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Abstract  

 

 We study multi-item inventory problems that explicitly account for realistic 

transportation cost structures and constraints, including a per-truck capacity and per-truck cost. 

We analyze shipment consolidation and coordination policies under these conditions. A set 

partitioning problem is formulated to determine the best consolidation policy. We first use a 

branch-and-price method to solve the resulting set partitioning problem. Since the pricing 

problem for the general case is NP-hard, two heuristic methods are proposed to generate new 

columns. We also show that the pricing problem can be solved in polynomial time for a practical 

special case. Furthermore, we develop two heuristic methods as alternatives to the branch-and-

price method. Numerical studies are conducted to demonstrate the efficiency of the heuristic 

column generators, heuristic methods to the set partitioning problem, and how the modeling 

approach helps mitigate truck density on transportation networks while resulting in higher truck 

utilization and lower total costs.  
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Executive Summary  

 

 When multiple items share fixed costs and/or resource capacity, independent inventory 

control for the items typically leads to solutions that are far from optimal. For example, when the 

shared resource corresponds to transportation capacity, independent inventory decisions may 

maximize the number of shipments required for delivery (as a result of shipping items 

separately). The supply chain management literature has, therefore, intensely focused on 

integrated inventory and transportation problems and many policies have been proposed to deal 

with such problems.  

This research project examines a multi-item inventory problem that explicitly accounts 

for practical transportation cost structures and constraints, including individual truck capacities 

and shipment costs. That is, we consider truckload transportation costs. In particular, truckload 

transportation cost modeling implies that the additional fixed cost paid for each shipment is a 

step function of the shipment quantity, whereas, less-than-truckload transportation cost modeling 

assumes per unit transportation costs.  In this study, we focus on a multi-item inventory control 

problem. In particular, we consider shipment consolidation opportunity as different items can 

share the same trucks for their shipment requirements. 

 The problem we study has similarities with the classical joint replenishment problem, 

although there are also significant differences, as we do not aim to find a basic cycle length 

which specifies shipment frequencies. Instead, our aim is to find a partition of a set of items such 

that each subset in the partition corresponds to a subset of items which are consolidated and 

shipped together. Each subset of consolidated items may therefore have different replenishment 

cycle lengths. We model this problem as a set partitioning problem and propose a column 

generation based solution method as well as two heuristic solution approaches. To the best of our 

knowledge, this model has not been studied in the supply chain literature with the explicit 

consideration of truckload cost structures. This work therefore contributes to literature by 

modeling this problem, studying and revealing its underlying structural properties, and providing 

efficient solution methods. 

 The consolidation policy analyzed in this study leads to decreased number of trucks 

required to ship the same amount of commodities, i.e., reduced truck density and increased truck 

capacity utilization. Considering the need for low CO2 emissions in transportation, this study 

ideally is able to propose policies for green transportation in supply chains. Furthermore, these 

policies lead to less truck congestion on the distribution network.  



1 Background

When multiple items share fixed costs and/or resource capacity, independent inventory control for the

items typically leads to solutions that are far from optimal. For example, when the shared resource

corresponds to transportation capacity, independent inventory decisions may maximize the number of

shipments required for delivery (as a result of shipping items separately). The supply chain management

literature has, therefore, intensely focused on integrated inventory and transportation problems, and

numerous policies have been proposed to deal with such problems (see, e.g., Silver et al., 1998).

This paper examines a multi-item inventory problem that explicitly accounts for practical

transportation cost structures and constraints, including individual truck capacities and shipment costs.

That is, we consider truckload transportation costs, where an additional setup cost is incurred for each

truck. This results in an order cost component that is a step function of the shipment quantity, whereas

less-than-truckload (LTL) transportation cost modeling often assumes only per unit transportation costs.

As Toptal and Çetinkaya (2006) show for a single-item case, explicit consideration of truck transportation

cost structures often results in using fewer total shipments for transportation. We note that similar cost

structures have been considered in the literature for different types of single-item inventory control

problems to model truckload transportation costs (see, e.g., Aucamp, 1982, Lee, 1986, Hwang et al.,

1990, Çetinkaya and Lee, 2002, Lee et al., 2003, Toptal et al., 2003, Zhao et al., 2004, Toptal and

Çetinkaya, 2006, Mendoza and Ventura, 2008, Toptal, 2009, Zhang et al., 2009). In this study, we

focus on a multi-item inventory control problem. In particular, we consider shipment consolidation

opportunities across items, as different items can share trucks for their shipment requirements.

The majority of past studies on shipment consolidation considers stochastic demand environments.

In particular, these studies seek to determine a time-, quantity-, or time-and-quantity-based

consolidation policy for customers with stochastic arrivals of shipping requirements. In a time-based

policy, the question of interest is when to ship customer demands that accumulate over time, whereas

a quantity-based policy specifies how much to accumulate before dispatching a truck (for examples of

modeling studies focusing on time- and quantity-based consolidation policies, see, e.g., Higgison, 1995,

Higgison and Bookbinder, 1995, Çetinkaya and Lee, 2000, Çetinkaya and Bookbinder, 2003). A time-

and-quantity policy defines the time to release a truck, unless a specified quantity is accumulated before

that time (see, e.g., Bookbinder and Higgison, 2002, Ching and Tai, 2005, Çetinkaya et al., 2006, Mutlu

et al., 2010). Higgison and Bookbinder (1994) compare these three policy approaches using simulation,

and Chen et al. (2005) compare time- and quantity-based policies under Vendor-Managed-Inventory.

We refer the reader to Çetinkaya (2005) for a detailed discussion of integrated inventory control and
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transportation studies with multi-item consolidation.

In contrast, we analyze freight consolidation with explicit transportation costs in a multi-

item Economic-Order-Quantity (EOQ) model, i.e., we consider deterministic demand. The joint

replenishment problem considers multi-item inventory systems with deterministic demand, where each

shipment involves a (major) setup cost and each item has an individual (minor) setup cost if it is included

in a shipment. Goyal (1974, 1975), Goyal (1974, 1975), Silver (1975, 1976), Jackson et al. (1985),

Viswanathan (1996, 2002), Wildeman et al. (1997), and Moon et al. (2010) study joint replenishment

problems and their solution methods. Due to the problem’s complexity, heuristic methods are commonly

used for solving the resulting models. One may refer to Khouja and Goyal (2008) for a review of

various joint replenishment problems studied in the literature. A common solution approach for joint

replenishment problems is to determine a base cycle length along with an integer multiple for each

item. This integer multiple denotes how frequently the item is replenished (for instance, a multiple of

one may indicate that the inventory is replenished every week, while a multiple of three corresponds to

replenishment every three weeks). Since the groups of items that share truck capacity are an indirect

byproduct of the solution strategy, this approach is referred to as indirect grouping strategy (Khouja

and Goyal, 2008). In a direct grouping strategy, on the other hand, the groups of items that will be

jointly shipped are directly determined. In this paper, we adopt a direct grouping strategy for the

problem of interest. That is, we do not restrict individual items to be replenished at integer multiples

of a base cycle length. Instead, our aim is to find a partition of a set of items such that each subset in

the partition corresponds to a subset of items which are consolidated and are always shipped together.

Each subset of consolidated items may therefore have different replenishment cycle lengths.

Çetinkaya and Lee (2002) determine an inventory replenishment cycle length for the supply to a

warehouse of a single item with deterministic demand, as well as an integer number of consolidation

cycles within a replenishment cycle, where a consolidation cycle represents the time between consecutive

shipment releases made to the market from the warehouse. As noted by Çetinkaya and Lee (2002), time-

and quantity-based consolidation policies are identical in the case of deterministic demand. Moon et al.

(2010) extend the consolidation problem of Çetinkaya and Lee (2002) to a multi-item inventory system.

They determine a base cycle length, an integer value that specifies each individual item’s inventory

replenishment cycle length, and the number of consolidation cycles for each item within each of its

replenishment cycles. However, while Çetinkaya and Lee (2002) model explicit transportation costs,

which implies the setup cost paid for each replenishment is a nonlinear function of the replenishment

quantity, Moon et al. (2010) consider fixed major and minor setup costs, which are constants, as in the

joint replenishment problem.
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The problem we study has similarities with the classical joint replenishment problem, although there

are also significant differences. Unlike traditional joint replenishment problems, our model explicitly

considers truck capacities and per-shipment fixed costs (rather than a simple shared fixed cost for each

order). Similar to Ben-Khedher and Yano (1994), Levi et al. (2008), and Kang and Kim (2010), the

number of trucks used to deliver a consolidated shipment is a decision variable (this generalization is

sometimes referred to as the case with soft capacities, see, e.g., Levi et al., 2008). Ben-Khedher and

Yano (1994), Levi et al. (2008), and Kang and Kim (2010) focus on a joint replenishment problem in

a finite planning horizon such that each planning horizon has finite number of periods and each period

constitutes the base cycle length. In our model, since no such base cycle length is defined, our solution

methods differ from the solution methods proposed for joint replenishment problems. In particular, we

model the problem of interest as a set partitioning problem and propose a column generation based

solution method as well as two heuristic solution approaches. Sindhuchao et al. (2005) model a set

partitioning problem and develop column generation based solution method for an inventory routing

problem with limited truck capacity. While they adopt a direct grouping strategy as we do, they assume

that each subset of consolidated items is shipped by a single truck. On the other hand, our model defines

the number of trucks used for each dispatch of a consolidated group of items as a decision variable. To

the best of our knowledge, this model has not been studied in the supply chain literature with the

explicit consideration of truckload cost structures. This work therefore contributes to the literature

by modeling this problem, studying and revealing its underlying structural properties, and providing

efficient solution methods.

