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Abstract 

The freight railroad industry in North America is exerting efforts to leverage Wireless 

Sensor Networks to monitor systems and components on railcars. This allows fault detection and 

accident prevention even while a train is moving. 

Railcars, constructed mostly of ferrous materials such as steel, are expected to severely 

impact signal propagation. To better understand this effect we first evaluated the signal 

characteristics when sensor nodes are placed in various locations around railcars. We used EM-

Field modeling and evaluation techniques to obtain these results and found that node placement 

selection is critical for the node’s communication distance.  

As a second research area we therefore aimed at understanding the protocol requirements 

and limitations of current WSN technologies. Based on the results of our study we found ZigBee 

to be inadequate for freight WSNs and developed a solution that remedies the problems we 

observed. Our evaluation of this new multi-tier approach shows a significant performance and 

network lifetime gain, making freight train wireless sensor networks feasible. 
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Executive Summary 

This project focused on studying the characteristics of Wireless Sensor Networks 

onboard freight trains. In North America freight railroad companies are searching for ways to 

improve their monitoring capabilities and the fault detection of individual railcars. Small battery 

operated wireless sensor nodes can easily be installed onboard freight railcars to monitor a 

variety of systems from wheel imbalances and brake failures to refrigerator units, boxcar doors 

and much more.  

This study first evaluated the propagation characteristics at the physical layer of wireless 

sensor nodes deployed onboard railcars and found that placement of these nodes significantly 

impacts the radio wave propagation characteristics. In addition to placement, the effectiveness of 

the nodes is further complicated by the materials used in railcar construction and their design. 

This in turn drastically impacts the requirements upon the wireless communication protocols at 

the MAC and Routing layers. 

In our second research effort for this project we studied the performance of ZigBee, a 

communication protocol stack commonly used in traditional wireless sensor networks. This 

protocol was found to be inadequate for the requirements placed upon freight train wireless 

sensor networks. We therefore proposed an alternative method using a multi-tiered approach that 

leverages a long-distance communication technology added to the wireless sensors, and studied 

its performance in an effort to overcome the limitations of ZigBee for freight car WSNs.  

The proposed solution has been shown in our simulation study to be very promising in 

overcoming the observed problems and we found that our design provides significant 

performance improvements over the traditional approach, as well as significantly improved 

energy efficiency and network lifetime. 
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Chapter 1 Introduction 

The University of Nebraska-Lincoln’s [1] Advanced Telecommunications Engineering 

Laboratory (TEL) [2] has a long-standing tradition of close collaborations with Union Pacific 

Railroad [3] and other North American freight railroad companies. For the past several years the 

railroad industry’s focus has been on making their operations safer and more secure by 

protecting and monitoring transported goods, equipment, and infrastructure. 

TEL has started a collaborative project with Union Pacific sponsored by the Mid-

America Transportation Center (MATC) [4] at the University of Nebraska-Lincoln. The 

intention of this project is to study the characteristics of Wireless Sensor Networks (WSN) 

deployed on freight rail cars in a collaborative effort to develop a WSN-based solution for 

continuous real-time monitoring and reporting. A solution for this problem represents a major 

contribution since, to the best of our knowledge, none have been proposed thus far. The 

envisioned end system will be able to observe operational conditions such as brake status on rail 

cars, the status of cargo doors, temperatures inside air-conditioned rail cars for transporting 

perishable goods, the track status, and many other parameters that are vital for providing a safe 

and secure transportation environment. 

Even before this project started the TEL lab had established a dialog with Union Pacific 

about their experiences with and requirements for using WSN technology in their operations. All 

encountered problems were collected and prioritized for subsequent in-depth studies. The most 

important problems reported, and the focus of our study with MATC and Union Pacific, are the 

unreliable route formation that results from the nature of a freight train that requires a very long 

chain topology. This type of topology typically has a hop count of 100 or more hops on a freight 

train. Another important factor is the uncertainty of RF propagation and link characteristics that 
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results from the placement of WSN sensor nodes and the influence of the rail car construction 

and materials.  
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Chapter 2 Research Phase 1: Propagation Studies for Wireless Sensor Nodes  

onboard freight railcars 

2.1 Introduction to Propagation Analysis 

For a comprehensive evaluation and understanding of the implications of installing 

Wireless Sensor Networks onboard freight trains we first need to analyze the RF signal’s 

propagation characteristics. We need to understand the communication distance of individual 

nodes as well as to evaluate how and where to install the nodes and antennas. Placement of these 

devices must be close to the monitored event sources (such as wheels, brakes, boxcar doors, 

refrigerator units, etc.) without impeding the signal path with obstacles, low ground clearance, 

and other impairments. We also need to analyze optimization strategies for node placement to 

minimize system deployment and maintenance cost, as well as possible beneficial or required 

alterations to railcar construction. 

RF signals are electromagnetic waves propagating through a medium: such as air 

radiating from a transmitter and travelling in all directions. Electromagnetic waves emanate from 

antenna structures as a result of an oscillating electric field that in turn generates an oscillating 

magnetic field, as governed by Maxwell’s equations. This waveform travels at the speed of light 

through the carrier medium. 

Obstacles such as buildings, cars, trees, or even the ground can impact signal propagation 

paths. Surfaces can scatter signals, an effect that is especially severe around trees, and obstacle 

edges can diffract signal paths. Radio waves can also be severely impacted by specific materials 

in the propagation area. Especially ferrous materials, such as steel and iron, can drastically alter 

signal propagation characteristics, communication distances, link quality, and many other 

factors. 
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With that in mind, it is important to realize that both railcars and railroad tracks are 

comprised of a large amount of ferrous materials, as shown in Figure 2.1. Radio waves induce 

currents in these materials, dissipating some of their energy in the process. These induced 

currents then can generate EM fields that radiate from them and alter the propagation 

characteristics of the original RF signal.  

 

 
Figure 2.1 Train undercarriage and tracks up close 

 

To better understand the impact of such materials and how they influence possible 

placement of sensor nodes onboard freight railcars, we first conducted a comprehensive 

simulation study that involved a specialized simulation package for EM-Field simulations: 

Microwave Studio by Computer Simulation Technology, Inc. (CST) [5]. 
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2.2 Overview of CST Microwave Studio 

Microwave Studio is a simulation software package designed to evaluate structures for 

their EM characteristics. One example application that this package is oftentimes used for is the 

evaluation of antenna radiation patterns during the design process of antennas—such as horn 

feeds for parabolic dish antennas, patch antennas, and smart antenna arrays. This software also 

allows us to evaluate the interaction between electronic circuits and radio waves; basically, it 

will simulate the interaction and interrelation between EM fields and structures. To do so, users 

either leverage the built-in 3D modeling environment or 3D object importer and its support for 

most common 3D file formats. The user assigns material properties to each individual 

component to fully represent the 3D object or objects and their properties. Assigning these 

properties is critical to the entire simulation and evaluation process. Air, for example, has 

drastically different EM properties than steel.  
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Figure 2.2 CST Microwave Studio modeling and simulation environment 

 

The analysis of the modeled environment is then performed using one of the numerous 

system solvers available in CST Microwave Studio. These solvers include the following:  

 Time-Domain Solver 

 Frequency-Domain Solver 

 Integral Equation Solver 

 Eigenmode Solver 

 Multilayer Solver 

 Asymptotic Solver 
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Other solvers for related CST simulation tasks are: 

 Microstripes Solver 

 Cable Harness Solver 

 Printed Circuit Boards Solver 

 Static Bundle and Low-Frequency Bundle Solvers 

 Tracking Solver for particle simulations 

 Wakefield Solver for particle simulations 

 Particle-in-Cell Solver 

 Thermal Solver 

 Structural Mechanics Solver 

 Circuit Simulator 

With such a vast array of solvers available to the end user the CST simulation suite of 

products can be applied to a very wide range of analysis and evaluation applications. For our 

research purposes we have licensed the time-domain and integral equation solvers.  

