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PREFACE

The Office of Rail Technology of the Urban Mass Transportation
Administration (UMTA) has been conducting research and development
programs directed toward the improvement of urban rail transporta-

tion systems safety.

One type of accident which occurs from time to time is rear-

cnd train collision even in track sections with signal systems.

As a result, rail-transit research seeks to develop an on-
board, separate and independent obstacle-dection system, so that

rear-end collisions can be avoided.

One possible system involves the use of Surface Electromag-
netic Wave (SEW) detection. The aim of the work performed under
this contract is to determine the feasibility of such a system in

a rail-transit operation.

The authors wish to thank R. Kodis and P. Yoh of the Trans-
portation Systems Center (TSC) for helpful discussions and for

uscful suggestions.
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1. INTRODUCTION

The use of surface electromagnetic waves (SEW) for communication,
control, obstacle detection, and fault detection on guided railroad systems
is already being considered in several countries; for example, the United
States,l—4 United Kingdom,sv7 Japan,g—12 and Canada.13—19 One of the major
applications of SEW in railway systems is the detection of trains and obsta-
cles on the track. This function is important to system safety, especially
on high-speed railways or guideways. Our preliminary investigationszo’21
with SEW propagating on the top of railraod rails indicate that train
or obstacle detection is possible using SEW.

A coupler having no physical contact with the rail is required
to excite and detect SEW from the train. We report here the measurements
of the coupling efficiences for two types of SEW couplers (prism and grating)
as functions of frequency, vertical displacement of the coupler above the
rail, horizontal (lateral) displacement of the coupler from rail center;
pitch, roll, and yaw angles of the coupler. Radiation patterns have
also been measured on the two types of SEW couplers in the vicinity of
the rail and in isolation at several microwave frequencies.

The coupling efficiency is definedz—23 as the ratio of the power
carried by the SEW along the surface to the power transmitted through the
coupling aperture and available for coupling to the SEW. The coupling aper-
ture (coupling area) is the effective cross-sectional area of the prism or
the grating, which interacts with the railroad rail surface and which can
act to couple power to the SEW (see Appendix III of Ref. 23). The dependence

of the coupling aperture on the SEW excitation technique is also discussed

in Appendix III of Ref. 23.



2. BACKGROUND

2.1 SURFACE ELECTROMAGNETIC WAVES

SEW has been defined by Barlow and Brown:22

"A SURFACE WAVE IS ONE THAT PROPAGATES ALONG AN INTERFACE BETWEEN

TWO DIFFERENT MEDIA WITHOUT RADIATION; SUCH RADIATION BEING CONSTRUED

TO MEAN ENERGY CONVERTED FROM THE SURFACE-WAVE FIELD TO SOME OTHER

FORM. "
From this definition, it is seen that the most.distinctive property of SEW
is the non radiating property as it propagates along an interface. This, in
addition to the need of only one conductor as a transmission line, will
make SEW potentially very useful in fault detection systems, collision avoi-
dance systems, and communications systems.zzr_26 .

Although there are three distinctive forms of SEW, this work is concemrned
with inhomogeneous plane waves supported by a flat conducting surface (Zenneck
waves). A bare railroad rail (iron) is used for the supporting medium. The

medium above the metal is air.

2.2 SURFACE ELECTROMAGNETIC WAVE FIELDS

SEW which are guided along an uncoated metallic conductor are represented
by particular solution of Maxwell's equations. It is assumed that the conduct-
ing boundary is in the x-y plane and that there is variation in the x-direction
is no variation in the y-direction (3/9y = 0). It is also assumed that the
SEW is a transverse magnetic wave (TM); therefore, there are only three field
components, Ex’ Ez’ and Hy, in each medium.

Wave solutions are required in two half-spaces as indicated in Fig. 1.

