) 33 2(2) 1(1)
a=0.5

False negative 33) 505 505 4(4)
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The DSCF-based damage quantification using the partial modal strain energy in y direction
and full strain energy are compared in Fig. 7.9. It is shown that if a single mode is used, the
partial modal strain energy gives better estimation for mode 1, 3 and 5. But the partial modal
strain energy is inadequate to give acceptable estimation for modes 2 and 4.

Further investigation shows that modes 1, 3 and 5 are pure bending modes in the y-
direction, thus the y-direction curvature and corresponding strain energy dominate in this mode.
Therefore, using the partial strain energy may perform as well as (or even better than) using the
full strain energy. However, modes 2 and 4 are torsion mode, in which using the partial strain
energy in y direction may deteriorate the results. Hence, using the partial strain energy in
dominant direction of a pure bending mode not only makes the experimental testing easier but
also may improve the quality of damage localization and quantification. However, it should also
be noted that the damage quantification using the partial strain energy in dominant direction will

only indicate the bending stiffness loss in this particular direction.
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Figure 7.10 Estimation of damage severity with data from different vibration mode.
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7.4 Summary

A DSCF-based damage identification method for plate-type structures is presented. The
proposed damage location factor matrix DLF and damage severity correction factor matrix
DSCF can be generated from the curvature mode shape of a plate. The damage identification
method using DSCF and DLF are presented for damage localization and quantification. It
consists of three steps: sensitive mode selection, damage localization, and damage quantification.
The proposed method is a response-based damage identification technique which requires the

modal frequencies and curvature mode shapes before and after damage.

The viability of this method is demonstrated by the numerical investigation. The
numerical study shows that the method can correctly detect the damage, approximate the damage

area and quantify the damage severity up to noise level p =0.2 at low damage severity. It is

also shown that using the partial strain energy in dominant direction of a pure bending mode may
not only make experimental testing easier but also improve the quality of damage localization
and quantification. This chapter paves some foundation for the application of DSCF-based
damage identification algorithm for plate-type structures, as demonstrated in the next chapter for
damage identification (both damage localization and quantification) of an as-manufactured FRP

sandwich deck panel.
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CHAPTER 8

DAMAGE IDENTIFICATION OF FRP SANDWICH DECK PANELS

8.1 Introduction

FRP composites have gained popularity in high-performance products which require being
lightweight yet strong and taking harsh environmental condition. Wide applications of FRP
composites have been found in civil, mechanical and aerospace engineering. Recently, GFRP
composite sandwich beams/panels have also been used in highway bridge deck construction.
However, FRP sandwich deck structures are susceptible to defects, such as manufacture
imperfection, delamination, core crushing, debonding between face sheets and core, etc. These
defects can be originated from imperfections in the manufacturing process or developed during
service life. Damage resulting in system defects can occur during service life from impact of
wheel loads to the structures (e.g., heavy service loads or fatigue), or due to environment-
induced effects (e.g., temperature and moisture) in the FRP decks. These defects can
significantly reduce structural strength and may grow to failure. Accordingly, reliable and
accurate SHM techniques are an important proactive and cost effective way to prevent a
catastrophic failure, which often leads to tragic consequences. As a core technique to SHM, an
effective and reliable damage identification method is crucial to ensure safety and enhance

structural life.

In this chapter, a structural health monitoring strategy using the proposed dynamic
response-based damage identification methods introduced in the previous chapters (Chapters 5
and 7) is presented for damage identification of an as-manufactured honeycomb FRP sandwich
deck panel. A preliminary investigation showed that (1) for the vibration-based damage

identification method, the modal parameters such as modal frequencies and mode shapes can be
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easily obtained using the modal testing technique; (2) for the wave-based damage identification
method, the Lamb wave dissipates quickly on face sheet of sandwich panel due to the existence
of the “soft” honeycomb (in this case, the core is in sinusoidal shape) core. In the sandwich
structures, a large portion of Lamb wave energy inside the face sheets can be scattered or
reflected by the vertical core, which makes the Lamb wave difficult to capture at relatively long
distance. Therefore, the Lamb wave-based damage identification method is more suitable for
thin plates than large-size sandwich structures. If the Lamb wave-based damage identification
method is adopted for FRP sandwich panel, only a small area of the panel can be examined at
each test. Hence, the vibration or dynamic response-based damage identification method was
adopted in this study to examine the sandwich deck panel. A structural health monitoring
strategy using the combination of experimental modal testing technique and proposed 2-D CWT-

based/DSCF-based damage identification method is presented in this chapter.

The rest of the chapter is organized as follows. The modeling of the as-manufactured FRP
honeycomb sandwich deck panel is given in Section 8.2. The finite element analysis of the FRP
sandwich panel and the damage identification of the sandwich panel based on the FE simulation
data and using the 2-D CWT-based method (see Chapter 5) and DSCF-based method (see
Chapter 7) are described in Sections 8.3 and 8.6, respectively. The experimental modal testing
of the sandwich panel and the damage identification of the sandwich panel based on
experimental data and using 2-D CWT-based method and DSCF-based method are presented in

Sections 8.4 and 8.5, respectively. The content of this chapter is concluded in Section 8.7.
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8.2 Modeling of FRP honeycomb sandwich structure

Using a micro/macro mechanics approach for face laminate and a mechanics of material
approach for honeycomb core, the modeling of equivalent elastic properties at room temperature

for the face laminates and honeycomb core in the sandwich is presented in this section.
8.2.1 Geometry of FRP sandwich deck panels

The as-manufactured FRP sandwich deck panels studied in this chapter are a plate-type
structure with a length of 1.981 m and a width of 1.495 m. The sandwich panel was connected to
two underlying concrete supports using steel studs, which provides a means to connect the FRP
deck to the underneath bridge girder and is considered to provide a simply supported boundary
condition to the deck panel. The FRP sandwich panel consists of two face laminates and a
sinusoidal honeycomb core, as shown in Fig. 8.1. The thickness of face laminates and

honeycomb core are ¢, =13.5mm and ¢, =128mm , respectively. The constituent materials used

for the composite sandwich panel (both the face laminates and core) consist of E-glass fibers and
polyester resin, and their mechanical properties at room temperature (25 °C) are listed in Table

8.1.

The wave function of corrugated core wall can be defined as
y=21-cos™) (8-1)
2 a

The dimensions of the sinusoidal core are a = 50.8 mm (2.0 in.), b = 50.8 mm (2.0 in.), t;=t,=

3.34 mm (0.131 in.) (Qiao and Wang 2005) (as shown in Fig. 8.2).
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tf L Face laminate
tc Sinusoidal honeycomb core
te Face laminate
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Figure 8.1 Configuration of FRP sandwich panel with longitudinal core
(tr=13.5 mm, t. =128 mm).

Figure 8.2 Geometry of sinusoidal core in honeycomb structures
(@=50.8 mm (2.0in.), b=50.8 mm (2.0 in.), t; = t,= 3.34 mm (0.131 in.)).
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Table 8.1 Mechanical properties of the constituent materials

Material E, GPa (x10° psi) G, GPa (x10° psi) v Density p, g/cm’
(Ib/in.%)

E-glass fiber 72.4 (10.5) 28.8 (4.18) 0.255  2.55(0.092)

Polyester resin 5.06 (0.734) 1.63 (0.237) 0.300  1.14(0.041)

8.2.2 Modeling of face laminates

To predict the equivalent properties of the face laminates from the fiber and matrix
material properties, a micro-macro mechanics approach is adopted. First, the properties of each
layer in the face sheet can be computed using the existing micromechanics approaches (Barbero
1999), such as rule of mixtures (ROM), periodic microstructure (PM), and composite cylinders
(CC). In these micromechanics models, each ply is modeled as a homogeneous, linearly elastic
and generally orthotropic material. Then, based on the ply properties and lay-up, the apparent

stiffnesses of the face laminate can be predicted by classical lamination theory (macromechanics).

