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Executive Summary

In this paper, we address the problem of determining the patrol routes of state troopers for
maximum coverage of highway spots with high frequencies of crashes (hot spots). We develop a
mixed integer linear programming model for this problem under time feasibility and budget
limitation. We solve this model using local and tabu-search based heuristics. Via extensive
computational experiments using randomly generated data, we test the validity of our solution
approaches. Furthermore, using data from the state of Alabama, we provide recommendations
for 1) critical levels of coverage; ii) factors influencing the service measures; and iii) dynamic
changes in routes.



Section 1
| ntroduction

Traffic accidents pose a great danger to passengers’ w09, 33,963 people died in traffic
crashes in the United States, an 8.9% decline from 2008 anldwrest total since 1954 (NHTSA,
2010). Even though fatality rates continue to drop in thetéthStates, the number of fatalities is
still significant.

Furthermore, the economic impact of motor vehicle crasindd.&. roadways is noteworthy. The
NHTSA estimates this cost as $230.6 billion per year (neaypercent of the nation’s gross
domestic product), or an average of $820 per person in thetgo(Blincoe,et al., 2002). Thus,

it is of humanitarian and economic importance to reducdi¢ratcidents.

It is believed that concentrated traffic enforcement hassatige impact in reducing the number
of crashes and discouraging dangerous behavior (Steil ams, 2009). One such example, the
NHTSA-sponsored “Click it or Ticket” program, uses a conatian of publicity and increased
law enforcement to educate and motivate the public. Angihegram, “Targeting Aggressive
Cars and Trucks,” sponsored by the Federal Motor CarrigiestysAdministration (FMSCA,

2008), encourages the participating states to identifjti@t@l law enforcement and publicity
strategies that will deter aggressive driving. Due to laditesources, a primary concern of public
safety officials is theffective use of patrol cars and state troopgrseducing traffic accidents. A
typical method for state troopers is to patrol “hot spotg'rtain locations of highways with high
frequencies of crashes over a certain time period. Thesgidos are often associated with a
particular type of crash (for example, excessive crashesethby speed or DUI). Furthermore,
hot spots vary with respect to the day of week and time of degt;i, a particular highway
location may be a hot spot on a particular day and time buttmther times.

With this motivation, given identified hot spots on mile-geEshighways, we focus on building
effective state trooper patrol routes with maximum hot sgoerage. This problem has
similarities tothe orienteering problem (OP) (Feillet, et al., 2005; Tsiligirides, 1984), also
known as the selective traveling salesman problem (ST3#ghveonsists of finding a circuit that
maximizes collected profit such that travel costs do notead@epreset valug. For our problem,
the service time at a hot spot can be viewed as the “profit” edethe shift duration is equivalent
to setting a value fo€. However, due to time windows of hot spots, we have an “exipmaime”
on the profits. Furthermore, we consider routing multiples ca@multaneously. Therefore, our
problem is related to the team orienteering problem wittetimndows (TOPTW), a variant of
OP. In the TOPTW, the goal is to maximize the total profit by adixumber of routes such that
the locations are visited within a time window and the maxamtour length is limited. The main
difference between our problem and the TOPTW is that we dbvane a fixed profit associated
with each location. The collected profit depends on the serime, which could be as short as
one minute or as long as the length of the time window (up tor@iflutes).

This property necessitates a hovel solution approach tprittdem. For this purpose, we develop
a mixed integer programming formulation. For real datapuiately, the problem is not



solvable computationally using a state-of-the-art conumaésolver, CPLEX 12.%.In fact, in the
appendix, we prove that our problem belongs to the same afa¢éB-hard problems as OP
(Golden.et al., 1987). Therefore, we focus on local search— and tabulseéased heuristic
approaches that provide quality solutions in short peradsne. Since this problem needs to be
solved over a number of state trooper post regions, sevayal dnd many shifts, having fast and
effective heuristic approaches is a requirement for théiedplity of the solutions by
practitioners. As it is not possible to cover all of the habtspwith given resources, we also
provide additional service measures, including the peacgnof number of hot spots covered and
the percentage of coverage length based on the outcome loétinistics. These service measures
provide additional insights into the solutions and helpvaleating the constraints related to the
number of state trooper cars and patrol duration.

To summarize, this paper is unique in that it considers tteggnated optimization of strategic
crash covering and patrol routing problems while desigingfficient operating plan for state
troopers. Its formulation is a methodological contribatto the current literature. Furthermore,
the problem-specific heuristic approaches—Ilocal and tabtches—help decision-makers act
quickly and rationally to ensure traffic-law enforcement.

The remainder of this paper is structured as follows. IniSegtwe present the literature review.

In Section , we present the general mathematical modeldimtd) necessary assumptions and
notation. In Section , we present the analysis of the prolaledithe solution approaches based on
the characteristics of the problem. In Section , we disdus€omputational results based on
randomly generated data and real data. Finally, in Sectanprovide our conclusions,
recommendations, and future work.

*CPLEX is a trademark of IBM.



Section 2
Literature Review

Our research builds on the assumption that it is possiblgetatify hot spots, where accidents are
more likely to happen. Most of the literature on accidentigsia and prevention focuses on
methods identifying hot spots (Anderson, 2006; Cheng anshiligton, 2005; Chen and Quddus,
2003; Gatrellet al., 1996; McCullagh, 2006; Miranda-Moreno et al., 2007; ISted Parrish,
2009). However, our focus is not on hot-spot identificatibmidentify hot spots, we utilize the
data and algorithms of the Critical Analysis Reporting Eoniment (CARE)—a data-analysis
software package developed by researchers at the Uniwefgabama (Steil and Parrish,
2009). CARE uses advanced analytical and statistical tqaba on the crash and citation data for
the State of Alabama to generate valuable informationuhiolg hot-spot locations, hot-spot
times and durations, and hot-spot severity (in terms of remobfatalities). We utilize this
information to manage state trooper resources and patitg¢so

Our work mostly borrows from and contributes in two main areboperations research: state
trooper patrolling models and the orienteering problemxtN&e review and summarize the
research on these areas.

2.1 State Trooper/Police Patrol M odels

The research on police patrols dates back to the early 19h@searly works were concerned
with answering calls for service, mostly related to a pobtfecer servicing a crime call. Hence,
mostly queueing models were used (Birge and Pollock, 1988jken and Dormont, 1978;
Green, 1984; Larson, 1973). Other approaches for the patutihg problem include
mathematical modeling (Curtiet al., 2007; Mitchell, 1972; Wolfler-Calvo and Cordone, 2003),
heuristic solutions (Lauri and Koukam, 2008; Reis, et &0& Wolfler-Calvo and Cordone,
2003), graph theory (Chawathe, 2007; Duchemt@)., 2005, 2007), and simulation (Machado
et al., 2003; Santana et al., 2004). Chawathe (2007), ag ipaper, considers a road network
with hot spots. By means of graph theory, the road netwontkarsstated to an edge-weighted
graph to find the patrol routes where the weights are relatéuetimportance of the
corresponding locations and the topology of the road né¢wlarthis paper, the selection of
weights is somewhat arbitrary and influences the selecfiooues.

One approach for the mathematical modeling of patrol rgupiroblems is to invoke the
m-peripatetic salesman problemmfSP), which consists of determiningedge disjoint
Hamiltonian cycles of minimum total cost on a complete grapblfler-Calvo and Cordone
(2003) introducen-PSP in the design of watchman tours, where it is often ingmbito assign a
set of edge-disjoint rounds to the watchman to avoid repgdkie same tour and enhancing
security. They solve this model via a decomposition heigrifiuchenneet al. (2005, 2007)
improve the formulation of the+PSP by defining new polyhedral properties and cuts and
describe exact branch-and-cut solution procedures fautldeectedn-PSP. The two main
differences between this line of work and ours are the tierestivity of hot-spot coverage and
maximization of coverage benefits instead of minimizatibtravel costs. Therefore, our model



is unprecedented in the patrol-routing literature thatresisks the design of patrol routes while
covering hot spots within their time limits.

