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SI (MODERN METRIC) CONVERSION FACTORS (from FHWA) 

APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.2 square millimeters mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square kilometers km2 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or "metric 
ton") 

Mg (or "t") 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

°F Fahrenheit 5 (F-32)/9 
or (F-32)/1.8 

Celsius °C 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fl foot-Lamberts 3.426 candela/m2 cd/m2 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

Lbf * poundforce 4.45 newtons N 

kip kip force 1000 pounds lbf 

lbf/in2 poundforce per square inch 6.89 kilopascals kPa 
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APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

mm millimeters 0.039 inches in 

m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 

°C Celsius 1.8C+32 Fahrenheit °F 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

lx  lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per square 
inch 

lbf/in2 

*SI is the symbol for International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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EXECUTIVE SUMMARY 

 
Current load and resistance factored design (LRFD) codes (Florida Department of 

Transportation (FDOT); and American Association of State Highway and Transportation 

Officials (AASHTO) list resistance factor, Ԅ, values for a variety of deep foundation design 

approaches e.g., [standard penetration test blow count (SPT N), cone penetration test(CPT), rock 

compressive strength (qu)].  All of the reported values were established from comparison of load 

test resistance with predictions from nearby borings.  However, none of the evaluations 

accounted for the inherent spatial variability that exists from site-to-site or from layer-to-layer on 

a site.  This site or layer variability may be represented by coefficient of variation, CV, or the 

variance of the soil/rock properties divided by the mean value.  For example, variability( CV) 

varies from 0.4 to 0.8 for rock and 0.3 to 0.7 for SPT N for soils in Florida.   

Besides point variability (CV), the soil/rock properties are generally spatially correlated, 

i.e., transition from weak to strong or vice versa as a function of distance.  Examples of 

correlation length vary from 3 ft up to 15 ft for Florida soils and rocks.  Depending on the site’s 

correlation structure, as well as point variability (CV), the uncertainty of a pile or shaft axial 

resistance will vary.  Also contributing to the pile or shaft’s total uncertainty of resistance and 

the resulting LRFD Ԅ, is the uncertainty of the method ߪఢଶ, which is associated with the 

prediction method, construction practices, etc.  The use of databases, or more recently the use of 

load testing, on the site allows the evaluation of ߪఢଶ on a site-by-site basis. 

The first research to account for site-specific variability in LRFD Ԅ was FDOT research 

project BD545-76.  Specifically, site-specific Ԅ was developed from total uncertainty ߪோ
ଶ, which 

was found as the sum of both the spatial uncertainty ߪ௦ଶ and method uncertainty ߪఢଶ.  Since this 

work focused on only skin friction of drilled shafts, there was great interest to extend this work 

to include end bearing, other types of foundations (e.g., piles), other in situ methods (CPT) and 
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boring locations, as well as automation, i.e., assisting the engineer in assessing site 

characteristics (layering, summary statistics, and correlation structure). 

To assist the engineer with the development of LRFD Ԅ on a site-by-site basis for any 

foundation type, a graphical user interface (GUI) was developed independently of pile/shaft 

analysis software (e.g., FB-DEEP).  Using the GUI, the engineer reads in all boring (SPT and 

rock strength) data and laboratory data for the site for a geostatistical analysis.  Specifically, they 

will break the site into zones and layers to determine point variability of each CV, as well as 

spatial correlation structure (vertical and horizontal variograms).  Next, using kriging techniques, 

the GUI allows the engineer to estimate boring data with uncertainty (unconditional-all borings, 

or conditional-nearest boring) from which the design software (e.g., FB-DEEP) may be run to 

assess both the mean pile/shaft resistance, as well its spatial uncertainty.  Subsequently, the GUI 

allows the engineer to add either site-specific method uncertainty or default values to determine 

total uncertainty CVR from which site specific LRFD Ԅ and recommended design resistance 

ԄRN as a function of depth is found. 

The developed design approach, geostatistical (GUI) in combination with FB-DEEP, was 

subsequently used on seven bridge sites throughout Florida with variable amounts of field in situ, 

laboratory and field test results.  The investigation revealed that LRFD Ԅ varied from a low of 

0.17 to a high of 0.8 over the sites as a function of depth, site investigation, and load testing.  For 

instance, sites with minimal knowledge on vertical correlation (i.e., av) and samples (e.g., 18 

rock core samples) had a Ԅ value of 0.39, whereas another site with both vertical and horizontal 

in situ information had a Ԅ value of 0.7.  The research concludes with a discussion of 

recommendations to assist design engineers in assessing Ԅ for a site, as well as recommendations 

on increasing Ԅ on a site-by-site basis. 
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 1

CHAPTER 1 
INTRODUCTION 

 

1.1  Background 

The supports for most Florida Department of Transportation (FDOT) structures (bridges, 

elevated roadways, signage, etc.) are deep foundations (piles, drilled shafts, etc.).  Generally, the 

dimensions of the foundation elements have gone from small to large (e.g., 18-inch to 30-inch 

pile, 42-inch to 84-inch drilled shaft); having fewer elements to reduce the size of the 

foundation’s footprint (right-of-way issues) as well as lower costs.  Unfortunately, fewer larger 

elements with higher volume-to-surface-area ratios result in higher variance of axial pile/shaft 

resistances.  In addition, coastal bridge sites have observed large variability of soil properties.  

For example standard penetration test blow count (SPT N), cone penetration test (CPT), rock 

compressive strength (qu) can have coefficient of variation (CV) range between 0.3 and 0.8, 

which can also be spatial correlated.  Spatial variability is shown in Figure 1-1 for rock strength 

(cohesion) for 17th Street Bridge in Fort Lauderdale and Fuller Warren Bridge, Jacksonville. 

 
Figure 1-1.  Mean and standard deviation of rock strength in boreholes: (a) 17th Street Bridge, 

Fort Lauderdale; and (b) Fuller Warren, Jacksonville. 
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The values next to each borehole are the mean and standard deviation in units of tons per 

square foot (tsf; 1 tsf =95.8 kPa) of the rock cohesion (c) over the depth of the borehole.  In the 

case of Fuller Warren, two separate layers are present with the bottom two sets representing each 

layer value and the top set corresponding to the combined or single borehole value.  Evident 

from both sites, significant difference in mean values exists from boring to boring (maximum 

200%) over finite separation distances (from 15 ft to 40 ft separating).  Unfortunately, the spatial 

borehole mean uncertainty translates into similar pile/shaft axial capacity uncertainty. 

To account for uncertainty, the FDOT, Federal Highway Administration (FHWA), etc., 

have moved away from allowable stress design (ASD) to load and resistance factored design 

(LRFD) for deep foundations.  Since LRFD models both the loads and the resistances on the 

pile/shaft as random variables, the resistance factors (Ԅ) are assessed based on a reliability 

analysis (i.e., probability of load being greater than resistance).  Using a database of load tests 

with adjacent boring/laboratory tests in Florida, the FDOT established LRFD resistance factors 

based on reliability indices of 2.5 to 3.0 (probability of failure 1/100 to 1/1000).  For instance, 

shown in Figure 1-2 are current FDOT resistance factors for drilled shafts embedded in Florida 

limestone. 

Unfortunately, at the time of the original FDOT LRFD development McVay et al. (1998), 

the databases contained load test results with a single boring (nearest) and little, if any, site 

spatial information.  A recent FDOT study BD545-76 revealed that Florida site variability (CV) 

ranges from 0.3 to 0.8 for soil/rock data, and the soil/rock properties are spatially correlated, e.g., 

Figure 1-1.  Consequently, FDOT BD545-76 separated total uncertainty of pile/shaft resistance 

into spatial and method (e.g., FB-DEEP, etc.) uncertainty.  In the case of spatial uncertainty, 

plots of variance reduction () for borings in the footprint (Figure 1-3) or unconditional (all 

borings, Figure 1-4) were developed for drilled shafts founded in Florida limestone.  For 
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instance, knowing the mean and CVc of the rock strength and correlation lengths (av, ah) with 

shaft dimensions (L, D), the shaft’s resistance uncertainty due to spatial variability √ܥߙ ௤ܸ may 

be assessed from Figure 1-3 or 1-4.  Adding the spatial variance to method error variance, the 

total uncertainty of the shaft resistance (CVR) may be assessed using American Association of 

State Highway and Transportation Officials (AASHTO 2004) first order second moment 

(FOSM) approach, Figure 1-5.  The LRFD Ԅ for the design may be determined as function of 

reliability (), or probability of failure.  

 

 
 

Figure 1-2.  Resistance factors table for drilled shafts socketed into limestone 
fromFDOTStructural Design Manual. 
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Figure 1-3.  Variance reduction  as function of shaft length L, diameter D, and verticalav and 
horizontal ah correlation lengths, boring in footprint. 

 

 
Figure 1-4.  Unconditional variance reduction  as function of shaft length L, diameter D, and 

vertical av and horizontal ah correlation lengths. 
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Figure 1-5.  AASHTO (2004) LRFD Ԅ as function of CVR and reliability . 
 

1.2  Objective and Supporting Tasks 
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DEEP) to assess spatial uncertainty which had to be added to method error to obtain pile/shaft 

uncertainty and LRFD Ԅ as a function of depth.  To achieve this goal, the following four tasks 
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1.2.1 Task 1 – Collection of Boring and Static Load Test Data 

For the verification, implementation, etc., it is important that static load tests on piles and 
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conservative estimate of method error based on prior load testing may be used to assess LRFD 

Ԅ.  However with load testing, the relationship between mean load test results and predicted 

boring resistance may be established on a specific site (bias correction).  The latter requires SPT 

or CPT boring in the footprint (removes spatial uncertainty) of the test piles/shafts.  Besides 

Jewfish Creek, data from other sites with load testing and borings within the footprint must be 

collected.   

1.2.2 Task 2 – Development of LRFD ૖ for Combined Side and Tip Resistance 

As identified earlier, this effort is to extend BD545-76 LRFD Ԅ assessment to other deep 

foundation types.  For piles and short shafts founded in strong soils/rock, a significant portion of 

total pile/shaft capacity will be provided by tip resistance.  Consequently, the work must be 

extended to include total pile/shaft capacity, i.e., side resistance plus tip resistance.  Like side 

resistance, the work must identify the variance reduction for tip resistance.  For example, FB-

DEEP assesses tip resistance by considering the blow count 3.5 diameters below the pile and 8 

diameters above it.  Specifically, each SPT N value within this zone is converted to a tip 

resistance and, subsequently, averaged.  The latter averaging process results in a variance 

reduction in the estimated tip resistance and must be considered in assessing total capacity 

variance.  Similarly within the bearing layer, the skin friction is adjusted based on tip resistance 

(i.e., friction ratio Rf) which introduces the covariance (i.e., variance of side resistance as a 

function of tip resistance) and must be considered.  The work should consider the typical design 

approaches used by FDOT, such as the FB-DEEP method for pile design based on SPT or CPT. 

1.2.3 Task 3 – Development of Expected Measured Load Test Resistance versus 
Predicted Boring Resistance Relationships with Uncertainty of Method ࣌ࢿ૛ 

Using the load test data collected in Task 1, the bias R (measured divided by predicted) in 

AASHTO (2004) LRFD assessment will be replaced by mean predicted resistance mL, which is 
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estimated from the mean borehole resistance mB through linear regression coefficients a 

(intercept) and b (slope).  Conservative values of the a and b coefficients as well as uncertainty 

of method (ߪఌଶ)  must be established for each of the design methods of interest, e.g., FB-DEEP 

SPT or CPT for cases where no load test data are available for site specific LRFD Ԅ assessment.  

The work will also investigate the separate treatment of side and tip resistance (separate 

assessment of method error), as well as total pile capacity.  The latter is needed for skin friction 

piles (i.e., uplift loads).  Also, the work will consider Davisson and ultimate capacities of the 

piles.  

1.2.4 Task 4 – Development of Nomographs or Spreadsheets for LRFD ૖ 
Implementation 

To assist with the design verification, simple nomographs or spread sheets were originally 

planned to automatically compute variance reduction (e.g., Figure 1-3) for single pile/shafts or 

multiple pile/shafts along with LRFD Ԅ assessment.  In addition, for the covariance (i.e., 

correlation lengths av and ah), a simple generic spreadsheet, which considered SPT N or CPT qc 

values, was planned.  However, during the completion of the work it was realized that the SPT N 

data may not be evenly spaced and the tip averaging is greatly influenced on strength of soil 

above the bearing layer, thus, conditioning from boring not in the footprint but within the 

correlation length ah should be considered.   

Therefore, it was decided to develop GUI that reads in all the borings on the site.  Then the 

user defines layers, detrending of data ( Kitanidis, 1997, bias removal), and the GUI computes 

each layer’s summary statistics (mean and variance), and with user input it establishes spatial 

correlation parameters (av and ah).  Next, the user identifies the type of deep foundation (e.g., pile 

or drilled shaft) and type of analysis (unconditional using all borings or conditional using 

specific boring), and then the GUI generates thousands (e.g., 2 to 5 thousand) of boring profiles.  
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All of the latter boring profiles are run automatically through FB-DEEP (batch mode), and the 

GUI assesses the spatial uncertainty of side, tip, and total capacity.  Subsequently, the method 

error is added to the spatial uncertainty, and the GUI computes total uncertainty (CVR), the 

LRFD Ԅ, and the recommended design resistance ԄRn as a function of depth.     

1.2.5 Task 5 – Case Studies of LRFD ૖ Assessment Considering Spatial Variability 

Very important in the development and acceptance of LRFD Ԅ with spatial soil/rock 

variability with load testing is a comparison with existing practice.  Since Task 1 involves the 

collection of load testing results with boring data, the proposed pile/shaft design process (i.e., 

GUI) was used on multiple FDOT sites.  The comparison considered both with and without load 

testing, as well as boring within the footprint or nearby.  Multiple foundation types were 

investigated (i.e., piles and shafts), as well as multiple sites with different soil/rock conditions 

(i.e., number of borings, establishing horizontal spatial correlation, etc.).  Also identified 

suggestions to improve a given site design.  For instance, the discussion considered load testing 

or collecting more vertical or horizontal boring data. 

1.2.6 Task 6 – Addition of Site Specific Data to the FDOT Database 

Task 6 concerns the recovery and storage of all the static load test results, boring data 

(SPT/CPT), and laboratory strength data in the FDOT database for future use of FDOT.  All of 

the data (SPT, CPT and laboratory data) were uploaded into the FDOT database using “in situ” 

and “lab test” Excel sheets located at (fdot.ce.ufl.edu/applications.html).  Seven FDOT sites were 

uploaded and analyzed for this project. 
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CHAPTER 2 
SPATIAL VARIABILITY ANALYSIS  

 

2.1  Introduction 

In the evaluation of the effects of spatial variability on LRFD Ԅ factors of a deep 

foundation, in situ data (i.e., SPT-N, CPT-qt, rock strength-qu) must be obtained for capacity 

assessment.  Depending on the calculation method (FB-DEEP), one or more in situ properties 

may be required.  In a statistical sense this will require either a univariate (one variable) or 

multivariate analysis for multiple random variables that may be correlated.  Additionally, these 

in situ parameters will also have an associated location in space (x-longitude, y-latitude, 

z-elevation).  Depending on their separation distance, the values of the information may also be 

related (i.e., spatially correlated). 

The study of spatially correlated random data started in the 1950s in the mining industry.  

It has experienced strong theoretical and practical developments with a number of introductory 

texts for engineers by Isaaks and Srivastava (1989) and Deutsch (2002).  It has been expanded 

and applied to other fields, including agriculture, petroleum industry, environmental and other 

natural resources.  Tools developed in this field can be readily applied to evaluate spatial 

variability of any site for the design of deep foundations.  A discussion of the application of these 

tools follows. 

2.2  Description of Site with a Random Variable  

In a geostatistical analysis, any in situ measurement (e.g., SPT-N, CPT-qc, etc.) becomes 

the random variable of interest over a spatial domain.  To define this random variable requires a 

univariate analysis to determine the probability density function (PDF), which accounts for its 

mean, variance, and distribution type (i.e., normal, log-normal, etc.).  Additionally, any apparent 
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spatial correlation must also be quantified.  When performing a geostatistical analysis, it is 

assumed that the PDF and spatial correlation are constant throughout the spatial domain (i.e., 

layer) of interest.  This is referred to as stationarity, a requirement needed for a geostatistical 

analysis.   

The geostatistical analysis of a site begins with the determination of sub domains, layers, 

which are generally identified by inspection of in situ data as a function of depth.  For instance, 

the delineation of a layer is either by constant or trending (i.e., higher or lower) mean over a 

specific depth interval.  Examples of this process are shown in Figure 2-1, where Part A 

represents a site with two separate layers which have significant different mean values.  Part B 

has two layers where Layer I is identified by a linear trend over its depth interval, and Layer II 

by a constant mean.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1.  Example of layer identification. 
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(i.e., fixed mean with depth).  For a layer with a visible trend, the analysis should begin by fitting 

the apparent trend with a polynomial (recommended up to a 2nd order) as a function of depth.  

Next, the in situ properties for the layer are decomposed into two parts, the mean trend 

(polynomial function) and the random residual about that trend.  An illustration of this can be 

seen in Figure 2-2, where the two components are added to obtain the representative behavior of 

the layer.  Then, the trend is subtracted from the observed data to determine the spatial fluctua-

tion about the trend.  This component is used in the geostatistical analysis (i.e., identification of 

spatial correlation, etc.), and it meets the requirement of stationarity.  Again, it is important to 

note that the observed trend information must be saved and added to the results of the spatial 

variability analysis (discussed later).   

 
Figure 2-2.  Separation of random residual from deterministic trend. 
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distributions are present within the zone or layer by the presence of multiple peaks or modes 

shown within the histogram.   

