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16. Abstract

Vehicle classification is used in many transportation applications, e.g., infrastructure management and planning. Typical of most 
developed countries, every state in the US maintains a network of vehicle classification stations to explicitly sort vehicles into 
several classes based on observable features, e.g., length, number of axles, axle spacing, etc. Periodic performance monitoring is 
necessary to ensure the quality of collected data; however, such testing has been prohibitively labor intensive to do as thoroughly 
as needed. To address these challenges, this study examined three interrelated facets of vehicle classification performance 
monitoring. First, we manually evaluate the performance of vehicle classification station on a per-vehicle basis, second we develop 
a portable LIDAR (light detection and ranging) based vehicle classification system that can be rapidly deployed, and third we use 
the LIDAR based system to automate the manual validation done in the first part using the tools from the second part. 

In the first part we examined over 18,000 vehicles, at several stations and found good performance overall, but performance for 
trucks was far worse than passenger vehicles. About a third of the errors were fixed by modifying the classification decision tree, 
the remaining two thirds of the errors are unavoidable because different classes have overlapping axle spacings or lengths (e.g., 
passenger vehicles and trucks, or commuter cars and motorcycles). All subsequent uses of the classification data must 
accommodate this unavoidable blurring. Next, we develop a side-fire LIDAR based classification system that does not require any 
calibration in the field. Finally, we develop a process to use the LIDAR system (or another temporary vehicle classification system) 
deployed concurrent to a permanent classification station to semi-automate the manual validation. The automated process does 
the bulk of the work, typically taking a user only a few minutes to validate all of the exceptions from all lanes over an hour of data. 
We found wide variance in performance from one station to the next. Since these errors are a function of the specific station, there 
would be benefit in the short term to leverage the LIDAR based system to evaluate the performance of many other classification 
stations to catch systematic errors that bias classification performance.
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1-1 

1 INTRODUCTION 
This study examines three interrelated facets of vehicle classification and classification performance 

monitoring. The overall objectives of this study are: 

1) Use manual data reduction from concurrent video to evaluate how well ODOT classification stations sort 
vehicles into the 13 FHWA classes and separately the three length classes used by ODOT. 

2) Identify any chronic problems in the automated classification performance so that ODOT can ensure 
accurate vehicle classification and using the per vehicle ground truth evaluate the axle based classification 
decision tree for the studied locations to see if any improvements can be realized. 

3) Investigate and develop non-labor intensive means to conduct these evaluations, to allow for on-going 
calibrations of classification stations. 

To these ends, first, we manually evaluate the performance of vehicle classification station on a per-vehicle basis, 
second we develop a portable LIDAR (light detection and ranging) based vehicle classification system that can be 
rapidly deployed, and third we use the LIDAR based system to automate the manual validation done in the first part 
using the tools from the second part. Each component is discussed in a separate chapter, as follows. 

In Chapter 2 we evaluate the performance of three freeway, permanent vehicle classification stations 
against concurrent video based ground truth (details of the various test sites can be found in Appendix A). All of the 
stations used in this chapter have dual loop detectors and a piezoelectric sensor in each lane, providing both axle-
based and length-based classification. The performance evaluation is done at the "per-vehicle record" resolution, i.e., 
we compare every individual vehicle that passed during the study periods (over 18,000 vehicles, uncongested 
conditions). While the stations exhibited good performance overall (97% correct), across all three stations the 
performance for trucks was far worse, e.g., only 60% of the single unit truck/bus (SUT) - axle class 4-7- were 
correctly classified as SUT by the axle-based classification decision tree. We diagnosed all of the observed errors 
and some can be fixed quickly (e.g., gaps between bins) while others cannot. Using data from one site, we revise the 
axle-based classification decision tree to solve almost all of the fixable errors and then test the performance at 
another location. This new classification decision tree can be deployed immediately. 

One chronic error found in this research is intrinsic to the vehicle fleet and may be impossible to correct 
with the existing sensors; namely, the shorter, SUT have a length range and axle spacing range that overlaps with 
passenger vehicles (PV) - axle class 1-3. Depending on the calibration, the error may be manifest as SUT counted as 
PV or vice versa. One should expect such errors at most classification stations. All subsequent uses of the 
classification data (e.g., planning and measuring freight flows) must accommodate this unavoidable blurring of SUT 
with PV. The blurring also means that one cannot blindly use an axle classification station to calibrate the boundary 
between PV and SUT for length-based classification stations, otherwise, the unavoidable errors in the axle-based 
classification will be amplified in the length-based classification scheme. 

In Chapter 3 we move out of the right-of-way and develop a LIDAR based classification system with the 
sensors mounted in a side-fire configuration next to the road. The first step is to distinguish between vehicle returns 
and non-vehicle returns. The algorithm then clusters the vehicle returns into individual vehicles. The algorithm 
examines each vehicle cluster to check if there is any evidence of partial occlusion from another vehicle. Several 
measurements are taken from each non-occluded cluster to classify the vehicle into one of six classes: motorcycle, 
passenger vehicle, passenger vehicle pulling a trailer, single-unit truck, single-unit truck pulling a trailer, and multi-
unit truck. The algorithm was evaluated at six different locations under various traffic conditions (again, details of 
the various test sites can be found in Appendix A). Compared to concurrent video ground truth data for over 27,000 
vehicles on a per-vehicle basis, 11% of the vehicles are suspected of being partially occluded. The algorithm 
correctly classified over 99.5% of the remaining, non-occluded vehicles. This research also uncovered emerging 
challenges that likely apply to most classification systems, e.g., differentiating commuter cars from motorcycles. 

Occlusions are inevitable in this proof of concept study since the LIDAR sensors were mounted roughly 6 
ft above the road, well below the tops of many vehicles. Ultimately we envision using a combination of a higher 
vantage point (in future work), and shape information (begun herein) to greatly reduce the impacts of occlusions.  

Even with the impacts of occlusions, the LIDAR system is a valuable tool. In Chapter 4, we seek to 
automate the process of evaluating the classification stations, i.e., addressing the problem in Chapter 2 with the tools 
from Chapter 3. There are many classification technologies, each with its own strengths and weaknesses, but all of 
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these systems depend on accurate calibration and validation to yield meaningful results. Such performance 
monitoring has been prohibitively labor intensive, prone to human error, and conventional aggregation periods are 
too coarse, allowing over counting errors to cancel undercounting errors. This work develops a classification 
performance monitoring system to allow operating agencies to monitor the health of their classification stations. We 
eliminate most of the labor demands and instead, deploy a portable non-intrusive vehicle classification system 
(PNVCS) to classify vehicles, concurrent with an existing classification station. Our system uses a LIDAR based 
PNVCS but our approach is compatible with many other portable vehicle classification systems. This pilot study 
used LIDAR sensors mounted on a van and our system does not require any calibration in the field. For longer-term 
deployments we envision a dedicated trailer that could be parked alongside the road. 

To prevent classification errors from canceling one another in aggregate, we evaluate performance on a 
per-vehicle record basis. The approach requires several intermediate steps, developed herein, including 
synchronizing the independent clocks and matching observations of a given vehicle between the two classification 
systems. These algorithms automatically compare the vehicle classification between the existing classification 
station and the PNVCS for each vehicle. If the two systems agree, the given vehicle is automatically taken as a 
success. A human only looks at a given vehicle when the two systems disagree, and for this task we have developed 
tools to semi-automate the manual validation process, greatly increasing the efficiency and accuracy of the human 
user (typically on the order of 4 sec per vehicle- including seek time and loading time, translating to a few minutes 
to validate all of the exceptions from all lanes over an hour of data). The automated process does the bulk of the 
work, less than 8% of the vehicles required manual intervention. The methodology is applied to several permanent 
and temporary vehicle classification stations to evaluate axle and length-based classification. The evaluation datasets 
include over 21,000 vehicles. This evaluation also revealed a chronic problem detecting motorcycles at the two 
ODOT permanent classification stations studied. While the LIDAR system detected 15 passing motorcycles, the 
classification stations correctly classified only one of them, and missed five altogether. 
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2 AXLE AND LENGTH BASED VEHICLE CLASSIFICATION PERFORMANCE 

2.1 Introduction 
For many transportation applications it is important to know the mix of passing vehicles on the roadway. 

The volume of different vehicle classes are used for pavement design and management, modeling freight flows, and 
studying air quality since different vehicle classes make systematically different contributions [1]. The classification 
data are also important to ITS, e.g., for automated tolling the toll facility often classifies vehicles and charges 
different rates depending on the classification. 

Typical of most developed countries, every state in the US maintains a network of vehicle classification 
stations to explicitly sort vehicles into several classes based on observable features, e.g., length, number of axles, 
axle spacing, etc.. Various technologies are used for this automated classification, the three most common 
approaches are: weigh in motion (WIM); axle-based classification from a combination of loop detectors, 
piezoelectric sensors or pneumatic sensors; and length-based classification from dual loop detectors. There are many 
more emerging technologies that also promise vehicle classification, e.g., video image processing and side-fire 
microwave radar. 

This chapter examines the performance of three permanent vehicle classification stations operated by the 
Ohio Department of Transportation (ODOT) on different freeways around Columbus, OH (Figure 2-1(a)). Each lane 
at each of the stations has dual loop detectors to measure speed and vehicle length, and a piezoelectric sensor to 
detect the axle passages (Figure 2-1(b)), providing both the conventional 13 axle-based classes [1] and length-based 
classification. In the latter case, it is common to provide only three or four classes, which are intended to map to 
passenger vehicles (PV) - axle class 1-3, single unit truck/bus (SUT) - axle class 4-7, and multi-unit trucks (MUT) - 
axle class 8-13. 

The performance evaluation is done at the "per-vehicle record" (pvr) resolution, i.e., we compare every 
individual vehicle that passed during the study periods (totaling over 18,000 vehicles, uncongested conditions). 
Evaluating the pvr data as we do in this work is uncommon; normally the pvr classifications are binned by fixed 
time periods, e.g., over 15 min or 1 hr, and the individual vehicle information is discarded. However, such 
conventional aggregation allows errors to cancel one another, which can obscure underlying problems.  

While the stations exhibited good performance overall (97% correct), across all three stations the 
performance for trucks was far worse, e.g., only 60% of the SUT were correctly classified as SUT by the axle-based 
classification decision tree. We diagnosed all of the observed errors and some can be fixed quickly (e.g., gaps 
between bins) while others cannot. Using data from one site, at the end of this chapter we revise the axle-based 
classification decision tree to solve almost all of the fixable errors and then test the performance at another location. 

One chronic error found in this research is intrinsic to the vehicle fleet and may be impossible to correct 
with the existing sensors; namely, the shorter, SUT have a length range and axle spacing range that overlaps with 
PV. Depending on the calibration, the error may be manifest as SUT counted as PV or vice versa. One should expect 
such errors at most classification stations. All subsequent uses of the classification data (e.g., planning and 
measuring freight flows) must accommodate this unavoidable blurring of SUT with PV. The blurring also means 
that one cannot blindly use an axle classification station to calibrate the boundary between PV and SUT for length-
based classification stations, otherwise, the unavoidable errors in the axle classification will be amplified in the 
length-based classification scheme. 

The challenge from SUT blurring with PV is not unique to conventional detectors. Our group found similar 
problems between these two groups when using side-fire LIDAR to classify vehicle profiles (Chapter 3) and 
estimated vehicle length from single loop detectors [2]. Meanwhile, several non-invasive sensor manufacturers now 
offer length based vehicle classification as a feature of their sensors and their classification performance has been 
evaluated [3-8]. Most of these studies rely on manual counts for ground truth to quantify performance and typically 
found overall classification error rates between 5%-10%. Like the present study, however, most of the passing 
vehicles were PV. Many of the studies sampled counts over extended periods, e.g., 15 min or 1 hr [3-6], which as 
noted above, allows for over-counting errors to cancel under-counting errors. Even allowing the individual errors to 
cancel, the SmartSensor had an overall error rate for trucks (SUT and MUT combined) of 46% [3], 80% [4], 50%-
400% [5], 20%-50% [6] and the RTMS had an error rate for trucks of 25% [3], 40%-97% [5]. Two studies used a 
small sample of pvr data, only a few hundred vehicles, and found the SmartSensor had an error rate for trucks of 
13%-57% [7], 42% [8]. A few studies considered video systems, e.g., [6] found the length based classification from 
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an Autoscope to be unacceptable, while [9] had an error rate for trucks of 73%. Although these studies reveal 
degraded non-invasive based classification for trucks, the authors do not explicitly investigate the causes. 

2.1.1 Overview 
The remainder of this chapter is as follows, in Section 2.2 we briefly review the details of the classification 

stations, collection of concurrent video based ground truth data, and data reduction processes for validation. Section 
2.3 presents the overall performance of the stations and discusses the systematic errors that we observed. Using the 
ground truth data at one station, Section 2.4 develops a new classification decision tree to eliminate most of the 
preventable errors and then evaluates the performance at another station. Finally, Section 2.5 presents the 
conclusions and summarizes the results of this study. 

2.2 Classification Stations and Concurrent Ground Truth Data 
Table 2-1 enumerates summary statistics for the three classification stations used in this study and Figure 2-

1(a) shows their locations. The observation periods ranged between 1 and 3.5 hours, during which time the per-
vehicle record (pvr) data from the classifier were logged for the research and concurrent video was recorded for 
evaluation. The classifier uses the dual loop detectors and piezoelectric sensor to calculate vehicle speed, length, and 
axle spacing(s). The classifier uses fixed length-thresholds to assign length-class and a decision tree to assign axle-
class based on the number of axles and their spacing(s). For each vehicle the pvr data include: time stamp, lane, 
speed, number of axles, axle spacing(s), axle-class, vehicle length, and length-class. Appendix B provides more 
details on the pvr and existing classification scheme.  

After collecting the data in the field, we manually generate ground truth data from the video to evaluate the 
performance of the classification stations. Although both the video and pvr data are time stamped, the two clocks are 
independent, so the two datasets need to be time synchronized with one another. The time offset is a constant and in 
the absence of any detection errors, a sequence of observed headways in one dataset provides a unique pattern that 
can be found in the other dataset (similar to the vehicle reidentification in [10]). Or more formally, we manually 
extract 9 successive headways from the video. After only a few vehicles the sequence becomes distinct. We then 
look for this same sequence in the pvr data by finding the time off-set that minimizes the total relative error between 
the video and pvr data time stamps for the successive vehicles. Once the two datasets are time synchronized, we 
employ a semi-automated process to generate the ground truth data using a software tool to simultaneously view the 
pvr classification and the corresponding video frame. Figure 2-2 shows a screen shot from the tool as the user 
classifies a MUT.1 Prior to selecting a class for the given vehicle, the user can step backward or forward in time if 
there is any uncertainty. The user then selects the axle classification for the vehicle (or in rare cases indicates either 
that the vehicle is unclassifiable or that it is a non-vehicle actuation). In any event, after the user has entered a class 
for the vehicle, the software immediately jumps to the next vehicle reported in the pvr data for the lane. Obviously 
this approach will not catch a vehicle that is completely missed by the classification station. The focus of the present 
work is on classification performance; however, one could use additional techniques to also catch missed vehicles 
(e.g., using a simple video image processing "trip wire", as in [11]; or an independent sensor, as in Chapter 4). In an 
ideal case, every single vehicle in the pvr would be assigned to its specific class, as was done in the I-70 dataset. The 
vast majority of the vehicles in our datasets are PV, axle-class 1-3. To greatly reduce the labor necessary to reduce 
the data, in the I-270 dataset we combined the PV into a single group, and in the SR-33 dataset we do a similar 
consolidation for SUT and MUT. In any event, all of the vehicles were manually classified at the resolution shown 
in the bottom row of Table 2-1. 

2.3 Performance of the Classification Stations 
Table 2-2 compares the pvr axle-class against the manual classifications over the 13 conventional axle-

classes for the 8,079 vehicles in the I-270 dataset. A given vehicle is counted in a single cell, the row corresponding 
to its ground truth axle-class and the column corresponding to its pvr axle-class. Thus, each cell shows the total 
number of vehicles with the pairwise combination from the manual and pvr classifications. As noted above, for a 
vehicle with pvr axle-class 1-3 in I-270, the user only verifies that it is indeed a PV when generating the ground 
truth, and thus, the top left cells span three rows.  
  

                                                             
1 In the event that this figure is hard to read, the key features are the integrated video view, detector data, and the fact that there 
are several buttons for user input. The figure may be clearer in the electronic version of the report available from ODOT. 
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Table 2-1, Summary statistics of ground truth datasets. 

Location 
Axle stations 

Southbound 
I-270 at Rings Rd. 

Eastbound  
I-70 at Brice Rd. 

Northbound 
SR-33 

Date Nov 2, 2010 June 20, 2006 Aug 3, 2011 
Traffic Conditions Free flow Free flow Free flow 
Time duration investigated 9:27~12:33 10:12~13:59 13:28~14:34 

Average Speed 64 mph 65 mph 64 mph 
Number of lanes 3 3 2 
Average Flow (per lane) 873 vph 859 vph 627 vph 
# of vehicles 8,079 9,746 1,255 
# of occluded vehicles 30 377 0 
Resolution of ground-truth PV or axle class 4-13 axle class 1-13 PV, SUT, MUT 
 

 

 
 

 
 

Figure 2-1, (a) Location of axle classification stations used in this study, around the Columbus, Ohio, 
metropolitan area, (b) Schematic of typical axle classification station, the camera icon 
shows the approximate location of our video recording. 
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Figure 2-2, Screen shot of the graphical user interface used to generate the ground-truth classifications- 

the primary video stream is in the bottom center, the classification options on the right, and 
several navigation buttons elsewhere on the display. The top two video streams are 
supplementary, showing concurrent views along the freeway to help when there is an 
occlusion of a far lane (note that the rear view, on the left, was flipped horizontally when 
filmed). 
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For classes 4-13, the cells on the diagonal tally the number of correct classifications, while all of the cells 
off of the diagonal tally classification errors. Overall 97% of vehicles are correctly classified (excluding any errors 
strictly among Classes 1-3), we reviewed all of the vehicles that fell in cells off of the diagonal in Table 2-2. The 
various sources of error are denoted with superscripts and will be discussed in the next section. These detailed 
results are similar to those from I-70 (see Appendix C for details). Although the resolution of the SR-33 ground truth 
precludes such a quantified comparison, qualitatively SR-33 performance seemed similar to the other stations. 

2.3.1 Investigation of Axle-based Misclassifications 
Table 2-2 shows that 2.2% (185 of 8,049) of the vehicles with ground truth were misclassified at the I-270 

site. We reviewed the video and actuations from all 185 of the erroneous vehicles to diagnose the source of each 
error. We found six different sources of the misclassifications, denoted with superscripts in the table and described 
below. 

Case “a”: Axle spacing falling in between two axle spacing bins 
In Table 2-2 there are 26 axle-class 2 vehicles misclassified as class 13, which is clearly an error since all 

of these vehicles had only two axles while class 13 is defined to have seven or more axles. Although Table 2-2 only 
uses 3 hrs of data, we have a total of 14.5 hrs of pvr data from the station. The remaining period does not have 
concurrent video, but is still useful for diagnosing this problem. Over the entire dataset we found 88 class 13 
vehicles with only two axles. Looking at a distribution of their axle spacing measurements, we found all of these 
vehicles had one of five discrete axle spacing measurements, as shown in Table 2-3. The discretization is not in 
itself problematic or surprising, it merely reflects the sampling resolution of the classifier. However, reviewing the 
axle spacing criteria for the two-axle vehicle classes (axle-classes 1-5) in the classifier's decision tree (see Table B-2 
in Appendix B), it became apparent that there were small gaps between upper-bound of one class and the lower-
bound for the next. These 88 vehicles literally fell between the cracks between the classes (as shown in Figure 2-3). 
Obviously the bounds should be made continuous to avoid these errors. Since the decision tree does not differentiate 
between axle-class 13 and unclassifiable, the errors were compounded when the two-axle vehicles were assigned to 
axle-class 13. To prevent similar errors from going undetected, an operating agency should explicitly define axle-
class 13 and then add a 14th class for the otherwise unclassifiable vehicles (e.g., as used in [3, 6]). 

Case “b”: Two-axle SUT with short axle spacing  
In Table 2-2, there are 87 axle-class 5 vehicles misclassified as either axle-class 2 or axle-class 3 in the pvr 

data. Figure 2-4 shows typical examples of the seven different truck types that give rise to these 87 errors. 
Reviewing the decision tree in Appendix B, all of these vehicles had an axle spacing that falls into the pvr assigned 
axle-class (see Appendix D for a detailed review of these vehicles), i.e., this problem arises because these vehicles' 
axle-spacing falls below the boundary for SUT. The classifier correctly classified these vehicles given their 
measured axle spacing and there is no indication that the axle spacing measurements were inaccurate. This problem 
cannot be resolved by lowering the boundary, as shown in Figure 2-5(a), because many PV would then be 
misclassified as SUT. In fact if the boundary were moved any lower the number of PV misclassified as SUT would 
exceed the number of SUT errors that are eliminated. It is possible that some of these errors could be eliminated if 
the classifier considered both vehicle length and axle spacing in the decision tree. Although as discussed in Section 
2.3.3, most of these errors would remain because the axle spacing and vehicle length of these vehicles are highly 
correlated. Marginal improvements could be made by also considering the distance between the last axle and rear 
bumper, but still many of these errors would persist.  

With this mechanism in mind, returning to the decision tree, PV pulling trailers are classified as PV (based 
on the first axle spacing) even though they have more than two axles, while SUT pulling trailers are classified as 
MUT. This difference in handling vehicles with trailers caused some of the short axle spacing errors to impact 
vehicles classified as MUT in the ground truth data. Reviewing the SUT pulling trailers, we found nine axle-class 5 
vehicles pulling trailers (thus, making them class 8 or 9, depending on the number of trailer axles) that were 
misclassified by the decision tree as class 3 in the pvr data because they had a short first axle spacing. 

Case “c”: Errors from buses 
The decision tree assumes two-axle buses have a larger axle spacing than two-axle SUT. As shown in 

Figure 2-5(b), among the two-axle vehicle classes, the range of buses' axle spacing overlaps with that of class 5 
SUT, giving rise to a problem similar to Case "b". In Table 2-2 there were six two-axle buses with axle spacing in 
the range for class 5 SUT, and four two-axle class 5 SUT with axle spacing in the range for class 4 buses. Thus, all 
10 of these vehicles were misclassified. As with Case "b", the error is unavoidable and all subsequent analysis of the 
classification data must accommodate this disproportionately higher error rate. 
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Table 2-2, Comparison between pvr and ground truth axle-class in the I-270 dataset. 