2.2 Orienteering Problem (OP)

The OP is first introduced by Tsiligirides (1984) for the otigering competition. In this
competition, competitors visit as many checkpoints asipteswithin a time limit where each
checkpoint may have different point values depending dicdify. The competitor with the most
points wins the game (Chaet al., 1996a). In a more formal definition, given a weighted graph
with profits associated with the vertices, the OP consisselgfcting a simple circuit of maximal
profit whose length does not exceed a certain pre-specifigddo@-eillet,et al., 2005). The OP is
also known as the selective traveling salesperson prollapofte and Martello, 1990) or the
maximum collection problem (Butt and Cavalier, 1994). THe &ises in many applications,
including the sport game of orienteering (Chabal., 1996a), the home fuel delivery problem
(Golden,et al., 1987), athlete recruiting from high schools (Butt and &, 1994), routing
technicians to service customers (Tang and Miller-HooR852, and the personalized mobile
tourist guide (Vansteenwegen et al., 2009).

Some important variants of the orienteering problem ingltiee team orienteering problem
(TOP)—where a fixed number of paths is considered, the eeeiniy problem with time windows
(OPTW), and the team orienteering problem with time windQW8PTW). Since Golderet al.
(1987) prove that the OP is NP-hard, for OP and its varianiig@few researchers resort to exact
algorithms. Righini and Salani (2006) and Righini and S&al2009) use bi-directional dynamic
programming, and Boussieaxt al. (2007) propose an exact branch-and-price approach abuple
with a column generation technique. Most other researcha@l the variants have focused on
heuristic approaches, including local search (Vanstegawet al., 2009), tabu search (Liang

et al., 2002; Schilde et al., 2009; Tang and Miller-Hook€)2)) path relinking (Schilde et al.,
2009; Souffriau, et al., 2010), ant-colony optimizatiore(&t al., 2008; Liang et al., 2002;
Montemanni and Gambardella, 2009), genetic algorithmg@tsen, 2001), and other
metaheuristics (Archettet al., 2007; Tricoire et al., 2010). A recent review summarizatgf
these variants, solution approaches, and benchmark megelssented by Vansteenwegen et al.
(2010).

As our problem bears similarities to the TOPTW, we discussi@PTW literature in more detail.
The exact branch-and-price algorithm proposed by Boysgiat. (2007) is generic enough to
handle different kinds of OP, including the TOPTW. The didfiet branching rules and
acceleration techniques introduced in this paper helpggobblem instances with up to 100
nodes. Montemanni and Gambardella (2009) develop locatls@ad ant colony system
algorithms based on the solution of a hierarchic genetabizaf TOPTW. The algorithms are
tested effective for OPTW and TOPTW with up to 288 nodes. bashot the least,
Vansteenwegen et al. (2009) present a straightforward andfast iterated local search heuristic,
which combines an insertion step and a shaking step— rewvexsgion operation, to escape from
local optima. It performs well on the available data setsgiag from 3-20 routes and 48-288
nodes. The solution quality is slightly worse than that otiBsier.et al. (2007) and Montemanni
and Gambardella (2009), but the solution approach reqairgsa few seconds of computation



time, more than 100 times faster.



Section 3
General Mode

Our problem is formally defined as follows. Within a part&utounty with an established state
trooper post and during a particular shpftthere are historically established hot spots that are
more prone to accidents. These hot spots are defined not dathiyheir location on the
mile-posted road network, but also with the time they bectimg” We denote the set of hot
spots withA’ = {1,...,n}, where each hot spoE A has an earlies and latest timd; for its
hotness. By definitiorg < I;. We denotéde, ;] as the time windowr W of hot spoti.

Furthermore, we assume that 9¢tis ordered such tha; < e, < ... < e,. We note that the same
location can be labeled with two indiceésgnd j, and thal; < g indicates two hot spots.
Additionally, we define the dummy nodes O am¢ 1 to denote the start and end of the shift at the
state trooper post respectivell. = {0,n+ 1} U A denote the set of all hot spots and the state
trooper post. For a certain shift eg = Ap andln 1 = Lp, whereA, andL , are the starting and
ending time of the shifp. Given the maximum number of state trooper d&¢$ available, we

aim to find the best patrol route for each state troopekearX with critical stops at hot spots to
create a deterrence effect.

Figure 1 shows an example with 19 hot spots. In this figuregad@dand 20 represent the state
trooper post. Furthermore, hot-spot pdigs 10} and{4,16} are at the same location. They are
marked as separate hot spots because they have distinevinaews; that is, they become “hot”
twice during the shift. For instance, the location markethwiiot spots 4 and 16 becomes “hot”
between 7:00-8:30am and 11:00am-12:30pm respectiveBigure 1(b), we show one of the
routes of the optimal solution for this example. Even thotighstate trooper patrol includes hot
spots 5, 14, 18, 13, 2, 17, 4, 16, 19, 12, 6, and 15 in that oodér,the visits to 5, 17, and 19 fall
into their respective time windows, and only these stopsitas a deterrent for accidents.
Additionally, we letE = {(i,j): i, j € V,i # j} define the set of edges. The connected graph
G = (v, E) represents the underlying road network. We denote theestdravel time from
vertexi to j astjj > 0,1, j € V,i # j. Our objective is to construct the best patrol routes to
maximize the total amount of effective service time, whialtsfwithin TW of hot spoti, Vi € A(.
For this purpose, we define three sets of decision varial)l&g; = 1 if state trooper cak € X
travels from vertexto j, (i, j) € ‘£, and O otherwise. ii%x > 0, the starting time of service for
state trooper caék € K at vertexi € V. iii) fix > 0, the time state trooper chre X leaves vertex
i € V, thatis, the end of service.

Before proceeding with our model development, we summahnig@ssumptions of the model:

1. There is a one-to-one correspondence between a stapetrcar and a state trooper, and all
of the state trooper cars are identical.

2. One state trooper car is sufficient to cover each hot sgtt i§, having multiple state
troopers at the same time at a particular location does rgyhant their deterrence ability.

3. State troopers travel at a constant speed of 60 miles/mbarefore, travel time from one
hot spot to another is a calculated constant and does nobydigne of day or day of week.



""! Hot spots e ()An optimal route’

Figure 1: A representative example

4. Refueling is possible from any gas station on the patnaierand is not considered.

5. Atthe beginning of a shift, all state trooper cars stamrfithe same state trooper post 0 and
come back to the same location at the end of the shift.

6. A state trooper car is allowed to arrive befer@end wait until the start time of the hot spot,
but its presence is a deterrent only aer

7. Since roadway traffic accidents have a weekly pattern, egeithe problem for a
particular day of the week and shift of the day.

8. Each county is divided into several districts, and eastridt has only one state trooper
division. State troopers are only responsible for their guvisdiction. We conclude that
each district is independent from one another, thus eathatican be solved
independently. The formulation below is for a particulastdct.