Face laminate lay-up

A typical face laminate may include the following four types of fiber layers: (1) Chopped
Strand Mat (ChopSM), which is made of randomly oriented short discontinuous fibers resulting
in nearly isotropic in-plane properties. This type of layer is commonly used as a bonding layer in
lay-up. (2) Continuous Strand Mat (ContSM), which consists of randomly oriented continuous
fibers and also can be modeled as an isotropic layer. This type of layer is commonly used as
backing material for non-woven fabrics. (3) Bidirectional stitched fabrics (SF) with balanced off-

angle fibers (e.g., 0°/90 ° or £45 °); and (4) unidirectional layer of fiber bundles or rovings.
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In this study, the lay-up of face laminate in the as-manufactured honeycomb sandwich
deck panel includes 5 ChopSM bonding layers (ChopSM308) and 4 bi-directional combination
mat layers (CDM3208), as shown in Fig 8.3. Each CDM3208 combination layer consists of a
0°/90 ° SF and a ContSM layer. The properties of face sheet layers, such as nominal weight w,

thickness ¢, and fiber volume fraction V4, are listed in Table 8.2.

Micromechanics

The stiffness of each layer can be predicted from micromechanics models. For directional
layers, a micromechanics model for composites with Periodical Microstructure (PM) is adopted
to obtain the elastic constants. While for the randomly oriented layers (ChopSM and ContSM),
the elastic constants are evaluated by averaging the elastic constants over all possible
orientations by integration. The well-known approximate expression by Tsai and Pagano is

adopted in this study (Tsai and Pagano 1968).

3 5

E=§E1 +§E2

1 1
G =§E1 +ZE2 (8-2)
u:i—l.

2G

where E, and E, are the longitudinal and transverse moduli of a fictitious unidirectional layer
having the same volume fraction as the CSM layer.

All the layer stiffness properties derived from micromechanics models are listed in Table

8.2.
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Macromechanics

After the elastic properties of each layer are computed, the equivalent stiffness properties
of the face laminate are predicted by classical lamination theory. A set of equivalent in-plane
laminate stiffness properties can be derived for the laminates. These properties represent the
stiffness of an equivalent, orthotropic plate that behaves like the actual laminate under in-plane
loads. It should be noted that from lamination theory, both the bending and in-plane stiffness can
be derived. For the face sheet laminates, only in-plane stiffness is derived in this study because
when the sandwich panel is subjected to transverse loading, the face sheets mainly contribute to
the overall stiffness of the sandwich panel through the in-plane (extension/compression) stiffness
rather than bending stiffness. The equivalent in-plane stiffness properties of face laminates are

listed in Table 8.3.

8.2.3 Modeling of honeycomb core

The microstructure of core walls consists of 2 layers of ChopSM (ChopSM308). The
ChopSM can be modeled as an isotropic layer, and its stiffness properties are listed in Table 8.2.
So the core wall can also be modeled as an isotropic layer with double thickness of the ChopSM

and the same stiffness properties as the ChopSM.
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Table 8.2 Layer material properties from micromechanics models

Ply name Orientation £, E>, G2, Nominal Thickness,  puy, Ve
GPa GPa GPa  weight, w, t, mm g/c:m3
kg/m®

ChopSM  Random 10.67 10.67 3.86 0.915 1.668 1.37 0.164
308
CDM 0° 3438 12.08 4.25 0.531 0.49 1.74 0.424
3208 90 ° 3445 12.10 4.26 0.601 0.55 1.74 0.425

Random 19.59 19.59 7.04 0.256 0.25 1.70 0.396

Table 8.3 Equivalent in-plane stiffness properties of face laminates

. :
pr, glem E. GPa E,GPa  G,.GPa v,
Face laminate 1.506 15.06 15.30 4.21 0.30
Bonding layer (ChopSM 308)
Bonding layer (ChopSM 308)
CDM 3208
ChopSM 308
] CDM 3208
ChopSM 308
%A CDM 3208
ChopSM 308 o 7777 ChopSM 308
CDM 3208 Frannnnnnnnnnnnnnniiii] ChopSM 308
(a) face laminate lay-up (b) honeycomb core lay-up

Figure 8.3 Lay-up of face laminates and core.
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8.3 Damage detection based on FEA using 2-D CWT-based algorithm

8.3.1 Finite element analysis of healthy and damaged sandwich panel

The sandwich deck panel is a plate-type structure with a length of 1.9812 m and a width of
1.4945 m. The Finite Element Analysis package ABAQUS is used to conduct an eigenvalue
analysis to extract the natural frequencies and the mode shapes of the sandwich deck panel with
simply supported (SS)-simply supported (SS) boundary condition. The sandwich panel is
modeled as two face sheets and a detailed sinusoidal core. The face sheets and the sinusoidal
core walls are modeled as 4-node first-order plate elements S4 and 3-node first-order plate
elements S3. The lay-ups and corresponding material properties of face sheets and core walls are
the same as shown in Fig. 8.3 and Table 8.2. The corresponding equivalent stiffness properties of
face sheets and honeycomb core walls are derived as described in Section 6.2. The finite
element analysis is conducted on both a healthy and a damaged sandwich panel. The damage is
a debonding between the top face sheet and core at a corner of the sandwich panel, as shown in
Fig. 8.4. It is simulated by detaching the node/element connection between the top face sheet
and core elements. The simulated mode shapes of the FRP sandwich panel is shown in Fig. 8.5.
It should be noted that the mode shapes of the healthy and damaged panel are very close to each

other so only that from the damaged panel is shown in the figure.
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Figure 8.4 The area with the face sheet-core debonding in sandwich panel model.

Figure 8.5 First five global mode shapes of the SS-SS sandwich panel from FEM.
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8.3.2 Damage identification based on FE simulation data

Per discussion in Section 6.1, the 2-D CWT-based damage identification algorithm
proposed in Chapter 3 is applied to the FE simulation data of the first mode shape for the sake of
damage detection. From the mode shape data, a grid of data point is first extracted for analysis.
The selected points include all the points every 0.1016 m in the x-direction and every 0.1150 m
in y-direction from point (0.0254, -0.6898) to point (1.9558, 0.6898). The extracted data points

from the fundamental mode shape are shown in Fig. 8.6.

Figure 8.6 Extracted data points from the fundamental mode shape.

The 2-D CWT-based damage identification algorithm is then applied to the data extracted
at these points from the damaged panel. First, the wavelet coefficients of the mode shape data
are calculated using “Dergauss2d” wavelet. The coefficients with scale of a = 2 is shown in Fig.
8.7. It can be easily noticed that there are multiple peaks of coefficients around the debonded
area for damaged panel. In contrast, the coefficients for healthy panel are flat with only a few
variations at four corners. Then, the isosurface of the wavelet coefficients in continuous scale

variation is shown in Fig. 8.8. The threshold ratio of # = 0.3 is adopted in this analysis. It can be
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seen in the figure that the isosurface can correctly identify the location of the debonding and
approximate the area of the debonding with some extent of shift. Some small isosurfaces can
also be noticed in the figure. However, their existences and shapes are not as consistent from the
low scale to high scale as the debonding one, and it is clear that these isofurfaces are caused by

noise other than real damage.

