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ABSTRACT

Congestion pricing is a market-based approach for mitigating traffic congestion and
managing travel demand. For over 80 years, the literature on congestion pricing has been largely
relying on the assumption that travelers are perfectly (or unboundedly) rational. Although
technically convenient, this assumption implies that travelers are always able to react to pricing
signals and accurately select the options with the least cost to reach their destinations. However,
there is abundant empirical evidence that travelers are boundedly rational and their responses to
pricing signals are not as perfect as assumed in pricing models reported in the literature.
Consequently, congestion pricing projects may not achieve the results predicted by these models.

This report proposes methodologies for determining pricing strategies that can better
relieve congestion by proactively accounting for travelers with bounded rationality. Two classes
of models are addressed. As adopted by many in the literature, one class assumes that link travel
times (or costs) are deterministic. In the other class, the travel times are probabilistic and the
analysis of the traveler’s route choice is based on the cumulative prospect theory, a paradigm for
decision making under uncertainty advanced recently by psychologists and behavioral
economists. For both classes of models, new optimization problems and algorithms are
developed to accommodate boundedly rational travel behaviors to determine more robust or
reliable pricing schemes.

Vi
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EXECUTIVE SUMMARY

The report provides analytical foundations and methodologies for the design and analysis
of congestion pricing strategies for transportation networks under a more convincing behavioral
assumption, i.e., travelers are boundedly rational.

For more than 80 years, the literature on congestion pricing has been relying largely on
the assumption that travelers are perfectly rational. Although technically convenient, this
assumption implies that travelers are always able to react to pricing signals and accurately select
the options with the least cost to reach their destinations. However, empirical studies reveal that
travelers are perfectly rational instead. For example, travelers have a general aversion to complex
pricing structures. Increasing complexity makes travelers more likely to remain with the status
quo. Moreover, they switch to a cheaper option only when the amount of saving is sufficiently
large. This suggests that the current models of congestion pricing are not consistent with the
actual traveler behaviors. Such inconsistence may lead to inferior pricing policies that are not
able to reduce congestion to the expected extent or even worsen the situation. A new modeling
approach is needed to account for this bounded rationality in the design of congestion pricing
schemes.

The main objective of this report is two-fold. One is to study the effect or implication of
boundedly rational travel behavior on the design and evaluation of congestion pricing strategies,
and the other is to develop analytical frameworks to proactively account for this behavior when
designing pricing strategies for transportation networks.

The investigation considers both deterministic and stochastic networks. The former
assumes that link travel times or costs are deterministic, an assumption adopted by many in the
literature. When they are boundedly rational, users do not necessarily choose a shortest or
cheapest route when doing so does not reduce their travel times by a significant amount. A
general path-based definition and a more restrictive link-based representation of boundedly
rational user equilibrium (BRUE) are presented in the report. The set of BRUE flow distributions
is non-empty and generally non-convex. The problems of finding best- and worst-case BRUE
flow distributions are formulated and solved as mathematical programs with complementarity
constraints. Because alternative tolled BRUE flow distributions exist, our congestion pricing
models seek a toll vector or pattern that minimizes the system travel time of the worst-case tolled
BRUE flow distribution. As formulated, the models are generalized semi-infinite min-max
problems and a heuristic algorithm based on penalty functions and cutting-planes is proposed to
solve them. Numerical examples are presented to illustrate key concepts and results.

The second part of the report is on pricing stochastic networks where travel times or costs
are stochastic, a condition caused by day-to-day demand variations and traffic incidents. Given
that the cumulative prospect theory provides a well-supported descriptive paradigm for decision
making under risk or uncertainty, previous studies applied the theory to model travelers’ route
choice behaviors in stochastic networks and developed prospect-based user equilibrium models.
The models rely on exogenous inputs of reference points and thus the resulting

vii
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reference-dependence could be regarded as an ad-hoc assumption. This report proposes a premise
regarding travelers’ determination of reference points and encapsulates it into the prospect-based
user equilibrium conditions. The conditions are formulated as an equivalent variational inequality,
and a heuristic solution algorithm is proposed to solve it. Both the model and the solution
algorithm are demonstrated with two numerical examples. This report further develops an optimal
pricing model in which the proposed user equilibrium model is adopted to capture travelers’
response to pricing signals under risk. The pricing model is formulated as a mathematical program
with complementarity constraints, solved by a derivative-free algorithm. Another numerical
example is presented to illustrate the pricing model and the solution algorithm.

The behaviorally consistent pricing framework proposed in this report is novel and
distinct from others in the congestion pricing literature. As congestion increases in the coming
years, we envision a widespread adoption of congestion pricing in some form across the country.
The proposed pricing framework will help to ensure successful implementations and save
substantial amount of time and money that the traveling public have to spend waiting in traffic
congestion.

viii



Cenfer for
Muitimodai

Solutions Congestion Mifigation
Lniversify of Florda

1. BACKGROUND

Congestion pricing has been advocated as an efficient way for congestion mitigation
since the seminal work by Pigou (1920) and Knight (1924) (see Lindsey, 2006, for a recent
review). The basic idea is to charge tolls to influence travelers’ choices of travel to reduce traffic
congestion and improve social welfare. Examples from abroad include the cordon or area-based
pricing in Singapore, London and Stockholm among others. In the U.S., a more prevalent form
of congestion pricing is variably priced lanes, such as high-occupancy/toll (HOT) lanes where
high-occupancy vehicles can travel for free while lower-occupancy vehicles have to pay a fee to
access. In May 2006, the U.S. Department of Transportation (USDOT) launched a new national
congestion relief initiative that promotes congestion pricing (USDOT, 2006).

For more than 80 years, the literature on congestion pricing has been largely relying on
the assumption that travelers are perfectly (or unboundedly) rational. Although technically
convenient, this assumption implies that travelers can always react to pricing signals and select
the options with the least cost to reach their destinations. However, empirical studies reveal that
travelers are boundedly rational instead. For example, travelers have a general aversion to
complex pricing structures and increasing complexity makes them more likely to stay with the
status quo. Moreover, they switch to a cheaper option only when the amount of saving is
sufficiently large (e.g., Bonsall et al., 2007; Holguin-Veras et al., 2007).

Since its introduction by Nobel Laureate Herbert Simon (Simon, 1955), the notion of
bounded rationality has been of interest to psychologists and behavioral economists for more
than half a century. There is abundant amount of empirical evidence to support the notion,
particularly in the context of day-to-day choices (Conlisk, 1996). Bounded rationality assumes
two types of bounds, i.e., the limits on knowledge or information, and the limits on the ability to
compute optima. More specifically, perfectly rational decisions often depend on perfect
knowledge or information that is unfortunately not always available or too costly to obtain. On
the other hand, human cognition is a scarce resource and individuals tend to avoid long
deliberation to reach the best decision on many day-to-day choices.

In transportation, the literature on boundedly rational decision is significantly more
limited and more recent. Mahmassani and Chang (1987) studied the departure time choice by
boundedly rational travelers in an idealized setting that consists of one origin-destination (O-D)
pair and a single route. Later, Jayakrishnan et al. (1994), Hu and Mahmassani (1997),
Mahmassani and Liu (1997), and Mahmassani (2000) applied the concept and similar models to
study, e.g., the effects of provision of advanced traffic information on road systems. Similar to
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Conlisk (1996), Nakayama et al. (2001) concluded that their experimental study indicates a need
to evaluate the validity of the perfect rationality assumption in the traffic equilibrium analysis.

This report studies the effect or implication of boundedly rational travel behavior on the
design and evaluation of congestion pricing strategies, and develops analytical frameworks to
account for this behavior more proactively to determine more effective pricing strategies for
transportation networks. Although travelers’ responses to congestion pricing are multifaceted,
this report focuses on their adjustments on route choices over transportation networks. The
pricing schemes of interest are static, i.e., time-invariant tolls during peak hours, because (i)
empirical studies have shown that implementation of system-wide dynamic pricing is
behaviorally infeasible. The pricing signals would be too complex for travelers to understand and
predict, not mentioning to react to (e.g., Bonsall et al., 2007); (ii) the derivation of dynamic
pricing schemes relies on dynamic traffic assignment, which is computationally intractable for
large-scale networks (e.g., Wie, 2007). Moreover, dynamic traffic assignment requires the
knowledge of dynamic O-D demand, a type of information generally believed to be difficult to
obtain accurately or otherwise.

In the subsequent chapters, we describe our research on both deterministic and stochastic
networks. The former implies that link travel times or costs are deterministic, an assumption
adopted for almost all pricing models in the literature. In the latter, travel times or costs are
stochastic, incurred by day-to-day incidents, such as adverse weather, traffic accidents and
disabled cars.
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2. PRICING DETERMINISTIC NETWORKS

2.1 INTRODUCTION

This chapter addresses boundedly rational route choice behaviors in deterministic
networks where travel times or costs are deterministic and boundedly rational user equilibrium
(BRUE) arises whenever all users’ travel costs are not sufficiently larger than the best available
ones and no user has an incentive to switch his or her route. The focus of this chapter is to study
the implication of BRUE in transportation systems planning and develop an analytical
framework to proactively account for boundedly rational travel behaviors in the context of
congestion pricing. We also note that there are other network equilibrium models in the literature
that attempt to describe more realistically users’ route choice behaviors, such as stochastic user
equilibrium models (e.g., Sheffi, 1985), risk-taking models (e.g., Mirchandani and Sourosh, 1987;
Yin and leda, 2001), travel time budget models (e.g., Lo et al. 2006; Shao et al., 2006). The
purpose of this chapter is to offer another alternative model that enriches the literature and to
fully explore the properties and consequences of bounded rationality in route choices. More
specifically, as Mahmassani and Chang (1987) point out and discussed below, BRUE flow
distributions in a static network may not be unique and we characterize the set of all possible
BRUE flow distributions as a non-convex and non-empty set. In one interpretation, the flow
distribution we observe at one particular day is just a particular realization from the set. Such an
uncertainty incurred by boundedly rational travel behaviors may deteriorate the effectiveness of
traditional congestion pricing strategies. For example, the link-based marginal-cost (MC) pricing
scheme commonly advocated in the congestion pricing literature may not necessarily reduce
congestion to its minimum level because users may not switch to routes with the least
generalized cost. In this chapter, we seek a tolling pattern that minimizes the worst-case system
travel delay among all the possible BRUE flow patterns based on generalized costs (time plus
tolls).

For the remainder, Section 2.2 mathematically defines BRUE and discusses the property
of the set of all possible BRUE flow patterns. The problems of finding the best- and worst-case
system travel times among the possible BRUE flow patterns are formulated as mathematical
programs with complementarity constraints (MPCC) and then illustrated with examples. Section
2.3 formulates congestion pricing models that minimizes the worst-case system travel time and
develops a heuristic solution algorithm to the models. Numerical examples are then presented to
demonstrate and validate the models and solution algorithm.

2.2 BOUNDEDLY RATIONAL USER EQUILIBRIUM

2.2.1 Boundedly Rational Flow Distribution and Equilibrium Conditions

As explained in Mahmassani and Chang (1987) and Chen et al. (1997), travelers with
bounded rationality still follow the behavior that exhibits a tendency toward utility maximization,
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but not necessarily to the absolute maximum level. We thus define travelers with bounded
rationality as those who (@) always choose routes with no cycle and (b) do not necessarily switch
to the shortest (cheapest) routes when the difference between the travel times (or costs) on their
current routes and the shortest one is no larger than a threshold value.

Using the terminology in Ahuja et al. (1992), all utilized routes under bounded rationality
must correspond to paths. In the literature, some prefer to add the adjective “simple” and refer to
routes with no cycle as “simple paths.” (Ahuja et al., 1992, refer to routes with cycles as “walks.”)
Below are formal definitions of acceptable paths and BRUE:

Definition 2.1: A path is “acceptable” if the difference between its travel time or cost and that of
the shortest or least-cost path is no larger than a pre-specified threshold value.