In addition to the histogram, both the mean and variance of the data set (e.g., qi ) should be 

found, 

ߤ  ൌ ଵ

௡
∑ ௜ݍ
௡
௜ୀଵ  Eq. 2.1 

ଶߪ  ൌ ଵ

௡ିଵ
∑ ሺݍ௜ െ ሻଶ௡ߤ
௜ୀଵ             Eq. 2.2 

With these summary statistics, the coefficient of variation (CV) can be calculated as 

ܸܥ  ൌ ఙ

ఓ
                    Eq. 2.3 

CV is a dimensionless quantity that represents the spread or dispersion of the data about the 

mean. 

Based on the shape of the histogram’s distribution, as well as summary statistics (mean vs. 

mode, etc.), an engineer should select the best PDFs that represent the measured data (e.g., 

normal, log-normal, etc.).  Note, most soil properties (e.g., strength, modulus, etc.) have no 

negative values and have large ranges in values giving rise to significant differences in mode 

(most frequent) versus mean values and are best characterized through log-normal distributions. 

2.2.2 Spatial Correlation and Variogram 

In many instances, engineers fail to realize that geotechnical data are spatially variable, 

which may lead to unsafe foundation designs.  A good indicator of spatial variability is simple 

evaluation of mean boring values within a zone or layer.  For example, evaluation of mean 

strengths (e.g., cohesion or unconfined compression) from one boring to another at 17th Street 

Bridge in Fort Lauderdale (< 50-ft spacing), and Fuller Warren Bridge in Jacksonville (< 75-ft 

spacing) exhibit changes of 165% and 200%, respectively.  This difference is directly attributed 

to spatial variability across a site and will result in similar variability in deep foundation axial 
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capacities.  Moreover, since spatial variability generally possesses a certain degree of correlation, 

which decays with distance, the recommended LRFD resistance values for foundation design 

from data within the footprint or outside the footprint will be quite different.   

The approach to assess spatial correlation is to plot pair values at prescribed separation 

distances.  For example, all data pairs may be selected at a separation distance of 3 ft from one 

another (e.g., vertically) and plotted in a scatter plot, i.e., a figure where one data value qi of the 

pair is on the x-axis and the other value qj (located lag distance, h = 3 ft from qi) on the y-axis.  

Other separation distances, called lag (h), may be selected and plotted from which correlation 

may be assessed.  Shown in Figure 2-3 are the scatter plots for increasing lag distances, where 

the 45° line represents perfect correlation qi = qj.  It can be seen that the least amount of scatter is 

present in (a), which has the smallest h.  As h increases, it can be seen that the scatter about the 

45° line increase from (b) to (c) grows, resulting in decreased correlation.   

 
Figure 2-3.  Data scatterplots for different separation (lag) distances of data pairs (qi, qj): 

Sequence of (a), (b), and (c) represents increasing separation distance and decreasing 
correlation.  Dashed line is 45° and represents perfect correlation  

(qi = qj or zero separation distance)(McVay et al. 2009). 
 
To quantify the correlation for any lag distance h, the covariance may be computed as 

ሺ݄ሻܥ  ൌ ଵ

௡
∑ ሺݍ௜ െ ௝ݍሻ൫ߤ െ ൯௡ߤ
௜,௝ୀଵ  Eq. 2.4 
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where qi and qj are the data pairs separated by distance h and n is the number of these data pairs. 

For perfectly correlated data (i.e., qi = qj), C(h) is equal to the variance (Eq. 2.1).  In the case of 

no correlation, C(h) = 0 (i.e., the product of the terms is both plus and minus and sums to zero).  

A dimensionless representation of the data’s correlation is through the correlation coefficient     

ሺ݄ሻߩ  ൌ ஼ሺ௛ሻ

ఙమ
 Eq. 2.5 

with limits of zero and one (0 <  (h) < 1) representing no correlation and perfect correlation, 

respectively.   

Another characterization of spatial correlation in geostatistics is the semi-variogram (h) 

(referred to as variogram herein), which is given as  

ሺ݄ሻߛ  ൌ ଵ

ଶ௡
∑൫ݍ௜ െ ௝൯ݍ

ଶ
   Eq. 2.6 

The covariance C(h) may be found from the variogram (h) from the variance of the data 2 as 

ሺ݄ሻߛ  ൌ ଶߪ െ  ሺ݄ሻ    Eq. 2.7ܥ

Typical examples of C(h),  (h) and (h) as a function of h are shown in Figure 2-4.  Evident 

from the figure, each function indicates a decreasing correlation with increasing h.  At a distance, 

h = a (called the range), the correlation function goes to zero, or the data pairs become 

uncorrelated.  In the case of the variogram Eq. 2.7, (h=a) = 2 [C(h) = 0 ] and its upper value or 

sill is reached.  Generally, a function (e.g., spherical Eq. 2.8 or exponential Eq. 2.9) is fitted to 

the variogram or covariance data and is used to describe spatial correlation. 

ሺ݄ሻߛ                                           ൌ ൝ߪ
ଶ ൬1.5

௛

௔
െ 0.5 ቀ௛

௔
ቁ
ଷ
൰

ଶߪ
   
݄ ݎ݋݂ ൏ ܽ
݄ ݎ݋݂ ൒ ܽൡ                              Eq. 2.8 

  

ሺ݄ሻߛ                                                  ൌ ଶߪ ൬1 െ ݌ݔ݁ ቀି଴.ଷ
|௛|

௔
ቁ൰                                             Eq. 2.9 
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Figure 2-4.  Graphical examples:  (a) Spatial covariance function C(h); (b) Spatial correlation 

function ρ(h); and (c) Variogram γ(h).  Dots represent experimental values derived 
from site data and Eq. 2.5, 2.6, and 2.7, respectively, while dashed lines 

represent variogram model fits of range a (McVay et al. 2009). 
 
 

When generating variograms, it is recommended that large enough numbers of pairs n30 

be used to obtain a reliable estimate of (h).  Also, since measured data can be irregularly 

spaced, a limited number of available pairs may ensue, unless the size of the search domain at a 

specific lag distance h is increased.  This is illustrated in Figure 2-5 where the gray area 

represents the search domain that finds pairs used in Eq. 2.6.  This search area is defined by 

parameters typically referred as the tolerance (tol) and bandwidth.    

 

Figure 2-5.  Tolerance and bandwidth selection for variogram. 
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The final variogram may have to be characterized as the sum of multiple individual 

variograms (i.e., nested) to represent the observed random function.  An example of this is 

shown in Figure 2-6 for two structures that are defined by different ranges a1 and a2.  For 

instance in Figure 2-6c, the horizontal dashed line with correlation length a1 = 0 represents a 

“nugget effect” from either measurement errors or lack of data (i.e., smallest sampling distance), 

which is added to the a2 variogram to represent the composite variogram (continuous line).   

 
Figure 2-6.  Examples of nested (composite) variograms:  (a) Equal ranges a1 = a2 = a; 

(b)a1<a2; and (c) a1 = 0 representing a nugget effect of variance C0 (McVay et al. 2009). 
  

Also identified within the variograms are different forms of anisotropy.  Geometric 

anisotropy refers to different correlation lengths in the vertical and horizontal direction.  For 

instance, Figure 2-7a shows longer correlation length ah in the horizontal direction than av in the 

vertical direction.  Zonal anisotropy refers to different sills in the vertical and horizontal 

variances, i.e., 2
v   2

h.  For instance, Figure 2-7b shows higher variance 2
v in the vertical 

direction than the horizontal 2
h direction and may be generally attributed to random layering.  

Figure 2-7c shows higher variance in the horizontal versus the vertical direction (random areal 

trend), as well as geometric anisotropy (e.g., av  ah).  Note, it is very important to identify the 
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zonal anisotropy since its variance component, i.e., 2
h – 2

v, is not reduced through spatial 

averaging when estimating LRFD  values from boring data that is spaced far apart. 

 
Figure 2-7.  Examples of anisotropic variograms:  (a) Geometric anisotropy with ah > av;  

(b) Zonal anisotropy with σ2
h < σ2

v; and (c) Mix of geometric and zonal  
anisotropies with ah > av and σ2

h < σ2
v (McVay et al. 2009). 

 

2.3  Upscaling, Kriging and Change of Support Size 

The estimation of the axial resistance of a deep foundation is typically determined by 

converting in situ measurements (e.g., SPT N, CPT qc, etc.) to soil resistance (side – fs & tip – qt) 

and averaging the values over a domain (surface area – side friction, 3.5D below & 8D above – 

tip resistance).  Any process associated with averaging of a spatially random variable, 

 ௦݂
ഥ ൌ ଵ

௡ത
 ∑ ௦݂೔

௡ത
௜       Eq. 2.10 

over a region (e.g., surface, line, etc.) that is spatially correlated will result in a variance 

reduction.  This is typically referred to as “upscaling,” i.e., going from in situ measurements at a 

point scale to resistance values for the whole pile or shaft foundation.  The uncertainty (i.e., 

variance) of the mean over the region may be expressed as  

௙ೞഥߪ  
ଶ ൌ ௙ೞߪ௙ೞഥߙ

ଶ  Eq. 2.11 

Using the correlation function (Eq. 2.5), the reduction can be evaluated for any specified 

size of domain A, as 
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  Eq. 2.12 

 
Generally, this equation can be solved numerically by averaging the correlation matrix (i.e., 

summing of elements and dividing by the number of elements) corresponding to a finite number 

of grid points located over the domain of interest (e.g., shaft surface) 

௙ೞഥߙ  ൌ
ଵ

௡തమ
  ∑ ∑ ௜௝ߩ

௡ത
௝

௡ത
௜        Eq. 2.13 

where ത݊ is the number of discrete grid points uniformly distributed over As.  The use of ߙ௙ೞഥ  in 

spatial variability analysis could be explored in FDOT phase 1 design where in situ samples are 

obtained; however, relative location of a foundation is unknown.  In such analysis it is assumed 

that adequate in situ sampling occurs to quantify the mean, variance, and correlation structure of 

associated layers.  An implementation of this analysis was conducted by Klammler et al. 

(2010a), for the evaluation of side friction of a shaft, which results in a mean resistance equal to 

the mean of the site and variance equal to the site variance reduced by ߙ௙ೞഥ .  Presented in Figure 

2-8 Klammler et al. (2010a) is the solution of Eq. 2.12 for √௙௦തതത  [ ߪ௙௦തതത] using an exponential form 

of covariance function in Eq. 2.5 [i.e., C(h)] as a function of foundation length L, diameter D, 

and spatial correlation lengths av (vertical) and ah (horizontal). 

In the case of FDOT phase 2 design, additional in situ samples are taken and foundation 

locations are known.  In this case, the engineer can take advantage of having a boring located in 

the footprint or nearby which “conditions” the prediction.  The geostatistical tool provided for 

this task is called ordinary kriging or best linear unbiased estimation.  For instance, in the case of 

boring data SPT N or CPT qc, a foundation’s estimated average skin friction (after converting 

Nfsi or qc fsi) may be given as 

 ௦݂
෡ ൌ

ଵ

௡ො
∑ ௜ݓ ௦݂೔
௡ො
௜ୀଵ        Eq. 2.14 
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Figure 2-8.  Term α1/2 as a function of L/av and D/ah (Eq. 2.8) for single shafts with exponential 

covariance model (Klammler et al. 2010a).  
 

where ො݊ may be the number of data within the borings, and ݓ௜ are weighting functions (∑ݓ௜ ) 

for individual borings.  In the case of a single boring, ݓ௜ = 1.  In the case of multiple borings, the 

weighting functions ݓ௜ are solved by minimizing the uncertainty of prediction R
2 expressed as, 

ோߪ 
ଶ ൌ ௙ೞഥߪ

ଶ ൅ ௙ೞ෡ߪ
ଶ െ ൫ܸܱܥ2 ௦݂

ഥ, ௦݂
෡൯     Eq. 2.15 

The first term on the right, ߪ௙௦തതത, is again given by Eq. 2.11 and represents the uncertainty of the 

pile/shaft resistance from location A to B, assuming fsi values are known on the surface of the 

shafts.  The second term represents the uncertainty of the mean due to too few data (e.g., one 

boring with 10 values versus 10 borings with 20 values in each).  Note, with sufficient data ߪ௙௦෢
ଶ , 

will go to zero.  The third term in Eq. 2.15 represents the reduction (minus sign) in prediction 

mean shaft uncertainty due to boring data within the spatial correlation length (e.g., ah ) of the 
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foundation’s surface.  The weighting constants wi (Eq. 2.14) may be solved from the following 

equations (Isaaks, 1989) as 

 ൦

ଵଵߩ ڮ ଵ௡ොߩ 1
ڭ ڰ ڭ ڭ
௡ොଵߩ ڮ ௡ො௡ොߩ 1
1 ڮ 1 0

൪ כ ቎

߱ଵ
ڭ
߱௡ො
ߣ

቏ ൌ ൦

ҧଵ஺ೞߩ
ڭ

ҧ௡ො஺ೞߩ
1

൪    Eq. 2.16 

where ij represents the correlation function (Eq. 2.5) between boring i and boring j; ߩҧ௜஺ೞ is the 

correlation between boring measured values and the deep foundation surface As; and  is a 

constant to ensure all the weights wi sum to one.  Once the weights are known, the uncertainty of 

prediction R
2 (Eq. 2.15) may be solved (Isaaks, 1989) in terms of the weighting constants as 

ோߪ                              
ଶ ൌ ௙ೞߪ 

ଶൣߙ௙ೞഥ ൅ ∑ ∑ ߱௜
௡ො
௝ୀଵ ߱௝ߩ௜௝ െ 2∑ ߱௜ߩ௜஺

௡ො
௜ୀଵ

௡ො
௜ୀଵ ൧ ൌ ௙ೞߪ

ଶߙ௖                 Eq. 2.17  

Note, the terms in the bracket express the three terms in Eq. 2.15, and the total variance 

reduction of the boring variability ߪ௙ೞ
ଶሻ may be represented as ߙ௖.  In the case of a single boring 

within the footprint of the footing, the value of  ߙ௖
ଵ/ଶ as a function of footing length L, diameter 

D, and correlation lengths av and ah, is given in Figure 2-9 (Klammler et al. 2010a).  An 

examination of the figure reveals the worst case scenario (i.e., highest value of ߙ௖
ଵ/ଶ) occurs for 

the case of D/ah=2 (spatial correlation, ah = D/2), which is just outside the foundation boundary 

or no reduction due to correlation, i.e., the third term (Eq. 2.15) is zero.  Also, the uncertainty of 

mean due to limited data in the single boring (second term, Eq. 2.17) results in slightly higher 

total uncertainty( ߙ௖
ଵ/ଶ) compared to variance reduction of fsi  by averaging over the shaft 

surface( ߙ௙ೞഥ  i.e., first term in Eq. 2.17) represented as the thick solid line in Figure 2-9.  
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Figure 2-9.  Term αc
1/2 for a single shaft with one single boring (cross) at the center as a function 

of L/av and D/ah (Klammler et al. 2010a). 
 

2.4  Estimation of the Effects of Spatial Variability  
by Stochastic Simulation 

To assist an engineer in accounting for spatial uncertainty with any type of analysis (e.g., 

linear or nonlinear skin and tip resistance), a geostatistical method called stochastic simulation 

may be used.  This process involves the generation of many realizations of point values on a 
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used in capacity calculation (e.g., FB-DEEP, FB-MultiPier, etc.), which results in a distribution 
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covariance matrix is decomposed into upper U and lower L triangular matrices.  The need for 

matrix decomposition brings the additional requirement that the covariance matrix be positive 

definite.  To ensure that the covariance matrix generated is positive definite can be accomplished 

by the selection of the variogram model used as well as ensuring that no two grid points are 

identical.  The lower triangular matrix L can be used in Eq. 2.18, where ߟ is a vector of k 

independent standard normal deviates (mean = 0 and standard deviation = 1). 

ݕ  ൌ  Eq. 2.18   ߟܮ

The simulated grid y values are normally distributed and still need to meet the requirement 

of the target distribution from a measured data set.  For this purpose, the simulated data are 

transformed by use of the normal score transformation process.  This transformation uses 

cumulative distribution functions “CDF” of the measured data and a standard normal distribution 

to map the simulated y values onto its corresponding value in the target distribution.  An 

example of this can be seen in Figure 2-11 where a value of a log-normal distribution is mapped   

 
Figure 2-11.  Normal score transform using CDFs. 
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onto a corresponding standard normal value using the CDFs of both distributions.  It is also 

recommended that when analyzing semi-variograms for the project site that the measured data 

first be transformed to a standard normal distribution. 

If an engineer wants to take advantage of having a boring located in the footprint or nearby 

the location of a foundation, the LU algorithm can be modified to achieve conditioning.  As 

suggested by Emery (2007), the algorithm begins with generating the unconditional values at 

both the measured data location (ݑఈ, α=1,…,n) and the grid points of interest using Eq. 2.18.  

Then, to simulate a conditional value at location u on the grid points, the following is used, 

 ௖ܻ௦ሺݑሻ ൌ ሻݑை௄ሺݕ ൅ ௦ܷሺݑሻ െ ௦ܷ
ை௄ሺݑሻ  Eq. 2.19 

ሻݑை௄ሺݕ  ൌ ∑ ߱ఈை௄ሺݑሻݕሺݑఈሻ௠
ఈୀଵ  Eq. 2.20 

 ௦ܷ
ை௄ሺݑሻ ൌ ∑ ߱ఈை௄ሺݑሻ ௦ܷሺݑఈሻ௠

ఈୀଵ     Eq. 2.21 

where ݕை௄ is ordinary kriging prediction; ௦ܷ is the unconditional simulated value at location of 

interest; and  ௦ܷ
ை௄ is the ordinary kriging predicted value using unconditional simulated value at 

measured data locations.  Equation 2.19 is repeated for all the grid points with their 

corresponding ߱ఈை௄ weights. 