For comparison, the 2-D CWT-based damage detection algorithm is applied to the healthy
panel, and the result is shown in Fig. 8.9. It can be seen that there is no isosurface when scale a
< 12 but a large isosurface when a > 12. So it is obvious that applying this method to the
healthy panel will also generate an isosurface, since the wave of the vibration mode itself will be
captured by the wavelet when its scale is high. Therefore, it is confirmed that only an isosurface

evolving from the low scale to high scale indicates a localized damage to the panel.
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(a) healthy (b) damaged

Figure 8.7 Wavelet coefficients of the fundamental mode shape a = 2.
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Figure 8.9 Isosurface of the healthy panel using the fundamental mode shape.

8.4 Damage detection based on modal testing using 2-D CWT-based algorithm
8.4.1 Experimental set-up and modal analysis

For damage identification, an as-manufactured FRP sandwich deck panel was
experimentally tested. The geometry, lay-up and corresponding material properties of the FRP

sandwich deck panel are presented in Section 8.2. The FRP sandwich panel is placed
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transversely on the two supporting concrete beams. The sandwich panel is connected to the two
underlying concrete supports using the steel studs, which is considered to provide a simply
supported boundary condition. A 13.5 kg mass with a diameter of 101.6 mm (4 in.) is attached
to the top face sheet as an artificially-induced “damage” or “abnormality” before the modal
testing. The center of the mass is located at the central point (0.4318, -0.4572) of points 44, 45,
54 and 55.

The modal testing of the FRP sandwich panel was conducted with a roving excitation test.
For simplicity, only a quarter of the panel with the artificially-induced damage was tested. The
quarter of the panel is divided into 9x7 elements by the grid lines. The panel was subjected to a
dynamic pulse load applied at each grid point using modally tuned hammer (PCB 086C20). A
total of 10x8 grid points were tested corresponding to an actual spatial sampling distance of
101.6 mm (4.0 in.). The response measurements were made using one accelerometer (PCB
352C68) at point No. 20 to record the response of the structure. The analog signals then pass a
low-pass anti-aliasing filter to prevent the aliasing problem. A Krohn-Hite 3382 8-pole dual
channel filter was employed to filter out the high frequency signals above the cut-off frequency
of 500 Hz. The filtered signals were then digitized and collected by the data acquisition system
dSPACE CP1103 at the sampling frequency of 1000 Hz. The experimental set-up is shown in
Fig. 8.10. The measurements at each point were repeated 8 times, and the synchronized time
histories from the excitation and response measurements were averaged to enhance the signal-to-
noise ratio (SNR). Then, the frequency-response functions (FRFs) of these tested points were
calculated from these excitation and response time-histories. Finally, these FRF curves were

imported to the modal analysis program ME’Scope for curve fitting and modal extraction.
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Fig. 8.11 shows the user interface of ME’Scope while conducting the modal analysis and
extracting the 3™ mode shape of the sandwich panel. The modes generated in the modal analysis
are listed in Table 6.4. It should be noted that the “healthy panel” means that the panel is at as-
manufactured state without artificially-induced damage or abnormality; while the “damaged
panel” means the sandwich panel with a mass attached to the top face sheet to simulate a
damaged state. There is no guarantee that there is no imperfection/delamination/debonding
induced during manufacturing/transportation process.

From the modal analysis result, it can be seen that the existence of the mass slightly
reduces the modal frequencies of the sandwich panel. It should also be noted that the 1 and 2™
modes from the modal testing and FEM are consistent with each other, while the 3" identified
mode from the modal testing of the healthy sandwich panel matches the 5™ mode from FE and
damaged panel. From the mode shapes generated in the FE analysis, it can be seen that both the
modes have a nodal line at the midline of the panel length direction. In this test, the sensor is
located at point 20 which exactly lies on the nodal line of the healthy panel. So no response
signal were generated when the panel was vibrating under the 3rd and 4™ mode. Therefore, it is
reasonable to conclude that the present modal testing experiment is unable to capture the 3™ and
4™ modes as indicated by FE. Actually, the modal testing set-up cannot be used to capture any
modes with a nodal point at point 20. However, for the damaged panel, since the damage has
deteriorated the symmetry of the sandwich panel, the midline in the length direction is no longer
the nodal line for the 3™ and 4™ vibration modes. Hence, these two modes can be identified in
the case of the damaged panel. This problem discussed above should not affect the application
of the proposed 2-D CWT damage identification algorithm, since there are still several other

well-captured vibration modes available for analysis.
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Figure 8.11 The 5th mode shape of healthy FRP sandwich panel from modal analysis

package ME’Scope.
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Table 8.4 Modal frequencies from experimental modal analysis

Mode 1 Mode?2 Mode3 Mode4 Modeb

Healthy Panel  61.95  95.94 - - 258.00

Damaged Panel 60.63  93.60 175.02 207.24 256.45

8.4.2 Damage detection based on modal testing data

After obtaining the experimental modal analysis data of mode shapes, the 2-D CWT-based
damage identification algorithm is applied to the mode shape data for damage detection. It
should be noted that it is commonly noisy in the low frequency range (< 100 Hz) due to the room
noise, electromagnetic interference. But it is also difficult to excite the large sandwich structure
in the high frequency range (> 500Hz) using impact hammer. Therefore, the 5™ vibration mode
in the middle range of frequencies (200~400 Hz) was selected for damage identification to
ensure the best Signal to Noise Ratio (SNR).

The displacement-normalized mode shape used for damage identification is shown in Fig.
8.12. The mode shape from the damaged panel resembles that from the healthy panel, with
minor difference in their general shape. Hence, it is difficult to find the damage location by
directly comparing the two mode shapes. The 2-D CWT-based damage identification algorithm
is applied to the mode shape of the healthy and damaged panel. First, the mode shape data is
oversampled by 10 using the bivariate cubic spline interpolation to enhance the spatial sampling
distance from 101.6 mm (4.0 in.) to 10.16 mm (0.40 in.). Then, the 2-D CWT-based algorithm is

applied to the oversampled data. The investigation shows that in this case a scale from 1 to 10 is
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sufficient for damage detection. The threshold value is set to 0.3 in this case. The results from
the algorithm are shown in Fig. 8.13.

In the damaged panel case, the major isosurface span from scale of a = 4 to a = 10, which
clearly indicate a localized damage. The isosurface covers an area slightly larger than the
damaged area. For a more accurate estimation of the damaged area, a denser grid of measuring
points is required. The other two isosurfaces only limited to a small scale range may be caused
by measuring error or noise as discussed in Chapter 5.

In the healthy panel case, there are also two isosufaces in the high scale range (a > 6). One
possible reason is that the isosurfaces may be caused by the already existed imperfection or
delamination or debonding in those indicated areas induced during manufacturing/transportation
process. It should be noted that in this algorithm the isosurface only indicates the location/area
with the mode shape discontinuity, i.e., the most possible location of damage. Isosurface has no

indication of the absolute value of the damage extent.

Healthy Panel

Damaged Panel

(a) Healthy panel (b) Damaged panel

Figure 8.12 The 5th mode shape for damage identification.
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Figure 8.13 Isosurface of the sandwich panel
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8.5 Damage identification based on modal testing using DSCF-based algorithm

8.5.1 Experimental setup

The modal testing of the FRP sandwich plate was conducted using a PVDF

(Polyvinylidene Fluoride) sensor network bonded to the top surface in the longitudinal direction.
The PVDF sensors used in the experiment are model DT1-028K/L from the Measurement

Specialties company. A total of 285 nodes of PVDF sensors are uniformly distributed into 19
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rows and 15 columns on the surface of the panel to build a sensor network. The plate is divided
into 18x14 elements by the 19x15 sensors.