Unlike frequency-domain solvers, which work best with electrically small structures such 

as circuit elements and printed circuit boards, time-domain solvers for EM-Field analysis are 

well-suited for the simulation of electrically large structures, such as cars, airplanes, buildings, 

and railcars. Time-domain solvers perform a transient analysis of the EM-Field, indicating the 

ways in which the E and H fields propagate through the simulated space over time. Time-domain 

solvers are also well-suited for the analysis of a large frequency range. 

Integral equation solvers express Maxwell’s equations as an integral. This allows the 

application of numerical evaluations particularly well-suited for mesh-defined models in the EM 



 

8 

 

simulation. Integral equation solvers are also more efficient in the use of computational resources 

such as system memory during their processing. This allows us to use a higher resolution mesh 

that in turn provides higher accuracy for the computed results.  

With these two solvers we are able to compute EM field patterns and material 

interactions in spatially large structures, such as train segments comprised of multiple railcars. 

2.3 Modeling of freight railcars 

The first step for our EM analysis was to generate models of different railcars as used by 

freight railroad companies in North America. We chose to model the following car types: a 

boxcar, a tanker car, a flat car and a hopper car.  

These four different railcar types represent the majority of types used by the freight 

railroad companies in North America. Other railcar types can be modeled if there is a particular 

need for their analysis. The following sections describe the available railcar types and models in 

more detail.  

2.3.1 A boxcar and its 3D model 

Boxcars are typically used to transport crated goods, or goods that are palletized for easy 

loading and unloading. It is a covered structure that typically features two sliding loading doors, 

one of each side, approximately centered along the long axis of the boxcar. 
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Figure 2.3 Boxcar photograph (© about.com) 

 

 
Figure 2.4 Boxcar model in CST Microwave Studio 
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Table 2.1 Boxcar 3D Model Statistics 

Outside Length 15.8 m 51.84 ft 
Inside Length 15.78 m 51.77 ft 
Outside Width 2.8 m 9.18 ft 
Inside Width 2.78 m 9.12 ft 
Height (including undercarriage) 4.4 m 14.43 ft 
Height (excluding undercarriage) 3.35 m 11 ft 
Inside Volume 144.76 m

3
 5112.35 cu ft or approx. 38243 gallons 

 

2.3.2 A tanker car and its 3D model 

Tanker cars are used to transport liquid and gaseous goods, such as petroleum, milk, and 

liquid hydrogen. To prevent the transported goods from reacting with the tank car’s outer 

structure, the inside of the container is typically lined with an insulating material such as glass.  

 

 

http://upload.wikimedia.org/wikipedia/commons/2/2d/TILX290344.JPG
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Figure 2.5 Tank Car photographs (Wikimedia public domain images) 

 

 
Figure2.6 Tank car model in CST Microwave Studio 

 

Table 2.2 Tank Car 3D Model Statistics 

Outside Length 18.2 m 59.75 ft 
Inside Length 17.4 m 57.12 ft 
Outside Width 3.24 m 10.63 ft 
Inside Width 3.19 m 10.47 ft 
Height (including undercarriage) 4.72 m 15.48 ft 
Height (excluding undercarriage) 3.72 m 12.2 ft 
Inside Volume 139.15 m

3
 4913.88 cu ft or approx. 36758 gallons 

 

http://upload.wikimedia.org/wikipedia/en/c/cc/Linde-raix708a.jpg
http://upload.wikimedia.org/wikipedia/en/c/cc/Linde-raix708a.jpg
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2.3.3 A flat car and its 3D model 

Flat Cars are used to transport mostly freight containers that are loaded onto the flat bed 

provided by this railcar type. Other uses of flat cars include the transport of lumber, pipes, and 

similar goods. 

 

 

 
Figure 2.7 Flat Car photographs (Wikimedia public domain images) 

 

http://upload.wikimedia.org/wikipedia/en/4/4d/KCS_601471_bulkhead_flat_car.jpg
http://upload.wikimedia.org/wikipedia/en/4/4d/KCS_601471_bulkhead_flat_car.jpg
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Figure 2.8 Flat car model in CST Microwave Studio 

 

 

 

Table 2.3 Flat Car 3D Model Statistics 

Outside Length 10.14 m 33.25 ft 
Outside Width 2.82 m 9.25 ft 
Height (including undercarriage) 1.71 m 5.6 ft 
Height (excluding undercarriage) 0.99 m 3.25 ft 
Area of Bed 26.12 m

3
 281.1 sq ft 

 

2.3.4 A hopper car and its 3D model 

Finally, hopper cars are used to transport predominantly coal, but also grain, gravel, and 

other such materials. They are typically loaded from the top, but unloaded through chutes in the 

bottom of the railcar. 
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Figure 2.9 Hopper Car photographs  

Note: These are public domain images. Top row: Greg Goebel, bottom row: flickr.com 
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Figure 2.10 Hopper car model in CST Microwave Studio 

 

Table 2.4 Hopper Car 3D Model Statistics 

Outside Length 14.73 m 48.32 ft 
Inside Length (Top) 14.15 m 46.42 ft 
Inside Length (Bottom) 8.36 m 27.43 ft 
Outside Width 2.86 m 9.38 ft 
Inside Width 2.13 m 7 ft 
Height (including undercarriage) 3.01 m 9.9 ft 
Height (excluding undercarriage) 2.01 m 6.6 ft 
Inside Volume 52.42 m

3
 1851.3 cu ft or approx. 13848 gallons 

 

2.4 Showcasing signal characteristics on and around railcars for various configurations 

With the models for the railcars available we could finally commence our evaluation of 

the signal propagation characteristics on and around railcars. The results presented below focus 

on the boxcar model we created; appendix A will show the results corresponding with the other 

railcar types we modeled and evaluated.  
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Of particular importance to us in these tests was the placement of the sensor node and the 

resulting signal propagation. We used the EM simulations to gain insight into the distribution of 

signal strength at different locations around the evaluated railcar. This provides us information 

about the expected link quality if a sensor node was placed at this location and receives the 

transmission emanating from the source node. By placing the transmitting sensor at different 

locations around the railcar we could also evaluate the impact of both the railcar construction 

materials and the shape.  
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2.4.1 The roof-mounted antenna simulation 

This effect of materials and railcar structure is highlighted by the first simulation we 

performed, which was for a boxcar with an antenna mounted centered on top of the boxcar’s 

roof. 