A comparison was made with the stochastic simulation (LU algorithm) for spatial 

uncertainty and the associated variance reductions, i.e., alpha charts from BD-545-76.  For the 

LU algorithm, a grid of points was generated that represented the surface of a cylindrical shaft.  

A comparison was made for both the unconditional and conditional cases with comparisons 

shown in Tables 2-1 through 2-3.  It can be seen from these tables that the LU algorithm 

replicates the variance reduction for linear side friction models.  Consequently, the LU algorithm 

would be appropriate to use for other capacity models (non-linear and end bearing). 
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Table 2-1.  Comparison between LU Algorithm and α from Figure 2-8. 

D/ah = 1 

L/av α1/2 LU SIM BD-545-76 α1/2 

2 0.300 0.31 

4 0.228 0.22 

6 0.182 0.18 

8 0.161 0.16 

10 0.140 0.14 

20 0.130 0.10 

 

Table 2-2.  Comparison between LU Algorithm and α from Figure 2-9. 

D/ah = 1 

L/av α1/2 LU SIM BD-545-76 α1/2 

2 0.4139 0.43 

4 0.3107 0.32 

6 0.2588 0.26 

8 0.2272 0.22 

10 0.2080 0.20 

20 0.1561 0.15 

 

Table 2-3.  Comparison of Nested Structures LU Algorithm and α from Figure 2-9. 

D/ah = 1  Sill_h=1  Sill_v=0.8 Nugget=.2 

L/av α1/2 LU SIM BD-545-76 α1/2 

2 0.480 0.480 

4 0.426 0.432 

6 0.410 0.411 

8 0.397 0.392 

10 0.394 0.386 

 



 

 26

2.5  Worst Case Spatial Uncertainty Scenarios 

The use of the LU algorithm requires inputs for the variogram models (horizontal and 

vertical) for each layer for the simulation analyses.  However due to the nature of in situ testing, 

sufficient borings in proximity to one another may result in an inability to characterize the 

horizontal variograms.  For such situations, a selection of worst case scenarios must be made.  

Here the worst case scenario is considered as the capacity prediction, which results in the highest 

spatial variance, the lowest LRFD Ԅ value, and thus, longer piles/shafts. 

For the case of unconditional simulation, the alpha chart shown in Figure 2-8 can give an 

insight into which spatial correlation parameters will result in the most unfavorable scenario.  A 

majority of FB-DEEP’s capacity calculations use some sort of arithmetic averaging domain (e.g., 

8D above to 3.5 D below for end bearing, etc.) and the alpha chart is also for the arithmetic 

averaging for side friction of a cylindrical shaft.  Using the alpha chart of Figure 2-8, it can be 

seen the worst case (largest resulting α) ah is for ah >> D, i.e., the dashed contour.  If av cannot be 

identified from the experimental variograms, then a value of av >> L should be used.   

In the case of conditional simulation, the alpha chart shown in Figure 2-9 can give an 

insight into which spatial correlation parameters will result in the worst case.  Shown in Figure 

2-9 is the evaluation of α for a boring located in the footprint of the shaft.  The worst case can be 

seen where ah ≈ D/2 and av >> L.  This can be further expanded to the case of a boring located 

outside a footprint at horizontal distance (d) from the shaft.  In this case, it has been found the 

largest α are for ah ≈ d and av >> L.   
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CHAPTER 3 
EVALUATION OF UNCERTAINTY OF METHOD  

 

3.1  Introduction 

In the evaluation of LRFD Ԅ values for any design method, the total uncertainty of its 

design resistance CVR needs to be assessed.  CVR is comprised of spatial variability (ߪௌ
ଶ) and the 

inherent design method error (ߪఌଶ) associated with the given method or approach.  Chapter 2 

discussed the use of geostatistical tools to quantify spatial variability (ߪௌ
ଶ) for any site.  This 

chapter focuses on the evaluation of method error (ߪఌଶ) for most FDOT design approaches using 

predicted and measured resistances.  

The method error (ߪఌଶ) used herein, represents the total difference between the predicted 

design resistance versus its corresponding measured load tested value.  Sources of error 

contributing to ߪఌଶ can be associated with measurement error of in situ testing, specific empirical 

relationships used to develop design calculations, spatial variability of properties used to predict 

resistance (non-collocated boring), and construction methods (deviations from geometry or poor 

construction).  This work uses many early FDOT studies that reported measured and predicted 

deep foundation results.  However, unlike AASHTO (2004), the study uses a best fit regression 

between the measured and predicted response in order to assess the method error ߪఌଶ.  Finally, 

this chapter discusses ways to reduce ߪఌଶ through the use of site specific load testing and the use 

of future borings within the footprint of load tests.  A discussion of regression concepts is 

presented before evaluation of method error. 

3.2  Review of Regression Analysis Concepts  

To quantify the error of a calculation method, a regression analysis of measured versus 

predicted capacities is needed.  Figure 3-1 is an example plot of measured versus predicted 
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resistance fitted with a linear trend.  A linear regression is fitted to the data (Eq. 3.1) where pi 

and mi are the predicted and measured values; a and b are coefficients of the linear regression 

(a=intercept, and b = slope); and ε is a random residual with mean of 0 and variance ߪఌଶ.  The 

residual ε represents the random error of the method.  

 ݉௜ ൌ ܽ ൅ ௜݌ܾ ൅  Eq. 3.1    ߝ

 

Figure 3-1.  Measured versus predicted resistance. 
 
 

The coefficients a and b in Eq. 3.1 represent a systematic bias that is imparted by the 

prediction model (i.e., consistent under or over prediction).  These coefficients are determined by 

Eq. 3.2 and 3.3, where ρ is the correlation coefficient between the measured and predicted 

values; ߪ௠ is the standard deviation of measured data about its mean ( ഥ݉); and ߪ௣ is the standard 

deviation of predicted data about its mean (݌ ഥ ).  Most regression analysis gives the coefficient of 

determination R2 which is equal to ρ2, as an indicator of the proportion of ߪ௠ଶ  that is described by 

the linear regression.  The proportion of ߪ௠ଶ  that is not described by the linear regression equals 

to ߪఌଶ.  In essence, R2 is a measure of how well the resistance calculation predicts the true 

measured resistance.  Its relationship to ߪఌଶ is shown in Eq. 3.4.  For example, if the measured 
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and predicted values were perfectly correlated (R2 = 1), then the data points would all fall on the 

regression line, ߪఌଶ ൌ 0 would equal zero (Eq. 3.4), and the predicted value, pi, would be a 

perfect estimator of the measured value, mi.  Conversely, if there is zero correlation (R2 = 0  

ఌଶߪ ൌ ௠ଶߪ ), then pi is inappropriate as an estimator of mi. 

 ܾ ൌ ߩ ఙ೘
ఙ೛
        Eq. 3.2 

 ܽ ൌ ഥ݉ െ ഥ ݌ܾ  Eq. 3.3 

ఌଶߪ  ൌ ௠ଶߪ ሺ1 െ ܴଶሻ  Eq. 3.4 

3.3  Regression Analysis for Drilled Shafts in Rock 

To estimate the value of ߪఌଶ, data used in previous FDOT reports for reliability design of 

different foundation types were collected and analyzed.  The data collected encompass all 

calculation methods found in FB-DEEP and can be separated into two categories.  The first 

category concerns data which characterize unit skin friction (tsf) separate from unit end bearing 

(tsf) and the second is total measured versus predicted capacities (tons).  Note, separate 

evaluation of LRFD Ԅ for pullout (e.g., tension pile), uncertainty of calculation method ߪఌଶ for 

skin separate from tip with corresponding CVR for a pile (i.e., all soils, layers, etc.) would be 

required.  Similarly for top down compression, uncertainty of calculation method ߪఌଶ for side or 

tip separate or together may be used to evaluate CVR of a pile.  

For bias assessment, the regression analyses showed in Figure 3-1, Eqs. 3.1 to 3.4 were 

used.  However, the identified regression does not account for number of data points, n, used in 

the assessment.  For limited data, the best linear estimate is obtained by taking the expectation 

and variance of Eq. 3.1.  Equation 3.5 is the best estimate of ෝ݉  or the bias-corrected prediction.  

Similar to equation 3.4, equation 3.6 represents the variance about the fitted linear trend.  
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Equation 3.7 represents the estimation error of  ෝ݉  due to a limited number n of data pairs.  In this 

equation, pi is the predicted pile resistance, and ݌ҧ is the mean of the predictions of the data set.  

Equation 3.7 reflects that uncertainty increases as less data are available (n smaller) and moves 

away from the mean of the data cloud (pi – ݌ҧ larger).  The terms from Eq. 3.6 and 3.7 can be 

summed to find the error of a calculation method ,ߪఌଶ, shown in Eq. 3.8.  For large n value, Eq. 

3.7 approaches zero, and Eq. 3.6 and 3.8 are one and the same as Eq. 3.4. 

 ෝ݉ ൌ ܽ ൅  ௜   Eq. 3.5݌ܾ

௅ிߪ 
ଶ ൌ ௡ିଵ

௡ିଶ
௠ଶߪ ሺ1 െ ܴଶሻ Eq. 3.6 

௠ෝߪ 
ଶ ൌ ௅ிߪ

ଶ ൤ଵ
௡
൅

ሺ௣೔ି௣ҧሻమ

ሺ௡ିଵሻఙ೛
మ൨   Eq. 3.7 

ఌଶߪ  ൌ ௠ෝߪ
ଶ ൅ ௅ிߪ

ଶ    Eq. 3.8 

Data collected were sorted by calculation method as a function of foundation and soil type.  

For drilled shafts in Florida limestone data was compiled from FDOT Report BC354-08.  The 

data available for measured and predicted responses were for unit resistance calculations.  The 

regression analysis for the data is summarized in Table 3-1.  This regression analysis 

incorporates a number of samples in the assessment of ߪఌଶ as discussed previously.  Note Eq. 3.8 

suggests that ߪఌଶ is also a function of ݌௜ through Eq. 3.7.  However, by limiting the range of 

validity of the regression model to the range of resistance value observed, the approximate 

assumption of a constant ߪఌଶ value is justified (see Table 3-1 for both side and tip resistances).  

Bias corrections, as well as method error, are given in Table 3-1 with plots of measured versus 

predicted skin and tip resistances presented in Figures 3-2 and 3-3. 
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Table 3-1.  Regression Analysis for Drilled Shafts in Limestone 

Model Resistance n ߪఌଶ  
(tsf2) 

Regression  
(tsf) 

McVay Side 18 4.519 0.9݌ ൅ ݌   0.898 ൑ 20 

O’Neill Tip 11 48.89 0.773݌ ൅ ݌   20.5 ൑ 160 

 
 
 

 
 

Figure 3-2.  Regression analysis drilled shaft (McVay side friction). 
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Figure 3-3.  Regression analysis drilled shaft (O’Neill end bearing). 
 
 

Data collected for method error assessment may have the borings outside of the footprint 

of the load tested shaft.  Unless the borings show minimal spatial influences (e.g., similar 

means), the data used in the regression may result in a very conservative estimate of ߪఌଶ.  This is 

due to the fact that the prediction from the boring located outside of the footprint of the load test 

pile/shaft will contain the additional error due to spatial variability.  Thus, the values for ߪఌଶand 

the linear trends are considered preliminary values used to get a sense of magnitude of variability 

that is contributed from the error of the calculation method.  The current data sets shown in Table 

3-1 will be considered for integration into future regression analyses, but for optimization of ߪఌଶ, 

borings used will be required to be sufficiently close to the load test shaft (e.g., inside the 

footprint). 
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Having established ߪఌଶ for unit capacities, the total uncertainty (variance) of a foundation’s 

resistance may be assessed.  Equations 3.9 and 3.10 compute the variance for both side friction 

and end bearing.  In both equations, the first term represents the measured variance of unit 

capacities, which are bias corrected (b) and reduced (α) for spatial averaging between support 

size of the data and full dimension of the shaft.  The second term is the recently found method 

error ߪఌଶ and the whole term is multiplied by the square of their corresponding areas to obtain 

total uncertainty for skin and tip.  These variances are then used in Eq. 3.11 to determine the total 

uncertainty of the foundation resistance, which includes correlation () between skin and tip 

resistance. 

ௌ௞௜௡ߪ 
ଶ ൌ ௦ଶܣ ቀ ௙ܾ௦

ଶ ௙௦ߪ௦ଶߙ
ଶ ൅ ఌ೑ೞߪ

ଶ ቁ      Eq. 3.9 

௜௣்ߪ 
ଶ ൌ ௧ଶܣ ቀܾ௤௧ଶ ௤௧ଶߪ௧ଶߙ ൅ ఌ೜೟ߪ

ଶ ቁ  Eq. 3.10 

ை்஺௅்ߪ 
ଶ ൌ ௌ௞௜௡ߪ

ଶ ൅ ௜௣்ߪ
ଶ ൅  ௜௣   Eq. 3.11்ߪௌ௞௜௡ߪߩ2

3.4  Regression Analysis for FB-DEEP Pile/Shaft Capacities 

The regression analysis of unit capacities for drilled shafts in rock showed no change in 

error trend as a function of predicted resistance pi (Figure 3-2).  This is not the case when 

analyzing total FB-DEEP capacities.  Shown in Figure 3-4 is the predicted versus measured total 

capacities (i.e., Davisson) for prestressed concrete piles.  It is evident, the spread around the 

linear trend increases with an increasing resistance prediction.  This proportionality suggests that 

the measured and predicted capacities are log normally distributed (Isaaks, 1989).  Consequently, 

to assess ߪఌଶ, a log transform of the data was applied to allow regression analysis as described 

previously.  Since the variance is proportional to pi in normal space (i.e., without log 

transformation), ߪఌಽಿ
ଶ  from the log analysis is used to determine an approximately constant 
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coefficient of variation of error for normal space, shown in Eq. 3.12.  In other words, instead of 

working with a prediction error pi – mi and a constant value of ߪఌ as in the previous section, a 

prediction error pi/mi is used in combination with a constant value of CVε. 

ܥ  ఌܸ ൌ ටexp൫ߪఌಽಿ
ଶ ൯ െ 1 Eq. 3.12 

 ෝ݉ ൌ expሺܽሻ  ௕   Eq. 3.13݌

 
Figure 3-4.  Regression analysis for concrete pile (FB-DEEP). 

 
 

In the case of drilled shafts in clay and sand soil types, only the data for total capacities 

from NCHRP Report 507 (Paikowski, 2004 ) were available.  The result of the regression 

analysis for total capacities is shown in Table 3-2 and plots are shown in Figures 3-5 and 3-6.  

For the analysis, data sets were first filtered prior to the regression analysis to remove any 

outliers.  The filtering involved converting the data sets to ratios of measured over predicted 
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values, and then removing any ratio outside ±2 standard deviations from the mean as 

recommended by NCHRP 507.  In this process, no more than 3 pairs (i.e., < 5%) were removed 

from the entire data set.   

 
 

Table 3-2.  Regression Analysis for Drilled Shafts in Clay and Sand (Total Resistance) 

Soil Type n CVε Regression (tons) 

Clay 38 0.41 exp ሺ0.73ሻ݌଴.଼଺ ൌ ݌        ଴.଼଺݌2.1 ൑ 1000 

Sand 31 0.68 exp ሺ0.66ሻ݌଴.ଽ଼ ൌ ݌      ଴.ଽ଼݌1.9 ൑ 700 

 
 
 

 
Figure 3-5.  Regression analysis drilled shaft (clay model). 
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Figure 3-6.  Regression analysis drilled shaft (sand model). 

 
 

Evident in Table 3-2, the CVε for sand is significantly higher than that of the clay.  This 

large difference may be attributed to constructability issues for drilled shafts in sand.  In contrast 

to sands, drilled shafts in clay and rock are well suited to maintain the size and shape of the shaft 

specified.  In sands, the problem of caving soils may result in irregular shaft shapes, which could 

significantly impact the resistance of shafts when load tested and may be a significant 

contribution to the higher CVε shown in Table 3-2.  As discussed previously, the regression 

analysis for these models should be updated in future work. 

Data for driven piles whose capacities were calculated from SPT N values were collected 

from a variety of sources listed in Table 3-3.  The regression analysis was subsequently 

performed on the measured and predicted Davisson capacities.  The data sets were also filtered 

for outliers as discussed above (±2 standard deviations).   
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Table 3-3.  Regression Analysis for Davisson Resistance FB-DEEP Driven Piles (SPT) Tons 

Pile Type Source Soil Type n CVε a exp(a) b limit 

Concrete BA 512 All 48 0.24 0.17 1.19 0.99 700 

Concrete NCHRP 507 Sand 33 0.43 0.74 2.10 0.88 500 

Concrete NCHRP 507 Mix 71 0.52 2.24 9.39 0.66 500 

Small Dia. Steel Pipe NCHRP 507 Clay 13 0.81 0.33 1.39 0.88 300 

Small Dia. Steel Pipe NCHRP 507 Sand 18 0.58 1.85 6.35 0.70 300 

Small Dia. Steel Pipe NCHRP 507 Mix 29 0.51 3.88 48.4 0.28 300 

Large Dia. Steel Pipe BC354 60 All 13 0.11 0.54 1.72 0.94 1300 

Large Dia. Conc. Cyl. BC354 60 All 8 0.19 1.93 6.89 0.75 1300 

 
 

A review of Table 3-3 shows that calculated CVε for large diameter steel and concrete 

cylinder piles are significantly lower than that for the other foundation types.  This difference is 

attributed to the fact that the regression analysis is based on data from the same report, which 

were used to create the resistance calculation models.  That is, the same measured load test data 

were used to assess pile skin and tip resistance from measured SPT blow counts.  Consequently, 

it is suggested that further validation from projects other than ones in the FDOT Report 

BC354-60 be undertaken for proper analysis of CVε for these pile types.  Table 3-4 is a summary 

of regression analyses for FB-DEEP’s CPT resistance calculation methods.  The data used for 

this analysis came from FDOT Report BD545-43.   