Definition 2.2: A path flow distribution is in BRUE if it is feasible or compatible with the travel
demands and every user uses an acceptable path.

Unlike the conventional or perfectly rational user equilibrium (PRUE), the flow
distribution under BRUE as defined above may not utilize any shortest or least-cost path. To
mathematically define BRUE, let 7 denote the set of O-D pairs and ¢" represent travel demand

for O-D pair w € W. Let P" be the set of paths for O-D pair w. For each path » € P*, " and
¢ denote the corresponding path flow and path travel time. We further use /" to represent a

¥

vector of path flows for O-D pair w, with " asits elements, and f = (fl,u-fw,u-f‘w‘ )’ :

¥

where |o| denotes the cardinality of a set. Similarly, ¢" is a vector of path travel times for O-D
pair wand ¢ isavector of ¢".Assuming that users of the same O-D pair have the same

threshold value, denoted as £, fis a BRUE distribution if and only if there exists A" for
every w such that:

c’ > A" VreP”

<A E” VreP' = {r f*>0reP"}
Zf;w :qw

repP"

1" =0 VreP”

If fis a BRUE distribution, then setting A" =c¢™, where ¢" is the shortest path length
for O-D pair w, satisfies the above conditions. On the other hand, if f'is a flow distribution with

A" satisfying the above conditions, then ¢’ <A" +¢&" < min{c,w}+ g" =c" +¢g"forevery
reP”

utilized path . The latter implies that 1" need not be the length of the shortest path. In general,
A" is a lower bound for ¢".

The above conditions requiring knowing utilized paths. As an alternative, the ones below
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use slack variables ¢" and do not require the utilized-path information.

A —g" =0 VreP" welW 2.1)
frE"-€g")=0 Vre P\ weW (2.2)
Zplwﬁw =q" YweW (2.3)
fr=0 VreP',weW (2.4)
e’ 20 Vre P, weW (2.5)

Note that when £ =0 for all w, the BRUE conditions reduce to the conventional
PRUE conditions. To illustrate, combining (2.2), (2.4) and (2.5) yields f"¢" =0. Together

with (2.1), this implies that " (¢’ —1") =0, Vre P",weW . On the other hand, a PRUE

flow distribution always satisfies (2.1) - (2.5) with ¢" =0 and A" as the equilibrium O-D
travel time. Thus, a PRUE distribution is always a BRUE flow distribution.

2.2.2 Properties of BRUE Flow Distributions

When users are perfectly rational, it is well-known (see, e.g., Patriksson, 1994) that there
exist equivalent link-based equilibrium conditions and the set of all PRUE flow patterns is
convex. Below, we show that these properties may not hold when users are boundedly rational.
More specifically, the link-based representation of BRUE proposed here is not equivalent to the
path-based definition and the set of BRUE flows may not be unique.

2.2.2.1 Link-based Representation of BRUE

Let NV and L denote the sets of nodes and links in a road network, where an element of the
latter, Z, is denoted as (i, /). For O-D pair w, x;; represents flow on link (i, /). The vector x"

denotes the flow vector for O-D pair w with x; as its elements, and v = wa is the

w

associated aggregate flow vector. For each link (i, j) € L, ¢, (v;) denotes link travel time

function that is continuous and monotonically increasing with the aggregate link flow, v;.
Moreover, ¢,(v,)>0 when v, >0.Let o(w) and d(w) represent the origin and destination

of O-D pair w, A the node-link incidence matrix and D the demand vector satisfying that
oo =4 Or Dy, =—q" and D" =0 forall otheri. The following are link-based BRUE

conditions, analogous to those under the perfectly rational assumption:

ty(v;)+n —r) —¢; =0 YweW, (i,j)eL (2.6)
ey v ul - )20 YweW, (i, /) el 2.7)
— Uiy SE" =1 YweW (2.8)
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Ax" =D" YweW (2.9)
v= 2 (2.10)
x,e2>0 (2.11)

where 7" e R™, &" e R™ and u” e R™ are vectors of node potentials associated with

travel time, travel times in excess of the minimum, and node potentials associated with the
excess travel times respectively.

When &" =0, (2.6) — (2.11), as before, reduce to the linked-based PRUE conditions in

the literature when users are perfectly rational. When &" >0, we show below that a flow
distribution satisfying (2.6) — (2.11) is a BRUE flow (see Definition 2.2). However, as a
counterexample below illustrates, the converse is not true.

Lemma 2.1: Define a sub-network G™ with respect to each O-D pair w, which consists of all
the links with strictly positive O-D flows x;’. If there exist a link flow distribution v, vectors

7" eRM " e R and u" e R satisfying (2.6) — (2.11), then the sub-network G" is
acyclic.

Proof:  Suppose that there is a cycle in G™. By definition, x; >0 foreachlink (i, ;) e G".
Condition (2.7) then requires —&;7 + 4" — x> 0. Thus, summing (2.6) and (2.7) along the
cycle leads to

2.1, (v) =28, <0 (2.12)

However, since v, >x; >0, we have ¢;(v;) > 0, which contradicts (2.12). Therefore G" is
acyclic. [J

Note that Lemma 2.1 also applies to PRUE flow distributions when the travel time
functions satisfy our earlier assumptions.

Theorem 2.1: For a link flow distribution v, if there exist 7" e R™, " e R and u" e R

such that (2.6) — (2.11) hold, then any of its underlying path flow patterns satisfies the BRUE
definition (Definition 2.2).

Proof: Assume that a link flow distribution v satisfies (2.6) — (2.11). Then, (2.9) — (2.11) imply
that v is a feasible flow distribution; and Lemma 2.1 ensures that the flow-carrying sub-networks

are acyclic and the underlying utilized routes are all paths. Let &; (equals 0 or 1) indicates

whether link (i, /) is on path . It follows from (2.6) and (2.11) that for any path between O-D
pair w,
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Therefore, 7, — 7)., isalowerboundof ¢™,the minimum travel time between a

o(w
given O-D pair w. For any utilized path » € P with respect to the given link flow distribution,
the flow on each link along the path must be positive, i.e., x; >0 if 5; =1. Thus summing

together (2.7) for links on a utilized path » < P" vyields:
Zé‘l” " - /’l(:?w) _/uc;v(w) (214)

i

Essentially ), — 7, 1 an upper bound on the amount in excess of the shortest travel
time. Combining (2.8), (2 13) and (2.14) for a utilized path » leads to:
25 t;(vy)=¢" < Z‘Srt ) = (Fay = 7o) = Z‘Sr i S Howy ~Haey SE°

which |mpI|es that for any utlllzed path, its travel time may differ at most the threshold value
from the minimum O-D travel time. Therefore, any underlying path pattern of v is at BRUE. [J

On the other hand, a BRUE flow distribution may not satisfy (2.6) — (2.11). This implies
that the link-based representation of BRUE is more restrictive than the path-based definition.
Consider the bridge network in Figure 2-1 in which there is only one O-D pair (1, 4) with a
demand of 3 and a threshold value of 4. The link travel time functions are reported in Table 2-1
together with a BRUE path flow pattern.

Figure 2-1. A bridge network
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Table 2-1. Flow Distributions for the Bridge Network |

BRUE
Flow Time
Link Travel time function
1,3) ti3=3+vy;3 2 5
(1, 2) 112:7+V]2 1 8
(2, 3) 13 = V3 1 1
(2, 4) ty= 5+ Vg 1 6
(3, 2) t32 = V32 l 1
(3, 4) t3y = 2+ V34 2 4
Path
1-3-4 1 9
1-3-2-4 1 12
1-2-3-4 1 13
1-2-4 0 14

The minimum O-D travel time is 9 and all the utilized paths have travel times of no more
than 9 + 4 = 13. Therefore, the path flow pattern is a valid BRUE flow. However, the
corresponding link flows do not satisfy (2.6) — (2.11), as the following system of equations does
not admit a solution:

S—gp+m —m;=0
8—¢,+m —7,=0
l-e,+7m,—7m,=0
6-¢,,+7,-7,=0
l-ep, +7m,—7,=0
4—gy+my—m, =0
&, +&y <4
Ep+EptEy <4
EztEpt+E,y <4
EytEy <4

gl.jZO

The nonequivalence between the two sets of conditions originates from the relationship
between path and link flows. Under BRUE, it is possible that a path flow pattern results in a
cyclic flow-carrying sub-network (the original network in the above example) while with the
link-based BRUE definition, all the flow-carrying sub-networks must be acyclic (Lemma 2.1).
Moreover, for a non-utilized path that only consists of links with positive flows (path 1-2-4 in the
above example), the link-based BRUE definition still requires its travel time to be within the
indifference band even when the path is not utilized (conditions 2.6 and 2.7). Note that both
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issues do not arise in the PRUE because 1) the flow-carrying sub-networks are acyclic under
PRUE; and 2) all links with positive flows must be on shortest paths. For a non-utilized path that
consists of only positive-flow links, its travel time will be minimum O-D travel time and

condition (2.6) and (2.7) alike will be satisfied automatically.

|

Below, Figure 2-2 illustrates the relationship between the feasible flow set, the
path-based and the link-based BRUE flow set. Note that all three sets contain the PRUE flow
distribution.

Feasible Flow Set

Path-based BRUE

Link-based BRUE

Figure 2-2 Relationship between three different flow sets
2.2.2.2 Nonconvexity

To illustrate that the set of BRUE flows is not convex, consider the same network in
Figure 2-1 with one O-D pair (1, 4) as before. However, other problem parameters are new. The
travel time functions are as shown in Table 2-2. The demand and a threshold value are 6 and 15,
respectively.
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Table 2-2. Flow Distributions for the Bridge Network |

BRUE-1 BRUE-2 0.5x(BRUE-1+BRUE-2)
Flow Time Flow Time Flow Time
Link Travel time function
1, 3) t;3=10v;; 3 30 4 40 3.5 35
1,2 t;;=50+ v, 3 53 2 52 2.5 52.5
(2, 3) 1; = V3 0 0 2 2 1 1
(2,4) 1= 10 vy 3 30 4 40 3.5 35
3,2 t3=10 + v3; 0 10 4 14 2 12
(3,4) t34=50 + vy, 3 53 2 52 2.5 52.5
Path
1-3-4 3 83 0 92 15 87.5
1-3-2-4 0 70 4 94 2 82
1-2-3-4 0 106 2 106 1 106
1-2-4 3 83 0 92 15 87.5

Table 2-2 displays two BRUE flow distributions, BRUE-1 and BRUE-2. The maximum
differences between the lengths of utilized paths and the shortest paths are 13 for BRUE-1 and
14 for the other, i.e., both differences are within the threshold value. However, the convex
combination of the two distributions 0.5x(BRUE-1 + BRUE-2) is not a BRUE flow distribution
because the maximum difference now is 24. Thus, the set of BRUE flows is not convex. This
non-convexity is largely due to the nonlinear condition (2.2). Similarly, the restrictive link-based
BRUE set is not convex either due to the condition (2.7).

2.2.3 Finding Best- and Worst-Case BRUE Flow Distributions

In practice, traffic assignment models in the four-step process are based on PRUE and
typically provide a unique equilibrium solution. In other words, PRUE models typically provide
a point estimate of traffic flow distribution. On the other hand, there are generally many BRUE
flow distributions and models based on BRUE provide an interval estimate instead.

To illustrate, the two problems below find BRUE flow distributions with the best or
worst travel delay. To avoid generating paths, the problems use the more restrictive link-based
BRUE conditions, instead of the more general path-based conditions (2.1)-(2.5). The formulation

contains auxiliary variables, z;, and additional constraints to highlight the complementarity
structure in the problems.