For all of our simulations we utilized a monopole antenna tuned for the 2.4 GHz 

frequency band typically used by wireless sensor network transceivers. ZigBee [6] is an example 

of a wireless communication protocol that is used in WSNs and is implemented in many 

common transceiver chipsets. ZigBee is based on IEEE 802.15.4 [7] and provides power-

efficient communication over medium distances with data rates up to 250 kbps. The following 

two figures show the used monopole antenna on the left and its unobstructed farfield antenna 

pattern on the right. 

 

 
Figure 2.11 The monopole antenna and its radiation pattern 
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The following figure shows the placement of the monopole antenna on top of the boxcar 

with the insert highlighting the area. 

 

 
Figure 2.12 Scenario 1-Roof mounted antenna on boxcar: Placement 

 

The following figure shows the resulting far-field antenna pattern that is determined by 

the simulation run. As we can see, the antenna pattern approximates a donut flattened at the 

bottom. This flattening is a direct result of the proximity of the antenna to the steel roof structure 

of the boxcar. Acting as an RF shield, the steel roof does not allow significant amounts of energy 

to radiate into the lower hemisphere and instead this energy is redirected upwards. This 

redirection generates the donut shape of the farfield pattern. It is also responsible for the band of 

red which indicates the direction of the strongest signals in the pattern. With an unobstructed 

monopole this band is expected to be in the horizontal plane. With such a pattern, the greatest 
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amount of energy would radiate directly away from the upright monopole antenna in a horizontal 

direction.  

However, because of the energy redirected by the roof, this band is shifted upwards out 

of the horizontal plane. The maximum amount of radiated energy is now found at a slight 

upwards angle from the antenna; this angle is about 12 degrees in our simulations. It changes 

significantly with small increases in spacing between the roof and the antenna. The farther the 

antenna is raised above the roof, the closer this angle is to zero degrees and the original 

unobstructed monopole antenna. 

 

 
Figure 2.13 Scenario 1-Roof mounted antenna on boxcar: Farfield pattern 

 

In the following figure we have illustrated the E-field strength at the surface of the 3d 

models (railcar and track). We can clearly see that the signal is at its strongest on top of the 
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boxcar roof closest to the antenna. The farther we get away from the antenna, the weaker the 

signal becomes. Furthermore, there is a significant decrease when we transition from the top of 

the boxcar to the side of the boxcar even though the distance increase of that transition is 

negligible. This is a result of the roof structure acting as an RF shield. It prevents most of the 

signals from propagating into the lower hemisphere—the area below the monopole including the 

entire boxcar area. As a result, field strength sharply diminishes at the sides of the boxcar.  

However, as a result of the EM-field interacting with the object through signal 

diffraction, EM coupling, and so forth, we do observe some signals below the monopole 

antenna’s horizon, even in areas directly below the boxcar itself. 

 

 
Figure 2.14 Scenario 1-Roof mounted antenna on boxcar: E-Field Visualization 

 

2.4.2 The side-mounted antenna simulation 

In this section we study a different placement of the monopole antenna. We relocated it to 

the side of the boxcar and mounted in the middle of the sliding door. We also reoriented the 
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antenna, now oriented horizontally in its new position, pointing away from the sliding door 

instead of upwards. 

 

 
Figure 2.15 Scenario 2-Side mounted antenna on boxcar: Placement 

 

We also reevaluated the resulting antenna pattern and found significant disturbances in 

the farfield pattern, as shown in the following figure. These distortions are the result of the 

vertical support struts that create signal impairments unlike the smooth roof structure, and are 

easily observed in the E-field illustration. In this illustration we can also see a particular effect 

that is the result of the model’s door handle. It results in two significant horizontal E-field 

strength improvements, both at the top and bottom edge of the handle. We can also observe that 

the E-field is significantly more distorted with local disturbances throughout the entire field as 

compared to the case of the roof-mounted antenna. These disturbances are the result of the E-

field interactions with the complex metallic structure at the side of the boxcar. 
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Figure 2.16 Scenario 2-Side mounted antenna on boxcar: Farfield Pattern 

 

 
Figure 2.17 Scenario 2-Side mounted antenna on boxcar: E-Field Visualization 
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In the third simulated scenario we have repositioned the antenna once more. It is located 

at the undercarriage structure, close to the front wheel and brake assembly. This location was 

evaluated as a potentially vital location for wheel imbalance and brake status sensors, as is 

shown in the following figure. The antenna orientation has been adjusted back to a vertical 

orientation similar to the roof-mounted antenna. 

 

 
Figure 2.18 Scenario 3-Undercarriage mounted antenna on boxcar: Placement 

 

In accordance with the previous two scenarios we simulated once more the antenna’s 

farfield radiation pattern once more, shown in the following figure. Clearly, the amount of 

distortions to the monopole’s antenna pattern has increased dramatically. The original donut 

shape has become all but unrecognizable. 

 



 

24 

 

In addition, the E-field visualization clearly shows the severe signal propagation 

limitation incurred around this transmitter location. The signal is limited to the area close to the 

transmitter only, and becomes too weak for reception at less than half the length of the boxcar—

this is the result of the steel structure of the boxcar above the undercarriage. It deflects most of 

the signal’s energy downwards and thus prevents proper signal propagation along the railcar’s 

box structure. 

 

 
Figure 2.19 Scenario 3-Undercarriage mounted antenna on boxcar: Farfield Pattern 
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Figure 2.20 Scenario 3-Undercarriage mounted antenna on boxcar: E-Field Visualization 

 

To better visualize this rapid loss in signal strength we have used the simulation results, 

by the software labeled as power flow, to plot a received signal strength decrease alongside the 

long axis of the boxcar. The small inset in the following figure shows the path along which this 

analysis is performed, displayed as a red line. The start location is on the left side and is 

associated with distance 0, progressing from this point towards the right side. The resulting RSSI 

reduction clearly shows a rapid drop in power flow at a distance around 5-6 meters from the start 

of the boxcar, with a total boxcar length of 15.8 meters as shown before. 
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Figure 2.21 Scenario 3-Undercarriage mounted antenna on boxcar: Power Flow Analysis 

 

In the fourth scenario we simulated the interaction between two passing railcars, one of 

which is equipped with a roof-mounted transmitter, and analyzed the resulting signal and field 

strength around both railcars. The following figures show the transmitter location and farfield 

pattern. 
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Figure 2.22 Scenario 4-Roof mounted antenna on boxcar passing train: Placement 
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Figure 2.23 Scenario 4-Roof mounted antenna on boxcar passing train: Farfield Pattern 

 

The farfield pattern shows some distortions, but far less than we observed during the 

undercarriage-mounted antenna test. In the following figure we are showing the E-field strength 

visualization. Clearly, the signal distribution is strongest over the roofs of the two railcars. We 

can also observe that the signal strength at the side of the railcar between the two railcars is 

stronger than the field strength observed in the case of a single railcar with roof-mounted 

antenna. This is a result of the signal “bouncing” between the two sides, interacting with the 

materials in the process. The outside vertical surface along the long axis indicates a drastic loss 

in field strength, attributed to the increase in distance and the additional signal obstruction 

between the transmitter and this surface. 