Air is represented by Region 1 and the conductor by Region 2. The expressions
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for field components are as follows:23

Air-Region 1 (z>o0)

Hy = Aexp (- k, z) exp (-] (kx - wt)),
Kk 1
4 .
Ex = A jagiexp (-kzlz) exp (- J(kxx - wt)), (1)
E = -A L3 exp (- k. z) exp (- j(k_x - wt))
z we z, X )

Metallic Conductor-Region 2(z< o)

Hy = A exp (k, z) exp (- j(k x - wt)),
z X
2
k
z
Ex = A 5 exp (k_ z) exp ( - j(k_x - wt)), (2)
JUE e et 22 X
k
E = -A exp (k, z) exp (- j(k x - wt)),
z WE, o £f Z, bq

where kx and kz are the propagation vectors in the x-and-z directionms,

respectively. The subscripts 1 and 2 refer to Regions 1 (air) and 2

(conductor). The dispersion relation is given by23
L ou | Czeest/e0) (3)
X C | f2erst €1

where € is the permittivity of air, €0 is the permittivity of free space,

w is the SEW angular frequency, c¢ is the speed of light in free space, and

. %2
E -Ja—

€reff = €2 , (4)

where €, and o, are the total permittivity and conductivity of the metal,

2
respectively. For metal conductors in the microwave region, to a good ap-
proximation:

2 s e,
w 2



Therefore, Eq. (4) becomes

g

. 3 2 (s)
€reff - I TL

g
Substituting Eq. (5) into Eq. (3) and noting that 53->> €1 and that €, % €p»

we find that the propagation constant in the x-direction is approximately

k =
X

o|e

(6)

Therefore, for the efficient excitation of SEW on an uncoated conducting
surface at microwave frequencies, the magnitude of the propagation vector
will be w/c, the free-space value.

The fields decay outside of the surface exponentially. The component of

the propagation vector in the +z-direction (air) 1323

g =9 10 (7
- :

Z €0 | 2eff T &1

The component of propagatidn vector in the -z direction (metallic conductor)
23

is
L = .U C2eff 0 _ (8)
%2 © g \|%zeff T €1
The fields fall to é— of their surface value at a height23
h, = I '
air Re iEz ) (9)
1
h - : ,
metal Re iEz ) (10)
2
The height above the surface for 90-percent power concentration isz3
N < d
h90% =2.3 N 02/2weo » (11)

N\
2.3 SURFACE ELECTROMAGNETIC WAVE EXCITATION TECHNIQUES

All previously employed methods of SEW excitation have required physical

contact between the metallic surface (guiding structure) connected to the



coupling aperture. Our use of the prism or grating coupler allows the exci-
tation of SEW without any physical contact between the coupler and metallic
conductor (railroad rail). The prism-and-grating couplipg techniques for SEW
excitation will now be considered subject to the approximation that kx is
equal to w/c.

2.3.1 Prism-coupling Technique

If a metal surface, coated or uncoated, is brought under a dielectric
prism maintaining a small air gap (of the order of a wavelength) between the
base of the prism and the conducting surface, SEW can be excited on the con-
ducting surface. Fig. 2(a) illustrates the principle of the prism coupling
technique.27_31 Eor this situation, an evanescent wave is propagating along
the surface. The x-component of the propagation vector of this evanescent

wave is 20,21

kx = €4 (w/c) sin @i. (12)

Using the approximation that kx is equal to w/c in Eq. (12) results in

sin 0, = = %—, (13)

where n is the index refraction of the prism coupler., Therefore, to excite

SEW by prism coupler, © will be equal to the critical angle Oc of the

1
prism coupler (see Fig. 2).

To couple SEW onto metal surfaces and to decouple at the recelving
point, right-angle prisms are used, as shown in Fig. 2(b). A maximum coupling
efficiency of 60 percent has been achieved experimentally for prism—coupling

technique.20’21’23

2.3.2 Grating-coupling Technique

A grating coupler for the excitation of SEW is shown schematically in
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FIGURE 2. (a) PRISM-COUPLING TECHNIQUE PRINCIPLE SHOWING
CRITICAL ANGLE (0c), (b) COUPLING IN AND OUT OF
SURFACE ELECTROMAGNETIC WAVES BY PRISM COUPLERS.




Fig. 3. It excites waves with propagation vector corresponding to the set27

kx = (w/c)sin a + m %I- m=0, %1, 2, ... , (14)

where

Q
n

the angle of incidence,

E}
H

mode order, and

[« 9
i

grating constant.
In the microwave region kx = w/c, and Eq. (14) yields

sina=1-m m=0, 1, 2, (15)

where A is the wavelength of SEW. Therefore, to excite SEW with the
grating coupler, the angle of incidence o must satisfy Eq. 15. A

maximum coupling efficiency of 30 percent has been achieved experiment-

ally for the grating-coupling technique with m = 1.



i\ i
A

g

m=0
a
GAP HEIGHT .
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FIGURE 3. GRATING-COUPLING TECHNIQUE PRINCIPLE SHOWING ANGLE OF
INCIDENCE (&), GRATING SPACING (d), AND GAP HEIGHT (8).
MODE ORDER 1 IS SHOWN COUPLED AS SEW (6 = 90° ).