10
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(2.6), (2.8) - (2.11)

The above problems are MPCC, a class of optimization problems difficult to solve
because the problems are generally non-convex and violate the Mangasarian-Fromovitz
constraint qualification (MFCQ) at any feasible point (see, e.g., Scheel and Scholtes, 2000). In
the literature, many (see, e.g., Luo et al. 1996 and references cited therein) have proposed special
algorithms to solve MPCC. Lawphongpanich and Yin (2010) applied concepts from manifold
suboptimization and proposed a new algorithm that converges to a strongly stationary solution in
a finite number of iterations. The algorithm can be applied with multiple initial solutions to solve
both formulations for good strongly stationary solutions.

2.2.4 Numerical Examples

This subsection presents two numerical examples to demonstrate the relevance of BRUE.
BC-BRUE and WC-BRUE are solved on two networks: nine-node (see, e.g., Hearn and Ramana,
1998) and Sioux Falls (see, e.g., LeBlanc et al., 1975) using GAMS (Brook et al, 2003) and
CONOPT (Drud, 1995).

Nine-node problem: Figure 2-3 displays the underlying network. The network data can be
found in Hearn and Ramana (1998). There are four O-D pairs and the demands are ¢ =10,

g™t =20, ¢*°>=30 and ¢°* =40. The threshold value is assumed to be &" =a-t,;,,
where « isa parameter and ¢,;,, isthe PRUE travel time between a given O-D pair w.

Figure 2-3. The nine-node network

Results for the nine-node problem are presented below. Table 2-3 compares the PRUE,

11
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system optimum (SO), best- and worst-case BRUE flow distributions with « = 0.10. Figure 2-4
displays the system travel times of SO, best- and worst-case BRUE flow distributions with «
varying from 0 to 0.20. When « =0, the BRUE flow distribution reduces to the unique PRUE
distribution and there is no difference between the best- and worst-case performances. As «
increases, the difference becomes more substantial. For example, the difference (measured as a
percentage of the best-case system travel time) rises from 9.2 percent to 21.0 percent when «
changes from 0.10 to 0.20. As the SO flow distribution is still the one that minimizes total
system travel time, it does not change with the threshold value. In fact, the total travel time
associated with SO always provides a valid lower bound for the best-case BRUE performance.
As evident in Figure 2-4, the quality of SO bound is acceptable when « is large. On the other
hand, the upper bound for the worst-case BRUE performance is more difficult and
time-consuming to obtain and is one of our topics for further investigation.

Table 2-3. Flow Distributions for the Nine-Node Network (« =0.10)

Link PRUE WC-BRUE | BC-BRUE SO
(1,5) 8.2 4.0 115 9.4
(1, 6) 21.8 26.0 185 20.6
(2,5) 47.4 53.2 43.0 38.3
(2, 6) 22.6 16.8 27.0 317
(5, 6) 0.0 0.0 0.0 0.0
(5,7) 278 29.2 26.4 21.3
(5,9) 27.7 28.0 28.0 26.4
(6, 5) 0.0 0.0 0.0 0.0
(6, 8) 44.5 42.8 45.6 39.5
(6,9) 0.0 0.0 0.0 12.8
(7,3) 38.2 34.0 317 29.6
(7, 4) 17.4 23.2 22.8 20.8
(7,8) 0.0 0.0 0.0 0.0
(8, 3) 18 6.0 8.3 10.4
(8, 4) 42.6 36.8 37.2 39.2
(8,7) 0.0 0.0 0.0 0.0
9,7) 277 28.0 28.0 29.1
(9, 8) 0.0 0.0 0.0 10.2

12
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Figure 2-4. Comparison of system performances of BRUE at the nine-node network

Sioux Falls problem: The Sioux Falls network (see, LeBlanc et al., 1975) contains 76 links, 24
nodes and 528 O-D pairs. The original network parameters in LeBlanc et al (1975) are used
while original demands are divided by 11. We assume the same threshold value for users

departing from the same origin, i.e., £° = a 1,5, Where .5, isthe maximum PRUE travel
times among the O-D pairs that share the same origin o.

Figure 2-5 presents the difference between the best and worst system performances of
BRUE flow distributions for Sioux Falls with « varying from 0 to 0.20. Although not
congested, the differences in the two system performances for Sioux Falls have characteristics
similar to those of the nine-node network. For Sioux Falls, the difference in the two system
performances increases up to 6.7 percent.

13
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Figure 2-5. Comparison of system performances of BRUE at the Sioux Falls network

The above two examples reveal a difficulty of evaluating or designing improving
strategies to highway networks as the resulting performances are likely to be uncertain
(Mahmassani and Chang, 1987). Such uncertainty should be accommodated proactively in the
decision-making process. The true range of possible total system travel times may be larger than,
e.g., those shown in Figures 2.4 and 2.5, for two reasons. First, the link-based conditions (2.6) —
(2.11) only characterize a subset of BRUE flows. Second, the algorithms we implemented, like
most algorithms for MPCC, do not guarantee local or global optimality, regardless of the fact
that we initiated or “warm-started” the algorithms with many initial solutions, randomly
generated and otherwise.

2.3 CONGESTION PRICING WITH BOUNDEDLY RATIONAL USER EQUILIBRIUM
2.3.1 Model Formulations

To motivate the models, we implement a traditional MC pricing scheme on the nine-node
network. Under the MC pricing, tolls are in the form of 7, (v;°)-v;” where v;° is the SO flow.

Imposing such a pricing scheme may not necessarily evolve the system to SO, because the tolled
BRUE flow distributions are generally not unique. Figure 2-6 presents the best and worst
performances that the MC pricing scheme may achieve as compared with those without pricing.
As expected, the MC pricing may result in a range of system performance and the difference can
be as high as 21.3 percent when « =0.20 . Although the MC pricing achieves SO under the best
scenario (i.e., the scenario with perfect rationality), it may potentially make the traffic condition
worse because users are not perfectly rational. When « is greater than 0.08 in Figure 2-6, the
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worst-case system travel time with the MC pricing is greater than the best-case travel time
without tolling.
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Figure 2-6. System performances with MC pricing scheme at the nine-node network

Although Figure 2-6 does not show a case that the MC pricing leads to an inferior
worst-case performance, we do observe it when « is large. This suggests that the MC pricing
does not necessarily ensure an improvement in the worst-case performance. Consider a network
with three parallel links connecting one O-D pair in Figure 2-7. Assume that the O-D demand is
2 and the threshold value is 3. It is easy to verify that the worst-case BRUE flow distribution is

v =(2,0,0), with a total system travel time of 8. The SO flow for the problem is v*? =(1,0,1) .

This yields the MC toll 7" =(2,0,1). The worst-case BRUE flow distribution with MC tolls is
(0,2,0) and has a system travel time of 10, an amount larger than the one without any toll.

Figure 2-7. Three-parallel-link network
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In real-world applications, decision-makers and planners tend to be risk-averse and may
be more concerned with the worst-case performance. Following the notion of robust optimization
(e.g., Ben-Tal and Nemirovski, 2002), we attempt to determine a pricing scheme to minimize the
worst-case system travel time among all the tolled BRUE distributions. Then, the problem of
finding an optimal pricing scheme can be formulated as the following min-max program:

RTP-1:  Min max )7,

. (vx,&,7m,u)

s.t. t (vl.].) +r,—¢l+x"—n; =0 VYweW, (i,j)eL (2.15)
0<7<r7,, (2.16)
(2.7)-(2.11)

where, ¢ denotes a toll vector with a link toll 7, as its elementand z,,, isthe maximum toll
vector that can be possibly charged to each link.

For convenience, we represent the feasible region of the inner problem or the
maximization part of RTP-1 as Z(r), the decision variable (v,x,&, 7, 1) as & and thus the

objective function as ¢(&). The inner problem can then be written as:
RTP-1-IN: w(r) = m?x{(p@) £ eE(r)} (2.17)

It then follows that RTP-1 is essentially in a form of O<rn<in w(7), which is a generalized

<T<Tiax

semi-infinite min-max problem (see, e.g., Polak and Royset, 2005), because the feasible set of
the inner problem depends on the decision variables of the outer problem. A generalized
semi-infinite optimization problem is more difficult to solve than its ordinary counterpart (e.g.,
Lopez and Still, 2007). There are only a few studies dealing with numerical algorithms for such a
generalized problem (see, e.g., Still, 1999), and the methods presented may not be applicable to
RTP-1 as its inner problem is a MPCC and the MFCQ is not satisfied at any feasible point of

(7).

The optimum solution to RTP-1 is expected to reduce the worst-case system travel time
but without any guarantee for its best-case performance. Alternatively, it may be meaningful to
find a robust toll whose best-case performance is guaranteed. Recall that Hearn and Ramana
(1998) derived a “valid” toll set for PRUE, which consists of an infinite number of valid tolls and
each valid toll can evolve the SO distribution when users are perfectly rational. Clearly, any toll
vector in Hearn and Ramana’s valid toll set will achieve SO as its best-case performance under
the BRUE setting. However, other toll vectors not in the valid toll set may also admit SO as their
tolled best-case performance. We denote all these tolls as “optimistic” tolls.

We now derive the optimistic toll set. Let S :=arg min{t(v)Tv |ve V} where
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Av = ZDW and v> 0} denotes the feasible aggregate link flow set, and

wa =yand Ax" =D",x">0,Vwe W}.

Let r beatoll vector, v be a feasible aggregate flowand xe X(v).Let x bea
tolled (link-based) BRUE flow distribution induced by the toll vector z, i.e. there exist vectors

p"’e R, n" e R and v”eR™ such that the following holds:

t,(5, )+ 2, —my + o = p2 =0 YweW, (i,j)el (2.18)
Fremy oy —or)20 Ywel, (i,j)el (2.19)
—Uh, SET -0k, YweW (2.20)
n; 20 YweW, (i,j)elL (2.21)

In the above, the triplet (o, 7, v) plays the role of (¢, 7, 1) in the link-based BRUE
conditions (2.6) — (2.8). More specifically, o, n, v are vectors of node potentials associated with
travel time, travel times in excess of the minimum, and node potentials associated with the
excess travel times respectively in the tolled BRUE.

Theorem 3.1: Let T(x) denote the r part of the polyhedron (2.18) — (2.21), then the
optimistic toll set is equivalentto .~ =[] U;eX(v)T(’%) .

Proof:

Necessity: If z is an optimistic toll, then there must exist some feasible commodity
(O-D pair) link flow x in the tolled BRUE flow set whose aggregate link flow v is SO, i.e.
e T(x). Together withthat ve S and xe X(v),we have re€./.

Sufficiency: If 7e./, r must belong to some set 7'(x) where the aggregate link

flow corresponding to x is the SO flow. Therefore, x is a tolled link-based BRUE flow with
7 Dbeing the toll vector; and 7 is an optimistic toll since the tolled best-case BRUE can achieve

SO. [

The optimistic toll set .~ is not necessarily convex although all its component sets T’
are polyhedrons. Even when the set S is singleton under the assumption that the link travel time
function is strictly monotone, set .~ is still a union of an infinite number of subsets 7 because
the commodity link flow will not be unique. When there is only one commodity, the optimistic

toll set .~ reduces to a polyhedron. As previously indicated, Hearn and Ramana’s valid toll set
is a subset of the optimistic toll set ..

All optimistic tolls achieve SO at their best-case performance, but their worst-case
performances are not necessarily the same. We then formulate an alternative model to find the
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most robust toll vector from the optimistic toll set. The solution will achieve SO at its best-case
performance but probably lead to a higher worst-case travel time compared with the solution to
RTP-1. Since .~ isacomplicated set, we instead use its subset, the valid toll set in Hearn and
Ramana (1998), in formulating the robust toll problem for a proof of concept. With the
assumption of strictly monotonic link travel time functions, S is singleton. The alternative robust
pricing problem can be formulated as follows:

RTP-2:  Mmin w()
(z.p)
St v (e(v)+2)+ Y D pr =0 (2.22)
l,j(V,fo)"' r,+p—p; 20 VYweW, (i,j)eL  (2.23)

As formulated, RTP-2 is another generalized semi-infinite min-max problem, which is of
the same complexity as RTP-1. The inner problems are the same, defining the worst-case tolled
BRUE flow distribution, as shown in (2.17). The former incorporates some additional linear
constraints (2.22) — (2.23) in its outer problem, which are separable from its inner problem. The
linear constraints define the valid toll set (Hearn and Ramana, 1998), and ensure that SO flow
satisfies the tolled PRUE conditions with z being the toll vector and p the corresponding

node potentials. Consequently, SO flow will be a tolled BRUE flow distribution induced by the
toll vector 7, i.e., the toll achieves SO at its best-case performance.

