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EXECUTIVE SUMMARY

EVALUATION OF EFFECTS OF FIRE ON THE
I-465 MAINLINE BRIDGES—VOLUME I

On October 22, 2009, in Indianapolis, Indiana, a semi tanker

carrying liquefied propane lost control on the underpass from I-69

southbound to I-465 eastbound, crashing beneath the eastbound

and westbound bridges carrying mainline I-465 traffic. The semi

rolled, causing the tractor to catch fire and the propane tanker to

explode. As a result of the fire, the steel superstructure was

subjected to extreme temperatures; however, the duration of

exposure and magnitude of these temperatures was not accurately

established. Thus, testing was performed to identify and document

any short-term or long-term effects that the fire may have had on

the steel superstructure. Three primary tasks were performed as

part of the study:

1. Quantify the effects of the fire on the properties of the

structural steel.

2. Quantify the effects of the fire on the properties of the high

strength (HS) bolts.

3. Quantify the effects of the fire on the overall behavior of the

bridge.

Immediately after the accident, samples of the structural steel

and HS bolts were removed and sent to independent testing

laboratories. These results were used to establish any short-term

effects the fire had on the structure. To capture any long-term

effects, field testing was performed for a period of approximately

four months. Weldable resistance strain gages were placed at key

locations in an attempt to understand both the response of the

bridge to load and to develop the stress-range histograms at

critical details. Both controlled load tests, using test trucks of

known weight and geometry, and long-term monitoring of

random traffic were performed as part of the study.

The remaining fatigue life of the instrumented details was

estimated using stress-range histograms from the long-term

monitoring data. Since all the stress ranges measured were below

the CAFL (constant amplitude fatigue limit) for all monitored

details, infinite fatigue life is expected at all of the monitored

locations.
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1. INTRODUCTION

1.1 Bridge Description

Built in 1968, Bridge I-465-125-2377 JBSB (east-
bound) and Bridge I-465-125-2377 BNBL (westbound)
are located in the northeast corner of Indianapolis, IN.
Both bridges are four span continuous composite steel
girder structures which carry mainline I-465 over the
ramp from I-69 southbound to I-465 eastbound. The
steel girders are rolled shapes and utilize welded cover
plates as needed. Bridge I-465-125-2377 JBSB (east-
bound) carries three lanes of mainline I-465 traffic as
well as an exit lane. In total, the eastbound bridge is
1999-00 long made up two 449-00 end spans and two 559-
60 middle spans. Due to the exit lane, the width varies
from 709-00 to 789-00 west to east. Bridge I-465-125-
2377 BNBL (westbound) is similar, but not identical, as
it carries three lanes of mainline I-465 and no exit lane.
The westbound structure is 2109-00 long made up of two
449-00 end spans and two 619-00 middle spans and has a
constant width of 679-50. In 1992 the decks of both
bridges were substantially reconstructed. The west-
bound bridge had a 249-20 widening obtaining the
constant width of 679-50. This widening resulted in a
width of 249-00 for the right lane. The wider right lane
accommodates the traffic merging onto I-465 west-
bound from the Binford Blvd./I-69 on-ramp. Figure 1.1
shows an aerial view of both east and westbound
bridges over the south ramp from Interstate 69.

1.2. Objective

On October 22, 2009 a tanker truck carrying
liquefied propane lost control and crashed beneath
both I-465 bridges. The propane tanker was punctured
during the crash, resulting in an explosion and fire. As a
result of the fire, the steel superstructure was subjected
to extreme temperatures; however, the duration of
exposure and magnitude of these temperatures was
not accurately established. Hence, the amount and
extent of damage, if any, was unknown. To identify and
document any short-term and long-term negative effects
the fire may have had on the bridge a study was
undertaken with the following three tasks described.

Effects of Fire on Properties of Structural Steel

If steel is exposed to temperatures exceeding
approximately 1,100 F̊ (600 C̊) for extended periods,
or if the steel is sprayed with cold water by firefighters
while at elevated temperatures the potential exists to
alter the metallurgy of the steel. In the absence of any
visual damage such as the distortion of the steel, the
most common concerns are: (1) decreases in toughness
of the steel; and (2) increases in the strength of steel due
to uncontrolled quenching. Neither of which would be
desirable.