 

29 

 

 
Figure 2.24 Scenario 4-Roof mounted antenna on boxcar passing train: E-Field Visualization 

 

In the final scenario we evaluated, the dual-railcar topology was changed to a serial, 

back-to-back arrangement instead of a parallel arrangement. This simulates a single train’s 

segment with two railcars, rather than two passing trains. The antenna is roof-mounted on the left 

railcar for this scenario.  
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Figure 2.25 Scenario 5-Roof mounted antenna on boxcar in train segment: Placement 

 

The observed farfield antenna pattern, shown in the following figure, is quite similar 

when compared to the farfield pattern of the scenario involving two parallel railcars. This 

conforms to our expectations as antenna placement and structure, as well as materials and signal 

obstacles, remain the same. Only the placement of one of the obstacles, the second railcar, has 

changed. However, since the first railcar’s roof structure already blocks most of the energy from 

the southern hemisphere, the resulting farfield pattern remains largely the same. 
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Figure 2.26 Scenario 5-Roof mounted antenna on boxcar in train segment: Farfield Pattern 

 

In the following figure we visualize the E-field’s strength in our final scenario. We can 

observe that the field strength provides a signal reaching from the middle of the left car’s roof to 

a short distance onto the right railcar’s roof. Field strength is also observed alongside the side of 

the first car, although no significant field strength is observed on the second car on the right-hand 

side of the simulated train segment. 
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Figure 2.27 Scenario 5-Roof mounted antenna on boxcar in train segment: E-Field Visualization 

 

Our simulations shown in this section indicate clearly that antenna placement is of 

significant importance in enabling desired communication distances. For our presented 

simulations, possible communication distances are typically limited to less than half the length of 

the boxcar, although high-sensitivity receivers would allow slightly larger distances. Placement 

of antennas on top of the roof of a railcar appears to provide the best signal propagation 

characteristics as expressed by the resulting farfield patterns. Placement at close proximity to the 

wheels appears to be the worst, requiring more transmitters onboard each railcar to relay the 

information over larger distances than is possible by the wheel-located transmitter itself. Finally, 

the structure of the railcar itself is also of importance, as shown by the E-field distortions in the 

various simulated scenarios. 
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To better understand these criteria we have simulated similar cases for each of our four 

railcar types. More of the obtained results are shown in the appendix. 

2.5 Conclusions and Impact on wireless sensor networks onboard freight trains 

Based on our findings from the propagation characteristics simulations we conducted 

using EM-Field Analysis we can derive the following conclusions.  

 Placement of sensors is vital to the network design and depends on materials and 

structure in the design of the railcars. 

 A single sensor is unlikely to have the communication range to span the distance 

equivalent of a single railcar.  

 The closer the sensors are placed to the ground the more problematic its wireless 

communication will be. 

Given these findings we now realize that simple placement optimization is not sufficient 

for creating freight train wireless sensor networks. We also need to consider the other protocol 

layers, in particular, the medium access control (MAC) layer and the routing layer. Given that 

with the limited communication distance we seem to require multiple wireless sensor nodes per 

freight railcar, routing becomes a critically important issue. With this many nodes sharing the 

same space, medium access control is also vital. 

As a result, we decided to include a second research effort in our study of freight train 

wireless sensor networks, focusing on the protocol capabilities of the most commonly used 

wireless sensor network protocol, ZigBee. Our findings are presented in the following sections.  
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Chapter 3 Research Phase 2: Wireless Sensor Networks Protocol Study to evaluate performance 

capabilities 

3.1 Methodology for WSN protocol study 

Based on our expertise in evaluating network technologies and protocols for the Federal 

Railroad Administration over the past 5 years, we have opted for an approach that consists of 

two parallel efforts: 

a) The development of a comprehensive simulation model for studying WSNs in freight 

train environments and the development and evaluation of potential solutions to 

overcome problems discovered with current WSN technologies in this environment. For 

this part of the project we will utilize our expertise in developing physically accurate RF 

propagation simulation models. 

b) The implementation of existing or developed protocols on actual WSN hardware for use 

in field tests on rail cars and trains was provided by Union Pacific for this project. 

By following this path we are able to collect valuable information that helps refine this 

technology in order to provide a robust and reliable platform that fulfills all the requirements the 

North American freight railroad industry has for this technology. The simulation models allow us 

to study a wide variety of scenarios without having to acquire and deploy costly equipment. 

Based on the information collected from our discussion with Union Pacific we first 

wanted to verify the problems they encountered in their tests. To do so, we have tested standard 

wireless sensor network protocols on three well-known simulators: QualNet [8], OPNET [9], and 

NS-2 [10]. Although each of them comes with a basic sensor model, they have implemented it in 

slightly different ways. This initial study therefore also served as a comparison study between 

the different simulators to help select the most appropriate platform for our tests. 
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3.2 Evaluated Wireless Sensor Network Platforms 

Throughout this entire study we received significant support from Union Pacific. In 

particular, their engineering expertise for railcar monitoring, and the wireless sensor network 

platforms they provided for our lab tests were invaluable to this project’s success. 

To validate some of our findings we used the two platforms shown in figure 3.1 in our lab 

tests. 

 

Crossbow Technology, Inc.’s [11] MicaZ 

wireless sensor systems: 

 

Arch Rock’s [12] Enterprise-grade IP Sensor 

Platform: 

 
Figure 3.1 Evaluated Sensor Platforms 

 

In our evaluation we could find that both systems’ wireless links performed similarly 

under the same simulated link conditions. To test these systems we utilized our lab’s Wireless 

Channel Emulator: the ACE-400WB [13] from Azimuth Systems. This system allows us to 

recreate virtually any wireless channel under controlled lab conditions. It allows for repeatable 

experiments, generating the same link every time we configure it. This is an invaluable tool in 

our lab performance evaluations. 
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3.3 Qualnet Simulator 

QualNet’s sensor network library is based on the IEEE 802.15.4 standard, also known as 

ZigBee. ZigBee is a Personal Area Network (PAN) technology, originally developed for 

communication between devices in very close proximity to a person, similar to Bluetooth. 

Hence, ZigBee provides a smaller per-node coverage area than technologies such as Wi-Fi and 

WiMAX, but it is more suitable for low-power devices such as Wireless Sensor Nodes.  

ZigBee in QualNet provides implementations for the PHY and MAC protocol layers. 

Three modulation schemes have been implemented in the current model: 

a) O-QPSK with DSSS in 2.4 GHz frequency band, 

b) BPSK with DSSS in 868/915 MHz frequency band, and 

c) PSSS with BPSK and ASK in 868/915 MHz frequency band. 

The two most critical elements are the PAN coordinator and PAN router. A PAN 

coordinator basically starts the network. It is the original discoverable device and provides a 

network name and methods for synchronization between nodes of the same network. PAN 

routers are devices that join an already existing network advertised by a PAN coordinator and 

provide data forwarding functionality through the network. 

The MAC protocol supports two operation modes: beacon-enabled mode and non-

beacon-enabled mode. In a typical ZigBee network there are different roles for network nodes. 

The MAC protocol implementation utilizes non-slotted CSMA/CA in non-beacon-enabled mode, 

whilst in beacon-enabled mode it is the PAN coordinator’s responsibility to periodically generate 

beacons to synchronize nodes that are associated with it. In beacon-mode, all nodes belonging to 

the PAN coordinator are required to be in sync since it uses a time-slotted approach for 
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communication. Other features that have been included in QualNet are energy detection (ED), a 

battery model, an RF energy consumption model, and Link Quality Indication (LQI). 

