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ABSTRACT 
 

The performance of signal timing plans obtained from traditional approaches for 
pre-timed (fixed-time or actuated) control systems is often unstable under fluctuating traffic 
conditions. This report develops a general approach for optimizing the timing of pre-timed 
signals along arterials under day-to-day demand variations or uncertain traffic future growth. 
Based on a cell-transmission representation of traffic dynamics, a stochastic programming model 
is formulated to determine cycle length, green splits, phase sequences and offsets to minimize the 
expected delay incurred by high-consequence scenarios of traffic demand.  

 
The stochastic programming model is simple in structure but contains a large number of 

binary variables. Existing algorithms, such as branch and bound, are not able to solve it 
efficiently, particularly when the optimization horizon is long and the network size is large. 
Consequently, a simulation-based genetic algorithm is developed to solve the model. The model 
and algorithm are validated and verified in two networks. It is demonstrated that the resulting 
robust timing plans perform better against high-consequence scenarios without losing optimality 
in the average sense. More specifically, the plans reduce substantially the mean excess delay 
across the high-consequence scenarios without compromising the average delay across all 
scenarios under both congested and uncongested traffic conditions. 
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EXECUTIVE SUMMARY 
 

This report presents a methodology to determine robust signal timings against day-to-day 
demand fluctuations or uncertain future traffic growth. Compared with those from conventional 
timing approaches, robust timing plans are expected to perform better under high-demand 
scenarios without compromising the average performance across all possible demand scenarios. 
Although the methodology is applicable more widely, this report is focused on developing robust 
timing models for pre-timed (fixed-time or actuated) signals along arterials.  

 
Traditional timing approaches do not proactively consider traffic demand uncertainty, 

and thus the resulting control performance is often unstable under fluctuating traffic conditions. 
(Although actuated signals can respond to traffic fluctuations to a certain degree, the underlying 
timing plan still plays an important role in determining the efficiency of the control, especially 
over a coordinated semi-actuated signal-controlled arterial.) The underlying premise of the 
ubiquitous time-of-day control is that traffic patterns remain essentially the same throughout a 
time-of-day period. However, in real life, traffic arrivals to intersections can vary significantly 
even for the same time of day and day of week. If the traffic arrivals vary significantly, 
optimizing signal timing with respect to the average may cause a considerable amount of 
additional delay. Even if the arrivals do not vary much, use of the average flow may lead to a 
substantial loss in the stability of control performance, thereby making motorists’ travel times 
unpredictable and unreliable.  

 
Practically motorists and traffic engineers may be more concerned with worst-case 

scenarios where substantial delay may occur. To address such a risk-averse attitude on one hand 
and avoid being too conservative on the other hand, this report optimizes signal timings against a 
set of worst-case or high-consequence scenarios. More specifically, given a set of demand 
scenarios and their corresponding probability of occurrence, this report formulates a stochastic 
programming model to simultaneously determine cycle length, green splits, phase sequences and 
offsets to minimize the mean of the delays exceeding the  -percentile (e.g., 90th percentile) of 
the entire delay distribution, i.e., mean excess delay. The stochastic programming model is 
simple in structure but contains a large number of binary variables. Existing algorithms, such as 
branch and bound, are not able to solve it efficiently, particularly when the optimization horizon 
is long and the network size is large. This report develops a simulation-based genetic algorithm 
to solve the model. The model and algorithm are tested on two networks and the resulting robust 
timings are compared with traditional timing plans via a CORSIM simulation study. It is 
demonstrated that the robust timing plans substantially reduce the mean excess delay across the 
high-consequence scenarios without compromising the average delay across all scenarios under 
both congested and uncongested traffic conditions.  
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1. BACKGROUND 

 
This report presents a methodology for designing robust signal timing plans for pre-timed 

(fixed-time or traffic-actuated) signals along urban arterials under demand uncertainty. A signal 
timing plan is called robust if its performance is less sensitive to fluctuations of traffic demands 
or it performs better against worst-case or high-consequence demand scenarios without 
compromising optimality in the average sense.  

 
Traffic congestion is one of the most severe problems that threaten the economic 

prosperity and quality of life in many societies. According to a report by Federal Highway 
Administration, traffic congestion in the U.S. costs approximately $200 billion a year in wasted 
gas and time, five percent of which is incurred by poor signal timing. Additionally, reduced 
idleness at intersections is likely to lead to significantly reduced greenhouse gas emissions. 
While recent research has primarily focused on developing real-time adaptive signal control 
systems, implementation of such systems on a large scale may be many years away, due to the 
associated high implementation and maintenance costs (1). Because a large segment of signal 
control systems in use today are still pre-timed, further improvements in the efficiency (e.g., 
delay per vehicle) and robustness (e.g., variance of delay per vehicle) of signal control systems 
can yield significant improvements in the management of traffic flows and mitigation of 
congestion. 

 
The performance of signal timings obtained from traditional approaches for pre-timed 

control systems is often unstable under fluctuating traffic conditions. Pre-timed control systems 
in current practice typically segment a day into a number of time intervals, each of which is 
assigned a best suited signal timing plan as determined by applying Webster’s formula (2) or 
using optimization tools such as TRANSYT-7F (3). Typically, three to five signal timing plans 
are used in a given day. For such a system to work well, the traffic pattern within each interval 
should remain relatively constant. 

 
Unfortunately, travel demands and traffic arrivals to intersections can vary significantly 

even for the same time of day and day of week. As an example, Figure 1-1 displays hourly 
arrivals at two crossing streets, 34th Street and University Avenue, in Gainesville, Florida, during 
an a.m. peak on weekdays over a period of four months. The flows present significant day-to-day 
variations.  

 
A consequent issue that traffic engineers may be confronted with is to determine the 

flows to use to optimize signal timings. This issue was hardly a concern in old days since the 
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data collection used to be resource demanding, and traffic data were only collected for a couple 
of days. As the advancement of portable-sensor and telecommunications technologies make 
high-resolution traffic data more readily available, chances for traffic engineers to raise such a 
question become more prevalent. This is particularly true in re-timing efforts for those 
closed-loop control systems with fiber optic connections. For example, in California, 
second-by-second returns of loop data are archived and can be obtained as a result of AB3418 
(The California legislature passed legislation, Assembly Bill 3418, requiring all signal 
controllers purchased in the state after January 1, 1996, to be compliant with a standardized 
communication protocol).  
 

 

 

 

 

 

 

 

 

 

 
 

Figure 1-1.  Day-to-day AM-peak hourly flow rate (in vehicle per hour) 
at one intersection in Gainesville, Fla. 