2.3.2 Solution Algorithm

We propose a heuristic procedure to solve RTP-1 and RTP-2. The key idea is to use a
differentiable penalty function to remove the constraints of the inner problem involving the
decision variables of the outer problem, thereby transforming a generalized semi-infinite
min-max problem into an ordinary semi-infinite optimization problem. The procedure then
applies a cutting-plane scheme (e.g., Lawphongpanich and Hearn, 2004) to solve a sequence of
ordinary finite optimization problems, each one better approximating the original problem than
its predecessors. In the following, we use solving RTP-1 as an example to describe the
procedure.

We formulate a penalized inner problem as follows:

PWS(r): X, (O VMY ey e Al )
st 2.7)-(2.11)

where M is a sufficiently large penalty parameter. For convenience, we further denote the
feasible region of the above problem as Q and then the objective functionas @(&,7). With a
finite penalty, P-WS(z ) provides an upper bound to the original inner problem. Given a toll
vector 7, assume that & isthe optimal solution to the original problem RTP-1-IN, and let é
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denote the optimal solution to the above penalized problem forome M > 0. It follows tht
(&) =o(E,7) < @(&,7) . The first equality is due to that no penalty is associated with & and

the second inequality is due to the fact that & is feasible to the penalized problem. As M goes
to infinity, P-WS( 7 ) reduces to the original inner problem.

We then formulate a penalized version of robust toll problem RTP-1 as
min max@(&,7) . Because the objective is to minimize the upper bound of total system travel

0<7<T 0 £€Q

time, the solution may reduce the worst-case system travel time as the upper bound is pretty tight
when the penalty parameter is sufficiently large. Note that the penalized robust optimization
problem is an ordinary semi-infinite min-max problem because the feasible region of its inner
problem does not depend on the decision variables of the outer problem. Moreover, it is
equivalent to the following ordinary semi-infinite optimization problem:

P-RTP-1 EDZ';} @
s.t. @ > p(&,7) VEeQ
0<7<7,,
We now discuss a cutting-plane scheme to solve P-RTP-1. Assume that &', &%, ..., &

are elements of Q. Then, a relaxed penalized robust toll problem (RP-RTP-1) can be written as:

RP-RTP-1 mn 4
st o> le ) Vi=1..,n
0<r<r

The RP-RTP-1 problem stated above is simply the original P-RTP-1 problem with Q
approximated by the discrete set Q={¢&*, ..., &"}. Let (?,5) be a global optimal solution to
the above relaxed toll problem. If (%’,55) is feasible to the original P-RTP-1 problem, it is an
optimal solution. To check its feasibility, one may solve P-WS(7), i.e., r?ea})xé(éf). If £,a

global optimal solution to P-WS(7) is such that ¢(&,7) <& ,then (7,a@) is an feasible and
optimal solution to P-RTP-1. On the other hand, if $(&,7) > & , then an improved solution may
be obtained by solving the RP-RTP-1 problem with an expanded discrete set Q U{&}.

Below is a detailed description of the procedure we outlined above:

Step 0:  Solve the WC-BRUE problem without tolls to obtain an initial solution &', Set
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n=1land Q'= {51}.
Step 1: Solve the RP-RTP-1 problem with the discrete set Q" and let (r”,w”)

denote the resulting optimal solution.
Step 2: Solve P-WS(z") and let £“*? denote the resulting optimal solution.

Step 3: If @&, z")<@",stopand 7" isan optimal robust pricing scheme.
Otherwise, set QY =Q" U{#"*P} and n=n + 1. Go to Step 1.

Assume that both (r”,w") and £“*Y globally solve the RP-RTP and P-WS(z")
problems in Steps 1 and 2, respectively. If the above algorithm stops at some finite iteration #, it
is easy to see that (r”,w” is an optimal solution to the original P-RTP problem. When the

algorithm generates an infinite sequence, any of its subsequential limits is optimal to the
P-RTP-1 problem under a set of strong conditions discussed in Yin and Lawphongpanich (2007).
Because it is difficult in practice to verify those conditions and ensure global optimality for
solving RP-RTP-1 and P-WS(z") problems, the above algorithm should be regarded as heuristic
in general.

2.3.3 Numerical Examples

The above algorithm was implemented using GAMS to solve both RTP-1 and RTP-2 for
the nine-node network. We set M to 10,000 based on preliminary results and the upper bound for
the toll on each link to the minimum integer number that is greater than the MC toll. Other
problems parameters are the same as in Section 2.2.4. RTP-1 was solved with « = 0.05, 0.10,
0.15 and 0.20 while RTP-2 was solved with « =0.20 for comparison purpose.

Since the outer problem is a nonconvex quadratic program and the inner problem is a
MPCC, multiple (10 and 4 respectively) initial solutions were used in Step 2 and 3 in order to
obtain better local optimal solutions. The computation time thus increased significantly.
Although not particularly efficient, the cutting-plane algorithm generated reasonable solutions.
When « =0.05, the robust toll from solving RTP-1 was the same as the MC toll (reported in
Table 2-4) while different tolls were obtained for the other three scenarios. Table 2-4 reports the
robust toll vector for « =0.20, denoted as RT1.
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Table 2-4. Pricing Schemes and Their Performances for t

Ry

h Nine-Node Networ

Link No Toll MC Toll RT1 RT2
(1,5) - 113 0.00 2.00
(1, 6) - 6.16 4.43 6.00
(2,5) - 259 0.00 0.00
(2, 6) - 3.62 4.00 0.00
(5, 6) - 0.00 1.00 1.00
(5,7) - 16.88 17.00 15.81
(5, 9) - 5.13 4.37 4.61
(6, 5) - 0.00 0.00 1.00
(6, 8) - 7.37 2.42 7.81
(6, 9) - 0.11 1.00 0.61
(7, 3) - 3.54 0.00 4.00
(7, 4) - 2.01 0.00 3.00
(7, 8) - 0.00 1.00 1.00
(8, 3) - 0.02 0.00 0.00
(8, 4) - 2.50 0.00 3.00
(8,7) - 0.00 1.00 1.00
(9,7) - 3.75 4.00 3.20
(9, 8) - 0.06 1.00 0.00
Best-case system 2309 2254 2306 2254
travel time
Worst-case system 2793 2735 2509 2662
travel time

Figure 2-8 compares the worst-case total travel time with robust tolls resulting from
RTP-1 (RT in the figure), the MC toll and no toll (NT in the figure). When compared to the
situation with no toll, the figure shows that robust tolls reduce the worst-case system travel time
significantly, e.g., the reduction is approximately 10.2 percent when « = 0.20. When compared
to MC tolls, robust tolls have superior worst-case performances when « is large, in particular
when « >0.05. For smaller « , BRUE does not deviate much from PRUE, thereby implying
that the worst-case performances of robust and MC tolls are similar.
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Figure 2-8. Comparison of worst-case total travel times with no toll, robust and MC tolls at
the nine-node network

The solution to RTP-2 with « =0.20 is also reported in Table 3.2, denoted as RT2.
Table 3.2 also presents the best- and worst-case system travel times of MC, RT1 and RT2 with
a =0.20. From the table, RT2 achieves SO at its best-case performance while reducing the
worst-case system travel time from 2793 to 2662, a 4.7 percent reduction. If the full set of
optimistic tolls is considered, a higher reduction rate can be expected. RT2 also dominates MC in
the sense that both tolls have the same best-case performances while the former performs better
against the worst-case scenarios.

The parameter « reflects the level of rationality in travelers’ route choice decision
making, which can be estimated by conducting a stated preference survey. However, given the
fact that the estimate of « can be biased or inaccurate, it makes sense to examine how a robust
toll designed for one particular level of rationality performs at other levels of rationality. In
Figure 2-9, tolls from RTP-1 with o = 0.20 (denoted as RT1) reduces both the best- and
worst-case system travel times significantly for all « values compared with the no-toll case.
Compared with the MC toll, the same toll leads to a superior worst-case performance with
a >0.08 but inferior otherwise. Intuitively, the smaller « is, the more rational travelers’ route
choices are. Thus the first-best tolls are expected to perform well with small « values.
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Figure 2-9. System performances with MC and RT1 at the nine-node network

We further note that although robust tolls are designed to guard against the worst-case
scenarios, implementation of robust tolls actually leads to a more stable system performance in
the sense that the span between the best and worst performances is much narrower. Figure 2-10
displays the difference between the worst- and best-case travel time as a percentage (or fraction)
of the latter. In all three cases (no toll, MC and RT1 tolls), the difference increases as «
increases. However, the difference for the case with the robust toll (see the bottom most graph) is
significantly smaller than the other two for large « . This suggests that there is less variability in
travel time under robust tolls, i.e., the tolls are more effective and reliable at inducing travelers to
use the road network more efficiently, especially when the threshold value is relatively large.
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Figure 2-10. System performances with MC and RT1 at the nine-node network
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3. PRICING STOCHASTIC NETWORKS

3.1 INTRODUCTION

Recognizing that traffic condition is intrinsically stochastic, this chapter considers
stochastic networks where travel times are assumed to be probabilistic and the outcome of
travelers’ route choice is thus uncertain. As before, the demand remains deterministic. In the
literature, some have attempted to model how travelers behave in such an uncertain traffic
environment. The proposed models include, among others, the expected-utility-theory-based
models (e.g., Mirchandani and Soroush, 1987; Yin and leda, 2001), the travel-time-budget
models (e.g., Lo et al. 2006; Shao et al., 2006), the late-arrival-penalty model (Walting, 2006),
and the mean-excess-travel-time model (e.g., Zhou and Chen, 2008). However, most of the
models assume perfect rationality and none has investigated how to price a stochastic network.

This chapter presents an alternative user equilibrium model for stochastic traffic networks
based on the cumulative prospect theory (CPT, Tversky and Kahneman, 1992). Advanced by
psychologists and behavioral economists, CPT provides a well-supported descriptive paradigm
for decision-making under risk or uncertainty. A variety of phenomena and experimental data in
the transportation context, which cannot be explained by the expected utility theory previously,
have been well explained by CPT (e.g., Avineri and Prashker, 2003; Bogers and Zuylen, 2004).
In recent years, CPT has been applied to model travelers’ choices of departure times (e.g., Fujii
and Kitamura 2004; Jou et al., 2008), routes (e.g., Avineri and Prashker, 2004; Viti et al., 2005),
bus lines (Avineri, 2004) and others (e.g., Schwanen and Ettama, 2009). Avineri (2006) was the
first to incorporate CPT in the equilibrium analysis of stochastic networks, and Connors and
Sumalee (2009) presented a general prospect-based user equilibrium model for stochastic
networks, which was further tailored into the case with endogenous stochastic demand and
supply (Sumalee et al., 2009). These previous studies emphasize the strong influence of
reference points on the resulting flow pattern. However, both studies rely on exogenous inputs of
reference points, and no guidance was provided on how the values are derived.