The initial network configuration for our tests simulates a scenario with a single long 

train by setting up a simulation of about 50 hops. We assume that each rail car contains one 

ZigBee router in order to forward packets between its adjacent neighbors. ZigBee router nodes 

also forward beacon messages so that nearby ZigBee devices can associate with the network. 

The PAN coordinator is located at the locomotive at the front of the train. Two ZigBee end 

devices were also created. These are virtual devices that simulate applications, or the data source 

and sink. The data sink end point is located at the PAN coordinator in the locomotive (the left-

most node) while the data source node is located in the last freight car (the right-most node). The 

source generates small data packets at a rate of 1 packet every 10 seconds. Each data packet is 

then transmitted through the PAN network towards the data sink at the locomotive. Figure 3.2 is 

a screenshot of the topology setup in the QualNet network simulator environment. All sensors 

are in the same network. Each individual node’s communication range is short. Thus, each node 

can communicate only to its neighboring nodes and depends on the ZigBee routing functionality 

to forward the data to the data sink. 

 

 
Figure 3.2 Simulation Setup in QualNet 
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Figure 3.3 Beacon Synchronization 

 

In beacon-enabled mode, beacon frames are periodically sent by the PAN coordinator to 

identify its PAN and synchronize nodes that are associated with it. Following each beacon is an 

active period (superframe) during which data communication occurs and an inactive period. The 

duration between two consecutive beacon frames is called the Beacon Interval (BI). The BI and 

the Superframe Duration (SD) are determined by two parameters: the Beacon Order (BO) and the 

Superframe Order (SO), respectively. The BI is defined as follows: 

                                          . 

The SD is defined as: 

                                             . 

In both formulas aBaseSuperframeDuration is the minimum duration of the superframe, 

corresponding to SO=0. At 2.4 GHz band, aBaseSuperframeDuration is 15.36 milliseconds. In 

our simulation, we set both BO and SO to 4. This means that the beacon interval is 245.76 

milliseconds (approximately 4 beacon frames per second). The overall simulation duration is 

configured to be 1,000 seconds. Thus, the PAN coordinator generates around 4,000 beacon 

frames during the entire simulation. After a ZigBee router within the PAN coordinator’s 

communication range hears the beacon frame, it tries to associate to the PAN coordinator. This 
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process is called Network Discovery. After having successfully associated with the PAN, the 

ZigBee router starts forwarding beacon frames to enable its neighbors to join the network as 

well. This process is repeated by each subsequent hop until the last ZigBee router has 

synchronized to the PAN network. As can be seen in the left chart of Figure 3.4, the first node 

(PAN coordinator) transmits 4,066 beacon frames while the last node (data source in the last 

freight car) transmits 3,755 beacon frames. Given the difference in beacons transmitted and the 

beacon interval, this means that it took about 80 seconds to synchronize the entire network.  

This provides a significant delay even before normal network operations can be started 

and constitutes a major problem for dynamic network operation. Imagine a rail yard where rail 

cars are constantly moved among trains. Each time this occurs the network topology of a train 

changes and thus all nodes need to be re-synchronized. 

However, the main problem of this multi-hop simulation is not beacon synchronization, 

but routing. As our simulations show, route discovery provides an additional and even more 

significant delay. Even though the first data packet in our simulation has been generated at the 

ZigBee data source at the 10
th

 second, the first packet arrived at the PAN coordinator’s data sink 

at the 250
th

 second. It took about 4 minutes just to establish a data path through 50 hops! 

Additionally, this process may also have to be repeated at every network entry or exit of nodes, 

similar to re-synchronization. These findings correspond closely with the problems reported by 

Union Pacific for their tests.  
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Figure 3.4 Average No. of Beacons sent (left) and Average No. of data packets forwarded (right) 

in our QualNet simulations 

 

From the right-hand chart in Figure 3.4 we can identify another problem found in 

wireless communication systems: packet loss. We can see that, while we actually generated 98 

data packets at the source node, only 76 data packets are received by the first neighbor and only 

30 packets managed to reach the destination. In other words, less than a third of the data packets 

managed to reach the destination. This can be attributed to bit errors occurring at each receiver 

and, since ZigBee does not provide a mechanism for retransmission of erroneous packets, the 

discarding of all these failed transmissions. While each individual link may even exhibit a fairly 

low packet loss rate, this problem is compounded by the large number of hops. This is the 

Achilles heel in networks that use this particular topology of long node chains. 

3.4 OPNET Simulator 

Although OPNET claims that it also provides a ZigBee model, only a few functions of 

the ZigBee protocol have been fully implemented so far. The PHY layer is very simple and 
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abstract: there is no modulation scheme. Packet reception is determined by a single threshold 

only. If the received signal power is lower than the threshold the packet is dropped, otherwise it 

is received successfully. No bit error rate calculation or channel model is implemented. The 

MAC protocol supports only a non-beacon-enabled mode which utilizes non-slotted CSMA/CA. 

Neither the slotted mode nor the contention-free operation mode is supported. Another limitation 

in OPNET is the maximum number of hops. At the moment, the model only supports star, tree, 

and mesh topologies. For the tree and mesh topologies, the maximum depth is 15 hops from the 

PAN coordinator. In other words, we can at best set up a 15-hop simulation scenario.  

Nevertheless, to test this implementation we set up a 15-hop simulation in OPNET with 

non-beacon-enabled mode. Similar to the QualNet simulation we assume that each freight car 

contains one ZigBee router. In this simulation, however, node 17 is the data sink. The data 

source is node 1, which not shown in Figure 3.5 but is located at the left-most end of the chain 

topology. The data source generates small data packets at a rate of 1 packet each second. 

 

 
Figure 3.5 Simulation topology for OPNET 

 

Figure 3.5 is the node layout in our OPNET simulation. All sensors belong to the same 

PAN network and, as can be seen in the figure, the green arrows show the direction of traffic 

flow from left to right. Node 14 broadcasts the data packets it received from node 13. These 
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forwarded messages are then received by both node 15 and node 17, however, because the 

packet destination is set to be node 17, node 15 will discard these packets. To test the hop 

limitation we then moved node 17 one node to the right such that it connects to the network 

through node 15 instead. As a result of this change, the hop count between data source and sink 

is now 16 and thus exceeds the OPNET model’s limitation. Therefore, node 16 received no data 

packets at all. This is a severe limitation in the ZigBee implementation in OPNET, but it is not a 

limitation resulting from the ZigBee protocol itself. 

 

 
Figure 3.6 End-to-end delay and throughput results collected from OPNET simulator 
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We have collected end-to-end delay and throughput at the sink node (node 17). Figure 3.6 

shows the results obtained from the OPNET simulator. The first graph shows the application 

layer end-to-end delay measured in seconds. We can see that delay time is quite low even for the 

first packet. This results from the lack of beacon synchronization delay since the OPNET model 

does not support the beacon-enabled mode. The time for route discovery is also very short, since 

we only have a network of 15 hops. As a result, route discovery was completed before the first 

data packet was generated. For the throughput in the second and the third graphs, the destination 

has received packets at approximately 1 packet per second or 24 bytes per second (OPNET 

mislabeled the graph as bits/sec instead of bytes/sec).  