 

Use of the average flows (i.e., 0q  in figure 1-1) may not be a sensible choice. Heydecker 

(4) pointed out that if the degree of variability of traffic flows is significant, optimizing signal 
timing with respect to the average flows may incur considerable additional delay, compared with 
the timing obtained by taking this variability into account. If the degree of variability is small, 
use of the average flows in conventional timing methods will only lead to small losses in average 
performance (efficiency). However, as we observed in our preliminary investigation (5), it may 
still cause considerable losses in the performance against the worst-case scenarios or the stability 
of performance (robustness), thereby causing motorists’ travel times to be highly variable. On 
the other hand, if the highest observed flows are used instead, the resulting timing plans may be 
over-protective and unjustifiably conservative. The average performance is very likely to be 

0

500

1000

1500

2000

2500

400 600 800 1000 1200 1400 1600 1800 2000

University Avenue

34
th

 S
tr

ee
t

0q  
Q  



 

 3

inferior. Smith et al. (1) suggested using 90th percentile volumes as the representative volumes to 
generate optimal timing plans and further noted that if time permits, other percentile volumes 
should be used to compare the results. However, it is well known in the statistical literature that 
extreme value estimates can be easily biased and highly unreliable when not computed properly 
(6). 

 
There are two approaches to address this issue. One approach is to gradually adjust or 

refine signal settings in operations using the loop and signal status data to make signal operations 
more responsive to the traffic. The other approach is to explicitly consider the uncertainties in 
signal timing optimization prior to operations and develop robust timing plans that are able to 
tolerate those fluctuations and perform stably. The ACS-Lite program initiated by FHWA in 
2002 (7, 8) adopts the first approach while this report considers the latter. Our preliminary 
investigation has demonstrated that, when compared with traditional approaches, robust timing 
plans may reduce standard deviations of delay per vehicle by 11.3 percent to 16.7 percent, and 
28.2 percent to 44.6 percent under over-saturated and under-saturated conditions respectively, 
without worsening off the average performance at an isolated intersection (5). Those robust 
timing plans also allow slower deterioration of performance. We note that the signal timing 
process is normally time-consuming. Thus it is rarely repeated unless changes in traffic 
conditions are so significant that the system begins performing poorly. It has been estimated that 
traffic experiences an additional 3 percent to 5 percent delay per year as a consequence of not 
retiming signals as conditions evolve over time (7). Therefore, it is desirable to have timing plans 
that accommodate or tolerate these changes in traffic to a greater extent.  

 
Since the seminal work of Webster (2), significant efforts have been devoted to 

improving signal timing for saturated isolated intersections, coordinated arterials and grid 
networks, etc. For example, Gazis and Potts (9) and Gazis (10) proposed semi-graphical methods 
to optimize the settings of an isolated signal and the system of two signals in oversaturated traffic 
conditions. The optimal signal setting involves values of the control variables that lie along 
edges of the control region, defined by the permissible ranges of the green phase splits. The 
authors also developed an analytical formulation of the method based on Pontryagin’s theory. 
Robertson and Bretherton (11) described the evolution of an adaptive traffic control system 
SCOOT from the TRANSYT method, via introducing the improvement of the methodology for 
coordinating fixed-time signals. The advantage of SCOOT is that the system can measure the 
cycle flow profile in real time and then update the coordination plan in an on-online manner. The 
real-time capability makes dynamic traffic management possible. Gartner (12) proposed another 
adaptive control strategy for synchronizing traffic signals using the virtual-fixed-cycle concept. 
The strategy can continuously optimize signal settings in response to demand fluctuations, which 
is achieved via executing a distributed dynamic programming algorithm by means of a 
three-layer architecture. The phase splits of the signals in the coordination system are constrained 
by a virtual cycle length and virtual offsets updated based on real-time data. 
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Only a few studies have been conducted in the literature to directly address signal timing 

under flow fluctuations for pre-timed control systems. Heydecker (4) investigated the 
consequences of variability in traffic flows and saturation flows for the calculation of signal 
settings, and then proposed an optimization formulation that minimizes the mean rate of delay 
over the observed arrivals and saturation flows. Sensitivity analysis was carried out to test the 
benefit of taking into account the variability of arrival rate when optimizing the signal settings. 
Following the same notion, Ribeiro (13) proposed a novel technique called Grouped Network for 
using TRANSYT to calculate timing plans that are efficient even when demand is variable. Both 
studies focus on optimizing the average performance.  

 
Motivated by recent developments in robust optimization (e.g., 14, 15), Yin (5) and 

Zhang and Yin (16) proposed a robust optimization approach for timing signals under 
uncertainty. Considering that travelers and traffic engineers may be more concerned with the 
adverse system performance and are less likely to complain if the delay is less than expected, the 
robust timing plans are designed to perform better against high-consequence scenarios. Yin (5) 
developed two robust timing approaches for isolated fixed-time signalized intersections. The first 
approach assumes specific probabilistic distributions of traffic flows and then formulates a 
stochastic programming model to minimize the mean of the delays exceeding the  -percentile 
(e.g., 90th percentile) of the entire delay distribution. In contrast, the second approach assumes 
uncertain traffic flows to be unknown but bounded by a likelihood region, and then optimizes 
signal timing against the worst-case scenario realized within the region. It has been demonstrated 
that, when compared with traditional timings, robust timings may reduce the worst-case delay 
per vehicle by 4.9 percent and 11.3 percent respectively as well as the standard deviation of 
delay per vehicle by 12.0 percent and 16.3 percent respectively, without adversely affecting the 
average performance at a real-world intersection. 

 
Zhang and Yin (16) proposed a robust model to synchronize actuated signals along 

arterials or at grid networks for smooth and stable progression under uncertain traffic conditions, 
mainly addressing the issue of uncertain (not fixed) starts/ends of the green of sync phases. The 
paper bases the model development on Little’s mixed-integer linear programming (MILP) 
formulation (17), which maximizes the two-way bandwidth to synchronize signals along arterials 
by determining offsets and progress, speed adjustment, etc. By specifying scenarios as 
realizations of uncertain red times of sync phases, they defined the regret associated with a 
coordination plan with respect to each scenario, and then formulated a robust counterpart of 
Little’s formulation as another MILP to minimize the average regret incurred by a set of 
high-consequence scenarios. The numerical example shows that the resulting robust coordination 
plan is able to increase the worst-case and 90th percentile bandwidths by approximately 20 
percent without affecting the average bandwidth.  
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One may argue that flow fluctuations have been considered by adding additional terms in 
delay formulas, such as those in 2000 Highway Capacity Manual, 1995 Canadian Capacity 
Guide, and 1981 Australian Capacity Guide etc. In other words, a signal timing that minimizes 
delay according to those delay formulas should be able to provide enough buffers to 
accommodate stochastic arrivals. We note that this report is concerned with day-to-day flow 
variations while the delay formulas were derived by considering intra-day random arrivals. For 
example, the second term of the Webster delay formula is obtained by assuming Poisson arrivals 
whose ratio of variance to mean is one. This assumption can be easily and significantly violated 
in day-to-day demand fluctuations. For instance, the ratio at the site of Figure 1-1 is as high as 
47.7. We further note that traffic conditions under high-consequence demand scenarios are most 
likely over-saturated. Most of the existing timing approaches address under-saturated conditions 
and no coherent approach exists for oversaturated conditions, as concluded by NCHRP 3-38 (18). 
Consequently, two NCHRP research projects are investigating signal-timing strategies for 
over-saturated situations. This report also partly contributes to this ongoing research effort.  
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2. CELL-TRANSMISSION MODEL 

 
 
2.1 MODEL INTRODUCTION 
 

Modeling traffic dynamics is particularly important for signal timing optimization 
because realistic evaluation of each feasible timing plan cannot be performed without a realistic 
traffic flow model. At the same time, the evaluation should be efficient such that it can be 
incorporated into an optimization procedure. For these reasons, we select the macroscopic 
cell-transmission model (CTM) proposed by Daganzo (19, 20) in order to fully capture traffic 
dynamics, such as shockwaves, queue formation and dissipation.  