3. SURFACE ELECTROMAGNETIC WAVE COUPLING EFFICIENCY

The efficiency of each coupler ﬁas been measured as functions of freq-
uency, vertical displacement (h) of the coupler above the rail, horizontal
(lateral) displacement (a) of the coupler from rall center; and pitch, roll,
and yaw angles of the coupler.

The measuring techniques are described below. All signal readings
are normalized for plotting to the maximum signal being delivered to the
coupler aperture. SEW signal strengths are measured as described in the
following sectionms.

3.1 COUPLING EFFICIENCY VS VERTICAL DISPLACEMENT

The prism-coupler excitation efficlencies as functions of the (vertical
displacement)/(wavelength) for the soft polyethylene prism coupler have
been measured at 8.2 and 16 GHz and are plotted in Figs. 4 and 5, respective-
ly. The vertical displacement (h) is varied from 0 to 3 wavelengths in
0.2-wavelength steps for 8.2 and 16 GHz (see Fig. 6a). A horn antenna 1s
used in this experiment to receive the SEW signals. The data show that
the peak in excitation efficiency for the prism-coupling technique occurs
in one-half-wavelength vertical displacement above the rail. The maximum
prism coupling efficiencies are 57 and 60 percent at 8.2 and 16 GHz,
respectively.

The grating coupling efficiencles have been as functlons of the
(vertical displacement)/(wavelength) at 8 and 12 GHz, and are plotted in
Figs. 7 and 8, respectively. The coupling efficiencles peak every 1/2-wave-
length in vertical displacement. The maximum grating-coupling efficlencies
measured are 26 percent at 8 GGz and 30 percent at 12 GHZ.

The changes in efficiency with respect to vertical displacement in a
normal-size track-gulded vehicle will be small since the vertical displace-

menl expected v normal operat lon 1a only a Tew cent tmetera,
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3.2 COUPLING EFFICIENCY VS HORIZONTAL DISPLACEMENT

The maximum prism-coupling efficiencies of 57 énd 60 percent have been
achieved with the prism near the center of the rail at 8.2 and 16 GHz, respec-
tively (see Figs. 9, 10). The efficiency falls off asymmetrically for 8.2 GHz
and more asymmetrically for 16 GHz as the coupler is displaced from the rail
center to the maximum displacement (as shown in Fig. 6b), amax = (rail
width/2) + (coupler width/2). The asymmetry in the data is attributed to the
rail being asymmetrical because of wear, and this effect 1s relatively more pro-
nounced when the ratio of the wavelength to the rail dimension is smaller.

The maximum grating-coupling efficiencies of 26 and 30 percent have been
achieved with grating near the center of the rail at 8 and 12 GHz, respectively
(see Figs. 11, 12). The efficiencies fall off asymmetrically for both fre-
quencies. The asymmetry in the data is attributed to the rail being asymme-
trical.

The change in efficlency with respect to horizontal displacment in a
normal-size track-guided vehicle will be émall since the horizontal displace-

ment expected ‘in normal operation is only a few centimeters.

3.3 COUPLING EFFICIENCY VS PITCH ANGLE

Prism—coupling efficiencies as functions of pitch angles are shown in
Figs. 13 and 14 for 8.2 and 16 GHz, respectively. The pitch angle (Phi)
is varied in 0.2-degree increments for 0 to + 2 degrees and 0.5-degree increments
from ; 2 to 5 degrees at the optimum vertical displacement determined in 3.1
(see Fig. 15a).