It is well known that set partitioning problems are NP-complete (Garey and Johnson, 1979).

Hence, it is not an uncommon practice in the literature to use column generation methods to solve set

partitioning problems. Branch-and-price methods use column generation within a branch-and-bound

scheme for solving integer (or mixed integer) programs with a large number of columns. One may refer to

Barnhart et al. (1998) and Lübbecke and Desrosiers (2005) for examples of the use of column generation

methods for the exact solution of integer programs, while Wilhelm (2001) provides a technical review of

column generation in integer programming. Branch-and-price has also been employed for solving multi-

item or multi-period inventory control problems with integer decision variables (see, e.g., Dı́az and

Fernández, 2002, Shen et al., 2003, Freling et al., 2003, Lulli and Sen, 2004, Degraeve and Jans, 2007).

In applying the branch-and-price method to our model, we observe that the pricing problem, which

is used to generate columns, is NP-hard; therefore, we propose two heuristic methods for generating

attractive columns for the general case and use one of them (the one which can generate better columns,

on average, with similar computational times, based on our computational experience) as a heuristic

8



column generator within the branch-and-price method. Using a heuristic for generating columns tends

to reduce the average time required to generate an attractive column. However, when such a heuristic is

unable to find an attractive column, exact solution of the underlying set partitioning problem requires

solving the pricing problem exactly. As a heuristic method, however, we might choose not to solve the

pricing problem exactly. Although this approach can lead to invalid bounds for the original problem

in the branch-and-bound tree, it often enables finding quick feasible solutions, as we later show in our

numerical study section. Therefore, we consider the application of the branch-and-price method as both

an exact method and as a heuristic method, where the latter corresponds to cases in which we do not

solve the pricing problems to optimality at each node in the branch-and-bound tree. In addition, for a

practical case, we show that the pricing problem can be solved in polynomial time. It is worth noting

that this special case generalizes the EOQ model with market choice flexibility defined and analyzed in

Geunes et al. (2004) by modeling explicit truckload transportation costs.

This work serves as an important decision tool for the following practical supply chain scenarios.

1. Single-Retailer, Multi-item Systems: In this setting, a single retailer who sells multiple items

needs to control each item’s inventory. Each item obeys the assumptions of the EOQ model, and

the retailer is responsible for the transportation cost of any order. The transportation cost is

determined by the number of trucks used to ship inbound orders to the retailer. In this case,

the retailer may achieve substantial savings in transportation costs by consolidating the orders

for different items, which requires common replenishment cycle lengths for consolidated items.

On the other hand, a common replenishment cycle length may increase inventory-related costs,

including holding and order setup costs, for consolidated items. The problem is to determine which

subsets of items should be consolidated, as well as the common cycle length specific to each set of

consolidated items.

2. Single-Distributor, Multi-Retailer Systems: In this setting, multiple retailers order a product from a

common distributor. Assuming Vendor-Managed-Inventory, the distributor controls the inventory

at the retailer locations and pays for the transportation cost of any shipment. The distributor can

increase truck utilization by consolidating retailer shipments. Similar to the previous scenario, a

tradeoff exists between reduced truck costs and increased inventory-related costs. The distributor’s

problem is to determine which retailers should be consolidated, as well as the common delivery

cycle length for each subset of consolidated retailers.

3. Multi-Supplier, Multi-Retailer Systems: In this setting, a set of retailers is owned by a single firm,

as in a retail chain. Each retailer requires shipments from a set of suppliers. The chain store’s
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problem is to determine which suppliers’ shipments to which retailers should be consolidated, as

well as a common delivery cycle for each subset of consolidated product and retailer shipments.

Scenario 3 above corresponds to a problem the authors observed in a distribution channel that

motivated this study. In particular, an air-conditioning company in Florida operates as follows. The

company has a set of retailers throughout the region, and these retailers place orders for products from

multiple suppliers via the company’s distribution department. Currently, the distribution department

simply passes orders to suppliers who then ship to individual retailers, i.e., orders are decentralized

and are not coordinated. However, the company observed high transportation costs due to under-

utilized trucks and wished to consider consolidation approaches to increase truck utilization and reduce

transportation costs. Our modeling approach will assume that in Scenario 1, the different items come

from a common supplier or distributor. In Scenario 2, our modeling approach would assume that the

multiple retailers are co-located in an area that is far from the distributor location, so that any local

drop-off (routing) costs are extremely small in comparison to the long-haul truckload shipping cost from

the distributor’s location to the retailers’ local area. As a result, we can use a single model to analyze

either of the first two scenarios, as each requires managing a number of consolidated shipments that are

effectively between two locations (or two regions). The third scenario can be reduced to the first (or

second) scenario by decomposing the problem by each origin-destination pair. That is, we consider the

problem of consolidating shipments of multiple products from a given supplier to each retail area. Thus,

for ease of exposition in defining and formulating our model, it is sufficient for us to use Scenario 1 as a

basis for this description.

The rest of this paper is organized as follows. In Section 2, we formulate the multi-item EOQ model

with shipment consolidation and explicit truckload transportation costs as a set partitioning problem.

Furthermore, for two subproblems (involving a single-item and a given subset of consolidated items), we

discuss how to determine the shipment policy. Section 2.1 explains the details of the branch-and-price

method applied to the set partitioning problem and discusses two heuristic methods for the model of

interest in this paper. A set of numerical studies is conducted in Section 3 to analyze the efficiency

of the heuristic column generation techniques proposed for the branch-and-price method, the efficiency

of the heuristic approaches to the set partitioning problem, and the costs and benefits of the proposed

modeling approach. Concluding remarks, a summary of the contributions, and a set of future research

directions are given in Section 4.
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2 Research Approach

Consider a set S containing n items, i.e., |S| = n, where |S| denotes the cardinality of S. We assume

that a single supply chain agent controls the distribution of these items. Each item may be used to

represent a collection of different product types replenished from individual suppliers to the agent. We

assume that each item obeys the basic Economic Order Quantity (EOQ) model assumptions. That

is, (i) the demand rate for each item is assumed to be known and constant, (ii) there is a constant

lead time associated with an order of any item, (iii) shortages are not allowed, and (iv) the planning

horizon is infinite. Assumption (iv) indicates that the chosen replenishment policy will be applied over

the foreseeable future, which can be assumed to be infinity. Under the basic EOQ model assumptions,

the relevant costs associated with any given item are defined as follows. A fixed cost is incurred when

placing an order for an item. Let ai denote the fixed order cost associated with item i, i = 1, 2, . . . , n.

An inventory holding cost is incurred for each item; let hi denote the per unit volume per unit time

inventory holding cost for item i, i = 1, 2, . . . , n. Furthermore, let ci denote the per unit volume purchase

cost of item i.

Now, suppose that the agent controls each item independently, and s/he wishes to determine the

optimal order volume for an item, which also specifies the time between orders for the item. That is,

let vi and ti denote the order volume and the replenishment cycle length of item i, respectively. Then

vi = λiti, where λi denotes the demand rate (in volume per unit time) for item i. It is well known that

the total cost per unit time associated with item i amounts to

fi(vi) =
hivi
2

+
aiλi

vi
. (1)

The first term in Equation (1) is the average holding cost per unit time and and the second term is the

average order cost per unit time associated with item i.∗ It can be easily shown that fi(vi) is convex in vi

and, hence, the agent controlling item i will achieve the minimum cost by replenishing veoqi =
√

2aiλi/hi

units with any order of item i.

Equation (1) does not explicitly account for the structure of transportation costs encountered in

many applications.† Similar to studies by Aucamp (1982), Lee (1986), Hwang et al. (1990), Çetinkaya

and Lee (2002), Lee et al. (2003), Toptal et al. (2003), Zhao et al. (2004), Toptal and Çetinkaya

(2006), Mendoza and Ventura (2008), Toptal (2009), and Zhang et al. (2009), we next consider a

generalization of the basic EOQ model that explicitly considers transportation costs using a truck-load

∗The purchase cost for item i is not considered in Equation (1) as purchase cost per unit time, ciλi, is constant for any
item i.

†Except for cases in which item i is the only item, veoqi does not exceed truckload capacity, ai accounts for the fixed
truckload transportation cost, and ci for the variable transportation cost.
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(TL) transportation cost approach.

Let R denote the cost of a truck shipment and let P denote the per truck capacity. Then, the total

transportation cost associated with an order of item i is equal to ⌈vi/P ⌉R. The total cost per unit time,

including explicit transportation costs for item i, reads as

gi(vi) =
hivi
2

+
aiλi

vi
+

⌈vi
P

⌉ λiR

vi
. (2)

Note that the only difference between Equations (1) and (2) is the transportation cost per unit time,

accounted for in the last term of Equation (2). Modeling transportation costs under the TL approach

introduces discontinuities and results in a non-convex cost function. Therefore, one cannot directly use

first-order optimality conditions to determine the optimal shipping volume for item i. A detailed analysis

of gi(vi) shows that a procedure can be developed to find the value of vi, say v(i), that minimizes gi(vi).