Table 3-4.  Regression Analysis for Davisson Resistance FB-DEEP Driven Piles (CPT) Tons 

Method n CVε a exp(a) b limit 

UF1 21 0.29 –0.28 0.76 1.06 500 

Schmertmann2 19 0.29 1.02 2.77 0.85 500 

LCPC3 20 0.30 -0.06 0.95 0.98 500 

 1-McVay et al. (2004)  
2-Schmertmann (1978) 
3-Brustamante, M. & Gianeselli, L. (1982) 
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Again, once method error CVε is assessed for total pile capacities, the CVR (Eq. 3.12) can 

be determined and the LRFD Ԅ may be found.  In Eq. 3.14,  ߪఘଶ is the total variance from the 

spatial analysis, i.e., the spatial variance  about the predicted mean value p, and b is the bias 

correction.  For the case of total capacities ߪఘଶ can be determined from either LU simulations or 

analytical solutions using alpha charts (BD545-76). 

ܥ  ோܸ ൌ
ටୣ୶୮ ሺ௔ሻమఙഐ

మାሺ஼௏ഄ௣ሻమ

ୣ୶୮ ሺ௔ሻ௣್
  Eq. 3.14 

As discussed earlier, the data presented in Tables 3-2 through 3-4 are only being 

recommended as preliminary assessment of method error.   

3.5  Load Testing and Borings within Footprint 

In the previous evaluation of method error from previous projects, relative location of 

boring used for prediction is not discussed or given.  Thus, it is possible that too much spatial 

error could be incorporated in the evaluation of the method error.  It is typical practice to perform 

load testing on a project site.  Thus with load test and corresponding boring located within the 

footprint, a site specific regression analysis can be used to evaluate both the method error and 

bias. 

From various FDOT projects eleven load tests were collected; however, only eight of these 

tests have borings located within the footprint.  Of these eight load tests, three of them were 

missing rock strength testing.  A discussion of these projects and their site specific regression 

analysis follows. 

Jewfish Creek has two load tested drilled shafts with borings in the footprint.  This site is 

primarily limestone, and regression analysis for this site’s data is shown in Figure 3-7.  Measured 

versus predicted values were taken from BD545-76.  In that report, a regression analysis was 
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performed to quantify the sites method error.  However, in that analysis it did not account for 

number of samples n.  In BD545-76, it lists ߪఌଶ ൌ 3.975 (tsf2) for Jewfish Creek.  This can be 

seen to be quite less when compared to ߪఌଶ ൌ 7.45 (tsf2) shown in Figure 3-7.  This illustrates the 

effect of a small amount of load testing samples on poor quantification of the method error.  

When comparing the regression results of Jewfish Creek to Table 3-1, it can be seen that Jewfish 

Creek has a higher ߪఌଶ and different bias correction. 

 
Figure 3-7.  Regression analysis for Jewfish Creek (McVay method). 
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site gives mixed soil descriptors adding difficulty when determining which soil model to use in 

the resistance prediction. 

The regression model for clay at SR-686 is shown in Figure 3-8.  Of the 2 load tested 

shafts, only 6 segments could be used in the regression analysis for the clay modeling.  With 

only 6 points available for analysis, a higher CVε resulted than the one given in Table 3-2, and 

the values for a and b are quite different.  Results are not shown for the sand model due to only 4 

points being available and resulting regression showing a very poor fit and negative slope (i.e., 

bias). 

 
Figure 3-8.  Regression analysis for SR-686 (clay model). 

 
 

The regression model for Dixie Highway FB-DEEP driven piles is shown in Figure 3-9.  
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different levels.  This results in the ability to measure three side-friction resistances and one tip 

resistance for each compression-tested pile. In total, nine measured resistances are available for a 

regression analysis. 

 
Figure 3-9.  Regression analysis for Dixie Highway (FB-DEEP driven piles). 

 
The result of load testing measurements is that only 6 data points are available for the 

regression analysis.  With only 6 points available for analysis, a higher CVε resulted than one 

given in Table 3-3, and values for a and b are quite different. 
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3.6  Normalized Resistance Factors 

In AASHTO and NCHRP Report 507 (Paikowski, 2004 )  load and resistance factor design 

(LRFD) for deep foundations, Eq. 3.15 is used for deep foundation resistance.  The 

determination of resistance factor Ԅ (Eq. 3.16) requires knowledge of statistical distribution 

parameters of both the load Q and resistance R, as well as specified reliability index β.  The 

selected β is equivalent to a target probability of failure ݌௙ for the deep foundation being 

designed.  Also, the statistical distributions for both Q and R are assumed to be log normal in the 

development of these equations. 

 Ԅܴ ൒ ஽ܳ஽ߛ ൅  ௅ܳ௅    Eq. 3.15ߛ

 Ԅ ൌ
ఒೃ൬ఊವ

ೂವ
ೂಽ

ାఊಽ൰ඨ
ቀభశ಴ೇೂವ

మ శ಴ೇೂಽ
మ ቁ

൫భశ಴ೇೃ
మ ൯

൬ఒೂವ
ೂವ
ೂಽ

ାఒೂಽ൰௘௫௣ቊఉට୪୬ቂ൫ଵା஼௏ೃ
మ൯ቀଵା஼௏ೂವ

మ ା஼௏ೂಽ
మ ቁቃቋ

        Eq. 3.16 

For evaluation of Ԅ, the resistance bias factor ߣோ is determined as the mean value of the 

measured to predicted resistances.  The coefficient of variation of resistance CVR is determined 

from the distribution of the ratio of measured to predicted resistance about the mean, i.e., ߣோ 

resistance bias factor.  The remaining dimensionless parameters in Eq. 3.1 and 3.2 are chosen 

according to the FHWA/AASHTO recommended values (for load cases I, II, and IV),  

Dead load factor: γD  = 1.25 

Live load factor: γL  = 1.75 

Dead to live load ratio: QD/QL  = 2.00 

Dead load bias factor: λQD  = 1.08 

Live load bias factor: λQL  = 1.15 

Dead load coefficient of variation: CVQD  = 0.128 

Live load coefficient of variation: CVQL  = 0.18 
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The proposed LRFD characterization has undergone a number of improvements with 

respect to the AASHTO (2004) and NCHRP (Paikowski, 2004 ) representation.  The limit state 

Eq. 3.15 is still used;  however, the value of R is determined from mean of the spatial analysis 

(Chapter 2) and is biased corrected (Chapter 3) for the specified method used.  The value of CVR 

uses the mean value of the bias corrected R mentioned in the previously discussed sentence, but 

it also incorporates method and spatial uncertainty, i.e., ߪௌ
ଶ and ߪఌଶ.  As a consequence, a 

normalized resistance factor Ԅഥ is proposed in Eq. 3.17, which no longer depends on prediction 

bias (i.e., normalized to ߣோ ൌ 1 ) and that is to be used in combination with the full form of CVQ 

as suggested by Styler (2006) given in Eq. 3.18. 

 Ԅഥ ൌ
൬ఊವ

ೂವ
ೂಽ

ାఊಽ൰ඨ
ቀభశ಴ೇೂ

మ ቁ

൫భశ಴ೇೃ
మ ൯

൬ఒೂವ
ೂವ
ೂಽ

ାఒೂಽ൰௘௫௣ቊఉට୪୬ቂ൫ଵା஼௏ೃ
మ൯ቀଵା஼௏ೂ

మቁቃቋ
             Eq. 3.17 

ܥ  ொܸ
ଶ ൌ

൬ఒೂವ
ೂವ
ೂಽ

஼௏ೂವ൰
మ
ା൫ఒೂಽ஼௏ೂಽ൯

మ

൬ఒೂವ
ೂವ
ೂಽ

൰
మ
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ఒೂವఒೂಽାఒೂಽ
మ
           Eq. 3.18 

3.7  Values from AASHTO LRFD ૖ for Comparison to ૖ഥ   

The computed Ԅഥ is evaluated for multiple case studies on both pile and drilled shaft sites in 

Chapters 4 and 5.  A direct comparison of Ԅഥ with Ԅ specified by AASHTO or the Soils and 

Foundations Handbook is not appropriate.  This is due to ߣோ used in Eq. 3.16, which can have a 

significant impact on Ԅ.  A more appropriate comparison for the calculated Ԅഥ would be with 

respect to Ԅ ⁄ோߣ .  Table 3-5 shows a collection of Ԅs for multiple methods and corresponding 

ratios from previous FDOT and NCHRP research.  However, in current practice the FDOT 

specifies values of Ԅ that are slightly conservative when compared to Table 3-5.  The more 

appropriate parameter Ԅ ⁄ோߣ  for comparison to Ԅഥ is shown in Table 3-6.  This table of resistance 
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factors comes from the FDOT’s Structural Manual, Vol. I, and uses the corresponding ߣோ for its 

specific method in Table 3-5.  In Table 3-6, Ԅ ⁄ோߣ  was not computed for design of side friction 

plus 1/3 end bearing.  This is due to ߣோ not being calculated for the combination of the two 

methods.  Not shown in Table 3-6 are resistance factors for driven piles.  The FDOT’s Structural 

Manual does list factors for driven piles that include the use of dynamic testing.  Resistance 

factors calculated in this project do not account for the use of dynamic testing, thus for 

comparison purposes, the value of Ԅ ⁄ோߣ  for driven piles should be used.  For the FHWA alpha 

and beta methods, ߣோ was found from the recommendation in the NCHRP Report 507, Table 29. 

Table 3-5.  Collections of Ԅ from FDOT Reports 

Design Method CVR ߣோ 
Ԅ for ߚ listed Ԅ ⁄ோߣ  for ߚ listed 

Report 
2.0 2.5 3.0 2.0 2.5 3.0 

Rock: Side friction 0.280 1.060 0.81 0.69 0.59 0.76 0.65 0.56 
BC354-08, 
Table 8.5 

Rock: O'Neill's end bearing 
(nearest boring approach) 

0.290 1.400 0.86 0.71 0.60 0.61 0.51 0.43 
BC354-08, 
Table 11.21

Rock: O'Neill's end bearing 
(random selection - Monte 
Carlo) 

0.460 1.210 0.56 0.43 0.33 0.46 0.36 0.27 
BC354-08, 
Table 11.22

Driven piles:  SPT 94 0.246 1.172 0.81 0.69 0.59 0.69 0.59 0.50 
510772, 

Tables 3.2 
and 3.3 

 

Table 3-6.  Resistance Factor for Drilled Shafts (Bridge Foundations) 

Design Method 
Quality 
Control 
Method 

Ԅ 
 ோߣ

Ԅ ⁄ோߣ  

Redundant 
Non-

redundant 
Redundant 

Non-
redundant 

For soil: FHWA alpha or 
beta method 

Specs. 0.6 0.5 1.03 0.58 0.49 

For rock socket: McVay's 
method, neglecting end 
bearing 

Specs. 0.6 0.5 1.06 0.57 0.47 

For rock socket: McVay's 
method, including 1/3 end 
bearing 

Specs. 0.55 0.45 NA NA NA 

For rock socket: McVay's 
method 

Statnamic 0.7 0.6 1.06 0.66 0.57 

For rock socket: McVay's 
method 

Static 0.75 0.65 1.06 0.71 0.61 
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CHAPTER 4 
DEVELOPMENT OF GRAPHICAL USER INTERFACE  

FOR DEEP FOUNDATION DESIGN  
 

4.1  Introduction 

Axially loaded deep foundation (piles or shaft) design is a function of the factored loads 

and the LRFD resistance factors.  Controlling the LRFD Ԅഥ is total uncertainty of the design, 

which is a function of uncertainty of the construction method (e.g., deviations from design 

parameters), the design method (e.g., FB-DEEP), and spatial uncertainty of the in situ/laboratory 

data.  Chapter 3 presented current assessment of uncertainty of the method based on legacy data, 

as well as recommended an approach to assess uncertainty of a method on a site-by-site basis 

(i.e., load testing).  Chapter 2 identified the process of determining spatial uncertainty of a site 

based on nearest boring (i.e., conditioning) or all borings within an area (i.e., unconditional).  

Impacting the spatial uncertainty are identification of layers, summary statistics (mean and 

variance of in situ/laboratory data), spatial correlation (i.e., variogram, spatial correlation length), 

and dimensions of the pile/shaft.  To assist with spatial uncertainty assessment, a graphical user 

interface (GUI) was written to aid the design engineer.  Besides developing the expected mean 

and variance of in situ/lab data at the planned deep foundation (pile/shaft), the GUI writes/reads 

FB-DEEP files from which total uncertainty (method and spatial) is evaluated along with total 

pile/shaft capacities and LRFD Ԅഥ resistance factors as a function of depth.  Presentation of the 

GUI is through the step-by-step process a design engineer would perform on two existing FDOT 

pile/shaft projects.  The first is 17th Street Bridge (drilled shafts) in Fort Lauderdale, Florida, and 

the second is the Dixie Highway (driven piles) in Miami, Florida. 
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4.2  17th Street Bridge – Fort Lauderdale, Florida 

A project site that is ideal for implementing a geospatial analysis for drilled shafts socketed 

in limestone is 17th Street Bridge, Fort Lauderdale.  This project has small separation distances 

between borings and a large quantity of strength test performed for each boring.  Closely spaced 

data results in the easy identification of the experimental variograms in the horizontal and 

vertical directions, as well as accurate assessments of layering and summary statistics (mean and 

variances).  A discussion of spatial uncertainty assessment, method error, total uncertainty, 

LRFD Ԅഥ, and recommended axial design capacity follows.  

4.2.1 GUI:  Start Tab 

Shown in Figure 4-1, is the starting screen for the GUI.  At the top of the GUI,  

Figure 4-1A are five tabs (start, profile, geostat, etc.) arranged in order for design.  Each tab will 

be completed in sequence until the final axial design load as function of depth is obtained.  The 

start tab is the starting point of the analysis where all project in situ data is imported to the GUI.  

Shown in Figure 4-1B is the XML button which loads all boring information from either the 

FDOT database (online) or from a file (hard drive) in XML format.  For this example, borings 

from the 17th Street Bridge was loaded with spatial locations as shown in Figure 4-1C.  This plot 

is presented in northing and easting (plan view) and shows borings relative to one another. The 

figure allows the user to see if the borings are located properly (used in variograms and 

conditional simulation).  Also in the start tab is selection of foundation type, Figure 4-1D (drilled 

shaft or driven pile) which influences the required in situ parameters later in the GUI analysis.  

For this example, drilled shaft was selected. 



 

 47

 
 

Figure 4-1.  Start tab. 
 
 

4.2.2 GUI:  Profile Tab 

The second tab is the profile tab shown in Figure 4-2.  On this tab the user can see profiles 

(parameter values versus elevation) for SPT-N and unconfined compressive strength qu.  For the 

17th Street Bridge, only rock strength data were collected and elevation versus qu profile is 

displayed in Figure 4-2A.  The graph to its left would show SPT-N profile, if data from the 

borings were available.   

Profile data is very important for identification of layers and trends.  To establish a layer 

boundary, an engineer simply clicks (mouse) at any elevation within the SPT or qu profile.  A 

horizontal blue line will appear in the graph at that location within both SPT and qu profiles ,.  

The engineer may establish any number of layers within the profiles.  Selection of layers should 

be based on either soil (e.g., sand, clay, etc.) or rock descriptions, or observed means and 

variances (scatter of data about mean).   
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Figure 4-2.  Profile tab. 
 
 

With the profile separated into layers, the engineer must assign soil types in the upper right 

corner of the tab (Figure 4-2B).  Since drilled shaft analysis was selected (start tab), by using the 

slide bar Figure 4-2B the user must also input mean and coefficient of variation (CV) of soil / 

rock unit weight for each layer.  For the example, layer 2 was selected as a rock layer (soil type 

4), and layer 1 was input as a void (soil type 5), since no SPT-N data were available.  Note, both 

soil and rock may be considered simultaneously in design (SPT N data required).  In the case of 

soil, the designer has the option of entering an energy correction value for automatic versus 

safety hammers.  With profiles separated into layers (Figure 4-2A) and soil types with unit 

weight parameters inputted (Figure 4-2B), the user needs to click “Accept,” Figure 4-2C, to 

advance to the next tab. 
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4.2.3 GUI:  Geostat Tab 

With the site or zone separated into layers, the user next moves to the Geostat tab (Figure 

4-3) where the geostatistical analysis is performed.  Specifically, this tab is used to determine 

summary statistics as well as measures of spatial correlation for each of the layers selected in the 

profile tab (Figure 4-2).  Since the profile may be composed of multiple layers, the Geostat tab is 

displayed on a layer-by-layer basis. 

 
 

Figure 4-3.  Geostat tab. 
 
 

The analysis begins with a selection of a layer number from the pull down menu in Figure 

4-3A.  Layer-2 is shown, which shows the corresponding qu values with elevation (profile) in 

Figure 4-3B.  This plot allows the user to quickly identify whether the data have a trend 

(increasing or decreasing mean value with elevation).  If the data were clustered around a mean, 

which changes with depth, the data need to be detrended.  To detrend the data, the user needs to 

select the check box shown in Figure 4-3C.  If selected, a drop box appears, and a linear or 2nd 
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order polynomial may be selected to detrend the data for any layer through regression fitting 

(examples presented in Dixie Highway).  For the 17th Street Bridge data in Figure 4-3B, it can be 

seen that no detrending is needed. Displayed in Figure 4-3D is the mean (tsf), variance (tsf2) and 

CV of the layer data.  In the case of detrended data (check box, Figure 4-3C), the variance and 

CV of the detrended data are displayed.  Shown to the left of Figure 4-3D is the histogram of the 

raw data, useful in identifying the distribution (e.g., normal, log-normal, etc.) of the data. 