The panel was subjected to a dynamic pulse load applied at the central point using modally
tuned hammer (PCB 086C20). The response measurements were captured by the sensor network
to record the response of the structure subjected to the fixed point force excitation. A total of
19x15 node points were monitored corresponding to an actual spatial sampling distance of 101.6
mm. The coherent signals of the excitation and the response were digitized and collected by the
data acquisition system dSPACE CP1103 at a sampling frequency of 4,000 Hz. Due to the fact
that only 20 channels are available, only one column of nodes with 19 sensors were measured in
each experiment. In this way, the 285 transfer functions between the hammer excitation and
different PVDF sensors can still be measured for modal analysis in 15 experiments. The
experimental set-up using the distributed PVDF sensor network is shown in Fig. 8.14.

After the healthy FRP sandwich panel was tested, three stages of damage with increasing
severity were artificially induced into the sandwich panel. In the first stage of induced damage
(Damage Stage 1), a saw cut was induced between the top face sheet and honeycomb core to
simulate the debonding between the top face sheet and honeycomb core. A 203.2 mm x%203.2
mm area of face sheet-core debonding (cut) is shown in Fig. 8.15. In the second stage of
increasing damage (Damage Stage 2), another saw cut was further induced between the bottom
face sheet and honeycomb core in the same area of the top face sheet-core debonding to simulate
the debonding between the bottom face sheet and honeycomb core. In the third stage of the
largest damage in this study (Damage Stage 3), the two vertical sides of the core between the two
face sheet-core debonding areas were cut to simulate the core crashing scenario, as also shown in

Fig. 8.15.
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Figure 8.14 Experimental setup using the distributed PVVDF sensor network
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(c) Schematic sketch of the three damage stages

Figure 8.15 Artificially-induced damages in FRP sandwich plate
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8.5.2 Modal testing results

The measurements for each experiment were repeated 16 times, and a pre-trigger of 0.05
seconds at the level of 0.01 volt is set to synchronize the time-domain signal. The synchronized
time history data from the excitation and response measurements were averaged to enhance the
signal-to-noise ratio (SNR), as shown in Fig. 8.15. Then, the frequency domain power spectral
densities were generated from the excitation and response time domain data using Fast Fourier
Transform (FFT), as shown in Fig. 8.16. The frequency-response functions (FRFs) of these
tested points were calculated from the excitation and response frequency domain data. The FRF
curve and its coherence curve, corresponding to the time-domain data in Fig. 8.16 and the
frequency-domain data in Fig. 8.17, are illustrated in Fig. 8.18. Finally, these FRF curves were
imported to the modal analysis program ME’Scope for curve fitting and modal extraction. The
modal testing was conducted using a fixed point force excitation and a distributed PVDF sensor
network, so the extracted mode shape should be the strain/curvature mode shape of the plate

(Wang 1998).

Actuator Time history at node 143

(17 1| PSSR L SR — ' ................. |-
0.2" \ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
0 | | I 1 |
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Sensor Time history at node 143
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Figure 8.16 Time domain data from actuator and sensor (both at node143).
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Figure 8.17 Frequency domain data from actuator and sensor (both at node143).
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Figure 8.18 A frequency-response function and its coherence functions (both sensor and

actuator are at node 143).
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Since the plate was tested using a PVDF sensor network in the longitudinal direction (y-

direction), only the curvature mode shape in the longitudinal direction («,, ) was captured.
Therefore, only the longitudinal bending modes, in which x, is dominant, are suitable for

damage identification. In the excitation frequency range of the modally tuned hammer, the 1*
and 3" bending modes were captured. However, the second bending mode cannot be captured
because the fixed point force excitation was applied at the central point of the plate, which is the
nodal line of the second bending mode. Hence, the first and third bending modes in the
longitudinal direction were investigated for damage identification. It should be noted that the
modal frequency of the first bending mode lies closely around 60 Hz. Because the PVDF
sensors are prone to electro-magnetic interference (EMI), their responses around 60 Hz could be
noisy due to EMI from power system. In the healthy stage and three damage stages, the modal
testing was conducted to extract the modal frequencies and curvature mode shapes of the plate.
The curvature mode shapes and modal frequencies of the FRP sandwich panel are presented in

Fig. 8.19.

8.5.3 Damage identification using experimental data

The DSCF-based damage identification method is applied to the as-manufactured FRP
sandwich deck panel for damage identification.
Step 1: Mode sensitivity.

For the 1* longitudinal bending mode, the modal eigenvalue change ratios at three damage
stages are 0.57%, 0.91% and 3.59%, respectively. For the 3™ longitudinal bending mode, the

modal eigenvalue change ratios at three damage stages are 0.71%, 1.55%, and 4.07%,
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respectively. It can be seen from the eigenvalue change ratios, both modes are sensitive to the

damage, so both can be used for damage identification.

Frequency=61.08Hz Frequency=6090Hz Frequency=6040Hz Prequency=59.98He

Sgaf

77}
V7

(a) Healthy (b) 1% stage (c) 2™ stage (d) 3" stage

Figure 8.19 Longitudinal curvature mode shape («,,) and modal frequency of 1%t and 3"

longitudinal bending mode from experiment

Step 2: Damage localization.

The modal strain energy of a plate can be derived from the curvature mode shapes of x_,
Kk, and k. However, one PVDF sensor can only be used to measure the strain response in one

direction.  Therefore, a sensor array positioned in one direction can only capture the
strain/curvature mode shape in that direction at a time. Hence, for a longitudinal bending mode,
the modal strain energy is approximated by its partial modal strain energy in the dominant

direction. Assuming x,, =k, =0, the partial modal strain energy in the y direction can be

derived as
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vy = | | x, dxdy (8-3)
A./

The DLF and DSCF matrices for damaged identification can be generated as follows. First,
a bivariate cubic spline interpolation function is constructed for curvature mode shape. The
bivariate cubic spline is constructed as the tensor product of two univariate cubic splines. It can

be expressed as the weighted sum of products of two cubic spline functions:

flxy)== Zza(i, NEixX)h;(y) (8-4)

where g,(x) and A4;(y) are the cubic spline function in the x and y direction, respectively. Then,
using the bivariate cubic spline function, y, and y,” can be calculated from equation (8-3).