Our objective for the Maximum Covering Patrol Routing Peshl(MCPRP) is to maximize the
total amount of service time that falls within the time windof a hot spot:

Maximize Z Z (fik —Sk) (MCPRP)
ieN kEX

We categorize our constraints under four groups: schedakglility, route structuring, visits to
hot spots, and integrality and non-negativity constraints
Constraints Related to Schedule Feasibility

We need to guarantee schedule feasibility with respecirte tionsiderations for each state
trooper cak, k € K. If state trooper cak visits vertexj € 1/ after a stop at vertexe 7/—that is,



Xijk = 1—then the start time at vertgxshould be greater than or equal to the finish time of the
current vertex plus the travel time betweerand j; that is,sjx > fix +tjj. To ensure schedule
feasibility, we need

Xijk * (fik +tij —sj) <0

for each(i, j) € £, andk € K. We linearize these constraints using a big constant value
Mij = max{li +tj; —e;,0} > 0 as follows:

fik +tij — Sjk < (1 —Xijk)Mij, Vke X and V(i,j) € E. Q)

Before we proceed with other constraints, we define(i) = {j € V: (i,]) € £, +tj; <l;} as
the set of vertices that are directly reachable fiom?’ within the time window and

A~ (I)={j e V:(j,i) € E,e+tij <Ii} as the set of vertices from whiglis directly reachable.
Other schedule feasibility constraints include time wiwdestrictions:

g Z Xijk < Sik, vke KX and Vi € 7. 2
jeA™(i)

l; Z Xijk > fik, Vke K andVie 7. 3)
jeA™ (i)

Sk < fik, vke K andVie V. (4)

Constraint (2) establishes that the effective start typat vertexi by state trooper cdis at least
as large as the earliest time window of vertex?/. Constraint (3) states that the end of the
effective service timdj, must be less than or equal to the latest time window of vertes/.
Finally, constraint (4) states that the start time of theiserby state trooper c&re K at vertex

i € V is less than or equal to the end of the service.

Route Structuring Constraints

We characterize the route of a state trodperX with the following equations:

> k=1, vk e K. (5)
jeAT(0)
z Xijk = Z Xjik vk e K andVj € AL. (6)
ieA™(j) ieAT(])
Xiny1k = 1, vke K. (7)
ieA 1)

Constraint (5) ensures all of the state trooper cars leaysttie trooper post at the beginning of
the shift, and constraints (7) ensures their return to tist @ithe end of the shift. Finally,
constraint (6) states the balance at each hot spot; thatdk,state trooper cérthat visits hot
spoti must leave.

Constraints Related to Visiting Hot Spots

It is possible to have multiple cars visiting the same hot ggan Figures 2(b) and (c). Therefore,
we need to account for any potential double counting if tiemerlap during the visits of
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Figure 2: Multiple state troopers at hot spat A’

multiple cars, as in Figure 2(c), and eliminate it. The nexta constraints ensure that if multiple
cars are at the same hot spot at the same time, they contiibilte objective only once. To
establish these constraints, we define the following amfttti decision variables fare 4/ and

k.ge K, k#q:

| 1 ifstate troopek serves vertex ] 1 ifsg > fig;
Yik = { 0 otherwise. and Uikg = { 0 otherwise.
By definition ofyi,
Xijk = Yik; vke K andVie N (8)
JeAT()
Yok =Yn+1k =1, vke K. 9)

Additionally, by definition,ujxg or uigk can only be equal to 1 when boyl = 1 andyjg = 1, or
elseuig = Uigk = 0 fori € /. The following constraints establish the relationshipnssiny; and
Uikg-

Uikg + Uigk < Yik, Vie Vandk,ge X, g> k. (10)
Uikg + Uigk < Yig» Vie Vandk, ge X, g> k. (11)
Uikg + Uigk > Yik +Yig — 1, Vie Vandk ge X, g>k (12)

Now we are ready to present the constraints that eliminaiallé counting” if there are two or
more cars at the same time window of a certain vertex. Thétris,c 7/, if yi = 1 andyig = 1,
thenfy < sg orsy > fig, wherek,g € K andk # g:

fik —Sg — M * (1 —Uyg) <0, Vie Vandk ge K, g>k. (13)
fig — Sk — M * (1 —Ujgk) <0, Vie Vandk,ge K, g> k. (14)

whereM is a large constant.

I ntegrality and Non-negativity Constraints

Finally, we state continuous and binary variables:

Sk, fik >0 and Xk, Yik, Uikg € {0, 1}Vi, j € 7 and kge X, 9>k  (15)

Overall Moded

The overall model is to maximize the effective service timeNMCPRP subject to constraints
(2)—(15). We solve this formulation using CPLEX 12.1. Hoek\even for small instances with
40 hot spots and 2 state trooper cars, CPLEX runs out of memory



Theorem 1 MCPRP is NP-hard.

The proof is found in Appendix. Due to Theorem 1, we focus oo two-phase heuristics. These
are composed of a construction algorithm and improvemeagsdon local-search and
tabu-search. Before we discuss our solution approachesotedahat this model can be used to
evaluate other performance measures, including “PergertttHot Spots Covered (HS%)” and
“Percentage of Coverage Length (TW%).”

HS%: This performance measure calculates, among all the hat,gpetpercentage covered as
a result of the MCPRP:

Yien Tkex Yik — Yiea York(Vigk + Uikg)
n

HS% =

100,

where the numerator represents the total number of vistiedgots.

TW%: This performance measure calculates the percentage bétaiitable time serviced by
the MCPRP:
Yiea 2kex ( fik — Sik)
Zieﬂ\[(li - Q)
In this measure, the numerator is the service time returggddbMCPRP, and the
denominator is the total time window length.

TW% =

* 100

10



Section 4
Solution Approaches

Our solution approaches build on the following charactdian of the optimal solution.

Proposition 1 If the optimal sequences of covered hot spots are knowneiogtimal solution,
for each state trooper k X, for a visited hot spot& A/,

M min{li, T —tnr1}, ifiis the last hot spot visited on the route of k
k=1, otherwise

where T= Lp, the end of the shift p.

This proposition states that, in the optimal solution, thd ef service time at a visited hot spot
depends on the order bin the route. If hot spote A is the last hot spot on route fi is the
minimum of the latest time window of hot spioandT —tj n,1 (the time required to get back to
the post within the shift duration). Otherwise, hot spet\( is an intermittent node in the route
and fix = l;. In other words, state troopkican stay until the latest time window of each hot spot
that is on the route. The complete proof is presented in Apipen

This proposition states that if there is excess time in aatbiettime spent neither in effective
coverage nor in travel between hot spotsit does not makdeaeliice for the construction of
routes or for the objective value whether a state trooperdpé at the hot spot he just covered or
at the hot spot he will cover next. Therefore, by this proposj we arbitrarily place any excess
time at the beginning of the next hot spot without loss of gality. These characteristics are due
to two assumptions of the problem: i) the travel tifijas fixed, as travel speed is constant of 60
miles/hour; and ii) all hot spots have the same priorityitltier one of these assumptions is
relaxed, then the excess time may not be arbitrarily placedroute as it influences the order of
nodes covered, travel times, and coverage and hence inthaaptimal solution. We report
results related to relaxing the hot spots priorities in theputational experiments section.

4.1 Construction Algorithm

Based on Proposition 1, we develop a construction algonthtimtwo parts involving route
initialization and hot-spot insertion.

4.1.1 Route I nitialization Algorithm

First, we define the following two algorithm parametelig,i; andTjimit, which help us in building
the initial routes:

e Hiimit provides an upper bound on the number of hot spots to be amesidor insertion
into a route. Our hot spots are ordered according to thetstagtof their time windows. To
avoid big time gaps between the start times of two conseztid spots and hence to
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eliminate any potential excess waiting, we only considentextH;imi: hot spots as the
potential next hot spot to be included in this route after denis inserted into a route. We

setHiimit as[n/|X]].

e Timit iS a clustering factor where travel time from one hot spohrext hot spot cannot
exceed a certain time span. After preliminary experiméonat we sefljjmi to 100
minutes, which is reasonable given that for the instancetestedT = 480 minutes. If it
takes a state trooper more than 100 minutes to travel froraureent hot spot to the next,
then the algorithm is not going to consider that point.