 
CTM is a finite difference solution scheme for the hydrodynamic theory of traffic flow or 

the Lighthill-Whitham-Richards (LWR) models. Mathematically the theory can be stated as the 
following equations: 

 

0







x

q

t

k
           (1) 

),,( txkQq             (2) 
 

Where the q  and k  are two macroscopic variables: flow and density. Equation (1) is the flow 
conservation equation and Equation (2) defines the traffic flow ( q ), at location x  and time t , 
as a function of the density ( k ).  
 

For a homogeneous roadway, Daganzo (19, 20) suggested using the time-invariant 
flow-density relationship:  

 
)}(,,min{ kkWQVkq jam   

 
where   V  = the free flow speed;  

Q  = the inflow capacity; 

jamk  = the jam density; 

 W  = the backward wave speed.  
 
Figure 2-1 shows the flow-density relationship in a piecewise linear diagram.  
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Figure 2-1.  Piecewise linear kq   relationship. 

 
By dividing the whole network into homogeneous cells with the cell length equal to the 

duration of time step multiplied by the free flow speed, the results of the LWR model can be 
approximated by a set of recursive equations: 

 
)()()()1( 1 tytytntn iiii          (3) 

)]}([),(),(min{)( 1max,1 tnNtQtnty iiiii         (4) 

 
where )(tni  = the number of vehicles in cell i  during time step t ;  

)(tyi  = the number of vehicles that leave cell i  during time step t ;  

max,iN  = the maximum number of vehicles that can be accommodated by cell i ;  

)(tQi  = the minimum of the capacity flows of cell i  and 1i ; 

  = VW / . 
 
Equation (3) ensures the flow conservation that the number of vehicles in cell i  during 

time step 1t  equals to the number of vehicles in cell i  during time step t  plus the inflow 
and minus the outflow. Equation (4) determines the outflow for each cell during each time step, 
which is a piecewise linear function.  
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2.2 ENCAPSULATING CTM IN SIGNAL TIMING OPTIMIZATION 

 
Lin and Wang (21), Lo (22, 23) and Lo et al. (24) have successfully incorporated CTM in 

their signal timing optimization formulations.  
 
Lin and Wang (21) formulated a 0-1 mixed integer linear program, considering the 

number of stops and fixed or dynamic cycle length. In the model, cells in the network are 
categorized into four groups: ordinary, intersection, origin and destination cells. The objective is 
to minimize a weighted sum of total delay and total number of stops. In their model, Equation (4) 
is replaced by three linear inequalities, which do not accurately replicate flow propagation and 
may suffer the so-called “vehicle holding problem.” To address this issue, one additional penalty 
term is added to the objective function. The authors demonstrated the model capable of capturing 
traffic dynamic using an emergency vehicle problem. However, the model is developed only for 
one-way streets and neither merge nor diverge of traffic is considered.  

 
Lo (22, 23) and Lo et al. (24) developed dynamic signal control formulations based on 

CTM. By introducing binary variables, Equation (4) is equivalently converted into a linear 
system. The models proposed are able to generate dynamic or fixed timing plan and optimize 
cycle length, phase splits and offsets explicitly. Unfortunately, the models are again proposed for 
one-way streets. 

 
This report expands Lo’s models to a more general and realistic setting, including 

modeling two-way traffic, phase sequence optimization and applying new technique to 
equivalently transforming CTM for a general signal-controlled network to be a linear system of 
equalities and inequalities with integer variables.  
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3. ENHANCED DETERMINISTIC SIGNAL OPTIMIZATION MODEL 

 
Assuming deterministic constant or time-variant demands within the optimization 

horizon, this section presents a CTM-based deterministic signal timing optimization model. The 
model extends Lo’s models in the following aspects:  

 
 Modeling two-way traffic. This extension not only increases the size of the problem but 

also introduces another layer of complexity in representing signalized intersections and 
signal settings. For example, as the number of traffic movements increases, the number 
of phase combinations and sequences increase significantly;  
 

 Optimization of phase sequence. The left-turn leading or lagging control is modeled 
explicitly; 

 
 New formulation. We transform the CTM of a general signal-controlled arterial to be an 

equivalent linear system of equalities and inequalities with integer variables using a 
technique recently proposed by Pavlis and Recker (25) and formulate a mixed-integer 
linear program to optimize cycle length, green splits, offsets and phase sequences.  

 
It is assumed that every intersection along the arterial is signalized, and all the cells 

comprising the network can be categorized into six groups: ordinary, origin, destination, 
non-signalized diverge, signalized diverge and signalized merge cells, as shown in Figure 3-1 
from (a) to (e). Each group has a different configuration to be discussed below.  
 
 
3.1 OBJECTIVE FUNCTION 
 

In the deterministic setting, we aim to optimize signal timing to minimize the total system 
delay of an urban arterial. The objective is to minimize the total area (as in Figure 3-2) between 
the cumulative arrival curves of the origin cells and the cumulative departure curves of the 
destination cells, expressed as the following linear function:  

 


    


Di

T

t

t

j
i

Oi

T

t

t

j
i jyjdL

1 11 1

))())(min(  

 
where, O is the set of origin cells and D is the set of destination cells; T is the duration of the 
optimization horizon; )( jdi  is the demand at origin cell i  during time step j . It is 
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straightforward to observe that if the demands at origin cells are given, the objective function is 
equivalent to maximizing the second component, i.e., the area under the cumulative departure 
curves.  

1iy iyin 1in
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Figure 3-1.  Cell configurations. 

 

Figure 3-2.  Interpretation of the objective function with cumulative vehicle curves. 
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3.2 CONSTRAINTS  
 
3.2.1 Constraints for Ordinary Cells 
 

The ordinary cells are those with only one inflow and one outflow as cell i  in Figure 
3-1(a). According to the cell transmission model, the flow constraints are as follows:  

 
)()()()1( 1 tytytntn iiii    

)]}([),(),(),(min{)( 1max,1max,1max, tnNtQtQtnty iiiiii     

 
)(tyi  is determined by the min function, which is essentially a linear conditional piecewise 

function (CPF). Pavlis and Recker (25) provided a scheme to transform this kind of CPF into 
mixed integer constraints with the least number of integer variables. By introducing two binary 
variables, i.e., 1  and 2 , and a sufficiently large negative constant, i.e., U , the CPF can be 
equivalently translated into the following constraints: 
 

0)()()( 21   tntyU ii  
0)()()1( max,21   tQtyU ii  

0)()()1( max,121  
 tQtyU ii  

0)]([)()2( 1max,121  
 tnNtyU iii   

 
To see the equivalence, Table 3-1 enumerates all possible 0-1 combinations and evaluates 

the value of )(tyi . 