Axle classification station in I270 ODOT Axle-based vehicle classification 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

M
an

ua
l a

xl
e-

ba
se

d 
ve

hi
cl

e 
cl

as
si

fic
at

io
n 

class 1: Motorcycle 
- 5881 1104 

- - - - - - - - - - 

class 2: Car - - - - - - - - - 26a 

class 3: other 2axle, 4tire single-unit veh - - - 1f 2f - - - - - 

class 4: Bus - - - 1 6c - - 3c - - - - - 

class 5: 2 axle, 6tire, single-unit truck - 6b 81b 4c 111 - - - - - - - - 

class 6: 3 axle single-unit truck - - - - - 71 - - - - - - - 

class 7: 4 or more axle single-unit truck - - - - - 1d 9 - 2e 21e - - - 

class 8: 4 or fewer axle single-trailer truck - - 8b 1c - - 4f 29 - - - - 1a 

class 9: 5 axle single-trailer truck - 8d 1b - - - - 4d 616 - - - - 

class 10: 6 or more axle single-trailer truck - 2d - - - - - 1d - 13 - - 1a 

class 11: 5 or fewer axle multi-trailer truck - 1d - - - - - - - - 20 - - 

class 12: 6 axle multi-trailer truck - - - - - - - - - - - 8 - 

class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

Unclassifiable vehicle or occluded vehicle 2 - - - 3 4 1 3 14 2 1 - - 
 Non-vehicle actuation - - - - - - - - - - - - - 

a: Axle spacing falling between two axle spacing bins 
b: Two-axle SUT with short axle spacing 
c: Errors from buses 
d: Axle classification station reports incorrect number of axles 
e: Errors from class 7 
f: Errors from vehicles pulling trailers 
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Table 2-3, Axle spacing of axle-class 13 vehicles with only two axles. 

Axle Spacing (ft) # of Samples 
6.373 1 

10.736 41 
10.769 43 
15.526 2 
15.559 1 

 
 
 
 
 
 

 
 
 
Where, “UB” and “LB” denote the upper and lower bounds respectively  
 

Figure 2-3, Axle spacing of the axle-class 13 vehicles with only two axles against the bounds of the 
various two-axle vehicle classes. 
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Figure 2-4, Examples of the seven types of two-axle SUT that were misclassified as PV by the axle 
classification station because the axle spacing fell below the PV boundary. 
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Figure 2-5, (a) Histogram of axle spacing for PV and for SUT (excluding all vehicles pulling trailers), 

(b)Histogram of axle spacing for SUT and for buses (excluding all vehicles pulling trailers) 
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On the other hand, the decision tree does not explicitly consider buses pulling trailers. The existing decision 
tree only allows for up to 3 axle buses. There were three buses pulling a PV, yielding 4 axles and these vehicles 
were classified as if they were a SUT pulling a trailer (class 8). However, it is possible to catch some of these errors 
by explicitly looking for buses pulling trailers, as will be illustrated shortly. 

Case “d”: Axle classification station reports incorrect number of axles 
There are 17 vehicles in Table 2-2 that had fewer axles in the pvr data than observed in the ground truth. It 

appears that the classification station missed one or more axles on each of these vehicles. Upon inspection, all of 
these vehicles were straddling the edge of the lane as they passed the station, either changing lanes or traveling 
partially on the shoulder. Fortunately, none of these misclassified vehicles were double counted in the adjacent lane. 
This type of error would not be easily identified from the axle classification station data, but the frequency is low. 
While the I-270 dataset in Table 2-2 only shows errors due to missing axles, the I-70 dataset also exhibits errors due 
to overcounting the axles (see Table C-1 in Appendix C), where we believe the piezoelectric sensors extended 
slightly into the adjacent lane and would occasionally detect axles from the wrong lane. In any event, the Case "d" 
errors are due to sensing faults, not the classifier. 

Case “e”: Errors from axle-class 7 
Table 2-2 shows several axle-class 7 vehicles that were misclassified as MUT. The decision tree used at 

this station implicitly assumed axle-class 7 vehicles had exactly four axles, while the conventional definition is for 
SUT with four or more axles. So the 23 class 7 trucks with more than four axles were counted as MUT (class 9 or 
10, depending on the number of axles). As will be illustrated, an added step in the decision tree can catch most of 
these vehicles, since an axle-class 7 vehicle with more than four axles will typically have much shorter axle spacings 
than a MUT with the same number of axles. 

Case “f”: Errors from vehicles pulling trailers 
Like Cases "b" and "c", the axle spacings for vehicles pulling trailers overlap with axle spacings for MUT. 

There were three axle-class 3 vehicles with trailers long enough to look like trucks (class 7 and 8). While there were 
four MUT with small enough axle spacings that they looked like SUT. Like Cases “c” and "e", it is possible to 
prevent some of these errors, as will be discussed shortly. 

2.3.2 Consolidating Classifications by Vehicle Type 
At a more coarse level, the three shaded regions in Table 2-2 contain vehicles that were assigned the correct 

vehicle type: PV (class 1-3), SUT (class 4-7), or MUT (class 8-13). The off-diagonal cells within these shaded 
regions represent less severe errors, since the missclassified vehicles were still assigned the correct vehicle type. 
These intra-type errors represent 9.7% of the total misclassifications in the table. Using the three vehicle types, 
Table 2-4(a) reiterates the performance from the I-270 station at the coarser granularity and the off diagonal cells 
retain all 167 of the inter-type misclassifications. The bottom right cell shows the overall performance across all 
three vehicle types. Table 2-4(b) and 2-4(c) repeat this exercise for I-70 and SR-33. Note that although all three sets 
had over 97% success rate, the number of SUT that were correctly classified (i.e., by row) is on the order of 60%. 

2.3.3 Length-Based Vehicle classification 
Length-based vehicle classification uses less information than axle-based classification to sort vehicles into 

class. Due to the lower fidelity available from the length measurements, most length-based classification schemes 
only sort vehicles by type, e.g., length-class 1: PV, length-class 2: SUT (including buses), or length-class 3: MUT. 
As mentioned above, all three test-sites also report length-based classification in the pvr data. After looking at the 
distribution of vehicle lengths at the I-270 site, the classifier used 20.5 ft and 40.5 ft of physical vehicle length as the 
upper boundary for PV and SUT, respectively2. In the absence of detector errors, this resolution is comparable to the 
consolidated axle classes shown in Table 2-4. We use the ground truth vehicle types to indirectly evaluate the 
length-based classifications. To this end, using the 8,049 vehicle records with ground truth axle-classes at the I-270 
site, the ground truth axle-classes are clustered into type (as was done in Table 2-4(a)) and then each length-based 
class is compared with the corresponding ground truth type in Table 2-5(a). Overall, the length-based classification 
is 97% accurate. Compared to Table 2-4(a), there are very few true SUT that are misclassified (91% of the SUT are 
correctly classified), but now there are many PV that are classified as SUT (only 69% of the vehicles classified as 
SUT are actually SUT). This result reflects the fact that the threshold between the two classes is lower in Table 2-

                                                             
2 [11] reports that ODOT typically uses 22 ft and 40 ft for the length thresholds. 
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5(a) than in Table 2-4(a). Table 2-5(b) and 2-5(c) repeat this exercise for I-70 and SR-33. Reviewing the vehicles 
with errors, the majority of the PV classified as SUT were pulling trailers (67 of 118). Ideally, the threshold would 
balance over-counting with under-counting, but that is impossible to do with a constant threshold since the optimal 
threshold also depends on the relative flow of SUT. 

Figure 2-6 explicitly shows the trade-off from the axle spacing boundary and vehicle length boundary 
between PV and SUT for the two-axle vehicles. The two axle vehicles are sorted based on the ground truth 
classification, Figure 2-6(a) shows that all PV fell below the axle spacing boundary, but some were above the length 
boundary and (b) shows many SUT with two axles below one or both of the boundaries. Figure 2-6(c) shows PV 
and SUT together, a dark colored square highlights a SUT assigned to a PV axle-class in the pvr. It is impossible to 
choose a threshold on either dimension that would be error free, in each case the PV and SUT ranges overlap. This 
blurring means that one cannot blindly use an axle classification station to calibrate the boundary between PV and 
SUT for length-based classification stations, otherwise, the unavoidable errors in the axle classification will be 
amplified in the length-based classification scheme. 

2.4 Improving the Axle-Based Classification Decision Tree 
While axle classification shows over 97% correct, we observed systematic misclassification errors 

categorized by the six types discussed in Section 2.3.1, and summarized as follows for the I-270 dataset: 

1: Unavoidable misclassifications (case “b”, case “c”, case “d”, case “f”) 68% 
2: Misclassifications due to class 7 with 5 or more axles (case “e”) 12% 
3: Misclassifications caused by decision tree (case “c”, case “f”) 5% 
4: Misclassifications due to gaps between two classes (case “a”) 15% 

While the majority of misclassifications (68%) are unavoidable due to an overlapping range in axle spacing 
among classes (case “b”, case “c”, case “f”) or the detector reporting the incorrect number of axles (case “d”), in this 
section we address the remaining misclassifications (32%) by recalibrating the ODOT decision tree and adding new 
steps to it. We recalibrate the decision tree using the I-70 dataset and then evaluate the performance using the I-270 
dataset. 

First, we address case "a" by closing the gaps between classes, add an explicit definition for class 13, and 
create a 14th bin for unclassifiable vehicles. Secondly, to address the case "e" misclassifications we add several new 
steps to classify class 7 vehicles with 5 or more axles. A typical class 7 with 5+ axles has 4+ closely spaced rear 
axles. This cluster of so many axles is unique among the observed vehicles can be used for identifying class 7 
vehicles with 5+ axles. The five-axle, class 7 vehicles' axle spacing distributions show that S2 and S3 fall between 1 
and 6 ft (where Sn denotes the n-th axle spacing), while S4 has a longer upper bound of 13.1 ft. When there are more 
than five axles the final axle spacing is similar to S4 in a five axle, class 7 vehicle, while the preceding spacings are 
similar to S2 and S3. 

Next, we looked at all of the remaining case "c" and "f" misclassifications in the I-70 dataset, and then 
progressively updated the decision tree by adding steps, reordering steps, and changing boundaries to eliminate most 
of these errors at I-70. For example, the ODOT axle-based classification decision tree tends to misclassify class 7 
vehicles with four axles as class 8 because the original decision tree checked for class 8 vehicles first and used 
boundaries that were too liberal. In the revised tree, we check for four axle class 7 vehicles before checking for class 
8, and use more stringent criteria for both classes. If any change increased the number of misclassifications in the I-
70 dataset, we kept the original conditions from the ODOT axle-based classification decision tree. 

Although the range of length classes for two adjacent vehicle types tend to overlap (especially PV and 
SUT, e.g., Figure 2-6), we found that when combined with the axle spacings, vehicle length can help differentiate 
between SUT and MUT. We explicitly incorporate length class when segmenting three-axle class 6 vehicles from 
class 4 and 8 vehicles. We believe length class could also help segment axle-class 7 vehicles from MUT with the 
same number of axles; however, we did not observe enough vehicles in these classes to develop the threshold for 
vehicles with more than three axles. 

Table 2-6 shows the resulting axle-based classification decision tree developed from on the I-70 dataset, 
after accounting for all of the above adjustments (compare to the original ODOT classification decision tree in Table 
B-2 in Appendix B). Note that this tree uses length class to select the three-axle class 6 vehicles, which catches five 
errors in the development dataset on I-70 that would occur if using axle spacing alone. The vehicle length test 
caught one more such error in the evaluation dataset after applying the decision tree to I-270. Aside from these six 
errors, the performance will not change if the length criterion is removed. 
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Table 2-4, Comparison between the pvr axle-class and ground truth vehicle type in (a) the I-270 
dataset,(b) the I-70 dataset, and (c) the SR-33 dataset. 

(a) 
pvr axle versus 
ground-truth 

pvr axle class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 6985 1 28 99.6% 
SUT 87 203 26 64.2% 
MUT 20 5 694 96.5% 

% of column 
correct 98.5% 97.1% 92.8% 97.9% 

(b) 
pvr axle versus 
ground-truth 

pvr axle class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 7494 3 21 99.7% 
SUT 107 255 56 61.0% 
MUT 13 18 1402 97.8% 

% of column 
correct 98.4% 92.4% 94.8% 97.7% 

(c) 
pvr axle versus 
ground-truth 

pvr axle class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 1127 2 4 99.5% 
SUT 14 44 16 59.5% 
MUT 0 1 47 97.9% 

% of column 
correct 98.8% 93.6% 70.1% 97.1% 
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Table 2-5, Comparison between the pvr length-class and ground truth vehicle type in (a) the I-270 
dataset, (b) the I-70 dataset, and (c) the SR-33 dataset. 

(a) 
pvr length versus 
ground-truth 

pvr length class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 6867 118 29 97.9% 
SUT 26 286 4 90.5% 
MUT 0 11 708 98.5% 

% of column 
correct 99.6% 68.9% 95.5% 97.7% 

(b) 
pvr length versus 
ground-truth 

pvr length class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 7397 82 39 98.4% 
SUT 148 262 8 62.7% 
MUT 10 20 1403 97.9% 

% of column 
correct 97.9% 72.0% 96.8% 96.7% 

 (c) 
pvr length versus 
gound-truth 

pvr length class 
% of row correct 

PV SUT MUT 

Manual 
ground truth 

PV 1117 14 2 98.6% 
SUT 19 54 1 73.0% 
MUT 1 3 44 91.7% 

% of column 
correct 98.2% 76.1% 93.6% 96.8% 
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Figure 2-6, Length versus axle spacing of two-axle vehicles at the I-270 station (a) all PV, (b) all SUT, 

(c) all PV and SUT combined, highlighting the SUT-axle misclassified as PV by the axle 
boundary. 
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Due to the relatively small number of observations and larger variability in axle spacing, there are many 
SUT and MUT axle classes that would likely benefit from further data collection and decision tree refinement. 
Finally, note that this decision tree was tuned to the vehicles on central Ohio freeways. Obviously the decision tree 
would need further refinement if other axle configurations were present. 

2.4.1 Evaluating the New Axle-Based Classification Decision Tree 
To evaluate the performance of the new axle-based classification decision tree, we repeat the analysis from 

Table 2-2, comparing the axle-based classification results against the ground truth vehicle class. We apply the new 
decision tree first to the development dataset, Table 2-7(b), and then the evaluation dataset, Table 2-8(b). For 
reference, part (a) in both tables show the results from the original ODOT decision tree. In each table the numbers 
with a double strikethrough are unavoidable due to errors from overlapping ranges of axle spacing (case “b”, case 
“c”, case “f”) and the numbers in parentheses are also unavoidable, due to the sensors reporting an incorrect number 
of axles (case “d”). Comparing Table 2-7(a) and (b), excluding the errors between PV classes, on I-70 there are 201 
unavoidable errors due to case “b”, “c”, “d” or “f” from the ODOT classifier and 197 from the new axle-based 
classification decision tree. The small difference in unavoidable errors is simply noise, due to slight changes in the 
boundaries (e.g., if the boundary in Figure 2-5(a) moves slightly, the observed net error rate might change but there 
is little room for the expected net error rate to improve). The numbers in the black cells are potentially avoidable 
misclassifications that arise from the given classification decision tree. There are 59 such misclassifications in Table 
2-7(a) due to the ODOT axle-based classification decision tree but only 1 in Table 2-7(b) from the new axle-based 
classification decision tree.  

Repeating this comparison in the evaluation dataset on I-270, Table 2-8, we observe similar trends both in 
terms of unavoidable and avoidable misclassifications. The most noticeable difference from the development dataset 
is the larger number of two-axle vehicles that were assigned class 13 by the existing ODOT axle-based classification 
decision tree. In both the development dataset and evaluation dataset the new axle-based classification decision tree 
greatly reduced the number of avoidable misclassifications errors. 

Table 2-9 and 2-10 reiterate the performance from the development and evaluation datasets at the coarser 
granularity of vehicle type. Part (a) in each table reiterates the results from Table 2-4. At this resolution on can see a 
roughly 10% improvement in the number of SUT that were correctly classified (row average). Since many of the 
now correctly classified SUT were erroneously classified as MUT by the ODOT axle-based classification decision 
tree, the percent of MUT classifications that are correct (column average) also improved by 4%-7%. 

2.5 Conclusions 
Vehicle classification stations are commonly used to sort vehicles into various classes based on observable 

features. Evaluating the pvr data as we do in this work is uncommon; both due to the inherent difficulty generating 
ground truth data, and the fact that normally the pvr classifications are binned by fixed time periods at which point 
the individual vehicle information is discarded. However, such conventional aggregation allows errors to cancel one 
another, which can obscure underlying problems. This study evaluated three permanent axle classification stations 
against concurrent video based ground truth in terms of axle-based and length-based classification. Only 3%-4% of 
the vehicles were misclassified, however, the relative impacts were much larger on the trucks, e.g., only 60% of the 
SUT were correctly classified as SUT by the existing axle-based classification decision tree. 

Diagnosing the axle classification errors, it was found that all of them could be attributed to one of six 
causes. About a third of the errors among class 4-13 can be easily fixed by redefining the decision tree, e.g., 
ensuring that there are no gaps between successive classes and adding an additional outcome from the tree to 
indicate a vehicle is unclassifiable. Our revised decision tree is shown in Table 2-6. After making these changes, the 
new axle-based classification decision tree was able to correctly classify an additional 10% of the SUT, with smaller 
improvements in almost every other metric. Ideally the new decision tree should be deployed at a few new locations 
and the performance validated, then assuming no problems are found, be adopted as the new standard classification 
decision tree. In any event, most of the improvements of the decision tree should be incorporated in to standard 
practice (closing the gaps between bins, adding an "unclassifiable" class, and allowing for more than 4 axles in axle 
class 7). 

One chronic error found in this research is intrinsic to the vehicle fleet and may be impossible to correct 
with the existing sensors; namely, the shorter, SUT have a length range and axle spacing range that overlaps with 
PV. Depending on the calibration, the error may be manifest as SUT counted as PV or vice versa. As discussed in 
the literature review, this PV/SUT blurring appears to impact other sensors as well. In any case, one should expect 
such errors at most classification stations. All subsequent uses of the classification data (e.g., planning and 
measuring freight flows) must accommodate this unavoidable blurring of SUT with PV. The blurring also means 
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that one cannot blindly use an axle classification station to calibrate the boundary between PV and SUT for length-
based classification stations, otherwise, the unavoidable errors in the axle classification will be amplified in the 
length-based classification scheme.  
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Table 2-6, New axle-based classification decision tree, developed from the I-70 dataset ground truth. For 
each vehicle, the classifier will progress downward through the table until the vehicle first 
satisfies one condition, at which point the classifier stops and assigns that class to the vehicle.  

# of 
axles Class Class name Length Axle Spacing (ft) Index 

2 1 Motorcycle  1~5.9 M 
2 2 Car  5.9~10.3 M 
2 3 other 2axle, 4tire, single-unit veh.  10.3~15  
2 5 2 axle, 6tire, single-unit truck  15~24 M 
2 4 Bus  23.5~99.9  
3 6 3 axle single unit truck 0~40.5ft any, 3.5~8 R 
3 1 Motorcycle  1~5.9, any M 
3 2 Car  5.9~10.3, 10~18.8 M 
3 3 other 2axle, 4tire, single-unit veh.  10.3~15, 10~18.8  
3 4 Bus  23.5~99.9, any  
3 8 4 or fewer axle single-trailer truck  any, any M 
4 7 4 or more axle single-unit truck  any, 1~6, 1~13.1 M, R 
4 8 4 or fewer axle single-trailer truck  any, any, 3.5~8 M, R 
4 8 4 or fewer axle single-trailer truck  any, 3.5~8, any M, R 
4 2 Class 2 pulling a trailer  1~10.3, any, any M 
4 3 Class 3 pulling a trailer  10.3~15, any, any M 
4 4 Bus pulling a trailer  23.5~99.9, any, any A 
4 4 Bus pulling a car  any, 17~99.9, 5.9~99.9 A 
4 8 4 or fewer axle single-trailer truck  any, any, any A 
5 7 4 or more axle single-unit truck  any, 1~6, 1~6, 1~13.1 A 
5 11 5 or fewer axle multi-trailer truck  any, 17~99.9, any, 6~99.9 M, R 
5 9 5 axle single-trailer truck  any, 17~99.9, any, 3.5~11 A 
5 9 5 axle single-trailer truck  any, 3.5~11, any, 3.5~11 M, R 
5 2 Class 2 pulling a trailer  1~10.3, any, 1~3.5, 1~3.5 M 
5 3 Class 3 pulling a trailer  10.3~15, any, 1~3.5, 1~3.5  
5 9 5 axle single-trailer truck  any, any, any, any A 
6 7 4 or more axle single-unit truck  any, 1~6, 1~6, 1~6, 1~13.1 A 
6 10 6 or more axle single-trailer truck  any, 1~8, 1~8, any, 8~99.9 M 
6 12 6 axle multi-trailer truck  any, any, any, any, 8~99.9  
6 10 6 or more axle single-trailer truck  any, any, any, any, 1~8 M 
7 7 4 or more axle single-unit truck  any, any, 1~6, any, any A 
7 10 6 or more axle single-trailer truck  any, any, any, 1~8, 1~8 M 
7 13 7 or more axle multi-trailer truck  any, any, any, any, any, any A 
8 10 6 or more axle single-trailer truck  any, 1~8, 1~8, any, 1~8, 1~8, 1~8 A 
8 13 7 or more axle multi-trailer truck  any, any, any, any, any, any, any A 

9+ 13 7 or more axle multi-trailer truck  any, any, any, any, any, any, any, any A 
any 14 Unclassified vehicle  others A 

M: Modified step from ODOT decision tree (changes are highlighted with bold text) 
R: Reordered step from ODOT decision tree 
A: Newly added step. 
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Table 2-6,  continued- repeating the results in metric units. 