Notice that there is an increase in coupling efficiency when the prism
coupler is rotating 1in the positive—angle direction. The prism is designed to
couple more efficlently when a parallel beam enters 1t perpendicularly to the

back face of the prism (see Fig. 16a), When this condition is met, the beam
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(PITCH)
RAIL
(a) SIDE VIEW
(YAW)
COUPLING
DEVICE ©
o[ ve/ )
IROLL) [ RAIL - ] 40 &
(b) FRONT VEW (C) TOP VIEW

FIGURE 15. EFFECT OF (a) PITCH, (b) ROLL, (c) YAW ON SEW COUPLING EFFICIENCY.
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FIGURE 16. EFFECT OF (a) PARALLEL BEAM AND (b) UNPARALLEL BEAM ON PRISM-COUPLER
EXCITATION EFFICIENCY.
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is refracted along the ﬁaée éf ‘the prism &hefe it 1s normally captured along
the rail-air interface of the railroad rail. If the beam is divergent, as

in the case of a horn antenna taped to the back of the prism, portions of the
beam are refracted at various angles which cause a lessening of the efficiency
(see Fig. 16b). The portions of the beam which do not emerge parallel with

the prism base now form a distributed beam which can be captured as SEW by
rotating the prism. Since more power is actually available in this distributed
beam, the coupling efficilency increases to a point'as the prism is rotated in
the positive-angle direction. When the prism is rotated in the negative-angle
direction, the part of the divergent beam which will be expected to come into
play has already been totally internally reflected, so that coupling efficlency
decreases. This pattern can also be seen in the 16-GHz plot (Fig. 14). The
maximum prism-coupling efficiencies of 57 and 60 percent are achieved with

the prism near the center of the rail at 8.2 and 16 GHz, respectively.

The grating-coupling efficiencies as functions of pitch angles are shown
in Fig. 17 for 2 GHz and in Fig. 18 for 4 GHz. It is pointed out that the
angular scale for this part is expanded 4:1 (4 degrees show only 1 degree
variation in Figs. 17 and 18), and the magnitudes are plotted in decibels re-
flecting power changes directly. An asymmetry in the curves exists because of
the fact that the head of rail used is itself asymmetric.

The changes of coupling efficiency with respect to pitch angle will be
small in a normal-size track-guided vehicle since the pitch-angle change

expected in normal operation is less than 2 degrees.

3.4 COUPLING EFFICIENCY VS ROLL ANGLE

The prism-coupling efficlencies as functions of roll angles are shown in
Figs. 19 and 20 for 8.2 and 16 GHz, respectively. The roll angle (Theta) is
varied in 0.2 degree increments from 0 to + 5 degrees and in 0,5-degree incre-

ments from * 5 to t 15 degrees (see Fig, 15b). An asymmetry in the curves
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exists because of the fact that the head of the rail used is itself asymmetric.
At 8.2 GHz when the coupler has been rolled to a positive angle,iit

tried to couple to a surface which sldped away from it. This has caused a pro-
nounced dropoff of the cqupling efficiency as evidenced by a 3-dB point only 11
dégrees from the horizontal. When the coupler has been rolled to a negative angle
over the flatter portion of the rail head, the coupling efficiency has dropped
off much more slowly. This has allowed for a 3-dB point at -15.5 degrees from
the horizontal. At 16 GHz, 3-dB points have moved out to +12.5 and -25 degrees.
This increase of the effective coupling angle can best be explained in terms of
the wavelength. As the frequency of SEW increases, its wavelength decreases in
inverse proportion. The head of the rall grows larger with respect to a wave-
length as the wavelength decreases, and so it takes larger perturbations from
the horizontal to affect the coupling efficiency.

The grating-coupling efficiencies as function of roll angles are shown in
Figs. 21 and 22 for 8 and 12 GHz; respectively. It is pointed out that the
angular scale for this part has been expandéd 4:1 (4 degrees show only 1 degree
variation in Figs. 21 and 22), and the magnitudes are plotted in decibels to
reflect power changes directly. An asymmetry in the curves exists because of the
fact that the head of the rall used is itself asymmetric. The 3-dB points for
8 GHz are at +13 and -5 degrees of roll. At 12 GHz, the 3-dB points have moved
out to +12 and -6 degrees of roll.

The data for the roll angles are taken at the vertical displacement of
1.5 wavelengths to provide sufficient clearance for the wide range of roll
angles desired in this study. Since this displacemmnet is larger than is expected
to be used in a normal application, the results have been corrected to reflect
optimum vertical displacement efficienciles.

The changes in efficiency with respect to the roll angle in a normal-size

track-guided vehicle will be small since the roll-angle change expected in
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normal operation will be 5 degrees or less.

