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Abstract 

This study is aimed at better understanding the effects of heavy trucks on the 

performance of asphalt pavements. As the U.S. freight movements are dominated by truck 

transportations, the addition of new roadway lane-miles in Region VII have not kept pace with 

the increase in truck volume. As such, existing highway pavements must be effectively preserved 

under heavy truck loads. The key to the success of infrastructure preservation is to accurately 

predict the behavior of pavement structures. To this end, it was necessary for the study to collect 

sufficient field performance data.  

The data were used to validate the Mechanistic Empirical Pavement Design Guide 

(MEPDG) and the finite element method (FEM), in terms of the impact of heavy truck loading 

on pavement performance. Actual roadway sections in Missouri were selected and monitored 

several times over the project period. Pavement performance-related data such as traffic 

information, asphalt material properties, and subgrade condition were collected and used for 

various analyses. The study provides insights into effective implementation of the MEPDG into 

the design and analysis of pavements in Region VII.  The study’s findings provide necessary 

information for the development of the next generation of a rigorously mechanics-based 

MEPDG. The outcome of the study led to better understanding of the pavement structure 

designs; which can result in long lasting transportation infrastructure and improve public safety. 

The study was completed in close coordination with Professor Yong-Rak Kim from the 

University of Nebraska-Lincoln through a parallel study that was separately proposed by Dr. 

Kim.  
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Executive Summary 

 

Trucking is a key component of U.S. freight transportation. Trucks moved 71% of the 

total tonnage and 80% of the total value of U.S. shipments in 1998. By 2020, the U.S. 

transportation system is expected to handle about 23 billion tons of cargo valued at nearly $30 

trillion. Freight shipment data has shown that freight either originates or terminates its journey in 

Nebraska and Missouri. Trucks moved a large percentage of the tonnage and value of these 

shipments and this is expected to grow, throughout the states, over the next ten years. Yet, even 

the significant addition of new lane-miles is not expected to keep pace with the increased 

demand for freight transportation. Therefore, the need to preserve existing highway 

infrastructure and to accomplish an appropriate design-analysis for new pavements must be a 

high priority.  

 This report consists of three parts. The first chapter presents a cyclic constitutive model 

that is capable of modeling material behaviors under repeated load. The cyclic fuzzy set model 

provides analytical and simple geometrical interpretation to formulate hardening, hysteresis 

features, materials memory, and kinematic mechanisms without relying upon complex analytical 

formulations. In addition, the cyclic fuzzy set model accounts for realistic stress-strain behavior 

under repeated load cycles, nonlinear dilatancy behavior, critical state soil mechanics concepts, 

and non-proportional loading. 

 The second chapter demonstrates the results of the proposed cyclic plasticity model for 

modeling the permanent deformation behavior under repeated load cycles.  The resilient modulus 

can also be calculated from the stress-strain response from the fuzzy set plasticity model. The 

model is capable of mimicking the behaviors of unbound granular materials under repeated loads; 

which include reversal loading, nonlinear dilatancy, material memory, and long term behavior, 
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such as elastic shakedown. The elastic shakedown is achieved by controlling the material 

memory and plastic modulus parameters. It is particularly attractive for finite element analysis 

since a more realistic stress-strain response is available.   

 Lastly, chapter three discusses the use of the numerical optimization technique to 

calibrate a constitutive model. The modified Cam-Clay model was calibrated against the 

laboratory test data.  Although the least-square type of objective function Case C is preferred, all 

of the proposed objective functions worked effectively. Up to four variables were calibrated 

using the Case-C objective function and the upper and lower bounds of these variables need to be 

specified. The efficiency of the optimization relies on the determination of the bound values. 
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Chapter 1 Cyclic Plasticity Constitutive Model  

1.1 Introduction 

In recent decades,  the development of constitutive models for a wide range of 

engineering materials, including soils, has increased significantly (e.g., Prevost, 1978; Mroz et 

al., 1978; Sture et al., 1982; Vermeer, 1982; Bardet, 1985; Anandarajah, 1994; Muir Wood et al., 

1994; Manzari and Dafalias, 1997; Gajo and Muir Wood, 1999). The majority of the models are 

based on incremental or flow plasticity theory. Due to the rapid expansion in the use of general-

purpose geotechnical software among practicing engineers, nonlinear numerical analysis has 

become increasingly popular. These developments, along with elaborate color-graphic output 

schemes and user-friendly interface, give an unusual sense of confidence among users. Thus, it is 

important to develop reliable and versatile nonlinear soil models. 