In particular, note that gi(vi) has a piecewise continuous structure, where each piece is an EOQ-type

of cost function. Let ṽ
(k)
i =

√
2(ai + kR)λi/hi, for some nonnegative integer k. Furthermore, let ℓ be

the unique integer such that ℓP < veoqi ≤ (ℓ+ 1)P . The following properties of gi(vi) are given without

proof. One may refer to Lee (1986) and Toptal et al. (2003) for a deeper discussion on minimizing gi(vi).

Property 1 gi(vi) satisfies the following properties:

• gi(vi) is decreasing over (k − 1)P < vi ≤ kP , ∀k ≤ ℓ.

• gi(kP ) ≤ gi(vi) for vi ≥ kP if k ≥ ℓ+ 1.

• If ṽ
(ℓ+1)
i ≥ (ℓ + 1)P , then gi(vi) is decreasing over ℓP < veoqi ≤ (ℓ + 1)P . If ṽ

(ℓ+1)
i < (ℓ + 1)P ,

then gi(vi) is decreasing over ℓP < veoqi ≤ ṽ
(ℓ+1)
i and increasing over ṽ

(ℓ+1)
i < veoqi ≤ (ℓ+ 1)P .

Based on Property 1, the minimizer of gi(vi) is defined as follows

v(i) = argmin{gi(min{ṽ(ℓ+1)
i , (ℓ+ 1)P}), gi(ℓP )}. (3)

Then we have t(i) = v
(i)
i /λi.

When the supply chain agent controls each item separately, s/he should minimize gi(vi) for each

item i, i = 1, 2, . . . , n. However, as noted previously, independent control of different items is suboptimal

and tends to maximize the number of trucks required for delivery. The model we define next aims at

finding the best partition of the set of items, such that each subset of the partition contains items that

will be consolidated on common shipments. In particular, let J denote the set of all possible subsets

of S, indexed by j, and let Sj denote a particular subset of S, for each j ∈ J . Suppose that all item

orders for items in Sj are consolidated on common shipments. In this case, the agent’s decision variable
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for the items in Sj corresponds to the length of a single replenishment cycle, which will be common

for all items in Sj . Let Tj denote the common replenishment cycle length when all of the item orders

in Sj are consolidated. If we define Vj as the aggregate replenishment volume of the items in Sj , then

Vj = Tj
∑

i∈Sj
λi. Furthermore, let Λj =

∑
i∈Sj

λi, Aj =
∑

i∈Sj
ai, and Hj = (

∑
i∈Sj

hiλi)/(
∑

i∈Sj
λi).

Note that Λj defines the total demand volume per unit time of the items in Sj , Aj defines the total

fixed order cost for consolidating these items, and Hj defines the weighted average holding cost per unit

volume per unit time for the consolidated items in Sj . Then the total cost per unit time associated with

the items in Sj reads

Gj(Vj) =
HjVj

2
+

AjΛj

Vj
+

⌈
Vj

P

⌉
RΛj

Vj
. (4)

The first term in Equation (4) is the total holding cost per unit time, the second term is the total

order cost per unit time, and the last term is the total transportation cost per unit for the items in

Sj . We note that Gj(Vj), defined in Equation (4), has the same structure as gi(vi), defined in Equation

(2). Therefore, one can easily show that Property 1 also holds for Gj(Vj). In particular, let V eoq
j =√

2AjΛj/Hj , and define Υj to be the unique integer such that ΥjP < V eoq
j ≤ (Υj + 1)P . Furthermore,

let Ṽ
(k)
j =

√
2(Aj + kR)Λj/Hj for some nonnegative integer k. Then V ∗

j , i.e., the minimizer of Gj(Vj)

for Vj ≥ 0, can be written as

V ∗
j = argmin{Gj(min{Ṽ (Υj+1)

j , (Υj + 1)P}), Gj(ΥjP )}. (5)

Therefore, we have T ∗
j = V ∗

j /Λj .

Once a partition of the items is determined, the supply chain agent needs to minimize Gj(Vj) for

each subset Sj included in the partition.‡ However, given n items, there are 2n − 1 possible subsets

of items, and the agent’s problem is to choose a partition, i.e., a set of subsets such that each item is

contained in exactly one subset. Furthermore, we seek the partition that will minimize the agent’s total

cost per unit time. Then Gj(V
∗
j ) corresponds to the cost per unit time when the supply chain agent

chooses subset Sj in his/her partition.

The agent’s set partitioning problem can be formulated as follows. Let

xij =

{
1 if item i is in subset Sj ,

0 otherwise.

Note that the xij values are defined by the the subsets Sj , i.e., xij = 1 ∀i ∈ Sj . Furthermore, let

yj =

{
1 if subset Sj is in the selected partition,

0 otherwise.

‡As total purchase cost per unit time will be the same constant for any partition, purchase costs can be ignored in
formulation of the set partitioning problem. Note that Gj(Vj) does not include purchase costs per unit time, therefore, the
set partitioning problem also does not consider purchase costs.
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The yj variables determine the selection of item subsets, i.e., yj = 1 implies that subset Sj is selected.

Then, the agent’s set partitioning problem is:

(P) : min
∑
j∈J

Gj(V
∗
j )yj

s.t.
∑
j∈J

xijyj = 1, i ∈ S,

yj ∈ {0, 1}, j ∈ J.

The goal is to choose a partition that minimizes the total cost associated with item replenishments and

shipments. The first set of constraints assures that each item is included in one consolidated shipment,

i.e., only one of the selected subsets can contain each item. A summary of the notation used is given in

Appendix 5.1. Additional notation will be defined as needed. In Section 2.1, we focus on methods to

solve problem P.

2.1 Analysis of the Problem

As noted previously, problem P, defined in Section 2, is a set partitioning problem. We note that set

partitioning problems have been shown to be NP-complete (Garey and Johnson, 1979). More specifically,

given n products, problem P has 2n−1 decision variables. Hence, it is not an uncommon practice in the

literature to use column generation methods to solve set partitioning problems, as the set partitioning

formulation often has a small integrality gap. In this section, we next discuss a column generation based

method called branch-and-price to solve problem P. We then discuss two heuristic methods for solving

this problem.

2.1.1 Branch-and-Price Algorithm

Column generation methods are often used when a problem of interest has a number of variables too

large to enumerate explicitly. Branch-and-price methods use column generation within a branch-and-

bound scheme for solving integer programs with a large number of columns. Barnhart et al. (1998)

and Lübbecke and Desrosiers (2005) provide detailed discussions on classes of problems suitable for

column generation. In a branch-and-price scheme, the linear relaxation problem (LRP) at a node of

the branch-and-bound search tree is optimized using column generation. First, a restricted LRP is

considered, where only a subset of the columns is considered. This restricted LRP is also called the

restricted master problem (RMP). Then, a pricing problem is used to potentially generate new columns

with attractive reduced cost values. If no new columns can be generated, this implies that the solution

to the RMP is an optimal solution for the LRP. When this solution is fractional, the branching process

is applied and the relaxed problems at new nodes are again solved using the column generation method.

Next, we discuss a branch-and-price method for problem P.
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Recall that problem P is a set partitioning problem. The LP relaxation of problem P is

(LRP) : min
∑
j∈J

gjyj

s.t.
∑
j∈J

xijyj = 1, i ∈ S,

0 ≤ yj ≤ 1, j ∈ J,

where we use gj = G(V ∗
j ) for notational simplicity. Now, suppose that only a subset, J ′ (J ′ ⊂ J), of the

decision variables, i.e., columns (where each column is a vector representation of a subset of products)

is considered. Then the RMP is written as

(RMP) : min
∑
j∈J ′

gjyj

s.t.
∑
j∈J ′

xijyj = 1, i ∈ S,

0 ≤ yj ≤ 1, j ∈ J ′.

Let πi be the dual variable associated with the constraint
∑

j∈J ′ xijyj = 1. (Note that the dual variables

associated with the constraints yj ≤ 1 ∀j ∈ J ′ are ignored as they will be equal to zero in the optimal

dual solution. Also, one can equivalently state RMP without these constraints.) The solution of RMP

is optimal for LRP if there is no column with a negative reduced cost. To determine whether a column

exists with a negative reduced cost, the following pricing problem is used:

(PP0) : minj∈{J\J ′} gj −
∑
i∈S

xijπi.

Note that gj −
∑

i∈S xijπi gives the reduced cost for the variable yj . Therefore, the solution of PP0

will determine the column with the minimum reduced cost. If the optimal objective value of PP0 is

non-negative, then this implies that the solution of RMP is optimal for LRP and column generation at

the node terminates. Otherwise, a new column is added to RMP and a new problem of the form PP0

is solved using the dual solution of the new RMP. This process continues until no column is found with

a negative reduced cost. Next, we reformulate the pricing subproblem.