The occasional reductions in received throughput or packets are not the results of bit 

errors, since OPNET’s ZigBee module does not calculate bit errors or frame errors at all, but 

rather a result of its statistics collection and processing system. 

3.5 NS-2 Simulator 

The third simulator with support for ZigBee simulation we tested is ns-2. Similar to 

OPNET, there is no support for bit error simulation at the moment. Packet reception is 

determined by a simple receive threshold. The MAC protocol in ns-2 supports the operation for 

both non-beacon-enabled mode and beacon-enabled mode. The ns-2 simulator supports pure 

CSMA-CA and slotted CSMA-CA with star and peer-to-peer topologies. Similar to QualNet, ns-

2 features beacon tracking and synchronization. Other features which have been included in ns-2 

are energy detection (ED), clear channel assessment (CCA), and link quality detection (LQD). 

We set up a train scenario in ns-2 similar to our QualNet simulation using 50 rail cars. 

The PAN coordinator is located in the first freight car (node 0) and also acts as the data sink 

node (labeled as node 51). The data source is at node 52 at the opposite end of the train. The 
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source sends small data packets at a rate of 1 packet per second to the data sink at the PAN 

coordinator.  

 

 
Figure 3.7 Number of beacon frames sent, received, and dropped in ns-2 

 

The simulation duration is set to 1,000 seconds, similar to QualNet. Thus, we can expect 

that the PAN coordinator generates around 4,000 beacon frames for the duration of the 

simulation. As can be seen in Figure 3.7, the PAN coordinator transmits 4,066 beacon frames, 

while the data source node in the last freight car transmits only 3,533 beacon frames. 

Accordingly, the whole network takes about 131 seconds to synchronize all sensor nodes. 

Interestingly, this process takes about 50 seconds longer in ns-2 than in QualNet. We are 

currently investigating to obtain more insight into the source of this discrepancy. 
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Figure 3.8 Number of data packets sent and received in ns-2 

 

Figure 3.8 demonstrates the number of data packets sent and received for each node. We 

generated a total of 881 data packets at the source, out of which only 845 packets reached the 

first-hop neighbor and only 783 packets reached their destination at the data sink. Thus, the 

packet loss in this simulation is approximately 11%. This can currently only be attributed to 

simulation errors as there are no bit errors being simulated for this model in its current state. 

In conclusion, none of the three evaluated simulators provide a complete wireless sensor 

network simulation model. All simulators exhibit problems, most of which can be attributed to 

either implementation problems or protocol issues. QualNet achieves network synchronization 

faster than ns-2 for the same configuration while ns-2 performs better in route discovery. Current 

limitations in OPNET all but eliminate it as a candidate for our simulation work. Our baseline 

simulations have helped us to identify the following critical issues and shortcomings in the 

standard ZigBee protocols for use in freight train WSNs. 
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a) The large number of hops severely degrades network performance due to frequent 

synchronization and route update requirements. ZigBee is simply not designed for 

multi-hop networks with very large hop counts. 

b) The lack of per-hop retransmission schemes for erroneous packets creates several 

latency and robustness issues.  

c) The current ZigBee protocols do not cope well with topology changes. 

Protocol changes are required to fix these issues. Our group’s efforts in the past months 

have been directed at developing and testing potential solutions to these problems. These efforts 

are described in the following sections. 

 

  



 

47 

 

Chapter 4 Proposed Solution: Multi-layer Multi-hop Networks 

4.1 Description 

In order to solve the protocol problems we identified with our simulation study for large-

scale multi-hop networks, we propose a multi-layer multi-hop network. The idea is to divide a 

long chain-topology network into multiple segments and connect those segments with a longer-

distance communication system to reduce the number of hops required for route discovery and 

data forwarding. Figure 4.1 explains this approach. 

Imagine a 100-car freight train. In order to deliver data from the end of the train to the 

locomotive and the PAN coordinator, we have to traverse 100 individual wireless hops. The 

probability for packet corruption and the subsequent discarding of the contained information 

approached 100% in such a scenario, resulting in an effectively crippled data network. Instead, 

our proposed approach would divide this network into groups of 10 cars each, resulting in 10 

such groups. Each group has its own coordinator that also is equipped with a long-range wireless 

radio, such as Ad-Hoc Wi-Fi. Instead of 100 hops, now we need only to traverse 20 hops, 

drastically reducing the end-to-end packet loss rate, the end-to-end latency, the time required to 

synchronize the network as now each group synchronizes independently, as well as the routing 

issues resulting from the large number of hops in the original scheme. 
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ZigBee PAN Coordinator

ZigBee Router

 
Figure 4.1 Proposed Multi-layer Multi-hop network strategy 

 

For a higher-tier network technology we are currently studying Wi-Fi links to 

interconnect the WSN PAN groups, which provide longer range, more bandwidth, and faster data 

transfer rate. Our work for the Federal Railroad Administration has shown that Wi-Fi links have 

the capability to work over a distance of close to a mile, or 1600m, in a mobile railroad 

environment. Since the Wi-Fi communication range is relatively long, we can effectively skip 

over the individual WPAN hops and instead directly communicate between individual Wi-Fi 

radios attached to each PAN. This approach exhibits great promise to solve the problems 

associated with ZigBee multi-hop communication. 

The advantages of this approach are: 

a) A dramatic reduction in total hop count, 

b) More bandwidth and faster data transfers using Wi-Fi as the top-tier technology, 

c) More flexibility, and  

d) Much higher reliability. 

The costs of this approach are: 
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a) Wi-Fi devices need to be attached to some or all PAN elements, and 

b) Higher power consumption for Wi-Fi-enabled PAN nodes. 

4.2 Network Simulations 

4.2.1 General Simulation Scenario 

Let’s assume the same scenario as in our previous simulations in which we have a train 

with 50 rail cars. If each car has one ZigBee router, we can now split this network into 10 

individual PANs, each having 5 PAN nodes. Each PAN then has 1 PAN coordinator and 4 

traditional ZigBee routers. Each PAN coordinator is also equipped with a Wi-Fi radio chipset for 

the higher-tier network. In this scenario, the maximum number of hops in WPANs can be 

decreased from 50 to 5, while 10 hops on Wi-Fi does not pose any problems for data flow as 

demonstrated in our tests for the Federal Railroad Administration.  

4.2.2 QualNet 

We first adapted our simulation in QualNet to incorporate this modified multi-tiered 

strategy for freight railroad WSNs. As can be seen in Figure 4.2, there are only 5 sensors in each 

WPAN. Wi-Fi devices connect together in Ad-Hoc fashion to form the top tier. At the 

locomotive we have also create a data sink. Instead of only having a single data source, for this 

simulation we have configured each sensor in the last WPAN to generate CBR traffic at 1 packet 

per second and the simulation duration is reduced to 100 seconds. 

 
Figure 4.2 Multi-layer multi-hop wireless sensor network in QualNet 
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Figure 4.3 Number of beacon frames sent and received in QualNet 

 

Figure 4.3 shows the number of beacon frames sent and received for this QualNet 

simulation scenario. The nodes that have not received beacon frames are the PAN coordinators 

(nodes 1, 6, 11, …, 46) and nodes 33 and 39. Since nodes 33 and 39 have not received any 

beacons, they are unaware of networks in their neighborhood and thus cannot associate with their 

network. This lack of connectivity in turn prevents them from forwarding beacon frames. 
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Figure 4.4 Number of data packets sent and received in QualNet 

 

Since the CBR traffic are being generated by the sensors in the last WPAN, the failure of 

nodes 33 and 39 to join the network does not have any impact on this simulation. However, it 

does indicate that packet errors can be crucial for network discovery and network entry.  