Reference points are important parameters in CPT. In the context of route choice, with
respect to a reference point (time), the realized payoff of a path is framed into either a gain or
loss and its travel prospect can be subsequently determined. Previous studies (e.g., Avineri and
Prashker, 2004) show that travelers will choose paths with maximal prospects. It is thus apparent
that the locations of reference points have a strong influence on the flow pattern. The
prospect-based user equilibrium models with exogenous reference points cannot be applied
without estimating the reference points beforehand. This implies that the resulting
reference-dependence could be regarded as an ad hoc assumption (for discussions in other
domains, see, e.g., Pesendorfer, 2006; Koszegi and Rabin, 2003; Schmidt et al., 2008 and
Schmidt and Zank, 2010.) Moreover, according to Munro and Sugden (2003), evidence shows
that individuals adjust their reference points quickly in response to changes in their endowments.
In the context of route choices, a traveler selects a route in accordance with one reference point.
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The outcome of his or her travel may induce a change in the reference point, which may lead to
further adjustment in his or her route choice, and so on. Therefore, a model with endogenous
reference points is more competent to predict the long-run user equilibrium flow pattern.

This chapter presents a multiclass prospect-based user equilibrium model with
endogenous reference points for stochastic networks where travel times are random and their
distributions are assumed to be known to travelers. It is further assumed that travelers of each
class have a desired on-time arrival probability and develop a capability of budgeting a time to
achieve the probability through their past travel experiences (e.g., Lo et al., 2006). The budgeted
time reflects the travelers’ probabilistic belief they hold in their past experiences on travel times
and can thus potentially serve as a reference point (e.g., Koszegi and Rabin, 2003). More
specially, when they depart from their origin, travelers use the budgeted time as a reference point
to determine the gain or loss of each path based on its travel time distribution, and make their
route choices accordingly. A long-run user equilibrium will be achieved when no traveler can
improve his or her travel prospect by unilaterally changing routes. In this state, the reference
points will remain constant and are consistent with the resulting prospect-based user equilibrium
flow pattern and the corresponding travel time distributions.

For the remainder, Section 3.2 describes basic assumptions of the model, introduces the
computation of travel prospect value using CPT and then presents a descriptive model to
determine travelers’ reference points. Section 3.3 establishes the prospect-based use equilibrium
conditions and formulates them as a variational inequality. Section 3.4 proposes a heuristic
solution algorithm and then presents two numerical examples to demonstrate the proposed model
and algorithm. In Section 3.5, a behaviorally consistent pricing model is developed to determine
the optimal pricing scheme for stochastic networks. A numerical example is provided to illustrate
the proposed model.

3.2 BASIC CONSIDERATIONS

3.2.1 Network Representation and Assumptions

Define G = (N, A) as a strongly connected transportation network with N and 4 being the
sets of nodes and links respectively. Note that the notations of this chapter are different from those
in the previous chapter. Let R be the set of origin-destination (O-D) pairs and ¢, represent travel

demand for O-D pair »e R . Let K, be the set of paths for O-D pair » (“path” and “route” are

used interchangeably in this chapter). For each path ke K,, f* denotes the corresponding path
flow. We further use v, to denote the flow on link a € 4 and v is a vector of link flows of all

links with v, as its elements. More specifically, v:(v1,~~v .-.V‘A‘:)’,Where |o| denotes the

cardinality of a set. The path flows are related to the link flows by v, =>" > 5. f" where
Y, is alink-path incidence whose value is 1 if link a is on path &, and 0 otherwise. Similarly we

use f'to denote a vector of flows of all paths with £ as its elements.
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Let T," denote the stochastic travel time of path & between O-D pair » and T'is a

vector of travel times of all paths. It is assumed that the joint probability density function of path
travel times 7 is known, which is parameterized by link flows v (i.e., the functional form itself is
independent of link flows.) We further denote the marginal cumulative distribution function of
T* as w!, which is also parameterized by v (and thus /). It is noted that the distribution
function may be parameterized by v in a very general sense (Walting, 2006) and two major
factors may contribute to its functional form: stochastic capacity (e.g., Lo et al., 2006) and
stochastic demand (e.g., Zhou and Chen, 2008; Lam et al., 2008). In the situations where the
O-D demands or path and link flows are random variables, the corresponding notations
introduced above represent their mean values. For example, the marginal cumulative distribution
function w* will be parameterized by the average link flows. We further assume that travelers

know the travel-time distributions, and they are homogenous in all aspects except that they may
possess different desired on-time arrival probabilities.

3.2.2 Travel Prospect Values

Given that CPT provides a well-supported descriptive paradigm for individuals’
decision-making under risk or uncertainty, this chapter adopts the theory to describe travelers’
route choices in stochastic networks. In a nutshell, CPT retains the framework of the expected
utility theory but incorporates the following features that have been observed in numerous
behavioral experiments:

1) People distinguish gains from losses before making choices. The payoffs are framed as
gains or losses as compared to some reference points (e.g., Kahneman and Tversky,
1979).

i) The loss looms larger than the gain, i.e., people generally care more about potential
losses than potential gains. At the same time, they are risk-averse over gains and
risk-seeking over losses (e.g., Thaler et al., 1997).

iii) People tend to overweight extreme, but unlikely events. At the same time, they
underweight “average” events (e.g., Camerer and Ho, 1994).

Consequently, CPT can be viewed as an extension to the expected utility theory with the
following three modifications (Tversky and Kahneman, 1992):

1) Replacing the final wealth with payoffs relative to the reference point. As shown in
(3.1), the outcomes ( x ) are converted into gains (Ax > 0) or losses (Ax < 0) relative to
a reference point (x;).

Ax = x—Xx, (3.1)

27



Cenfer for
Muitimodai

Solutions Congestion Mifigation
Lniversity of Florda

ii) Replacing the utility function with a value function to capture individuals’ risk
attitudes. The S-shaped value function, g(x) in (3.2), is illustrated in Figure 3-1. The
parameters « and S measure the degree of diminishing sensitivity of the value
function. Typically, 0< «, £ <1and thus the value function exhibits risk aversion over
gains and risk seeking over losses. The parameter 7>1 is called “loss-aversion”
coefficient, indicating that individuals are more sensitive to losses than gains.

ghﬁ=¥x_%y’ 2 (3.2)

_U(xo_x)ﬁ’ X <X

iii) Replacing cumulative probabilities with weighted cumulative probabilities. One
typical inverse S-shaped weighting function is presented in (3.3) and further illustrated
in Figure 3-2 where p is the cumulative probability level. The parameter » represents

the level of distortion in probability judgment in the decision-making process and

0<y<l.
w(p) = E (3.3)
@7+G—pyf
g w(p)
XJ
X0 X2 X
0 p 1
ion

With the above value and weighting functions, the prospect value of a decision with
stochastic outcomes x can be written as:

PV = J.j:j dW(ZC(X)) g(X)dx+I:— dW(lc—{xF(x)) g(x)dx (34)

where PV is the prospect value and F'(x) denotes the cumulative distribution function (CDF)

of the associated outcome x. Equation (3.4) is a straightforward generalization of the original
discrete formulation proposed by Tversky and Kahneman (1992). See, e.g., Connors and
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Sumalee (2009), for its derivation.

As demonstrated by previous studies (e.g., Katsikopoulos et al., 2002; Avineri and
Prashker, 2004; Zhou et al., 2009), travelers behave as prospect maximizers and the above
framework can be applied to represent their route choices under risk. More specifically,
compared to a reference point, travelers may consider the outcome of a trip as a gain, if the travel
time is less than the reference time; as a loss if otherwise. Moreover, they are observed to present
a diminishing sensitivity with respect to gains and losses. For example, Zhou et al. (2009)
calibrated the parameters of the value function for route choices. The calibrated values, « =0.37,
B =059 and 7n=1.51 are consistent with the above observations.

We now consider a trip between O-D pair » with @, as the reference point. The

relative payoff for choosing a path k can be defined as @, —T". Consequently, the prospect of
path & can be calculated through (3.5) and (3.6).

()= (@, —x)",x<@, (3.5)
ST a-a) x> a, '

Ut = J‘: —dW((Z/)f () g, (x)dx + J‘: _dwll=y, () _d)l/c/f () g, (x)dx (3.6)

where x represents the path travel time; U is the prospect value of path k between O-D pair r;

¥ and " are the lower and upper bounds of the travel time of path & respectively. In this

chapter, the former is assumed to be the free-flow travel time and the latter is the 99.9999"
percentile of the random travel time. Note that U" is a function of v or £, Although travel times

are stochastic, the travel prospects are deterministic.

Consistent with CPT, we assume that travelers base their route choices on the prospect
values and always choose the path with the maximal U?.

3.2.3 Reference Points

This section presents a conjecture on how the reference points are determined in the
context of travelers’ route choices.

We assume that the reference point for a traveler is the time he or she budgeted to ensure
his or her desired on-time arrival probability. The latter depends on his or her trip purpose and
risk-taking attitude. A low desired probability implies that either the trip is not important or the
individual is risk seeking. Travelers are known to be capable of budgeting a longer travel time
for a specific trip to hedge against travel time variability (e.g., Lo et al., 2006). The budgeted
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time reflects their probabilistic belief on travel times based on their preferences, and can thus
potentially serve as reference points (e.g., Koszegi and Rabin, 2003).

Mathematically, suppose that a traveler has a desired on-time arrival probability of p,
the budgeted time for taking path k of O-D pair r, i.e., @, can be written as:

o' = min{a;| Pr(Tj‘ < aJ)Z p} (3.7)
With a continuous travel time distribution, taking the inverse of (3.7) leads to:
o) =¢}(p) (3.8)

where ¢*(-) is the inverse function of (). Notethat ¢/ () is also parameterized by v. In
other words, the budgeted time is the p th percentile of the travel time of path «.

It is assumed that through their past experiences, travelers develop a reference time for
each O-D pair, the time they expect to reserve to guarantee a punctual trip. For route choice with
fixed departure times, the reference time acts as a reference point to separate early arrivals
(earlier than expected) from late ones (later than expected). Since there exist multiple paths
between each O-D pair, the reference time is assumed to be a function of @, i.e., the budgeted

time for each path. One plausible assumption is that the reference time (point) is the minimum of
the budgeted times of all paths, i.e.,

H(p) 2o, VheK, ) (3.9)

@, =mi o'} = max{w

Equations (3.7)—(3.9) are written for an individual traveler of O-D pair . As
aforementioned, travelers may possess different desired on-time arrival probabilities. Travelers
of each O-D pair are thus grouped into M different classes with respect to their desired on-time

arrival probabilities, denoted as p/, j=1,..., M . These probabilities are exogenous variables
and are not difficult to estimate in practice through surveys or interviews. Denote the reference
point of each class as @ /. Same as (3.9), @/ is the solution of the following linear program:

max @/
st. @/ - (p/)<0, VkeKk, (3.10)

The above linear program always admits an (unique) optimal solution. Therefore,
according to the strong duality theorem (see, e.g., Bertsimas and Tsitsiklis, 1997), it is equivalent
to the following linear system:

1- ZkeK, /wj =0
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7/ =Y, A ) =0
A7 >0, VkeKk,
$i(p))-@! 20, VkeK,

where 2*7/is the dual variable or the Lagrangian multiplier associated with (3.10).

Given a link flow pattern v, the parameterized y* and ¢* are determined. The @

¥

part of the solution pair, i.e., (@, 1), to the above system is the reference times (points). The

prospect value for each class of users choosing path & between O-D pair r, denoted as U*/, can

be computed via (3.5) and (3.6). Given that users will choose the paths with the maximal
prospect, another link flow pattern, denoted as v’, can be determined. It is noted that the
reference points determined above are based upon the link flow pattern v, and thus may not be
consistent with the new link flow pattern v’. The points will be further adjusted and the next
section presents a prospect-based user equilibrium model where the resulting reference points are
consistent with the equilibrium flow pattern.

3.3. PROSPECT-BASED USER EQUILIBRIUM MODEL
3.3.1 Prospect-Based User Equilibrium

With the above consideration, a long-run user equilibrium will be achieved where for
each class of travelers between each O-D pair, the travel prospect values of all utilized paths are
equal, and are the same or greater than the prospect value of any unutilized path. No traveler can
thus further increase his or her travel prospect by unilaterally changing routes. At equilibrium,
travelers will stop adjusting their reference points, which remain constant and are consistent with
the user equilibrium flow pattern and the corresponding travel time distributions.