Two graphs on the right side of the tab (Figure 4-3E) plot the horizontal and vertical 

variograms of the layer data.  To generate the variograms, the following search parameters 

(Figure 2-5) must be defined for Eq. 2.6:  increment in lag distance (h); number of lags; and lag 

tolerance and bandwidth shown in Figure 4-3F.  Variogram search parameters used in this 

analysis are shown in Table 4-1.  Experimental variograms shown in Figure 4-3E are evaluated 

for data that are detrended (if selected) and that have undergone a normal score transformation.  

The normal score transform process is performed in the background by the GUI. 

Table 4-1.  Variogram Search Parameters 

Search Direction Lag(ft) Tolerance(ft) Number of Lags Bandwidth (ft) 

Horizontal 1 0.5 20 1 

Vertical 1 0.5 20 0 

 
 

To ensure that the calculated values in the displayed variograms are reliable for the various 

lag distances, the number of pairs used in the computation of Eq. 2.6 should be checked.  

Clicking on the (Vario)Gam Output button shown in Figure 4-3G results in the pop-up window 

of Figure 4-4.  The window displays the variogram value γ and number of pairs for both the 

vertical and horizontal directions as function of lag distance.  As identified in Chapter 2, the 

recommended number of pairs is n > 30.  Evident in Figure 4-4, for the 17th Street Bridge, 

adequate numbers of pairs are available to estimate variograms in both directions.  
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Figure 4-4.  Variogram output. 
 
 

With variograms generated, the user can now fit (Figure 4-3H) either an exponential or 

spherical model (Eq. 2.8) (Figure 4-3F), to the plots of vertical and horizontal variogram points.  

The user has the option of specifying the range, sill, and nugget for each direction (below plots, 

Figure 4-3H).  Additionally for easier function fitting, the user can simply click within each 

graph and a model will be generated based on the x (range) and y (sill) position of the mouse 

click within the graph.  For the 17th Street Bridge example, a spherical model was used with 

parameters shown in Table 4-2. 

Table 4-2.  Spherical Model Parameters 

Direction Nugget Sill Range, a (ft) 

Horizontal 0 1 12 

Vertical 0 1 4 

 
 

For the case of when variograms cannot be constructed, i.e., limited data, then the engineer 

has the option of selecting the worst case scenario.  This feature is selected in Figure 4-3F with a 
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check box which can be applied for either the vertical and horizontal directions.  The worst cases 

(unconditional and conditional) have been identified and discussed in Chapter 2, Section 2.5.   

After completing the geostatistical analysis of a layer, the user needs to click the “add 

layer” button on the bottom right corner of Figure 4-3I.  The user must repeat the geostatistical 

analysis for each layer (Figure 4-3A) and subsequently add them to the completed list (Figure 

4-3I).  When all the layers have been added, the user needs to confirm (Figure 4-3I) before 

proceeding to the next phase of the design, the ‘Simulation’ tab.  For this example (17th Street 

Bridge), only layer 2 was considered, since layer 1 was the special case of a void with no data to 

analyze. 

4.2.4 GUI:  Simulation Tab 

After completing the geostatistical analysis for each layer (Geostat tab), the expected 

boring/laboratory strength information at a planned pile/shaft location is generated using the LU 

algorithm.  The simulation, i.e., generation of soil/rock boring profiles for FB-DEEP shaft/pile 

analyses, is controlled by the simulation tab (Figure 4-5).  Summary statistics from the Geostat 

tab are also shown by layer (Figure 4-5A) for quick check of parameters controlling the LU 

process.  Note the type of foundation, i.e., drilled shaft versus driven pile, has been preselected 

from the start tab (Figure 4-1).   

The simulation process begins with the selection of the simulation type, either 

unconditional or conditional. (Figure 4-5C).  If unconditional simulation (use of all values) is 

selected, no additional input is needed.  In the case of conditional simulation, i.e., using the 

nearest boring(Figure 4-5C), the user needs to specify which boring to use with the pull down 

window (Figure 4-5C), as well as the position of the foundation.  The position can be either 

inputted by its northing and easting, or by a general horizontal distance from the selected boring.   
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Figure 4-5.  Simulation tab. 
 
 

Other input parameters required in FB-DEEP for drilled shaft design (e.g., shaft 

dimensions, unit weight, casing length, slump, ground surface elevation [GSE], and water table 

elevation [wte], etc.) are entered in tab boxes shown in Figure 4-5B.  After inputting all required 

parameters, input files for FB-DEEP may be generated.  That is simply done by clicking the 

Generate Input Files located on the bottom right of the tab (Figure 4-5D).  The user first enters 

the number of simulations of interest (e.g., 2000), and then clicks the “Generate FB-Deep Files” 

in Figure 4-5D.  These files can be saved to any folder and are labeled “1.in” to “2000.in,” where 

each file represents a single realization of parameter values in a boring.  Any number of 

simulations may be considered; over 1000 simulations are suggested to obtain reliable estimates 

of both the mean and variability of predicted pile/shaft capacity.  Prior to presentation of 

FB-DEEP output, however, the handling of other input data paired to qu (i.e., qt, Em, etc.) in order 

to meet FB-DEEP requirements will be discussed. 
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4.2.4.1  FB-DEEP qt versus qu.  For limestone, soil type 4, FB-DEEP requires inputs for 

qu and qt at the same specified depth.  However, within a core run, corresponding samples are 

sized and tested for qu and qt at various locations, i.e., depths different from one another.  

Therefore, to meet FB-DEEP requirements, a relationship between properties in the form of 

linear regression is proposed based on the rock formation’s cohesion 

ܥ  ൌ 0.5ඥݍ௨ඥݍ௧     Eq. 4.1  

To find a site specific relationship between qu and qt, pairs of tested samples (i.e., cohesion, Eq. 

4.1) must be determined.  Generally, the positions (elevation within the boring) of the samples 

within the 5-ft core run are not recorded, but cannot exceed 5 ft.  An example of lab results for a 

rock core is shown in Table 4-3 from 17th Street Bridge.  This particular core run is from a depth 

of 57 to 62 ft and has a measured recovery (REC) of 90% and rock quality designation (RQD) of 

48%.  It is assumed for the collected data, as well as recommended for future projects, that the 

samples listed in the database are in 

Table 4-3.  Sample of FDOT Rock Results 17th Street Bridge Boring 4 Core 2 

SAMP
. NO. 

LENGTH 
(in) 

DIA. 
(in) 

MAX. LOAD 
(lbs) 

S. T. STRENGTH 
(psi) 

q (u)  
(psi) 

DISPL. @ 
FAIL. (in) 

STRAIN @ 
FAIL. (%) 

1T 2.495 2.399 1414.2 150.3842 0.1128 

2U 4.376 2.383 1978.9 439.014 0.0355 0.811243 

3T 2.621 2.381 1262.1 128.7227 0.0891 

4T 2.492 2.403 3328.0 353.7287 0.0556 

5U 3.913 2.356 2030.7 454.679 0.0354 0.904677 

6T 2.473 2.343 2302.1 252.8827 0.0906 

7T 2.404 2.399 2290.3 252.7647 0.0901 

8T 2.658 2.395 2816.1 281.5633 0.0969 

9U 4.811 2.382 3170.6 711.509 0.0553 1.14933 
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order from top to bottom of the core.  The selected pairs to be used in the regression analysis, 

i.e., qu and qt values are assumed to be in sequential order.  An illustration for pairs selected from 

Core 2 is shown in Figure 4-6.  Even though Core 2 did have REC and RQD less than 100%, it is 

still assumed that these pairs were located next to one another.   

 
 

Figure 4-6.  Illustration of pair matching. 
 
 

With pairs of qu and qt selected, a regression analysis was used to determine the 

relationship between both parameters.  Shown in Figure 4-7 is a plot of qt vs qu for the 17th Street 

Bridge, where red squares represent measured values and gray values were simulated.  Evident 

from the figure, increasing qu results in more scatter in the predicted qt.  The increase may be 

attributed to both distributions being log-normal functions.  Consequently, to replicate the trend 

or the scatter shown in Figure 4-7, a log transformation of data prior to regression was 

performed. 

Shown in Figure 4-8 is a plot of the pairs of the log (qt) versus log ( qu).  A linear 

regression of the data (intercept and slope) is also shown in Figure 4-8. 

 

Core 4  Pairs 
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Figure 4-7.  Measured and simulated qt versus qu. 
 
 

 
 

Figure 4-8.  Regression of log transformed data [ln(qt) vs ln(qu)]. 
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Having established the relationship between qu and qt (Figure 4-8), the required pairs of 

values for FB-DEEP (Section 4.14) analysis may be generated.  First qu values are generated by 

the LU algorithm (Section 4.14: conditional or unconditional).  Then the simulated qu_sim values 

are used in Eq. 4.2 (exponentiation to convert back from log transform) with regression 

parameters (a and b from Figure 4-8) as  

௧_௦௜௠ݍ  ൌ ൫ܽ݌ݔ݁ ln ௨_௦௜௠ݍ ൅ ܾ ൅   ൯ Eq. 4.2ߝ

In addition, a random residual term ε (Eq. 4.2) was added for the uncertainty, which has a mean 

value of 0 and variance of ߪఌଶ given by   

ఌଶߪ  ൌ ሺ1 െ ܴଶሻߪ୪୬ሺ௤௧ሻ
ଶ       Eq. 4.3 

where the correlation coefficient R is given in Figure 4-8, and 2
ln(qt)  is the variance of 

transformed (natural log) qt data.  Figure 4-7 shows the simulated qt_sim versus qu_sim values 

(gray circles) versus the measured values (red dots).   

Note, each site will have its own correlation (Eq. 4.2 and Figure 4-8) established between 

qu and qt.  Input of qu and qt data, as well as modulus Ei and recovery, are through the XML 

button shown in Figure 4-1.  The format of the XML data, as well as the data itself, may be 

generated from the in situ and lab test Excel sheets used for the FDOT database 

(fdot.ce.ufl.edu/applications.html). 

4.2.4.2  FB-DEEP Em versus qu.  The relationship between qu and intact Young’s 

modulus E is much easier to obtain, since the modulus is computed from the unconfined 

compression test data directly (no pair matching required).  For this analysis, the secant modulus 

Esec (Df – displacement at failure / L – Length of specimen times stress at failure) was used.  

Shown in Figure 4-9 (red squares) are the recorded in situ/lab results for the 17th Street Bridge.  
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Similar as for qu versus qt, Section 4.1.4.1, a log transformation was performed with regression 

coefficients a = 7.32 and b = 9.8, and correlation coefficient R2 = 0.57).  Evident from the plot, 

Esec and qu are more correlated (i.e., larger R2) than qt and qu.  This was attributed to the samples 

being collocated and less influenced by spatial variability.   

 
 

Figure 4-9.  17th Street Bridge Esec versus qu for Florida limestone. 
 
 

Like qt, the FB-DEEP software needs the Young’s modulus Em for corresponding qu at a 

specified depth for tip assessment.  As discussed in Section 4.1.4.1, first the qu data are generated 

by the LU algorithm (Section 4.14: conditional or unconditional).  Then the simulated qu_sim 

values (same ones used to determine qt_sim) are used in Eq. 4.2 with regression parameters (a and 

b from Figure 4-9) to generate the simulated Young’s Modulus Esec_sim.  The random residual 

term ε was found from Eq. 4.3 with 2
ln(qt) and replaced by 2

ln(Esec).  Shown in Figure 4-9 are the 

measured (red dots) and simulated (gray dots) secant Young’s modulus for the 17th Street Bridge. 
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4.2.4.3  FB-DEEP recovery versus qu .  Also needed for FB-DEEP for each qu are RQD 

and recovery (REC) values.  For this research, the relationship between qu and RQD/REC for a 

number of sites (e.g., 17th, Jewfish Creek) was investigated.  However, no relationship between 

qu and RQD/REC was found as has been reported in the FDOT report BC354-08.  Therefore 

when generating the boring data (conditional or unconditional), the RQD/REC values are 

randomly selected from distribution data inputted for a site (Figure 4-1).  Shown in Figure 4-10 

is the RQD distribution for the 17th Street Bridge from which data will be randomly selected.   

 
 

Figure 4-10.  Histogram of RQD for 17th Street Bridge. 
 
 

Having simulated both the RQD and intact rock secant modulus, the O’Neill’s mass 

modulus Em for FB-DEEP can be determined using the trend line shown in Figure 4-11.   

4.2.4.4  FB-DEEP drilled shaft soil properties.  Besides rock strength and modulus, unit 

weight of soil (sand and clay) and the undrained strength of clay Cu are needed for drilled shaft 

analysis.  For most projects, inadequate amounts of unit weight measurements are recorded and 

predicted values have some variability or variance.  For this work, the unit weight will be 

assumed to be log-normally distributed and a mean and CV will be available as user input.  

During the simulation process (conditional or unconditional), the unit weight will be randomly 
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selected for each generated input for FB-DEEP based on user supplied mean and CV.  Evidently, 

the smaller the user supplied CV, the smaller the variability in generated unit weights.   

 
 

Figure 4-11.  O’Neill Em/Ei versus RQD and UF Em/Ei versus recovery (McVay et al. 2009). 
 
 

For FB-DEEP’s drilled shafts in clayey soil input (FB-DEEP types1 and 2) of undrained 

shear strength, Cu is needed.  Since little, if any, undisturbed sampling is reported in the soil 

boring plan sheets for FDOT sites, Cu values will be correlated to SPT “N”.  Thus for clay 

layers, a default model by Terzaghi and Peck (1976) will be used, which is Cu = 0.06 N (tsf).  

This model was selected because the method error assessment for drilled shafts in clay (Chapter 

3) was collected from the NCHRP Report 507 and was used in the predictions.  Note, the user 

has the option of choosing alternative models (e.g., linear or power) for converting SPT-N to Cu.  

The only condition for this is that the user must also use regression parameters for method error 

(Chapter 3) at the method error tab (Figure 4-5).  This will ensure that any errors from the user 

specified model are appropriately considered.  

4.2.5 GUI:  Simulation Tab –FB-DEEP Analyses 

After generating all soil/rock parameters (conditional or unconditional) for drilled shaft 

analysis, the user must open FB-DEEP separately from the GUI to analyze the data sets.  With 
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FB-DEEP open, the user must select “Batch Mode” process under the “Show” icon displayed in 

Figure 4-12.  From batch mode, the user then clicks “Incremental Selection” which allows the 

user to enter the beginning (1.in) and end (2000.in) file.  FB-DEEP will analyze each file and 

generate a corresponding output file from “1.out” to “2000.out” with capacity calculations 

outputted in each.  

 
 

Figure 4-12.  FB-DEEP batch mode. 
 
 

4.2.6 GUI:  Spatial Variability Tab 

After analyses of all the simulated data sets (e.g., 2000) in FB-DEEP, the output of each is 

read back into the GUI and analyzed.  Shown in Figure 4-13 on the spatial variability tab is the 

icon “Import FB-DEEP Output,” where the user imports the “.out” files generated by FB-DEEP.  

The GUI analyzes the results of the simulations and computes the mean, variance, CV, and Ԅഥ, 

which are displayed in the four graphs as a function of depth.  It is important to note that at this 

stage of the analysis, the results are for spatial variability only; method error has not yet been 

incorporated into the evaluation.  The user has the option of selecting skin, tip, or total (radio 
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buttons).  The case of skin alone is for limestone, where tip resistance is neglected.  As expected, 

the mean and variance of the resistance increase with depth due to increased surface area of the 

shaft.  However, the CV (standard deviation / mean) decreases, resulting in increasing Ԅഥ with 

depth.  

 
 

Figure 4-13.  17th Street Bridge spatial variability tab. 
 
 

4.2.7 GUI:  Method Error Tab 

The method error tab of Figure 4-14 incorporates the errors and biases associated with the 

FB-DEEP’s resistance calculation as well as with shaft construction.  On this tab, the designer 

can use the results from the regression analyses given in Chapter 3 by clicking the historical data 

button (Figure 4-14A).  Additionally, users can also import results from their own database of 

load test data or planned site specific load testing with regression parameters given (Figure 

4-14B).  Once these fields are filled out, the load test button Figure 4-14C must be clicked before 
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continuing.  For the 17th Street Bridge example, historical data from Chapter 3 was used for the 

method error.  The method error in this tab applies to both drilled shafts and driven piles with 

values used depending upon pile/shaft selected (start tab). 

 
 

Figure 4-14.  GUI method error tab. 
 
 

4.2.8 GUI:  LRFD PHI Tab 

With both spatial and method error computed for a specific site, the final results can be 

computed and displayed in the LRFD PHI tab shown in Figure 4-15.  Three plots are shown with 

the left being for side resistance only (B), the middle for tip resistance (C), and the right for total 

resistance (D).  A pull down menu (Figure 4-15A) controls what is shown on the three plots.  

Four options are available:  mean, CV, Ԅഥ, and ԄഥRn may be plotted versus tip elevation of the 

foundation.  The red line represents the results from the spatial analysis only, and the green 
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represents the results from both spatial and method error combined.  This allows the user to see 

the impact that the method error has on total uncertainty with respect to spatial variability.  

 
 

Figure 4-15.  GUI LRFD PHI tab. 
 
 

4.3  Unconditional Simulation Results for 17th Street Bridge  
in Fort Lauderdale, Florida 

The first analysis reported is the unconditional simulation with results shown in Figures 

4-16 through 4-18.  In the plots, the blue line represents uncertainty due to spatial variability 

only, and the red dashed line incorporates both spatial and method error which would be used for 

design.  The ordinate (Y) axis in the figure is the total length of drilled shaft input into 

FB-DEEP.  Since the ground surface elevation was at 0 and the top of the limestone is located at 

–51.2 feet, the length of embedment in the limestone is L-51.2.   
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Figure 4-16.  17th Street Bridge, mean resistances – unconditional simulation. 
 