# of 
axles Class Class name Length Axle Spacing (m) Index 

2 1 Motorcycle  0.3~1.8 M 
2 2 Car  1.8~3.1 M 
2 3 other 2axle, 4tire, single-unit veh.  3.1~4.6  
2 5 2 axle, 6tire, single-unit truck  4.6~7.3 M 
2 4 Bus  7.2~30.4  
3 6 3 axle single unit truck 0~12.3 m any, 1.1~2.4 R 
3 1 Motorcycle  0.3~1.8, any M 
3 2 Car  1.8~3.1, 3~5.7 M 
3 3 other 2axle, 4tire, single-unit veh.  3.1~4.6, 3~5.7  
3 4 Bus  7.2~30.4, any  
3 8 4 or fewer axle single-trailer truck  any, any M 
4 7 4 or more axle single-unit truck  any, 0.3~1.8, 0.3~4 M, R 
4 8 4 or fewer axle single-trailer truck  any, any, 1.1~2.4 M, R 
4 8 4 or fewer axle single-trailer truck  any, 1.1~2.4, any M, R 
4 2 Class 2 pulling a trailer  0.3~3.1, any, any M 
4 3 Class 3 pulling a trailer  3.1~4.6, any, any M 
4 4 Bus pulling a trailer  7.2~30.4, any, any A 
4 4 Bus pulling a car  any, 5.2~30.4, 1.8~30.4 A 
4 8 4 or fewer axle single-trailer truck  any, any, any A 
5 7 4 or more axle single-unit truck  any, 0.3~1.8, 0.3~1.8, 0.3~4 A 
5 11 5 or fewer axle multi-trailer truck  any, 5.2~30.4, any, 1.8~30.4 M, R 
5 9 5 axle single-trailer truck  any, 5.2~30.4, any, 1.1~3.4 A 
5 9 5 axle single-trailer truck  any, 1.1~3.4, any, 1.1~3.4 M, R 
5 2 Class 2 pulling a trailer  0.3~3.1, any, 0.3~1.1, 0.3~1.1 M 
5 3 Class 3 pulling a trailer  3.1~4.6, any, 0.3~1.1, 0.3~1.1  
5 9 5 axle single-trailer truck  any, any, any, any A 
6 7 4 or more axle single-unit truck  any, 0.3~1.8, 0.3~1.8, 0.3~1.8, 00.3~4 A 
6 10 6 or more axle single-trailer truck  any, 0.3~2.4, 0.3~2.4, any, 2.4~30.4 M 
6 12 6 axle multi-trailer truck  any, any, any, any, 2.4~30.4  
6 10 6 or more axle single-trailer truck  any, any, any, any, 0.3~2.4 M 
7 7 4 or more axle single-unit truck  any, any, 0.3~1.8, any, any A 
7 10 6 or more axle single-trailer truck  any, any, any, 0.3~2.4, 0.3~2.4 M 
7 13 7 or more axle multi-trailer truck  any, any, any, any, any, any A 

2.4 10 6 or more axle single-trailer truck  any, 0.3~2.4, 0.3~2.4, any, 0.3~2.4, 
0.3~2.4, 0.3~2.4 

A 
8 13 7 or more axle multi-trailer truck  any, any, any, any, any, any, any A 

9+ 13 7 or more axle multi-trailer truck  any, any, any, any, any, any, any, any A 
any 14 Unclassified vehicle  others A 

M: Modified step from ODOT decision tree (changes are highlighted with bold text) 
R: Reordered step from ODOT decision tree 
A: Newly added step. 
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Table 2-7, Comparison between the pvr axle-class and ground truth at I-70 (development set) using (a) the original ODOT classification 
decision tree, and (b) the new decision tree. 

(a) 

I-70 from ODOT classifier Axle based vehicle classification 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

FH
W

A
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fic
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class 1: Motorcycle 31 - - - - - - - - - - - - 
class 2: Car - 3663 21 - - - (2) - - - - - 1 
class 3: other 2axle, 4tire single-unit veh 1 2278 1500 - 1 - - 20 - - - - - 
class 4: Bus - - 1 2 11 - - 5 - - - - - 
class 5: 2 axle, 6tire, single-unit truck - 1 105 3 136 - - - - - - - - 
class 6: 3 axle single-unit truck - - - 1 - 95 (4) - - - - - 1 
class 7: 4 or more axle single-unit truck - - - - - (1) 1 2 9 39 - - - 
class 8: 4 or fewer axle single-trailer truck - - 12 - - (1) 1 55 - - - - - 
class 9: 5 axle single-trailer truck - (1) - - - (15) - (10) 1236 (1) 1 - - 
class 10: 6 or more axle single-trailer truck - - - - - (1) - (1) (6) 29 - - - 
class 11: 5 or fewer axle multi-trailer truck - - - - (1) - - (2) - - 46 - - 
class 12: 6 axle multi-trailer truck - - - - - - - - - - - 14 - 
class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

 
= Misclassifications from overlapping range of axle spacing (e.g., case “b”, “c”, “f”), 
( ) Misclassifications from missing axles (e.g., case “d”), 
 Misclassifications from the given decision tree 
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Table 2-7, continued 

 (b) 
I-70 from new axle-based 
classification decision tree 

Axle based vehicle classification 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

FH
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class 1: Motorcycle 31 - - - - - - - - - - - - 
class 2: Car - 3663 21 - - - (2) (1) - - - - - 
class 3: other 2axle, 4tire single-unit veh 1 2278 1499 - 1 - - 21 - - - - - 
class 4: Bus - - 1 7 11 - - - - - - - - 
class 5: 2 axle, 6tire, single-unit truck - 1 102 2 140 - - - - - - - - 
class 6: 3 axle single-unit truck - - - 1 - 95 (4) 1 - - - - - 
class 7: 4 or more axle single-unit truck - - - - - (1) 51 - - - - - - 
class 8: 4 or fewer axle single-trailer truck - - 10 - - (1) - 58 - - - - - 
class 9: 5 axle single-trailer truck - (1) - - - (12) - (13) 1237 (1) - - - 
class 10: 6 or more axle single-trailer truck - - - - - (1) - (1) (6) 29 - - - 
class 11: 5 or fewer axle multi-trailer truck - - - (2) (1) - - - - - 46 - - 
class 12: 6 axle multi-trailer truck - - - - - - - - - - - 14 - 
class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

Note: In Table 2-7(b), the one in the black cell turns out to be class 6 but the axle configuration is not typical of the other class 6 vehicles 
observed.  
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Table 2-8, Comparison between the pvr axle-class and ground truth at I-270 (evaluation set) using (a) the original ODOT classification 
decision tree, and (b) the new decision tree. 

(a) 

I-270 from ODOT classifier Axle based vehicle classification 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

FH
W
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class 1: Motorcycle 
- 5881 1104 

- - - - - - - - - - 
class 2: Car - - - - - - - - - 26 
class 3: other 2axle, 4tire single-unit veh - - - 1 2 - - - - - 
class 4: Bus - - - 1 6 - - 3 - - - - - 
class 5: 2 axle, 6tire, single-unit truck - 6 81 4 111 - - - - - - - - 
class 6: 3 axle single-unit truck - - - - - 71 - - - - - - - 
class 7: 4 or more axle single-unit truck - - - - - (1) 9 - 2 21 - - - 
class 8: 4 or fewer axle single-trailer truck - - 8 1 - - 4 29 - - - - 1 
class 9: 5 axle single-trailer truck - (8) 1 - - - - (4) 616 - - - - 
class 10: 6 or more axle single-trailer truck - (2) - - - - - (1) - 13 - - 1 
class 11: 5 or fewer axle multi-trailer truck - (1) - - - - - - - - 20 - - 
class 12: 6 axle multi-trailer truck - - - - - - - - - - - 8 - 
class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

 
= Misclassifications from overlapping range of axle spacing (e.g., case “b”, “c”, “f”), 
( ) Misclassifications from missing axles (e.g., case “d”), 
 Misclassifications from the given decision tree 
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Table 2-8, continued 

 
(b) 

I-270 from new axle-based 
classification decision tree 

Axle based vehicle classification 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

FH
W
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class 1: Motorcycle 
- 5907 1106 

- - - - - - - - - - 
class 2: Car - - - - - - - - - - 
class 3: other 2axle, 4tire single-unit veh - - - - 1 - - - - - 
class 4: Bus - - - 4 6 - - - - - - - - 
class 5: 2 axle, 6tire, single-unit truck - 6 81 4 111 - - - - - - - - 
class 6: 3 axle single-unit truck - - - - - 71 - - - - - - - 
class 7: 4 or more axle single-unit truck - - - - - (1) 32 - - - - - - 
class 8: 4 or fewer axle single-trailer truck - - 8 1 1 - - - 33 - - - - - 
class 9: 5 axle single-trailer truck - (8) - - - - - (4) 617 - - - - 
class 10: 6 or more axle single-trailer truck - (2) - - - - - (1) - 14 - - - 
class 11: 5 or fewer axle multi-trailer truck - (1) - - - - - - - - 20 - - 
class 12: 6 axle multi-trailer truck - - - - - - - - - - - 8 - 
class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

Note: In Table 2-8(b) the one in the black cell turns out to be class 5 pulling a car but the new axle-based classification decision tree classified it as 
a bus pulling a car.
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Table 2-9, Comparison between the pvr axle-class and ground truth at I-70 (development set) using (a) 
the original ODOT classification decision tree, and (b) the new decision tree. 

(a) 
I-70 from 
ODOT classifier 

pvr axle class 
% of row correct 

Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 7494 3 21 99.7% 
SUT 107 254 56 60.9% 
MUT 13 19 1402 97.8% 

% of column 
correct 98.4% 92.0% 94.8% 97.7% 

(b) 
I-70 from new 
decision tree 

pvr axle class 
% of row correct 

Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 7494 3 22 99.7% 
SUT 104 312 1 74.8% 
MUT 11 17 1406 98.0% 

% of column 
correct 98.5% 94.0% 98.4% 98.3% 

 

Table 2-10, Comparison between the pvr axle-class and ground truth at I-270 (evaluation set) using (a) 
the original ODOT classification decision tree, and (b) the new decision tree. 

(a) 
I-270 from 
ODOT classifier 

pvr axle class 
% of row correct 

Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 6985 1 28 99.6% 
SUT 87 203 26 64.2% 
MUT 20 5 694 96.5% 

% of column 
correct 98.5% 97.1% 92.8% 97.9% 

(b) 
I-270 from new 
decision tree 

pvr axle class 
% of row correct 

Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 7013 0 1 100% 
SUT 87 229 0 72.5% 
MUT 19 2 698 97.1% 

% of column 
correct 98.5% 99.1% 99.9% 98.6% 
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3 SIDE-FIRE LIDAR BASED VEHICLE CLASSIFICATION 

3.1 Introduction 
Vehicle classification data are used in many transportation applications, including: pavement design, 

environmental impact studies, traffic control, and traffic safety [1]. There are several classification methods, 
including: axle-based (e.g., pneumatic tube and piezoelectric detectors), vehicle length-based (e.g., dual loop and 
some wayside microwave detectors), as well as emerging machine vision based detection. As noted by the Traffic 
Monitoring Guide [1], each sensor technology has its own strengths and weaknesses regarding costs, accuracy, 
performance, and ease of use. 

In the present study we add another technology to the mix and develop a vehicle classification algorithm 
for LIDAR (Light detection and ranging) sensors mounted in a side-fire configuration. Our prototype system 
consists of two LIDAR sensors mounted on the driver's side of a probe vehicle parked alongside the roadway. Each 
LIDAR scans a vertical plane across the roadway, providing a rich view of the passing vehicles. In practice, the 
LIDAR sensors could be mounted on a temporary deployment platform like this system, or permanently mounted on 
a pole adjacent to the roadway. 

To classify vehicles, first we segment them from the background, next we look for possible occlusions 
using algorithms developed herein, and then we measure several features of size and shape for each vehicle. These 
features are subsequently used for classification into six categories. The classification algorithm is evaluated by 
comparing the individual vehicle results against concurrent video. Occlusions are inevitable in this proof of concept 
study since the LIDAR sensors were mounted roughly 6 ft above the road, well below the tops of many vehicles. 
The present work focuses primarily on the non-occluded vehicles. Ultimately we envision using a combination of a 
higher vantage point in future work (similar to wayside microwave detectors), and shape information (begun herein) 
to greatly reduce the impacts of occlusions. 

LIDAR technology has been applied in various transportation applications, such as highway safety [12-13] 
and highway design [14-15]. There have been a few demonstrations of LIDAR or related optical range finding 
technologies to monitor traffic and sometimes classify the vehicles. The most notable example being the Schwartz 
Autosense [16], which consisted of a sensor mounted over the lane of travel; though this basic approach pre-dates 
the Autosense system [17]. While the overhead view eliminates occlusions, the need to mount the sensor over the 
roadway makes deployment more difficult. Others have contemplated using airborne LIDAR platforms for traffic 
monitoring [18-19]. For example, [19] collected LIDAR imagery data over transportation corridors, segmented 
individual vehicles from the road surface, and then extracted six parameters of vehicle shape and size for each 
vehicle. They classified vehicles in three categories (passenger vehicles, multi-purpose vehicles, and trucks) using 
principle component analysis. Finally, our group has also contemplated the use of LIDAR to classify vehicles from a 
moving platform [20-21]. 

The remainder of this chapter is organized as follows. First the process of collecting the LIDAR data and 
the procedure of segmenting the vehicles from the background are presented. Next, the LIDAR based vehicle 
classification algorithm is developed. Third, the algorithm is evaluated on a per-vehicle-basis against concurrent 
video ground truth from field data at six directional locations, exhibiting various traffic conditions, distance between 
LIDAR and target vehicles, and road type (freeway and arterial road). The evaluation dataset includes over 25,000 
vehicles (23,000 non-occluded). Then, the chapter closes with conclusions. 

3.2 LIDAR Measurements and Vehicle Detection  
Figure 3-1(b) shows an overhead schematic of the prototype deployment. The two LIDAR sensors are each 

mounted at a height of about 6.7 ft above ground and they are 4.6 ft apart from one another. Each LIDAR sensor 
scans a vertical plane across the roadway at roughly 37 Hz. Each scan sweeps 180°, returning the distance to the 
nearest object (if any) at 0.5° increments with a ranging resolution of 0.1 inch and a maximum range of 262 ft. So 
each scan returns 361 samples in polar coordinates (range and angle) relative to the LIDAR sensor and these data are 
transformed into a Cartesian coordinate system (lateral distance and relative height) for analysis. 

Using these LIDAR data, vehicle segmentation is split into two steps. First we distinguish between vehicle 
returns and non-vehicle returns (e.g., pavement, foliage, barriers, etc.). Then we cluster the vehicle returns into 
discrete vehicles. 
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Figure 3-1, A hypothetical example of a vehicle passing by the two side-fire LIDAR sensors: (a) in 

time-space place; (b) a top-down schematic of the scene; and the corresponding returns 
from the vehicle from (c) the rear LIDAR sensor and (d) the front LIDAR sensor. 

 
 (a) (b) 

   
Figure 3-2, (a) the LIDAR data collection on I-270 southbound, on the west side of Columbus, Ohio; 

and (b) the corresponding background curve extracted from the data. 
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To segment the vehicle and non-vehicle returns we adapt background subtraction techniques from 
conventional image processing. The LIDAR are fixed, so when no vehicles are present they will return nearly 
identical scans of the background. Thus, the background's range at a given angle is (roughly) constant and over time 
the background returns are the dominant range reported at each angle. Formalizing this concept to extract the 
background from the LIDAR data, we set the background equal to the median range at each angle as observed over 
an extended time period with largely free flowing traffic. Whenever a vehicle is present, the vehicle's returns can 
only be at a range that is closer than the background range for the given angle. So in the absence of free flowing 
traffic, one could instead take the distribution of observed ranges at a given angle and set the background equal to 
the furthest mode of the distribution. 

Figure 3-2(a) shows the data collection on I-270 southbound, on the west side of Columbus, Ohio. The 
probe vehicle was parked just off of the right hand shoulder to collect LIDAR data. Figure 3-2(b) shows the 
corresponding background that was extracted from the LIDAR data. Because the van would occasionally roll a small 
amount about its central axis as personnel entered or exited the vehicle during the data collection, returns from the 
background did not always fall on the measured background curve. All returns falling beyond the background curve 
as well as any returns that were within an inch above the background curve were considered non-vehicle returns and 
excluded from further analysis. However, if the low-lying returns prove critical to a subsequent application, one 
could estimate the LIDAR's instantaneous angle relative to the shoulders (0-11.8 ft, and 47.2-65.6 ft in Figure 3-
2(b)) and normalize this angle across scans. 

Only vehicle returns should remain after removing the background, however, these returns still need to be 
clustered into individual vehicles and we take the following steps to do so. First we establish the lane boundaries by 
looking at the distribution of the lateral distance across the vehicle returns. We expect to see one distinct mode per 
travel lane, corresponding to the near side of the vehicles when traveling in the given lane since the vertical edges on 
the vehicles will generally yield many returns at the same lateral distance; though, there will be other returns in the 
distribution from horizontal vehicle surfaces, vehicles changing lanes, and so forth. Provided the LIDAR sensors are 
not moved, this step only needs to be done once, using a few minutes of data.  

Second, in each scan we segment the LIDAR returns by lane using the lane boundaries from the previous 
step. As long as a vehicle travels within a lane, all of the returns from that vehicle will fall between the respective 
lane boundaries in the given scan. In most cases even a single return in the lane will be taken as that lane being 
occupied in that scan. However, in the relatively rare cases when a vehicle changes lanes as it passes the LIDAR, 
that vehicle's returns may fall into two adjacent lanes (we saw this event occur 253 times out of 27,450 vehicles). To 
find the cases when a single vehicle is seen in adjacent lanes, we explicitly look for concurrent returns in 
neighboring lanes. When this occurs, we take the mode of lateral distance in the near lane and the far lane, 
respectively. Again, the nearside of a vehicle is characterized by a large number of returns at a given lateral distance, 
i.e., the mode lateral distance within the lane. If in the given scan the difference between the modes in successive 
lanes is less than the maximum feasible vehicle width (set to 8.5 ft, the maximum width of commercial motor 
vehicles [22]), the vehicle returns in the adjacent lanes are assumed to come from a single vehicle and are grouped 
together in the lane corresponding to the median lateral distance among the set of returns in question. Otherwise, the 
two modes are too far apart to come from a single vehicle and the groups are kept separate. Obviously this approach 
assumes that at most one vehicle can occupy a lane in a given scan; although we know that it is not always the case, 
e.g., when two motorcycles pass side by side within a lane, we have yet to observe any such exceptions in the 
LIDAR data so addressing these exceptions is left to future research.  

Third, taking the temporal sequence by lane, the returns are clustered into vehicles. After each scan is 
processed, whenever a given lane is occupied, if there is not already an open vehicle cluster in that lane then a new 
vehicle cluster is begun with the corresponding returns; otherwise, the corresponding returns are added to the open 
vehicle cluster in that lane. On the other hand, if there is an open vehicle cluster and the lane has not been occupied 
for at least 1/4 sec (roughly 9 scans) then the open vehicle cluster is closed. To be retained, a closed vehicle cluster 
must span at least two scans and at least two of the scans must have different heights, otherwise, the vehicle cluster 
is discarded. Because the returns in a scan are grouped by lane before the clustering step and we make the above 
correction for vehicles changing lanes, it is theoretically possible for two neighboring vehicles to be erroneously 
clustered together. Though we have not seen this problem occur, to safeguard against it, if the net width of a closed 
cluster is greater than the maximum feasible vehicle width then the cluster is split in two, by lane. On the other hand, 
it is possible for a vehicle changing lanes to be assigned to different lanes at different time steps, resulting in 
separate clusters in each lane. To catch these breakups, when a cluster ends in one lane, we check the next scan to 
see if a new cluster begins in an adjacent lane a small distance away, i.e., if the difference between the mode lateral 
distance is less than 1.1 ft, the two clusters are merged together and assigned to the lane with the larger cluster. The 
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segmentation and clustering steps are repeated for each lane across each successive LIDAR scan until all of the 
vehicle returns have been clustered into discrete vehicles.  

3.2.1 Occlusion Reasoning 
A key step in classifying a given vehicle is determining whether the entire vehicle was seen or if there was 

evidence of a partial occlusion. Table 3-1 shows that the latter case arose for about 12% of the vehicles observed on 
the multilane facilities. The frequency is so small because the spacing between vehicles is typically much larger than 
one might think, e.g., according to the HCM [23], LOS F on a freeway begins at 46 passenger cars per mile per lane 
or 117 ft per passenger car and passenger cars are generally on the order of 10-20 ft long. In any event, partially 
occluded vehicles are likely to be misclassified in our algorithm if the occlusion is not identified and handled 
separately from the non-occluded vehicles. Of course from the LIDAR data stream we cannot detect completely 
occluded vehicles, though we found these errors occurred between 3-6% in the three multilane datasets that had an 
independent detector to monitor occluded lanes (I-71 and I-270 in Table 3-1), and as one might expect, most of these 
occluded vehicles were passenger vehicles. A higher vantage point or using a second set of LIDAR to also monitor 
from the median of the roadway should reduce the frequency of completely occluded vehicles. 

For any given vehicle cluster we suspect a partial occlusion occurred unless we see at least one non-vehicle 
return on all sides of the cluster (both temporally and spatially). To automatically detect partially occluded vehicles, 
first we check the vehicles seen in each scan of the LIDAR. If we cannot see the background curve between a given 
pair of vehicles the further vehicle is suspected of being partially occluded by the closer vehicle. Second, we check 
successive scans, if one vehicle is seen at a given angle in scan i, and a different vehicle is seen at the same angle in 
scan i+1, whichever vehicle cluster is further away is considered to be partially occluded. 

3.3 LIDAR Based Vehicle Classification Algorithm 
In this section we develop an algorithm to classify the vehicle clusters extracted from the LIDAR data in 

the previous section. The core algorithm focuses on the non-occluded vehicles and sorts them into six vehicle 
classes: motorcycle (MC) - axle class 1, passenger vehicle (PV) - axle class 2-3, PV pulling a trailer (PVPT) - axle 
class 2-3, single-unit truck/bus (SUT) - axle class 4-7, SUT pulling a trailer (SUTPT) - axle class 8-13, and multi-
unit truck (MUT) - axle class 8-13. Note that the distribution of axle class to group differs slightly depending on 
whether we use three groups (Chapter 2), six groups (Chapter 3), or four groups (Chapter 3 & 4). These classes are a 
refinement of commonly used length-based classes (as noted in [1], a user might not need the full 13 axle-based 
classes and three or four simple categories may suffice). After classifying the non-occluded vehicles we separately 
handle the partially occluded vehicles, taking care to address the uncertainty about what went unobserved.  