Finally, the DLF and DSCF matrix can be calculated from y,; and Vy-*-

The DSCF-based damage indices using the modal strain energy from the 1% and 31
longitudinal bending modes are shown in Fig. 8.20. Although the damaged area does not exactly
match the sensor grids, the DSCF damage localization method correctly approximate the location
and area of the damage. It can be noticed that in damage stage 3, a false positive indication is
given near the damaged area. There might be two reasons: (a) the effect of damage might spread
out to surrounding elements (Choi et al. 2006); and (b) When cutting the two sides of the

damaged area, the saw cut might damage the sinusoidal core of the neighboring element.
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Figure 8.20 Damage localization of FRP sandwich plate at three damage stages
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Step 3: Damage quantification

Assuming that each damaged element has the same damage severity, the DSCF method can
be further applied for damage quantification using DLF and DSCF derived in Step 2. The
damage quantification results of DSCF method are presented in Fig. 8.21. The damage
quantification results, based on the four damaged elements indicated in damage stages 1 and 2,
are marked in black. The damage quantification result, based on the six damaged elements
indicated in damage stage 3, is also shown in red for comparison. As shown in figure, the

damage severity increases consistently with the damage stages.
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Figure 8.21 Damage quantification of FRP sandwich plate at three damage stages

8.6 Damage identification based on FEA using DSCF-based algorithm

After the experimental modal testing of the FRP sandwich panel, a numerical modal
analysis of FRP sandwich panel was conducted to verify the experimental results. The DSCF-

based method is also applied to the numerical data for damage identification.
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8.6.1 Finite element modal analysis of FRP sandwich panel

The commercial Finite Element Analysis package ABAQUS is used to conduct an
eigenvalue analysis of the FRP sandwich plate. A detailed model of the sandwich panel is
constructed in ABAQUS, as shown in Fig. 8.22. The face sheets and the sinusoidal core walls
are modeled as 4-node first-order plate elements S4 and 3-node first-order plate elements S3.
The corresponding stiffness properties of face sheets and core walls are derived in Section 6.2.
The boundary conditions are considered to be simply supported at two longitudinal edges.

The finite element analysis is conducted on both the healthy and damaged sandwich panel.
Three damaged sandwich panel models are set up to simulate the sandwich panels with
artificially induced damage in the three damage stages. The debonding between the face sheets
and core is simulated by detaching the node/element connection between the face sheets and core
elements. The cuts in the sinusoidal core are simulated similarly. The simulated mode shapes of
the FRP sandwich panel are shown in Fig. 8.22. The displacement mode shapes of the healthy
and damaged panel are very close to each other so only that from the healthy panel is shown in
the figure. The strain mode shape can be then extracted from the 19x15 nodes corresponding to

the 19%15 PVDF sensors in experimental test, as shown in Fig. 8.23.
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Figure 8.22 First three longitudinal bending mode shapes of the SS-SS sandwich panel
from FEM (contour of vertical displacement U3).
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Figure 8.23 Longitudinal curvature mode shape («,, ) and modal frequency of the 1t and
3" longitudinal bending modes from FEA.
8.6.2 Damage identification using FE simulation data
Step 1: Mode sensitivity.
The modal frequencies of the healthy sandwich panel from the finite element analysis are

62.983 Hz and 418.6 Hz, which shows close agreements with experimental test (i.e., 61.08Hz
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and 403.00 Hz) for the 1* and 3™ modes, respectively. The result confirms that the boundary
conditions at the two longitudinal ends should be modeled as simply supported, and the free
vibration modes of the FRP sandwich panel can be accurately predicted by the detailed FE model.
The modal eigenvalue change ratios at three damage stages from the FEA and experimental test
are compared in Table 8.5. The FEA results show that both the modes are sensitive to the
damage, so both can be used for damage identification. It can also be noticed that the FEA tends
to underestimate the modal eigenvalue change ratios for the 1* mode but over-predict the ratios
for the 3™ mode.

Table 8.5 Modal eigenvalue change ratios from FE and experiment

vibration mode 1% stage 2" stage 3" stage
(%) (%) (%)
I’ Mode FEA 0.044 0.095 0.862
Experiment 0.57 0.91 3.59
3" Mode FEA 0.925 2.356 8.635
Experiment 0.71 1.55 4.07

Step 2: Damage localization.

The DSCF-based damage localization method is applied to the curvature mode shapes for
damage localization. The damage indices using the modal strain energy from the 1% and 31
longitudinal bending modes are shown in Fig. 8.24. The results show the same indication of
damaged elements in the 1* and 2™ damage stages as the results from experimental test data. In
the 3" damage stage, the FE results indicate damaged elements at the two sides of the damaged

core, which is corresponding to the sawcut in the 3 damage stage.
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Figure 8.24 Damage localization at three damage stages using FEA data.
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Step 3: Damage quantification.

Assuming the each damaged element has the same damage severity, the DSCF method can
be further applied for damage quantification using the FEA data. The damage quantification
results, based on the damaged elements indicated in Step 2, is shown in Fig. 8.25. As shown in
the figure, the damage quantification results from both the FEA and experimental data show the
same trend, i.e., the damage severity increases consistently with the damage stages. The damage
quantification results based on the experimental data are also shown for comparison. It can be
seen that in Damage stages 1 and 2, two damage quantification results show close agreement
with each other, while in Damge stage 3 the results show considerable discrepancy due to their
difference in damaged element indication and modal eigenvalue change ratios. Based on the

FEA data, the core crashing can induce over 90% of stiffness reduction in the damaged elements.
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Figure 8.25 Damage quantification of FRP sandwich plate.

8.7 Summary

In this chapter, the two dynamic response-based damage identification methods proposed

in this study (in Chapters 5 and 7) were applied for damage localization and quantification of an
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as-manufactured FRP sandwich deck panel with distributed sensor points. Both the finite
element simulation and experimental modal analysis were performed to examine the dynamic
vibration modes of the FRP sandwich deck panel.

The numerical and experimental results show that the experimental modal testing can
accurately capture the out-of-plane bending/twisting displacement mode shapes of the sandwich
panel in a frequency range of less than 500 Hz. The 2-D CWT-based damage identification
algorithm can be directly applied to the displacement mode shape data generated by the FE
modal analysis technique to indicate the location of damage and approximate the damage area.
The study presented in this Chapter shows that this technique is robust and effective for real-size
composite sandwich beam/plate-type structures in laboratory. The proposed structural health
monitoring strategy using a combination of experimental modal testing technique and 2-D CWT-
based damage identification method can be effectively used for damage detection of composite
sandwich plate-type structure or deck panel. However, in this algorithm the isosurface only
indicates the location/area with the mode shape discontinuity, i.e., the most possible location of
damage. Isosurface has no indication of the absolute value of the damage extent.

It is also demonstrated that a surface-bonded PVDF sensor network and impact hammer
system can be effectively used to capture the curvature mode shape in the dominant direction of
a single bending mode. The experimental results verified that the DSCF method can be used
with the partial strain energy to effectively locate and quantify damage. However, in damage
quantification step, to avoid non-uniqueness, the assumption of uniform distribution of damage
severity on damaged elements is made to reduce the number of unknown parameters. Further

study is needed for the damage severity distribution pattern.
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The proposed structural health monitoring strategy using the combination of a distributed
PVDF sensor network and the DSCF-based damage identification method can be effectively used
for damage localization and quantification of composite sandwich plate-type structures in
general and FRP sandwich bridge deck panels in particular. This strategy has shown its great
potential to be further developed into a reliable real-time structural health monitoring system in
the S-FRP sandwich materials. Studies towards the development of a real-time structural health
monitoring/damage identification system using the DSCF-based method and piezoelectric sensor

network for in-situ application should be the subject of future research.
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CHAPTER 9
POTENTIAL INTEGRATION OF WIRELESS COMMUNICATION TECHNOLOGIES

FOR STRUCTURAL HEALTH MONITORING

9.1 Introduction

In the last few years, the development of wireless sensor networks (WSN) has received
increasing attention in their potential applications in structural health monitoring. The response
of structure can be studied and material fatigue and/or progressive damage of structure can be

monitored closely and continuously.

Wireless sensors are not sensors, but rather autonomous nodes to which traditional
structural sensors (e.g., strain gauges, accelerometers, LVDT, etc.) can be attached, 1.e., they do
not convert mechanical force or movement into an electrical signal themselves but rely on

traditional sensors to convert mechanical energy to electric energy.