 
 

 
 

Figure 4-17.  17th Street Bridge, CV of resistances – unconditional simulation. 
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Figure 4-18.  17th Street Bridge, LRFD Ԅഥ – unconditional simulation. 
 
 

Figure 4-16 plots mean capacities for just side friction, end bearing and total (side + end 

bearing).  For side friction, it can be seen that the mean capacity increases with length of shaft at 

a constant slope.  This is expected since unconditional simulations approach the site mean value, 

thus side friction becomes a function of surface area (linear with depth).  However, mean end 

bearing is relatively constant with increasing shaft length.  This is attributed to unconditional 

simulations reproducing the site mean over many simulations.  Fluctuations with depth displayed 

in the end bearing figure can be attributed to simulation error, but are relatively small when 

compared to mean prediction, and may be neglected.  For all plots, the incorporation of method 

error results in a mean resistance less than mean prediction from just spatial variability.  This is 

due to regression equations used whose terms reduce the predicted resistance (Table 3-1).  

Figure 4-17 plots CV for side friction, end bearing, and total (side + end bearing) 

resistance.  The plot of side friction CV shows a decrease with depth.  This is expected due to 

larger averaging domain of longer shaft, thus reducing the uncertainty while increasing expected 
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resistance.  For end bearing, the CV is constant with depth as expected, and it is significantly 

higher than that of side friction.  This is due to FB-DEEP using only one modulus value to 

calculate the tip resistance.  This results in no spatial averaging and no reduction in variance of 

the measure point modulus and RQD values.  Also of interest is the magnitude of contribution of 

spatial uncertainty (blue) and method uncertainty (difference between red and blue).  Evidently, 

the spatial contribution is higher than the influence of the method. 

Figure 4-18 plots Ԅഥ for side friction, end bearing, and total (side + end bearing) resistance.  

These plots have the same overall shape as the corresponding plots of CV, which is expected 

since Ԅഥ is a monotonic function of CV, Eq. 3.17.  It should be noted that for design, Ԅഥ for spatial 

plus method uncertainties (red dashed line) should be used.  In the plot, the difference between 

the spatial (blue) and spatial plus method (red) is only the influence of method error.  It is 

evident that the influence of spatial is large.  Also note that the Ԅഥ for total resistance increases 

with depth due to the dominating contribution of skin friction and its reduced CV due to spatial 

averaging. 

Figure 4-19 plots design resistance ԄഥRn due to side, tip, and total.  The design side friction 

can be compared with results reported in BD545-76 for required length to support 2500 tons 

from spatial variability (blue line) only.  BD545-76 found that the required length for a 4-ft 

diameter shaft was 20 ft for an unconditional simulation.  A comparable length of 19 ft was 

found using the GUI.  The slight difference can be attributed to the GUI’s use of simulating qt 

from qu rather than cohesion alone, as well as the use of randomization of RQD values.   
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Figure 4-19.  17th Street Bridge, design resistances – unconditional simulation. 
 

4.4  Conditional Simulation Results for 17th Street Bridge  
in Fort Lauderdale, Florida 

Conditional simulations were performed using borings B-4 and B-6, which are assumed to 

be located within production shaft footprints.  Results from the analyses are shown in Figures 

4-20 through 4-23 for B-4 and Figures 4-24 through 4-27 for B-6.  Both cases result in different 

mean capacities when compared to each other and to the unconditional simulation.  This is due to 

conditioning (i.e., larger weighting) of measured qu at each of the boring locations.  This also 

results in a less uniform slope of increasing side friction resistance with depth.  Also noticeable 

for the two cases is that the CV for side friction is less than the unconditional simulation, 

resulting in a higher Ԅഥ factor.  This is a result of the shaft being within the horizontal correlation 

length ah, conditioning the prediction to the measured values of the closest boring.  It is 

important to note that use of the FB-DEEP line of input results in no averaging in the horizontal 
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direction, thus resulting in a conservative estimate of Ԅഥ.  The higher Ԅഥ for the conditional cases 

demonstrates the advantage of having boring located within the footprint of the foundation. 

 

 
 

Figure 4-20.  17th Street Bridge, mean resistances – conditional simulation B-4. 
 
 

 
 

Figure 4-21.  17th Street Bridge, CV of resistance – conditional simulation B-4. 
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Figure 4-22.  17th Street Bridge, LRFD Ԅഥs – conditional simulation B-4. 
 
 

 
 

Figure 4-23.  17th Street Bridge, design resistances – conditional simulation B-4. 
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Figure 4-24.  17th Street Bridge, mean resistances – conditional simulation B-6. 
 
 

 
 

Figure 4-25.  17th Street Bridge, CV of resistance – conditional simulation B-6. 
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Figure 4-26.  17th Street Bridge, LRFD Ԅഥs – conditional simulation B-6. 
 
 

 
 

Figure 4-27.  17th Street Bridge, design resistances – conditional simulation B-6. 
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Note however, the design side resistance (ԄഥRn) is 1600 tons (B-6), 1800 tons (B-4), and 

2000 tons for the whole site (i.e. unconditional) at 70 ft.  Even though the conditional cases (B-6 

and B-4) have higher Ԅഥ, their design resistance is less than that of unconditional.  This is due to 

conditioning to small qu at deeper depths seen in the profile tab (Figure 4-2).  This results in the 

smaller mean resistance determined by the simulation process. 

4.5  Dixie Highway Over Hillsboro Canal  
in Broward County, Florida 

The 17th Street Bridge example illustrates the use of the GUI for spatial and method 

uncertainty analysis for a drilled shaft design.  Also of interest is the use of the GUI for the 

design of driven piles based on insitu SPT N data.  A recent example of driven piles which 

includes static load testing is the FDOT Dixie Highway project over Hillsboro Canal in Broward 

County, Florida.  The project had 21 SPT borings and used 24-inch prestressed concrete piles.  A 

discussion of GUI tabs and output follows. 

4.5.1 GUI:  Start Tab 

Figure 4-28 shows the start tab, where the user identifies type of foundation and imports 

boring data.  The boring data is imported through the XML icon shown in Figure 4-28A.  Again, 

the data may be entered and exported (XML) with the in situ Excel sheets used for the FDOT 

database (found at fdot.ce.ufl.edu/applications.html).  Presently, all boring data uploaded will be 

considered in the unconditional simulation.  Successful importing of the data will show the 

boring names and numbers in the boring window (Figure 4-28B).  After importing the boring 

data and selecting foundation type, the user needs to click “Save Project Information” (Figure 

4-28C).  
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Figure 4-28.  Start tab – plan view of Dixie Highway. 
 

4.5.2 GUI:  Profile Tab 

With the site’s in situ data loaded into the GUI, the profile is next analyzed to determine layering 

(Figure 4-29).  The profile can be broken into layers by simply clicking within the plot window 

(Figure 4-29A).  A layer boundary is displayed as a blue line within the window.  The user 

should identify layers based on means, trends or variance as discussed in Chapter 2.  Also, if an 

automatic hammer was used, a correction factor can be applied (Figure 4-29B).  The correction 

factor is only applied to those borings that have automatic hammer identified in the XML file.  

For this example, a correction factor of 1.2 was used because of the rated energy of the hammer, 

and it was applied to three of the borings preformed by the FDOT SMO.   
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Figure 4-29.  Profile tab for Dixie Highway. 
 

After identifying layers, the user needs to input soil types in the soil summary table (Figure 

4-29C).  If the user does not find the layering acceptable, the profile can be “reset” by clicking 

the button shown in Figure 4-20D.  After identifying layers and soil types, the user needs to click 

the “Accept” button before proceeding to the next tab.   

4.5.3 GUI:  Geostat Tab 

For each layer indentified in the profile tab, a geostatistical analysis is needed.  Shown in 

Figure 4-30 is the geostat tab for Dixie Highway.  The geostatistical analysis should begin with 

detrending of any layer under analysis.  Evident in Figure 4-30A, the blow count N increases 

with depth, particularly in layer 2, which is detrended by clicking the detrend box in Figure 

4-30B and selecting the 1st order polynomial (linear detrending).  This generates the blue line 

shown on the layer’s profile plot.  The detrending is performed by the GUI and applied 

appropriately where needed.  Shown in Table 4-4 are the summary statistics for each layer.  For 

C 
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detrended layers CV’s are evaluated from the mean of the data before detrending in combination 

with the standard deviation from the data after detrending. 

After detrending analysis and normal score transform, the experimental variogram for both 

horizontal and vertical directions needs to be evaluated.  For this analysis, search parameters 

shown in Table 4-5 were used.  The lag distance of 2 ft for the vertical direction with tolerance of 

1 was chosen because SPT-N’s are typically taken at intervals from 2.5 to 5 ft.  These parameters 

are recommended for SPT data in the vertical direction.  For the horizontal direction, a short lag  

 
 

Figure 4-30.  Geostat tab for Dixie Highway. 
 

Table 4-4.  Layer Summary Statistics and Performance of Detrending 

Layer Mean CV n Detrend Order 

1 11.35 0.69 183 Yes 2 

2 11.49 0.51 154 Yes 1 

3 45.42 0.41 317 No NA 

 

A 

B 
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Table 4-5.  Variogram Search Parameters 

Search Direction Lag Tolerance Number of Lags Bandwidth 

Horizontal 3 1.5 20 1 

Vertical 2 1 20 0 

 
 
distance interval of 3 ft was used approximately corresponding to the shortest spacing between 

borings.  In general, however, this parameter will vary from site to site.  It is best to try multiple 

lag distance intervals and view the resulting variogram.  Also, the Gam Output button should be 

clicked to see if adequate numbers of pairs (> 30) were considered in the variogram analysis.  In 

addition, when working with SPT data, it is recommended that the vertical bandwidth for the 

horizontal variogram be set to 1 or 2 ft.  This may help increase the number of data pairs, since 

all site borings may not be sampled at exactly the same elevations throughout.  It is also 

recommended that the tolerance be set to half the lag distance. 

With search parameters listed in Table 4-5, the variogram models are fitted to each layer.  

A summary of the models used is shown in Table 4-6.  It was found for all three layers that the 

horizontal variogram is poorly defined due to insufficient data (n < 30 pairs).  Thus for this site, 

the worst case analysis for ah will be applied.  For the worst case ah, the GUI assumes ah = av.  

This allows the measured values of the boring in the footprint to be weighted more during the 

analysis. 

Table 4-6.  Variogram Model 

Layer Model av sillv ah sillh nugget 

1 SPH 6.06 1 NA 1 0 

2 EXP 11.06 1 NA 1 0 

3 EXP 11.08 1 NA 1 0 

SPH-Spherical Model 
EXP-Exponential Model 
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4.5.4 GUI:  Simulation Tab 

For the Dixie Highway 24-inch square piles were selected in Figure 4-31A.  For the 

simulation analysis for driven piles, only one pile length is entered.  This is due to FB-DEEP’s 

limitation of only being able to calculate one pile length per file read.  For future 

implementations, it is recommended that FB-DEEP be modified to compute driven pile 

resistances for a range of lengths.   

Next, the user needs to identify conditional (nearest boring) or unconditional (mean boring 

data) simulation (Figure 4-31B).  After entering the number of realizations (Figure 4-31C), the 

user clicks “Generate FB-Deep Files”.  The subsequent processes are identical to that discussed 

for drilled shafts above.  

 
 

Figure 4-31.  Simulation tab for Dixie Highway. 
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4.6  Results for Dixie Highway in Broward County, Florida 

Unconditional simulation results are shown in Figures 4-32 through 4-35 and the 

conditional results for boring SMO-EB1 are presented in Figures 4-36 through 4-39.  In the case 

of unconditional simulation (Figure 4-32), the mean tip resistance has a shape similar to the 

mean SPT-N profile for the site seen in Figure 4-30 (profile tab).  The mean end bearing 

(FB-DEEP) becomes constant for lengths greater than 65 ft.  This is due to the averaging method 

of FB-DEEP and the pile being embedded greater than 8 diameters into the limestone layer.  

Thus, no influence from the above layer affects the average end bearing computed.  In all of the 

mean resistance plots, it can be seen that the mean of spatial plus method (red dashed line) is 

higher than the mean from just the spatial analysis (blue line).  This is due to bias correction 

(exp(a)) equal to 1.19 (> 1) shown in Table 3-3.  Also for the Ԅഥ profile in Figure 4-34, it can be 

seen that Ԅഥ for spatial plus method is smaller than that for just spatial.  This is due to inclusion of 

method error, i.e., CVε, which increases the uncertainty of the prediction by increasing CVR and 

lowering Ԅഥ.  Moreover for shorter pile lengths, Ԅഥ is smaller due to upper sand layers having a 

higher CV of SPT N (Table 4-3) compared to the limestone layer.  Figure 4-35 plots the design 

resistance (ԄഥRn) from the unconditional simulation.  Note, even though Ԅഥ between spatial and 

spatial plus methods (Figure 4-34) are quite different, the design resistances (ԄഥRn) are very 

similar.  This can be attributed to the bias corrected mean used in Rn calculation.  That is, in the 

spatial plus method, Ԅഥ is less than that for just spatial method, but the bias correction (> 1) 

increases the mean value in the case of the spatial plus method. 
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Figure 4-32.  Mean resistance, Dixie Highway - unconditional simulation. 
 
 

 
 

Figure 4-33.  CV of resistance, Dixie Highway - unconditional simulation. 
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Figure 4-34.  Ԅഥ, Dixie Highway - unconditional simulation. 
 
 

 
 

Figure 4-35.  Design resistance, Dixie Highway - unconditional simulation. 
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Figure 4-36.  Mean resistance, Dixie Highway - conditional simulation-EB1. 
 
 

 
 

Figure 4-37.  CV of resistance, Dixie Highway - conditional simulation-EB1. 
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Figure 4-38.  Ԅഥ, Dixie Highway - conditional simulation-EB1. 
 
 

 
 

Figure 4-39.  Design resistance, Dixie Highway - conditional simulation-EB1. 
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SMO-EB1 versus site mean, and the higher Ԅഥ value can be attributed to the reduction in spatial 

uncertainty due to the boring located within the footprint.  Shown in Table 4-7 is the comparison 

between static load tests and the unconditional and conditional resistances for the load test piles.  

The difference may be attributed to method error and the use of the default CV.  

Table 4-7. Load Test versus Simulated Unconditional (UC SIM) and Conditional (CON SIM) 
Results 

Pile Load Test Result (Tons) UC SIM (Tons) CON SIM (Tons) 

End Bent 1 Compression 270 242 206 

Pier 4 Tension 115 194 181 

Pier 8 Compression 251 288 205 
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CHAPTER 5 
CASE STUDIES OF FDOT BRIDGE SITES 

 

5.1  Background 

As discussed in Task 5, for acceptance of LRFD Ԅ with the use of site specific spatial and 

method uncertainty, a comparison with existing practice is warranted.  Since Task 1 involved the 

collection of boring, laboratory and load test data from multiple sites and foundation types, the 

design process (Chapters 2–4) may be readily employed at each of the sites.  Table 5-1 lists the 

project number, site description, number of borings, number of site load tests, number of borings 

in the footprint, and investigative geotechnical company for each of the collected sites.  Four of 

the sites were drilled shafts and 2 were driven piles.  For each site, both unconditional and 

conditional analyses were performed.  In the case of the unconditional, the mean and CV of all 

site data by layer was used for the simulation, whereas in the case of conditional, the nearest 

boring was used in the analysis.  It should be noted the computed LRFD Ԅഥ  has the bias 

removed, and it should be compared to Ԅ/R in current practice. 

Table 5-1.  Data Collected from FDOT Projects 

Project # Project Name 
Number of 

Borings 
Load Test 

Number of 
Borings in 
FP w/ LT 

DATA BY 

250445-1-52-01 Jewfish Creek 98 2 2 MACTEC 

256994-1-52-01 SR-686 37 2 2 Ardaman,PSI 

408320-1-52-01 MICa to MIAb 23 2 1 PSI 

406800-2-32-01 
MIC – People 
Mover Station 

15 1 0 MACTEC 

413485-1-31-01 CR-12A   4 0 0 FDOT 

418760-2-52-01 I-4 Improvements 14 1 0 Ardaman 

230656-1-52-01 Dixie Highway 22 3 3 PSI 
a Miami Intermodal Center 
b Miami International Airport 
FP-Foot print 
LT-Load test 
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5.2  Jewfish Creek, South Florida 

Jewfish Creek project is located in both Monroe and Miami-Dade counties of District 6.  

The subsurface for the project is predominately limestone, which makes it an excellent site for 

the case of a single layer analysis.  There were a total of 98 borings (Table 5-1) that were located 

within the design drilled shafts foundation’s footprint.  In addition, two more drilled shafts (not 

at pier locations) underwent Statnamic load testing, which had borings within their footprint. 

For this site, the spatial analysis was only performed on the limestone layer, since 

negligible skin friction was found from the overlying thin sand layer.  Shown in Table 5-2 are the 

summary statistics for the limestone layer’s qu values.  For this site, no detrending was required.  

Table 5-3 shows the search parameters used to generate the experimental variograms.  It was 

found that in the vertical direction an adequate amount of pairs (n > 30) was available to 

construct a variogram and identify vertical correlation length av.  In the horizontal direction, only 

a few pairs of data were available and a variogram could not be constructed.  Table 5-4 shows 

the variogram model parameters computed from the analysis, with worst case scenario (N/A) 

selected for the horizontal direction. 