First, we note that the pricing subproblem can be optimized over J instead of J\J ′ (because the

reduced cost of any column in J ′ is nonnegative). Then the pricing subproblem is used to find the column

with the minimum reduced cost over all possible feasible columns. Recall that a column corresponds to

a vector representation of a subset of items. That is, the pricing subproblem seeks the subset of items

with the minimum reduced cost. Let

xi =

{
1 if item i is in the subset,

0 otherwise,

and let x denote the n-vector of xi values. Then the pricing subproblem can be reformulated as follows:
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(PP1) : min G(x)−
∑
i∈S

xiπi

s.t. xi ∈ {0, 1}, i ∈ S,

where G(x) is the total cost per unit time associated with x. Considering Equation (4), PP1 can be

rewritten as

(PP2) : min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
RΥ

V

∑
i∈S

λixi

s.t. (Υ− 1)P < V ≤ ΥP,
xi ∈ {0, 1}, i ∈ S,
Υ ∈ {1, 2, 3, . . .}.

The decision variable Υ denotes the number of trucks used for each shipment of items in the subset, i.e.,

the objective function computes the cost of using Υ trucks (this is why the lower bounding constraint

for V uses a strict inequality). Note that PP2 is a Mixed Integer Nonlinear Programming (MINLP)

problem and let us define x∗, V ∗, and Υ∗ to be an optimal solution of PP2. We next discuss an

important property of PP2.

Property 2 Let (x0, V 0) be a solution to the following problem:

(R-PP2) : min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
R

P

∑
i∈S

λixi

s.t. V ≥ 0,
xi ∈ {0, 1}, i ∈ S.

Define Υ0 = ⌊V 0/P ⌋. Then Υ0 ≤ Υ∗ ≤ Υ0 + 1.

Proof: The proof is given in Appendix 5.2.

It follows from Property 2 that if we know the value V0, then we can solve PP2 by solving the problem

PP2-k, defined below, for k = Υ0 and k = Υ0 + 1.

(PP2-k) : min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
Rk

V

∑
i∈S

λixi

s.t. (k − 1)P < V ≤ kP,
xi ∈ {0, 1}, i ∈ S.

Note that PP2-k is a generalization of the Unconstrained Binary Quadratic Optimization Problem,

which is known to be NP-hard (Palubeckis, 2004)§. This then implies that PP2 is NP-hard. Therefore,

we focus on heuristic methods to solve the pricing subproblem. However, in what follows, we consider

§For a given V , when hi = h, ∀i ∈ S, PP2-k is the unconstrained binary quadratic optimization problem.
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a special case of PP2, for which we propose an exact solution method that runs in polynomial time.

Prior to the analysis of this special case, we next note another property of PP2-k, which we utilize in

the solution of the special case. In particular, let (xk, V k) be a solution of PP2-k. Note that for any

given x, the objective function of PP2-k is convex in V and, hence, in the optimal solution of PP2-k,

we have

V k =


lim

V ↓(k−1)P
V if Ṽ (k)(xk) ≤ (k − 1)P ,

Ṽ (k)(xk) if (k − 1)P < Ṽ (k)(xk) ≤ kP ,

kP if Ṽ (k)(xk) > kP ,

where Ṽ (k)(xk) =
∑

i∈S λix
k
i

√
2
(∑

i∈S aixki + kR
)/∑

i∈S hiλixki .

Property 3 For k = Υ0 and k = Υ0 + 1, if Ṽ (k)(xk) = lim
V ↓(k−1)P

V in any solution of PP2-k, then it

is not a solution of PP2.

Proof: The proof is given in Appendix 5.3.

Property 3 implies that we do not need to consider the cases when V k converges to the lower bound of

PP2-k for k = Υ0 and k = Υ0 + 1 in the solution of PP2.

2.1.2 A Special Case: Identical holding costs and a fixed order cost value

We now discuss how to solve the pricing problem when (i) all items in a set S have the same holding

cost per unit volume per unit time (or when the average holding cost per item serves as a sufficiently

accurate approximation that can be applied to all items) and (ii) a single fixed order cost is charged

for any consolidated set instead of for each item. This special case most closely corresponds to the

second scenario mentioned in Section 1, i.e., when a distributor controls the ordering decisions for a set

of retailers who receive the same product. Under this scenario, while the retailers may have different

demand rates, the holding cost is roughly identical for each retailer, as each holds the same product.

Furthermore, since the distributor controls ordering decisions, consolidating orders may lead to a single

order cost for the distributor. Thus, it is reasonable to assume hi = h ∀i ∈ S and
∑

i∈S aixi = a. Under

these assumptions, problem R-PP2, defined in Property 2, reduces to

(R-PP2SC) min
∑
i∈S

ĉiλixi +

√
2ah

∑
i∈S

λixi

s.t. xi ∈ {0, 1}, i ∈ S,

where ĉi = R/P − πi/λi. R-PP2SC can be solved in polynomial time (see Shen et al., 2003, Geunes

et al., 2004). In particular, one first sorts items in increasing order of ĉi values. Then, if an optimal

solution has ℓ items consolidated, these items will be the ones with ℓ smallest ĉi values. Therefore, one

can determine Υ0 in polynomial time, and then solve PP2-k with k = Υ0 and k = Υ0 + 1.
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For the special case of interest, PP2-k reduces to

(PP2-kSC) : min −
∑
i∈S

πixi +
hV

2
+

Rk + a

V

∑
i∈S

λixi

s.t. (k − 1)P < V ≤ kP,
xi ∈ {0, 1}, i ∈ S.

Note that for any feasible V , one can determine the corresponding x that minimizes the objective function

value of PP2-kSC for the given V by assigning xi = 1 when ci(V ) = ((Rk + a)/V − πi/λi)λi < 0 and

xi = 0 otherwise (when ci(V ) > 0 ∀i ∈ S, we then set xj = 1 for j = argmin{ci(V ) : i ∈ S} and

xi = 0 ∀i ∈ S\{j}, as we do not consider the empty set, i.e., x = 0, as a feasible consolidation).

Furthermore, we know from Property 3 that V k is equal to either kP or
√

2(a+ kR)
∑

i∈S λixki /h. We

can thus provide a polynomial-time solution method for PP2-kSC , formally stated as follows.

Property 4 Algorithm 1, stated below, solves PP2-kSC for k = Υ0 and k = Υ0 + 1.

Algorithm 1

1. Let V (k) = kP . Index items in nondecreasing order of ci(V
(k)) = ((Rk + a)/V (k) − πi/λi)λi. If

c1(V
(k)) > 0, define x(k) by assigning x

(k)
1 = 1 and x

(k)
i = 0 ∀i ∈ S\{1}. Else, define x(k) by

assigning x
(k)
i = 1 if ci(V

(k)) < 0, x
(k)
i = 0 otherwise. Let z(k) equal the objective function value

of PP2-kSC at (x(k), V (k)). Set xk = x(k), V k = V (k), and zk = z(k). Go to Step 2.

2. Let V (k) =

√
2(a+ kR)

∑
i∈S λix

(k)
i /h. If V (k) ∈

(
(k−1)P, kP

]
, let z(k) equal the objective function

value of PP2-kSC at (x(k), V (k)) and if z(k) < zk, set xk = x(k), V k = V (k), and zk = z(k). Go to

Step 3.

3. If c1(V
(k)) > 0, go to Step 4. Else, let j be the largest index such that x

(k)
j = 1. Then redefine x(k)

by assigning x
(k)
j = 0 while keeping other components unchanged and go to Step 2.

4. Return xk and V k.

Proof: The proof is given in Appendix 5.4.

Note that the sorting in Step 1 of Algorithm 1 is the dominant process in the algorithm; hence, Algorithm

1 can solve PP2-kSC in O(n log n) time for k = Υ0 and k = Υ0+1. Furthermore, Υ0 can be determined

in O(n log n) time by solving R-PP2SC (Geunes et al., 2004). Therefore, the pricing problem for this

special case can be solved in O(n log n) time. In what follows, we discuss a sorting based heuristic

method, similar to Algorithm 1, along with another iterative heuristic method for the pricing problem

in the general case.
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2.1.3 Heuristic Approaches to the General Pricing Problem

As mentioned above, the pricing problem is NP-hard in the general case. Nevertheless, one does not

necessarily need to solve the pricing problem optimally to generate a column with negative reduced cost.

Heuristic methods have been commonly employed as column generators for complex pricing problems

(see, e.g., Archetti et al., 2011, Min et al., 2011, Salani and Vacca, 2011). Therefore, in what follows,

we discuss two heuristic methods for column generation.

The first heuristic is based on a sorting scheme similar to that in Algorithm 1. Suppose that the

optimal dual values are given at a specific node, i.e., πi ∀i ∈ I are known. The heuristic method first

starts with a column representing a solution in which all of the items are consolidated together. For this

consolidation, the optimal shipment policy is determined using Equation (5), i.e., the order volume for

each item and the common replenishment cycle length are determined. Therefore, one determines the

negative reduced cost associated with this column, i.e., objective function value of PP2 when n items

are consolidated. The heuristic method then moves to another column, which represents a consolidation

with n − 1 items. In moving from the n-item consolidation to an (n − 1)-item consolidation, one item

is excluded based on a heuristic sorting approach. In particular, each item i in the n-item consolidation

is assigned a weight, wi, which is intended to measure item i’s contribution to the reduced cost in the

n-item consolidation. Then, the consolidation with n − 1 items is defined by excluding the item with

the maximum weight from the n-item consolidation. The item with the maximum weight is excluded

because we would ideally like to find a consolidation with minimum reduced cost. Then the reduced

cost of the (n− 1)-item consolidation is determined, weights for each of the n− 1 items are calculated,

and an (n − 2)-item consolidation is generated by excluding the item with the maximum weight from

the (n− 1)-item consolidation.