Within the framework of classical plasticity theory, isotropic hardening is sufficient to 

simulate the stress-strain behavior of soil under monotonic loading. Kinematic hardening or 

mixed hardening (isotropic and kinematic hardening) is typically used to mimic hysteretic 

phenomena of soil under cyclic loading, such as reverse plastic flow and memory of particular 

loading events. However, kinematic hardening models are complicated and often very difficult to 

implement in constitutive drivers within reliable finite element codes. Also, many of these 

models were designed and validated for specific stress paths, for example, conventional triaxial 

compression. They were not validated for or made useful for other loading paths, which clearly 

take place in general boundary value problems of geotechnical engineering and structure-soil 

interaction. This chapter presents a cyclic constitutive model based on fuzzy set plasticity 

capable of describing repeated load cycles, dilatancy, material memory, drained and undrained 
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behavior, features of critical state soil mechanics, density and mean effective stress dependence, 

and long-term cyclic effects (elastic shakedown). 

1.2 Cyclic Fuzzy Set Plasticity Model Formulation 

The concept of fuzzy set plasticity was first introduced by Klisinski et al. (1988) and its 

theory and formulation has since been described by several researchers. Unlike conventional 

elasto-plastic hardening models, the fuzzy set model is physically intuitive and easy to visualize. 

It provides analytical and simple geometrical interpretation to formulate hardening, hysteresis 

features, material memory, and kinematic mechanisms without using complicated kinematic 

hardening formulations. 

1.2.1 Elastic Behavior 

The bulk modulus K and shear modulus G are pressure dependent parameters defined as 

 

'
)1(

p
e

K



         (1.1)   

KG
)1(2

)21(3










,

       (1.2) 

where,  

e is the void ratio,  is the Poisson's ratio, and  is the slope of the unloading-reloading 

line on e versus log p' curve. 

 

1.2.2 Membership Function 

The membership function has been involved in the plastic modulus equations. When        

 = 1, the material behaves purely elastically and the corresponding value of the plastic modulus 
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is infinite. However, when  = 0, the material reaches a fully plastic state and the plastic modulus 

is equal to the value on the fuzzy surface, i.e. H = H
*
. 

With the assistance of the membership function , we can readily construct reversal 

plastic loading without resorting to a kinematic hardening rule. The following are the basic rules 

of kinematic mechanism for the membership functions: for plastic loading and plastic unloading, 

0 ; and for elastic loading and elastic unloading, 0 . Although the value of the 

membership function is 1 at a fully elastic state and 0 at the fully plastic state, the assignment of 

the value in elastoplastic state is deterministic and can be arbitrarily defined as needed. A linear 

variation with respect to stress state was adopted in this study. 

The kinematic mechanism of the membership function  is shown in figure 1.1, which 

represents plastic loading from point a to b, followed by elastic unloading from point b to c. 

After point c is reached, unloading with the associated decrease of the value of the membership 

function results in plastic deformation, which is a feature of the membership function. The 

degree of material memory can be simulated by predetermining the location of point c. 

Furthermore, by controlling the location of point c, one can also model elastic shakedown 

behavior, where point c moves toward a point as cyclic loading proceeds. Plastic unloading, or 

reversal loading, is shown from point c to point d. This is followed by elastic loading from point 

d to point e and plastic loading from point e to point b, as shown in figure 1.1. 
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Figure 1.1 Illustration of kinematic mechanism of the membership function 

 

Figure 1.2 displays an example of the deviatoric stress-strain response and evolution of 

the membership function for a material subjected to two varied amplitude cyclic loadings under a 

conventional triaxial stress path. The unloading and reloading points take place in two different 

stress levels, q = 156 kPa and q = 231 kPa, respectively. The two graphs on the left highlight 

cycle 1 with the loading from 0 to 156 kPa and unloading from 156 to 0 kPa (solid line). The two 

graphs on the right illustrate cycle 2 with the loading from 0 to 231 kPa and unloading from 231 

to 0 kPa (solid line). 
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Figure 1.2 Deviatoric stress-strain curve and evolution of the membership function g for cycle 1 

and cycle 2 

 

1.2.3 Fuzzy surface 

The fuzzy surface is a three-stress-invariant function which can be expressed as: 
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These are defined below as 

),g(  qr ,      (1.5) 

1
3

1
Ip 

,
       (1.6) 

23Jq   .       (1.7) 

 

The first stress invariant corresponding to mean stress is p and the second deviatoric 

stress invariant relating to shear stress is q. The elliptical function g = g(, ), proposed by 

Willam and Warnke (1974), is considered to be the third invariant in the  fuzzy surface. It is a 

function of the Lode angle  and the ellipticity , which controls the shape of fuzzy surface in 

deviatoric stress plane as shown in figure 1.3 below.  Material constants, a0, a1, a2, b0, b1, and b2, 

can be determined from triaxial compression and extension tests. Also, the fuzzy surface can be 

curvilinear lines in the p-q stress space with non-zero values of a2 and b2.  In this paper, a linear 

fuzzy surface was considered. 
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Figure 1.3 Willam-Warnke deviatoric contour 