 
Table 3-1.  CPF Result under Different 0-1 Combinations 

 
0-1 

Combination 

( 1 , 2 ) 
Constraint Representations 

(0, 0) )()( tnty ii   )()( max, tQty ii   )()( max,1 tQty ii   )]([)( 1max,1 tnNty iii     

(0, 1) )()( tnty ii   )()( max, tQty ii   )()( max,1 tQty ii   )]([)( 1max,1 tnNty iii     

(1,0) )()( tnty ii   )()( max, tQty ii   )()( max,1 tQty ii   )]([)( 1max,1 tnNty iii     

(1,1) )()( tnty ii   )()( max, tQty ii   )()( max,1 tQty ii   )]([)( 1max,1 tnNty iii     
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3.2.2 Constraints for Origin Cells 
 

The origin cells, as shown in Figure 3-1(b), have the same structure as the ordinary cells, 
except that the inflow is fixed as the corresponding demand input. These cells perform as valves 
that control the traffic volume flowing into the network. The above constraints are slightly 
changed to incorporate the demand: 

 
)()()()1( tytdtntn iiii   
0)()()( 43   tntyU ii  

0)()()1( max,43   tQtyU ii  

0)()()1( max,143  
 tQtyU ii  

0)]([)()2( 1max,143  
 tnNtyU iii   

 
3.2.3 Constraints for Destination Cells 
 

The destination cells are those with outflow unlimited, implying that all the vehicles 
currently reside in the cells are able to flow out of the system at the next time step. The 
constraints are as follows: 

 
)()()()1( 1 tytytntn iiii    

)()( tnty ii   
 
3.2.4 Constraints for Non-Signalized Diverge Cells 
 

Non-signalized diverge occurs at certain roadway segments where the geometry or 
capacity changes and traffic diverse to different lanes for their respective destinations. Figure 
3-1(c) is a typical configuration for non-signalized diverge: traffic in cell i  diverges to cells 1j  

and 2j  according to proportion parameters 
1j

  and 
2j

 . The constraints can be stated as 

follows: 
 

ijj yy  11 1   

ijj yy  22 1   

1
21

 jj   

0)()()( 765   tntyU ii  
0)()()1( max,765   tQtyU ii  

0/)()()1(
11 max,765  
jji tQtyU 
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0/)()()1(
22 max,765  

jji tQtyU 
 

0]/)]([)()2(
111 max,765  
jjji tnNtyU 

 
0]/)]([)()2(

222 max,765  
jjji tnNtyU 

 
2765    

176    
 
3.2.5 Constraints for Signalized Diverge Cells 
 

Signalized diverge is the diverge that happens within a signalized intersection, when 
traffic from one direction enters the intersection during a corresponding green phase and leaves 
the intersection while diverging into two or more bounds of traffic. Figure 3-1(d) sketches a 
configuration of the signalized diverge, where the sign S indicates a traffic signal. The 
constraints are as follows: 

 

ijj yy  11 1   

ijj yy  22 1   

1
21

 jj   

0)()()( 1098   tntyU ii  
0)()()1( 1098   tQtyU ii  

0/)()()1(
11 max,1098  
jji tQtyU 

 
0/)()()1(

22 max,1098  
jji tQtyU 

 
0]/)]([)()2(

111 max,1098  
jjji tnNtyU 

 
0]/)]([)()2(

222 max,1098  
jjji tnNtyU 

 
21098    

1109    
 

The set of constraints is identical to those for non-signalized diverge cells except that 
)(max, tQi  is replaced by )(tQi . The value of )(tQi  depends on the status of the signal phase 

associated with cell i  and will be discussed in Section 3.2.7. 
 

3.2.6 Constraints for Signalized Merge Cells 
 

Figure 3-1(e) is an example of traffic merge under signal control. According to the signal 
settings, these three streams of traffic entering the intersection are associated with three 
individual signal phases that conflict with each other. Therefore, practically there is only one 
stream of traffic entering the intersection at one time-step. The constraints are thus as follows: 
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)()()()( 3211 tytytyty iiij   
Approach 1: 

0)()()(
111211   tntyU ii

 
0)()()1(

111211   tQtyU ii
 
0)()()1( max,1211 1

  tQtyU ji
 

0)]([)()2( max,1211 1
  tnNtyU jji 

 
Approach 2: 

0)()()(
221413   tntyU ii

 
0)()()1(

221413   tQtyU ii
 
0)()()1( max,1413 2

  tQtyU ji
 

0)]([)()2( max,1413 2
  tnNtyU jji 

 
Approach 3: 

0)()()(
331615   tntyU ii

 
0)()()1(

331615   tQtyU ii
 
0)()()1( max,1615 3

  tQtyU ji
 

0)]([)()2( max,1615 3
  tnNtyU jji 

 
 

where )(tQi  is to be discussed next.  

 
3.2.7 Constraints for Connection between Signal and Flow 
 

At signalized intersections, the capacity flow of a cell depends on the status of the 
corresponding signal phase, because only when this phase turns green can the traffic propagates 
forward or makes a turn. The capacity flow satisfies the following statement:  

 
If ),,,(),,( cpketcpkb   then stQi )( ; otherwise, 0)( tQi ,  

where s  is saturation flow rate; 
         ),,( cpkb  is the beginning of green phase p ; 

    ),,( cpke  is the end of green phase p . 
 

The above if-then relationship can be translated into a system of equalities and 
inequalities by introducing two binary variables ),(1 tpz and ),(2 tpz . The system is stated as 
follows: 

 
)],(1[)(),( 11 tpzUpettpzU    
 )],(1[)(),( 22 tpzUtpbtpzU  
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1),(),(),( 21  tpztpztpz  
stpztpztQi  )1),(),(()( 21  

 
p

tpztpz 2)),(),(( 21

 
 

where U is a sufficiently large positive number and   is an arbitrary small number. The last 
constraint ensures that there are at most two phases that can be green at the same time.  
 
3.2.8 Constraints for Signal Phase Sequence 
 

The model intends to explicitly optimize phase sequences under the NEMA phasing 
structure. Two types of intersections are considered as shown in Figure 3-3: (a) Four-way 
intersection and (b) T-intersection. 

 
(a) Four-way intersection 

 
(b) T-intersection 

 
Figure 3-3.  Traffic intersection configurations. 
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3.2.8.1 Four-Way Intersection 
 

Figure 3-4(a) illustrates the standard NEMA phasing for a four-way intersection. With 
the barrier in the middle, the structure can be divided into four portions and phase sequence is 
determined within each portion.  

                2      1                        3               4 

 5        6              7         8

Offset 
Point

Barrier
Cycle 
End

(a) NEMA phasing

2 1

5 6

3 4

7 8

Offset 
Point

Barrier
Cycle 
End

λ1 = 1 λ2 = 0

λ3 = 0 λ4 = 0

G1 G2

G3 G4

(b) Transformation of NEMA phasing 
 

   Figure 3-4.  NEMA phasing structure for a four-way intersection. 
 