We derived the vehicle classification algorithm using a ground truth development dataset that consists of 24 
min of free flow data collected across four lanes on I-71 southbound in Columbus, Ohio, between 11th Ave and 17th 
Ave on July 9, 2009. There were 1,502 non-occluded vehicles in this dataset and all of the vehicle classifications 
were manually verified from the video ground truth data. The two primary vehicle features used by the classification 
algorithm are length and height measured from the individual vehicle clusters, as shown in Figure 3-3(a). Compared 
to using length alone, as would be done from loop detectors (see, e.g., [2]), vehicle height helps separate different 
vehicle classes (e.g., SUT and PVPT). However, the boundaries of various classes still overlap in the length-height 
plane. To segregate vehicles pulling trailers we calculate up to six additional measurements of the vehicle's shape 
(for a total of eight shape measurements), as enumerated below and explained in the following subsections. 

• Vehicle length (VL)  
• Vehicle height (VH) 
• Detection of middle drop (DMD) 
• Vehicle height at middle drop (VHMD) 
• Front vehicle height (FVH) 
• Front vehicle length (FVL) 
• Rear vehicle height (RVH) 
• Rear vehicle length (RVL) 
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Table 3-1, Summary of LIDAR data collected to evaluate the algorithm and the performance of the 
algorithm by each dataset. 

Data 
type 

Road 
type 

Location 
(direction) 

 
Num- 

ber 
of  

lanes 

 
Date 

 

Dura- 
tion 
(hr: 
min) 

Distance 
between 
LIDAR 

sensor and 
the nearest 
travelled  
lane (ft) 

Average 
of the 

LIDAR 
speeds  

over the 
duration 
(mph) 

Number 
of 

vehicles 
seen 
by  

LIDAR 

Number 
of 

partially 
occluded 
vehicles 

Number 
of 

totally 
occluded 
vehicles 

Performance of 
the algorithm 

%  
errors 

Time 
period 

(Start time ~ 
End time) 

Success Errors 

Develop- 
ment 

Free- 
way 

I-71 
(SB) 4 July 9, 2009 18:09 ~ 18:33 0:24 58 63 1,813 311 65 1,494 8 0.5% 

Evalua- 
tion 

Free- 
way 

I-71  
(SB) 4 Nov 19, 2009 07:41 ~ 08:09 0:28 58 47 2,619 591 145 2,021 7 0.3% 

I-270  
(SB) 3 Nov 2, 2010 09:29 ~ 14:29 5:00 15 65 13,397 1,376 422 11,934 87 0.7% 

SR-315  
(NB) 2 Aug 12, 2010 14:57 ~ 17:57 3:00 2 41 6,900 660 n/a 6,230 10 0.2% 

Subtotal of Evaluation  
Freeway - 8:28 - - 22,916 2,627 567 20,185 104 0.5% 

Arterial  
Rd. 

Dublin Rd  
(SB) 1 Oct 28, 2010 07:32 ~ 08:57 

14:30 ~ 15:55 2:50 2 36 1,344 - - 1,337 7 0.5% 

Wilson Rd 
(NB) 1 Oct 28, 2010 09:08 ~ 09:56 

16:02 ~ 16:54 1:40 2 36 666 - - 664 2 0.3% 

Wilson Rd  
(SB) 1 Oct 28, 2010 10:18 ~ 10:58 

17:00 ~ 18:00 1:40 2 38 711 - - 710 1 0.1% 

Subtotal of Arterial Rd. - 6:10 - - 2,721 - - 2,711 10 0.4% 

Evaluation data total - 14:38 - - 25,637 2,627 567 22,896 114 0.5% 

Overall total - 15:02 - - 27,450 2,938 632 24,390 122 0.5% 

 

 
 

   
Figure 3-3, (a) A scatter plot of vehicle height and vehicle length of 1,502 non-occluded vehicles from 

the development dataset; and (b) the cumulative distribution of DMD for these vehicles. 
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3.3.1 Vehicle Length (VL) and Vehicle Height (VH) 
The two side LIDAR sensors are mounted in a “speed-trap” configuration with 4.6 ft spacing. Any moving 

target will appear at different times in the two views, thereby allowing for speed measurement. Figure 3-1(a) shows 
a hypothetical example of the time-space diagram as a vehicle passes by the two LIDAR sensors and Figure 3-1(b) 
shows the corresponding schematic on the same distance scale. In this study a vehicle passes the rear LIDAR sensor 
first and then the front LIDAR sensor. Figure 3-1(c) and (d) show the vehicle returns from each of the two LIDAR 
sensors as the vehicle passes, where FT and LT respectively denote the first and last time samples in which the 
vehicle was scanned by the given LIDAR (subscript "r" for rear and "f" for front). OnTf and OnTr indicate the 
duration of time that a vehicle is scanned by the given LIDAR sensor, i.e., the on-time, where OnTx = LTx - FTx, and 
x is either “r” or “f”. Meanwhile, the traversal time is defined as the difference between the first scan time at the two 
sensors, i.e., TTFT = FTf – FTr, or the last scan time, i.e., TTLT = LTf – LTr. Speed is calculated via Equation (3.1) 
from the LIDAR spacing, D, and the traversal time. Vehicle length (VL) is calculated from the mean of VFT and VLT, 
multiplied by OnTr (we arbitrarily select the rear LIDAR on-time in this study), yielding Equation (3.2). Finally, 
vehicle height (VH) is directly measured from the difference of the highest relative height and the lowest relative 
height across all of the returns in the given vehicle cluster from the rear LIDAR, yielding Equation (3.3). By using 
the difference in cluster heights, this step accounts for the fact that the road cross-section is not flat, each lane may 
be at a different height relative to the LIDAR sensor. 

LT
LT

FT
FT TT

DV,
TT
DV ==

 (3.1) 

rLTFT OnT)V,V(meanVL ×=  (3.2) 

cluster)t(h],LT,FT[t,))t(hmin())t(hmax(VH rr ∈∀∈∀−=   (3.3) 

where h(t) is height of a LIDAR return relative to a height of LIDAR sensor at time t. 
Figure 3-3(a) shows a scatter plot of vehicle height versus vehicle length for the 1,502 non-occluded 

vehicles from the development dataset sorted by the six vehicle classes. The VH for almost all of the MC, PV and 
PVPT are below 8 ft, while VH for almost all of the SUT, SUTPT, and MUT are above 8 ft. As will be discussed 
shortly, the height of the trailer (or its load) is sometimes the tallest point on a PVPT or SUTPT and thus is reflected 
in VH for that vehicle. The observed VL are distributed between 5 ft and 89 ft, with a clear but overlapping 
progression from MC to PV to PVPT, and similarly from SUT to SUTPT to MUT. Based on this plot, we select VL 
= 7.5 ft as the dividing line between MC and PV. To segregate the remaining classes, we look for a characteristic 
"gap" before the start of a trailer (PVPT, SUTPT, and MUT) as follows. 

3.3.2 Detection of a Middle Drop in a Vehicle (DMD) 
The vertically scanning LIDAR captures the profile shape of the passing vehicles. This profile is useful to 

distinguish between vehicle classes with overlapping VL and VH ranges, e.g., SUT and MUT. For vehicles in these 
ranges, we look for the presence of a gap that is indicative of the start of a trailer, as manifest as one or more scans 
with a "drop" in the number of returns somewhere in the middle of the vehicle cluster. To determine whether a 
vehicle has such a middle drop, we first tally the number of LIDAR returns, nLR, as a function of each scan (i.e., 
time step) that the vehicle cluster was seen, yielding nLR(t). For example, Figure 3-4(a) shows the image of a 
pickup truck pulling a trailer (an example of PVPT) as it passes by the LIDAR sensors while Figure 3-4(b) shows 
the corresponding LIDAR returns from the vehicle cluster. Figure 3-4(c) shows the nLR(t) curve for the vehicle 
cluster. The curve does a good job highlighting the point where the trailer is connected to the pickup truck via the 
low nLR(t). Note that we deliberately use nLR(t) rather than the height of the vehicle because there are some trailers 
that have a return near the top of the gap even though most of the gap is open (e.g., tree trimming trucks). 

Formalizing the process, once the nLR(t) curve is obtained, the set of local minimum points on the curve 
are considered as potential locations of a middle drop in the vehicle's shape, where nLR(t*

i) denotes the i-th minima. 
Since the middle drop should correspond to relatively few LIDAR returns in the given scan (but not necessarily zero 
due to the connecting link, e.g., the hitch in Figure 3-4(a)), we assume that nLR at a middle drop must be less than 
the average of nLR(t) for the cluster across all times, nLR . So, we ignore i-th local minimum if it is greater than 
nLR . Formalizing this process, a given scan is considered a possible middle drop if it satisfies all of the conditions 
in Equation (3.4). 
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Figure 3-4, (a) A pickup truck pulling a trailer; (b) the corresponding vehicle cluster of returns and the 
various measurements used for vehicle classification; and (c) the number of returns by 
scan, capturing the vehicle shape. Note that time in Figure 3-4(c) is increasing to the left in 
this plot because the front of the vehicle is seen first and the vehicle orientation is presented 
consistent with the rest of the figure. 
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For each minima at t*
i, we take the difference of nLR(t) and nLR(t*

i) over all times, ( )rr LT,FTt∈ , 
denoted Δn(t, t*

i). We find max(Δn(t, t*
i)) over the α ft ahead of the scan at t*

i (α = 4 ft in this study), add it to 
max(Δn(t, t*

i)) for α ft behind the scan and divide the sum by nLR(t*
i), yielding the Sum of Relative Difference 

(SRD) via Equation (3.5) at each t*
i, i.e., SRD(t*

i). The use of distance rather than time is to make the algorithm 
robust to slow moving vehicles. Next we select the max SRD(t*

i) and call this value the Detection of Middle Drop 
(DMD) indicator, as expressed via Equation (3.6), and set t* equal to the corresponding t*

i. Figure 3-3(b) shows the 
cumulative distribution function of DMD for the 1,502 non-occluded vehicles by vehicle class in the development 
dataset. As expected PVPT, SUTPT and MUT have a wider range of DMD than MC, PV, and SUT. The latter three 
classes usually present zero DMD, indicative of a vehicle without a middle drop. 
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Based on the distributions in Figure 3-3(b), if DMD < 1, the vehicle is presumed to be a single unit vehicle 
that is not pulling a trailer. Only 1 vehicle out of 16 vehicles pulling a trailer had DMD < 1 (a PVPT with zero 
DMD), or 6%. In addition, 40 out of 48 MUT (83%) had DMD > 1. Figure 3-3(b) also shows that 6% of PV and 
15% of SUT had DMD > 1. From the development dataset, most of the vehicles with DMD < 1 can be correctly 
classified based on VL and VH. Correctly classifying the vehicles with DMD > 1 is the topic of the next section. 

3.3.3 Additional Measurements of a Vehicle with Middle Drop 
To correctly classify the vehicle clusters where DMD > 1, we segment a vehicle with middle drop into the 

front part of the vehicle (from the front bumper to the middle drop) and rear part of the vehicle (from the middle 
drop to the rear bumper). We then calculate the length of the front (FVL), height of the front (FVH), length of the 
rear (RVL), height of the rear (RVH), and the height of the vehicle at the middle drop (VHMD), as illustrated in 
Figure 3-4(b). Note that VH of a vehicle with middle drop corresponds to the maximum of FVH and RVH.  

Vehicle Height at Middle Drop (VHMD) 
The VHMD due to the hitch in PVPT or SUTPT should usually be lower than the VHMD due to the rear 

portion of a semi-trailer tractor in a MUT. We set a threshold height of the connection to be 2 ft. If VHMD is lower 
than this threshold the vehicle will be classified as either PVPT or SUTPT (depending on the FVL, discussed 
below). Otherwise, we need to check the other measurements to classify the vehicle. The VHMD is calculated via 
Equation (3.7) applied to the returns in the vehicle cluster. 

]LT,FT[t,))t(hmin())t(hmax(VHMD rr
* ∈∀−=   (3.7) 
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Front Vehicle Height (FVH) and Front Vehicle Length (FVL) 
The front part of a vehicle cluster with a true middle drop is either a PV, SUT, or the tractor of a MUT. As 

was shown in Figure 3-3(a), VH of SUT and MUT is usually higher than 8 ft, while VH of PV is usually lower than 
8 ft. So we use FVH calculated via Equation (3.8) to capture height of the front portion of the cluster and if the 
height is below 8 ft, the vehicle is classified as PVPT. Otherwise, we need to check the other measurements to 
classify the vehicle. 

 ]t,FT[t)),t(hmin())t(hmax(FVH *
r∈∀−=   (3.8) 

In the case of PVPT or SUTPT the FVL calculated via Equation (3.9) is the VL of the PV or SUT portion 
of the cluster. From the development dataset we found the minimum length of the PV portion of the PVPT is above 
15 ft. If the FVL is below 15 ft, we conclude that the middle drop is not due to a trailer and the vehicle is a single 
unit, PV or SUT. 

)FTt(VFVL r
* −×=   (3.9) 

Rear Vehicle Height (RVH) and Rear Vehicle Length (RVL) 
The rear part of a vehicle with a true middle drop is trailer in a PVPT, SUTPT or MUT. If the RVH 

calculated via Equation (3.10) is sufficiently low (below 2.4 ft in the algorithm based on the development dataset), it 
is considered to be an empty flatbed trailer behind a PV or SUT and the complete cluster will be classified as either 
PVPT or SUTPT depending on the other measurements. If the RVH is sufficiently high (above 12 ft in the algorithm 
based on the development dataset), it is considered to be a semi-trailer and the complete cluster will be classified as 
a MUT. Otherwise, we need to check the other measurements to classify the vehicle. The trailer length is captured 
by RVL, Equation (3.11). If RVL is below 28 ft, we assume this trailer cannot come from a semi-trailer truck. 

]LT,t[t,))t(hmin())t(hmax(RVH r
*∈∀−=   (3.10) 

)tLT(VRVL *
r −×=   (3.11) 

3.4 The LIDAR Based Vehicle Classification Algorithm 
The eight shape measurements and various tests described above are combined into the LIDAR based 

classification decision tree shown in Figure 3-5. This figure shows our classification algorithm for non-occluded 
vehicles that we produced, based on the development dataset. As noted above, before applying this algorithm we 
automatically differentiate between non-occluded and partially occluded vehicles. For the latter group we cannot be 
as precise as Figure 3-5 for our classification, as follows. 

3.4.1 Classifying Partially Occluded Vehicles 
While some information is missing about the partially occluded vehicles, the intersection between the 

occluded and the occluder dimensions bound the size of the occluded vehicle, i.e., the size of the occluded part of 
the vehicle is no larger than the size of the occluder vehicle. Being careful not to double count scans where both the 
occluder and occluded are seen "overlapping", the length of the non-overlapping portion of the occluder vehicle is 
measured and the length of the occluded vehicle is bounded by Equation (3.12). Overlapping is not an issue for 
height, and the height of the occluded vehicle is bounded by Equation (3.13). 

NOLco
est
oo VLVLVLVL −+≤≤  (3.12) 

Where, 
VLo

est = estimation of unknown actual vehicle length of the occluded vehicle, 

VLo = vehicle length seen from the occluded vehicle, 

VLc-NOL = vehicle length of non-overlapping portion of the occluder vehicle. 

)VH,VH(MaxVHVH co
est
oo ≤≤  (3.13) 

Where, 
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VHo
est = estimation of unknown actual vehicle height of the occluded vehicle, 

 
Figure 3-5, The decision tree underlying the non-occluded LIDAR based vehicle classification 

algorithm. 
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VHo = vehicle height seen from the occluded vehicle, 

VHc = vehicle height from the occluder vehicle. 

In this proof of concept study we only attempt to classify occlusions that involve two vehicles, though the 
principles could easily be extended to more complicated multi-vehicle occlusions. When classifying a partially 
occluded vehicle, the six classes are defined by static boundaries in the vehicle length and vehicle height plane, as 
shown in Figure 3-6 (compare to Figure 3-3). Because est

oVL  and est
oVH  each span a range, it is possible for a 

partially occluded vehicle to be associated with more than one class. 

3.5 Evaluation of the LIDAR Based Vehicle Classification Algorithm 
Thus far this research has used a single development dataset collected on July 9, 2009 to derive the 

classification algorithm. In addition to the development dataset, we collected three additional freeway datasets and 
three arterial datasets for evaluation. We used a total of just over 15 hrs of data: 24 min for development and the rest 
for evaluation. All of the datasets were collected in the Columbus metropolitan area. All locations were visited a 
single time in this study except for I-71, which we visited twice. The facility, number of lanes, date, time period, 
duration, and distance between the LIDAR sensors and travel lanes are shown in the first few columns of Table 3-1, 
while Appendix A provides further information about each site. The next four columns of Table 3-1 show the 
average speed over all vehicles seen in the data collection period, the number of vehicles seen, the number of 
vehicles that our algorithm labeled as partially occluded, and the number of totally occluded vehicles as counted by 
the detectors. Among the freeway datasets two come from free flow (5.4 hrs) and two from mild congestion (3.5 
hrs). All of the data sets come from clear weather conditions.  

Overall the algorithm suspected 2,938 out of 27,450 vehicles (11%) are partially occluded and these 
vehicles are excluded from the classification algorithm performance evaluation in Tables 3-1 and 3-2. Instead, we 
separately evaluate the classification performance on partially occluded vehicles at the end of this section. The 
highest rate of partially occluded vehicles occurred at the I-71 site on Nov 19, 2009 under mildly congested 
conditions (22.6%), while the lowest rate of partially occluded vehicles on the freeway segments occurred on SR 
315 (9.6%). Not surprisingly, across the four freeway datasets the percentage of partially occluded vehicles 
increased as the number of lanes increased and at the I-71 location, as congestion increased (17.2% in free flow and 
22.6% in mild congestion).  

The vehicle class was manually reduced from the video ground truth data for all 27,450 vehicles in these 
datasets and the partial occlusions were verified at that time (see Chapter 4 for an example of the data reduction 
tool). We also ran the classification algorithm from Figure 3-5 on the datasets and the last three columns of Table 
3-1 show the performance of the algorithm against the ground truth data. The errors are tallied on a per-vehicle 
basis, and thus, are not allowed to cancel one another across vehicles. Collectively, the algorithm correctly classifies 
24,390 out of 24,512 non-occluded vehicles (99.5%) and misclassifies 122 vehicles (0.5%). The error rate was low 
across all seven datasets taken separately, the largest error rate was only 0.7%. The distance between the LIDAR and 
the roadway does not appear to have a large effect even though the further away a target vehicle is the smaller 
portion of the LIDAR field of view it occupies (and thus, the fewer angles in a LIDAR scan that provide vehicle 
returns). Among the freeway datasets the performance appears to degrade slightly as the average speed increases due 
to the 37 Hz sampling rate, but with only four datasets, the number is not large enough to draw any firm 
conclusions. 

Table 3-2 shows the classification results by class against the ground truth data for all six evaluation 
datasets combined (see Appendix E for the results by station). The cells on the diagonal tally the number of vehicles 
where the LIDAR classification is the same as the ground truth classification, while the off-diagonal cells tally the 
incorrect vehicle classifications. The final row indicates the percentage correct among the vehicles assigned the 
given classification by the algorithm, while the second to the last column indicates percentage correct among the 
vehicles from the given class in the ground truth data. The last column tallies the number of partially occluded 
vehicles-by-class that are excluded from the non-occluded LIDAR based vehicle classification. Often an operating 
agency will group PVPT with PV and SUTPT with MUT, for reference, these supersets are shown in the table, 
denoted PV* and MUT*, respectively. If using the two supersets, 14% of the errors (16 vehicles) in Table 3-2 and 
16% of the errors (20 vehicles) in Table 3-1 would be eliminated. Overall, the algorithm correctly classified a total 
of 22,896 out of 23,010 vehicles (99.5%) in the evaluation datasets.  
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Table 3-2, Comparison of LIDAR based vehicle classification and actual vehicle class from the six 
evaluation ground truth datasets. 

From six evaluation 
datasets 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
occluded vehicles that  

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth  
data 

MC 31 3 0 0 0 0 34 91.2% 4 

PV* 
PV 10 20,762 3 15 0 0 20,790 99.9% 2,366 

PVPT 0 2 192 6 3 1 204 94.1% 25 
SUT 0 30 4 688 4 2 728 94.5% 61 

MUT* 
SUPT 0 0 6 2 31 6 45 68.9% 2 
MUT 0 0 3 9 5 1,192 1,209 98.6% 169 

Number of vehicles 
from LIDAR vehicle 

 classification 
41 20,797 208 720 43 1,201 23,010 99.5% 2,627 

% correct 75.6% 99.8% 92.3% 95.6% 72.1% 99.3% 99.5%   

 

 

 
Figure 3-6, The classification space for partially occluded vehicles. 
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The most common errors are between PV and SUT because the length and height ranges of these vehicles 
overlap (30 SUT misclassified as PV and 15 PV misclassified as SUT), accounting for 39% of all errors. Also of 
note, we see 10 PV misclassified as MC. All of these PV were confirmed to have exceptionally short length, e.g., a 
7.5 ft long commuter car (Smart Car). As with PV/SUT the MC/PV problem arises because the length and height 
ranges overlap between the two classes (3 MC were also misclassified as PV). This problem is not unique to 
LIDAR, the relatively new commuter cars will likely degrade the performance of most classification technologies 
when segregating MC. However, with the higher vantage point envisioned in our future research, the LIDAR should 
also be able to measure vehicle width, which should distinguish MC from commuter cars. 

Finally, the algorithm for classifying partially occluded vehicles was applied to 1.5 hrs of the I-270 dataset. 
There were 465 partially occluded vehicles detected and of these, 219 are placed into a single feasible class (47% of 
partially occluded vehicles) and only six of these (3%) are incorrectly classified. The remaining 246 partially 
occluded vehicles are assigned two more feasible vehicle classes. Within this set, 34 (14%) were assigned all six 
classes. Out of the remaining 212 vehicles, 96% had the correct class among the two or more classes assigned to the 
given vehicle. 