The weight of item i in a k-item consolidation is defined as wi = −πi+hiλiT/2+ ai/T +RΥ/(kT ),

where T and Υ are given by Equation (5). One can note that
∑n

i=1wixi gives the objective function

value of PP2 for the given k-item consolidation. The heuristic method, which we refer to as Sorting-

based-exclusion heuristic method (SE-H), calculates the reduced cost for each k-item consolidation for

k = n, n − 1, . . . , 1 and returns the consolidation with the minimum reduced cost. Appendix 5.5 gives

the formal statement of SE-H.

The second heuristic method for solving the pricing problem proceeds in a similar way to SE-H.

It starts with an n-item consolidation and excludes one item to generate an (n− 1)-item consolidation.

However, in an intermediate iteration, instead of using weights for moving from a k-item consolidation

to a (k − 1)-item consolidation, it checks all possibilities for excluding an item. In particular, a total
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of k different (k − 1)-item combinations are generated from the given k-item consolidation. Each of

these (k−1)-item combinations corresponds to the exclusion of one of the k items from the given k-item

consolidation. Then, the (k− 1)-item combination with the minimum reduced cost is selected and used

to generate the (k − 2)-item consolidation. Similar to SE-H, the heuristic method, which we refer to

as Best-exclusion heuristic method (BE-H), finds the reduced cost for each k-item consolidation for

k = n, n − 1, . . . , 1 and returns the consolidation with the minimum reduced cost. Appendix 5.6 gives

the formal statement of BE-H.

Both of these heuristics run in O(n2) time. In our numerical studies, we compare the solutions

achieved by the heuristics with the optimal solution for numerous small-size problem instances achieved

through total enumeration. For larger size problem instances, we compare the heuristic methods with

BARON, a commercial solver for MINLP problems. Our numerical analyses indicate that the heuristic

methods are quite efficient in terms of both solution time and solution quality. Therefore, we expect

that when these are embedded within the branch-and-price scheme, they will be successful as column

generators. Next, we discuss two heuristic methods for solving the set partitioning problem, P, defined

in Section 2.

2.1.4 Heuristic Approaches to the Set Partitioning Problem

In this section, as an alternative to the branch-and-price method, we propose two heuristic methods for

solving problem P. The first heuristic method iteratively constructs a partition by forming subsets that

will be included in the partition. The second method, on the other hand, starts with a set containing

all of the items and forms the subsets from this that will be included in the partition.

The first heuristic method, which we refer to as the Partitioning via Integration heuristic (PI-H),

works as follows. In an intermediate iteration, suppose that we have an infeasible partition with a set

of subsets such that some of the items are not included in the partition. We randomly select one item

from the set of excluded items, denoted by E. Two options are considered for this item: (i) it can be

integrated into one of the subsets of the current partition or (ii) it can be integrated into the current

partition as a new subset by itself. We first consider option (i) and determine the subset into which

the item will be integrated, so that the increase in the total cost due to integration is minimized. As a

result of option (i), a new partition (with the same number of subsets) is formed and its total cost is

known. Then, we consider option (ii), which forms a new partition that includes one additional subset

different from those in the current partition and its total cost is equal to the cost of the current partition

plus the cost of ordering the selected item individually. Finally, the option which results in a partition

with lower total cost is chosen. Starting with the case when all of the items are excluded, this process
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is repeated until no excluded item remains, i.e., a feasible partition is formed and E = ∅. Appendix 5.7

states PI-H, which runs in O(n2) time.

The second heuristic method, which we refer to as the Partitioning via Exclusion heuristic (PE-H),

works as follows. In an intermediate iteration, suppose that we have a set of subsets such that some of

the items are not included within these subsets. Let E denote the set of items excluded. We execute

BE-H with E, such that πi = 0 ∀i ∈ S (note that one needs the values of πi ∀i ∈ S to execute BE-H,

and when πi = 0 ∀i ∈ S, BE-H seeks a consolidation with low costs instead of low reduced costs).

This returns a subset from the set of excluded items (note that one may apply any heuristic to form a

subset from a given set of items; however, we use BE-H instead of SE-H, as our numerical experiments

indicate that BE-H outperforms SE-H in terms of solution quality). Then, the current set of subsets is

expanded by including the subset generated by BE-H and the set of excluded items is reduced. Starting

with the case when all of the items are excluded, this process is repeated until no excluded item remains,

i.e., a feasible partition is formed and E = ∅. Appendix 5.8 states PE-H, which runs in O(n3) time.

3 Findings and Applications

In this section, we first focus on demonstrating the efficiency of the heuristic methods we have discussed

for the pricing problem. Following this, we discuss our results for the branch-and-price and heuristic

methods for solving the set partitioning problem. Then, we demonstrate how shipment consolidation

leads to reduced truck density on the distribution network and provide sensitivity analysis on the benefits

of shipment consolidation.

3.1 Efficiency of the Pricing Heuristic Methods

To analyze the efficiency of the pricing heuristic methods, we first compare SE-H and BE-H with total

enumeration for small size problems. Then, we compare SE-H and BE-H with BARON for larger size

problems. The heuristic methods are coded in MATLAB, and GAMS is utilized to solve the pricing

problems via BARON.

To compare the pricing heuristic methods with total enumeration, for each n = {5, 10, 15, 20},

we solve a randomly generated problem instance from each of 32 combinations of λ ∼

{U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ {U [2, 4], U [4, 6]}, P = {750, 1000},

and R = {500, 750}, where λ, a, and h denote n-vectors of λi, ai, and hi values, respectively.

Furthermore, U [l, u] denotes a uniform distribution with lower bound l and upper bound u. We note

that when solving a pricing problem within the branch-and-price method, we have the precise πi values.

However, our aim here is to analyze the efficiency of the pricing heuristic methods for any given problem
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parameters. Therefore, in determining the dual values required in the pricing problem, for each problem

instance we let πi ∼ U [0, zi], where zi denotes the value of Equation (2) with ai, di, and hi. The

rationale behind this selection of πi values is as follows. The dual problem of LRP, stated in Section

2.1, specifies an upper bound on each dual variable (i.e., we have the constraints πi ≤ ui ∀i ∈ I in the

dual of LRP) such that this upper bound is the minimum cost of replenishing this item independently

of the others. Thus, we assume that π values are bounded by the zi values. Table 1 documents the

average values, over all 32 problem instances solved for each n, for the reduced cost of the column found

by total enumeration (opt. value), and the reduced costs of the best columns (best value) found by the

pricing heuristic methods, along with the computational times for total enumeration and the pricing

heuristics in seconds, and the optimality gap (gap) of the pricing heuristic methods.

Table 1: Comparison of Total Enumeration and The Pricing Heuristic Methods

Enumeration SE-H BE-H
n Opt. Value Time Best Value Time Gap Best Value Time Gap

5 657.66 0.001 675.33 0.000 2.69% 657.66 0.002 0.00%
10 221.04 0.031 223.57 0.000 1.14% 221.04 0.001 0.00%
15 65.63 1.720 76.53 0.001 16.60% 67.08 0.003 2.20%
20 -57.32 2288.249 -47.86 0.002 16.50% -55.63 0.008 2.96%

avg 221.75 572.500 231.89 0.001 9.23% 222.54 0.004 1.29%

As is clear from Table 1, both pricing heuristic methods are far more efficient than total enumeration

in computational time. Moreover, BE-H finds the optimal solution for all of the problem instances solved

for n = 5 and n = 10, resulting in 0% optimality gap, and the optimality gap of BE-H is less than 3%

for n = 15 and n = 20. While BE-H has a 1.29% optimality gap on average, SE-H, which is slightly

faster than BE-H, has a 9.23% optimality gap on average.

For larger size problem instances, we compare SE-H and BE-H with GAMS/BARON for n =

{10, 15, 20, 25, 30, 35, 40, 45, 50}. For each n, we solve a randomly generated problem instance from

each of 32 combinations of λ ∼ {U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼

{U [2, 4], U [4, 6]}, P = {750, 1000}, and R = {500, 750}. The dual prices for any problem instance

are generated as explained previously. The time limit used for BARON was 1000 seconds. Table 2

summarizes the average values, over all 32 problem instances solved for each n, for the reduced costs

of the best columns (best value) found by BARON and the pricing heuristic methods along with the

computational times of each method.

It can be observed from Table 2 that the pricing heuristic methods are computationally more efficient

than BARON. In particular, BARON always terminated due to the time limit imposed in GAMS. While

BARON has the best average result in terms of the solution quality, BE-H is within less than 2% of
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Table 2: Comparison of BARON and The Pricing Heuristic Methods

BARON SE-H BE-H
n Best Value Time Best Value Time Best Value Time

10 225.47 1004.309 230.07 0.000 225.47 0.006
15 61.92 1003.044 63.64 0.001 61.92 0.004
20 -47.06 1002.297 -43.46 0.001 -47.06 0.009
25 -124.89 1000.616 -116.01 0.001 -124.89 0.015
30 -183.06 1001.289 -173.19 0.002 -181.27 0.017
35 -222.04 1002.160 -217.56 0.002 -217.89 0.019
40 -245.55 1000.861 -238.38 0.002 -247.14 0.029
45 -302.92 1001.368 -295.15 0.003 -295.15 0.032
50 -450.64 1000.852 -444.96 0.002 -444.96 0.042

avg -143.20 1001.866 -137.22 0.002 -141.22 0.019

BARON on average. Furthermore, BE-H was able to find a lower average reduced cost for the case of

n = 40. Both BARON and BE-H outperformed SE-H in solution quality and BE-H is very efficient

computationally. Therefore, in our analysis of the branch-and-price method, we use BE-H as a heuristic

column generator.