Mathematically, the prospect-based user equilibrium conditions can be expressed as
follows:

fs0 UY=nx/
, VkeK,, reR, j=1...M (3.11)

=0 U <n/
where f*/is the flow on path & by traveler class j and 7/ = rpz;t{x{Uf’f}.

3.3.2 Model Formulation
The above prospect-based user equilibrium conditions can easily be represented as the

following nonlinear complementarity system. For completeness, we repeat some previously
presented equations here.
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fH(x) ~U)=0, VkeK,, reR, j=1...M
x/-U >0, VkeK,, reR, j=1...M
f* >0, VkeK,, reRr, j=1...M,

Zkek,,frk'j—q;f=0, VreR,K j=1...M
M .

Va - Z/:l ZFER ZkeK, é‘;i’f‘rk’/ ! va € A
1=, A/ =0, VreR,j=1l...M
@)=Y A p))=0, VreR,j=1.. .M
A7>0, VkeK,, reR, j=1...M
CH(p)-@! 20, VkeK,, reR, j=1..,M
gi(x)={

(@] —x)",x<a@] .
, L, VreR, j=L...M (3.21)
—n(x—wj)ﬂ,x>wj

j K ik —wk .
Uk,j :J‘ r dW((Wr (X)) g{.(x)dx+'|.’v— dW(l l//r ()C)) gj (x)dx,
" t dx ' o/ dx '

VkeK,, reR, j=1...M (3.22)

where ¢/ is the demand for traveler class j between O-D pair 7. In the above, (3.12)-(3.16)

define user equilibrium flow patterns; (3.17)-(3.20) determine reference points and (3.21) and
(3.22) specify the calculation of the prospect value of each path.

The above conditions can be formulated as the following variational inequality:

G(X")X-X")20, ForallX A (3.23)
, (S -U
With X_(ﬁ]’ G(X)=( ; j and

A={X|3 S =g r i 1=3 A =0,59r, j; £}, 257 20,97k, j}

I

where 4 is a column vector of A/ whose dimension is |K,|x|R|xM ; U isa column vector

of U and ¢ isacolumn vector of ¢*(p’) withthe same dimension.

The equivalence between the variational inequality and the user equilibrium conditions
(3.12)-(3.22) can be easily established by examining the optimality condition of the linear

program r)r(n/(l G(X )X . Note that the above variational inequality does not involve 7 and .

U in the above formulation is a function of fand A, since ~ and @ are dual variables and at
optimality @/ -%"  A;/¢f(p/)=0. Therefore, the corresponding limits of the integrals in U

can be replaced by ZkeK_ A (p)) . At the same time, ¢ is parameterized by £, more
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specifically as ¢* (f, p’)
3.3.3 Model Property

As aforementioned, the marginal density function of the travel time, y* , is
parameterized by /. We further assume that the function is continuous with respect to f.
Consequently, the inverse function ¢ is continuous with £, With the value function and the
probability function we introduced above, i.e., (3.21) and (3.3), it can be proved that G(X) is

continuous with X (see Appendix A for the proof). More specifically, U"/ is continuous with f

and A,and ¢’ is continuous with £, Given that A is compact and convex, there exists a
solution to the above variational inequality (e.g., Harker and Pang, 1990).

We did not establish the uniqueness of the solution since G(X) may not be strictly
monotone on A due to the complicated function for the prospect values.

3.3.4 Connections with Models in the Literature

The proposed prospect-based user equilibrium model incorporates some user equilibrium
models in the literature as special cases. Particularly with a single class of users,

e Let p.=0, w(p)=p, n=1and F=1 in g, (x) definedin (3.5), then the
prospect-based user equilibrium model reduces to the standard user equilibrium model in a
stochastic network where travelers are assumed to make their route choice based on the
average travel times;

e Let p =0, w(p)=p,thenthe model reduces to the expected-utility-theory-based model
proposed by Yin and Idea (2002);

e Let @, be fixed, then the model reduces to the CPT-based user equilibrium model
formulated by Connors and Sumalee (2009);

e Letw(p)=p and the reference point is with respect to each path, i.e., »* defined in (3.8),

and g (x) = -, then the model reduces to the travel time budget model developed by Lo
et al. (2006).

- X, x<w,

T

e Let w(p)=p, gr(x)={ and @, be fixed, then the model

reduces to the late arrival penalty model proposed by Watling (2006).

—x+n(@. —x), x>,

e Letw(p)=p and the reference point is with respect to each path, i.e., »* defined in (3.8),
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k < k

, X<, ]
and g’ (x) ={ ' L then the model reduces to the mean excess travel time model
-X, X>,

developed by Zhou and Chen (2008).

The above value functions reveal that the models by Watling (2006) and Zhou and Chen
(2008) emphasize the late arrival penalty. Although both early and late arrivals are treated as
penalty in the departure time choice models (e.g., Small, 1982), in route choice with given
departure times, early arrival can be viewed as a gain because an earlier arrival implies less
travel time than expected as well as other reduced costs associated with the time saved.

3.4 SOLUTION ALGORITHM AND NUMERICAL EXAMPLES

3.4.1 Solution Algorithm

The proposed variational inequality is a path-based formulation with non-additive cost
structure (e.g., Lo and Chen, 2000). Although many existing algorithms to variational inequality
may be applied to solve it, the complex form of the travel prospect makes them difficult to
implement. In light of this, below we present a heuristic iterative algorithm to solve the
variational inequality, with path enumeration. For large networks, another layer of column
generation iteration should be added to avoid the cumbersome path enumeration (e.g., Lo and
Chen, 2000; Yin and leda, 2001).

The algorithm is briefly described as follows:

Step 0: Initialization. Set [ =1 and specify an initial path flow pattern £ and the
convergence tolerance ¢ .
Step 1: Determination of reference points. Based on the current flow pattern 7@

calculate the link flow pattern, and the path travel time distributions. Further
determine the reference points that satisfy the constraints (3.17)-(3.20).

Step 2: Calculation of prospect values. Calculate the travel prospect value for each path
according to (3.21) and (3.22).

Step 3: Convergence check. If f(l)T .G (X)| < &, then stop. Otherwise, go to Step 4.

Step 4: Path flows updating. Find the search direction ¢’ and step size s based on
the current flow and prospect value patterns, and update the path flow pattern as
U = 0 4L 500 Set [=]+1, go to step 1. For the search direction, let

gV =f0_ 0O 7O jsan auxiliary flow pattern with £5/0 =g/ [m/ if
Uk = 770 and 0 otherwise, where m/ is the number of paths whose
prospects are observed to be the maximal. The step size is set as follows:

s = max(L ,104)
100/
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As described, the algorithm is essentially a method of successive average, which
demonstrated a good convergence property in our numerical experiments. Other methods, such
as the flow-swapping algorithm proposed by Huang and Lam (2002) and Yin et al. (2004) can
also be applied to solve the problem. The algorithm is proved to be stable if the sequence of
swapped flows is selected properly.

3.4.2 Numerical Examples

We first present a simple example to illustrate the proposed model. In this example, the
proposed model is tailored to a specific case where the total O-D demand is assumed to be the

source of uncertainty, following a normal distribution. More specifically, Q. ~ N(q,,(cv-q,)?)
where Q. is the stochastic O-D demand and cv denotes the coefficient of variance of the

demand. It is further assumed that the path flows also follow normal distributions and have the
same coefficient of variance with the O-D demands. The link travel time function is assumed to

be the widely used BPR function, i.e., ¢, =¢°(1+ S, (v, /C,)"), where ¢ is the free-flow travel

timeon linke and C, isthe link capacity. According to Shao et al. (2006), the distributions of
path travel times can be derived as:

T ~N(@t, (")), VkeK,, reR

where ¥ and (&*)? are the mean and variance of the path travel time, which can be further
calculated via the following equations:

th = zaeﬁj{t;’ +1] (ﬂ;n i(?](aZ)i(va)"’i(i—l)!!]

@) =l

(gk,t)ZZZ 5]{ [tO ﬂO ]2_
r acAa,r| “a (Ca)n

{22 (l?nj(g;)f ()2 (i 1)”_(% C‘lj(g: ) (v,)" (i —1)!!}2 J

i=1l i=1

(821})2 = zreR ZkeK,. 5;{,)” (gl]"{’f )2 = ZreR ZkeK, 55,}’ (CV ’ frk)2

where (g!)? and (¢*/)? are the variances of the link and path flows respectively. As

mentioned in Section 2.1, v, and £’ denote the means of link and path flows. In essence, the

above derivation determines how the path travel time distribution is parameterized by the
average link flow pattern.

A toy network shown in Figure 3-3 is used in this example. There are four links between
a single O-D pair (1-3).
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Figure 3-3. Four link network

The mean O-D demand and the coefficient of variance are assumed to be ¢, =150 and
cv=0.1. The coefficients of the BPR function are A, = 0.15and n=4. Link characteristics are as

follows: 7)=15, 19=20, t5=15, ¢{=10, C;=90, C,=90, C,=100and C,=70.

The parameters of the value function in (3.5) are assumed to be « =0.37, £=0.59 and
n=1.51, and the probability weighting function (3.3) is used with y =0.74. We further assume
that there are five classes of travelers whose demand portions and desired on-time arrival
probabilities or OTAP, i.e., p/ in (3.10), are given in Table 3-1.

Table 3-1. Traveler Characteristics

Traveler Class 1 2 3 4 5
OATP (%) 40 50 60 70 80
Demand portion (%) 20 50 10 10 10

As previously stated in Section 3.2.1, in the case of stochastic O-D demand, the path
flows are also stochastic. The path flow solutions generated from the prospect-based model are
the mean values. The results of reference points (z/ in Equation 3.10) and (average) path flows
are presented in Table 3-2. As expected, class 1 of travelers with a lower desired on-time arrival
probability will budget a less amount of travel time and thus possess a smaller reference point.
Consequently, they prefer path 1, which offers a shorter mean travel time with a larger degree of
variability. In contrast, classes 4 and 5 are more risk averse and thus have larger reference points.
Path 3 is a safer choice for them. For class 2, paths 1 and 2 offer the same prospect values while
paths 1 and 3 are indifferent for class 3. Those results are consistent with the CPT-based
behavioral assumption and intuitively correct.
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Table 3-2. Prospect-Based User Equilibrium Path Flow Pattern

Network topology

Path number 1 2 3 4
Link Sequence (1.3) (1,4) (2,3) (2,4)

The proposed model

Path travel time characteristics

Average travel time 3243 30.84 35.08 33.49
Standard deviation 5.31 9.07 0.12 7.36
Path choice behaviors of different classes
Class OTAP Reference Path flow
point
1 0.4 28.54 - 30.0 - -
2 0.5 30.84 0.8 74.2 - -
3 0.6 33.14 8.0 - 7.0 -
4 0.7 35.14 - - 15.0 -
5 0.8 35.18 - - 15.0 -
Total path flows 8.8 104.2 37.0 -

Table 3-3 compares the link flow solution to the proposed model with those from the
prospect-based user equilibrium model with exogenous reference points and the standard user
equilibrium model. For the former, two reference points, 25 and 30, are used, generating
substantially different link flow patterns. It reconfirms that the determination of reference points
is critical for applying the model. Note that the link flows with the reference point of 30 match
closely with those from the proposed model. However, it is a formidable task to determine
appropriate reference points beforehand, particularly when the flow pattern is unknown. Lastly,
it can be observed that under the standard user equilibrium, the link flow pattern is significantly
different than the one from the proposed model. The difference is certainly due to the different
behavioral assumptions used in these models. The standard user equilibrium model does not
consider travelers’ risk-taking preferences. Therefore, if the travel time variability differs
substantially among paths connecting the same O-D pair, the solution from the proposed model
tends to differ from the standard user equilibrium flow pattern.