3.6 Conclusions 
This chapter developed and tested a side-fire LIDAR based vehicle classification algorithm. The algorithm 

includes up to eight different measurements of vehicle shape to sort vehicles into six different classes. The algorithm 
was tested over seven datasets collected at various locations (including one development dataset). The results were 
compared against the concurrent video-recorded ground truth data on a per-vehicle basis. Overall, 2,938 out of 
27,450 vehicles (11%) are suspected of being partially occluded and these vehicles are classified separately. 
Occlusions are inevitable given the low vantage point of the sensors in this proof of concept study. In future research 
we will investigate higher views (comparable to typical microwave radar detector deployments) to mitigate the 
impact of occlusions. These higher views should also provide additional features, e.g., vehicle width. Unlike video, a 
vehicle's width and height are easily separable in the LIDAR ranging data. The algorithm correctly classifies 24,390 
of the 24,512 non-occluded vehicles (99.5%). While most side-fire detectors have challenges with occluded 
vehicles, the algorithms developed by this project are able to work around those problems. When a vehicle was 
partially occluded, we calculate the range of feasible length and height. These ranges are then used to assign one or 
more feasible vehicle classes to the given vehicle. Among these partially occluded vehicles, 47% were assigned a 
single class and 97% of these were correct. 

Finally, this work also uncovered an emerging challenge facing most vehicle classification technologies: 
separating commuter cars from motorcycles. The two groups have similar lengths, axle spacing and height, though 
they differ in width and likely in weight. With increased interest in classifying motorcycles correctly, combined with 
more commuter cars on the road, there is a need to devise a means to separate the two types of vehicles. 

Alternatively, recognizing the difficulty in distinguishing pairs of vehicle classes with the existing detector 
infrastructure (e.g., commuter cars and motorcycles, short SUT and PV), there may be a need to create buffer classes 
to impart greater confidence in the reported classifications, e.g., adding a new "class 3 or class 5" bin to the axle-
based decision tree that takes the upper portion of axle class 3 and lower portion of axle class 5 axle spacings in 
Figure 2-3. Thus confining the uncertainty to a much smaller number of vehicles and ensuring much greater 
confidence that anything that is classified as "strictly class 5" is indeed axle class 5. 
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4 USING LIDAR TO VALIDATE THE PERFORMANCE OF VEHICLE 
CLASSIFICATION STATIONS  

4.1 Introduction 
Vehicle classification data are used in many transportation applications, including: pavement design, 

environmental impact studies, traffic control, and traffic safety [1]. There are several classification methods, 
including: axle-based (e.g., pneumatic tube and piezoelectric detectors), vehicle length-based (e.g., dual lop and 
some wayside microwave detectors), as well as emerging machine vision based detection. Each sensor technology 
has its own strengths and weaknesses regarding costs, performance, and ease of use. As noted in the Traffic 
Monitoring Guide [1], the quality of data collected depends on the operating agency to periodically calibrate, test, 
and validate the performance of classification sensors. However, such a periodic performance monitoring has been 
prohibitively labor intensive because the only option has been to manually validate the performance, e.g., classifying 
a sample by hand. Furthermore, the manual classifications are prone to human error and conventional aggregation 
periods allow classification errors to cancel one another.  

In the present study we develop a classification performance monitoring system to allow operating agencies 
to monitor the health of their classification stations. We eliminate most of the labor demands and instead, deploy a 
portable non-intrusive vehicle classification system (PNVCS) to classify vehicles, concurrent with an existing 
classification station. For this study we use a side-fire LIDAR (light detection and ranging) based classifier for the 
PNVCS discussed in Chapter 3. Figure 4-1 shows a flowchart of our performance evaluation system, the existing 
classification station normally follows the three boxes within the dashed region when it is not under evaluation and 
the PNVCS is shown immediately to the right of the dashed region. To prevent classification errors from canceling 
one another in aggregate, we record per-vehicle record (pvr) data in the field from both systems. After the field 
collection the classification results are evaluated on a per-vehicle basis. Algorithms for time synchronization and for 
matching observations of a given vehicle between the two classification systems are developed in this study. These 
algorithms automatically compare the vehicle classification between the existing classification station and the 
PNVCS for each vehicle. The conventional 13 axle-based classes are consolidated into four classes to facilitate 
comparison with the LIDAR PNVCS in Chapter 3, i.e., motorcycle (MC) - axle class 1, passenger vehicle (PV) - 
axle class 2-3, single unit truck/bus (SUT) - axle class 4-7, and multiple unit truck (MUT) - axle class 8-13. If the 
two systems agree, the given vehicle is automatically taken as a success by the classification station (under the 
implicit assumption that few vehicles will be misclassified the same way by the two independent systems). The 
temporary deployment includes a video camera (right-most path in Figure 4-1) to allow a human to assess any 
discrepancies. A human only looks at a given vehicle when the two systems disagree, and for this task we have 
developed tools to semi-automate the manual validation process, greatly increasing the efficiency and accuracy of 
the human user. The datasets in this study take only a few minutes for the user to validate an hour of pvr data. 

Although we use a LIDAR based system, the tools at the heart of the methodology are transferable to many 
PNVCS such as the TIRTL by Control Specialists, AxleLight by Quixote, and the prototype ORADS (more recently 
NTMS) by Spectra Research [24-27]. These systems were specifically developed to replace pneumatic tubes and use 
light beams just above the pavement to implement axle-based classification. The TIRTL performed very well at 
measuring axle spacing on two lane highways, typically above 95% accuracy [6], though some studies found an 
error rate of 24% among the truck classes due to the default decision tree [3, 8, 28]. While the AxleLight had an 
error rate for the truck classes up to 34% in high volume across four lanes [7, 8, 28], which was attributed to the 
sensor mistaking closely-following two-axle vehicles for multi-axle trucks. Most of the errors in [8, 28] were 
corrected by post-processing the pvr data from AxleLite and TIRTL using a new decision tree. Meanwhile, other 
studies found the TIRTL performance degrades on four lane roads [5]. Finally, as discussed in Section 2.1, side-fire 
microwave radar systems do not currently appear to offer sufficient classification accuracy to be used for this 
application. 

This pilot study used LIDAR sensors mounted on a van (see, e.g., Figure 3-1(b)). This approach offers a 
distinct advantage over the other PNVCS since our system does not require any calibration in the field, in fact the 
van can be classifying vehicles as it pulls up to the site. For longer-term deployments we envision a dedicated trailer 
that could be parked alongside the road. 
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Figure 4-1,  Flowchart of the evaluation of an existing vehicle classification station using LIDAR 

PNVCS vehicle classification. The existing station is shown in the dashed box at the top 
left. In normal operation most classifiers go one step further than shown in the dashed box 
and aggregate the pvr data by time period. 
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The remainder of this chapter is organized as follows. First the process of collecting the concurrent pvr 
vehicle classification data from the LIDAR and existing classification station is presented. Next the performance 
evaluation methodology is developed. Third, the methodology is applied to several permanent and temporary 
vehicle classification stations to evaluate axle and length-based classification. The evaluation datasets include over 
21,000 vehicles, less than 8% of which required manual intervention. Finally, the chapter closes with conclusions. 

4.2 Methodology of Using a PNVCS to Evaluate Classification Station 
Performance 

This section develops the semi-automated performance evaluation methodology for an existing 
classification station using LIDAR PNVCS classification, as shown in Figure 4-1. There are four key steps 
discussed below, first the input classification data itself, then the time synchronization algorithm, next the vehicle 
matching algorithm to match observations of a given vehicle between the two classification systems, and finally the 
semi-automated tool to allow a human to rapidly review any discrepancies between the two classification systems. 
The discrepancies include both conflicting classifications and vehicles seen by just one of the systems. In the 
absence of a discrepancy, a vehicle is automatically recorded as a successful classification, without human 
intervention. 

Given the low mounting location of the LIDAR sensors used in this study, vehicles in further lanes are 
susceptible to occlusions from vehicles in closer lanes. Totally occluded vehicles are a discrepancy handled in the 
above steps. Partial occlusions degrade the LIDAR classification performance, but the LIDAR classifier can 
automatically detect when a partial occlusion occurs (Chapter 3 found roughly 11% of the vehicles were partially 
occluded). These vehicles are counted to ensure both detectors saw a single vehicle pass, but for now the 
classifications are not used since a partial occlusion in the LIDAR should not be correlated with misclassifications 
by the existing station. In practice this approach would necessitate collecting a slightly larger dataset to 
accommodate the fact that some of the vehicles will not be used in the final comparison. Alternatively, if simply 
setting the partially occluded vehicles aside like this is unacceptable, then Section 3.4.1 presents a means to classify 
them to one or more classes. In the previous chapter roughly 50% of the partially occluded vehicles were assigned to 
a single class and could be processed automatically by the vehicle matching algorithm, the rest could be treated as a 
discrepancy and subjected to human evaluation with the semi-automated tool, thus, slightly increasing the number of 
vehicles sent for human assessment. 

4.2.1 The Classification Data 
Our prototype LIDAR based vehicle classification platform consists of two LIDAR sensors mounted at a 

height of about 6.7 ft above ground on the driver's side of a minivan parked alongside the roadway, as discussed in 
Chapter 3. The LIDAR sensors provide a rich view of the passing vehicles, each scan sweeps a 180° arc vertically 
across the road, returning the distance to the nearest object (if any) at 0.5° increments with a ranging resolution of 
0.1 inch and a maximum range of 262 ft. To classify vehicles, first we segment them from the background, look for 
possible occlusions in further lanes, and then we measure several features of size and shape for each non-occluded 
vehicle. The algorithm uses these features to classify the vehicle clusters into six vehicle classes: MC, PV, PV 
pulling a trailer (PVPT), SUT, SUT pulling a trailer (SUTPT), and MUT. For this chapter PVPT are included with 
PV and SUTPT are included with MUT. 

In the present study we evaluate both axle-based classification and length-based classification. We evaluate 
two permanent vehicle classification stations (total of three directional stations) with dual loop detectors and a 
piezoelectric sensor in each lane and two temporary vehicle classification deployments (total of four directional 
stations) with pneumatic tubes. Both systems provide the conventional 13 axle-based classes. The permanent vehicle 
classification stations also provide length-based vehicle classification with three length-classes that are intended to 
map to PV, SUT and MUT, respectively. Finally, we also tested the system at a single loop detector station using [2] 
for length-based classification. All of the datasets were collected in the Columbus, Ohio, metropolitan area (see 
Appendix A for more details). 

4.2.2 Time Synchronization 
The LIDAR PNVCS and the existing classification station clocks are independent, so before any 

comparisons are made it is necessary to first find the offset between the two systems. To automatically find this 
offset we borrow an approach from our earlier vehicle reidentification work, e.g., [29], only now the two locations 
are concurrent, so the vehicle headways become a unique signature and our algorithm looks for sequences of 
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headways. The algorithm has to accommodate the fact that any given vehicle may be seen in just one dataset or the 
other due to detection errors and LIDAR occlusions, hence our use of the vehicle reidentification work. 

The algorithm currently uses arrivals in one lane, over one minute.3 We arbitrarily select one vehicle in the 
LIDAR data as the reference (0-th vehicle), all n vehicles that follow within a minute, and their arrival times, !!!. 
The only constraint is that there must be concurrent data from the classification station. We then successively step 
through the station's vehicles from the same lane, taking each one as the station's reference (K-th vehicle), all m 
vehicles that follow within a minute, and their arrival times t!!. The algorithm then tallies the number of times the n 
LIDAR vehicles arrive within one second of the m station vehicles, i.e., finds the rate of virtually matched vehicles 
(RVMK) from Equation (4.1) for each value of K. Figure 4-2 shows an example of RVMK versus the resulting offset 
time, !!! − !!!  from the K-th vehicle from SR 33 northbound in each lane. The algorithm selects the value of K with 
the largest RVMK and uses this as the final offset, it then subtracts the corresponding offset time, !!! − !!! , from the 
entire LIDAR dataset. In Figure 4-2 the final offset time from lane 1 is -436.6 sec and from lane 2 is -436.5 sec. In 
this case the classification station clock is 436 sec later than the LIDAR. 
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4.2.3 Vehicle Matching 
After time synchronization, most vehicles in one dataset have a unique match in the other. However, the 

pvr data from many of the classification stations used in this study only reported arrival times to the second. So there 
are many vehicles in either set that have two possible matches. With subsecond precision many of these ambiguities 
would be resolved, but some would likely remain. In any event, the vehicle matching algorithm seeks to find the 
best match for a vehicle that has two or more possible matches by accounting for the vehicles immediately before 
and after the ambiguity, as well as the vehicle classes assigned to these vehicles by the two sensor systems. 

Formalizing the process, the i-th LIDAR PNVCS observation and j-th classification station observation are 
taken as a possible match if !!! − !!! < 1  !"#. The results can be summarized in a feasible vehicle matrix. The 
matrix is indexed by successive vehicle number in each dataset (LIDAR on the ordinate and classification station on 
the abscissa). Each element of the matrix is the outcome of the temporal comparison for the ij pair. Figure 4-3 shows 
an example of the feasible vehicle matrix using 11 successive vehicles from both datasets in lane 1 at SR-33 
northbound. Most cells are empty, indicating there is no match, while “O” indicates a possible match for the ij pair 
of vehicles. The matrix shows that two classification station vehicles (379 and 383) and two LIDAR vehicles (380 
and 381) have no matches in the other dataset. These unmatched vehicles will automatically be sent for manual 
review by the algorithm (see next section). Upon reviewing the concurrent video, the two unmatched classification 
station vehicles were totally occluded in the LIDAR while the two unmatched LIDAR vehicles were completely 
missed by the classification station.  

A given vehicle can have at most one true match and indeed, most of the vehicles in Figure 4-3 have a 
single match. If a given possible match is the only match in the given row and column, that match is retained as a 
final match. Otherwise, the vehicle matching algorithm has to choose between the possible matches, e.g., 
classification station vehicle 374 and LIDAR vehicle 372 each have two possible matches. The algorithm assumes 
that vehicles maintain the same order in the two datasets, in which case, the true (but unknown) matches should fall 
into sequences in the feasible vehicle matrix (manifest as diagonal lines of possible matches at 45°). Whenever a 
vehicle has more than one possible match, the vehicle matching algorithm collects the group of all involved vehicles 
from each detector (classification station vehicles 373-374 and LIDAR vehicles 372-373 in Figure 4-3). Figure 4-
4(a) shows an extreme hypothetical example, where almost every vehicle falls into one of three distinct groups of 
vehicles, as shown in Figure 4-4(b). If there is a single longest sequence in a group, the algorithm selects that 
sequence as final matches, Figure 4-4(c). Otherwise, if there are two or more sequences tied for the longest 
sequence, the algorithm considers the classifications assigned by the two sensor systems and chooses the sequence 
with the best classification agreement, e.g., as would be necessary for group 2 in Figure 4-4(c). 
  

                                                             
3 Expanding to multiple lanes or longer duration would improve the precision in challenging conditions. 
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Figure 4-2, RVMK versus the resulting offset time as a function of K from SR 33 northbound, (a) Lane 

1, the peak shows the final offset time is -436.6 sec, and (b) Lane 2, the peak shows the 
final offset time is -436.5 second. 

 
Figure 4-3, A feasible vehicle matrix, summarizing the outcome from the difference of arrival times 

between the LIDAR and classification station data in lane 1 at SR-33 northbound. 

(b) 

(a) 
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Figure 4-4, (a) hypothetical feasible vehicle matrix in which many rows and columns have multiple 

matches, (b) isolating the distinct groups of vehicles, the groups are numbered for 
reference, (c) selecting the longest sequence from the given group. Note that the two 
sequences in group 2 are equal length, so the algorithm would then compare the 
classification results from the two sensor systems and select the sequence with the strongest 
similarity between the two sensor systems.  

 

 
Figure 4-5, A snapshot of the semi-automated GUI verification tool processing a conflicting 

classification for a vehicle in lane 1 at SR 33 northbound. The GUI window consists of four 
interfaces: (a) plot of transition pulses, the plot shows for each lane the classification station 
data (top curve) and LIDAR data (bottom curve) and the current instant is shown with a 
vertical dashed line, (b) the current video frame, (c) the LIDAR returns from the vehicle in 
question, and (d) a panel for controlling the review and entering ground truth data. So in 
this case the GUI is at the second visible pulse in lane 1 (counted from the left hand side) 
and is ready for the user to assess the data using the buttons on the right of part (d).  
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4.2.4 Manual Verification Using a Semi-Automated Tool 
Inspired by VideoSync [30], a purpose built software ground truthing tool with a graphical user interface 

(GUI) was developed in MATLAB to efficiently generate ground truth data and increase the accuracy of the human 
user. After the time synchronization and vehicle matching steps above, the GUI loads the pvr classifications from 
the classification station and the LIDAR PNVCS. The user can choose which set(s) of vehicles they wish to review: 
(i) seen only in LIDAR, (ii) seen only at the classification station, (iii) conflicting classifications between the two 
sources, and/or (iv) consistent classification between the two sources. Normally the user would select the three error 
conditions, i.e., sets i-iii. Next, the user chooses one or more lanes to review, then the GUI steps through all of the 
vehicles in the given set(s) and lane(s). Figure 4-5 shows an example of the GUI as a SUT passes.4 For each vehicle 
the GUI displays the raw LIDAR data and the raw classification station data for a few seconds before and after the 
given vehicle detection (Figure 4-5(c) and (a), respectively). The GUI shows the video frame at the instant of the 
vehicle passage (Figure 4-5(b)), and allows the user to step forward or back in the video to see the evolution if 
necessary (Figure 4-5(d)). The bottom right corner of the GUI shows the user what vehicle class was assigned by the 
station and the LIDAR. After assessing the concurrent sensor and video data, the user records the observed vehicle 
class (or detection error) for the current actuation via the buttons in the two right-most boxes of Figure 4-5(d). As 
soon as the user enters a selection, the GUI jumps to the next actuation in the selected set(s) and lane(s) until all of 
the vehicles have been reviewed in the given set(s) from the entire time period with video data. In this study the user 
typically spent 3-5 sec per vehicle reviewed (including seek time and loading time), but only about 8% of the 
actuations required review. The automated process does the bulk of the work, in this study it typically took the 
human only a few minutes to process the exceptions from all lanes over one hour of data. 

4.3 Results of Using a PNVCS to Evaluate Classification Station Performance 

4.3.1 Axle-Based Classification Stations 
As noted above, we collected concurrent LIDAR and classification station pvr data at two permanent axle 

classification stations (I-270 and SR-33) and two temporary axle classification deployments (Wilson Rd and Dublin 
Rd). Table 4-1 enumerates the location, date, duration, and number of lanes in the first few columns. All locations 
yielded data for the direction of travel adjacent to the minivan (top rows in the table). We parked the van on both 
sides of Wilson Rd, hence both NB and SB nearside data for this location. Almost all of the locations provided 
sufficient view of the far lanes in the opposing direction to allow LIDAR classification, shown in the lower portion 
of the table. The one exception was I-270, where the median barrier and superelevation precluded a view of the 
opposing lanes. In any event, all lanes are numbered successively from the LIDAR minivan, regardless of the 
direction of travel. 

Columns (a) and (b) show the number of actuations reported by the LIDAR and classification data 
(including any non-vehicle actuations). Columns (c)-(e) show the number of matched and unmatched actuations 
after the vehicle matching algorithm. Column (f) sums columns (c), (d), and (e), yielding the number of actuations 
seen by one or both sensors. Column (g) tallies the number of partially occluded vehicles detected in the LIDAR (as 
per Section 3.2.1) and seen by the classification station. Since the partial occlusions do not reflect any error by the 
classification station, at present they are excluded from further analysis.5 Column (h) shows the number of 
actuations for which the algorithm compared the respective classifications from the two systems and from this set (i) 
tallies the disagreement. The percentage of disagreement is below 8% for all lanes studied and below 4% for most of 
them. Columns (j) and (k) reiterate (d) and (e) as percentages of (f). Finally, column (l) tallies the number of 
vehicles subject to manual verification (sum of columns (d), (e) and (i), as a percent of (f)). 

 

                                                             
4 In the event that this figure is hard to read, the key features are the integrated video view, detector data, and the fact that there 
are several buttons for user input. The figure may be clearer in the electronic version of the report available from ODOT. 