 

The stress-strain behavior under non-proportional loading, ranging from compression to 

extension, can be captured by varying the Lode angle. The ellipticity  = (p) can also be 

dependent on effective mean confining stress p, where it is anticipated that the deviatoric trace of 

the  fuzzy surface will become almost circular for large values of the mean confining stress   ( = 

1). For low mean confining stress levels ( = ½), the trace degenerates to a triangle. The value of 

the elliptical function at each stress state can be calculated and the fuzzy surface can be described 

in the conventional triaxial p-q stress space. 
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The coefficient a1 in the fuzzy surface function for triaxial compression incorporates the 

concept of critical state soil mechanics, which is defined as 

 

  scMa1 ,
       (1.9) 

where,  

Mc is the stress ratio q/p at critical state, s is a constant, and  is a state parameter, 

which is defined as the difference between the current void ratio e and the critical state void 

ratio.  

 

For loose granular materials,  > 0 and a1 = Mc, whereas dense granular materials,  > 0 

and a1 will evolve with the change of  during loading and finally reach critical state,  = 0 and 

a1 = Mc. The evolution of state parameter   is derived from the void ratio versus log mean stress 

plot, 
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where,  

Cis the slope of the critical line in void ratio versus log mean stress plot. 
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1.2.4 Plastic Modulus 

Since the loading surface is not explicitly defined in the fuzzy set plasticity model, one 

can think that for the current stress state, there exists a loading surface such that the plastic 

modulus is defined as follows. 

 

11 




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d
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HH




       (1.11) 

where,  

d and M are model parameters that can be determined from test data. 

 

1.2.5 Flow Rules 

Plastic flow rules are expressed as mε  p
, where m is the direction of plastic 

deformation increments. In classic plasticity theory, the plastic potential is required to determine 

the direction of the plastic deformation increment. In the fuzzy set plasticity theory, a fourth-

order tensor is defined in such a way that m = T : n, where T is a fourth-order tensor.  If T = I, 

we have associated plastic flow. Therefore, the effect of non-associated flow rules is achieved by 

defining a fourth-order tensor T so that the plastic potential function need not be known 

explicitly. This fourth-order tensor T is defined as: 

 

11IT  )( D1
3
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where,  
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D is called dilatancy parameter and can be expressed as D = A[a1B – ] in triaxial 

compression, and D = A[b1B – ] in triaxial extension in the current model.  

 

The parameters from fuzzy surface equations are a1 and b1, and  is the current stress 

ratio q/p. The matrix form of T is expressed as a 6×6 matrix in a triaxial stress space, which can 

be reduced to a 2×2 matrix in the conventional triaxial p-q spaceas follows, 
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1.3 Model Validation 

The cyclic triaxial tests on Fuji sand (Pradhan et al. 1989) and Toyoura sand (Tatsuoka 

and Ishihara 1974) were used to calibrate and validate the cyclic fuzzy set model. For the Fuji 

sand, the material parameters used were:  

 

 = 0.001,  = 0.3, a1 = 1.48, b1 = -1.08,  = 0.73, M = 10450, d = 2.48, a0 = 0,  

b0 = 0, A = 0.17, and B = 1.05.      (1.15) 
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 The stress-strain response is given in figure 1.4. In general, the model captures the trend of the 

laboratory measurement quite well for the first three cycles under lower stress amplitude.  

 

 

Figure 1.4 Stress ratio versus deviatoric strain response for Fuji sand 

 

On the other hand, it is obvious that the model does not match the stress-strain curves 

under higher stress amplitude (4th and 5th cycle). This is mainly due to that fact that the 

degradation of the plastic shear modulus was not taken into consideration.  On the volumetric 

behavior, as shown in figure 1.5, the fuzzy set model response matches the laboratory 

measurement satisfactorily.  

 



 

12 

 

For the Toyoura sand, these were the model parameters used:  

 

 = 0.001,  = 0.3, a1 = 1.24, b1 = -1.08,  = 0.87, M = 8450, d = 2.8,  

a0 = 0, b0 = 0, A = 0.28, and B = 1.05.      (1.16) 

 

Figures 1.6 and 1.7 show the deviatoric and volumetric behaviors under cyclic triaxial, 

respectively. Similar observations and conclusions drawn from Fuji sand can also be applied to 

Toyoura sand. 