3.5 COUPLING EFFICIENCY VS YAW ANGLE

The prism-coupling efficiencies as functions of yaw angles are shown in
Figs. 23 and 24 for 8.2 and 16 GHz, respectively. The yaw angle (Psi) is
varied in 0.2-degree increments from O to ; 15 degrees and in 0.5-degree incre-
ments from * 5 to * 15 degrees at the optimum vertical displacement determined
in 3.1 (see Fig. 15¢). The data are not symmetric because the rail is not
symmetric. The 3-dB points occur at yaw angles of 12 and -15 degrees for 8
GHz and 11 and -13 degrees for 16 GHz.

The change in efficiency with respect to yaw angle for a normal-size
track-guided vehicle will be small since the yaw-angle change expected in norm-

al operation is less than 5 degrees.
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4. SCATTERED RADIATION PATTERNS

Measurement of scattered radiation patterns have been made on two types of
SEW couplers (prism and grating) in the vicinity of the rail and in isolation.
Polar-radiation patterns of each coupler in isolation are produced at several
discrete microwave frequencies as a function of angle for three mutually perpen-
dicular planes (see Fig. 25a). These are the horizontal plane (x-y plane, Angle
¢); the vertical plane parallel to the primary axis of the éoupier (x-z plane,
Angle Y), and the vertical plane perpendicular to the primary axis of the
coupler (y-z plane, Angle 6). Data have been taken in 5-degree increments
around the complete circles described in each plane, and the readings are norm-
alized to 1 mW (dBm).

Similar measurements have been made in the vicinity of the rail, but only
for the upper hemisphere (see Fig. 25b).

The experimental arrangement of the scattered radiation-pattern measure-
ments will be discussed in 4.1. For the grating-coupler experiments, both the
transmitting and receiving antennas have a reflector diameter of 45.72 cm (18
inches). The antennas are linearly polarized with 3-dB beamwidth at 6 degrees
at 10 GHz. Each grating is composed of several aluminum bars with diameters
of 1.27 cm. The spacing between the bars is determined from Eq. (15) for the
first-order mode (m = 1).

For the prixm-coupler experiments, a horn antenna has replaced the trans-
mitting parabolic-dish antenna. The mouth of the horn antenna has been taped
to the back of the right-angle polyehylene prism. Note that the prism-coupler
angle is chosen so that an electromagnetic beam normally incident on the prism
face strikes the prism base at the critical angle. These prism couplers are

of soft polyethylene with a relative dielectric constant of 2.25.
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4.1 SCATTERED RADIATION-PATTERN EXPERIMENTAL SETUP

To make measurements of the radiation patterns in the three mutually perpen-
dicular planes, the following procedure is followed:

a. A support apparatus is constructed to hold the rail, transmitting
antenna, and couplers. This apparatus is shown in Fig. 26.

b. The support apparatus is assembled and placed on top of an accurately
marked angular measurement stand. This experiment is conducted in a very large
open area. The receiving antenna is mounted on a stand 5 meters from the coup-
ler on the support platform. The receiving antenna is sighted level to the same
horizontal plane as the transmitting coupler using a transit.

¢. The electronic instruments used are connected as shown in Fig. 27.

d. The sweep oscillator 1s adjusted to operate at a fixed frequency,
appropriate for the test being performed, using the electronic frequency
counter.

e. The ratiometer is calibrated following the procedure specified in
its operation manuals.

f. The angle measurements are taken by rotating the angular measurement
stand in 5-degree increments. 'Data are taken at these positions by position-
ing the pen of the x-y recorder to an x-axis location corresponding to the
angular position, and lowering the pen to make an ink dot with a y-coordinate
whose value is proportional to the ratio of the received signal to the trams-
mitted signal. The y-axis is then calibrated in.dBm (decibels down relative
to 1 mW) by reading the dBm value from the ratiometer. The coupling factor
of the directional coupler is added to its value and is then recorded for

a glven data point.

4.2 CALCULATION OF ELECTRIC FIELD INTENSITY AT 100 FEET (30.48 METERS)

The distance between the transmitting coupler (prism or grating) and
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receiving antenna has beénufixed té.s meters for all cases. The transmitting
and recelving antennas are identical with a reflector diameter of 45.72 cm (18
inches). The antennas are linearly polarized with 3-dB beamwidth of 6 degrees
at 10 GHz.