Hence Hiimit provides a temporal limit whil@mi; provides a spatial restraint on the initial routes.

Algorithm 1 ProcedurdRoutelnitilization

1: Uncovered hot spot se&tl < A. Fork € X, initialize Routg < 0.
2: for Yk € K do

3:  Routg + RoutgU {0}.

4: i —argmaxeg{li—max(&,to) : i < Hiimit,toi < Tiimit,toi < li}.

5: S+« max{e-,toj+} andfi« x < li+. Routg < RoutgU{i*}. U<+ U\ {i*}.
6: end for

7: for Yk € K do

8: i+ Routg.lastHotSpot

9: for Vj € Usuchthai < j < (i +Hiimit), tij < Tiimit, andli +tj; <1 do
10: iflj4+tjne1 <T then

11: i* < argmaxeq{lj —maxej,li +tij) }.

12: S+ k < max{es, li +tj j«} and fi- \c < lj«. Routg <— Routg U {i*}.
13: if &« <Ili+1 - then

14: i <= i +tj .

15: else

16: U<+ u\{i*}.

17: end if

18: else

19: if i +tij <T —tjnyathen
20: i* «—argmaXeg{T —tjnr1 —maxe,li +tj)};
21: S+ k < max{g-,li +t -} and fi= x < T —tj= 1. Routg < RoutgU

{i*}.

22: Repeat Steps 13 to 17.
23: end if
24: end if
25: end for
26: end for

TheRoutelnitializatiorheuristic, for which the pseudo-code is given in Algorithnibdilds on a
greedy principle. Each state trooper car starts from the staoper post at the beginning of the
shift. Among all the hot spots within the distance rafdgg;i and time rangéd;imit, if the arrival
time of state troopek from hot spoi at one of these hot spots—say hot spetcomes before the
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end of the time windowl(+tj; <1;), the heuristic picks the hot spot that maximizes the object
as the next place to visit*). The maximum contribution is calculated as

max;{l; —max(ej,li +tjj) }. Then the start and finish times of servicé*adre calculated by
comparisons between the arrival tima“aand the earliest and latest time windows respectively,
as in line 12. After the next hot spot is selected, the algorits divided into two cases as
described in steps 10 and 19: whether there is enough timkdatate trooper ttully service the
next hot spot and be back at the state trooper post beforenthefehe shift. In the first case,
there exist hot spots where the coverage and travel-totipess are within the shift duration.
Among these hot spots, the hot spotvith the maximum coverage potential is added to the route.
Steps 13 through 17 check for potential multi-car visitse@fically, if a state trooper arrives at or
beforee-, the hot spot* is covered fully from[e-, l;<] and is removed fronu. Otherwise, hot
spoti* is split into uncoverede:, s« x| and covereds: y, fi- | parts. In this situatiori; with an
updated;- stays inl. For the second case, starting with Step 19, it is not feaédrla state
trooper to stay until the end of the time window of hot spalue to the approaching end of the
shift. Therefore, by factoring in the travel time from hobosp to the state trooper post+ 1, the
state trooper can stay unfil—tj n,1. Among all the partially coverable hot spots, the one with
the maximum coverage gaihis selected. Again, to ensure multi-car visits, steps 18ugi 17
are repeated. In this way, initigk’| routes are created in parallel.

4.1.2 Insertion Algorithm

After route initialization, to cover the hot spots that act covered yet, we proceed with the
following insertion algorithm. To insert an uncovered hpbos € U before a hot spatin a

certain routek € X, we first check the time-window feasibility of hot sgothat is, the arrival
time at hot spot is less than the latest time window of the hot sppt:t7; < ;. In this algorithm,
starting with the first hot spot of the first route, we check & gan insert any more hot spots until
no longer feasible. The search ends when all of tkiproutes are checked.

If it is feasible (in terms of travel and coverage times) tedrn a new hot spotight beforehot
spoti on routek, this insertion will not influence the start or finish timeshot spots on this route
prior to hot spot — 1. Insertion ofi will only shift the starting time of the hot spotsi, to Si.
Hot spots after will not be affected since the finishing timeiaemains unchanged; that is,
fk = l;. The additional coverage of hot spdienefits the objective function by as much as

— S Wherefry = [rands = max(e li-1 +t_1 7). On the other hand, the coverage of hot
spotl may potentlally be reduced due to the late Sﬁ’&}{tﬁt hot spot. The change in the objective

due to insertion of right beforehot spoti is given as:

5 = Benefit Afteri Insertion— Original Benefit
= {fix—si) +{fik—si} — {fik— s}
= =5k (Sk—SK- (16)

When3 > 0, there is value in includingbetween hot spois- 1 andi; or otherwise, we continue
to check the next uncovered hot spot.
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4.2 Improvement Algorithms

As mentioned above, hot spots are inserted sequentialeyc®hstruction algorithm is affected by
the selection and order of the subsequently inserted htg.spbe improvement algorithms
address this issue by utilizing modified versions of rele@atd exchange operators introduced
originally for the vehicle-routing problem with time winds (Braysy and Gendreau, 2005a,b).
The relocate operator finds improvements by moving a hotfspt one route to another,
whereas the exchange operator exchanges hot spots betwessutes. The modification step
involves revoking the insertion algorithm after each move.

j j+1 L j+1 . :
(a) Relocate Operator (b) Exchange Operator

Figure 3: Neighborhood search operators

4.2.1 Relocate Operator

In Figure 3(a), we present the relocate operator, whereguti $rom the origin routek is moved
into the destination routg, k # g. In the figure, we also represent the other routes visitirgue
to the possible visits by multiple cars—in dotted red lind& let (s, fi) and(sg, fig) as well as
(Si+1k firak) and(s’1+17k, f{ 1) denote the start and finish times at hot spatsdi + 1 before
and after the move respectively. Hot spp&nd j + 1 follow a similar notation. After the move,
the change in the objective is

A = (fig—sg)—(fik—Sk)+(fi'+1,k—5'1+1,k>—(fi+1,k—54+1,k>+(fj/+1,g_slj+1,g)_(fi+1vg_si+1vg)
= (Sk— 39) + ($+1,k - Si,+1,k> + (Sj+17g - S,j+1,g>’

as finishing times before and after the move are the same. Wowaodification of the start
times of the coverage is more complicated due to the posggibflcovering a hot spot with
multiple cars. If hot spaitis only visited by route or k is the first of multiple visits to hot spat
the start time after the move is obtained by comparing theahtrme at hot spot from a visit at
j with the earliest time window hot spatthat is,sg = max{ fjg +tij, & }. Otherwise, hot spatis
visited by multiple cars and route/dars an intermittent car. That is, the hot spa¢ covered by
some other car(s) untslg. Therefore, the start time after the move is obtained by @ing the
arrival time at hot spatfrom j andsy; that is,sg = max{ fjg +tij,Sk}. A similar check takes

place for updatingy , ; , ands;_ ; 4.

If A <0, the relocate operator is not successful in generatingtarlsolution and is not pursued
any further. We move onto the next route and/or hot spot. @tise A > 0 and we invoke the
insertion algorithm again as relocation may open additipnasibilities to insert an uncovered
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hot spot. We check if an uncovered hot spot can be insertecekatthe nodes defined by the
modified arcs one by onéi —1,i 4+ 1), (j,i), and(i, j + 1). We letds, &2, &3 be the benefits of
inserting an uncovered hot spot beforel, i, andj + 1 respectively. Each of these benefits is
calculated as in Equation 16.3f > 0, the insertion before+ 1 is accepted and updated benefit
Ais set as\ + 8. Otherwise, ifd; > 0, the insertion beforeis accepted and is set as\ + &,.
Finally, if & > 0, Ais set ag\ + 83. If none of the insertions are favorable—thatds < O for
a=1,2,3—theA is the same a&. Among the positivé obtained through the whole relocate
neighborhood, we pick the one that provides the maximumfiieared implement the relocate
(and if there is one, insertion) associated with that maxmAu That is, we use the Global Best
(GB) acceptance rule.