A binary variable is introduced for each portion as shown in Figure 3-4(b). Consider 

phase 1 and 2 as an example. Let g  denote the green time duration; o  denote the offset point 

of each signal; l  be the cycle length; k  indicate the signal identification number; c  represent 
the cycle identification number and h  be the barrier time point. The following constraints are 
included for determining the phase sequence for phase 1 and 2:  

 
),"2",()1()1()(),"1",( 111 ckeclkockb    
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)"1",(),"1",(),"1",( kgckbcke   
),"1",()1()1()()1(),"2",( 111 ckeclkockb    

)"2",(),"2",(),"2",( kgckbcke   
)()"2",()"1",( khkgkg   

 
It can be seen that when 1  equals 1, phase 1 starts at the offset point of the signal and 

phase 2 follows phase 1. It is also true reversely. Similarly, by introducing another three binary 
variables 2 , 3  and 4  respectively, constraints can be constructed to determine phase 

sequence for the pairs of phase 3 and 4, 5 and 6, and 7 and 8. Once the value of ( 1 , 2 , 3 , 

4 ) is determined, the left-turn leading and lagging information can be obtained explicitly. 

Figure 3-4(b) presents a particular phase sequence corresponding to 11  , 02  , 03   and 

04  .  
 
3.2.8.2 T-Intersection 
 

T-intersection can be modeled the same way as the four-way intersection but is much simpler.  

(a) NEMA phasing

(b) Transformation of NEMA phasing 

          2                         4 

          5                   6                         7

Offset 
Point

Barrier
Cycle 
End

5 6

Offset 
Point

Barrier
Cycle 
End

λ3 = 0

G1 G2

G3 G4

2 4

7

 
Figure 3-5.  NEMA phasing structure for a T-intersection. 
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Figure 3-5 illustrates the NEMA phasing structure of a particular T-intersection where the 
only phase sequence needs to be determined is between phase 5 and 6. Therefore, one binary 
variable 3  is introduced for the whole intersection. Correspondingly, only one set of 

constraints is needed for the entire structure, listed as follows:  
 

),"6",()1()1()(),"5",( 333 ckeclkockb    

)"5",(),"5",(),"5",( kgckbcke   

),"5",()1()1()()1(),"6",( 333 ckeclkockb    

)"6",(),"6",(),"6",( kgckbcke   

)()"6",()"5",( khkgkg   

 
3.2.9 Model Formulation 
 

Given a particular network, the cell representation should be first constructed according 
to the geometry and signal setting. The cells are then classified into six categories and the 
corresponding set of constraints can be written for each cell as previously presented. The 
constraints comprise a linear system with integer variables. With the linear objective function to 
minimize total system delay, the optimization problem is a mixed-integer linear program. One 
portion of the optimal solution to the program specifies the signal timing, denoted as a vector 

 Tgol **** ,,,  , where *l , *o , *  and *g  are vectors of optimal cycle length, offsets, phase 
sequences and green splits.  
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4. STOCHASTIC SIGNAL OPTIMIZATION MODEL 

 
In the above deterministic case, it is assumed that traffic demand is fixed within the 

optimization horizon. In this chapter, a stochastic programming model is presented to 
accommodate day-to-day demand variations or future demand growth. It is assumed that the 
demand at each origin cell follows a certain stochastic distribution. To represent the joint 
stochastic distribution of traffic demands, a set of scenarios  K,,3,2,1   is introduced. A 
typical scenario consists of demand realizations at all origin cells. More specifically, a scenario is 
a vector Ordddd Tk

r
kkk  ,),,( 21  . For each scenario k , the probability of occurrence 

is kp .  

 
With the set of demand scenarios, it is feasible to formulate a stochastic program to 

minimize the mean of the total system delay across all demand scenarios. However, in practice, 
motorists and traffic engineers may be more concerned with worst-case scenarios where 
substantial delays may occur. To address such a risk-averse attitude on one hand and avoid being 
too conservative on the other hand, we optimize the signal-timing plan against a set of worst-case 
scenarios. More specifically, we minimize the expected delay incurred by those 
high-consequence scenarios whose collective probability of occurrence is 1 , where   is a 
specified confidence level (say, 80%). In financial engineering, the performance measure is 
known as conditional value-at-risk (CVAR) (26) and we name it as mean excess delay. See 
figure 4-1(a) for an illustration of the concept, in which the “loss” is the system delay. The 
probability density function and mass function of a continuous loss are shown in the figure. The 
right tail shaded region has an area size of 1 , which contains higher losses. And the mean 
excess delay is simply the mean of the losses in this area. Therefore, minimizing the mean excess 
delay is to minimize the delay incurred by the high-consequence scenarios. As aforementioned, 
Zhang and Yin (16) adopted the concept to synchronize actuated signals along arterials.  

 
For each demand scenario w and one particular feasible signal plan ),,,( gol  , the total 

system delay can be computed, as described in the previous section. We denote the resulting 
delay as ),,,( golLw  . Consider all demand scenarios and order the total delay as 

kLLL  ...21 , let k  be the unique index such that: 

 







1

11




k

k
k

k

k
k pp
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In words, 
kL  is the maximum delay that is exceeded only with probability 1 . 

Consequently, the expected delay exceeding 
kL  is the mean excess delay, which can be 

computed as follows:  
 

])[(
1

1

11








K

kk
kkk

k

k
k LpLp










        (5) 

 
The second component in the bracket is simply to compute the mean value, and the first 

is to split the probability ‘atom’ at the delay point 
kL to make the collective probability of 

scenarios considered in the bracket exactly equal to 1 . See figure 4-1(b) for an illustration of 
the concept. It can be seen that the probability mass function has a jump at the point 

kL  due to 

the associated probability of 
kp , which makes 






k

k
kp

1

. To make the collective probability 

of scenarios exactly equal to 1 , we need to split the probability of delay 
kL . Note that if 

kp makes 





k

k
kp

1

, then “split” is not needed, and equation (5) reduces to  

 

)(
1

1

1





K

kk
kk Lp




 . 

 
For each feasible signal plan ),,,( gol  , Equation (5) can be used to compute the resulting 

mean excess delay. Our intention is to find a signal plan that leads to the minimum value of the 
mean excess delay. More specifically, we attempt to minimize Equation (5) subject to multiple 
sets of constraints. Each set of constraints is the same as previously described for the 
deterministic optimization problem, but is written with respect to a specific demand scenario. 
Rockafellar and Uryasev (27) showed that minimizing Equation (5) is equivalent to minimizing 
the following equation: 

 

 






K

k
kk

gol
golLZ

1
,,,,

0,),,,(max
1

1
min 




 
 

where   is a free decision variable. The optimal value of the objective function is the 
minimum mean excess delay and the solution ),,,( gol   is the robust signal-timing plan. 
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(b) A discrete loss function 

             Figure 4-1.  Illustration of concept of mean excess delay. 
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5. NUMERICAL EXAMPLES 

 
5.1 SIMULATION-BASED GENETIC ALGORITHM  
 

The stochastic programming model formulated above is simple in structure but contains a 
large number of binary variables. Therefore, existing algorithms, such as branch and bound, are 
not able to solve it efficiently, particularly when the optimization horizon is long and the network 
size is large. We thus develop a simulation-based binary genetic algorithm (GA) to solve the 
model. Here the “simulation-based” means that the fitness function in the GA is evaluated 
through macroscopic simulation using CTM. 