Effects of Fire on Properties of High Strength Bolts

High strength (HS) bolts are also susceptible to
damage if exposed to temperatures of about 750 F̊
(450 C̊) for extended periods. The bolts used in the I-
465 bridges are high strength ASTM A325 bolts. Since
A325 bolts obtain their increased strength through a
heat treatment process, they are generally more
susceptible to fire than other constructional steels.

Effects of Fire on the Overall Behavior of the Bridge

If large differences in thermal strains developed
between the steel and concrete, the composite action
may be reduced or compromised. Should composite
action be lost or reduced, then the load distribution
among the girders will not be as originally designed. In
addition, the live load stresses would also increase.

It is also noted that due to the damage to the west
pier on the eastbound structure (Bent #3), the bearing
of the exterior girder (Beam #12) on the north side of
the bridge fell out (see Figure 1.2). As a result, the span
length of this girder was significantly increased.
Although the bearing was replaced when the pier was
repaired, the amount of dead load that was put back
into the exterior girder is unknown. Thus, the propor-
tion of live load carried by this girder may not be as

Figure 1.1 View of east and westbound bridges over the
south ramp from I-69 (Microsoft 2010).

Figure 1.2 Bearing that fell out during the crash (Beam #12;
Bent #3) – Eastbound Bridge.
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originally assumed in design if the repaired bearing is
not operating as originally built.

Cores were taken from several girders in regions of high
stress range in order to obtain steel samples for CVN
specimens. At these regions, the condition at the cored
hole could be classified as an AASHTO Category D
fatigue detail (CAFL 5 7.0 ksi). Since the original fatigue
detail category at these locations was most likely Category
B (CAFL 5 16.0 ksi), the fatigue resistance of the detail
has been significantly reduced. However, this reduction in
fatigue category may not be significant if the actual in-
service live load stress ranges are low. In the absence of
field measured stress ranges, the effect of the cored holes
on the fatigue performance of the bridge is unknown.

Samples of the structural steel and HS bolts were
removed from the bridge and sent to independent
testing facilities shortly after the crash. All field
instrumentation and monitoring was conducted over
the period between December 2009 and May 2010 by
the Research Team from the Bowen Laboratory at
Purdue University, West Lafayette, IN.

2. SAMPLES TAKEN FOR LABORATORY
TESTING

Immediately following the fire, steel samples were
removed from both bridges for metallurgical investiga-
tion to determine if the extreme temperature exposure
had any negative effects on the steel properties. Steel
samples were cored from the web and cover plate of
the girders to create Charpy V-Notch (CVN) impact
specimens and perform hardness testing. Figure 2.1 is
a photograph of cores removed from Beam #11
(Westbound Bridge). Additionally, bolts were removed
from the web and flange splices at selected locations for
specific tests: proof load, wedge tension and hardness.
These tests were used to determine if the material
properties of the fasteners were degraded due to
uncontrolled heating and cooling, such as may have

occurred during the fire. All metallurgical testing
occurred in the days immediately following the accident.

2.1 Hardness Tests

2.1.1 Hardness Test Background

A total of fourteen (14) cores were removed from the
girders of both bridges: seven (7) from the web and
seven (7) from the bottom cover plate. Six (6) of the
fourteen (14) cores removed were taken from an area of
the westbound bridge least exposed to the explosion
and fire: three (3) from the web and three (3) from the
bottom flange cover plate. These six (6) specimens were
used as control samples for the CVN and hardness
tests. The remaining eight (8) specimens were taken
from both bridges from exposed areas to explosion and
fire. Drawings located in Appendix A specify the exact
locations for all cores removed.

2.1.2 Hardness Test Results

The original design drawings indicated the steel girders
were made from ASTM A36 steel. Based on the current
ASTM specifications the ultimate strength (Fu) of A36
steel is permitted to be between 58 ksi and 80 ksi. To
establish if the fire had any impact on the ultimate strength
(Fu) of the steel, hardness tests were performed to verify
that the material still fell within acceptable limits. Testing
was done using an Instron automated testing machine and
Rockwell Hardness Scale ‘B’ (HRB). From the hardness
data, estimates of the ultimate strength (Fu) of the steel
were made according to ASTM A370. Hardness tests
results along with the estimated ultimate strength (Fu)
values are summarized in Table 2.1.

2.1.3 Hardness Test Conclusions

The hardness test data along with the estimates of
ultimate strength were submitted to INDOT in a report
letter dated October 30, 2009 (see Appendix C). As
discussed in that report, two primary observations were
made from the hardness data presented:

1. The estimated ultimate strength (Fu) of the steel is well
within the limits of the ASTM specification.

2. There is no statistical difference between the control data set
and the data obtained from samples that were exposed to fire.