4.2.2 Exchange Operator

In Figure 3(b), we present the exchange operator, where tivsgdots and j swap routes
simultaneously. As in Figure 3(a), the dotted red linesasent the possibility of other state
trooper car(s) covering hot spatand j. After the swap, the start times of the hot spotst 1, |,
andj + 1 will be modified. The corresponding change in the objedsve

A = (fig—sg) = (fik—sk) + (f 1k —S1k) — (firik—Sv1k)
+(fik —sjk) — (fig—Sjg) + ({11, Sj+1,9) — (fi+1.9—Sj+19)
= (Sk—Sg) + (Sjg — Sjk) T (S+1k— 4+1,k) + (Sj+1,9 — Sj+1,9)-

Similar to the relocate operator, these start times aregnflad by the number of state trooper
cars visiting the hot spot and the order of the cars. In paeic

o max{fj_1g+tj_1i, &} if Kisthelstvisit; [ max{fi_ix+ti_1j, €} Iif gisthe 1stvisit;
97 max{fj_1g+tj_1i, Sk} O/W. k= max{fi_1x+ti_1j, Sig} OIW.

The starttimes;, ; , ands; ; , are calculated in a similar manner.

j+1,9

If A > 0, the exchange is a candidate to be accepted. As with theateloperator, the exchange
may provide a possibility to insert an uncovered hot spavben(i — 1, j), (j,i+1), (j —1,i),
and(i, j +1). The benefits of insertion on these arcs are calculatéd, s, 63, andd,
respectively, as in Equation 16. The insertion is evaluatedat order, and the first insertion with
a positive benefit—that i, > 0 fora= 1,2, 3,4—is accepted. The total benefiis updated as
A+ 8,. If none of the insertions return a benefit, thkis just set tdA. Similar to the relocate
operator, the exchange operator is implemented using ther@8ia. The exchange (and
potential insertion) associated with the larg&sh the neighborhood is accepted. After the
exchange (and the potential insertion), the routes andribevered hot spot st are updated
accordingly.

4.2.3 Local Search

After introducing the neighborhood search componentsjriéid depicts how these play a role in
our local search implementation. In the first stage of imprognt, the algorithm loops through
the relocate operator embedded with the insertion stepnomimprovement is found. Note that
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after the relocate operator is embedded with insertion sepnsertion algorithm is called again
because if there is any move, tlieset and routes are updated. Thus, there is a chance to insert a
uncovered hot spot into any of the existing routes. In theltbiiage of improvement, the

exchange operator embedded with insertion step keepshsagumtil no further improvement

can be found, followed by the insertion step for the sameoreas the first stage of improvement.
The local search terminates when no further improvememnasable.

|

> Relocate
Initialization
Improvement Y No
Insertion
Insertion
Improvement Y
> Exchange
Improvement Improvement J
y No
Insertion
Y
Results l

Figure 4: Local search and improvement flow charts

4.2.4 Tabu Search

Based on the fact that local search can be trapped at a lottadwop, we also apply a tabu-search
algorithm as a part of the improvement step.

In our implementation, the tabu list consists of two attrdsu state trooper car index and hot-spot
identification. Specifically, if the most recent solutioklides covering hot spoby state trooper

k, then the(i, k) pair is marked as tabu. The tabu list length and tabu tenersedrto 5< | /n],
directly correlated with the total number of hot spont$n the neighborhood, the relocate operator
is followed by the exchange operator. Each operation is ected over all of the routes and
visited hot spots. Random numbers determine the startingdo and the starting route number
for each operator. Once the search starts, it sweeps thalugfithe hot spots and routes
exhaustively.

If it is feasible to carry out a particular operation, botatsttrooper car and visited hot spot
indices are added to the tabu list. With the relocate operaitdy the relocated hot spot and its
corresponding state trooper indices are added to the tstb@in the other hand, with the
exchange operator, both of the exchanged hot spots andctre#sponding route indices are
added to the tabu list. As an aspiration criteria, tabu iy omerridden when the newly obtained
objective is better than the best one found thus far.
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Section 5
Computational Experiments

5.1 Performance-based Experiments

To test the performance and effectiveness of the model amdsktie approaches, we conduct a
series of numerical studies on randomly generated proldanggng from small to moderately
large as well as on real-life data captured from CARE (seé@&@ek

To benchmark the quality and runtime of our heuristics, vge alin CPLEX 121 for all of the
instances. We implement and run the algorithms using C++DellePoweredge 6850 with four
dual-core 36GHz Xeon processors and 8GB of memory.

5.1.1 Experiment with Randomly Generated Data

We randomly pick 10, 20, and 40 locations on the highway amesponding earliest and latest
time windows from a pool of real-life data, with 20 instangesach data set. Both algorithms are
tested when there are up to 8 state trooper cars availahlgstta total of 480 (X 20 x 8)
instances.

We compare the solutions returned by local search (LS) anddearch (TS) with the ones
obtained from CPLEX, as shown in Table 1. Unfortunately, ERLlruns out of memory for even
relatively small instances, such as when 2 state troopsrazaravailable for 40 hot spots. We
evaluate our heuristics by calculating the percentageeoeip between the objective returned by
our heuristics and lower bound (LB) of CPLEX, which is defirzexd

Gap = (Objective- LB)/LB % 100. Note that since we have a maximization problem, thedowe
bound returns the best feasible solution that CPLEX canmbtal a positive gap indicates that
the heuristics outperform the best feasible solution netdiby CPLEX.

In Table 1, we report both average (Avg.) and maximum (Maapsgthat demonstrate the best
performance of the heuristics. We also report the numbenmafd that CPLEX is able to find
optimal solution out of all 20 instances, contained in thieiem “No. opt.,” and the number of
times that LS/TS is at least as good as the LB returned by CREBMXained in the column of
“No. best.”

In Table 1, we observe that CPLEX has a deteriorating pedioga as the number of hot spots
and state trooper cars increases. On the contrary, for ihetseices where CPLEX is struggling,
the frequency of finding a solution at least as good as the GRLEE(“No. best”) is increasing
for our heuristics. Specifically, our heuristics are ablénd a solution at least as good as the
CPLEX LB for 10 HS and 20 HS most of the time and for 40 HS soméetime, especially
with a higher number of cars. In fact, the heuristics retlightly better solutions when there are
a higher number of hot spots and state trooper cars. Witlece$p the performance comparison
between LS and TS, even though there is not much gap diffefend.S and TS, LS still
performs slightly better than TS especially for higher nemdf hot spots.
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Table 1: Performance of LS and TS for random data

Data Set No. No. CPLEX LS TS

Cars Instances No.opt. Avg. Max. No.best Avg. Max. No. best

10HS 3 20 20 -1.4 0.0 18 -1.4 0.0 18
4 20 3 0.0 0.0 20 2.1 0.0 19
5 20 1 0.1 3.4 20 0.1 3.4 20
6 20 1 0.1 3.4 20 0.1 3.4 20
7 20 0 0.1 3.4 20 0.1 3.4 20
8 20 0 0.1 3.4 20 0.1 3.4 20

20HS 3 20 2 -1.3 0.0 5 -1.5 0.0 4
4 20 2 -1.0 0.0 8 -1.0 0.0 5
5 20 2 -0.8 0.0 12 -0.9 0.0 15
6 20 0 -0.3 0.0 16 -0.8 0.0 16
7 20 0 -0.5 0.0 17 -0.5 0.0 17
8 20 0 -0.1 0.0 17 -0.1 0.0 17

40HS 3 20 0 -4.9 0.0 0 -5.7 0.0 0
4 20 0 -2.6 0.0 0 -3.3 0.0 0
5 20 0 -0.5 4.1 4 -1.3 1.9 2
6 20 0 -0.9 1.4 8 -1.3 11 3
7 20 0 0.0 4.4 12 -0.4 4.4 8
8 20 0 0.1 3.3 14 -0.1 2.6 12

From the perspective of runtime of local search or tabu-dasprovement, both are less than 15
seconds even for instances with 40 hot spots. On the conth&ynore cars there are and the
bigger the road network is, the longer it takes CPLEX to finadptimal solution. For instance, it
typically takes around %+ 2 hours for CPLEX to find an optimal solution (for smaller mustes)

or just an LB (for larger instances). Thus, we conclude thateuristic approaches are more
practical since state troopers need to respond to roadtammdhanges relatively frequently.