5 See Section 4.2 for a discussion on how the partially occluded vehicles can be handled if they are specifically of interest. 
Roughly half of these vehicles would require human review, slightly increasing the labor demands for the evaluation. 
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Table 4-1, Summary of the automated comparison of vehicle classification between LIDAR and axle 
data at seven directional classification stations, 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

 
Loca- 
tion 

(direc- 
tion) 

 
Date 

Dura- 
tion 
(hh: 
min) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles seen 

in; 

From the algorithm 
of vehicle matching 

Number 
of 

vehicles 
passing 

the 
location 

(f) 

Number 
of 

partially 
occluded 
vehicles 

(g) 

Comparison of 
vehicle 

classification 

% vehicles 
not detected by; Number of  

vehicles 
manually 
confirmed 

(l) 

Number  
of 

vehicles 
seen in 

both 
LIDAR 

and Axle 
(c) 

Number of 
vehicles only 

seen in; 

LIDAR 
(a) 

Axle 
(b) 

LIDAR 
(d) 

Axle 
(e) 

Number  
of 

compared 
vehicles 

(h) 

Dis- 
agree- 
ment 

(i) 

LIDAR 
(j) 

Axle 
(k) 

Adjacent 

I-270 
(SB) 11/02/2010 5:00 

1 5,415 5,452 5,389 26 63 5,478 n/a 5,389 188 
(3.5%) 1.2% 0.5% 277 

(5.1%) 

2 5,335 5,488 5,303 32 185 5,520 641 4,662 145 
(3.1%) 3.4% 0.6% 362 

(6.6%) 

3 2,647 2,789 2,615 32 174 2,821 713 1,902 24 
(1.3%) 6.2% 1.1% 230 

(8.2%) 
Dublin 
(SB) 10/28/2010 2:50 1 1,344 1,317 1,313 31 4 1,348 n/a 1,313 80 

(6.1%) 0.3% 2.3% 115 
(8.5%) 

Wilson 
(NB) 10/28/2010 1:40 1 666 664 658 8 6 672 n/a 658 24 

(3.6%) 0.9% 1.2% 38 
(5.7%) 

Wilson 
(SB) 10/28/2010 1:40 1 711 712 701 10 11 722 n/a 701 21 

(3.0%) 1.5% 1.4% 42 
(5.8%) 

SR 33 
(NB) 08/03/2011 1:10 

1 732 693 684 48 9 741 n/a 684 32 
(4.7%) 1.2% 6.5% 89 

(12.0%) 

2 569 562 547 22 15 584 65 482 6 
(1.2%) 2.6% 3.8% 43 

(7.4%) 

Subtotal of adjacent 12:20 - 17,419 17,677 17,210 209 467 17,886 1,419 15,791 520 
(3.3%) 2.6% 1.2% 1,196 

(6.7%) 

Opposite 

Dublin 
(NB) 10/28/2010 2:50 2 940 943 933 7 10 950 75 858 52 

(6.1%) 1.1% 0.7% 69 
(7.3%) 

Wilson 
(NB) 10/28/2010 1:40 2 749 752 742 7 10 759 58 684 18 

(2.6%) 1.3% 0.9% 35 
(4.6%) 

Wilson 
(SB) 10/28/2010 1:40 2 741 735 723 18 12 753 47 676 24 

(3.6%) 1.6% 2.4% 54 
(7.2%) 

SR 33 
(SB) 08/03/2011 1:10 

3 592 587 548 44 39 631 53 495 9 
(1.8%) 6.2% 7.0% 92 

(14.6%) 

4 888 884 838 50 46 934 148 690 54 
(7.8%) 4.9% 5.4% 150 

(16.1%) 

Subtotal of opposite 7:20 - 3,910 3,901 3,784 126 117 4,027 381 3,403 157 
(4.6%) 2.9% 3.1% 400 

(9.9%) 

Overall 19:40 - 21,329 21,578 20,994 335 584 21,913 1,800 19,194 677 
(3.5%) 2.7% 1.5% 1,596 

(7.3%) 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
(a) = (c + d) 
(b) = (c + e) 
(f) = (a + e) = (b + d) 
(h) = (c) – (g) 
(j) = (e) / (f) 
(k) = (d) / (f) 
(l) = (d + e + i), where the percentage is relative to (f) 
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Table 4-2, Manual verification of the vehicles with conflicting classifications or only seen by one 
sensor using the semi-automated tool, 

LIDAR 
sensor 

direction  
relative to 

vehicle  
travel 

direction 

Loca- 
tion 

(direc- 
tion) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles 

not 
detected  

by LIDAR 
(e) 

Reason 

Number of 
vehicles 

not 
detected   
by Axle 

(d) 

Reason 
Number  

of 
vehicles  

in 
disagree- 

ment 
(i) 

Verification of 
disagreement  

 
% axle 
miss- 

classified 
(r) 

 
 

% total  
axle 
error 
(s) 

Totally 
occluded 
vehicle 

LIDAR 
missed 
vehicle 

Axle 
non- 

vehicle 
actuation 

(m) 

Axle 
missed 
vehicle 

 (n) 

LIDAR 
non- 

vehicle 
actuation 

LIDAR 
correct, 

Axle 
incorrect 

 (p) 

LIDAR 
incorrect, 

Axle 
correct 

 

LIDAR 
incorrect 

Axle 
incorrect 

(q) 

Adjacent 

I-270 
(SB) 

1 63 n/a 63 0 26 26 0 188 148 36 4 2.8% 3.2% 

2 185 116 69 0 32 32 0 145 113 30 2 2.5% 2.6% 

3 174 141 33 0 32 32 0 24 20 4 0 1.1% 1.7% 
Dublin 
(SB) 1 4 n/a 4 0 31 31 0 80 76 4 0 5.8% 7.9% 

Wilson 
(NB) 1 6 n/a 6 0 8 8 0 24 22 2 0 3.3% 4.5% 

Wilson 
(SB) 1 11 n/a 11 0 10 10 0 21 18 3 0 2.6% 3.9% 

SR-33 
(NB) 

1 9 n/a 9 0 48 48 0 32 26 4 2 4.1% 10.3% 

2 15 8 7 0 22 22 0 6 5 1 0 1.0% 4.5% 

Subtotal of adjacent 467 265 202 0 209 209 0 520 428 84 8 2.8% 3.6% 

Opposite 

Dublin 
(NB) 2 10 5 1 4 7 7 0 52 48 3 1 5.7% 6.3% 

Wilson 
(NB) 2 10 5 5 0 7 7 0 18 15 3 0 2.2% 2.9% 

Wilson 
(SB) 2 12 10 2 0 18 18 0 24 22 2 0 3.3% 5.3% 

SR-33 
(SB) 

3 39 27 12 0 44 44 0 9 6 3 0 1.2% 7.9% 

4 46 41 4 1 50 50 0 54 42 11 1 6.2% 10.1% 

Subtotal of opposite 117 88 24 5 126 126 0 157 133 22 2 4.0% 6.6% 

Overall 584 353 226 5 335 335 0 677 561 106 10 3.0% 4.1% 
n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor  
 
 (r) = (p+q) / (h) 
 (s) = (p+q+m+n)/(f-m) 
 
Note (f) and (h) are shown in Table 4-1. 
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Table 4-2 summarizes the results from manual verification for the vehicles with a discrepancy in Table 4-1 
(columns (d), (e) and (i)). Of the vehicles only seen by the LIDAR, 60% (353 out of 584) are due to completely 
occluded vehicles, 39% (226 out of 584) are due to the LIDAR missing unoccluded vehicles, and 1% are due to non-
vehicle actuations at the classification station. Upon review, it turns out that all 335 of the actuations that were not 
detected at the classification stations were due to those stations missing the vehicles. Of the vehicles with conflicting 
classification, the classification station was incorrect 84% of the time (571 out of 677). Assuming few vehicles are 
misclassified the same way by the two systems, all of the agreements are automatically tallied as a success by the 
classification station. As a result, the classification stations exhibited an overall misclassification rate of 3% (sum of 
columns (p) and (q) as a percent of (h)), and including the undetected vehicles, an overall error rate of 4.5% (sum of 
columns (m), (n), (p), and (q) divided by [(f)-(m)]). The highest error rate observed in a lane was 10.3%. 

To ensure the validity of the assumption that no individual vehicles were misclassified the same way by 
both systems, (and thus, by extension, degrade the accuracy of the above results), we manually verified the class of 
15,271 out of the 18,517 vehicles that the two systems gave the same class. As noted above, these vehicles would 
normally be assigned "success" automatically, without review by a person. Within this set, 99.8% (15,245 out of 
15,271) were assigned the correct vehicle class and only 26 vehicles (0.2%) were incorrectly classified.  

Table 4-3 compares the specific classification of the non-occluded vehicles detected by both sensors across 
all of the datasets. The columns show the axle classification and rows show the LIDAR classification. The bold 
numbers on the diagonal show the agreement between the two systems and all of the numbers off the axis reflect the 
disagreements. The third row from the bottom and the second column from the end tally the class of vehicles that 
were only seen by one of the detectors. The last column and second to the last row tally the row and column total, 
respectively. The final row presents the number of partially occluded vehicles that were excluded from the 
comparisons, sorted by axle class for reference. Collectively, 4.6% of the non-occluded vehicles (919 out of 20,113) 
are detected by only one sensor, of the remaining 19,194 non-occluded vehicles that were detected by both sensors, 
96.5% (18,517 vehicles) were assigned the same classification from the two systems and 3.5% (677 vehicles) were 
not. 

As noted above, all of the vehicles assigned the same class by both systems are automatically taken to be 
correct, while all of the conflicting classifications were manually validated (i.e., the off diagonal cells in Table 4-3). 
After conducting the manual validation we refer to the collection of the results as pseudo ground truth since the cells 
that were originally in agreement were not manually validated. The axle classification station performance across all 
of the datasets is compared against the pseudo ground truth in Table 4-4. There are a total of 19,760 vehicles in the 
pseudo ground truth data, including 19,194 non-occluded vehicles seen by both sensors, 335 vehicles not detected 
by the axle sensors, 226 vehicles not detected by the LIDAR sensors, and 5 non-vehicle actuations in the axle data. 
The remaining 353 vehicles from Table 4-3 were completely occluded in the video as well. The completely 
occluded vehicles are excluded from the comparison, but their assigned axle class is reported in the final row for 
reference. No vehicle changed columns from Table 4-3 since the axle classifications did not change, but many of the 
vehicles were reassigned to new rows as a result of the manual validation. The accuracy of pseudo ground truth data 
should be above 99% because most vehicles with the corresponding classification are correctly classified (as per 
above, we found that only 0.2% of the vehicles with the same classification from the two systems were incorrectly 
classified). The classification stations exhibited 95% accuracy overall, but dramatically different performance by 
class. The best performance was on PV and worst performance on MC. It is also important to take care reading the 
table, although 83% of the vehicles classified as SUT by the axle classification stations were indeed SUT (column 
total), only 66% of the SUT were correctly classified as such (row total). This pseudo ground truth analysis is 
repeated by individual station in Appendix F and Table 4-5 summarizes the performance by station. To help 
interpret these results, the final row of Table 4-5 summarizes Table 4-4. The first few columns report the number of 
vehicles seen in the pseudo ground truth for the given class (e.g., the second to the last column in Table 4-4), the 
next set of columns present the percentage of vehicles correctly classified in the given class (e.g., the last column in 
Table 4-4), and the last set of columns present the percentage of detector station classifications that were correct in 
the given class (e.g., the second to the last row in Table 4-4). 

Table 4-4 shows the worst performance for motorcycles, with only 27% being correctly classified, but this 
table combines data from ODOT permanent classification stations and MORPC temporary pneumatic tube 
deployments. Unfortunately the pneumatic tubes were much better at detecting and classifying the motorcycles. 
Reviewing the data strictly from the two ODOT classification stations with concurrent LIDAR (Appendix F), the 
pseudo ground truth include 15 motorcycles, of which only 1 (7%) was correctly classified by the classification 
stations. Meanwhile, 9 (60%) of the motorcycles were misclassified as longer vehicles and 5 (33%) passed 
completely undetected. Given the fact that these data come from only two classification stations and the number of 
motorcycles is small, further study is warranted. For example, Table 2-2 shows two completely occluded vehicles 
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being classified as motorcycles at I-270. Meanwhile, Table 2-7 shows that the I-70 data had 31 motorcycles 
correctly classified, but this location did not have an independent PNVCS and using the same data set, [11] found an 
additional 13 passing motorcycles that were missed by the detectors, resulting instead in "sensor miss" (SnMis) 
events in the pvr data. 

4.3.2 Length-Based Classification Stations 
As noted in the introduction, we also used this methodology to evaluate the performance of length-based 

classification. All of the permanent vehicle classification stations also provide length-based and we also tested the 
system at a single loop detector station using [2] for length-based classification. All vehicles below 28 ft are 
assigned to length class 1, all remaining vehicles below 47 ft are assigned to length class 2, and all vehicles above 47 
ft are assigned length class 3; and these length classes are intended to roughly map to PV, SUT and MUT, 
respectively. So for our analysis we map LIDAR MC and PV to length class 1, LIDAR SUT to length class 2, and 
LIDAR MUT to length class 3. Tables 4-6 to 4-9 repeat the comparisons of the previous section, now applied to the 
length-based classification stations. The length-based performance and number of vehicle requiring manual 
validation are comparable to the axle-based classification. Appendix G show the length-based classification pseudo 
ground truth results by station. 

4.4 Conclusions 
Vehicle classification data are critical to many transportation applications, but the quality of data collected 

depends on the operating agency to periodically calibrate, test, and validate the performance of classification 
sensors. These studies are labor intensive and coarse, allowing over counting errors to cancel undercounting errors. 
To address these challenges, the present work develops a classification performance monitoring system to allow 
operating agencies to automatically monitor the health of their classification stations. We eliminate most of the labor 
demands and instead, deploy a LIDAR based PNVCS to classify vehicles, concurrent with existing classification 
stations. To prevent classification errors from canceling one another in aggregate, we record per-vehicle record (pvr) 
data in the field from both systems. After the field collection the classification results are evaluated on a per-vehicle 
basis. If the two systems agree, the given vehicle is automatically taken as a success by the classification station. 
The PNVCS includes a video camera to allow a human to assess the discrepancies. A human only looks at a given 
vehicle when the two systems disagree, and we developed tools to semi-automate the manual validation process, 
greatly increasing the efficiency and accuracy of the human user. The datasets in this study take only a few minutes 
for the user to validate an hour of pvr data. Although we use a LIDAR based system, the tools at the heart of the 
methodology are transferable to many PNVCS such as the TIRTL or AxleLight. This pilot study used LIDAR 
sensors mounted on a van. This approach offers a distinct advantage over the other PNVCS since our system does 
not require any calibration in the field, in fact the van can be classifying vehicles as it pulls up to the site. For longer-
term deployments we envision a dedicated trailer that could be parked alongside the road. 

The evaluation datasets come from several different classification stations, they include over 21,000 
vehicles. We separately evaluated length-based classification stations and axle-based classification stations, each 
yielding similar results. In each case about 8% of the vehicles required manual intervention. In this study the user 
typically spent 3-5 sec per vehicle reviewed. The automated process does the bulk of the work, in this study it 
typically took the human only a few minutes to process the exceptions from all lanes over one hour of data. 

This evaluation revealed a chronic problem detecting motorcycles at the two ODOT permanent 
classification stations studied. While the LIDAR system detected 15 passing motorcycles, the stations correctly 
classified one of them, and missed five altogether. 

As this research has shown, there is wide variance in performance from one station to the next and these 
errors tend to have a higher frequency among the truck classes, particularly the SUT. Since these errors are a 
function of the specific station, there would be benefit in the short term if ODOT were to leverage the LIDAR based 
PNVCS system developed in this research to evaluate the performance of many other classification stations. 
Thereby catching systematic errors that bias classification performance at the given station. 
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Table 4-3, Comparison of LIDAR vehicle classification and axle vehicle classification across seven 
directional locations, 

Overall 

Axle vehicle classification Number of 
LIDAR  
vehicles 

not detected 
by axle 
sensor 

Total 
number of 

LIDAR 
vehicles 

Motor- 
cycle 

Passenger 
vehicle* 

Single 
unit 

truck 

Multiple 
unit 

truck* 

LIDAR 
vehicle 

classification 

Motorcycle 6 12 1 0 12 31 
Passenger vehicle* 2 16,751 127 159 283 17,322 
Single unit truck 1 212 530 96 28 867 

Multiple unit truck* 1 47 19 1,230 12 1,309 
Number of axle vehicles 

not detected by LIDAR sensor 3 555 10 16 - 584 

Total number of axle vehicles above 13 17,577 687 1,501 335 20,113 

Number of partially occluded 
vehicles excluded 

in the comparison matrix 
2 1,571 56 171 - 1,800 

Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 

 

Table 4-4, Comparison of pseudo ground truth data and axle vehicle classification across seven 
directional locations, 

Overall 

Axle vehicle classification Number of 
LIDAR vehicles 
not detected by 

axle sensor 

Row 
total 

 
%  

correct 
Motor- 
cycle 

Passenger  
vehicle* 

Single 
unit  

truck 

Multiple 
unit 

truck* 

Pseudo 
ground 

truth data  

Motorcycle 6 2 6 3 5 22 27% 

Passenger vehicle* 2 17,001 94 160 289 17,546 97% 

Single unit truck 1 196 574 79 25 875 66% 

Multiple unit truck* 1 30 9 1,256 16 1,312 96% 

Non-vehicle  
actuation in axle data 2 3 0 0 - 5 - 

Column total above 12 17,232 683 1,498 335 19,760 - 
% correct 50% 99% 84% 84% - - 95% 

Totally occluded vehicle  1 345 4 3 - 353 - 
Passenger vehicle* includes passenger vehicle and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 
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Table 4-5, Summary of evaluation of axle vehicle classification station by a vehicle class. Note 
Wilson Rd northbound and southbound includes both Wilson Rd adjacent to and opposite 
from LIDAR sensor, respectively, 

Location Dire- 
ction 

A number of vehicles  
from pseudo 

ground truth data 

% of pseudo ground  
truth vehicle classified  

correctly 

% of correct axle 
classification 

% of 
correct 

 classifi- 
cation 

 over all  
vehicles MC PV* SUT MUT* MC PV* SUT MUT* MC PV* SUT MUT* 

I-270 SB 7 10,561 500 1,140 14% 99% 61% 97% 50% 98% 95% 92% 97% 

Dublin  
Rd 

NB 2 795 63 6 50% 94% 87% 100% 20% 99% 72% 22% 93% 
SB 2 1,282 53 11 50% 92% 87% 100% 100% 99% 61% 21% 92% 

Wilson  
Rd 

NB 1 1,280 60 27 100% 96% 97% 100% 100% 100% 77% 60% 96% 
SB 2 1,360 29 27 100% 95% 90% 100% 100% 100% 63% 54% 95% 

SR 33 
NB 5 1,114 79 54 0% 95% 57% 87% - 99% 94% 72% 92% 
SB 3 1,154 91 47 0% 93% 46% 79% 0% 98% 84% 62% 89% 

Overall 22 17,546 875 1,312 27% 97% 66% 96% 50% 99% 84% 84% 95% 
PV* includes passenger vehicle and passenger vehicle pulling a trailer. MUT* includes single unit truck pulling a 
trailer and multiple unit truck.  
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Table 4-6, Summary of the comparison of vehicle classification between LIDAR and loop detector 
data at four directional classification stations 

 
Loca- 
tion 

(direc- 
tion) 

Date 

Dura- 
tion 
(hh: 
min) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles seen 

in: 

From the algorithm 
of vehicle matching 

Number 
of 

vehicles 
passing 

the 
location 

(f) 

Number 
of 

partially 
occluded 
vehicles 

(g) 

Comparison of 
vehicle 

classification 

% vehicles 
not detected by: Number of  

vehicles 
manually 
confirmed 

(l) 

Number 
of 

vehicles 
seen in 

both 
LIDAR 
and loop 
detector 

(c) 

Number of 
vehicles only 

seen in; 

LIDAR 
(a) 

Loop 
detector 

(b) 

LIDAR 
(d) 

Loop 
detector 

(e) 

Number 
of 

compared 
vehicles (h) 

Dis- 
agree- 
ment 

(i) 

LIDAR 
(j) 

Loop 
detector 

(k) 

I-71 (SB): 
Free flow 07/09/2009 00:24 

1 168 156 156 12 0 168 n/a 156 9 0.0% 7.1% 21 
(12.5%) 

2 546 539 538 8 1 547 6 532 16 0.2% 1.5% 25 
(4.6%) 

3 644 653 638 6 15 659 132 506 13 2.3% 0.9% 34 
(5.2%) 

4 454 482 445 9 37 491 169 276 2 7.5% 1.8% 48 
(9.8%) 

I-71 (SB): 
Congestion 11/19/2009 00:28 

1 191 182 181 10 1 192 n/a 181 20 0.5% 5.2% 31 
(16.1%) 

2 859 848 848 11 0 859 18 830 12 0.0% 1.3% 23 
(2.7%) 

3 772 798 771 1 27 799 228 543 10 3.4% 0.1% 38 
(4.8%) 

4 797 912 795 2 117 914 343 452 0 12.8% 0.2% 119 
(13.0%) 

I-270 (SB): 
Free flow 11/02/2010 5:00 

1 5,415 5,452 5,389 26 63 5,478 n/a 5,389 184 1.2% 0.5% 273 
(5.0%) 

2 5,335 5,488 5,303 32 185 5,520 641 4,662 131 3.4% 0.6% 348 
(6.3%) 

3 2,647 2,789 2,615 32 174 2,821 713 1,902 28 6.2% 1.1% 234 
(8.3%) 

SR-33 (NB): 
Free flow 08/03/2011 1:10 

1 732 693 684 48 9 741 n/a 684 31 1.2% 6.5% 88 
(11.9%) 

2 569 562 547 22 15 584 65 482 7 2.6% 3.8% 44 
(7.5%) 

SR-33 (SB): 
Free flow 08/03/2011 1:10 

3 592 587 548 44 39 631 53 495 8 6.2% 7.0% 91 
(14.4%) 

4 888 884 838 50 46 934 148 690 69 4.9% 5.4% 165 
(17.7%) 

Overall 20,609 21,025 20,296 313 729 21,338 2,516 17,780 540 3.4% 1.5% 1,582 
(7.4%) 

n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
 
(a) = (c + d) 
(b) = (c + e) 
(f) = (a + e) = (b + d) 
(h) = (c) – (g) 
(j) = (e) / (f) 
(k) = (d) / (f) 
(l) = (d + e + i), where the percentage is relative to (f)  
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Table 4-7, Manual verification using semi-automated tool of the vehicles with conflicting 
classifications or only seen by one sensor from the comparison of vehicle classification 
between LIDAR and loop detector data 

Loca- 
tion 

(direc- 
tion) 

Lane 
num- 
ber 

from 
LIDAR 

Number of 
vehicles 

not 
detected 

by LIDAR 
(e) 

Reason 
Number of 

vehicles 
not 

detected 
by loop 
detector 

(d) 

Reason 
Number 

of 
vehicles 

in 
disagree- 

ment 
(i) 

Verification of 
disagreement  

 
% loop 
detector 

miss- 
classified 

(r) 

 
 

% total 
loop 

detector 
error 
(s) 

Totally 
occluded 
vehicle 

LIDAR 
missed 
vehicle 

Loop 
detector 

non- 
vehicle 

actuation 
(m) 

Loop 
detector 
missed 
vehicle 

(n) 

LIDAR 
non- 

vehicle 
actuation 

LIDAR 
correct, 

loop 
incorrect 

(p) 

LIDAR 
incorrect, 

loop 
correct 

 

LIDAR 
incorrect 

loop 
incorrect 

(q) 

I-71 (SB): 
Free flow 

1 0 n/a 0 0 12 12 0 9 9 0 0 5.8% 12.5% 

2 1 1 0 0 8 8 0 16 15 1 0 2.8% 4.2% 

3 15 14 1 0 6 6 0 13 11 2 0 2.2% 2.6% 

4 37 32 5 0 9 9 0 2 2 0 0 0.7% 2.2% 

I-71 (SB): 
Congestion 

1 1 n/a 1 0 10 10 0 20 20 0 0 11.0% 15.6% 

2 0 0 0 0 11 11 0 12 12 0 0 1.4% 2.7% 

3 27 25 2 0 1 1 0 10 8 2 0 1.5% 1.1% 

4 117 104 13 0 2 2 0 0 0 0 0 0.0% 0.2% 

I-270 (SB): 
Free flow 

1 63 n/a 63 0 26 26 0 184 156 22 6 3.0% 3.4% 

2 185 116 69 0 32 32 0 131 112 15 4 2.5% 2.7% 

3 174 141 33 0 32 32 0 28 27 1 0 1.4% 2.1% 

SR-33 (NB): 
Free flow 

1 9 n/a 9 0 48 48 0 31 29 2 0 4.2% 10.4% 

2 15 8 7 0 22 22 0 7 6 1 0 1.2% 4.8% 

SR-33 (SB): 
Free flow 

3 39 27 12 0 44 44 0 8 8 0 0 1.6% 8.2% 

4 46 41 4 1 50 50 0 69 59 5 5 9.3% 12.3% 

Overall 729 510 218 1 313 313 0 540 474 51 15 2.8% 3.8% 

n/a: occlusions are infeasible in this lane because it is adjacent to the LIDAR sensor 
 

(p) = (m+n) / (h) 
(q) = (m+n+aa+bb)/(f-aa)  
 
Note (f) and (h) are shown in Table 4-6. 
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Table 4-8, Comparison of pseudo ground truth data and length-based vehicle classification across four 
directional locations 

Overall 
Length class from  

loop detector 
Number of  

LIDAR vehicles  
not detected 

 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  
truth 
data 

Passenger vehicle** 15,623 256 66 271 16,216 96% 0 

Single unit truck 125 590 8 26 749 79% 0 

Multiple unit truck* 21 23 1,286 16 1,346 96% 0 

Non-vehicle actuation  
in loop detector data 1 0 0 - 1 - - 

Column total above 15,770 869 1,360 313 18,312 - 0 

% correct 99% 68% 95% - - 96% - 

Totally occluded vehicles 498 7 5  - 510  - - 

Passenger vehicle** includes motorcycle, passenger vehicle, and passenger vehicle pulling a trailer. 
Multiple unit truck* includes single unit truck pulling a trailer and multiple unit truck. 