Based on these results from the hardness testing, it is
the opinion of the Purdue Research Team that the fire
did not have any effect on the ultimate strength (Fu) of
the structural steel in the bridge.

2.2 Charpy V-Notch Impact Tests (CVN)

2.2.1 Core Removal and Background Information

The same steel cores removed by INDOT from
locations in the web and bottom cover plate on the east

Figure 2.1 Cores removed from the web and bottom cover
plate (Beam #11) – Westbound Bridge.
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and westbound bridges for the hardness tests were used
to make CVN specimens. Specimen preparation and
testing was performed by Steel Dynamics on October
23, 2009 at no cost to INDOT or the project. Also, Mr.
Scott Newbolds with INDOT witnessed the CVN
specimen preparation and testing. Test results were
then submitted to the Purdue Research Team for review
and interpretation.

Prior to discussing any results it is important to
mention a few things about the CVN requirements
from the period these bridges were built. Since these
bridges were built in late 1960’s, the AASHO Bridge
Design Specifications and INDOT Bridge Design
Manual did not specify any minimum CVN require-
ments. Thus, it would not necessarily be appropriate to
compare these bridge steels to the modern specifications
and requirements. The current AASHTO Bridge
Design Specification requires 15 ft-lbs @ 40F for
specimens oriented in the longitudinal direction (i.e.,
Zone II, Non-fracture critical).

One other important thing to note is that it is well
known in the steel community that the mechanical
properties (CVN, yield strength, etc.) of steel plates and
rolled beams vary with the rolling direction. Data
obtained from specimens in the longitudinal direction
(direction of rolling and, in this case, the direction of
traffic) will be higher than those obtained in the
transverse direction from the same plates or beam.
Hence, data obtained from specimens in the transverse
direction will be conservative, estimating the lower
bound of the actual material properties, including CVN.

2.2.2 Core Test Results: Web Cores

The CVN specimens obtained from the web core
samples were oriented in the longitudinal direction.

Thus, the notch was oriented transverse to the long-
itudinal axis of the beam and parallel with the surface
of the web. Figure 2.2 is a diagram showing the
orientation of the web core samples.

A total of seven (7) web samples were tested. Four (4)
samples were from regions exposed to fire and three (3)
samples were from a region of the bridge nominally
protected from the fire near the embankment. All
measured data were well above modern AASHTO
requirements for Zone II non-fracture critical applica-
tions as specified in ASTM A709. As stated above, the
modern specification requires 15 ft-lbs @ 40F. For
comparison, the lowest value measured from the
samples removed was 94 ft-lbs. The data obtained are
summarized in Table 2.2.

2.2.3 Core Test Results: Bottom Flange Cover Plate Cores

The CVN specimens obtained from the cores
removed from the bottom flange cover plate were
oriented in the transverse direction; thus, the notch was
oriented parallel to the longitudinal axis of the beam.
Normally, the specimens would have been oriented
longitudinally, as required by the AASHTO Spe-
cifications. However, in the hours immediately follow-
ing the fire and in the urgency to obtain data, the
samples were mislabeled and the CVN specimens
oriented transversely. As previously stated, these data
provide a conservative lower-bound estimate of the
longitudinal mechanical properties. Figure 2.3 is a
diagram showing the orientation of the bottom flange
cover plate core samples.

Like the web, seven (7) cover plate samples were
tested: four (4) from the region exposed to fire and
three (3) from the region nominally protected from the
fire. The data obtained are tabulated in Table 2.3.