 
GAs have been widely used in different fields such as engineering, economics and 

physics to solve problems that are not analytically solvable or cannot be solved by traditional 
search methods. In the transportation literature, researchers have developed GA-based solution 
algorithms to solve problems including equilibrium network design, dynamic traffic assignment 
and second-best congestion pricing and traffic control problems. In Lo et al. (24), GA was used 
to solve the signal optimization problem.  

 
GA is a global search technique. It starts from an initial group of randomly generated 

feasible solutions, and then employs operations like crossover and mutation to generate the new 
solution pools. The iteration continues until some criterion is satisfied, e.g., the maximum 
number of generation. The simulation-based GA proposed in this report follows the general 
framework of GA, and Figure 5-1 presents the flow chart of the algorithm. There are two loops: 
the outer loop for counting the number of generations while the inner is to track the number of 
individuals within each generation. Other core components of the algorithm will be discussed 
next. 
 

 



 

 23

 
 
Figure 5-1.  Flow chart of the simulation-based GA. 
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5.1.1 Chromosome Configuration  
 

The chromosome is defined according to the decision variables, which include the cycle 
length, offsets, phase sequences and phase splits. Each chromosome defines a solution, and only 
the feasible solutions can be selected as the individuals in each generation.  

 
Figure 5-2 presents an example of the chromosome that represents a three-signal arterial. 

There are in total 144 bits, of which the first six bits 1-6 represent the cycle length. A length of 
six binary numbers can represent a decimal value from 0 to 63. If traffic dynamic is modeled at 
two seconds per time step, then the cycle length can vary from 0 to 126 seconds. The rest bits are 
equally divided into three portions, 46 bits for each signal.  

 
Consider the first signal. Bits 7, 8, 9, and 10 define the phase sequences for the signal as 

discussed in Section 3.2.8. Generally, if a bit has a value of 0, then the corresponding odd phase 
is activated before the even phase. Otherwise, the even phase comes first. A four-way 
intersection will require determining values in all four bits, while a T-intersection only needs 
one-bit information. The next seven bits, i.e., 11-17, represent the offset for the signal. A 
seven-bit binary number can represent a decimal number from 0 to 127. Because an offset is 
expressed as a percentage of the cycle length in this report, one additional constraint on the 
binary number is in place to ensure the feasibility of the offset. Bits 18-24 represent the barrier 
point, which is also expressed as a percentage of the cycle length. Another additional constraint 
is required as well to ensure that the newly generated barrier point stays in the current cycle.  

 
The next four clusters of bits represent four green times 1G , 2G , 3G and 4G (see Figure 

3-4(b)), which are the green durations of the phases that lead in the respective portions. 1G  and 

3G  are in percentage of the barrier time while 2G and 4G  are in percentage of the difference 

between cycle length and barrier time.  
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5.1.2 Fitness Evaluation  
 

For each generation, every individual needs to be evaluated so as to decide its priority to 
breed the next generation. Here each individual represents a specific signal plan and the fitness 
evaluation is to determine its corresponding mean excess delay. More specifically, for each 
individual signal plan, we run a macroscopic simulation based on CTM with all demand 
scenarios and calculate the corresponding system control delays. The mean excess delay can be 
computed and will be used to determine its priority for breeding the next generation.  
 
5.1.3 Probability Assignment  
 

Generally, the smaller the mean excess delay is, the larger probability the corresponding 
signal plan will be chosen to breed the next generation. To calculate these probabilities, we have 
tested a variety of fitness functions and the following two generally show good performance: 

 







5)(

1

)ln(

1
CVAR

CVAR
 

 
The crossover probabilities are calculated proportionally to the fitness function value. 

 
5.1.4 Crossover  
 

Crossover is the main procedure to generate new chromosomes. To increase diversity, we 
use multi-point crossover, developed according to the chromosome structure, other than using 
one-point crossover. After the selection of two parents according to the crossover probability, 
several crossover points will be randomly generated but ensure that one is among the first six bits, 
which influences the cycle length, and one for each signal, which may change the setting for 
each signal. Therefore, if there are n  signals, there will be 1n  crossover points in total.  
 
5.1.5 Mutation  
 

Each crossover operation will generate two offspring and the mutation operation is 
subsequently conducted. Mutation randomly changes the value of the bit value in the 
chromosomes to increase the diversity in the population, so that the GA will have the chance to 
find a better solution rather than stop at one local optimum. The mutation rate to be used is 5‰.  
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5.1.6 Individual Validation 
 

New individual produced through crossover and mutation operations may not be 
appropriate, i.e., the corresponding timing plan may not be technically feasible. Therefore, 
additional constraints need be set to ensure the validity of each individual. Our algorithm mainly 
checks the followings: 

 
 The individual newly added will not repeat any individual contained in the population to 

maintain the diversity of the population;  
 An individual with a cycle length smaller than a certain value will not be considered to 

ensure the cycle length to be in a reasonable range; 
 The offsets must be smaller than the cycle length;  
 The barrier points must be in the corresponding cycle; and 
 Each signal phase maintains a certain minimum green. 

 
 
5.2 NUMERICAL EXAMPLE I 
 
5.2.1 Test Network and Demand Data 
 

The first numerical experiment is carried out on an artificial arterial with three 
intersections, whose cell representation is shown in Figure 5-3. The design speed limit is 35mph, 
which is approximately equivalent to 50 feet/second. Since traffic dynamics is modeled in a 
resolution of two seconds per time step, 100 feet is the cell length for all 117 cells.  

 
We implement the stochastic signal-timing model under both uncongested and congested 

traffic conditions. The low demand in Table 5-1 is for the uncongested situation while the high 
demand is for the congested cases. The turning percentages at each signal are also given in the 
table.  
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Table 5-1.  Traffic Data for Three-Node Network 
 

Traffic Volume Westbound Northbound Eastbound Southbound 

 
Signal 1 

Low Demand -- 162 ±27* 1223 ±180 125 ±18 
High Demand -- 462 ±45 1523 ±270 325 ±36 

Left 0.1445 0.2876 0.0291 0.6637 
Through 0.5772 0.1373 0.8960 0.2389 

Right 0.2783 0.5752 0.0750 0.0973 
 

Signal 2 
Low Demand -- 117 ±18 -- 169 ±27 
High Demand -- 317 ±36 -- 269 ±45 

Left 0.0061 0.7664 0.0778 0.1923 
Through 0.9703 0.0935 0.7243 0.0577 

Right 0.0237 0.1402 0.1979 0.7500 
 

Signal 3 
Low Demand 75 ±18 -- -- 400 ±45 
High Demand 1075 ±180 -- -- 400 ±45 

Left -- -- -- 0.6000 
Through 0.8000 -- 1.0000 -- 

Right 0.2000 -- -- 0.4000 
*: a ± b means that demand is uniformly distributed in the interval (a-b, a+b) vehicles per hour. 
 