Each sensor in the last WPAN generates a total of 100 data packets, resulting in a sum 

total of 500 data packets to be expected at the data sink, but only 400 packets have been sent as 

shown in Figure 4.4 (left). All packets from node 50 have been dropped due to route failure. 

Figure 4.4 (right) illustrates the number of packets forwarded at each node. The number of 

packets at each WPAN node within the last PAN group increases at each hop because the node is 

a data source, generating its own packets, as well as forwarding packets from its child nodes. 

Once the packets enter the top-tier network (nodes 53 to 62), the packets are forwarded to the 

destination (node 52).  
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4.2.3 OPNET 

We also wanted to test our multi-layer multi-hop wireless sensor network strategy in 

OPNET. We tried to set up a simulation as shown in Figure 4.5. Here, all Wi-Fi devices are 

located in the top row of nodes whereas each PAN coordinator is placed in the second row. Each 

Wi-Fi chipset and ZigBee PAN coordinator is directly connected to the other. However, after 

completing this configuration we discovered that OPNET’s ZigBee module is implemented as its 

own stand-alone module and does not interoperate with other models in OPNET. Therefore, any 

attempt to start the simulation scenario failed.  

 

 
Figure 4.5 Multi-layer multi-hop wireless sensor network in OPNET 
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4.2.4 NS-2 

Unlike OPNET, ns-2 supports interoperability between ZigBee and other technologies, 

such as 802.11b. Thus, it seemed that we can have both IEEE 802.11b devices and IEEE 

802.15.4 devices running in the same simulation. Unfortunately, the original ns-2 node structure 

allows us to configure only one interface per node. This leads to a simulation configuration 

problem at the PAN coordinator which is intended to be a gateway to a Wi-Fi network and thus 

requires at least two interfaces: one for 802.15.4 and another for either 802.3 or 802.11b. There 

are two potential solutions for this problem. Firstly, we may opt to add a new node model to ns-2 

in order to support multiple interfaces and also routing between interfaces. Secondly, ns-2 

provides its own workaround for simulation that consists of wired and wireless networks, called 

wired-cum-wireless network. In this simulation, we used the second solution to quickly validate 

our proposed approach.  

Figure 4.6 shows the achieved number of beacon frames sent, received, and dropped in 

our ns-2 simulation. The nodes 0-9 are the upper-layer Wi-Fi elementary nodes and therefore do 

not transmit beacon frames. Nodes 10, 15, 20, …, and 55 are PAN coordinators that start by 

generating beacon frames. It takes less than 20 seconds to get all nodes synchronized, which is 

significantly less than a long single chain scenario required (130 seconds).  
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Figure 4.6 Number of beacon frames sent, received, and dropped in ns-2 

 

 
Figure 4.7 Number of data packets sent and received in ns-2 

 

After synchronization, all sensors start transmitting data packets at 1 packet per second to 

the sink node (node 0). The simulation duration is 200 seconds, so we can expect each data 

source sensor node to send 180 packets. The intermediate nodes are responsible for forwarding 
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packets to their neighbors. Thus, each PAN coordinator should ideally have forwarded 900 

packets to the data sink via the Wi-Fi top-tier network. Similarly, the Wi-Fi backhaul (nodes 0-9) 

aggregates more data with increasing number of traversed hops. At the simulation’s conclusion 

we received 8,131 data packets successfully at the data sink node. In other words, 869 packets 

out of the total 9000 packets were lost. After careful tracing of the packet flow, we could 

determine that this occurred due to incomplete route discovery at the beginning of the 

simulation. Figure 4.7 shows the total number of data packets sent and received for each node in 

our ns-2 simulation. 

 

 
Figure 4.8 Number of packets delivered at destination in each second 
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nodes in each PAN, the PAN coordinator and the ZigBee router that directly associates with it, 

have a known destination. All other nodes still have to establish route information. Thus, only 

the packets sent from these two nodes in each PAN are correctly delivered to the destination 

whereas the rest of the sensor nodes in each PAN will require additional time for finding the 

destination route. Once that is accomplished, all sensor nodes can successfully deliver packets to 

the destination. 

4.3 Energy Analysis of the proposed multi-tier multi-hop scheme 

By adding a long-range communication module onto the wireless sensor nodes—for 

example, using a Wi-Fi transceiver chipset—we also increase the energy requirements of the 

sensor nodes. Even considering that not every single sensor node will actually power up its Wi-

Fi module (only one out of every 10 or so, depending on the number of nodes the long-range Wi-

Fi link can bridge), there is still a net increase in energy-consuming elements in the network. 

Therefore, to further analyze the feasibility of the proposed schemes we also studied the 

energy budget of an entire freight train’s wireless network. 

The basic assumptions of our theoretical energy budget analysis are as follows: 

 100 freight trains, one sensor per freight train 

 Sensor nodes are arranged in a clear chain topology 

 Sensor data traffic: 

o Each sensor generates a new reading once per second, resulting in a 70-

byte data packet once per second. 

o In a WSN using traditional protocols, data is forwarded by each sensor 

along the chain of nodes, whereas in the multi-tier network, data is 
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forwarded towards the active Wi-Fi node in the neighborhood where all 

data is then forwarded farther using the Wi-Fi link. 

 Sensor Node 100 is the destination node at the locomotive. All sensors are tasked 

with delivering their data to this node. 

To evaluate the network lifetime we further assumed that each sensor is equipped with 

the same amount of initial energy. This is based on the following energy capacities of different 

energy storage technologies, shown in the following table. 

 

Table 4.1 Battery Types and their average energy storage capacities 

 

 

Based on these numbers, we chose to utilize a single battery with 10,000 joules of charge; 

this is approximately equivalent to a single AA battery.  

Furthermore, we collected power consumption statistics from currently available ZigBee 

and Wi-Fi chipsets, shown in the following table. 
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Table 4.2 Zigbee and Wi-Fi Chipset comparison for power consumption 

Wireless sensor node Low-power Wi-Fi node 

• RxPower = 56 mW • RxPower = 40 mW 

• TxPower = 52 mW • TxPower = 360 mW 

• IdlePower = 1.3 mW • IdlePower = 40 mW 

• SleepPower = 48 uW • SleepPower = 36 uW 

 

Texas Instrument CC2420 

 

Roving Networks RN-111B 

 

Given this data we could now calculate the energy consumption per node for the 

traditional approach and our proposed multi-tier approach to freight train WSNs. The results of 

both approaches are shown in figures 4.9 and 4.10. 
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Figure 4.9 Energy consumption per node comparison 

 

Based on these results and the given energy storage capacity per node we could also 

calculate the node lifetime: 

 

Traditional Scheme Network Node Lifetime 

 

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

Multi-tier Multi-hop Sensors Per Node Energy

Node ID

En
er

gy
 c

on
su

m
pt

io
n 

(J
ou

le
s)

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Battery Life in Multi-hop Sensors

Node ID

Ti
m

e 
(H

ou
rs

)



 

60 

 

Multi-Tier Network Node Lifetime 

 

Figure 4.10 Network Lifetime comparison between traditional scheme and multi-tier networking 

 

From the above results we can clearly see that some nodes have a longer lifetime in the 

traditional scheme than in the new multi-tier scheme. However, we define network lifetime as 

the time until the data delivery to the desired destination node fails. This is rooted in the core 

principle of WSNs as application-driven networks. If the application of the WSN can no longer 

be accomplished, the network is effectively inoperable. 