 

 
Figure 1.5 Volumetric strain versus stress ratio response for Fuji sand 
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Figure 1.6 Stress ratio versus deviatoric strain response for Toyoura sand 
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Figure 1.7 Volumetric strain versus stress ratio response for Toyoura sand 

 

1.4 Summary 

A cyclic constitutive model based on fuzzy set concepts has been developed. The cyclic 

fuzzy set model is physically intuitive and easy to visualize with the aid of membership 

functions. The cyclic fuzzy set model provides analytical and simple geometrical interpretation 

to formulate hardening, hysteresis features, materials memory, and kinematic mechanisms 

without relying upon complex analytical formulations. In addition, the cyclic fuzzy set model 

accounts for realistic stress-strain behavior under repeated load cycles, nonlinear dilatancy 

behavior, critical state soil mechanics concepts, and non-proportional loading. The evolution rule 

for the fuzzy surface can help simulate the post peak soil behavior such as strain softening. The 
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critical state soil mechanics concept has been implemented into the fuzzy set model by linking 

the fuzzy surface parameter a1 to the state parameter . 
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Chapter 2 Modeling Permanent Deformation of Pavement Base Materials  

2.1 Introduction 

Permanent deformation is one of the important factors used to evaluate the performance 

of a pavement structure under a service load. Depending upon the stress history on pavement due 

to a moving wheel load, the accumulated permanent deformation could keep increasing with 

continued load cycles or reach a stabilized value which is called elastic shakedown (Werkmeister 

et al. 2004; Garcia-Rojo and Herrmann 2005). For moderate stress levels, elastic shakedown is 

expected when the material response is typically characterized by the resilient elastic modulus 

after numerous cycles. It is preferred so that the life of the pavement lasts longer. Through 

laboratory and field measurements and observations, empirical equations have been widely used 

in predicting permanent deformation under repeated load (Lekarp et al. 2000a). Empirical 

equations are simple to use for practical design; however, they normally lack a physical 

framework to be formulated and a well-defined stress-strain relationship. Because of those 

reasons, finite element analysis has been popular in analyzing and modeling a pavement structure 

under traffic load.  

In order to carry out an accurate analysis, a constitutive model capable of describing 

material behaviors under repeated loading is desired. Most of the constitutive models used in 

finite element analysis for pavement structures are non-linear elastic models defined by empirical 

resilient modulus equations (Lekarp et al. 2000b; Kim and Tutumluer 2008). Few 

isotropic/kinematic hardening elastoplastic models were used (e.g. Chazallon et al. 2006; 

Johnson and Sukumaran 2009) because applying thousands of repeated load cycles became 

computationally expensive.  A majority of the models for granular materials are based on classic 

plasticity theory, where kinematic hardening or mixed hardening (isotropic and kinematic 
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hardening) is normally used to mimic hysteretic phenomena, such as reverse plastic flow and 

memory of particular loading events. However, they are sophisticated and often difficult to 

implement in constitutive drivers within reliable finite element codes. 

Multi-surface plasticity, bounding surface plasticity, and generalized plasticity theories have 

been successfully used to model cyclic behavior of granular materials. In multi-surface plasticity 

(e.g. Prévost 1982), multiple yield surfaces take the shape of nested subspaces in stress space, 

where the stress-strain behavior within the innermost surface is assumed to be elastic. The 

instantaneous configuration of the field of yield surfaces was established by computing the 

parameters and equations that govern the translation, expansion, or contraction of individual 

surfaces during proportional, as well as non-proportional, loading and unloading. In bounding 

surface plasticity (e.g. Manzari and Dafalias 1997), the plastic strain occurs for stress states 

within the bounding surface. It is also possible to have a very flexible and smooth variation of 

the plastic modulus during straining, unlike the multi-surface plasticity model which assumes 

piecewise constant plastic moduli. As for generalized plasticity (e.g. Pastor and Zienkicwcz 

1986), both plastic flow direction and plastic modulus for loading and unloading are defined 

explicitly where dilatancy was approximated by a linear function of stress invariant ratio as 

proposed by Nova and Wood (1979). 

A cyclic plasticity model based on fuzzy set plasticity theory is presented in this paper to 

model the accumulated permanent axial strain and shakedown behavior of unbound granular 

materials under repeated loads. The concept of the fuzzy set plasticity was first introduced by 

Klisinski et al. (1988) and its theory and formulation have been described by several researchers 

(e.g. Klisinski 1991; Klisinski et al. 1991; Arduino and Macari 2001; Ge and Sture 2003a; 

2003b). The model presented in this paper is capable of simulating realistic stress-strain 
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behaviors under repeated load cycles including nonlinear dilatancy, material memory, accurate 

reverse loading feature, non-proportional loading, and long-term cyclic effects. In the following 

sections, the framework of the fuzzy set plasticity theory is first introduced, followed by its 

model formulation, calibration, and performance.   