5.2.2 Plan Generation 
 

For the comparison purpose, two plans are generated under both uncongested and 
congested conditions: one is called as robust plan, which is generated by solving the stochastic 
signal timing model with the demand scenarios created from the uniform distributions shown in 
Table 5-1; the other is called nominal plan, derived by solving the enhanced deterministic signal 
timing model discussed in Chapter 3, with the demand in Table 5-1 without considering demand 
variations. Because the two fitness functions have similar convergence speed and generate 
timing plans with similar performance, we only report the result from using the log-form fitness 
function. 

 
According to the convergence performance of the algorithm, we set the maximal number 

of generations to 600 and 1,000 for the uncongested and congested case respectively. Figure 5-4 
presents the convergence tendency of the algorithm in both cases. The algorithm converges faster 
in the uncongested case, particularly in the early stage of the iterations.  
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(b) Uncongested case
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(a) Congested case
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     Figure 5-4.  Convergence of GA under both traffic conditions. 

 
Table 5-2 presents the resulting signal plans. The phase sequence is given in form of 

binary vector while others are decimal numbers in the unit of second. The minimum green for 
each phase is set as four seconds. P1 to P8 stand for the phases in NEMA phasing. 
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Table 5-2 Signal Plans for Three-Node Network 
 

Uncongested 
Case 

Cycle 
Length 

Phase 
Sequence 

Offset P1 P2 P3 P4 P5 P6 P7 P8 

Robust Plan 

S1 80 (1, 0, 1, 1) 0 4 58 4 14 4 58 8 10 

S2 80 (0, 1, 1, 0) 76 6 58 4 12 4 60 6 10 

S3 80 (1, 0, 0, 1) 26 --* 50 -- 30 32 18 30 -- 

Nominal 
Plan 

S1 80 (1, 1, 0, 1) 0 4 62 4 10 22 44 4 10 

S2 80 (1, 0, 0, 1) 16 4 46 6 24 6 44 4 26 

S3 80 (0, 1, 0, 0) 28 -- 50 -- 30 22 28 30 -- 

Congested Case 
Cycle 
Length 

Phase 
Sequence 

Offset P1 P2 P3 P4 P5 P6 P7 P8 

Robust Plan 

S1 108 (1, 1, 1, 1) 0 8 78 8 14 18 68 8 14 

S2 108 (0, 0, 0, 0) 98 14 72 8 14 28 58 8 14 

S3 108 (1, 0, 1, 0) 16 -- 68 -- 40 32 36 40 -- 

Nominal 
Plan 

S1 80 (1, 1, 0, 1) 0 4 66 4 6 20 50 4 6 

S2 80 (1, 0, 1, 0) 10 4 46 4 26 4 46 6 24 

S3 80 (0, 0, 1, 1) 4 -- 76 -- 4 34 42 4 -- 

*: phase not applicable. 
 
5.2.3 Plan Evaluation 
 

One of the important performance measures for signal operations along arterials is the 
green bandwidth. For example, bandwidth maximization is the objective of the signal 
optimization software MAXBAND. For comparison, we calculate the two-way bandwidths of the 
signal plans presented in Table 5-2. The simplified time-space diagrams are show in Figure 5-5 
where the horizontal axis represents time and the vertical is space; the length of the solid lines 
means the duration of the red for the major-street traffic. The two-way bandwidths are 
summarized in Table 5-3. 
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Robust Plan                             Nominal Plan 
 
(a)  Bandwidth geometry under uncongested traffic condition 

     
Robust Plan                            Nominal Plan 

 
(b)  Bandwidth geometry under congested traffic condition 

 
Figure 5-5.  Time-space diagram of the three-node arterial. 

 
Table 5-3 Two-Way Bandwidth Results for Three-Node Network 
 

Uncongested Case 
Cycle Length 

(seconds) 
Two-Way Bandwidth 

(seconds) 
Bandwidth/ 
Cycle length 

Robust Plan 80 68 0.850 

Nominal Plan 80 54 0.675 

Congested Case 
Cycle Length 

(seconds) 
Two-Way Bandwidth 

(seconds) 
Bandwidth/ 
Cycle length 

Robust Plan 108 94 0.870 

Nominal Plan 80 90 1.125 

 
In the uncongested case, with the same cycle length, the robust plan provides more than 

25 percent more two-way bandwidth than the nominal plan, which implies that vehicles on the 
major arterial will have better chance to travel without frequent stop. However, in the congested 
case, the nominal plan has much higher ratio of bandwidth to cycle length. This is not out of 
expectation, given that our formulation is mainly concerned with the control delay. When the 
traffic is oversaturated, it is more likely that less delay does not imply better progression and vice 
versa.  
 

We further compare the robust and nominal signal plans using the microscopic CORSIM 
simulation, and the system delay is selected as the performance measure. Figure 5-6 is a snapshot 
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of the CORSIM network. In the simulation, demand scenarios are obtained by sampling the 
uniform distributions provided in Table 5-1. Table 5-4 summarizes the simulation result. It can 
be seen that the robust timing plans reduce the mean excess delay by 28.68 percent in the 
uncongested case and 7.46 percent in the congested case. In both cases, it also improves the 
average delay across all demand scenarios by over 20 percent. 

 

Figure 5-6.  A snapshot of the three-node network in CORSIM. 
 
Table 5-4.  CORSIM Result for Three-Node Network 
 

Taffic Condition Index Measure Robust Plan Nominal Plan Change 

Uncongested 
Case 

Mean Delay 13.15* 17.70 -25.69% 

Mean Excess Delay 14.02 19.66 -28.68% 

Congested 
Case 

Mean Delay 79.16 98.97 -20.06% 

Mean Excess Delay 106.58 115.18 -7.46% 
*: in vehicle hours. 
 
 
5.3 NUMERICAL EXAMPLE II 
 
5.3.1 Test Network and Demand Data 
 

The second numerical experiment is carried out on a stretch of El Camino Real in the San 
Francisco Bay Area of California, starting from Crystal Springs Road to 5th Avenue Figure 5-7 
is the cell representation of the arterial. The speed limit on the major street is 35 mph or 50 feet 
per second, while 25 mph or 36 feet per second on the side streets. Because traffic dynamics is 
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modeled second by second, the cell length for the major and side streets is 50 and 36 feet 
respectively. Traffic demand data were collected from loop detectors for peak hours in a duration 
of 10 working days in July 2008. Table 5-5 provides a summary of the flow data and the turning 
proportions at the intersections.  

Connectors

Connectors

Connectors

Connectors

Connectors
Crystal Springs Rd

2nd Avenue

3rd Avenue

4th Avenue

5th Avenue

 

            Figure 5-7.  Cell representation of El Camino Real arterial. 
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Table 5-5.  Traffic Data for El Camino Real Arterial. 
 