 
 

Table 4-9, Summary of evaluation of length-based vehicle classification station by a vehicle class. 

Location 
(traffic 

condition) 

Dire- 
ction 

A number of vehicles 
from pseudo 

ground truth data 

% of pseudo ground 
truth vehicle  

classified correctly 

% of correct loop 
classification 

% of 
correct  

classification 
over all vehicles 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

I-71  
(free flow) SB 1,428 32 51 96% 50% 94% 99% 42% 84% 95% 

I-71  
(Cong) SB 1,967 38 40 97% 61% 98% 99% 47% 95% 97% 

I-270 
(free flow) SB 10,546 509 1,153 97% 92% 97% 99% 70% 95% 97% 

SR-33 
(free flow) 

NB 1,117 81 54 94% 69% 81% 98% 79% 96% 92% 

SB 1,158 89 48 92% 31% 73% 95% 60% 92% 87% 
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5 CONCLUSIONS AND RECOMMENDATIONS 
This study examined three interrelated facets of vehicle classification and classification performance 

monitoring. First, we manually evaluate the performance of vehicle classification station on a per-vehicle basis, 
second we develop a portable LIDAR based vehicle classification system that can be rapidly deployed, and third we 
use the LIDAR based system to automate the manual validation done in the first part using the tools from the second 
part. Each component is discussed in a separate chapter, and the conclusions are presented at the end of each 
chapter. This section summarizes the conclusions from those chapters. 

In Chapter 2 we used per-vehicle record (pvr) data to manually evaluate the performance of several 
classification stations. Evaluating the pvr data as we do in this work is uncommon; both due to the inherent 
difficulty generating ground truth data, and the fact that normally the pvr classifications are binned by fixed time 
periods at which point the individual vehicle information is discarded. However, such conventional aggregation 
allows errors to cancel one another, which can obscure underlying problems. This study evaluated three permanent 
axle classification stations against concurrent video based ground truth in terms of axle-based and length-based 
classification. Only 3%-4% of the vehicles were misclassified, however, the relative impacts were much larger on 
the trucks, e.g., only 60% of the single unit truck/bus (SUT) -axle class 4-7 - were correctly classified as SUT by the 
existing axle-based classifier.  

Diagnosing the axle classification errors, it was found that all of them could be attributed to one of six 
causes. About a third of the errors among class 4-13 can be easily fixed by redefining the decision tree, e.g., 
ensuring that there are no gaps between successive classes and adding an additional outcome from the tree to 
indicate a vehicle is unclassifiable. Our revised decision tree is shown in Table 2-6. After making these changes, the 
axle-based classification decision tree was able to correctly classify an additional 10% of the SUT, with smaller 
improvements in almost every other metric. Ideally the new decision tree should be deployed at a few new locations 
and the performance validated, then assuming no problems are found, be adopted as the new standard classification 
decision tree. In any event, most of the improvements of the new decision tree should be incorporated in to standard 
practice (closing the gaps between bins, adding an "unclassifiable" class, and allowing for more than 4 axles in axle 
class 7). 

One chronic error found in this research is intrinsic to the vehicle fleet and may be impossible to correct 
with the existing sensors; namely, the shorter, SUT have a length range and axle spacing range that overlaps with 
passenger vehicles (PV) - axle class 1-3. Depending on the calibration, the error may be manifest as SUT counted as 
PV or vice versa. As discussed in the literature review in Section 2.1, this PV/SUT blurring appears to impact other 
sensors as well. In any case, one should expect such errors at most classification stations. All subsequent uses of the 
classification data (e.g., planning and measuring freight flows) must accommodate this unavoidable blurring of SUT 
with PV. The blurring also means that one cannot blindly use an axle classification station to calibrate the boundary 
between PV and SUT for length-based classification stations, otherwise, the unavoidable errors in the axle 
classification will be amplified in the length-based classification scheme.  

In Chapter 3 we developed and tested a side-fire LIDAR based vehicle classification algorithm. The 
algorithm includes up to eight different measurements of vehicle shape to sort vehicles into six different classes. The 
algorithm was tested over seven datasets (including one development dataset) collected at various locations. The 
results were compared against the concurrent video-recorded ground truth data on a per-vehicle basis. Overall, 2,938 
out of 27,450 vehicles (11%) are suspected of being partially occluded and these vehicles are classified separately. 
Occlusions are inevitable given the low vantage point of the sensors in this proof of concept study. In future research 
we will investigate higher views (comparable to typical microwave radar detector deployments) to mitigate the 
impact of occlusions. These higher views should also provide additional features, e.g., vehicle width. Unlike video, a 
vehicle's width and height are easily separable in the LIDAR ranging data. The algorithm correctly classifies 24,390 
of the 24,512 non-occluded vehicles (99.5%). While most side-fire detectors have challenges with occluded 
vehicles, the algorithms developed by this project are able to work around those problems. When a vehicle was 
partially occluded, we calculate the range of feasible length and height. These ranges are then used to assign one or 
more feasible vehicle classes to the given vehicle. Among these partially occluded vehicles, 47% were assigned a 
single class and 97% of these were correct. 

This work also uncovered an emerging challenge facing most vehicle classification technologies: 
separating commuter cars from motorcycles. The two groups have similar lengths, axle spacing and height, though 
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they differ in width and likely in weight. With increased interest in classifying motorcycles correctly, combined with 
more commuter cars on the road, there is a need to devise a means to separate the two types of vehicles. 

Alternatively, recognizing the difficulty in distinguishing pairs of vehicle classes with the existing detector 
infrastructure (e.g., commuter cars and motorcycles, short SUT and PV), there may be a need to create buffer classes 
to impart greater confidence in the reported classifications, e.g., adding a new "class 3 or class 5" bin to the axle-
based decision tree that takes the upper portion of class 3 and lower portion of class 5 axle spacings in Figure 2-3. 
Thus confining the uncertainty to a much smaller number of vehicles and ensuring much greater confidence that 
anything that is classified as "strictly class 5" is indeed class 5. 

In Chapter 4 we tackle the labor demands required to undertake the detailed study in Chapter 2. Vehicle 
classification data are critical to many transportation applications, but the quality of data collected depends on the 
operating agency to periodically calibrate, test, and validate the performance of classification sensors. These studies 
are labor intensive and coarse, allowing over counting errors to cancel undercounting errors. To address these 
challenges, this study develops a classification performance monitoring system to allow operating agencies to 
automatically monitor the health of their classification stations. We eliminate most of the labor demands and instead, 
deploy a LIDAR based portable non-intrusive vehicle classification system (PNVCS) to classify vehicles, 
concurrent with existing classification stations. To prevent classification errors from canceling one another in 
aggregate, we record pvr data in the field from both systems. After the field collection the classification results are 
evaluated on a per-vehicle basis. If the two systems agree, the given vehicle is automatically taken as a success by 
the classification station. The PNVCS includes a video camera to allow a human to assess the discrepancies. A 
human only looks at a given vehicle when the two systems disagree, and we developed tools to semi-automate the 
manual validation process, greatly increasing the efficiency and accuracy of the human user. The datasets in this 
study take only a few minutes for the user to validate an hour of pvr data. Although we use a LIDAR based system, 
the tools at the heart of the methodology are transferable to many PNVCS such as the TIRTL or AxleLight. This 
pilot study used LIDAR sensors mounted on a van. This approach offers a distinct advantage over the other PNVCS 
since our system does not require any calibration in the field, in fact the van can be classifying vehicles as it pulls up 
to the site. For longer-term deployments we envision a dedicated trailer that could be parked alongside the road.  

The evaluation datasets come from several different classification stations, they include over 21,000 
vehicles. We separately evaluated length-based classification stations and axle-based classification stations, each 
yielding similar results. In each case about 8% of the vehicles required manual intervention. In this study the user 
typically spent 3-5 sec per vehicle reviewed (including seek time and loading time). The automated process does the 
bulk of the work, in this study it typically took the human only a few minutes to process the exceptions from all 
lanes over one hour of data. 

The Chapter 4 evaluation also revealed a chronic problem detecting motorcycles at the two ODOT 
permanent classification stations studied. While the LIDAR system detected 15 passing motorcycles, the 
classification stations correctly classified one of them, and missed five altogether. 

As this research has shown, there is wide variance in performance from one station to the next and these 
errors tend to have a higher frequency among the truck classes, particularly the SUT. Since these errors are a 
function of the specific station, there would be benefit in the short term if ODOT were to leverage the LIDAR based 
PNVCS system developed in this research to evaluate the performance of many other classification stations. 
Thereby catching systematic errors that bias classification performance at the given station. 
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6 IMPLEMENTATION PLAN 
First there are the classification errors that cannot be easily fixed with the existing detectors. We found that 

there are systematic errors arising from the vehicle fleet, they are most pronounced among the short single unit 
trucks and passenger vehicles. These two groups have an overlapping range of axle spacing and of vehicle length. 
So it is likely impossible to completely segregate the two groups with the existing detectors. Furthermore, upon 
reviewing the literature with this problem in mind, these errors appear to impact most of the length and axle based 
vehicle classification sensors, it is not limited to loop detector based systems. The problem can be accommodated in 
the accounting, however, by creating a buffer class that would catch most of the errors, ensuring that those vehicles 
far from the threshold (axle spacing or vehicle length) are classified with very high confidence. A similar problem 
was found between commuter cars (e.g., the Smart Car) and motorcycles and this problem will become more 
pronounced as the number of commuter cars increases.  

Based on our investigation we feel the conventional solution is sub-optimal, i.e., attempting to find the 
threshold that yields an unbiased error rate, i.e., the number of over counting errors roughly cancel the number of 
undercounting errors. The conventional approach relies on two assumptions: (i) that the detectors are calibrated 
consistently across stations, when in fact sensitivity and responsiveness varies widely among detectors even after 
field calibration (see, e.g., [31]), and (ii) that the mix of vehicles is static when in fact the optimal threshold depends 
on the mix of vehicles. The approach offers no way of dynamically responding to changes in the composition of the 
passing fleet (see, e.g., [32] for examples of how the fleet changes dramatically over a single day). Recognizing the 
difficulty in distinguishing pairs of vehicle classes with the existing detector infrastructure, there may be a need to 
create buffer classes to impart greater confidence in the reported classifications, e.g., adding a new "class 3 or class 
5" bin to the axle-based decision tree that takes the upper portion of axle class 3 and lower portion of axle class 5 
axle spacings in Figure 2-3. Thus confining the uncertainty to a much smaller number of vehicles and ensuring much 
greater confidence that anything that is classified as "strictly class 5" is indeed axle class 5. 

In any event, all subsequent uses of the classification data (e.g., planning and measuring freight flows) must 
accommodate this unavoidable blurring of single unit trucks with passenger vehicles. The blurring also means that 
one cannot blindly use an axle classification station to calibrate the boundary between passenger vehicles and single 
unit trucks for length-based classification stations, otherwise, the unavoidable errors in the axle classification will be 
amplified in the length-based classification scheme. 

Second are the classification errors that can be easily fixed. Upon the detailed review of the per-vehicle 
data, about a third of the classification errors could be eliminated by adjusting the classification decision tree. The 
original ODOT classification decision tree is shown in Table B-2 (Appendix B) and our modified axle-based 
classification decision tree is shown in Table 2-6. We used the data from one station to calibrate the new tree and 
evaluated the performance at another station. After making the changes, the axle-based classification decision tree 
was able to correctly classify an additional 10% of the SUT, with smaller improvements in almost every other 
metric. Ideally the new decision tree should be deployed at a few new locations and the performance validated, then 
assuming no problems are found, be adopted as the new standard classification decision tree. In any event, most of 
the improvements of the new decision tree should be incorporated in to standard practice (closing the gaps between 
bins, adding an "unclassifiable" class, and allowing for more than 4 axles in axle class 7). If communication costs 
are not a constraint, an even better solution would be to collect the pvr data, thereby allowing post-processing of the 
data, and thus, ODOT can apply new classification decision trees to historic data. 

Third come the errors that have yet to be discovered. As already noted, each classification station is 
calibrated differently. The quality of data collected depends on the operating agency to periodically calibrate, test, 
and validate the performance of classification sensors. Such studies are labor intensive and coarse, allowing over 
counting errors to cancel undercounting errors. To address these challenges, we developed a classification 
performance monitoring system to automatically monitor the health of the classification stations. We eliminate most 
of the labor demands and instead, deploy a LIDAR based portable non-intrusive vehicle classification system 
(PNVCS) to classify vehicles, concurrent with existing classification stations. To prevent classification errors from 
canceling one another in aggregate, we evaluate the data on a per-vehicle record basis. A human only looks at a 
given vehicle when the two systems disagree, and we developed tools to semi-automate the manual validation 
process, greatly increasing the efficiency and accuracy of the human user. The datasets in this study take only a few 
minutes for the user to validate an hour of data. Although we use a LIDAR based system, the tools at the heart of the 
methodology are transferable to many PNVCS such as the TIRTL or AxleLight. This pilot study used LIDAR 
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sensors mounted on a van. This approach offers a distinct advantage over the PNVCS since our system does not 
require any calibration in the field, in fact the van can be classifying vehicles as it pulls up to the site. For longer-
term deployments we envision a dedicated trailer that could be parked alongside the road.  

The Chapter 4 evaluation also revealed a chronic problem detecting motorcycles at the two ODOT 
permanent classification stations studied. While the LIDAR system detected 15 passing motorcycles, the 
classification stations correctly classified one of them, and missed five altogether. The LIDAR based PNVCS also 
offers a means to rapidly evaluate refinements in the conventional classification scheme, e.g., evaluating solutions to 
the large number of motorcycles that are misclassified or pass completely undetected. 

As this research has shown, there is wide variance in performance from one station to the next and these 
errors tend to have a higher frequency among the truck classes, particularly the SUT. Since these errors are a 
function of the specific station, there would be benefit in the short term if ODOT were to leverage the system 
developed in this research to evaluate the performance of many other classification stations. Thereby catching 
systematic errors that bias classification performance at the given station. 

This research and the outcomes have the promise to improve the accuracy of vehicle classification, which 
impacts operating agencies at many levels. The specific steps to implementation depend on the depth that ODOT 
wishes to pursue a given thrust. Some of the advances should be little or no cost, e.g., refining the classification 
decision tree. However, to ensure the changes are in the right direction ultimately someone would have to monitor 
progress, that task could either be handled by ODOT staff or be the subject of future research. 
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8 APPENDIX A: DETAILS OF THE CLASSIFICATION STATIONS 
 

 

 
Figure A-1, Location of axle classification stations. 
 
 

 
 

 
Figure A-2, Location of tube classification sites. 
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Figure A-3, Schematic of locations LIDAR data collected: (a) I-71 southbound, (b) I-270 southbound, 

(c) SR-315 northbound, (d) SR-33 northbound and southbound, (e) Wilson Rd northbound 
and southbound, (f) Dublin Rd northbound and southbound 
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Table A-1, 13 FHWA axle-based vehicle classes 

Vehicle Class Example (not to scale) 3 groups 4 groups 6 groups 

Class 1: Motorcycle  PV MC MC 

Class 2: Car  PV PV PV 
PVPT 

Class 3: other 2 axle, 4 tire single-unit vehicle  PV PV PV 
PVPT 

Class 4: Bus  SUT SUT SUT 
SUTPT 

Class 5: 2 axle, 6 tire, single-unit truck 
 

SUT SUT SUT 
SUTPT 

Class 6: 3 axle single-unit truck  SUT SUT SUT 
SUTPT 

Class 7: 4 or more axle single-unit truck  SUT SUT SUT 
SUTPT 

Class 8: 4 or fewer axle single-trailer truck  MUT MUT MUT 

Class 9: 5 axle single-trailer truck  MUT MUT MUT 

Class 10: 6 or more axle single-trailer truck  MUT MUT MUT 

Class 11: 5 or fewer axle multi-trailer truck  MUT MUT MUT 

Class 12: 6 axle multi-trailer truck 
 

MUT MUT MUT 

Class 13: 7 or more axle multi-trailer truck 
 

MUT MUT MUT 

Note: any class 1 through class 3 vehicle pulling a trailer should be assigned the same class as if the 
vehicle were not pulling a trailer. However any single-unit truck pulling a trailer should be assigned to a 
multi-unit truck class (e.g., a class 6 pulling a trailer with two axles is treated as a class 9). The final three 
columns map the axle class to the three different groupings used in this study. So in the 3 groups and 4 
groups PV pulling trailers (PVPT) are included with PV, and SUT pulling trailers (SUTPT) are included 
with MUT. While in the 6 groups PVPT and SUTPT are kept separate.  
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9 APPENDIX B: DETAILS OF PVR AND CLASSIFICATION SCHEMES ON I-270 AT 
RINGS RD. 

Table B-1 shows samples of 9 per-vehicle records from I-270. Axle bin indicates the original axle class 
assigned by the classifier. Similarly, the length bin represents length class that is determined by vehicle length in the 
pvr. Table B-2 enumerates the existing ODOT decision tree used to assign axle class based on the number of axles 
and axle spacing in the pvr.  

Table B-1, Details of pvr data in I270 

HH:MM:SS Lane
* 

Speed 
(mph) 

# of 
axles 

Length 
(ft) 

Axle 
bin 

Length 
bin 

Axle Spacing(ft)** 
S1 S2 S3 S4 

9:27:56 5 63.2 3 28.4 6 2 16.7 5.1 
  9:27:56 4 67 2 13 2 1 9.1 

   9:27:58 6 59.9 5 73.6 9 3 17.3 4.7 33.8 4.4 
9:27:58 5 62.4 2 15 2 1 10.2 

   9:27:58 4 68.3 2 20.5 3 1 13.9 
   9:28:00 5 64.7 2 15.8 2 1 10 
   9:28:01 6 57.9 2 13.2 2 1 8.9 
   9:28:02 5 64.6 2 12.9 2 1 8.9 
   9:28:03 5 64.7 4 45.2 3 3 13.8 18.4 3.3 

 
* : Lane 4, 5, and 6 correspond to lane 1 (median), 2, and 3(shoulder) on southbound I-270 
** : Si indicates axle spacing (ft) between ith axle and i+1th axle 
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Table B-2, ODOT axle based classification scheme 

Class # of 
axles Class name Spacing (ft) 

1 2~3 Motorcycle 1~5.8, any 
2 2~3 Car 5.9~10.2, 10~18.8 
3 2~3 other 2axle, 4tire single-unit veh 10.3~15, 10~18.8 
5 2 2 axle, 6tire, single-unit truck 15.1~24 
4 2~3 Bus 23.5~99.9, any 
8 3 4 or fewer axle single-trailer truck any, 18.1~99.9 
6 3 3 axle single-unit truck any, 3.5~8 
2 4~5 Class 2 pulling a trailer 1~10.2, any, 1~3.4, 1~3.4 
3 4~5 Class 3 pulling a trailer 10.3~15, any, 1~3.4, 1~3.4 
8 4 4 or fewer axle single-trailer truck any, 5.1~99.9, 3.5~99.9 
8 4 4 or fewer axle single-trailer truck any, 1~5, 10~99.9 
7 4 4 or more axle single-unit truck any, any, any 

11 5 5 or fewer axle multi-trailer truck any, 6.1~99.9, any, any 
9 5 5 axle single-trailer truck any, 1~6, any, 3.5~11 
3 5 other 2axle, 4tire single-unit veh w/ a trailer 9.9~14.9, any, any, 1~3.4 
5 5 2 axle, 6tire, single-unit truck w/ a trailer 15.1~24, any, any, 1~3.4 
9 5 5 axle single-trailer truck any, any, any, any 

10 6 6 or more axle single-trailer truck any, 3.5~8, 3.5~8, any, 8.1~99.9 
12 6 6 axle multi-trailer truck any, any, any, any, 8.1~99.9 

10 6~10 6 or more axle single-trailer truck any, any, any, any, 3.5~8, 3.5~8, 3.5~8, 3.5~8, 
3.5~8 

Note that the classifier proceeds through the decision tree in the table a vehicle is assigned to the first test 
that it passes. So if no class is found for the vehicle, that vehicle is assigned to class 13. This table 
represents the default settings and the thresholds manually set in the field classifier may be different. For 
example, at the I-270 station it turns out that there is an 0.5 ft difference between the thresholds in this 
table and those that we empirically deduced. Thus we include this offset when we apply the classification 
decision tree in this table to the I-270 dataset (e.g., Figure 2-5 and 2-6, and Table D-1).  