2.2 Model Formulation 

2.2.1 Material Memory 

The material memory parameter  represents the material degree of memory and it shows 

the evolution of elastic and plastic deviatoric behavior during the entire loading and unloading 

(reversal loading) process. For  = 0, it represents the materials that have no memory and it 

shows fully elastic behavior during the entire unloading process. For    , it represents the 

materials that have the maximum degree of memory and it shows fully plastic behavior during 

the entire unloading process. In order to describe the evolution of elastic and plastic behavior of 

unbound granular materials under repeated loading, the material memory function is given as 

 

    (  )
    3

0

m

iN         (2.1) 

where,  

0 is the initial value of , Ni is the nth number of load application, m3 is aparameter 

controlling the evolution of material memory parameter with load cycles. Figure 2.1 shows the 

evolution of memory function parameter under different m3. 
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Figure 2.1 The evolution of material memory parameter  under different m3 

 

2.2.2 Flow Rules 

The plastic strain increments follow the flow rules in classic plasticity theory, 

 

 ̇   ̇ mε  p
        (2.2) 

where, 

  is the magnitude and m is the direction of the plastic strain increments.  
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In the fuzzy set plasticity, m is not determined through the gradient of plastic potential; instead, it 

is defined through a fourth tensor T, for example  

 

     nTm :         (2.3) 
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Shear-dilatancy incorporating current stress state   and critical state condition Mc is defined as, 

  

  
   
 

  
 
   [-      ]    dcMAD

,
    (2.5) 

where,  

A and d are model parameter and   is the current stress ratio q/p.  

 

In this paper, the evolution of the deviatoric plasticity modulus function parameter d is 

introduced as the following equation to account for the long term effects on the incremental 

plastic strain, 
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where,  

Ncyc is the total number of load cycles, Ni is the number of current load cycles, m1 and m2 

are exponential coefficients depending on the shear strain level, and d0 is the initial values of the 

deviatoric plastic modulus function parameter. This can be used to simulate the elastic 

shakedown behavior when the material behaves elastically after certain amount of load cycles.  

2.3 Model Calibration 

With the advance of constitutive modeling, the parameters and constants required in 

elastoplastic models can be tremendous. Calibration of these constitutive models is not an easy 

task. In addition to the different types of laboratory experiments demanded, a systematic 

approach for model calibration is desired. Conventional method, such as linear regression, is not 

sufficient to identify the model parameters because many of them cannot be described in linear 

fashion through laboratory testing data. Moreover, some of these model parameters are defined 

with less physical meaning, which cause difficulties in model calibration. With this in mind, a 

numerical optimization technique of nonlinear least-square regression is applied to the 

constitutive model calibration. Optimization problems are generally defined as minimizing the 

objective function f(x) subject to decision variable vector x. Numerical optimization algorithms 

can be categorized into three groups according to the type of information needed to search for the 

minimum of the objective functions. The simplest way to minimize the objective function is to 

randomly choose a sufficiently large number of candidate vectors x and evaluate the objective 

function for each of them. In calibrating a fuzzy set plasticity model, the objective function is 
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defined by the Euclidean distance between an experimental point and a theoretical point and a 

random search method is used.   

The random search method is considered to be the most inefficient but most easily 

implemented among the zero-order methods. For this reason, the random search method was 

adopted to calibrate the fuzzy set model in this paper. Moreover, the inefficiency can be 

overcome by the aid of modern high-speed computers. Assuming that the variables x
*

i for i = 1 to 

n lies between its lower bound x
l
i and upper bound x

u
i, there must exist a Ri such that x

*
i = x

l
i + 

Ri(x
u

i – x
l
i) and minimize the objective function f. 

Since constitutive models are being calibrated, it is intuitive to use stress and strain as 

variables in the objective function. It is then straightforward to formulate the objective function 

as the sum of distances from computed points to their adjacent experimental points in the stress 

strain space. For each computed strain that lies between 
exp

je and
exp

1je , the distance between the 

computed and experimental strains can be calculated. The objective function is constructed as 

follows, 
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where,  

n is the number of computed strains.  
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2.4 Model Performance 

Three sets of laboratory experimental data from Lekarp (1997) were chosen to calibrate 

the fuzzy set plasticity model. Since the available lab data from Lekarp (1997) is not sufficient to 

calibrate the fuzzy set plasticity model and obtain a unique set of model parameters, appropriate 

assumptions were made to carry out the model calibration. The material types include Leighton 

Buzzard sand (S), sand and gravel (S&G), and slate waste (SW).  The S&G and SW were tested 

in a triaxial cell apparatus, while the S was tested in a hollow cylinder apparatus. Lekarp’s 

testing program was used with the primary aim of characterizing the development of cumulative 

permanent strain with number of load applications, as listed in table 2.1. The stress paths that 

were applied to the laboratory tests are also shown in table 2.1, where the corresponding load 

applications in p-q stress space were converted when the stress-strain responses were computed 

through the fuzzy set plasticity model. As Lekarp’s tests available for model calibration are 

limited, the fuzzy set plasticity model parameters given in table 2.2 lead to one possible 

combination. Figure 2.3 shows the entire stress-strain curves for S under the stress paths listed in 

table 2.1. It was subjected to stress path P3 which shows more plastic deformation, as a higher 

maximum deviator stress (105 kPa) was applied. Both curves show the tendency of being more 

elastic as more load cycles are applied.  Essentially, S under both stress paths P1 and P3 was 

stabilized and elastic shakedown was reached. The entire stress-strain behaviors for S&G and 