Table 3-3. Comparisons of Link Flow Patterns from Three Different UE Models

Link number 1 2 3 4
Prospect-based model with
) 113.0 37.0 45.8 104.2
endogenous reference point
Prospect-based model with exogenous
. 140.6 9.4 34.1 115.9
reference point (@, =25)
Prospect-based model with exogenous
. 112.3 37.7 45.2 104.8
reference point (@, =30)
Standard user equilibrium model 140.2 9.9 35.1 115.0
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The second numerical example below is to demonstrate the applicability of the proposed
model and algorithm to larger networks and further explore the network characteristics under the
prospect-based user equilibrium. A network with 13 nodes and 19 links from Nguyen and
Dupuis (1984), as shown in Figure 3-4, is used in the numerical example.

Figure 3-4. Nguyen and Dupuis’s network

There are four O-D pairs in the network, 1-2, 1-3, 4-2 and 4-3 and the numbers of paths
between those O-D pairs are 8, 6, 5 and 6, respectively. The O-D demands are deterministic and

givenas ¢, ,=660, ¢, 3=495, q, ,=412.5, q, ;=495. The average link travel time function is

assumed to be the BPR function. Table 4 presents the link characteristics of the example
network.

Considering day-to-day traffic incidents, travel times are assumed to be stochastic (e.g.,
Yin and leda, 2001; Yin et al., 2004). The marginal distribution of the travel time is assumed to
be the following normal distribution:

T ~N(t*, o -t"), VkeK, , reRr (3.24)

In the above, the mean is the average travel time of path &, determined through the BPR
link travel time functions, and the variance is o -, where o is a variability parameter. In
this numerical example, we first assume the variability parameters for those 25 paths in the
network are o =0, =[0.5, 0.01, 0.15, 0.2, 0.1, 0.3, 0.001, 0.01; 0.3, 0.01, 0.3, 0.5, 0.02, 0.2, 0.1,
0.4, 0.001, 0.35, 0.02; 0.6, 0.1, 0.3, 0.05, 0.01, 0.1]".
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Table 3-4. Link Characteristics of the Example Network -

. Free-Flow . . Free-Flow .

Link Travel Time Capacity Link Travel Time Capacity
1 7 300 11 9 500
2 9 200 12 10 550
3 9 200 13 9 200
4 12 200 14 6 400
5 3 350 15 9 300
6 9 400 16 8 300
7 5 500 17 7 200
8 13 250 18 14 300
9 5 250 19 11 200
10 9 300

The parameters of the value function and the probability weighting functions are the
same as in the above example. We further assume that each O-D pair has the same 11 classes of
travelers whose desired on-time arrival probabilities or OTAP and demand portions are given in
Table 3-5.

Table 3-5. Traveler Characteristics

Traveler

1 2 3 4 5 6 7 8 9 10 11
Class

OATP (%) | 40 45 50 55 60 65 70 75 8 95 999

Demand

: 16 29 283 141 161 99 83 73 7 29 16
portion (%)

Solutions for two selected O-D pairs, 4-2 and 4-3, are presented below, and results for the
other two O-D pairs are similar. As shown in Figure 3-5, travelers with different desired on-time
arrival probabilities have different reference points and thus different prospect values for each
path. Consequently, their route choices are different, as presented in Tables 3-6 and 3-7.
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Figure 3-5. Prospect values of paths between O-D pairs 4-2 and 4-3

Table 3-6. Prospect-Based User Equilibrium Path Flow Pattern for O-D Pair 4-2 (o = o;)

Path characteristics

Path number 15 16 17 18 19
(Link sequence) (4,12, (3,5,7, (3,5,7, (3,5,8, (3,6,12,
14,15) 9,11) 10,15) 14,15) 14,15)
Mean travel time 89.50 88.63 90.35 91.33 89.91
Variability parameter 0.1 0.4 0.001 0.35 0.02
Time variance 8.95 35.45 0.09 31.96 1.80
Path choices
Class | OTAP Refer_ence Path flow
point
1 40% 87.12 - 6.60 - - -
2 45% 87.88 - 11.96 - - -
3 50% 88.63 59.48 57.26 - - -
4 55% 89.38 51.35 - - - 6.81
5 60% 90.14 - - - - 66.41
6 65% 90.43 - - 24.71 - 16.13
7 70% 90.51 - - 34.24 - -
8 75% 90.55 - - 30.11 - -
9 85% 90.66 - - 28.87 - -
10 95% 90.85 - - 11.96 - -
11 99.9% 91.28 - - 6.60 - -

As shown in Table 3-6, paths 15, 16, 17 and 19 of O-D pair 4-2 are utilized by different
traveler classes in the user equilibrium. Among these four paths, path 16 has the shortest mean
travel time but the largest variance while path 17 has the longest mean travel time but the
smallest variance. Therefore, travelers with lower desired on-time probabilities and reference
points, i.e., classes 1 and 2, choose path 16 over 17. In contrast, travelers with larger reference
points, i.e., classes 7, 8, 9, 10 and 11, prefer path 17 to 16. For class 3, paths 15 and 16 offer the
same prospect values. Similarly, paths 15 and 19 are both used by class 4 users while paths 17
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and 19 are indifferent to class 6 users. Similar observations can be made from the path flow
pattern between O-D pair 4-3 in Table 3-7. Particularly, path 20—the shortest path with largest
variance—is not utilized by any user class. These observations are consistent with the ones from
the first example. In general, if a trip is not important or the individual is risk-seeking, he or she
tends to reserve less time and prefers a shorter path with greater uncertainty. On the other hand,
for an important trip or a risk-averse traveler, a longer but more deterministic path is more
preferable.

Table 3-7. Prospect-Based User Equilibrium Path Flow Pattern for O-D Pair 4-3 (o =0;)

Path characteristics

20
(4,13,19) 21 22 23 24 25
(Lﬁﬁﬂ‘sr;:?ebnege) (4,12, (3,6, (3,57, (358 (36,12,
14,16) 13,19) 10,16) 14,16) 14,16)
Mean travel time 108.69 109.74 109.11 110.60 111.58 110.16
Variability parameter 0.6 0.1 0.3 0.05 0.01 0.1
Time variance 65.22 10.97 32.73 5.53 1.12 11.02
Path choice
Class | OTAp Reference Path flow
point
1 40% 106.65 - - 7.91 - - -
2 45% 107.68 - - 14.35 - - -
3 50% 108.69 - 34.89 105.19 - -
4 55% 109.71 - 69.79 - - - -
5 60% 110.56 - 79.69 - - - -
6 65% 111.02 - 49.00 - - - -
7 70% 111.48 - 41.08 - - - -
8 75% 111.98 - 36.13 - - - -
9 85% 112.67 - 26.54 - - 8.11 -
10 95% 113.32 - - - - 14.35 -
11 99.9% 114.84 - - - - 7.92 -

The travel time variability parameter partially represents the stochastic level of the
network. A lower value of o indicates that the network is less variable. To investigate the
impact of o on travelers’ route choices, we set o =0o,=0.50,. Again, we focus on O-D pairs
4-2 and 4-3. Figures 3-6 and 3-7 compare the equilibrium reference points and travel prospects
of the 11 classes under different o (o; or o,). The results seem surprising. With a smaller
value of o, classes 1 and 2 between O-D pair 4-2 turn out to reserve more times, which leads to
higher travel prospects, while classes 4 to 11 between O-D pair 4-2 reserve less time and the
resulting travel prospects can be higher or lower (see Figure 3-6). The results are actually
consistent with the trend when o approaches zero. In that case, the reference point and
prospect curves should become flat and the multiclass prospect-based user equilibrium reduces to
a traditional single-class user equilibrium. Similar results are observed for O-D pair 4-3 (see

Figure 3-7).
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Figure 3-6. Equilibrium reference points and travel prospects between O-D pair 4-2
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Figure 3-7. Equilibrium reference points and travel prospects between O-D pair 4-3

To scrutinize the impact of the level of stochasticity on travelers’ route choices, we
present the flow pattern between O-D pair 4-2 with o =o, in Table 3-8. Comparing Table 3-8
with 3-6, we observe that travelers of some classes change their route choices, particularly for
those classes who utilized two paths originally. Taking class 3 for example, more travelers
choose path 16 when o decreases. The same is true for classes 4 and 6. For O-D pair 4-3, paths
20 and 23, which are not utilized before, become acceptable for some classes when the travel
time variability is smaller.
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Path characteristics

Path number 15 16 17 18 19
(Link sequence) (4,12, (3,5,7, (3,5,7, (35,8, (3,6,12,
14,15) 9,11) 10,15) 14,15) 14,15)
Mean travel time 89.17 88.59 89.76 90.59 89.46
Variability Parameter 0.05 0.2 0.0005 0.175 0.01
Time variance 4.46 17.73 0.04 15.86 0.89
Path choice
Class | oTap  Reference Path flow
point
1 40% 87.53 - 6.60 - - -
2 45% 88.06 - 11.96 - - -
3 50% 88.59 50.92 65.78 - - -
4 55% 89.12 56.26 - - - 1.86
5 60% 89.66 - - - - 66.36
6 65% 89.83 - - 15.04 - 25.77
7 70% 89.87 - - 34.21 - -
8 75% 89.90 - - 30.11 - -
9 85% 89.98 - - 28.87 - -
10 95% 90.11 - - 11.96 - -
11 99.9% 90.42 - - 6.60 - -

We now examine the system performance under the prospect-based user equilibrium. For
this purpose, three measurers, i.e., total reserved time (TRT), total (mean) travel time (TTT) and
total travel prospect (TTP), are defined as follows:

IRT =3, X5u@]q]
_ M gk
ITT = ZreR ZkeK,. Zj=l‘f; jt”

TP =3, 024

The above three measures are computed in both scenarios, and the results are compared
in Table 3-9. Some would expect a better system performance when the level of stochasticity
decreases. Interestingly, as shown in Table 3-9, although the total reserved time decreases and
the total travel prospect increases as expected, the total travel time increases. Apparently, travel
times of some classes increase as the level of stochasticity decreases.
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Table 3-9. Comparisons of System Performances

TRT TTP TTT
c=0y 1.9577e+005 -970.9208 1.9496e+005
0=0,=050; 1.9574e+005 -669.6350 1.9512e+005

3.5 BEHAVIORALLY CONSISTENT CONGESTION PRICING

To make pricing more efficient and effective, users’ behavioral responses to pricing
signals should be encapsulated into the pricing models. A number of behavioral studies have
been undertaken to model how users respond to congestion pricing (e.g., Saleh and Farrell, 2005).
However, the proposed modeling systems are often too complex to be incorporated in the pricing
models. The gap between empirical behavioral models and the behavioral assumptions adopted
in the pricing models is growing, and the challenge to bridging it is to seek a right balance
between behavioral realism in and computational tractability of the pricing models.

The pricing model presented below represents one of the first attempts to develop more
behaviorally consistent pricing models, where the prospect-based user equilibrium model
presented above is applied to capture travelers’ bounded rationality in response to the pricing
signals.

3.5.1 Pricing Model Formulation

Travelers’ route choice behaviors in the presence of tolls can be very complicated, and
behavioral experiments are needed to gain a better understanding. However, this is beyond the
scope of this chapter. In the following, we present two distinct behavioral conjectures and
develop the pricing models to determine link-based tolls accordingly.