Table 5-2.  Jewfish Creek Layer Summary Statistics and Detrend for qu values 

Layer Mean CV n Detrend Order 

1 40.19 0.77 183 No N/A 

 

Table 5-3.  Jewfish Creek Variogram Search Parameters 

Search Direction Lag Tolerance Number of Lags Bandwidth 

Horizontal 20 10 20 1 

Vertical 2 1 20 0 
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Table 5-4.  Jewfish Creek Variogram Model 

Layer Model av sillv ah sillh nugget 

1 SPH 7.25 1 N/A 1 0 

 
 

The analysis was carried out on the as-built 48-inch diameter shafts of various lengths.  

Since no modulus values were available for the site, end bearing was neglected in the analysis.  

Both conditional and unconditional analyses were performed on the site.  Two different cases of 

method error and bias correction were considered:  1) multiple site data (i.e., default, Table 3-1, 

Figure 3-2), and 2) Jewfish Creek load test results (Figure 3-7).  

Results for unconditional and conditional simulations are shown in Figures 5-1 through 5-3 

and summarized in Table 5-5 for the case of default method error.  Evident in Table 5-5 for the 

case of 40-ft long shafts, the mean shaft resistance RN varies (conditioning) from 3132 tons to 

4595 tons.  The latter corresponds to high variability in mean boring data, i.e., boring P10-S2 

(low) to boring P56-S3 (high).  The unconditional analysis gives a site average resistance of  

 
 

Figure 5-1.  Jewfish Creek side resistance analysis unconditional simulation. 
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Figure 5-2.  Jewfish Creek side resistance analysis P10-S2. 
 
 
 

  
 

Figure 5-3.  Jewfish Creek side resistance analysis P56-S3. 
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Table 5-5.  Results for Jewfish Creek for 40-ft Long Shaft 

Analysis Spatial Ԅഥ Total Ԅഥ RN (Tons) 

Unconditional 0.64 0.51 3998 

P10-S2 0.75 0.49 3132 

P56-S3 0.73 0.58 4595 

 
 
3998 tons using the mean of all borings.  As expected in Figures 5-1 to 5-3, the conditional and 

unconditional uncertainties (CV- center figures) decreases with depth for both spatial and spatial 

plus method error. That is, for a single layer as the shaft length increases, the averaging domain 

increases and total side resistance variability decreases. 

Also shown in Table 5-5 is the LRFD Ԅഥ  as a result of spatial or spatial plus method error 

for both the unconditional and conditional analyses.  As expected, the spatial conditional LRFD 

Ԅഥ  values are higher than that of the unconditional due to the reduction of spatial uncertainty 

(horizontal ah = av worst case).  However, in the case of total uncertainty (spatial + method), the 

unconditional simulation has a higher LRFD Ԅഥ  than that of conditional for weak boring and a 

smaller value in the case of strong boring.  This may be attributed to calculation of CVR from 

which LRFD Ԅഥ  is computed (Eq. 3.17).  The numerator of CVR is obtained from the total 

variance ߪோ
ଶ given by Eq. 3.9, where a constant ߪఌଶ is added.  However, in the denominator of 

CVR is the mean shaft resistance, which is smaller for the weak boring (P10-S2, Table 5-5) 

resulting in a higher CVR and a lower Ԅഥ for weak boring when considering total uncertainties 

(Table 5-5).  This issue was not as apparent for the 17th Street case (Chapter 4) due to a higher 

site mean for the latter case as compared to Jewfish Creek.  Consequently using a fixed 

uncertainty of method, i.e., ߪఌଶ, has less influence on CVR when the denominator (i.e., mean) is 

large. 
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Also evident in Table 5-5 is the predicted LRFD Ԅഥ for P10-S2 as slightly higher than that 

of P56-S3.  This slight difference may be attributed to P10-S2 having additional rock samples in 

the boring.  More samples resulted in less uncertainty in the boring mean (Eq. 2-15) for P10-S2.  

This illustrates the need to have adequate sampling, i.e., number of samples spaced relatively far 

apart compared to av when predicting resistance from a boring. 

Also it should be reiterated that the use of conditional simulation using FB-DEEP results in 

a conservative evaluation of LRFD Ԅഥ.  This is due to the one-dimensional model (depth versus 

soil properties) that FB-DEEP requires to estimate resistance.  It would be expected for a 

resistance estimate that considers the surface area of the shaft (i.e., three-dimensional) to result in 

a higher LRFD Ԅഥ. 

To incorporate Jewfish Creek load test results in the evaluation of  Ԅഥ, the evaluation 

process given in BD545 -76 was used.  In this process, the bias correction regression analysis 

from Figure 3-7 for the site specific measure versus predicted relationship was used.  

Specifically, the ߪఌଶ (Figure 3-7) was reduced using αo from Figure 2-7 (i.e., the multiple point 

skin friction values are up scaled to shaft layer values).  For the Jewfish Creek site, av = 15 ft, the 

load test shaft length L = 30 ft, resulting in an L/av = 2 from which αo ≈ 0.33 was obtained from 

Figure 2-7.  Next, when evaluating CVR, the ߪఌ௙௦
ଶ  in Eq. 3-9 is replaced with α୭ߪఌଶ due to the use 

of measured side versus predicted resistance values over intervals rather than single layer values 

assumed in default legacy ߪఌ௙௦
ଶ  analysis (Figure 3-2, Table 3-1). 

Results for unconditional and conditional simulations are presented in Figures 5-4 through 

5-6 and summarized in Table 5-6 for method error assessed from site load tests.  Evident in 

Table 5-6 for the case of 40-ft long shafts, the mean shaft resistance RN varies (conditioning) 

from 2601 tons to 3811 tons.  The latter corresponds to high variability in mean borings data, i.e., 

boring P10-S2 (low) to boring P56-S3 (high).  The unconditional analysis gives a site average 
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resistance of 3268 tons using mean of all borings.  As expected in Figures 5-4 to 5-6, the 

conditional and unconditional uncertainties (CV- center figures) decreases with depth for both  

 
 

Figure 5-4.  Jewfish Creek side resistance analysis unconditional simulation with load testing. 
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Figure 5-5.  Jewfish Creek side resistance analysis P10-S2 with load testing. 
 
 

 
 

Figure 5-6.  Jewfish Creek side resistance analysis P56-S3 with load testing. 
 
 

Table 5-6.  Results for Jewfish Creek, 40-ft Long Shaft with Load Test 

Analysis Spatial Ԅഥ Total Ԅഥ RN (Tons) 

Unconditional 0.64 0.53 3268 

P10-S2 0.75 0.52 2601 

P56-S3 0.73 0.61 3811 
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the case of total uncertainty (spatial + method) and unconditional simulation has a higher LRFD 

Ԅഥ  than that of conditional for weak boring and that of a smaller value in the case of strong 

boring (i.e., CVR affected by mean data). 

Of interest is the comparison of total LRFD Ԅഥ  reported in BD545-76 to that in Table 5-6 

or Figures 5-4 to 5-6.  In the case of unconditional simulation with load testing, FDOT BD545-

76 reports a value of 0.47 for a 30-ft shaft.  The numerical simulation (Figure 5-4) for 

unconditional simulation with spatial method error gives a very similar value, 0.48 for a 30-ft 

shaft.  However, in the conditional simulation, i.e., in the footprint of the footing, FDOT BD545-

76 assumes all spatial uncertainty drops out (i.e., total uncertainty = method error), LRFD Ԅഥ = 

0.74 for all shafts.  However, as discussed in Chapters 2 and 3 for the worst case conditional 

simulation, the boring is generated at the wall of the shaft (i.e., radius), which always results in 

spatial uncertainty and reduction in LRFD Ԅഥ (0.5-P10-S2, and 0.58-P56-S3 for 30 ft).   

For 40-ft shafts, the axial design resistance Ԅഥ  RN would be 1732 tons for the entire site 

(i.e. unconditional), 1352 tons for boring for P10-S2 (conditional) and 2325 tons for P56-S3 

(conditional).  Again, the unconditional falls between the high and low conditional resistance 

values RN (controlled by the mean data within each boring). 

5.3  MIC/MIA CONNECTOR 

The elevated People Mover shuttle from the Miami Intermodal Center (MIC) Station to 

Miami International Airport (MIA) had 23 reported borings.  Moreover, all the borings were 

located within the footprint of their respective drilled shaft.  In addition, there were two load tests 

reported on this project, one Statnamic and one Osterberg-Cell; however, only one test had a 

boring located within the footprint of the test shaft.  Unfortunately, the boring within the 

footprint did not have any reported rock strength data. 
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The MIC to MIA connector was again analyzed only for the limestone layer, due to the 

extent of the rock along its length and its dominating contribution to the shaft’s resistance.  

Nonetheless, no Young’s modulus values for the rock were recorded, and thus, no end bearing 

resistance could be evaluated.  Tables 5-7 through 5-9 summarize the geospatial analysis that 

was performed for the limestone layer.  Even though the site had fewer borings than Jewfish 

Creek, there were sufficient samples within the borings to generate a vertical variogram.  The 

site is a good example of a minimal sampling strategy, which allows the generation of a vertical 

variogram.   

Table 5-7.  MIC/MIA Connector Layer Summary Statistics and Detrend 

Layer Mean CV n Detrend Order 

1 67.07 0.60 66 No N/A 

 
 

Table 5-8.  MIC/MIA Connector Variogram Search Parameters 

Search Direction Lag Tolerance Number of Lags Bandwidth 

Horizontal 10 5 20 1 

Vertical 2 1 20 0 

 
 

Table 5-9.  MIC/MIA Connector Variogram Model 

Layer Model av sillv ah sillh nugget 

1 SPH 6.58 1 NA 1 0 

 
 

For this site, axial analysis was carried out for a 48-inch diameter drilled shaft of various 

lengths.  Results from the GUI for side resistance are shown in Figures 5-7 through 5-9 and 

Table 5-10.  It can be seen for this site that the LRFD Ԅഥ for boring WB9 is only slightly higher 
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than the unconditional simulation values and the boring’s mean value is also close to the site’s 

value.  However, because the samples are spaced relatively close compared to av, more 

 
 

Figure 5-7.  MIC/MIA side resistance analysis unconditional simulation. 
 
 

 
 

Figure 5-8.  MIC/MIA side resistance analysis WB9. 
 

0 1000 2000 3000

36

38

40

42

44

46

48

50

Resistance [Tons]

L
e

n
g

th
 [f

t]

Mean Side Resistance

0.2 0.4 0.6 0.8

36

38

40

42

44

46

48

50

CV

CV of Side Resistance

0 0.2 0.4 0.6 0.8 1

36

38

40

42

44

46

48

50





0 500 1000 1500

36

38

40

42

44

46

48

50

 R
N
 [Tons]

 R
N

 

 

Spatial
Spatial + Method

0 1000 2000 3000

36

38

40

42

44

46

48

50

Resistance [Tons]

L
e

n
g

th
 [f

t]

Mean Side Resistance

0 0.2 0.4 0.6 0.8 1

36

38

40

42

44

46

48

50

CV

CV of Side Resistance

0 0.2 0.4 0.6 0.8 1

36

38

40

42

44

46

48

50





0 500 1000 1500

36

38

40

42

44

46

48

50

 RN
 [Tons]

 R
N

 

 

Spatial
Spatial + Method



 

 96

 
 

Figure 5-9.  MIC/MIA side resistance analysis worst case unconditional simulation. 
 

Table 5-10.  Results for MIC to MIA for 15-ft Long Shaft 

Analysis Spatial Ԅഥ Total Ԅഥ RN (Tons) 

Unconditional 0.64 0.54 2154 
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Unconditional, worst case av 0.41 0.39 2131 
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compared to prior results.  The thirty percent reduction in Ԅഥ  and design resistance, Ԅഥ  RN 

shows the importance of sampling strategy and the need to develop a vertical variogram. 

5.4  MIC – People Mover Station 

Another MIC Station project available to analyze was the People Mover Station (Table 

5-1).  This project contains 14 borings performed by MACTEC (Atlanta, Ga; now AMEC).  A 

majority of these borings are located within the footprint of the pier caps.  The MIC-People 

Mover Station has one load test but it does not contain a boring within the footprint.  However, 

the MIC Station project has the least rock strength data when compared to Jewfish and the MIA 

projects.  This site represents a good case to investigate on Ԅഥ for a site with minimal sampling.   

Table 5-11 shows the summary statistics for the site’s limestone layer. The rock had a high 

mean strength, but with a large variability CV = 0.74.  Since only 18 samples were available 

from the 15 borings, all variograms were considered inacurate (n < 30).  Thus the worst 

correlation lengths were assumed in both the vertical and horizontal directions.   

Table 5-11.  MIC –People Mover Station Layer Summary Statistics and Detrend 

Layer Mean CV n Detrend Order 

1 65.58 0.74 18 No NA 

 
 

Results for analysis of a 48-inch diameter drilled shaft are shown in Figures 5-10 and 5-11.  

Figure 5-11 shows the unconditional simulation results using the worst case scenario.  However, 

it was found the unconditional simulation presented in Chapter 2 does not account for 

uncertainty of the measured mean in the case of a small number of samples.  To incorporate the 

uncertainty of mean in the unconditional simulation, it was decided to run the GUI (modified LU 

algorithm, Eq. 2-19) in the conditional mode, but with the shaft located outside the correlation 

length of any of the sites borings.  Being outside the correlation length results in an equivalent 
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unconditional simulation (no conditioning to borings, i.e., outside correlation length), and it 

properly accounts for uncertainty in the measured mean.  The latter is accomplished through the 

second term in Eq. 2-15, when generating boring profiles for FB-DEEP.  

 
 

Figure 5-10.  MIC Station side resistance analysis unconditional simulation. 
 
 

 
 
Figure 5-11.  MIC Station side resistance analysis unconditional simulation, uncertainty of mean. 
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It can be seen from a comparison of Figures 5-10 to 5-11, poor sampling can have a 

significant influence on Ԅഥ.  The LRFD Ԅഥ went from 0.45 to 0.38 due to uncertainty of the mean 

(i.e., too few samples).  Note, the two previous projects were checked to see if uncertainty of the 

measured mean had any effects on Ԅഥ.  It was found that there was no significant difference in Ԅഥ 

for those projects (i.e., sufficient sampling was performed).  

5.5  County Road 12A 

This is a small driven pile project in District 3 (Gadsen County) which is being designed 

in-house by the FDOT.  The project has only four borings configured in the preliminary layout.  

It is unknown if there will be a boring within the footprint of the foundation element, since the 

final design has not been completed.  It is likely that driven piles will be used, thus no load 

testing will be available.  Both boring and lab data for this project have already been uploaded to 

the database.  This project was used during the pilot testing of the database by FDOT personnel 

and was the first set of site data uploaded to the database. 

The site is primary silty and clayey sand overlying weathered limestone.  This site was 

separated into two layers with summary statistics shown in Table 5-12.  The geostatistical results 

are presented in Table 5-13.  Since Layer 1 was thin with an insufficient number of SPT N 

values, no vertical variogram could be developed for the layer, and the worst case scenario was 

considered for the layer. 

Table 5-12.  County Road 12A Layer Summary Statistics and Detrend 

Layer Mean CV n Detrend Order  

1 16.76 0.41 29 Yes 2 2 

2 60.18 0.38 46 No NA 4 
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Table 5-13.  County Road 12A Variogram Model 

Layer Model av sillv ah sillh nugget 

1 SPH NA 1 NA 1 0 

2 SPH 11.77 0.75 NA 1 0 

 
 

The preliminary geotechnical report for the site recommended the use of driven piles for 

the foundation.  Therefore, unconditional analysis (pile locations unknown) for this site with 

24-inch square concrete piles was performed.  Results for a range of pile lengths are shown in 

Figures 5-12 through 5-15 for unconditional simulations.  Figure 5-12 presents the mean side, 

tip, and total resistance as a function of depth.  Figure 5-13 shows uncertainty [spatial and spatial 

plus method] as a function of depth.  As expected, the uncertainty diminishes with depth due to 

averaging.  Figure 5-14 shows the LRFD Ԅഥ for skin, tip, and total resistance as a function of 

depth.  Evidently Ԅഥ increased with depth due to the diminishing uncertainty with depth.   

 
 

Figure 5-12.  CR-12A mean resistances – unconditional simulation. 
 
 

0 100 200 300 400

20

25

30

35

40

45

50

55

60

65

70

Resistance [TONS]

L
e

n
g

th
 [f

t]

Mean Side Friction

0 100 200 300 400

20

25

30

35

40

45

50

55

60

65

70

Resistance [TONS]

Mean End Bearing

0 200 400 600 800

20

25

30

35

40

45

50

55

60

65

70

Resistance [TONS]

Mean Total Resistance

 

 

Spatial
Spatial +Method



 

 101

 
 

Figure 5-13.  CR-12A CV of resistances – unconditional simulation. 
 
 
 

 
 

Figure 5-14.  CR-12A Ԅഥ  – unconditional simulation. 
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Figure 5-15.  CR-12A design resistances – unconditional simulation. 
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CHAPTER 6 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1  Background 

Current LRFD design codes (FDOT, AASHTO, etc.) list Ԅ values for a variety of deep 

foundation design approaches (e.g., SPT N, CPT qc).  All of the reported values were generally 

established from comparison of load test resistance with predictions from nearby borings.  

However, none of the evaluations accounted for the inherent spatial variability that exists from 

site to site or even within a site (e.g., by layer).  This site or layer variability may be represented 

by coefficient of variation CV or the standard deviation of the soil/rock properties divided by the 

mean value.  Examples of variability are shown in Table 6-1 for rock strength from multiple sites 

in Florida and in Table 6-2 for layer variability (SPT N) within a site.  Evident in both tables, site 

and layer variability are quite large within Florida. 