The basic features of wireless sensor networks include:

(1) Short-range broadcast communication and multi-hop routing;

(2) Distributed deployment and cooperative effort of sensor nodes;

(3) Frequently changing topology due to fading and node failures;

(4) Ability to collect, process and transmit response data from structures.

Lynch and Loh (2006) categorized the functional parts of wireless sensors into three or
four subsystems: Sensing interface, Computational core, Wireless transceiver and, for some,

Actuation interface.

The sensing interface includes mainly analog-to-digital converter (ADC) channel(s) to
convert analog sensor signal into digital signal. Function of the conversion resolution can be

sample rate, and the number of channels available on its ADC.

221



The computational core includes a microcontroller that can store measurement data in
random access memory (RAM) and data identification algorithms (such as damage detection
routines) in read only memory (ROM). A major classifier for microcontrollers is the size (in bits)

of their internal data bus with most microcontrollers classified as 8-, 16-, or 32-bits.

A wireless transceiver is an electrical radio component that can be used for both the
transmission and reception of data. If a wireless radio operates on the Industrial, Scientific, and
Medical (ISM) frequencies, the Federal Communications Commission (FCC) mandates the

maximum power an antenna can output is 1W, which effectively limits the transmission range.

Some wireless sensors have an (optional) actuation interface. The actuation interface
provides the capability to command actuators to make wireless sensor an active sensor, thus
making a wireless smart structure. The core element of the actuation interface is DAC channel(s)

to convert digital signal from microcontroller into continuous analog signal.

In addition to these four functional subsystems, a power source unit is required to be the
energy source of all these subsystems; two optional off-board units can be attached for signal
conditioning and power amplification. The subsystems and optional off-board units are

illustrated in Fig. 9.1.
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Figure 9.1 Schematic diagram of the subsystems and optional off-board units for wireless
sensor

A wireless sensor network consists of hundreds to thousands of organized sensor nodes.
The simplest topology for wireless sensor network architecture is a star topology, as shown in
Fig. 9.2(a). Mitchell et al. (2001;2002) have proposed a two-tier wireless sensor network
architecture using wireless sensors, as shown in Fig. 9.2(b). The architecture emphasizes the
partitioning of the monitoring system functionality between wireless sensors and wireless data
servers (called wireless cluster nodes). The wireless sensor nodes are designed to collect sensor
data and transferred data wirelessly to nearby wireless data servers (cluster nodes). The wireless
data servers have both a short-range radio (for communication with wireless sensors in its cluster)

as well as a long-range radio (for communication with other remote cluster nodes). The wireless
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data server nodes are designed to both store and process the vast amounts of data collected from

the wireless sensors in the cluster and they are accessible from internet.
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Figure 9.2 Wireless sensor network topologies

9.2 Advantages of wireless sensors

Compared to traditional wired sensors, wireless sensors have advantages in the following
aspects: low cost, easy installation, dense deployment, local computation capability.

Interest in wireless sensors was initially motivated by their lower cost than traditional
sensors. Traditional structural monitoring systems employ coaxial wires for communication
between sensors and the repository. While coaxial wires provide a very reliable communication
link, their installation in structures can be expensive and labor-intensive. For example, structural
monitoring systems installed in tall buildings have been reported in the literature to cost in
excess of $5,000 (USD) per sensing channel (Celebi 2002). The cost of installing over 350

sensing channels upon the Tsing Ma suspension bridge in Hong Kong was estimated to have

exceeded $8 million (Farra 2001).
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Wireless sensor nodes can reduce cabling costs and increase the flexibility of
instrumentation placement. One of the earliest field validations of wireless sensors for
monitoring the performance of highway bridges was described by Maser et al (1996). The total
cost of the system is roughly $1,000 per sensor node and $2,000 for the data repository.
Companies, such as Crossbow, Ember, Sensoria, and Millenial, are building small sensor nodes
with wireless capabilities. However, a per-node cost of $100 to $200 (not including
sophisticated sensors) is prohibitive for large networks. Nodes must become an order of
magnitude cheaper in order to render applications with a large number of nodes affordable. The
advances in wireless communications and electronics are continuously driving the development
of wireless sensors in this direction.

Due to easy installation and reduced or no wiring, wireless sensor network shows its
potential in dense deployment of large number of sensors. Compared to the use of a few
expensive (but highly accurate) sensors, the strategy of deploying a large number of inexpensive
sensors has significant advantages, at smaller or comparable total system cost: much higher
spatial resolution; higher robustness against failures through distributed operation; uniform
coverage; small obtrusiveness; ease of deployment; reduced energy consumption; and,
consequently, increased system lifetime. The main point is to position sensors close to the
source of a potential problem phenomenon, where the acquired data are likely to have the
greatest benefit or impact.

Another attractive feature of wireless sensors for SHM is the local computational resources.
In order to minimize power consumption for wireless sensors, it becomes particularly important
to minimize the amount of data to be transmitted, especially when multi-hops from the data

source to the central data server is involved. One feasible approach to achieve this goal is to
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process the collected measurements locally in the sensor nodes and then transmit only significant
results to the central server. In order to do this, the exploited processing algorithm must consider
the hardware limitations of the MCU of the sensor nodes. The distributed signal processing and
local-based damage detection/identification may significantly reduce the amount of data to be
transmitted to central server, which is more efficient in energy consumption. Therefore, it would
considerably extend the life time of the network and reduce the total time required by the system
to complete a structural test of the monitored structure, i.e., the latency. Bocca et al. (2011)
developed a WSN in which the nodes, equipped with a 3-axis accelerometer, process the
collected vibration measurements locally by the Goertzel algorithm in real-time. The proposed
distributed approach reduces the latency by 80% and increases the system life time by 52%,
when compared to traditional centralized architectures.

The above mentioned advantages make wireless sensor network ideal for structural health
monitoring application. A schematic of potential integration of the proposed Smart Fiber-

Reinforced Polymer (S-FRP) sandwich panel with wireless sensor network is shown in Fig. 9.3.
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Figure 9.3 Smart Fiber-Reinforced Polymer (S-FRP) sandwich panel with wireless sensor

network for bridge decks
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9.3 Limitations of wireless sensors

The limitations and challenging issues on wireless sensors are in the following aspects:
power consumption, data reliability, time synchronization, sampling rate, local data processing,
multi-scale network topologies, and formulation of power-efficient data driven usage strategies.
The current research in wireless sensors network mainly focuses on how to tackle these
challenging issues.

First, power consumption is considered as the major limitation and most difficult
constraints of wireless sensors network. Since the integration of wireless communication
removes the need for transmitting data from one point to another with cables, the lack of cables
requires remote power generation or portable power supplies to be coupled with wireless sensors.
Currently, batteries represent the most common portable power source for wireless sensors.
However, batteries only contain a finite amount of power; when batteries are exhausted,
replacement can be a difficult task, especially when sensors are in locations where human access
(such as extremely cold regions and chemical inaccessible areas) is limited. In addition, there
are environmental issues regarding the disposal of batteries. Therefore, in order to extend the
lifetime of the network, the design of wireless sensors requires energy efficient strategies and a
rational analysis to determine the trade-off between functionality and power consumption.

The researchers tried to solve the power consumption problems with two approaches. One
is to enhance the energy efficiency of the wireless sensor to extend its lifetime under finite power
supplies. Another is to explore sustainable power source such as radio-frequency identification
(RFID), energy harvesting (Park et al. 2008), and solar energy.