 

C-1 

10 APPENDIX C: PERFORMANCE OF THE CLASSIFICATION STATIONS 

Table C-1, Comparison between pvr and ground truth axle-class in (a) the I-70 dataset, (b) the SR-33 dataset 

(a) 

Axle classification station in I-70 Axle based vehicle classification % of 
row 

correct class 1 class 2 class 3 class 4 class 5 class 6	   class 7	   class 8 class 9 class 10 class 11 class 12 class 13 

M
an

ua
l F

H
W

A
 1

3 
ve

hi
cl

e 
cl

as
sif

ic
at

io
n 

class 1: Motorcycle 31 - - - - - - - - - - - - 
99.7% class 2: Car - 3663 21 - - - 2 - - - - - 1 

class 3: other 2axle, 4tire single-unit veh 1 2278 1500 - 1 - - 20 - - - - - 

class 4: Bus - - 1 2 11 - - 5 - - - - - 

60.9% class 5: 2 axle, 6tire, single-unit truck - 1 105 3 136 - - - - - - - - 

class 6: 3 axle single-unit truck - - - 1 - 95 4 - - - - - 1 

class 7: 4 or more axle single-unit truck - - - - - 1 1 2 9 39 - - - 

class 8: 4 or fewer axle single-trailer truck - - 12 - - 1 1 55 - - - - - 

97.8% 

class 9: 5 axle single-trailer truck - 1 - - - 15 - 10 1236 1 1 - - 

class 10: 6 or more axle single-trailer truck - - - - - 1 - 1 6 29 - -	   - 

class 11: 5 or fewer axle multi-trailer truck -	   -	   -	   -	   1 - - 2 - - 46 - - 

class 12: 6 axle multi-trailer truck - - - - - - - - - - - 14 - 

class 13: 7 or more axle multi-trailer truck - - - - - - - - - - - - 1 

% of column correct 98.4% 92.0% 94.8% 
 (b) 

Axle classification station in SR-33 PVR axle class % of 
row correct class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 class 12 class 13 

Manual 
ground truth 

PV - 908 219 - 2 - - 4 - - - - - 99.5% 

SUT - - 14 2 21 19 2 1 - 15 - - - 59.5% 

MUT - - - - - 1 - 3 42 1 1 - - 97.9% 

% of column correct 98.8% 93.6% 70.2% 
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10.1 Performance of the Pneumatic Tubes 
Although not included in the results presented in Chapter 2, we also manually examined the performance of the pneumatic tube sites. The results are 

summarized in this section. 

Table C-2, Summary statistics of ground truth data sets from pneumatic tubes. 

Location 
Tube stations 

Southbound 
Dublin Rd. 

Southbound 
Wilson Rd. 

Northbound 
Wilson Rd. 

Date Oct 28,2010 
Road Type Arterial 
Traffic Conditions Moderate Moderate Moderate 

Time duration investigated 7:42~8:56 
14:30~15:54 

10:18~10:57 
17:00~18:00 

9:08~9:54 
16:02~16:53 

Average Speed 36mph,38mph 41mph, 38mph 38mph,38mph 
Average Flow (per lane) 689vph, 326vph 220vph, 561vph 325vph,480vph 
# of vehicles 1317 712 664 
# of obscured vehicles 0 0 0 
Resolution of ground-truth PV, SUT, MUT PV, SUT, MUT PV, SUT, MUT 

 

Table C-3, Summary statistics of axle classification, for reference the top three rows come from Table 2-4. 

Station Location 
% of ground-truth vehicle 

correctly classified % correct of axle classification Overall 
PV SUT MUT PV SUT MUT 

Axle 
station 

I270 (SB) 99.6% 64.2% 96.5% 98.5% 97.1% 92.8% 97.9% 
I70 (EB) 99.7% 61.0% 97.8% 98.4% 92.4% 94.8% 97.7% 
SR33 (NB) 99.5% 59.5% 97.1% 98.8% 93.6% 70.1% 97.1% 

Tube 
station 

Dublin Rd. (SB) 94.5% 83.6% 100% 99.3% 61.3% 21.2% 94.1% 
Wilson Rd. (SB) 97.5% 90.9% 100% 99.9% 62.5% 60.7% 97.5% 
Wilson Rd. (NB) 96.5% 93.3% 100% 99.5% 80.8% 59.3% 96.4% 
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Table C-4, Comparison between pvr and ground truth axle-class in (a) the Dublin Rd. dataset, (b) the southbound Wilson Rd. dataset, (c) the 
northbound Wilson Rd. dataset 

(a) 

Axle classification station in 
Dublin Rd. 

PVR axle class % of 
row 

correct 
class 

1 
class 

2 
class 

3 
class 

4 
class 

5 
class 

6 
class 

7 
class 

8 
class 

9 
class 
10 

class 
11 

class 
12 

class 
13 

Manual 
ground truth 

PV 1 975 206 4 25 - - 40 - - - - - 94.5% 
SUT - 3 5 18 23 4 1 1 - - - - - 83.6% 
MUT - - - - - - - 10 1 - - - - 100% 

% of column correct 99.3% 61.3% 21.2% 
 (b) 

Axle classification station in  
southbound Wilson Rd. 

PVR axle class % of 
row 

correct 
class 

1 
class 

2 
class 

3 
class 

4 
class 

5 
class 

6 
class 

7 
class 

8 
class 

9 
class 
10 

class 
11 

class 
12 

class 
13 

Manual 
ground truth 

PV 1 588 78 - 6 - - 10 - - 1 - - 97.5% 

SUT - - 1 2 5 3 - - - - - - - 90.9% 

MUT - - - - - - - 13 4 - - - - 100% 

% of column correct 99.9% 62.5% 60.7% 
 (c) 

Axle classification station in  
northbound Wilson Rd. 

PVR axle class % of 
row 

correct 
class 

1 
class 

2 
class 

3 
class 

4 
class 

5 
class 

6 
class 

7 
class 

8 
class 

9 
class 
10 

class 
11 

class 
12 

class 
13 

Manual 
ground truth 

PV 1 472 109 1 9 - - 11 - - - - - 96.5% 

SUT - - 3 4 37 1 - - - - - - - 93.3% 

MUT - - - - - - - 4 11 - 1 - - 100% 

% of column correct 99.5% 80.8% 59.3% 
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Table C-5, Comparison between pvr axle class and ground truth vehicle type in (a) the Dublin Rd. dataset, (b) the southbound Wilson Rd. 
dataset, (c) the northbound Wilson Rd. dataset 

(a) 

Dublin Rd. (SB) 
PVR axle class 

% of row correct 
Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 1182 29 40 94.5% 
SUT 8 46 1 83.6% 
MUT 0 0 11 100% 

% of column correct 99.3% 61.3% 21.2% 94.1% 
(b) 

Wilson Rd (SB) 
PVR axle class 

% of row correct 
Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 667 6 11 97.5% 
SUT 1 10 0 90.9% 
MUT 0 0 17 100% 

% of column correct 99.9% 62.5% 60.7% 97.5% 
(c) 

Wilson Rd (NB) 
PVR axle class 

% of row correct 
Passenger Single-unit truck Multi-unit truck 

Manual 
ground truth 

PV 582 10 11 96.5% 
SUT 3 42 0 93.3% 
MUT 0 0 16 100% 

% of column correct 99.5% 80.8% 59.3% 96.4% 
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11 APPENDIX D: TWO-AXLE SUT WITH SHORT AXLE SPACING 
Figure D-1 shows a histogram of axle spacing for misclassified class 5 with the thresholds (after accounting 

for the offset discussed in Appendix B) of class 2 and class 3 in Table B-2.  

 
Figure D-1, Minimum and maximum axle spacing of misclassified class 5 as class 2 and class 3 

  

Boundary for Class 2 

Boundary for Class 3 
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12 APPENDIX E: LIDAR BASED VEHICLE CLASSIFICATION BY LOCATION 
 

Table E-1, Comparison of LIDAR based vehicle classification and actual vehicle class from I-71 
southbound free flow. 

I-71 SB  
FF  

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
occluded vehicles that  

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth  
data 

MC 9 1 0 0 0 0 10 90.0% 1 

PV* 
PV 0 1,390 2 0 0 0 1,392 99.9% 297 

PVPT 0 1 14 0 0 0 15 93.3% 3 
SUT 0 0 1 33 0 2 36 91.7% 1 

MUT* 
SUPT 0 0 0 0 1 0 1 100% 0 
MUT 0 0 0 0 1 47 48 97.9% 9 

Number of vehicles 
from LIDAR vehicle 

 classification 
9 1,392 17 33 2 49 1,502 99.5% 311 

% correct 100% 99.9% 82.4% 100% 50% 95.9% 99.5%   
 

Table E-2, Comparison of LIDAR based vehicle classification and actual vehicle class from I-71 
southbound mild-congested. 

I-71 SB  
Mild-congested 

LIDAR vehicle classification Number of 
vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 0 0 0 0 0 0 0 100% 0 

PV* 
PV 1 1,939 1 4 0 0 1,945 99.7% 568 

PVPT 0 0 9 0 0 0 9 100% 1 
SUT 0 1 0 34 0 0 35 97.1% 5 

MUT* 
SUPT 0 0 0 0 1 0 1 100% 0 
MUT 0 0 0 0 0 38 38 100% 17 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 1,940 10 38 1 38 2,028 99.7% 591 

% correct 0% 99.9% 90.0% 89.5% 100% 100% 99.7%   
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Table E-3, Comparison of LIDAR based vehicle classification and actual vehicle class from I-270 
southbound free flow. 

I-270 SB  

LIDAR vehicle classification Number of 
vehicles  

from ground 
truth data 

% correct 

Number of partially 
occluded vehicles that 

are excluded from 
LIDAR based vehicle 

classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 3 2 0 0 0 0 5 60.0% 0 

PV* 
PV 6 10,205 2 11 0 0 10,224 99.8% 1,156 

PVPT 0 2 138 6 3 1 150 92.0% 20 
SUT 0 20 4 479 3 2 508 94.3% 49 

MUT* 
SUPT 0 0 4 1 21 5 31 67.7% 2 
MUT 0 0 3 7 5 1,088 1,103 98.6% 149 

Number of vehicles 
 from LIDAR vehicle 

 classification 
9 10,229 151 504 32 1,096 12,021 99.3% 1,376 

% correct 33.3% 99.8% 91.4% 95.0% 65.6% 99.3% 99.3%   
  
 

Table E-4, Comparison of LIDAR based vehicle classification and actual vehicle class from SR-315 
northbound free flow. 

SR-315 NB  

LIDAR vehicle classification Number of 
vehicles  

from ground 
truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
truth 
data 

MC 24 1 0 0 0 0 25 96.0% 4 

PV* 
PV 3 6,085 0 0 0 0 6,088 100% 642 

PVPT 0 0 15 0 0 0 15 100% 4 
SUT 0 5 0 70 0 0 75 93.3% 7 

MUT* 
SUPT 0 0 0 0 2 0 2 100% 0 
MUT 0 0 0 1 0 34 35 97.1% 3 

Number of vehicles 
from LIDAR vehicle 

classification 
27 6,091 15 71 2 34 6,240 99.8% 660 

% correct 88.9% 99.9% 100% 98.6% 100% 100% 99.8%   
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Table E-5, Comparison of LIDAR based vehicle classification and actual vehicle class from Dublin Rd 
southbound. 

 Dublin Rd SB 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 2 0 0 0 0 0 2 100% - 

PV* 
PV 0 1,258 0 0 0 0 1,258 100% - 

PVPT 0 0 19 0 0 0 19 100% - 

SUT 0 2 0 51 1 0 54 94.4% - 

MUT* 
SUPT 0 0 2 1 3 1 7 42.9% - 

MUT 0 0 0 0 0 4 4 100% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
2 1,260 21 52 4 5 1,344 99.5% - 

% correct 100% 99.8% 90.5% 98.1% 75.0% 80.0% 99.5%   
 
 

Table E-6, Comparison of LIDAR based vehicle classification and actual vehicle class from Wilson 
Rd northbound. 

 Wilson Rd NB 

LIDAR vehicle classification Number of 
 vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 1 0 0 0 0 0 1 100% - 

PV* 
PV 0 599 0 0 0 0 599 100% - 

PVPT 0 0 5 0 0 0 5 100% - 
SUT 0 2 0 43 0 0 45 95.6% - 

MUT* 
SUPT 0 0 0 0 1 0 1 100% - 
MUT 0 0 0 0 0 15 15 100% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 601 5 43 1 15 666 99.7% - 

% correct 100% 99.7% 100% 100% 100% 100% 99.7%   
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Table E-7, Comparison of LIDAR based vehicle classification and actual vehicle class from Wilson 
Rd southbound. 

 Wilson Rd SB 

LIDAR vehicle classification Number of 
vehicles 

from ground 
 truth data 

% correct 

Number of partially 
 occluded vehicles that 

are excluded from 
 LIDAR based vehicle 

 classification MC 
PV* 

SUT 
MUT* 

PV PVPT SUPT MUT 

Ground 
 truth  
data 

MC 1 0 0 0 0 0 1 100% - 

PV* 
PV 0 676 0 0 0 0 676 100% - 

PVPT 0 0 6 0 0 0 6 100% - 
SUT 0 0 0 11 0 0 11 100% - 

MUT* 
SUPT 0 0 0 0 3 0 3 100% - 
MUT 0 0 0 1 0 13 14 92.9% - 

Number of vehicles  
from LIDAR vehicle 

 classification 
1 676 6 12 3 13 711 99.9% - 

% correct 100% 100% 100% 91.7% 100% 100% 99.9%   
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13 APPENDIX F: COMPARISON OF PSEUDO GROUND TRUTH DATA AND AXLE 
VEHICLE CLASSIFICATION BY LOCATION 

Throughout this appendix: PV* includes passenger vehicle and passenger vehicle pulling a trailer; and 
MUT* includes single unit truck pulling a trailer and multiple unit truck. 

 

Table F-1, Comparison of pseudo ground truth data and axle vehicle classification at I-270 southbound 
adjacent to LIDAR sensor. 

I-270 SB  
Axle vehicle classification Number of LIDAR 

 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 2 4 0 0 7 14% 0 

PV* 1 10,416 8 56 80 10,561 99% 0 

SUT 0 153 303 41 3 500 61% 0 

MUT* 0 28 4 1,101 7 1,140 97% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 2 10,599 319 1,198 90 12,208 -  0 

% correct 50% 98% 95% 92%  - -  97% - 

Totally occluded vehicles 1 252 2 2  - 257 -  - 
 

Table F-2, Comparison of pseudo ground truth data and axle vehicle classification at Dublin Rd 
southbound adjacent to LIDAR sensor. 

 Dublin Rd SB  
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 1 0 0 2 50% 0 

PV* 0 1,183 28 41 30 1,282 92% 0 

SUT 0 6 46 0 1 53 87% 0 

MUT* 0 0 0 11 0 11 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total 1 1,189 75 52 31 1,348 -  0 

% correct 100% 99% 61% 21%  - -  92% - 

Totally occluded vehicles 0 0 0 0  - 0 -  - 
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Table F-3, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
northbound adjacent to LIDAR sensor. 

Wilson Rd NB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0 0 1 100% 0 

PV* 0 583 10 11 8 612 95% 0 

SUT 0 1 42 0 0 43 98% 0 

MUT* 0 0 0 16 0 16 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 584 52 27 8 672 -  0 

% correct 100% 100% 81% 59%  -  - 96% - 

Totally occluded vehicles 0 0 0 0  - 0 -  - 
 
 

Table F-4, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
southbound adjacent to LIDAR sensor. 

Wilson Rd SB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0 0 1 100% 0 

PV* 0 666 6 11 10 693 96% 0 

SUT 0 1 10 0 0 11 91% 0 

MUT* 0 0 0 17 0 17 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 667 16 28 10 722  - 0 

% correct 100% 100% 63% 61%  -  - 96% - 

Totally occluded vehicles 0 0 0 0  -	   0	    -	   -	  
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Table F-5, Comparison of pseudo ground truth data and axle vehicle classification at SR-33 
northbound adjacent to LIDAR sensor. 

 
 

Table F-6, Comparison of pseudo ground truth data and axle vehicle classification at Dublin Rd 
northbound on the opposite side of LIDAR sensor. 

 Dublin NB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 1 0 2 50% 0 

PV* 1 748 21 18 7 795 94% 0 

SUT 1 5 55 2 0 63 87% 0 

MUT* 0 0 0 6	   0 6 100% 0 
Non-vehicle  

actuation in axle data 2 2 0 0  - 4  - - 

Column total above 5 755 76 27 7 870  - 0 

% correct 20% 99% 72% 22%  -  - 93% - 

Totally occluded vehicles 0 5 0 0  - 5  - - 
 

SR-33 NB 
adjacent  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 0 2 3 5 0% 0 

PV* 0 1,057 2 2 53 1,114 95% 0 

SUT 0 12 44 15 8 79 56% 0 

MUT* 0 0 1 47 6 54 87% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 0 1,069 47 66 70 1,252  - 0 

% correct - 99% 94% 71% -   - 92% - 

Totally occluded vehicles 0 8 0 0  - 8  - - 
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Table F-7, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
northbound on the opposite side of LIDAR sensor. 

Wilson NB 
opposite  

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 0 0 0 0 - 0 

PV* 0 647 7	   7 7 668 97% 0 

SUT 0 1 16 0 0 17 94% 0 

MUT* 0 0 0 11 0 11 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 0 648 23 18 7 696 -  0 

% correct - 100% 70% 61%  -  -	   97% - 

Totally occluded vehicles 0 5 0 0  - 5 -  - 
 
 

Table F-8, Comparison of pseudo ground truth data and axle vehicle classification at Wilson Rd 
southbound on the opposite side of LIDAR sensor. 

 Wilson SB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 1 0 0 0	   0 1 100% 0 

PV* 0 628 9 12 18 667 94% 0 

SUT 0 2 16 0 0 18 89% 0 

MUT* 0 0 0 10 0 10 100% 0 
Non-vehicle  

actuation in axle data 0 0 0 0  - 0 -  - 

Column total above 1 630 25 22 18 696  - 0 

% correct 100% 100% 64% 45%  - -  94% - 

Totally occluded vehicles 0 10 0 0  - 10  - - 
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Table F-9, Comparison of pseudo ground truth data and axle vehicle classification at SR-33 
southbound on the opposite side of LIDAR sensor. 

 SR-33 SB 
opposite 

Axle vehicle classification Number of LIDAR 
 vehicles not  
detected by 
 axle sensor 

Row  
total 

% 
 correct 

Non-vehicle 
actuation in 
LIDAR data MC PV* SUT MUT* 

Pseudo 
ground 

truth data 

MC 0 0 1 0 2 3 0% 0 

PV* 0 1,073 3 2 76 1,154 93% 0 

SUT 0 15 42 21 13 91 46% 0 

MUT* 1 2 4 37 3 47 79% 0 
Non-vehicle  

actuation in axle data 0 1 0 0  - 1 -  - 

Column total above 1 1,091 50 60 94 1,296 -  0 

% correct 0% 98% 84% 62%  -  - 89% - 

Totally occluded vehicles 0 65 2 1  - 68 -  - 
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14 APPENDIX G: COMPARISON OF PSEUDO GROUND TRUTH DATA AND LENGTH 
BASED VEHICLE CLASSIFICATION BY LOCATION 

Throughout this appendix: PV** includes motorcycle, passenger vehicle, and passenger vehicle pulling a 
trailer; and MUT* includes single unit truck pulling a trailer and multiple unit truck. 

 

Table G-1, Comparison of pseudo ground truth data and length based vehicle classification from I-71 
southbound free flow. 

I-71 SB 
Free flow 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,372 19 4 33 1,428 96% 0 

SUT 9 16 5 2 32 50% 0 

MUT* 0 3 48 0 51 94% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 1,381 38 57 35 1,511 - 0 

% correct 99% 42% 84% - - 95% - 

Totally occluded vehicles 46 0 1 -	   47 - - 

 
 

Table G-2, Comparison of pseudo ground truth data and length based vehicle classification from I-71 
southbound semi-congested. 

I-71 SB 
Semi-congested	  

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,917 25 1 24 1,967 97% 0 

SUT 14 23 1 0 38 61% 0 

MUT* 0 1 39 0 40 98% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 1,931 49 41 24 2,045 - 0 

% correct 99% 47% 95% - - 97% - 

Totally occluded vehicles 130 0 0 - 130 - - 
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Table G-3, Comparison of pseudo ground truth data and length based vehicle classification from I-270 
southbound. 

I-270 SB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 10,221 189 56 80 10,546 97% 0 

SUT 37 467 2 3 509 92% 0 

MUT* 18 8 1,120 7 1,153 97% 0 

Non-vehicle actuation  
in loop detector data 0 0 0 - 0 - - 

Column total above 10,276 664 1,178 90 12,208 - 0 

% correct 99% 70% 95% - - 97% - 

Totally occluded vehicles 249 5 3  - 257  - - 

 
 

Table G-4, Comparison of pseudo ground truth data and length based vehicle classification from SR-
33 northbound. 

SR-33 NB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,047 12 2 56 1,117 94% 0 

SUT 17 56 0 8 81 69% 0 

MUT* 1 3 44 6 54 81% 0 

Non-vehicle actuation  
in loop detector data 0 0 0  - 0 - - 

Column total above 1,065 71 46 70 1,252 - 0 

% correct 98% 79% 96% - - 92% - 

Totally occluded vehicles 8 0 0  - 8  - - 
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Table G-5, Comparison of pseudo ground truth data and length based vehicle classification from SR-
33 southbound. 

SR-33 SB 

Length class from  
loop detector 

Number of  
LIDAR vehicles  

not detected 
 by loop detector 

Row  
total 

%  
correct 

Non-vehicle 
actuation in 
LIDAR data Class 1 Class 2 Class 3 

Pseudo  
ground  

truth data 

PV** 1,066 11 3 78 1,158 92% 0 

SUT 48 28 0 13 89 31% 0 

MUT* 2 8 35 3 48 73% 0 

Non-vehicle actuation  
in loop detector data 1 0 0 - 1 - - 

Column total above 1,117 47 38 94 1,296 - 0 

% correct 95% 60% 92% - - 87% - 

Totally occluded vehicles 65 2 1 - 68  - - 

 
 