5.1.2 Experiment with Real-Life Data

We also solve the real instances obtained from the CARE da¢afind optimize covering and
routing for state troopers on the highways by work shift, by df week, and by region. Due to
the large number of tests, we select three representatas arith a large number of hot spots:
Jefferson County rural area (Jeff), the Mobile area (Mohg, @uscaloosa County rural area
(Tus). The most representative days and times for the arpetiare Monday, Friday, and
Saturday with three shifts: a morning shift from 7:00am @0@m, an afternoon shift from
3:00pm to 11:00pm, and an evening shift from 11:00pm to 7Q0&s the other weekdays
(Tuesday through Thursday) mimic Monday and Sunday mimatar8ay, we do not report the
results for these days.

In Table 2, we present the results for local and tabu seasgentively. Note that the data
instances are referred to using the first letter represgtite day (Monday) and the second letter
representing the shift. For instance, MM refers to the Mgndarning shift. With three work
days and three shifts, there are a total of nine instancegeny eounty. Each instance is tested
with various state trooper cars from 3 to 8. At the last rowaxfrecounty, we summarize the
number of optimal solutions CPLEX returned. For each instamith a particular number of state
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troopers, we report the gap between objective returneddal bind tabu search and LB of
CPLEX respectively. A positive gap refers to a better oliyectalue by our heuristics, whereas a
negative gap indicates that the best feasible solutiomrretlby the CPLEX is better.

Table 2: Performance of LS and TS for real data
Instances LS TS

3 4 5 6 7 8 3 4 5 6 7 8

Jeff MM -15 -71 00 00 00 06 -15 -71 00 00 00 0.6
MA 58 -61 -74 -02 -28 -1C-76 -74 -86 -05 -23 -03

ME 00 00 00 00 00 0000 OO 00 00 00 oO0.0

FM -26 -29 00 00 00 00-26 -29 00 00 00 0.0

FA -12 -23 01 00 00 -0€-12 -23 -21 00 0.0 -0.6

FE 00 00 00 00 00 o0COO OO 00 00 00 o00

SM 00 32 00 00 00 00 00 32 00 00 00 00

SA 00 00 00 00O 00O o0COO 00O 00 00 00 00

SE 00 00 00O 0O 00 oO0COO OO 00 OO0 0.0 o0.0

No. CPXOpt. 1 1 0 0 0 0 1 1 0 0 0 0

Mob MM 00 00 00 00 00 00 OO OO 00 00O 0.0 oO0.0
MA -32 -28 00 -25 00 00 -32 -28 00 -0.3 00 0.0

ME -12 00 00 00 00 00-12 00 00 00 0.0 0.0

FM 00 00 00 00O 00 0000 OO 00 00 00 o00

FA -17v 00 00 00 00 00-17 -08 00 00 0.0 0.0

FE 00 00 00 00O 00O O0COO -412 00 00 00 0.0

SM 47 -02 -07v 00 00 0C-47 -02 -03 00 00 00

SA 66 195 00 00 00 00 66 195 00 00 0.0 0.0

SE -18 00 00 00O 0O 0C-18 00 00 00 00 0.0

No. CPXOpt. 5 2 0 0 0 0 5 2 0 0 0 0

Tus MM -02 00 00 00 00 00-02 00 00 00 00 0.0
MA -02 -08 00 05 07 -02-02 -08 00 05 07 -03

ME 00 00 00 00 00 0000 OO 00 00 00 oO0.0

FM 00 00 00 00O 00O 0000 00 00 00 00 00

FA 00 00 00 00 00 00-28 00 00 00 00 0.0

FE 00 00 00 00 00 o0COO OO 00 00 00 o00

SM 00 00 00 00 00O O0OCOO 46 00 00 00 00

SA 00 00 00O OO 00O oO0COO OO 00 OO0 00 o0.0

SE -14 00 00 00 00 0C-14 00O 00 00 0.0 oO0.0

No. CPXOpt. 5 0 0 0 0 0 5 0 0 0 0 0

Typically the gap between the heuristics and CPLEX is noatiegsince the solution quality is
as good as or better than that of the CPLEX LB. Most gaps falvéen—1% and 1%, with very
few outliers. Some of these extremes are the negative gapS.8%6, —6.1%, and—7.4% for
Jefferson during the Monday afternoon shift with threeyfand five state trooper cars
respectively. In this particular instance, the number dfdpmts is 27 with varying durations.
With a limited number of state trooper cars and an excess auoflthot spots to cover, the
heuristics tend to not perform as well since, in generaly tteedepend on the improvements
(relocate or exchange) among a number of routes.

On the other extreme, there is a positive gap ob¥for Mobile during Saturday afternoon shift
with four state trooper cars. This is attributed to the pafgrmance of CPLEX; it is not due to
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our formulation or the gap. More specifically, for this insta as well as the instances marked in
bold, CPLEX claims to reach the optimum with the lower bougdad to the upper bound.
However, our heuristiceeturn a better solutionhan the claimed CPLEX optimum. We double
checked these solutions with manual calculations and feolaicthe solutions returned by the
heuristics are indeed feasible and optimal. We reportednmael and these problematic
instances to ILOG technical support group. They confirmedittere is an internal failure in the
CPLEX engine when solving these instances. These instéasesbeen added to their test bed to
improve the CPLEX engine.

In summary, as the size of the problem grows, CPLEX has a htinde in obtaining reasonable
solutions. In comparison between LS and TS, LS outperforBislightly most times. Again, for
the computational time, our heuristics provide resultdiniseconds; while CPLEX takes at least
couple of hours to find a relatively good feasible solution.

5.2 Managerial Insights

In this section, we provide managerial insights for decisitakers based on our solutions using
real data. In Figures 5 and 6, we plot the objective valuglGPRPreturned by LS and TS with
respect to different state trooper cars respectively. Rtenplotted charts, we can determine how
many state trooper cars are needed for each data set.\elyias the number of state troopers on
patrol increases, hot-spot coverage improves. Howewene tire diminishing returns with the
addition of each state trooper. One interesting obsemvagithat, as there are more hot spots, the
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Figure 5: The coverage with LS and TS due to different stakgpter cars in Jefferson County

objective is higher. This is due to higher potential covetddowever, in Jefferson County, the
top line corresponds to Friday afternoon with 19 hot spolss particular instance returned a
higher objective compared to, say, Monday afternoon with@7spots. Investigating this
phenomenon further, we found that the hot-spot time windaresnot equal. In the data set with
19 hot spots, most hot spots are “hot” for more than an houereds in the data set with 27 hot
spots, most of the hot spots are only “hot” for half an houméss the objective not only depends
on the total number of hot spots available but also lengtlaohénot spot.