SW are similar so the curves are not shown in the paper.  
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Table 2.1 Selected tests from Lekarp (1997) for model calibration 

 

 

Table 2.2 Fuzzy set plasticity model parameters 

 

Material Stress path code 
N 

(# of cycles) 

σ3 (kPa) q (kPa) 

min max min max 

S 
P1 10000 70 70 0 80 

P3 10000 70 70 0 105 

S&G 

P1 10000 100 135 0 200 

P2 10000 100 285 0 500 

P3 10000 100 220 0 400 

SW 

P1 10000 0 20 0 300 

P2 10000 0 100 0 600 

P3 10000 0 200 0 600 

 
K 

(MPa) 

G 

(MPa) 
M d a0 a1 A d m1 m2 m3 α 

S-P1 580 700.9 105000 1.8 30 1.3 1.7 0.35 1.5 0.15 -0.62 0.85 

S-P2 580 700.9 56000 1.8 30 1.3 1.7 0.35 1.5 0.21 -0.62 0.85 

S&G-P1 580 700.9 405000 1.12 50 1.55 1.95 0.35 1.5 0.02 -0.62 0.85 

S&G-P2 580 700.9 95000 1.8 50 1.55 1.95 0.35 1.5 0.46 -0.62 0.85 

S&G-P3 580 700.9 50000 1.85 50 1.55 1.95 0.35 1.5 0.23 -0.62 0.85 

SW-P1 580 700.9 572000 1.3 50 1.8 1.35 0.95 1.5 0.3 -0.62 0.85 

SW-P2 580 700.9 572000 1.97 50 1.8 1.35 0.95 1.5 0.6 -0.62 0.85 

SW-P3 580 700.9 793000 1.8 50 1.8 1.35 0.95 1.5 0.79 -0.62 0.85 
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Figure 2.2 Complete stress-strain response for Leighton Buzzard sands 

 

The permanent strain versus number of cycles curves for all three materials are presented 

in Figures 2.3, 2.4, and 2.5, respectively. It shows that the proposed cyclic plasticity model is 

capable of capturing the long term behavior in permanent deformation under repeated loads. In 

particular, most permanent axial strains were taking place in the first 2,000 load cycles. When 

the materials were subjected to higher deviatoric load repetitions, more load cycles were needed 

to reach a stable state (shakedown). As for resilient modulus, it can be calculated at any given 

load cycle since the entire stress-strain curve is available from the fuzzy set plasticity model.  
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Figure 2.3 Permanent axial strain versus number of cycles for Leighton Buzzard sands 
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Figure 2.4 Permanent axial strain versus number of cycles for sand and gravel 
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Figure 2.5 Permanent axial strain versus number of cycles for slate waste 

 

Figure 2.6 shows an example of the calculated resilient modulus for S if a range of 

confining pressure is applied. Each resilient modulus was calculated from each corresponding 

stress-strain curve at its 10,000
th

 cycle. It shows the trend that for a given maximum deviator 

stress, then the higher confinement and the higher the resilient modulus. It also shows that for a 

given confinement, then the higher maximum deviator stress and the higher the resilient modulus. 
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Figure 2.6 Calculated resilient modulus at various confining pressures for Leighton Buzzard 

sands 

 

 

2.5 Summary 

A cyclic plasticity model based on fuzzy set plasticity theory is presented in this paper for 

modeling the permanent deformation behavior under repeated load cycles. The resilient modulus 

can also be calculated from the stress-strain response from the fuzzy set plasticity model. The 

model is capable of mimicking the behaviors of unbound granular materials under repeated loads 

which include reversal loading, nonlinear dilatancy, material memory, and long term behavior 

such as elastic shakedown. The elastic shakedown is achieved by controlling the material 

memory and plastic modulus parameters. It is particularly attractive for finite element analysis 
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since a more realistic stress-strain response is available. However, it also has several drawbacks.  

Model calibration is challenging since it requires more laboratory test results. The triggering 

mechanisms for elastic shakedown, plastic shakedown, and progressive failure are not fully 

understood and not implemented into the model.   
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Chapter 3 Model Calibration Using Numerical Optimization Techniques 

3.1 Introduction 

   With the advance of constitutive modeling, the parameters and constants required in 

elastoplastic models can be tremendous. Calibration of these constitutive models is not an easy 

task. In addition to the different types of laboratory experiments demanded, a systematic 

approach for model calibration is desired. Conventional method, such as linear regression, is not 

sufficient to identify the model parameters because many of them cannot be described in a linear 

fashion through laboratory testing data. Furthermore, some of these model parameters have less 

physical meaning, which causes difficulties in model calibration.  