3.2 Efficiency of the Set Partitioning Heuristic Methods

To analyze the efficiency of the heuristic set partitioning methods, we first compare PI-H and PE-H

with CPLEX for small size problems. In particular, for small size problems, all of the possible subsets

of the items and their costs can be generated; thus, the set partitioning problem P corresponds to a

pure integer programming problem, which can be solved via CPLEX. On the other hand, for larger

problem sizes, the data generation time is very long; hence, we compare PI-H and PE-H with the

branch-and-price method (B&P).

To compare the set partitioning heuristic methods with GAMS/CPLEX, for each n =

{5, 10, 15, 20}, we solve a randomly generated problem instance from each of 32 combinations of λ ∼

{U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼ {U [2, 4], U [4, 6]}, P = {750, 1000},

and R = {500, 750}. The time limit for CPLEX was set to 1000 seconds and the relative gap was defined

to be 0.001 in GAMS (the default relative gap is 0.1; however, in this case, the heuristic methods were

much more effective than CPLEX in terms of solution quality and solution time as CPLEX terminated

after analyzing a limited number of integer solutions due to the relative gap). Table 3 documents the

average values, over all 32 problem instances solved for each n, for the total cost of the best partition (best

value) found by CPLEX and the set partitioning heuristic methods, along with the data generation time

(DGT) required for CPLEX, and the computational times of CPLEX and the set partitioning heuristic

methods in seconds.
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Table 3: Comparison of CPLEX and The Set Partitioning Heuristic Methods

CPLEX PI-H PE-H
n Best Value DGT Time Best Value Time Best Value Time

5 17482.99 0.002 0.206 17512.60 0.000 17498.40 0.002
10 35015.21 0.031 0.248 35116.81 0.002 35095.24 0.003
15 52326.27 1.611 3.729 52475.54 0.003 52449.88 0.003
20 69440.42 2140.210 660.248 69482.39 0.003 69473.39 0.006

avg 43566.23 535.463 166.108 43646.83 0.002 43629.23 0.004

It follows from Table 3 that both of the set partitioning heuristic methods outperform CPLEX in

computational time. Specifically, as n increases, the relative time efficiency of the heuristic methods

drastically increases. Furthermore, the data generation time increases exponentially (it takes more than

a day to generate data for CPLEX when n = 25). While CPLEX is slightly better than the heuristic

methods in terms of solution quality, both heuristic methods were able to find solutions that were within

less than 1% of CPLEX; hence, the heuristic methods are quite efficient. When PI-H and PE-H are

compared, it is observed that PE-H is slightly better in terms of solution quality.

For larger problem sizes, we compare the set partitioning heuristic methods with B&P. The

implementation details of B&P are explained in Appendix 5.9. In particular, since a heuristic

method (BE-H) is used for solving the pricing problems, B&P is also a heuristic method. For

each n = {10, 15, 20, 25, 30, 35, 40, 45, 50}, we randomly generate a problem instance for each of

the 32 combinations of λ ∼ {U [1000, 1500], U [1500, 2000]}, a ∼ {U [250, 500], U [500, 750]}, h ∼

{U [2, 4], U [4, 6]}, P = {750, 1000}, and R = {500, 750}. Table 4 summarizes the average values, over

all 32 problem instances solved for each n, for the total cost of the best partition (best value) found

by B&P and the set partitioning heuristic methods, and the computational times of B&P and the set

partitioning heuristic methods in seconds. Furthermore, the average number of nodes analyzed (# of

nodes), average number of columns generated in nodes (avg # of columns), and average solution time

required for nodes (avg node time) are documented for the branch-and-price method.

It follows from Table 4 that both of the set partitioning heuristics outperformB&P in computational

time. We also observe that B&P is able to find better solutions. However, the average improvement

due to B&P over both of the heuristic set partitioning methods is less than 2.6% for each n value and

the average improvement due to B&P is around 1.3%. Furthermore, the improvement in the objective

function due to B&P decreases as the problem size increases. It is worth noting that the number of

nodes analyzed, average number of columns generated in solving the LRP at the nodes, the average

solution time of a node, and the total time required for B&P increase as the number of items increases.

We can conclude that the set partitioning heuristics are very efficient, as they outperform B&P with
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Table 4: Comparison of The Branch-and-Price and The Set Partitioning Heuristic Methods

Branch-and-Price PI-H PE-H
# of Avg # of Avg Node Best Best Best

n Nodes Columns Time Value Time Value Time Value Time

10 97.06 13.10 0.151 34018.73 10.709 34920.14 0.002 34894.19 0.004
15 166.23 19.19 0.293 51171.89 36.524 52454.03 0.006 52438.21 0.004
20 227.06 26.67 0.531 68577.53 74.801 69823.75 0.006 69799.89 0.007
25 273.21 26.35 0.671 85768.02 114.597 87493.52 0.007 87475.12 0.007
30 583.78 35.78 1.338 102976.45 457.269 104631.05 0.010 104609.11 0.009
35 606.21 40.34 2.055 120547.65 671.874 121974.94 0.009 121953.78 0.013
40 611.44 47.38 3.034 138530.71 1401.903 139820.07 0.011 139798.43 0.017
45 672.39 46.23 3.322 155640.78 1653.121 157310.93 0.010 157306.02 0.023
50 969.44 49.38 3.489 173078.32 2361.469 174303.78 0.011 174299.94 0.025

avg 467.42 33.82 1.654 103367.79 753.585 104748.02 0.008 104730.52 0.012

respect to computational time, and their solution qualities are very close to B&P. When PI-H and

PE-H are compared, it is observed that PE-H is slightly better in terms of solution quality. Therefore,

in the following analyses, we use PE-H as our solution method for the multi-item EOQ model with

shipment consolidation and explicit truckload transportation costs.

3.3 Cost and Environmental Benefits of Shipment Consolidation

This section discusses how the shipment consolidation approach we have introduced in this paper reduces

the total costs per unit time as well as the number of trucks used for shipments compared to the scenario

when the items are independently shipped, which we refer to as independent shipment. Furthermore,

we quantify the decrease in truck density on the transportation network and increase in truck capacity

utilization due to shipment consolidation. We document how the changes in (i) the number of items,

(ii) demand levels, (iii) fixed order costs, (iv) holding costs per unit volume per unit time, (v) per truck

capacity, and (vi) per truck cost affect the total shipment costs per unit time (total cost), total number

of truck trips for a single shipment of each item (truck number), total truckload transportation cost

per unit time (truck cost), truck utilization, and the number of trucks used for shipment per unit time

(truck density). All of the associated tables are given in Appendix 5.10.

To analyze the effects of any of the aforementioned parameters, we consider different

combinations of n = {150, 75, 100}, λ ∼ {U [1000, 1500], U [1500, 2000], U [2000, 2500]}, a ∼

{U [250, 500], U [500, 750], U [750, 1000]}, h ∼ {U [2, 4], U [4, 6], U [6, 8]}, P = {750, 1000, 1250}, and R =

{500, 750, 1000}, changing the parameter of interest as indicated in Tables 5-10. Ten randomly generated

problem instances are solved for each of 243 combinations for each specific value of the parameter (i.e.,

2340 problem instances are solved for each specific value of the parameter of interest).
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(i) Effects of n: Table 5 summarizes the results for each n value. We have the following

observations based on Table 5.

• As n increases, as expected, total cost, number of trucks, truck cost, and truck density increase

under any shipment policy. It is observed that truck utilization follows a stable pattern for both

independent shipment and shipment consolidation cases.

• The percent increase in truck utilization and percent decrease in truck density due to shipment

consolidation follow a stable pattern as n increases. On the other hand, the percent reduction in

total cost, number of trucks, and truck cost due to shipment consolidation slightly increase as n

increases.

The observations stated above suggest that the cost savings due to shipment consolidation increase as

the number of items considered increases, while improvements in truck utilization and truck density due

to shipment consolidation remain the same.

(i) Effects of λ: Table 6 summarizes the results for each λ value. We have the following

observations based on Table 6.

• As λ increases, as expected, total cost, number of trucks, truck cost, and truck density increase

under any shipment policy. While the truck utilization under independent shipment increases with

λ, truck utilization under shipment consolidation follows a stable pattern.

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent

increase in truck utilization due to shipment consolidation diminish as λ increases.

The observations stated above suggest that the benefits of shipment consolidation are greater when the

items have lower demand rates. This is expected as full truck loads are justifiable when the demand rate

is high for an item, hence, independent shipment results in more full truck loads for higher demand rates

than it would for lower demand rates. Nevertheless, shipment consolidation is observed to be superior

to independent shipment in all demand cases.

(i) Effects of h: Table 7 summarizes the results for each h value. We have the following

observations based on Table 7.

• As h increases, total cost increases under any shipment policy as expected. Under independent

shipments, while the total number of trucks decreases, truck cost and truck density increase with h.