Optimal power efficiency can be approached by the exploitation of suitable transmission

routing protocols, signal processing algorithms, damage identification algorithms and sleep
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modes of wireless sensors. When subjected to finite power supplies, the trade-off between the
sensor operations (i.e., sampling, processing, transmission, receptions and, possibly, actuation)
also plays an important role in power usage. Balancing these parameters will be the focus of the
design process of WSNs. It should be noted that in WSNs, among all these operations,
transmissions and receptions of packets have by far the heaviest impact on power consumption.
Current RF transmission techniques (e.g., Bluetooth) consume about 100 nJ per bit for a distance
of 10 to 100 m, making communication very expensive compared to sampling and processing.

One popular method to enhance power efficiency is to adopt multi-hopping data
transmission protocol. Multi-hopping is more energy efficient than having longer-range radios
which offer direct connectivity between sensor nodes and central data server. In a multi-hopping
network, the wireless sensor nodes can communicate with each other for sending or receiving
information from central data server either directly or through intermediate nodes, so each node
in a sensor network acts as a router inside the network. When the communication range of two
wireless sensors is shorter than their physical separation, connectivity can still be established by
multi-hopping. Bhattacharyya et al. (2010) presented a comparative study of eight ad hoc
network routing protocols for WSNs, including LEACH, TEEN, APTEEN, PEGASIS, SPIN,
DD, RR and GEAR. Since the sensor networks are application specific, it is difficult to simply
conclude that any particular protocol is better than other.

In exploration of sustainable power source, the development of power-free wireless sensors
known as radio-frequency identification (RFID) sensors makes them promising sensors for data
transmission (Lynch and Loh 2006). RFID sensors are a passive radio technology, which

capture radio energy emanated from a remote reader so that it can communicate its measurement
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back. RFID sensors explicitly developed for structural health monitoring (SHM) are also
included as part of their paper’s scope.

Another feasible solution to energy source is energy harvesting systems, such as
piezoelectric energy harvesters. This technology is particularly suitable for SHM applications,
since vibrations are always present across structures. However, the production of energy by
these systems is usually low, and it is optimal only at specific frequencies of vibrations.

Research groups also investigated the use of solar battery technology (e.g., rechargeable
thin-film lithium battery and super charge ion battery) to charge capacitors with photocurrents
from the ambient light sources (Bogue 2010).

In summary, power consumption is the key issue in development of wireless sensors, and it
is a critical problem needed to be solved by comprehensive approaches via the exploitation of all
aspects of wireless sensors, such as energy efficient transmission and reception protocols, energy
harvesting, and energy efficient local algorithms for structural health monitoring.

Second, the quality of wireless transmission has been another important concern that has
restricted the application of WSNs. Quality refers to the capability of a wireless sensor network
(WSN) to deliver data reliably and timely.

Data transmission reliability in a wireless sensor network is inherently lower than that in
cable-based systems, particularly when long distance node-to-node communication is involved.
The limited wireless bandwidth can also impede real-time data transmission as required by
feedback structural control systems.

Time synchronization in wireless sensor networks can also be a problem for some
centralized structural health monitoring system. Each wireless sensor in the network has its own

hardware oscillator-based clock providing timing signals to the sensor. Due to varying oscillator
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frequencies, the clocks on the sensors drift with respect to each other and have to be
continuously synchronized with each other in order to maintain a constant operation time signal.
The time synchronization is required by some centralized off-line processing methods such as
modal analysis, but is not required by some local-based damage identification algorithms. The
theoretical analysis (Krishnamurthy et al. 2008) showed that time asynchronicity in sensor data

leads to the errors in reconstructed mode shape proportional to ¢

, and therefore, it is dependent
on both the time delay and modal frequency. Time synchronization algorithms developed in the
past for wired sensor systems achieve very high accuracy of <1 us, but the same level of
accuracy is a challenging task for wireless sensor networks. A number of methods have been
developed and tested in this direction. Computer clocks on the internet are synchronized using
the network time protocol (NTP). Another approach is to install a Global Positioning System
(GPS) on every wireless sensor to keep track of the real time. There are also methods which
have been developed specifically for wireless sensor networks, such as reference broadcast
scheme (RBS), timing-sync protocol sensor network (TPSN), lightweight tree based
synchronization (LTS) and global beacon synchronization methods.

Since power consumption and time synchronization impede the centralized off-line modal
analysis technique for SHM, some modal identification techniques are specifically developed for
wireless sensors. Cho et al. (2008) proposed a distributed modal identification scheme for using
a WiMMS wireless sensor. Caicedo and Marulanda (2011) developed a fast mode identification
technique to identify operational mode shapes for online structural health monitoring, which
shows a potential to be used on WSNs.

Sampling rate of the sensing interface may be another concern for some applications.

Ordinarily, low sampling rates (e.g., less than 500 Hz) are adequate for global vibration-based
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structural monitoring. However, wireless sensors are increasingly explored for use in acoustic
and ultrasonic NDE; as a result, there has been a growing need for higher sampling rates in

excess of 500 kHz (Grisso et al. 2005; Lynch 2005).

9.4 Wireless sensors

Some available laboratory and commercial wireless sensors are listed and compared in
Table 9.1. It can be seen from the table that batteries are the most common portable power
source for wireless sensors. Technologies such as energy harvesting and solar batteries are still
in their infancy for application in SHM. Energy efficient microcontroller is often adopted for
local signal processing and local damage identification. Therefore a local-based damage
identification algorithm with low computational cost should be of future research interest.
Although active sensor is a promising concept for wireless sensor, most of active sensors still
only exist in laboratory. For the time being, the sampling rate of sensing interface of wireless
sensor is enough for vibration-based damage identification application, but too low (< 100 kHz)

to be used for general acoustic wave-based damage detection application.
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Table 9.1 Comparison of wireless sensors

Lynch et al. (2004) | Wang et al. | UC Intel iMote Microstrain Rockwell Lynch et | Wang et al.
(2003) Berkeley- Science al. (2006)
Gu et al. | Crossbow Center (2004)
(2005) MICA2
General Information
Commercial No No Yes Yes Yes Yes No No
availability
Dimensions 12x10x2 6x3x1 7.3x7.3x8.9 10.2x6.5%4.0
(cm)
Power Source | Battery (9V) Battery Coin Cell Battery Battery Battery (two Battery (two
(3.6V) A% EAY)
Features PVDF sensors | Open- Ability  to | Wireless | Wireless
are attached | source self-organize | active active sensor
and tested Motes; in the field sensor
Last  30h
on two AA
batteries
Sensing Interface
A/D Channels | 1 8 8 8 4 32 4
Sampling Rate | 100kHz >50 Hz 1kHz 1.7 kHz 400 Hz 40 kHz 100 kHz
A/D 16-bit 12-bit 10-bit 12-bit 20-bit 10-bit 16-bit
Resolution
Computation Core
Processor Ateml AT90S8515 | Analog Atmel Zeevo MicroChip Intel Stron- ATmegal28
AVR Devices ATmega ARM7TDMI | PIC16F877 gARM
/MPC555PowerPC | ADuC832 128L 1100
Bus Size 8-bit/32-bit 8-bit 8-bit 32-bit 8-bit 32-bit 8-bit
Clock Speed 4 MHz /20 MHz 7.383 MHz | 12 MHz 133 Mhz 8 MHz
ROM for | 8kB /26 kB 62kB 128 kB 64 kB 1 MB 128 kB
algorithm
storage
RAM for data | 512 kB /448 kB 2kB 4kB 512 kB 2MB 128 kB 4kB/128kB
storage
Wireless Transceiver
Radio Proxim RangeLan2 | Linx Chipcon Wireless BT | RF Conexant 24X Stream
Technologies | CC1000 Zeevo Monolithics RDSSSOM
DR-
3000-1
Frequency 2.4 GHz 916 MHz 900 MHz 2.4 GHz 916.5 MHz 916 MHz 2.4835 GHz
Band
Spread Yes No Yes Yes Yes
Spectrum (Software)
Enclosed 150 m 61 m 100 m 180 m
Range
Data Rate 1.6 Mbps 33.6 kbps 38.4 kbps 600 kbps 75 kbps 100 kbps 19.2 kbps
Actuation Interface
D/A Channels 2 1 1
D/A 12-bit 12-bit 16-bit
Resolution
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary and concluding remarks