The power radiated per unit area in any direction 1is given by the Poyn-
ting vector, F. For the distant or radiation field for which electric field
intensity E and magnetic field intensity ﬁ are orthogonal in a plane normal
to the radius vector, and for which E = an where nv 1s the intrinsic #mpe—
dance of free space, the power flow per unit area is given by

2 2 2
P=— =7 W/m® (16)
Power densities at points Po (5 m from coupler) and P1 (30.48 m from coupler)

are as follows (see Fig. 28):

o’ o 4ﬂR02 AR *
At P P, = w__Tch (18)
h 1 ] 1 4ﬂR b

Where Wc is the radiated power at the coupler, Gc is gain in the arrow direc-
tion (see Fig. 28), Ro is the distance between coupler and receiver (5 m), W
1s the receilved power at 5 m, AR 1s the effective area of receiving antenna, and

R1 is 30.48 m. From Eq. (17), we get

x

2 'R
W‘:Gc = 41rR° —R . (19)

41



TRANSMITTER
W, 6

COUPLER RECEIVER
Wc ) G c wR ] AR
AL < B
= Ro y° P'
€ R|

FIGURE 28. LOCATIONS OF TRANSMITTER, COUPLER, AND RECEIVER FOR SCATTERED
RADIATION-PATTERN MEASUREMENTS.
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Substituting Eq. (19) in Eq. (18) results in .

e R @)
1 Ry Ap
The power density at point'P1 from Eq. (16) is
El2 .
P1 * T2o7 1)

E,” = 1207 5~ = . (22)

A, = — | (23)

Since the diameter of the antenna is 45.72 cm, we obtain from Eq. (23)

Ay = 0.16417 m (24)
Substituting Eq. (24) and all the known values in Eq. (22) result in

E12 = 120w :#16417 (3o.i3)2 = 61.79 Wg - (25)
The electric field intensity at 100 feet (30.48 m) is

e - 706w m, . 26

where WR is the received power (watts)at 5 m.

4.3 SCATTERED RADIATION PATTERN IN HORIZONTAL PLANE

The maximum received signals relative to 1 mW (dBm) and the correspond-
ing electric field intensity (E) at several frequencies for different configura-

tions are as follows:
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.a) Grating-- No Rail (Fig. 29)
Frequency (GHz) 2 4 8
Maximum received power at

5 m (dBm) . -23 -29 -40

Maximum E at 100' (mV/m) 17.596 8.819 2.486.

b) Grating-- Rail (Fig. 30)
Frequency (GHz) 2 4 8
Maximum received power at

5 m (dBm) -22 -31 -33

Maximum E at 100' (mV/m) 19.743 7.005 5.564.

c) Prism-- No Rail (Fig. 31)
Frequency (GHz) 8 12 16.2
Maximum received power at

5 m (dBm) 23 230 -44

Maximum E at 100' (mV/m) 17.596 7.860 1.568.

d) Prism-- Rail (Fig. 32)
Frequency (GHz) 8 12 16.2
Maximum received power at
5 m (dBm) -24 -35 -43
Maximum E at 100' (mV/m) 15.683 4.420 1.760.
The results of radiation-pattern data in the horizontal plane for both
the grating-and-prism couplers show that to meet the FCC specification of 500
uV/m at 100 ft, the couplers must be redesigned. Redesigning the couplers will
involve the use of absorbing materials around the couplers to reduce the radiat-

ing power in the nontransmitting directions which exceed FCC limits
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4.4 SCATTERED RADIATION PATTERNS IN VERTICAL PLANE

PARALLEL TO PRIMARY AXIS OF COUPLER AND VERTICAL

PLANE PERPENDICULAR TO PRIMARY AXIS OF COUPLER

For the grating coupler, the positions of the maximum signals in the

vertical plane parallel to the primary axis can be predicted by

d(sin a + sin 8) = m\ m=20, 1, £2,... , (27)
where
d = grating constant »
m = order mode ,
8 = position of the maximum signal , and
o = incident angle of electromagnetic wave.
Since in our experiments %—= 0.66 and o = -20 degrees, the calculated

positive maximum signals are at:
6 = 20°; 90°, (28)

Experimental data are in good agreement with these calculations.