TABLE 2.1
Hardness Test Data and Estimates of Ultimate Strength

SPECIMEN

TYPE

AS

MARKED

LAB

ID

WEB OR

CP*

EB OR WB

BRIDGE/SPAN

ROCKWELL B (HRB)
ESTIMATED

FU(KSI)TEST 1 TEST 2 TEST 3 AVG

CONTROL

1 AA WEB WB/D 67.5 66.5 70.0 68.0 59.0

2 BB CP WB/D 65.5 66.5 72.7 68.2 59.0

3 CC WEB WB/D 66.7 71.5 75.0 71.1 62.0

4 DD CP WB/D X 70.5 71.5 71.0 62.0

5 EE WEB WB/D X 70.7 73.5 72.1 63.0

6 FF CP WB/D 74.5 84.5 80.5 79.8 72.0

AVG CONTROL DATA 71.7 63.0

EXPOSED TO

FIRE

A A CP WB/B 73.5 68.5 76.5 72.8 64.0

B B WEB WB/B X 65.0 68.5 66.8 58.0

C C CP EB/B 78.5 75.0 80.0 77.8 69.0

D D CP EB/B 80.0 80.0 79.5 79.8 72.0

E E WEB EB/B X 66.5 70.0 68.3 59.0

F F WEB EB/B 71.5 73.0 69.0 71.2 62.0

G G CP EB/B 75.5 78.5 80.0 78.0 69.0

H H WEB EB/B 70.0 71.5 74.0 71.8 63.0

AVG EXPOSED DATA 73.3 64.0

X – Denotes invalid data; CP – cover plate.
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From Table 2.3 it can be observed that both sets
of data contain results that are below the modern
AASHTO Zone II non-fracture critical requirements
for the longitudinal direction. However, these data were
obtained from specimens oriented transversely and
lower energy values would thus be expected. The
longitudinal CVN impact energy values will be
substantially greater than the transverse values mea-
sured. It should be noted that no specifications, modern
or older, have ever had any transverse CVN require-
ments specified. Although the data are somewhat lower

than presently specified, they are considered acceptable
since the CVN values would be significantly greater had
the specimen been oriented longitudinally.

2.2.4 Core Sample Conclusions

Based on the measured data and the orientation of
the specimens, it is the opinion of the Purdue Research
Team that the CVN impact energy data are adequate
for this bridge. It is also the opinion of the Research
Team that the longitudinal CVN impact energies will
be substantially greater than the transverse values
obtained from the bottom flange cover plate cores.

2.3 Bolt Tests

2.3.1 Bolt Removal and Background Information

A total of eight (8) bolts and eight (8) nuts were
removed from various web and flange splices for
hardness, proof load, and wedge tension testing. In all
the locations where bolts and nuts were removed for
testing new galvanized fasteners were installed. Two (2)
bolts and two (2) nuts were removed from the
westbound bridge (Beam #11) and the remaining
samples were taken from the eastbound bridge

TABLE 2.2
CVN Data for the Web Core Samples

1st set - Control Samples CVN (ft-lbs)

1 139

3 104

5 142

2nd set - Samples from Regions

Exposed to Fire

CVN (ft-lbs)

B 157

E 168

F 133

H 94

Figure 2.2 CVN specimen obtained from the web core sample.
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(Beams #12, 14 and 15). Drawings of the exact splice
locations where the bolts and nuts were removed can be
found in Appendix A.

All bolts removed are L0 diameter ASTM A325 HS
bolts with ASTM A563 Grade C nuts. These bolts
obtain their strength from a heat treatment procedure
known as the quenching and tempering process (Q/T).
Materials that obtain their properties (i.e. strength)
through the Q/T process are more susceptible to

degradation due to uncontrolled heating and cooling,
such as may have occurred during the fire.

Figure 2.4, Figure 2.5, and Figure 2.6 are photo-
graphs of the replaced HS bolts and nuts on both
bridges.

Figure 2.3 CVN specimen obtained from the cover plate core sample.

TABLE 2.3
CVN Data for the Cover Plate Core Samples

1st set - Control Samples CVN (ft-lbs)

2 11

4 40

6 19

2nd set - Samples from Regions

Exposed to Fire

CVN (ft-lbs)

A 21

C 12

D 16

G 8
Figure 2.4 Bolts and nuts removed from Splice #2 – Beams
#14 & #15 – Eastbound Bridge.
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2.3.2 Bolt Test Results: Proof Load and Wedge Tension
Test

All fasteners were tested as a courtesy to INDOT by
NUCOR Steel in Indiana. Dr. Victor Hong of INDOT
Research witnessed the tests. The bolt test results are
summarized in Table 2.4 and Table 2.5. The tests
revealed that only one (1) bolt (Bolt #7) did not pass
the proof load test requirements per ASTM A325. It
should be noted that Bolt #8 failed the first proof load
test but passed the second test with a 3% increased
proof load. All other bolts passed the proof load tests.