The first conjecture is that in the route choice travelers always view toll as a sure loss and
consider the outcome as a gain only when the travel time they save can pay for the toll. With this
conjecture, the reference points remain the same as in the no-toll case, and can be determined by
(3.17)-(3.20). In other words, travelers still reserve a certain travel time based on travel time
distributions, and this reserved time serves as the reference point in evaluating the outcome
(generalized travel cost) of their route choice. The value function can thus be written as follows:

g’ —F —x)* x<@! -7*
( r ¥ x) x ¥ r (3'25)

k

”

800 = {

~-nix+7f @Y x>w/ -1

where 7' is the toll rate, in the unit of time, imposed on path k between O-D pair ,and is the

sum of the tolls on the links that compose the path. Consequently, the prospect can be calculated
as follows:
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~ . @) -k k . ik . — k ) i
Urk,] =J‘k' fMg"f]/(x)dx_{_J"_ k_Mz(éf’J(x)dx (326)
it dx @ dx

Another plausible assumption is that travelers treat tolls essentially the same way as
travel times. Through day-to-day learning, they identify the distribution of the generalized cost.
The reference point is no longer the minimum p th percentile travel time for an O-D pair but

rather the minimum p th percentile generalized travel cost. We denote a generalized travel cost
as T' =T +7", and the marginal distribution function of the generalized travel cost as 7",

which is in the same shape as " with a shift to the right by a distance of z*. With the above

behavioral conjecture, the new reference points and the travel prospect values are written as
follows:

1-Y A/ =0, VreR,j=1...M (3.27)

6/ =X ) +el) =0, FreR =1 M (329)

ﬂf’jZO, VkeK, 6 reR, j=1... M (3.29)

Y+ -a! >0, vreR, j=1..M (3.30)

N (@ —x)",x<a/ .

gl(x) = N ., VYreR j=1...M (3.31)
-n(x-a!)’ x> a’

AL ) 7k : ihack —yt .
ot =7 PO gy [ - DOV g g,

VkeK, reR, j=1...M (3.32)

Note that both conjectures assume that travelers develop a good knowledge of the tolling
structure during their day-to-day travels because the tolling structure is fixed and remains
unchanged for a significant amount of time, say, one year.

To enhance the system performance, we seek a link toll pattern that either maximizes the
total travel prospect or minimizes the total (expected) travel time. The optimal pricing model can
be formulated as:

CP-1:
L 3 YAl or min Y S DS
st 1 (;z-,—U;‘f)zo VkeK., reR, j=1...M (3.33)
7 U >0 VkeK,, reR, j=1...M (3.34)
(3.14)-(3.20)

(325) (326)
7! _Z f T, VkeK,, reR (3.35)
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a

CP-2:
#lg! i M rkj ke
Tfrrr‘%xﬂ,w ZreR Z/ 17%r q, or (T’fg;]’!}r’]ﬂ’é)ZreR ZkeK, Zj:lf’ t”

st (3.14)-(3.16) and (3.27)-(3.36)

Both CP-1 and CP-2 are mathematical programs with complementarity constraints, a
class of optimization problems difficult to solve because the problems are generally non-convex
and violate the Mangasarian-Fromovitz constraint qualification at any feasible point (see, e.g.,
Scheel and Scholtes, 2000). Compounding the difficulty is the calculation of travel prospect
values, which requires numerical integration.

3.5.2 Solution Algorithm

In view of that derivative-based methods may not be suitable to solve CP-1 or CP-2, this
chapter adopts a simple derivative-free algorithm, the compass search, to solve the formulations
for an illustration purpose. The compass search is among the earliest derivative-free algorithms
developed (Kolda et al., 2003). The basic idea is to evaluate the objective function at an adjacent
grid point defined by the coordinates and a certain grid size. If an adjacent grid point is a better
solution, it then becomes the new iterate. If all the adjacent points are not better than the current
solution, the grid size is reduced and the evaluation procedure will be repeated with the newly
defined grid. The process continues until no better adjacent grid points can be found when the
grid size is sufficiently small. Intuitively, the algorithm guarantees local optima. Many other
derivative-free algorithms, such as the sequential simplex method (Nelder and Mead, 1965), are
also applicable to CP-1 or CP-2. However, the compass search has been proved to be more
reliable than others, although it is sometimes slow (Kolda et al., 2003).

Applying the compass search method to our pricing models, we evaluate a certain toll
pattern by solving a tolled prospect-based user equilibrium model. Adjacent grid points are
defined as toll patterns with only one link toll different from the current pattern by a
predetermined grid size. The algorithm is described as follows:

Step 0: Initialization. Let D be the set of coordinate directions. D ={te, |i=12,.]4l},

where e, is the i unit coordinate vector in R Select an initial link toll pattern

7°, an initial grid size parameter A, and a convergence criterion ¢ . Set/=0.
Step 1: Evaluation of adjacent grid points. If there is some d, € D such that the new

toll pattern ' +A'd, is feasible and leads to a better objective function value
(system performance), then set 7' =z’ +A'd,, A™ =A',1=1+1, and repeat
step 1.

Step 2: Convergence check. \f every '+ A'd, isinferiorto ¢’ (including infeasible
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. a 1
toll pattern), then compare A" with ¢.1f A >¢, set A”=EAI, =7

/=1+1, and go to step 1. Otherwise, stop.
3.5.3 Numerical Example

CP-1 with the objective function of minimizing the total (expected) travel time is solved
for Nguyen and Dupuis’s network as shown in Figure 4 and Table 3. For simplicity, we consider
one single class of travelers with a desired on-time arrival probability of 90 percent. The
variability parameter in the path travel time distribution is set to be o;. The parameters of the

value function in (3.25) are assumed tobe o= £=0.52 and 7 =2.25 and another widely
used probability weighting function derived by Prelec (1998), i.e., w(p)= exp(— [— |n(p)]7), IS
used in this example with » being 0.74.

Table 3-10 presents the resulting optimal toll pattern (in the unit of time) and the
corresponding tolled user equilibrium flow pattern. The total expected travel time is reduced
from 201527.3 to 193831.4, a 3.82 percent reduction. Comparing with the system optimum
where the total (expected) travel time is 193823.5, the pricing scheme achieves 99.90 percent of
the possible reduction for this particular network. Figure 3-8 is a convergence plot of the
compass search algorithm. The algorithm finds a good solution quickly but spends a lot of
resource in verifying the final solution.

Table 3-10. Optimum Toll Pattern and the Tolled Prospect-Based User Equilibrium Flow

Link Toll Rate Link Flow Link Toll Rate Link Flow
1 0.00 700.85 11 1.00 706.46
2 1.00 454,15 12 0.00 580.81
3 0.00 464.08 13 4.00 360.76
4 5.02 443.42 14 0.00 617.18
5 5.00 666.77 15 0.00 366.04
6 0.00 498.16 16 0.00 629.24
7 1.00 701.03 17 0.00 70.62
8 0.00 36.37 18 1.00 383.53
9 0.00 322.93 19 1.00 360.76
10 1.00 378.09

Table 3-11 further displays the detailed path flow pattern for O-D pair 1-3 and the
corresponding path travel time, toll rate, and prospect value. The results illustrate that the
prospect-based user equilibrium conditions are satisfied. Path 13 is not utilized largely due to its
poor reliability although it is toll free. Path 9 is not utilized either although it is among the most
reliable paths. With a relatively long travel time, a small standard deviation and a non-ignorable
toll rate, a traveler would rarely experience a gain from using this path. On the other hand, path
10 with the longest travel time is utilized largely due to a low toll rate and a reasonable standard
deviation. Similar results can be observed for other O-D pairs, which demonstrate that travelers
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Figure 3-8. Convergence plot

Table 3-11 Tolled Prospect-Based User Equilibrium Path Flow Pattern for O-D Pair 1-3
(o0=0y)

Path Number 9 10 11 12 13 14
(Link Sequence) (2,7,10, (2,8,14, (15,7 (1,5,8, (1,6,12, (1,8,
q 16,17) 16,17) 9,16) 14,16) 14,16) 13,19)
Mean Travel Time 103.44 107.24 98.73 102.53 104.71 102.28
Travel Time
Standard Deviation 2.13 21.65 1.06 32.23 52.36 32.18
Path Toll Rate 3.00 1.00 6.00 5.00 0.00 5.00
Prospect -5.79 -5.56 -5.56 -5.63 -5.82 -5.56
Path Flow 0.00 35.09 99.15 0.00 0.00 360.76
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Appendix A: Continuity proof of G(X)

G(X +AX) - G(X)
_ —U(f;Af,i;Al)j_(—UEf,)ﬂ)j
cUf +4f s\f
—U(f+Af,i+A/1)J_(—U(f,l+A/1)j
$(f+2/) ¢(f)

(Al)

)

It is assumed that i is continuous with respect to £, then ¢ is continuous with respect to £ i.e.

lim| (7 +4/)-¢(f)I=0.

Consider the first two items in (A1). Let z/(f,1) Z ﬂ"’fg“r"(f,pj),we have
U(f +Af, A+A2)-U(f, A+AL)

:J‘t(f+Afﬂ+Aﬂ dw( (f+Af x)) (f+Af,/1+A/1,x)dx J~(fl+Al dw( (f X)) (f,ﬁ-i—Aﬂ,,x)dx

dx

- a’w( - dW(

-Lt(f+Af,/1+M») ;{JFAf = gl + & A+ AL, x) - -[(f A+A2) dx — gUf A+ A
. r(f'MM)[dW(V/(f+Af’x))g(f+Af,/1+A/l,x)—wg(f’ﬂ"'Aﬂ’x)}dx
‘ dx dx
N I((/f;ij;m dW(W(J; ;, Af ) g(f +Af, A+ AL, x)dx

. J-z(f f )[_dw(l_l/l(f+Af’x))g(f+Af,,1+A,1,x)__dw(l_‘/’( ’X))g(f,l-FAl,x)}dx
z( f+Af ,A+AL dx dx

2(f+8f A+A2) — dw(l— ‘//( 1, x))
+ L(/,/HA).) dx g(f, A+ A4, x)dx

In the above, the right-hand side approaches zero when Af is arbitrarily small. Therefore,
Alfi_m0|U(f +Af,A+AL)-U(f,A+A1)=0. For the last two items in (A1), it can be proved

similarly that AIlimO|U(f,/1)— U(f,A+A1)=0. Therefore, U is continuous with respect to fand
A.

This completes the proof that AI)EmO|G(X +AX) - G(X)| =0.
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4 CONCLUDING REMARKS

The report presents methodologies to proactively account for travelers” boundedly
rational route choice behaviors in urban transportation networks and determine pricing strategies
that are based on more realistic behavioral assumptions and can relieve congestion more
effectively. The investigation considers both deterministic and stochastic networks.

For deterministic networks, this report provides mathematical definitions of BRUE based
on path and link flows. The set of BRUE flow distributions is non-empty and generally
non-convex. Robust pricing models are formulated to minimize the maximum system travel time
realized from the set of tolled BRUE flow distributions. Numerical experiments demonstrate that
system performance may vary substantially within the set of BRUE flow distributions and the
proposed robust pricing models are able to guard against the worst-case scenario effectively.

For stochastic networks, this report uses the cumulative prospect theory to model
travelers’ route choice behaviors under risk and develops a prospect-based user equilibrium
model. This model incorporates the determination of reference points based on a premise that the
point for an individual is the time he or she budgeted to ensure his or her desired on-time arrival
probability. The model is flexible and general. By changing the specification of the value and
weighting functions and the determination of reference points, the proposed prospect-based
model reduces to a variety of user equilibrium models proposed in the literature. Applying the
proposed prospect-based user equilibrium model to capture travelers’ response to pricing signals,
this report also develops a pricing model to maximize the total travel prospects or minimize the
total (expected) travel times. To describe travelers’ route choice behaviors under uncertainty and
in the presence of tolls, two hypotheses are proposed. The pricing scheme for this model is based
on more realistic behavioral assumptions and thus more likely to achieve the expected outcome.

Traffic congestion is one of the most severe problems that threaten the economic
prosperity and quality of life in many societies. According to a report from Texas Transportation
Institute, it caused approximately a loss of $87.2 billion in 2007 in the urban areas of United
States. The results from this report will help reducing traffic congestion by changing travel
behaviors via charging the correct amount of toll at the right place and time.
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