Similar data to that presented in section 4.3 for the horizontal plane
(x-y plane) are also available for the vertical plane parallel to the primary
axis of the coupler (x-z plane) and the vertical plane perpendicular to the
primary axis of the coupler (y-z plane). In these cases however, the
receiving antenna is not always oriented with the same polarization as the
transmitting antenna, and the data need to be corrected by adding or subtracting
a constant to all readings. Even without this correction, it 1s clear that
the couplers need to be redesigned to meet the FCC specification for operation

without a license.

49



5. DISCUSSION AND CONCLUSIONS

The SEW eﬁcitation efficiencies for both the prism and grating coup--
ling techniques in the vicinity of the railroad rail have been measured. The
coupling experiments have included studies of the SEW excitation efficiencies as
functions of the frequency, vertical displacement of the coupler above the
rail, horizontal (lateral) displacement of the coupler from rail center, pitch
angle of the coupler, roll angle of the coupler, and yaw angle of the coupler.

The SEW coupling efficiency curves for both prism-and-grating couplers
show dependence on vertical displacement above the rail, on horizontal dis-
placement of the coupler from rail center; and on pitch, roll, and yaw angles
of the coupler relative to ‘the rail.

The maximum peak for the prism coupler occurs at one-half-wavelength gap
spacing in vertical displacement between the prism coupler and the rail head
for the frequencies considered. For the grating coupler, the peaks are
repeated every half- wavelength, and the index of the maximum peak appears to
increase with increasing frequency.

The maximum excitation efficiency of the prism-coupling technique is
about 60 percent at 16 GHz vs about 30 percent for the grating coupling technique
at 12 GHz. Reducing the frequency causes an efficiency reduction for the prism
(57 percent at 8 GHz)and for the grating (26 percent at 8 GHz). For both coup-
lers, the efficiencies vs horizontal displacement; pitch, roll, and yaw angles
fall off asymmetrically. The asymmetry in the data is attributed to the rail's
asymmetry. This effect is relatively more pronounced when the wavelength
is smaller, as expected, since the ratio of the wavelength to the rail dimen-

sion is smaller.
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The falloff in coupling efficiency with horizontal displacement 1s very
small until half the coupler is displaced from over the rail head. The 3-dB
points are at, or greater than, one-half the coupler-width displacement
(10.16/2 = 5.08 cm), whereas one does not expect even one-quarter the coupler-
width displacement. For pitch-angular deviatiaon, there 1s only a small fall-
off in coupling efficiency to the 2-degree expected pitch-angular deviation
and 1s usable to and beyond (for positive pitch-angular deviation) 5 degrees.
The falloff in efficiency for roll-and-yaw angular deviation is small to the
maximum 5 degrees expected in normal use, and usable to more than 15-degree
roll-and-yaw angular deviation.

Polar-radiation patterns of each couple} in isolation are produced at
several discrete microwave frequencies as functions of angles for three mutually
perpendicular planes. These are horizontal plane (x—& plane, Angle $),
vertical plane parallel to the primary axis of the coupler (x-z plane,

Angle ¥), and vertical plane perpendicular to the primary axis of the coupler
(x-z plane, Angle 6). Similar measurements are made in the vicinity of the
rail but only for the upper hemispherg.

The results of radiation-pattern data show that to meet the FCC
fication of 500 uV/m at 100 ft for no license, the couplers must be redesigned.
Redesigning the couplers involve the use of microwave energy-absorbing material
around the couplers to reduce the readiating power in nontransmitting direc-
tions which exceeds FCC limits.

Appropriate absorbing materials are on order. and the redesigned couplers
will be used in the balance of the experiments specified in the first year of
this project as soon as they are availlable.

The data on vertical and horizontal displacements, and on roll, pitch, and

and yaw angles indicate that either the prism or grating couplers mounted on a

51



N

moving vehicle will operate successfully for the linear displacements and
the angular deviation that one will normally expect to encounter on a track-

guided vehicle,
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REPORT OF INVENTIONS APPENDIX

This report presents the results of the first six months'
work under contract DOT-TSC-1150 on determining the electrical

characteristics of the Surface Electromagnetic Wave (SEW) vehicle
coupler and the excitation of SEW on a steel rail.

After a diligent review, no innovation, discovery, improve-
ment or invention was found.

110 copies
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