Traffic Volume Westbound Northbound Eastbound Southbound 

 
Crystal 
Spring 

Demand Mean -- * -- 179 1112 
Demand SD -- -- 13 44 

Left -- 0.0603 0.7205 -- 
Through -- 0.9397 -- 0.8369 

Right -- -- 0.2795 0.1631 
 

2nd Ave 
Demand Mean 174 -- -- -- 
Demand SD 18 -- -- -- 

Left 0.6647 -- -- 0.1118 
Through -- 0.7818 -- 0.8882 

Right 0.3353 0.2182 -- -- 
 

3rd Ave 
Demand Mean 270 -- 238 -- 
Demand SD 22 -- 18 -- 

Left 0.4545 0.0600 0.1911 0.0247 
Through 0.2557 0.8679 0.4837 0.8983 

Right 0.2898 0.0722 0.3252 0.0770 
 

4th Ave 
Demand Mean 528 -- 101 -- 

Demand SD 32 -- 10  
Left 0.3351 0.0237 0.1272 0.1193 

Through 0.2990 0.8732 0.6301 0.8593 
Right 0.3660 0.1031 0.2428 0.0214 

 
5th Ave 

Demand Mean 219 1443 184 -- 
Demand SD 10 82 18 -- 

Left 0.3853 0.0447 0.2889 0.0312 
Through 0.4391 0.9407 0.5804 0.8982 

Right 0.1756 0.0147 0.1307 0.0706 
*: -- means data not applicable or available.  
 
5.3.2 Plan Generation 
 

The observed flow rates are used directly as demand scenarios with equal probability of 
occurrence, to generate the robust plans by solving the stochastic programming model using the 
simulation-based GA approach. For comparison, a nominal plan is generated by solving the 
enhanced deterministic model with the mean demands presented in Table 5-5. Both robust and 
nominal plans are generated after 600 generations. Figure 5-8 shows the convergence of the GA 
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with both 5th-form and log-form fitness functions. It can be observed the 5th-form fitness function 
converges faster than the log-form counterpart.  

 

(a) 5th-form fitness function
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(b) Log-form fitness function
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Figure 5-8.  Convergence of GA with both fitness functions. 
 

Table 5-6 presents the signal plans generated from both fitness functions, and their 
performances will be compared next. The minimum green for each phase is set as eight seconds.  
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Table 5-6.  Signal Plans for El Camino Real Arterial 
 

5th-Form Fitness 
Function 

Cycle 
Length 

Phase 
Sequence 

Offset P1 P2 P3 P4 P5 P6 P7 P8 

 
Robust Plan 

S1 90 (0, 1, 1, 1) 0 11 58 8 13 47 22 12 9 

S2 90 (0, 0, 1, 0) 15 16 34 26 14 34 16 9 31 

S3 90 (0, 1, 1, 1) 13 24 33 23 10 38 19 17 16 

S4 90 (0, 0, 0, 0) 67 32 18 40 -- -- 50 -- 40 

S5 90 (0, 0, 0, 0) 0 -- 35 -- 55 15 20 55 -- 

 
Nominal 

Plan 

S1 112 (0, 0, 0, 0) 0 14 76 14 8 78 12 9 13 

S2 112 (1, 0, 0, 1) 34 32 55 17 8 70 17 10 15 

S3 112 (1, 0, 0, 1) 38 26 43 25 18 57 12 24 19 

S4 112 (0, 0, 1, 1) 83 29 21 62 -- -- 50 -- 62 

S5 112 (1, 1, 0, 0) 43 -- 68 -- 44 21 47 44 -- 

Log-form fitness 
function 

Cycle 
Length 

Phase 
Sequence 

Offset P1 P2 P3 P4 P5 P6 P7 P8 

 
Robust Plan 

S1 94 (0, 0, 0, 0) 0 8 63 15 8 62 9 10 13 

S2 94 (0, 0, 1, 1) 24 16 35 35 8 35 16 27 16 

S3 94 (1, 0, 0, 1) 60 21 32 30 11 26 27 28 13 

S4 94 (1, 1, 1, 0) 13 29 10 55 -- -- 39 -- 55 

S5 94 (1, 0, 0, 0) 69 -- 55 -- 39 44 11 39 -- 

 
Nominal 

Plan 

S1 112 (1, 0, 1, 1) 0 8 80 16 8 79 9 14 10 

S2 112 (0, 1, 1, 0) 12 11 60 3 33 45 26 31 10 

S3 112 (1, 1, 1, 0) 26 26 45 13 28 62 9 19 22 

S4 112 (1, 1, 1, 1) 10 32 22 58 -- -- 54 -- 58 

S5 112 (0, 0, 1, 1) 50 -- 27 -- 85 19 8 85 -- 

 
 
 



 

 38

 
5.3.3 Plan Evaluation 
 

The comparison is also conducted via microscopic simulation with demand profiles 
randomly generated based on Table 5-5 assuming truncated normal distributions. Figure 5-9 is a 
snapshot of the CORSIM network for the corridor. Table 5-7 presents the CORSIM simulation 
result. The traffic condition is very congested through the whole simulation period. It can be seen 
that the robust plans outperform the corresponding nominal plan, with the mean delay reduced 
by 23.69 percent and 17.82 percent, and the mean excess delay reduced by 22.80 percent and 
17.34 percent. It demonstrates that the robust plans perform much better against 
high-consequence scenarios. As a side effect, the average performance is also improved. 
Although the 5th-form fitness function leads to a faster convergence, it does not improve the 
performance as much as the log-form fitness function does. 

 
Table 5-7.  CORSIM Result for El Camino Real Arterial 
 

Fitness 

Function 
Index Measure Robust Plan Nominal Plan Change 

Log-Form 
Mean Delay 234.36 307.13 -23.69% 

Mean Excess Delay 240.92 312.08 -22.80% 

5th-Form 
Mean Delay 228.02 277.46 -17.82% 

Mean Excess Delay 232.30 281.02 -17.34% 
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Figure 5-9.  A Snapshot of the EL Camino Real Arterial in CORSIM. 
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6. CONCLUDING REMARKS 

 
This report has presented a robust approach to optimize traffic signals on arterials 

considering day-to-day demand variations or uncertain further demand growth. The model 
optimizes the cycle length, green splits, offset points and phase sequences in an integrated 
manner. The resulting robust timing plans have been demonstrated to perform better against 
high-consequence scenarios without losing optimality in the average sense.  
 

Considering a large number of binary variables in the formulation, we have developed a 
simulation-based GA to solve the problem. It should be mentioned that the setting of the 
GA-based algorithm, such as the fitness function, may influence the quality of the final plan and 
the convergence speed. Numerical experiments are needed to fine-tune the setting. We also note 
that the simulation-based model is broadly applicable, particularly when the objective function is 
difficult or time-consuming to evaluate. Although the robust signal timing approach is applicable 
more widely, this report has been focused on timing models for pre-timed arterials.  
 

Our future study may expand the proposed approach for more sophisticated corridors and 
grid networks. Moreover, the proposed approach can be expanded to consider other types of 
uncertainty, e.g., the stochastic road capacities. By specifying a number of scenarios as 
realizations of certain road capacities and uncertain demands simultaneously, another 
scenario-based stochastic program can be formulated to minimize the mean excess delay to 
obtain a robust timing plan.  
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