   Several methods and algorithms have been developed and integrated for constitutive 

model calibration in recent decades. Mattsson et al. (2001) integrated the numerical optimization 

algorithms by Rosenbrock and the simplex method to calibrate an elastoplastic soil model.  

Johansson and Runesson (2002) used a function evaluation method to calibrate a plasticity model 

for granular materials, whereby a “multi-vector” strategy for choosing the appropriate start 

vector was proposed. Yang and Elgamal (2003) used three optimization methods: analytical, 

semi-analytical, and numerical, to calibrate a multi-surface plasticity sand model. Their 

calibration was based on the results from a number of drained triaxial tests and a dynamic 

centrifuge test. Calvello and Finno (2004) introduced an inverse analysis technique, which 

combines a finite element analysis and a parameter optimization algorithm, to calibrate an 

elastoplastic soil model. Johansson and Runnesson (2005) outlined a computational technique for 

constitutive model calibration with an automatic error control in space–time. Samarajiva et al. 

(2005) introduced a new fitness function, the objective function, to evaluate the fitness of 

material parameters based on stress and strain invariants using genetic algorithm. Cekerevac et 
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al. (2006) employed an optimization routine, which combines the quasi-Newton and stochastic 

methods, to calibrate an elastoplastic constitutive model.  Obrzud et al. (2009) presented a two-

level parameter identification method, using the standard gradient-based optimization technique 

supported by the feed-forward neural network algorithm, to calibrate an elastoplastic model. 

   In this paper, an optimization algorithm DIRECT, developed by Finkel (2003), was 

adopted and integrated to constitutive model calibration. The method is a modification to 

Lipschitzian optimization (Perttunen 1993), which was designed to solve difficult global 

optimization problems with bound constraints and a real-valued objective function (Finkel, 

2003). 

3.2 Numerical Optimization 

Optimization problems are generally defined as minimizing the objective function f(x) 

subject to decision variable vector x. Numerical optimization algorithms typically can be 

categorized into three groups according to the type of information needed in searching for the 

minimum of the objective functions. The simplest way to minimize the objective function is to 

randomly choose a sufficiently large number of candidate vectors x and evaluate the objective 

function for each of them. This approach is often referred to as zero-order methods, in which 

random search methods, like Rosenbrock method (Rosenbrock 1960), Powell’s method (Powell 

1964), Simplex method (Nelder and Mead 1965), and DIRECT method (Finkel 2003) are of this 

kind. If the information of the gradient of the objective function is implemented into the 

optimization algorithm, it is referred to as first-order methods. Second-order methods, also called 

Newton’s methods, use the information of the second derivatives of the objective function 

(Hessian matrix H) throughout the optimization process. 
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   Due to the nature of the incremental format of most elastoplastic constitutive drivers, 

the objective functions are not explicitly well-defined. This causes the difficulty in calculating 

the first and second derivatives of objective functions when first-order methods and second-order 

methods are used. Therefore, in this paper, the zero-order method, DIRECT, is used and 

integrated in a model calibration. The algorithm uses the information from its sampling points in 

the domain to decide the next search direction. It globally minimizes the objective function; 

however, the convergence may be computationally expensive. The detailed discussion on its 

algorithm can be found in Finkel (2003). 

3.3 Objective Function 

Since constitutive models are being calibrated, it is intuitive to use stress and strain as 

variables in the objective function. It is then straightforward to formulate the objective function 

as the sum of distances from computed points to their adjacent experimental points in the stress 

strain space. Figure 3.1 shows three different forms of objective function considered in this study.  

For Case A, the distance is computed between each laboratory data point and the corresponding 

numerical model point at the same stress level, however for Case B, the distance is measured 

between the laboratory and numerical point at the same strain level. As for Case C, the objective 

function is constructed in the sense of least-squares from each laboratory point to the numerical 

stress-strain response from a given constitutive model. 
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Figure 3.1 Illustration of formulating the objective function for constitutive model calibration 

 

   The modified Cam-Clay model (Muir Wood 1990) is used in this study to demonstrate 

the effectiveness of the proposed objective functions. Since it is a well-known constitutive 

model, only the essence of the model is presented here. The yield function is expressed as 

 

0

2222 ppMpMqf  ,        (3.1) 

where,  

p is the effective mean stress, q is the deviatoric stress, p0 is preconsolidation mean stress 

which control the initial size of the yield function, and M is the critical state slope in p-q stress 

space.  