Furthermore, truck utilization decreases. These imply that, under independent shipments, higher

holding costs result in smaller but more frequent shipments by under-utilized trucks compared to

the case of lower holding costs.
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• Under shipment consolidation, similar to independent shipments, the total number of trucks

decreases with h; however, truck cost, truck utilization, and truck density follow a stable pattern.

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent

increase in truck utilization due to shipment consolidation increase as h increases.

The observations stated above suggest that the benefits of shipment consolidation are greater when

the items are subject to high holding costs. Furthermore, while truck utilization, truck density, and

truck costs under shipment consolidation are not affected by changes in holding costs, these values are

negatively affected under independent shipments as holding costs increase.

(i) Effects of a: Table 8 summarizes the results for each a value. We have the following

observations based on Table 8.

• As a increases, total cost and the total number of trucks increase under any shipment policy. This

is expected as higher fixed order costs result in larger orders, hence, more trucks are used for

shipments. Under independent shipments, while the total number of trucks increases, truck cost

and truck density decrease with a. Furthermore, truck utilization increases. These imply that,

under independent shipments, higher fixed order costs result in larger but less frequent shipments

by better utilized trucks compared to the case of lower fixed order costs.

• Under shipment consolidation, similar to independent shipments, the total number of trucks

increases with a; however, truck cost and truck density follow a stable pattern and truck utilization

decreases very slightly.

• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent

increase in truck utilization due to shipment consolidation decrease as a increases.

The observations stated above suggest that the benefits of shipment consolidation are greater when the

items are subject to low fixed order costs. Furthermore, while truck utilization, truck density, and truck

costs under shipment consolidation are not affected by changes in fixed order costs, these values are

negatively affected under independent shipments as fixed order costs decrease.

(i) Effects of P : Table 9 summarizes the results for each P value. We have the following

observations based on Table 9.

• As P increases, as expected, total cost, total number of trucks, truck cost, and truck density

decrease under any shipment policy. Nevertheless, the rate of decrease in these values is higher

under shipment consolidation. Truck utilization under independent shipments decreases as P

increases whereas it follows a stable pattern under shipment consolidation.
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• The percent reduction in total cost, number of trucks, truck cost, truck density and the percent

increase in truck utilization due to shipment consolidation increase as P increases.

The observations stated above suggest that the benefits of shipment consolidation are greater when

trucks used for shipments have high capacities.

(i) Effects of R: Table 10 summarizes the results for each R value. We have the following

observations based on Table 10.

• As R increases, as expected, total cost and truck cost increase under any shipment policy. Under

independent shipments, while the total number of trucks follows a stable pattern, truck utilization

increases, hence, truck density decreases as R increases.

• Similar to independent shipments, the total number of trucks under shipment consolidation follows

a stable pattern as R increases. While truck utilization slightly increases, truck density follows a

stable pattern under shipment consolidation.

• The percent reduction in total cost, truck cost, truck density and the percent increase in truck

utilization due to shipment consolidation decrease as R increases. On the other hand, the reduction

in the total number of trucks due to shipment consolidation is stable for different R values.

The observations stated above suggest that the benefits of shipment consolidation are greater when the

trucks used for shipments have lower costs.

4 Conclusions, Recommendations, and Suggested Research

This study analyzed shipment consolidation policies with explicit truckload transportation costs in a

multi-item inventory system. To the best of our knowledge, shipment consolidation problems with

explicit truckload transportation costs in multi-item inventory systems have not been analyzed in the

literature. To analyze this problem, we formulated a set partitioning problem and proposed a branch-

and-price method for solving the set partitioning problem. The pricing problem associated with the

branch-and-price method was shown to be NP-hard. Therefore, we provided two heuristic methods

to solve the pricing problem. For a practical special case of the pricing problem, we showed that

the pricing problem can be solved to optimality in polynomial time. This special case extends the

EOQ model with market choice flexibility defined and analyzed in Geunes et al. (2004) by modeling

explicit truckload transportation costs. Furthermore, as alternatives to the branch-and-price method,

two heuristic methods are discussed for the set partitioning problem of interest in this study.
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An extensive set of numerical studies was documented to analyze the efficiency of the heuristic

methods proposed for the pricing subproblem and the set partitioning problem. The first set of numerical

studies indicated that the pricing heuristic methods are quite efficient compared to BARON. The second

set of numerical studies demonstrated the efficiency of the set partitioning heuristic methods. The last

set of numerical studies focused on sensitivity analyses of each problem parameter with respect to

the benefits of shipment consolidation. We concluded that in case of lower demand, higher holding

costs, lower fixed order costs, higher per truck capacity, or lower per truck costs scenarios, the benefits

of shipment consolidation are more substantial. Particularly, in such scenarios, the decrease in truck

density, total costs, and transportation costs, and the increase in truck utilization due to shipment

consolidation are greater.

The consolidation policy analyzed in this study leads to a decreased number of trucks used to

ship same total amount of commodities, i.e., reduced truck density and increased truck capacity

utilization. Considering the need for low CO2 emissions in transportation, this study ideally is able

to propose policies for greener transportation in supply chains. Furthermore, these policies lead

to less truck congestion on the distribution network. Future research directions include analyzing

shipment consolidation policies for multi-item inventory systems with stochastic demands. Furthermore,

introducing different truck types, with distinct per truck costs and per truck capacities, remain as a

future research direction. Another future research direction would explicitly account for truck routes in

forming consolidated sets of items.
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Çetinkaya, S., 2005. Coordination of inventory and shipment consolidation decisions: a review of

premises, models, and justification. In: Geunes, J., Akçali, E., Pardalos, P. M., Romeijn, E. H. (Eds.),
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5 Appendix

5.1 Summary of the Notation Used

i : index for items, i = 1, 2, . . . , n,
S : set of items, |S| = n,
j : index for the subsets of S, j = 1, 2, . . . , 2n − 1,
Sj : jth subset of S,
ci : per unit volume procurement cost of item i,
hi : per unit volume per unit time holding cost of item i,
ai : fixed order cost of item i,
λi: demand rate in volumes for item i,
P : per truck capacity,
R : per truck cost,
ti : replenishment cycle length of item i,
vi : replenishment volume of item i,

fi(vi) : total cost per unit time excluding shipment costs for item i,
veoqi : minimizer of fi(vi),

gi(vi) : total cost per unit time including shipment costs for item i,

v(i) : any minimizer of gi(vi),
Tj : common replenishment cycle length for items in Sj ,
Vj : total replenishment volume of the items in Sj , Vj = Tj

∑
i∈Sj

λi,

Gj(Vj) : total cost per unit time for items in Sj including shipment costs,
V ∗
j : any minimizer of Gj(Vj),

xij : 1 if i ∈ Sj , 0 otherwise,
yj : 1 if Sj is in the partition, 0 otherwise.

5.2 Proof of Property 2

We first relax the integrality of Υ in PP2, i.e., consider the following relaxation of PP2.

min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
RΥ

V

∑
i∈S

λixi

s.t. (Υ− 1)P < V ≤ ΥP,
xi ∈ {0, 1}, i ∈ S.

For any given x and V , Υ = V/P in the solution of above relaxed problem; hence, it reduces to R-PP2.

Let (x0, V 0) be a solution of R-PP2 and let Υ0 = ⌊V 0/P ⌋. Note that (x0, V 0,Υ0) also solves

min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
RΥ

V

∑
i∈S

λixi

s.t. (Υ− 1)P < V ≤ ΥP,
Υ ≤ Υ0 + 1,
xi ∈ {0, 1}, i ∈ S.

This then implies that Υ∗ ≤ Υ0 + 1. Similarly, (x0, V 0,Υ0) also solves
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min −
∑
i∈S

πixi +

V
∑
i∈S

hiλixi

2
∑
i∈S

λixi
+

1

V

∑
i∈S

aixi
∑
i∈S

λixi +
RΥ

V

∑
i∈S

λixi

s.t. (Υ− 1)P < V ≤ ΥP,
Υ ≥ Υ0,
xi ∈ {0, 1}, i ∈ S.

This then implies that Υ∗ ≥ Υ0. Therefore, we have Υ0 ≤ Υ∗ ≤ Υ0 + 1. �

5.3 Proof of Property 3

First consider the case when k = Υ0 + 1. Let (xΥ0+1, V Υ0+1) be a solution of PP2-Υ0 + 1

such that Ṽ Υ0+1 = lim
V ↓Υ0P

V . In this case, the objective function value of PP2-Υ0 + 1 excluding

truckload transportation costs at (xΥ0+1, V Υ0+1) is approximately equal to the objective function

value of PP2-Υ0 excluding truckload transportation costs at (xΥ0+1, V Υ0+1). Since, RΥ0

Υ0P

∑
i∈S λixi ≤

R(Υ0+1)
limV ↓Υ0P V

∑
i∈S λixi, then the objective function value of PP2-Υ0 at (xΥ0+1, V Υ0+1) is smaller than

the objective function value of PP2-Υ0 +1 at (xΥ0+1, V Υ0+1). Therefore, (xΥ0+1, V Υ0+1) cannot solve

PP2 unless Ṽ Υ0+1 ̸= lim
V ↓Υ0P

V . Now consider the case when k = Υ0. Let (xΥ0
, V Υ0

) be a solution of

PP2-Υ0 such that Ṽ Υ0
= lim

V ↓(Υ0−1)P
V . Similarly, it can be argued that the objective function value

of PP2-Υ0 − 1 at (xΥ0
, V Υ0

) is smaller than the objective function value of PP2-Υ0 at (xΥ0
, V Υ0

).