Viable and effective structural health monitoring and damage identification methods for
composite beams and plate-type structures were studied in this project, with the aim to develop
integrated smart honeycomb fiber reinforced polymer (S-FRP) composite sandwich bridge decks,
especially for the cold region transportation applications. A thorough literature review on the
topic showed that the research on the 2-D damage identification method for plate-type structures
is relatively limited, though the 1-D damage identification methods are extensively studied and
well developed. There are also very limited studies on the effect of cold temperature on the

performance of FRP composite sandwich structures.

A detailed study on free vibration of the honeycomb FRP sandwich beams with sinusoidal
core was conducted. The free vibration analysis is based on a high-order sandwich beam theory
(HSBT) for improved accuracy. The results are compared with Timoshenko’s beam theory,
numerical simulation and experimental test results to illustrate the effectiveness of the high-order
approach. The results demonstrated the validity of the high order beam theories, which improve
the accuracy of sandwich beam analysis without high cost of evaluation. HSBT shows its
potential in application for structural health monitoring and usage assessment of composite
sandwich structures. The study also suggested that in general the dynamic response of sinusoidal
core sandwich beam is sensitive to the variation of core transverse shear modulus but insensitive

to the variation of compression stiffness through the thickness.

The temperature effect on dynamic response of FRP sandwich beams/panels was

investigated, and the scale-up of test results from dynamic mechanical analysis (DMA) to predict
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the large structural response was studied. A series of FRP sandwich beams with the core
oriented in both the longitudinal and transverse directions and an as-manufactured FRP sandwich
panel were investigated for dynamic response change under temperature effect. The study
suggested that the proposed DMA-based approach is a reliable, efficient and effective technique
to predict the temperature effect on dynamic response of FRP sandwich beams/panels. It was
also suggested in this study that the temperature effect may introduce a moderate 2%-3% modal
frequency shift to the FRP sandwich beam/panel over a 100°C temperature change. Therefore,
using the modal frequency shift alone for FRP sandwich structural damage identification may not
be reliable because temperature effect cannot introduce considerable modal frequencies shift. It
indicated that the material data obtained in the DMA test using small coupon samples can be

scaled up to predict the macro-level structural behavior.

To make smart structures (such as the proposed S-FRP sandwich materials) a viable
technology for transportation infrastructure application, effective damage identification
techniques are needed. As concluded from the extensive literature survey in this study, the
damage identification techniques for 1-D beams structures are well developed, while the
availability of the methods for 2-D plate-type structures (such as bridge deck panels) are
relatively limited. To meet this immediate need, a new 2-D CWT-based method was proposed
for damage detection of plate-type of structures. The 2-D CWT-based damage detection
algorithm is a response-based damage detection technique for plate-type structures using
“Dergauss2d” wavelet. The isosurfaces of 2-D wavelet coefficients of mode shape is generated
to indicate the location and approximate shape (or area) of the damage. The viability of this
method was demonstrated by analysis of the numerical and experimental mode shapes of a

cantilevered composite plate. A comparative study with two other 2-D damage detection
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algorithms, i.e., 2-D GSM and 2-D SEM, showed that the proposed 2-D CWT-based algorithm is

superior in noise immunity and robust under limited sensor data.

Though many damage detection methods are capable of locating the damage area, there is
still a need to assess the severity of the defects or damages in the structures. In this study, a
DSCF-based damage identification method was also developed for damage identification of
plate-type structures. A damage location factor matrix DLF and a damage severity correction
factor matrix DSCF are generated from the curvature mode shape of a plate. The damage
identification method using DSCF and DLF are presented for both damage localization and
quantification. The proposed method is also a response-based damage identification technique
which requires the modal frequencies and curvature mode shapes before and after damage. The

viability of this method is demonstrated by both the numerical and experimental investigations.

The two proposed vibration-based methods were then applied to an as-manufactured FRP
sandwich deck panel for damage identification. Application of the 2-D CWT-based damage
detection method on the mode shape data from the numerical FE and experimental modal
analysis showed that it can effectively indicate the location of damage and approximate the
damage area in a FRP sandwich plate-type structure. Application of the DSCF-based damage
identification method on the curvature mode shape data from the numerical FE and experimental
modal analysis illustrated that it is not only capable of effectively indicating the location of

damage but also approximating the damage severity in an FRP sandwich plate-type structure.

To make the proposed S-FRP sandwich materials as bridge deck panels more practical in
remote and/or cold regions, the integration of the response-based SHM and distributed smart
piezoelectric sensor array on the FRP sandwich decks with wireless sensor networks (WSNs) is

needed. Though many commercial wireless sensors are available nowadays, their reliable and
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extensive application in the structural health monitoring of bridge structures is still limited. The
potential integration and application of WSNs with the proposed S-FRP deck panels were

considered, and the obstacles of applying WSNs were discussed.

In summary, the developed structural health monitoring strategy using the combination of
experimental modal testing technique and 2-D CWT-based damage identification method is
effective for damage detection of composite sandwich plate-type structures and does not require
high-cost modal testing system. While the other developed structural health monitoring strategy
using combination of distributed PVDF sensor array and DSCF-based damage identification
method can be effectively used for damage localization and quantification of composite
sandwich plate-type structures. The latter strategy shows great potential to be further developed
into an in-situ real-time structural health monitoring system for plate-type structures. The
extensive experimental and analytical study on the development of S-FRP sandwich materials for
highway bridge decks conducted in this project paves the foundation for smart infrastructure
development, particularly suitable and practicable for remote and/or cold regions. Outcomes of
this study deliver a viable technology using integrated advanced polymer sandwich materials and
smart piezoelectric sensors/actuators along with the developed response-based damage
identification and structural health monitoring strategies to address transportation safety, security,

and innovation in cold regions.

10.2 Recommendations for future studies

The research on structural health monitoring and damage identification of plate-type
composite structures suitable for highway bridge deck application is still a novel field of study.
There are still many related topics subjected to future research. Based on the research in this

study, the following topics are recommended for future study:
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Development of an effective damage identification method for non-flat complex
structures with irregular shapes, such as sandwich shell structures;

Development of a reliable in-situ real-time structural health monitoring system for
plate-type structures;

Studies towards the application of statistical pattern recognition techniques for
identification of damage severity and types;

Integration and testing of wireless sensor networks (WSNs) with the developed
dynamic response-based damage identification and structural health monitoring
strategies and development of viable wireless S-FRP composite structural technology
suitable for transportation applications.

Implementation of the proposed S-FRP composite sandwich decks in highway bridges,
particularly in the cold regions, to test their field applicability, reliability, and

effectiveness. .
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