Table 6-1.  Summary of CVs of Rock Data Collected 

Project Name 
Financial 
Project ID 

County 
qu 

Mean (tsf) CV n 

17 St Bridge WPI 4110739 Broward 98.19 0.57 99 

Jewfish Creek 250445-1 Monroe 40.19 0.77 183 

MIC Station 406800-2 Miami-Dade 67.07 0.66 66 

MIC People Mover 408320-1 Miami-Dade 65.58 0.74 18 

 
 

Table 6-2.  Summary of SPT Mean N by Layers – Dixie Highway, Broward, Florida 

Layer Mean CV n 

1 11.35 0.69 183 

2 11.49 0.51 154 

3 45.42 0.41 317 
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Besides point variability as identified in Table 6-1 and 6-2, soil/rock properties are 

generally spatially correlated, i.e., transitions from weak to strong or vice versa.  Depending on 

the site’s correlation structure and point variability CV, a pile or shaft axial resistance will vary 

over the site (by station number and pile/shaft length).  

To account for site specific variability in LRFD Ԅ, FDOT research project BD545-76 was 

the first to incorporate the use of geostatistical analysis.  Developed for skin friction of drilled 

shafts founded in limestone, a site specific Ԅ was determined from total uncertainty ߪோ
ଶ, which 

was found from summing both the spatial uncertainty ߪ௦ଶ and method uncertainty ߪఢଶ.  Computed 

LRFD Ԅ for side friction was found to vary from 0.3 to 0.8 depending on site information, load 

test data, etc.  Of great interest was the extension of this work to include end bearing, other types 

of foundations (e.g., piles), other in situ methods (CPT) and boring locations, as well as 

automation, i.e., assisting the engineer in assessing site characteristics (layering, summary 

statistics, and correlation structure). 

6.2  Simulation of Boring Data at Deep Foundation Locations 

To estimate pile/shaft capacity at any location, the engineer needs boring data at the 

planned foundation.  If boring data within the footprint does not exist, it may be estimated (e.g., 

SPT N versus depth) from nearby borings if spatial correlation (vertical av and ah) structure is 

known.  Data kriging, from nearby borings are weighted (wi) to estimate the boring data within 

the footprint of the foundation.  For instance, the estimated blow count ෡ܰ at depth is given by 

 ෡ܰ ൌ   ଵ
௡
∑  ௜ݓ ௜ܰ
௡
௜ୀଵ   Eq. 6.1 

where Ni is the site boring data, and wi is the weighting constants solved from Eq. 2.16 using the 

spatial correlation function  (Eq. 2.5), the spatial correlation lengths (vertical av and horizontal 
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ah), and the distance between boring and planned pile/shaft.  As important as the estimated blow 

count ෡ܰ in the footprint is its associated uncertainty ௦ଶ given in Eq. 2.17 or     

௦ଶߪ  ൌ ேߪ 
ଶൣߙ௙ೞഥ ൅ ∑ ∑ ߱௜

௡ො
௝ୀଵ ߱௝ߩ௜௝ െ 2∑ ߱௜ߩ௜஺

௡ො
௜ୀଵ

௡ො
௜ୀଵ ൧       Eq. 6.2 

where ேଶ  is the variance of all the boring data.  The terms in the bracket represent the reduction 

in uncertainty due to 1) averaging (ߙ௙ೞഥ  – Eq. 2.12) over foundation surface, line, etc.; 2) number 

of data values defining the mean (2nd) term (e.g., MIC station too few strength data, 2nd term is 

appreciable); and 3) conditioning of nearby data (3rd term – 17th Street Bridge, Jewfish Creek, 

etc., boring inside correlation length).   

Using the kriging estimate of SPT blow count N (Eq. 6.1) with a random selection of 

residuals (Eq. 6.2), thousands of realizations of boring data within the footprint may be 

simulated.  Subsequently, each of these realizations may be run with pile/shaft prediction 

software (FB-DEEP), and the resulting mean axial resistance and variability (spatial) as a 

function of depth may be found.  Adding the uncertainty of spatial variability to the design 

method error, the total uncertainty of pile/shaft CVR may be found from which LRFD Ԅഥ may be 

computed (Eq. 3.17).  Multiplying the LRFD Ԅഥ by mean axial pile/shaft resistance, the design 

resistance is found.  Assisting with the steps outlined is a graphical user interface (GUI) 

developed for this research and available for FDOT use. 

6.3  Graphical User Interface (GUI) to Assess Pile/Shaft  
LRFD ૖ഥ  and Design Resistance 

The development of the GUI has proven to be an effective tool for the application of 

geospatial analysis for geotechnical engineering.  Of great need is software to assess summary 

statistics (mean and variance) and correlation structure on a site for individual layers.  Also, the 

software has the ability to simulate thousands of realizations of hypothetical boring data used as 
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input for the design software.  Finally, the software analyzes the results (mean and uncertainty of 

foundation resistance).  For subsequent use, the software must be easy to learn and deliver results 

in a timely manner. 

Options for spatial analysis in “free” software were found to have tools missing 

(detrending, layer separation), which are typically needed for geotechnical engineering data.  

Also using software in a piecemeal fashion (i.e., layers) would significantly increase time when 

having to manually manipulate data in Excel for input files.  Consequently, it was decided to 

develop independent GUI (not a function of design software, e.g., FB-DEEP) for pile/shaft 

design incorporating spatial and method uncertainty.  Note, any changes to the design methods 

used by FB-DEEP will not require changes to the GUI.  This ability for the GUI to be impartial 

to FB-DEEP changes is an advantage that can be expanded to other geotechnical design 

methodologies.  With modification, the GUI can be used to generate parameters needed for other 

programs (FB-MultiPier, etc.) or geotechnical designs. 

An important feature implemented in the GUI is the ability to handle large amounts of 

data, e.g., all site boring and laboratory data.  This was made possible with the XML data format 

developed by FDOT (“In situ” and “Lab Test” Excel sheets) (fdot.ce.ufl.edu/applications.html) 

for the internet based database.  For instance, the case of a single layer analysis (17th Street 

Bridge, Jewfish Creek) the geospatial analysis only took a few minutes for properly formatted 

data.  For sites with multiple layers, the analysis takes longer depending on selection of layer 

boundaries and variogram analysis (10-15 min).  These times include the time for the 2000 or 

more FB-DEEP analyses of boring logs run in batch mode. 

For all boring data associated with a layer (Profile Tab – detrending, etc.), a geostatistical 

analysis (Geostat Tab) is performed to determine summary statics (mean and CV) and 

variograms (av, ah).  For the cases which have small numbers of samples such that variograms 
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may not be inferred, the engineer can still proceed with a worst case av and ah (resulting in 

conservative Ԅഥ).  With summary statistics and variogram models available, a pile/shaft analysis 

may be performed.  Two options are available to the user: conditional (nearest boring) and 

unconditional analysis (all site data).   In the case of conditional (Eqs. 6.1 and 6.2) are used as 

given; however, for unconditional, all borings are used and the pile/shaft is placed outside the 

correlation length (last term in Eq. 6.2 is zero).  Thousands of borings are generated and FB-

DEEP is run to determine axial pile/shaft mean predicted resistance RN and variance (spatial 

uncertainty ߪ௦ଶ ) as a function of depth.  The use of batch mode process was selected over 

analytical solution as presented in BD545-76 due to numerous models used by FB-DEEP and 

associated correlations between side and tip resistances. 

6.4  Uncertainty of the Design Method and Bias Correction 

Important with assessment of LRFD Ԅ is the contribution of method error (ߪఌଶ) to the total 

uncertainty.  Prior work (BD545-76) assumed that method error was 20% of site variability.  

However, this work focused on collecting site specific load test data with respective boring data 

to assess both random method error and bias correction.  Sources of error contributing to ߪఌଶ can 

be associated with measurement error of in situ testing, specific empirical relationships used to 

develop design calculations, spatial variability of properties used to predict resistance (non-

collocated boring), and construction methods (deviations from geometry or poor construction).  

Data from multiple FDOT databases and reports (e.g., prestressed concrete piles, drilled 

shafts, etc.) of measured and predicted pile/shaft capacities were analyzed.   For a number of 

situations ߪఌଶ resulted in being proportional to predicted resistances, e.g., concrete piles (Figure 

3-4).  In other cases ߪఌଶvalues was found to be independent of the magnitude of the prediction, 

e.g., drilled shafts (Figure 3-2).  For proportional ߪఌଶ, log transforms of measured and predicted 
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resistances were employed and both (e.g., piles and shafts) were fit with linear regressions to 

establish bias corrections.  Unlike AASHTO (2004) bias R which is assumed to pass through 

zero, both intercept a and slope b (Eq. 3.5) were used.  The latter requires that LRFD Ԅ (Eq. 

3.16) has the bias R set equal to one, which is referred to as Ԅഥ (Eq. 3.17).  Subsequently, to find 

the design resistance, Ԅഥ is multiplied by the predicted resistance, which is already bias corrected 

(e.g., Tables 3-1 and 3-2) through both slope b and intercept a.  Finally, knowing linear 

regression coefficients and correlation coefficients, the uncertainty of the methods were assessed 

either directly (Eqs. 3.5 to 3.8) through a constant value of ߪఌଶ (e.g., shafts in rock) or through a 

constant coefficient of variation CV (e.g., driven piles). 

As identified earlier, the uncertainty of methods developed from legacy databases 

contained some spatial influences (i.e., nearest boring).  To reduce this uncertainty, the use of 

site specific load tests with borehole data in the footprint (e.g., Jewfish Creek) is warranted.  In 

addition at sites with low rock strength, a load test may be warranted since the legacy data has a 

higher relative strength (a higher ߪఢଶ was observed). 

6.5  Discussion of Results 

6.5.1 Florida Spatial Correlation 

Of significant importance in LRFD Ԅഥ assessment are the variance of layer properties and 

spatial correlation in the vertical and horizontal directions.  Seven sites were investigated for 

correlation lengths av and ah.  Shown in Table 6-3 are correlations computed for the sites.  

Evident in the table, all sites with the exception of MIC station had vertical correlation lengths 

measured.  They varied from 4 ft (17th) up to 11.8 ft (CR-12A).  This variability has a significant 

influence on the expected variability of pile/shaft resistance from pier to pier.  In the case of 

horizontal correlation, only one site (17th) had borings close enough to establish a variogram that 
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resulted in reduced variability (Eq. 6.2, 3rd term).  One site had insufficient property data to 

establish a vertical variogram (MIC station) and the worst case scenario (i.e., av is large) was 

assumed, resulting in a low LRFD Ԅഥ (0.38). 

Table 6-3.  Summary of Correlation Lengths Measured 

Site av [ft] ah [ft] In situ Property 

17th Street Bridge 4.00 12 qu 

Dixie Highway 
(per layer) 

6.06 

NA SPT N 11.06 

11.08 

Jewfish Creek 7.25 NA qu 

MIC/MIA 6.58 NA qu 

MIC Station NA NA qu 

CR12A 11.77 NA SPT N 

 

6.5.2 Assessment of LRFD ૖ഥ  for Multiple Florida Sites 

Presented in Table 6-4 is the summary of LRFD Ԅഥ values for the sites and the cases 

presented in Chapters 4 and 5.  The table begins with the identification of site, then method of 

analysis (e.g., FB-DEEP – pile, McVay-drilled shaft), simulation type (conditional and 

unconditional), information known on site (correlation lengths, and load testing), lengths of 

pile/shaft analyzed, and the change in LRFD Ԅഥ for the lengths considered.  Note, the LRFD Ԅഥ is 

normalized (R = 1) and should be compared to FDOT and AASHTO (/R) presented in Table 

3-5 (piles 0.5, shafts 0.47 to 0.57 – non-redundant and redundant). 

Evident from the sites and cases in Table 6-4, the computed Ԅഥ values are quite different 

from site to site, method of prediction (conditional or unconditional), spatial information, and 

method error.  Components contributing to spatial uncertainty are point variability CV, 

correlation lengths av and ah, and sampling amount.  Point variability of in situ properties is 
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apparent from Tables 6-1 and 6-2.  In a comparison of two sites with all parameters equal except 

CV, it would be found that Ԅഥ is lower for sites with higher CVs.  It is important to note that 

every Ԅഥ listed in Table 6-4 is associated with a corresponding mean resistance RN to be used for 

determining the design resistance ԄഥRN. 

Table 6-4.  Summary of Case Study Results 

Site Method Sim Type Case Length [ft] Ԅഥ 

17th Street 
Bridge 

McVay 

UC 

av & ah known 
52 – 80* 

(0.5 – 28.5)** 

0.17 – 0.64 

CON(B4) 0.16 – 0.62 

CON(B6) 0.16 – 0.68 

Dixie Highway 
FB-DEEP 

Driven 
Pile 

UC 
ah unknown 20 – 75 

0.36 – 0.58 

CON(EB1) 0.44 – 0.61 

Jewfish Creek McVay 

UC 

ah unknown 
historical data 

10 – 60 
(2 – 52) 

0.28 – 0.55 

CON(P10-S2) 0.30 – 0.52 

CON(P56-S3) 0.26 – 0.58 

UC 

ah unknown 
load test data 

0.27 – 0.57 

CON(P10-S2) 0.31 – 0.55 

CON(P56-S3) 0.26  – 0.61 

MIC/MIA McVay 

UC ah unknown 

36 – 50 
(0.5 – 14.5) 

0.25 – 0.54 

CON(WB9) ah unknown 0.24 – 0.56 

UC av & ah unknown 0.25 – 0.39 

MIC Station McVay UC 
av & ah unknown 

37 – 65 
(1 – 29) 

0.32 – 0.46 

av & ah unknown & 
uncertainty in mean 

0.29 – 0.38 

CR12A 
FB-DEEP 

Driven 
Pile 

UC ah unknown 20 – 70 0.15 – 0.58 

UC – Unconditional simulation. 
CON(Boring#) – Conditional simulation  
* Length of shaft/pile from ground surface. 
** ( ## – ##) – Embedment length in limestone layer. 
 

Spatial correlation, i.e., correlation lengths av and ah, are important in the foundation 

design, since they represent how large a strong or weak zone is on average relative to the 

foundation being considered.  If the engineer is unable to measure the scale of spatial correlation, 
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then the worst case must be selected, which assumes the weak or strong zones are of a size 

greater than the dimensions of the foundation.  Typical correlation lengths in Florida for case 

studies are presented in Table 6-3.  Quantifying spatial correlation increases the resulting Ԅഥ as 

illustrated by the MIC/MIA example, where Ԅഥ ൌ 0.54 with av known and Ԅഥ ൌ 0.39 with av 

unknown. 

Besides the extents of weak and strong zones, the engineer must also prove that the in situ 

sampling was adequately performed, ensuring that the mean and variance of site data are well 

defined.  If few samples are taken or are located relatively close to one another when compared 

to correlation lengths, larger uncertainty in the mean of the site results (2nd term, Eq. 6.2).  This 

influence was illustrated by the MIC Station Case (only 18 rock strength samples).  In that case, 

if uncertainty of the mean is ignored, Ԅഥ ൌ 0.46; however, if uncertainty of mean is accounted 

for, then the LRFD Ԅഥ ൌ 0.38.   

For the case studies in Table 6-4, the method error ߪఢଶ had a varying level of influence on 

the final Ԅഥ computed for a site.  For the site that exhibited high site variability ߪ௦ଶ through either 

high CVs or worst case assumptions (e.g., MIC station), it was found that little difference in Ԅഥ 

was found from site variability versus total uncertainty (spatial + method uncertainty).  However, 

for cases where spatial variability has been minimized (e.g., 17th Street Bridge), the method error 

has a larger impact on Ԅഥ.  Also, of importance are cases where mean axial resistance are small 

(e.g., Jewfish Creek) and a fixed legacy method error is employed ߪఢଶ which includes high 

strength sites.  For low mean resistance sites, load testing should result in a reduction of ߪఢଶ and 

an improvement in Ԅഥ. 

For driven piles, a higher variability of Ԅഥ versus depth was observed; however, there are 

exceptions, e.g., piles entering layers with very high point variability CV.  This is primarily due 

to multiple layers each having their own independent summary statistics and correlations 
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structures (Dixie Highway and CR12A).  It was observed, however, that Ԅഥ was significantly 

higher when the pile was embedded in a strong limestone layer.  This is due to the strong layers 

having lower CVs for SPT N than overlying soil.  

6.6  Recommendations to Improve Design 

With multiple case studies considered, the following recommendations are made for 

engineers to improve Ԅഥ for a site: 

1. Obtain adequate number of samples to accurately quantify statistical parameters (mean 

and CV) for the layers significantly contributing to foundation capacity. 

2. Collect enough samples at intervals of 2 to 5 ft to provide enough data pairs to 

accurately infer the experimental vertical variogram. 

3. If spatial uncertainty still results in low Ԅഥ, make improvements by either splitting the 

site into zones (presence of high CVs and zonal anisotropy in variograms) or using 

more layers for separate geospatial analysis. 

4. In the case of sites with non-redundant foundations, soil/rock with high-point 

variability, large vertical correlation structure, and no planned load testing, use more 

borings spaced closer to identify horizontal correlation (e.g., identification of mean at 

pier, etc.) 

5. With spatial uncertainty minimized, make improvements to the method error through 

load testing at the site of interest; however, enough measured versus predicted data 

points must be collected for regression analysis. 

6. Consider load tests on sites where low rock strengths are recorded, since the developed 

method error ߪఢଶ was for the case of medium to high strength rock. 
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Finally, a major component of improving Ԅഥ due to spatial and method uncertainty is to 

make sure all data (in situ, lab, and load test) collected for a site is used in the site analysis.  To 

help account for the many different measurements (SPT N, qu, qt, gamma, etc.) having data in 

standard format is recommended.  The latter can be accomplished by uploading any data 

collected to the FDOT’s geotechnical database and using the GUI in conjunction with the design 

software. 
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