Therefore, (xΥ0
, V Υ0

) cannot solve PP2 unless Ṽ Υ0 ̸= lim
V ↓(Υ0−1)P

V . �

5.4 Proof of Property 4

The proof of Property 4 follows from the following observations.

1. ci(V ) = ((Rk+a)/V −πi/λi)λi is decreasing in V , hence, ci(V ) values are minimized when V = kP .

This then implies that the maximum number of items consolidated will be achieved when V = kP .

2. Let products be sorted in nondecreasing order of ci(kP ) values. The order of the items based on

ci(V ) values, V ∈
(
(k − 1)P, kP

]
, will be the same as V changes. That is, the order of items is

the same for any V ∈
(
(k − 1)P, kP

]
.

3. It is clear that for any given V ∈
(
(k−1)P, kP

]
, the corresponding x that minimizes the objective

function value of PP2-kSC for the given V is achieved by assigning xi = 1 when ci(V ) = ((Rk +

a)/V − πi/λi)λi < 0 and xi = 0 otherwise. When ci(V ) > 0 ∀i ∈ S, then xj = 1 such that

j =argmin{ci(V ) : i ∈ S} and xi = 0 ∀i ∈ S\{j}.
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4. It follows from Observations 1–3 that when items 1, 2, . . . , ℓ are consolidated and V = kP , products

1, 2, . . . ,m, with m ≤ ℓ can be consolidated for V ≤ kP .

5. Property 3 implies that V k will be equal to either kP or
√

2(a+ kR)
∑

i∈S λixki /h.

Then the correctness of Algorithm 1 follows from Observations 4–5. �

5.5 Pseudo-code for SE-H

Algorithm 2 Sorting-based-exclusion heuristic method (SE-H) for the general pricing problem:

0: Define z(x) as the optimum objective function value of PP2 given x.

1: Let x be defined such that xi = 1, ∀i ∈ S. Define z∗ = M , where M is a large positive number.

2: For k = n : 1 : −1

3: Calculate z(x) and the associated T

4: If z(x) < z∗, set z∗ = z(x) and x∗ = x.

5: i∗ = 0 and w = −M

6: For i = 1 : n

7: If xi = 1, set wi = −πi +
hiλiT

2 + ai
T + RΥ

kT

8: If wi > w, set w = wi and i∗ = i

9: End

10: xi∗ = 0

11: End

12: Return x∗.

5.6 Pseudo-code for BE-H

Algorithm 3 Best-exclusion heuristic method (BE-H) for the general pricing problem:

0: Define z(x) as the optimum objective function value of PP2 given x.

1: Let x be defined such that xi = 1, ∀i ∈ S. Define z∗∗ = M , where M is a large positive number.

2: For k = n : 1 : −1

3: Calculate z(x)

4: If z(x) < z∗∗, set z∗∗ = z(x) and x∗ = x.

5: Set z∗ = M and j∗ = 0

6: For i = 1 : n

7: If xi = 1, set xi = 0 and calculate z(x)

8: If z(x) < z∗, set i∗ = i
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9: End

10: xi∗ = 0

11: End

12: Return x∗.

5.7 Pseudo-code for PI-H

Recall that each subset can be represented by a binary n-vector and each item is itself a subset, i.e.,

item i is also represented by a binary n-vector such that its ith entry is 1 and all other entries are 0. We

use ei to denote the binary n-vector defining item i. A partition can be represented by a set of binary

n-vectors and we use xj to denote the jth component included in the partition.

Algorithm 4 Partitioning via Integration heuristic method (PI-H) for problem P:

0: Set E = {e1, e2, . . . , en} and Partition = ∅.

1: Randomly select ei from E and set E =: E\{ei}.

2: Set g∗ = M and j∗ = 0.

3: For j = 1 : |Partition|

4: x = xj + ei and calculate G(x)

5: If G(x)−G(xj) < g∗, g∗ = G(x)−G(xj) and j∗ = j.

6: End

7: If g∗ ≤ G(ek), update Partition by setting xj
∗
=: xj

∗
+ ei

8: Else Partition =: Partition ∪ {ei}

9: If E = ∅, stop and return Partition; else, go to Step 1.

5.8 Pseudo-code for PE-H

Algorithm 5 Partitioning via Best-exclusion heuristic method (PE-H) for problem P:

0: Let πi = 0 ∀i ∈ S. Set E = {e1, e2, . . . , en} and Partition = ∅.

1: Execute BE-H with E and let x be the output. Partition =: Partition ∪ {x}.

2: For i = 1 : n

3: If xi = 1, E =: E\{ei}

4: End

5: If E = ∅, stop and return Partition; else, go to Step 1.
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5.9 Implementation Details of the Branch-and-Price Method

Here, we explain the implementation details of the branch-and-price method discussed in Section 2.1.

CPLEX via GAMS is used in solution of any linear programming problems.

Branching rule: We branch on the binary decision variables, that is, yj values. In particular,

consider a feasible non-integer solution of a node. We choose the variable which is the closest to 0 or

1 to branch on. We define the first child by including the additional yj = 1 constraint and the second

child by including yj = 0 constraint.

Node priority: We use a depth-first approach and solve the first child of a parent node. If the

parent node is fathomed due to integrality, infeasibility, or bounded by the best integer solution, we

move to its sibling. The reason behind applying a depth-first approach with priority given to the first

child is due to the fact that as the branch-and-bound tree gets deeper, the LRP of the node can be

reduced to a smaller LRP that we explain next.

Solving a node: Suppose that we need to solve a node. Each node is defined by problem LRP

and the additional yj = 1 ∀j ∈ J1 and yj = 0 ∀j ∈ J0 type of constraints, where J1 and J0 define the

sets of the subsets to be included and excluded, respectively, from the LRP solution of the node under

consideration. First, we check whether the node is infeasible due to yj = 1 type of constraints. If there

exists at least one i such that
∑

j∈J1 xijyj > 1, then the node is stated as infeasible since it violates the

assignment constraints, and, therefore, it is fathomed. Otherwise, we reduce the LRP to a smaller LP,

which we refer to as the reduced LRP. This reduction is executed as in the following simple example.

Suppose we have five items S = {1, 2, 3, 4, 5}. The current node has to include S1 = {1} and

S2 = {2}, that is, columns [1, 0, 0, 0, 0]t and [0, 1, 0, 0, 0]t has to be included, i.e., y1 = 1 and y2 = 1.

Furthermore, let us assume that the current node has to exclude S3 = {1, 2, 3} and S4 = {4, 5}, that is,

columns [1, 1, 1, 0, 0]t and [0, 0, 0, 1, 1]t has to be excluded, i.e., y3 = 0 and y4 = 0. Since S1 ∪ S2 = ∅,

we cannot tell that the node is infeasible at this point. Now since items 1 and 2 are already covered, we

eliminate them and we have S0 = {3, 4, 5}. That is, we now have a smaller set of items that we need to

solve the LRP for. Note that the reduced LRP will have no yj = 1 type of constraints. Now suppose

that we solve the reduced LRP with no yj = 1 and no yj = 0 type of constraints. It may be the case that

S4 = {4, 5} and S5 = {3} define the solution of the reduced LRP. Together with the initially included

subsets, this implies that S1, S2, S4, S5 define the solution of the original node. However, this solution

is not feasible to the original node as we should have y4 = 0. Here, we need to define yj = 0 type of

constraints for the reduced LRP. In particular, if Sj is to be excluded from the original LRP, it will also

be excluded from the reduced LRP when it does not have any of the items that we will eliminate from
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the original set of items. For the example above, the reduced LRP will only consider items 3,4 and 5,

and it has to exclude S4.

After forming the reduced LRP, we apply column generation to solve it. To initiate the column

generation for solving the reduced LRP of the node, a feasible starting solution and a modified column

generator, which will not generate columns that has to be excluded from the solution of the reduced

LRP, are needed.

Generating a feasible starting solution: We first see whether the column including all of the

items, which is a feasible solution by itself, can be used as a starting solution. If the reduced LRP does

not require the full column to be excluded, we choose it as the feasible starting solution. Else, we use

a modified version BE-H to generate a starting feasible solution. We start with the full column as if

it can be included, generate dual variables, then apply BE-H to generate a new column. We modify

BE-H such that it never generates a column that should be excluded from the reduced LRP by assigning

high reduced costs to the columns that has to be excluded from the reduced LRP. If the new column

constitutes a feasible solution by itself, we take it as our starting solution. Else, it is included in the set

of columns that should not be generated and we apply BE-H to generate one more new column. Then

we check whether the newly generated columns constitute a feasible solution. This process is repeated

until a feasible solution is constituted or BE-H generates a column that has already been generated.

In the former case, a feasible starting solution is known, while we use the later case to fathom the node

due to infeasibility.

Fathoming: A node is fathomed if its solution is integer, or the objective function value is greater

than the best integer solution, or it is stated to be infeasible due to either yj = 1 type of constraints or

a feasible starting solution cannot be generated for the reduced LRP due to yj = 0 type of constraints.

5.10 Tables

The tables used for the discussion of the cost and environmental benefits of shipment consolidation

compared to independent ordering are stated below.
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