 

The associated flow rule is used to compute the incremental plastic volumetric strain 
p

ve  

and incremental plastic deviatoric strain 
p

de , for example 

 pfp

v  /e  and qfp

d  /e        (3.2) 

where, 
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 is the incremental plastic multiplier and pf  / and qf  / are gradients of the yield 

function with respect to p and q.  

 

The isotropic hardening rule is given by 

 
p

vepp e  )/()1( 000  ,        (3.3) 

where,  

e0 is the initial void ratio;  and  are the slopes of compression and re-compression paths 

in the void ratio versus the natural logarithm of effective mean stress plot.  

 

After applying additive strain decomposition, plastic flow rule into the consistency 

condition of the yield function, the incremental plastic multiplier can be determined.  With that, 

the incremental stress-strain relation in matrix form can be expressed as  
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is bulk modulus and G is shear modulus. 
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3.4 Results and Discussion 

There are six independent model parameters in the modified Cam-Clay model, which 

include , , G, M, e0, and p0. The drained triaxial test on remolded normally-consolidated 

Weald clay from Bishop and Henkel (1957) was selected in this work. Two-variable 

optimization analyses were first carried out using the Case A, Case B, and Case C objective 

functions, respectively. In this series of computation, model parameters  and G were variables 

while M, e0, k, and p0 remained fixed. Before running the optimization, upper bound and lower 

bound of the variables ( 10    and 38003400 G ) needed to be specified. Table 3.1 gives 

the calculated model parameters through numerical optimization. Figure 3.2 shows the stress-

strain curves from the optimized modified Cam-Clay model and the data points from the 

laboratory test, in which good matches were generally found. Figure 3.3 displays the iteration 

process for each case. Since the way the objective functions were defined was different in each 

case, the values of the objective functions should not be used to assess their effectiveness. It is 

found in figure 3.3 that Case A converged rapidly after 3 iterations, while Cases B and C reached 

a convergent state after 10 and 12 iterations, respectively. However, it does not guarantee that 

Case A objective function is superior than Cases B and C. If we take a close look at figure 3.2, in 

comparison to Cases B and C, the stress-strain curve from the calibrated model in Case A does 

not show a good match around the deviatoric strain at 5%. This is probably due to the fact that 

Case A objective function is not sensitive to stress states where plastic deformation is more 

significant than elastic deformation. 

 

 

 



 

37 

 

Table 3.1 Optimized model parameters 

Objective 

Function 
Optimized  Optimized G 

Case A 0.0740 3400.52 

Case B 0.0689 3414.78 

Case C 0.0693 3403.26 

 

Note: M = 0.9, e0 = 0.933,  = 0.015, and p0 = 207 kPa were used and kept 

constant during calibration. 

 

 

 
Figure 3.2 Two-variable optimization model calibrations using proposed objective functions 
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   In the second series of computation, a further investigation on Case C objective 

function was performed by adding more variables in each optimization as shown in table 3.2.   

Again, the upper and lower bounds of the variables,  

 

( 10   , 38003400 G , 95.08.0 M , and 0.18.0 0  e )    (3.7) 

were specified.  

 

The stress-strain curves shown in figure 3.4 correspond well when compared to the laboratory 

test results. Figure 3.5 shows the corresponding iteration process for each optimization. The 

values of the objective functions converged after 12, 10, and 14 iterations for 2, 3, and 4-variable 

optimizations, respectively. It also found that in the 4- variable optimization, the converged value 

of its objective function is greater than the ones in the 2 and 3-variable optimizations. 

 

Table 3.2 Optimized model parameters through the Case-C objective function. 

  G M e0 
2-Variable Optimization 0.0693 3403.26 N/A N/A N/A 

3-Variable Optimization 0.0556 3402.47 0.8664 N/A N/A 

4-Variable Optimization 0.0761 3710.29 0.9133 0.9551 N/A 

 

Note: M = 0.9, e0 = 0.933,  = 0.015, and p0 = 207 kPa were used and kept constant during 

calibration if not being optimized. 
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Table 3.3 Iterations of the two-variable optimization model calibration using proposed objective 

functions 
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Table 3.4 Two-, three-, and four-variable optimization model calibrations using Case-C 

objective function
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Table 3.5 Iterations of the two, three, and four-variable optimization model calibration using 

Case C objective function
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3.5 Summary 

   A bound unconstrained numerical optimization using DIRECT algorithm was applied 

to constitutive model calibration. The modified Cam-Clay model was calibrated against the 

laboratory test data. All of the proposed objective functions worked effectively, however the 

least-square type of objective function (Case C) is preferred. Up to four variables were calibrated 

by using the Case C objective function. As stated, upper and lower bounds of the variables to be 

calibrated need to be specified. The efficiency of the optimization relies on the determination of 

the bound values. It is suggested that the optimization technique be used when fine-tuning a 

constitutive model rather than as a preliminary calibration. 
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