Given that definition, we can find that in the traditional scheme the critical node 109, the 

direct neighbor of the data sink node, fails after 113.1 hours, whereas the earliest failure that 
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network scheme actually improves network lifetime by a factor of more than 3 times. 
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Chapter 5 Publications 

Throughout the project we pursued publication of the work we performed and the results 

we obtained in the process. We strongly believe that in making our findings and insights into the 

simulation environments and our developed multi-tier approach to freight train wireless sensor 

networks available to other researchers in industry and academia, we can aid their work and at 

the same time inform others about the progress we made on this important research topic. 

Currently, we have completed three publications. One of our articles [14] was published 

by ITS America, the Intelligent Transportation Society of America, and presented at their annual 

meeting in Houston, TX, in May of 2010. This paper was nominated by ITS America to also be 

submitted to the ITS World Congress to be held October 2010 in Busan, South Korea, and was 

accepted for publication [15].  

Our third paper [16] was accepted to IEEE SENSORS to be presented there in November 

of 2010, and will focus on the multi-tier networking approach rather than the simulation work we 

performed and presented in the two ITS papers. 

We are currently working on additional publications of our research work for the 

Transportation Research Board’s Journal, the Transportation Research Record, and other related 

journals and conferences. 
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Chapter 6 Summary 

This project focused on studying the characteristics of Wireless Sensor Networks 

onboard freight trains. In North America, freight railroad companies are searching for ways to 

improve their monitoring capabilities and fault detection of individual railcars. Currently, such 

faults can only be detected at wayside detectors, which are costly to implement, or when the train 

pulls into a yard.  

Wayside detectors currently cover only a very small fraction of the North American 

railroad track network. Based on figures by the FRA and published in a study by Booz Allen 

Hamilton in 2006, the minimum initial cost per site for wayside detectors is $250,000, with 

annual maintenance costs equaling a significant portion of that amount. Even with a significant 

build-out of wayside detector stations across North America, faults can still only be detected 

when the train passes such detector sites, with no monitoring provided while travelling between 

wayside detectors. As a result, neither approach is a feasible method of preventing loss of freight 

or accidents.  

However, small battery operated wireless sensor nodes can easily be installed onboard 

freight railcars to monitor a variety of systems, from wheel imbalances and brake failures to 

refrigerator units, boxcar doors, and many more. Since the sensors are installed directly on the 

railcars, at the site of potential failures, monitoring can be provided in real-time, with immediate 

notification of the train operator and dispatch centers. This system has the potential to prevent 

most fault-related train accidents through early detection and alerting. 

This study first evaluated the propagation characteristics of wireless sensor nodes 

deployed onboard railcars and found that placement of these nodes significantly impacts the 

radio wave propagation characteristics. This is further complicated by the materials used in 
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railcar construction and their design. We have shown with our results that roof-mounted antenna 

systems seem the most suitable for wireless communication between railcars. However, roof-

mounted installation is not always appropriate, given the specific location of a monitored system 

component, such as a wheel. Therefore, the network structure needs to account for location and 

the potential communication distance of each node, which in turn drastically impacts the 

requirements upon the wireless communication protocols at the MAC and Routing layers. 

Therefore, in our second research effort that comprises this project, we studied the 

performance of ZigBee, a communication protocol stack commonly used in traditional wireless 

sensor networks, and found it to be inadequate for the particular requirements of freight train 

wireless sensor networks.  

We then proposed an alternative approach and studied its performance in an effort to 

overcome the limitations of ZigBee for freight car WSNs. Our proposed solution leverages a 

multi-tiered approach to improve upon the long-chain topology found with the traditional 

approach. We utilize long-range wireless radios added to the wireless sensors to provide a long-

range communication link that “jumps” over entire segments of wireless nodes.  

The proposed solution has been shown in our simulation study to be very promising in 

overcoming the problems associated with standard ZigBee for railroad wireless sensor networks. 

In particular, our approach represents a significant reduction in maximum hop distance between 

traffic source and destination by leveraging a long-range wireless technology such as Wi-Fi as an 

overlay communication tier for interconnecting subsets of wireless sensor nodes, effectively 

converting the chain topology into a hierarchical structure.  

However, the currently available simulation tools are incomplete in their implementation 

of the ZigBee communication protocol. Our team therefore invested significant additional 
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resources into completing the implementation of the NS-2 ZigBee simulation environment and 

our multi-tier networking technology.  

We found that our design provides significant performance improvements over the 

traditional approach, as well as significantly improved energy efficiency and network lifetime. 

Finally, we would like to thank Union Pacific for their generous support of our research 

throughout the entire project. UP provided technical expertise in railcar monitoring, sensor 

platforms for lab testing, and an open ear for all of our questions. We always cherish the close 

collaboration of our team here at TEL with the people at Union Pacific.  

The results produced by this research project will have a significant impact on the 

direction and future work by the railroads in North America, including Union Pacific. The 

insights into the propagation characteristics of freight train wireless sensor networks is of great 

benefit to the railroad engineers that will design and implement these networks on freight trains 

nationwide, making freight railroad operation safer, more secure, and more efficient. 
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Appendix 

Appendix A: Additional Results from EM-Field Study of RF Propagation Characteristics 

This section includes additional results collected as part of our comprehensive evaluation 

of physical layer RF propagation characteristics for different types of railcars and antenna 

placements. 

Each data set includes the antenna placement and railcar configuration picture, the 

resulting farfield antenna pattern picture, as well as the E-Field visualization. 

The included results are for: 

 Roof mounted 

o Tanker car 

 Side-mounted antenna 

o Flat car 

o Tanker car 

o Hopper car 

 Undercarriage-mounted antenna 

o Flat car 

o Tanker car 

o Hopper car 

 Passing trains 

o Flat car 

o Tanker car 

o Hopper car 

 Train segment 

o Flat car 

o Tanker car 

o Hopper car 
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Figure A.1. Tanker car: roof-mounted antenna 
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Figure A.2. Flat car: side-mounted antenna 
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Figure A.3. Tank car: side-mounted antenna 
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Figure A.4. Hopper car: side-mounted antenna 
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Figure A.5. Flat car: undercarriage-mounted antenna 
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Figure A.6. Tank car: undercarriage-mounted antenna 
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Figure A.7. Hopper car: undercarriage-mounted antenna 
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Figure A.8. Flat car: passing train 

 

 

 
 

  



 

75 

 

Figure A.9. Tanker car: passing train 

 

 

 
 

  



 

76 

 

Figure A.10. Hopper car: passing train 
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Figure A.11. Flat car: train segment 
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Figure A.12. Tanker car: train segment 
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Figure A.13. Hopper car: train segment 
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