Investigating Figures 5 and 6, we can help identify how mdatesroopers are needed in each
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Figure 6: The coverage with LS in the city of Mobile and Tuscala County

shift on each day. For instance, for Jefferson County on Mgraohd Friday evenings, three state
trooper cars suffice. However, for Saturday evening at keastars are needed. Furthermore, for
Monday and Friday afternoons, even eight cars may not begéndthis analysis not only
provides a good basis for how to allocate resources; it adsoathstrates how the adverse effects
of lack of resources (that is, potential budget and perdaruts) can be alleviated.

Note, theoretically speaking, that all lines should be emachowever, in paitb) of Figure 5, the
objective for Monday afternoon is not concave, since theyraturned by our heuristics.

Table 3: Service measure performances by incrementaltsbatgers
Data
Set MM MA ME FM FA FE SM SA SE
Jeff Cars 8 8 3 5 8 3 5 4 5
HS 21 27 6 17 19 8 18 14 16
HS% 90 93 67 100 100 100 89 100 100
TW 810 1110 179 960 1410 299 600 449 570
TW% 8 8 63 81 8 96 88 88 89
Mob Cars 5 7 4 6 5 5 6 5 4
HS 20 17 9 15 15 10 19 21 8
HS% 100 100 100 100 100 100 100 100 100
TW 840 870 330 930 1050 420 910 1020 299
TW% 96 95 93 94 97 89 85 95 96
Tus  Cars 4 7 4 4 5 4 5 3 3
HS 15 22 8 15 15 8 9 13 16
HS% 100 100 100 100 100 100 100 100 94
TW 480 870 270 600 900 330 270 480 539
TW% 92 98 89 89 95 89 93 94 76

For these instances, we also compute performance measures suggested covering plan: how
many hot spots we will cover and how long the hot spots will eeced. In Table 3, we present a
detailed plan with respect to how many state troopers argaueger shift, per day, and per region,
shown in row “Cars” and performance measures shown in rov@&/%Hand “TW%” for the
Jefferson, Mobile, and Tuscaloosa areas. From thesesgagtobserve that hot-spot coverage
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percentages are quite close to 100% for our suggested platmeFmore, the objective coverage
percentage is above 85%, except for three instances. Fondeathe “TW%” is 63% for the
Jefferson ME shift and 76% for the Tuscaloosa SE shift. Thduie to the start time of these hot
spots and the travel time required to reach these hot spatsh&€se instances, even with
unlimited resources, it is not possible to fully cover th@atdot times, unless the state troopers
are allowed to start patrolling from locations other tham $skate trooper post.

In a final experiment, we evaluate the impact of having hotswith varying weights. Until this
last experiment, all of the experiments assume equallyhtetghot spots. However, in real life,
some hot spots are more important than others due to thet@btsgverity of the accidents at
those locations. We represent these severity levels bgtatig different weights to hot spots. We
use two arbitrary weight schemes for testing purposes: vaglance with weights of 1, 1.5, and
2; and low variance with weights of 1, 1.1, and 1.2. In Tablevd report the performance of LS
with 2, 4, 6, and 8 cars using these two weight schemes. Orotiten row of the table, we
calculate the average and maximum gap over all of the inegagiven a particular resource level.
Since TS has similar performance as LS, for the sake of thatiareve do not report the results.
The results of weighted schemes demonstrate the benefitiaties, as the heuristics beat the
LB of the CPLEX with high percentages, especially for insemwith high number of hot spots
such as Mobile SA (21 HS), Jefferson MA (27 HS), Jefferson N2 HS), and Tuscaloosa MA
(22 HS). The benefits are more pronounced with high variareigiwscheme. Even though
Proposition 1 does not hold for hot spots with varying wesgdmd the heuristics are based on this
proposition, the performance of the heuristics is very sbbu
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Table 4: LS performance for real data with different weights

Instances High Weights (1,1.5,2) Low Weights (1,1.1,1.2)
2 4 6 8 2 4 6 8
Jeff MM 0% 9% 24% 0% -2% 0% 1% 8%

MA 22% 6% 26% 30% 6% 8% 13% 7%
ME 10% 0% 0% 10% 0% 1% 1% 2%

FM 9% 24% 24% 1% -13% -4% 3% -3%
FA 0% -6% 23% 11% -4% -3% -1% -3%
FE 13% 0% 56% 14% 3% 0% 4% 4%
SM 4% 6% -19%  -5% -10% 5% -15% -15%
SA 7% -26% -20% -15% -1% 6% -12% -12%
SE 5% -1% 1% 4% -2% 12% 3% -3%
Mob MM  10% 29% 1% 3% -4% 2% 4% 4%
MA 6% 17% 0% 21% -13% 23% 2% 2%
ME 0% -8% 2% 8% -8% -1% -4% -4%
FM  -10% -7% -33% -24% -6% 5% -3% -3%
FA 2% 10% -2% 4% -6% 6% 0% 0%
FE 20% 2% 2% 5% -5% -4% -11% -11%
SM 8% -8% -5% -10% 4% 13% 11% 11%
SA 17% 33% 15% 15% -2% 7% 2% 2%
SE 16% 0% 0% 17% 1% 0% 2% 2%
Tus MM 5% -14% 15% -3% -12% 10% -13% -13%
MA  25% 10% 18% 8% 0% 23% 6% 5%
ME 1% 31% 18% 13% -9% 3% 0% 0%
FM 4% -12% -12% 2% -12% -9% -11% -11%

FA 30% 38% 41% 35% 3% 5% 7% 7%
FE 21% 39% 39% 24% 0% 4% 4% 4%
SM -13%  -1% 1% -10% -12% -11% -11% -11%

SA 3% 6% -11% 4% -8% -7% -9% -9%
SE 7% 7% 39% ™ -11% 2% 3% 3%
Avg. 6% 6% 9% 6% 5% 3% -1% -1%

Max. 30% 39% 56% 35% 6% 23% 13% 11%
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Section 6
Conclusions and Future Work

To maximize the effectiveness of state trooper patrols lmging hot spots, we develop a novel
model. In this model, we determine whether a state troos#s\a hot spot and their arrival and
departure times at the hot spots. As the large instanceg q@irtiblem are beyond the capability of
any off-the-shelf optimization software, we design altons based on local and tabu search
using different neighborhoods. Then we test our model ahdisa approaches by using sets of
random and real data. Compared with the CPLEX LB, in mosaims#s our solutions are at least
as good as or better than CPLEX and have short runtimes.dfartre, we have found several
instances where CPLEX failed to solve the problem.

The computational testing results are particularly usefutlecision-makers in determining the
optimal number of state troopers.This is important as betieerage is believed to lead to fewer
accidents, lower economic impact, and better road safetgpverybody. On the other hand, the
model also shows the best coverage given a particular resdewrel. This analysis would be
valuable to determine how to reallocate resources in thet@fe potential budget cut or increase.

The contributions of the paper to the literature are thideféirst, the literature on TOPTW
focuses on benefit collection of fixed values given a priohigreas MCPRP treats profits as a set
of “continuous decision variables” and allows multipleitago the same hot spot. Second, the
solution approaches developed can solve even real-lifarioss of the problem within seconds.
Finally, this paper departs significantly from the TOPTVEd#ture by introducingffective
patrolling measuregHS% and TW%), which are useful for decision-makers to deitee the
optimal levels of coverage for a given resource level.

There are several potential extensions. First, in this papgeassumed constant travel speed for
state troopers traveling from one hot spot to another. &wksté constant travel speed, generalizing
the problem where travel speed is correlated with time ofatajay of week would be practical
and interesting. Second, the model could be extended tadsymaultiple state trooper posts or
the ability of the troopers to take their work cars home iadtef returning to the state trooper
post. This problem would be analogous to the multi-depoickeouting problem with time
windows. Thirdly, we are interested in incorporating anaati-response into the model,
especially to utilize coverage for accidents immediataipng dynamic crash information.

Finally, the mission statements of many of the highway patepartments in the United States
reflect the belief that issuing citations is an effectiveoatiiash countermeasure (Steil and Parrish,
2009). Hence, the results of this paper can be extendedrnapglication focused on revenue
management.
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Appendix

Proof of Theorem 1:

The maximal covering location problem (MCLP) establishesteofm facilities to maximize the
total weight of “covered” customers, where a customer is@@red covered if she is located at
most a distance from the closest facility. The problem was originally irdieced by Church and
ReVelle (1974) and is NP-hard (Marianov and ReVelle, 1996)prove that MCPRP is NP-hard,
we need to show that the MCLP is polynomially reducible to NREP

Suppose we had a polynomial algorithm for solving the denisersion of the MCPRP. Given
G = (V,E), time windows associated with all hot spdt&;| state trooper cars, shift duratian,
and a positive numbeB, our algorithm would produce a “yes” or “no” answer in polynial

time to the decision question of MCPRP: are thigk@ routes that satisfy the time-window
restrictions of all hot spots and that take less tifasuch that the total coverage time is at least
B? Now construct an instance of MCPRP as folloyes: li| = [&, & + ai], whereq; is an
arbitrary small number, say 1 minute, such that the stoptesfati can only collecty;.

Now consider the following notation for the MCLP:

I Set of hot spots.

J Set of all of the routes that satisfy the time windows andtshifation restrictions.
a; Coverage benefit, that is for akye K, a = fix — sk =1i — = q;.

N Set of routes that include hot spot

Decision Variables
X 1, if route | is selected as a part of patrolling plan, 0, otherwise.
Y, 1, if hot spoti is covered, 0, otherwise.

The mathematical formulation is presented as

maxy &Y (17)
icl
S.tt.

Xj > Y, Viel. (18)

jeN
Xj=|X]. (19)

J€J
Yi € {0,1} andXj € {0,1}, Vie Iandj € J. (20)

Constraint 18 allows the coverayfeto equal 1 only when one or more routes in Neare chosen.
The number of routes is restricted|t&| in constraint 19. The solution to this problem specifies
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not only the maximal hot spot coverage but also|thé routes that achieve this maximal
coverage.

The transformation to MCLP is polynomial since all of thelpeam parameters can be obtained in
polynomial time, including the set. Note that the size and construction of the routes are lanite
by the time windows of hot spots and the shift duration. If adpmwt is chosen for a route, there
are only(n— p;) choices wherg; > 1 due to the time window restrictions, and every time a hot
spot is included in a route, the available choices decragserdinearly. Then, a route can be
constructed by evaluatingx (n—p1) x (N—pz2) X ... x (h— px), where

Pk > Pk_1 > ... > P2 > p1andpx < ndue to7 and time windows. Thus, the sgétcan be
constructed by an algorithm witB(nPx) complexity.

Overall, the optimal solution to MCPRP provides an answesfyo) to the decision version of
the MCLP whether there exist&k| “facilities” (routes) to cover the “customers” (hot spots)
obtain a benefit that is at lea8t Therefore, the proof is completll

Proof of Proposition 1:

The proof covers two cases. The first case considers theisiiwahere pushing the end of
service time at one hot spot does not eliminate visits touhaé hot spots. The second case
covers the possibility of reduction in the number of hot spasited in the remainder of the
coverage due to incrementing the service time at one hot spot

Case 1: No Hot-Spot Elimination
First, letS* be an optimal solution with the objective function val{&"). For routek € K in S,
leti be the last hot spot wherige < min(l;, 480—tj ny1).

For a state trooper to get back to the state trooper post bgritief the shift, the finish time at the
last hot spot of his route should satidfy +t; n+1 < 480. Now let us create a new solutiSrfrom
S* where everything is kept the same excgpt= min(lj, 480—t; n.1). Thus,f; > fi. Hence,

the objective value o8, v(S), is larger tharv(S"), which contradicts tha®* is optimal. Hence, if

i is the last hot spot visited on rouke fix = min(li, 480—tj ny1).

Consider now the situation wherés not the last hot spot on rouke Suppose* is an optimal
solution such that there is at least one hot spattisfyingfix < l;. We again create a new solution
S from S* where everything is kept the same excépt= |;. The difference between

V(S) —V(S) = fik —li — St1k + 5 1 Wheres, 1, is the start time at hot spot-1 on routekin
solutionS. Nows’1+17k —St1k = max(li+ti 11, &4+1) —maxfix +tii+1, &4+1)

li — fik if g1 < fix +tiives
=9q lit+tiiyi—ey1 if fg+tije<ers <+t
0 if gy > 1+t
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Note that in all cases‘Hl’k —Sit1k <li — fik. Thereforey(S") —v(S) < 0, which contradicts that
S* is the optimal solution. Sinces an arbitrary hot spot, in the optimal solutifp =1; on a
routek.

Case 2: Possible Hot-Spot Elimination

In this case, in the newly created soluti8nthe adjustment at the previous hot spot makes it
infeasible to reach the next hot spot(s) on the originaleo8b, state troopérneeds to skip some
hot spot(s) on the original route to go to the next reachabteot. We prove this case by
induction.

Case 2a: Base Step The increment of service time at hot spanly eliminates the next hot spot
i +1 on the route. We assume that the triangular inequalitysholeht isfi j o <tjj11+tii1i42.
Then, for routek, the difference in the objective functiom&S*) andv(S) comes from the
changes of contributions of hot spots+ 1, andi + 2. These contributions are

o A = fix — sk andA = I; — si;
o A1 =lit1—maxe,1, fix +1iiy1) anddf,; =0; and
o Nijo=lijo—maxe 2, liz1+tiv1iv2) andAl , =lijo —maxe2,li +1ii2).

Thenv(S) —v(S') = 3 [54] — 3124 =

li —max(& 2, li +1tii12) — fik — lit1+max(e 1, fik +tiir1) + max(e2,lir1+tip14+2). Based on
different cases of mae;, li+1+tiy1 ) — maxe,li +tjj), we simplify this statement and observe
thatv(S) > v(S*) for every case. Even though one fewer hot spot is covereadaberage time is
not shortened. Hence, this objective value is at least agd gethe original objective value.

Case 2b: Induction Step Now we assume that the increment in the service time eliregte
next consecutive > 1 hot spots. In this case, letS,) denote the objective function for the
modified solutiorg. We assume tha{S)) —v(S") > 0. We need to prove thatlif+ 1 hot spots
are eliminatedy(S,, ;) > V(S+1) holds. From the triangular inequality, we know

tiivh+1 <tiithr1tlitbrtitbre <tiita+tisiro+... Htivo—1itb+tithitbt1 +tithr1ithra. IN
addition, forj =1,...,b+1,Aij = li;j —max@&4j, fik +tii+j) andAi’H- =0; and

Aiibi2 = ligpr2 —Max(€bt2, lipbr1 +tiyhrsi+bi2) and
Al o =livbr2—mMax(€& b2, li +1ij1pi2). Then

i+b+2 i+b+2

W) -VS)= 3 & - 3 4
J=i |=i

=V(§) —U(S") — (litbrr — Max€ b1, i +1ijibr1))
—max€ b2, li +iivbi2) + Max@ipi2, livbr1 +titbriithi2)
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Based on the cases of m@x. 1,1j +tj j+1) — max(ej+1,li +ti j+1) and the induction step,
V(§,,1) > V(S"). Hence, the modified solution is as goodSis

This concludes the prooll
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