ASTM F606 describes the proof load test proce-
dures. The test consists of maintaining a load specified
by ASTM A325 over a ten (10) second period without
causing permanent elongation of the bolt. In the event
that the bolt shows deformation outside the allowable
limits of ¡ 0.0005 inches (note: this range is only given
for possible measurement error); a second test is allowed
by ASTM F606. However, the second test has a 3%

increased proof load. It is also worth mentioning that
the proof load test is an indicator of axial elongation
and not load carrying capacity in tension.

All bolts passed the wedge tension test. The wedge
tension test consists of testing the bolt in tension to
fracture using a wedge under the head of the bolt. To
meet the requirements of this test, the bolt must support
a load prior to fracture not less than the minimum
tensile strength specified in ASTM A325 for the
applicable bolt size, grade, and thread series. In this
case, the minimum load that the bolt must support
prior fracture is 40,100 lbs. ASTM F606 describes the
wedge tension test procedures. The wedge used under
the head of the bolt must meet certain criteria described
in ASTM F606 that depend on the bolt size being
tested. Figure 2.7 shows the wedge test details.

2.3.3 Bolt Test Results: Hardness Test

The hardness test results are tabulated in Table 2.5.
According to ASTM A325, to pass the hardness test all
the bolts needed Rockwell Hardness C (HRC) values
between 25 and 34. None of the bolts exceeded the
maximum hardness limit of 34 HRC given in ASTM
A325. However, Bolts #7 and #8 did not meet the
minimum hardness requirement of 25 HRC specified in
ASTM A325. These two bolts had average hardness
values of 22 HRC and 23 HRC respectively.

2.3.4 Nut Test Results: Hardness Test

Hardness testing was also performed on all eight (8)
nuts removed (see Table 2.6). The hardness require-
ments for grade C nuts per ASTM A563 have a rather
broad range and are set between 78 HRB and 38 HRC.
Since all results from the hardness tests were given in
Rockwell C scale, these values must be converted to
Rockwell B scale for comparison to the minimum
acceptable value. The minimum hardness value
obtained on Rockwell scale C was 4 HRC which
corresponds on the Rockwell B scale to a hardness
value of 84 HRB. This value is greater than the
minimum requirement of 78 HRB and is therefore
satisfactory. None of the nuts exceeded the maximum
hardness limit of 38 HRC. Therefore, all the nuts had
hardness values within the acceptable range given in
ASTM A563.

2.3.5 Fastener Conclusions

Considering there was no physical damage/evidence
of fire on the bolts (i.e. no heat or damaged paint), all
the bolts passed the wedge tension test, and all the bolts
passed the proof load test (with the exception of Bolt
#7), it is the opinion of the Purdue Research Team that
there was no fire damage to the bolts. Bolts #7 and #8
do not meet the current specifications; however, it is not
unreasonable for some bolts to be slightly out of the
tolerance given the vintage of the bolts. ASTM F1470
provides guidelines regarding fastener sampling for

Figure 2.5 Bolts and nuts removed from Splice #1 – Beam
#12 – Eastbound Bridge.

Figure 2.6 Bolts and nuts removed from Splice #1 – Beam
#11 – Westbound Bridge.
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Figure 2.7 Wedge tension test details.

TABLE 2.5
Bolts - Hardness Test Results

Bolt Label Location

Hardness Test

#1 #2 #3 #4 Average

1 BNBL - Beam #11 - Flange Splice 27.9 27.2 29.9 30.3 28.825 PASS

5 BNBL - Beam #11 - Web Splice 25.7 26.6 25.6 24.6 25.625 PASS

2 JBSB - Beam #15 - Flange Splice 21.9 28.9 27.4 24.4 25.65 PASS

6 JBSB - Beam #15 - Web Splice 28.4 31.5 29.3 29.7 29.725 PASS

3 JBSB - Beam #14 - Flange Splice 29.8 30.2 31.2 31 30.55 PASS

8 JBSB - Beam #14 - Web Splice 24.7 23.1 22.1 22.6 23.125 FAIL

4 JBSB - Beam #12 - Flange Splice 28.9 31.5 31.6 27 29.75 PASS

7 JBSB - Beam #12 - Web Splice 23 21.8 21.9 21.9 22.15 FAIL

TABLE 2.6
Nuts - Hardness Test Results

Nut Label Location

Hardness Test - HRC

Strength TestReading 1 Reading 2

1 BNBL - Beam #11 - Flange Splice 12.4 12.2

Could not perform the strength

test (threads were damaged)

5 BNBL - Beam #11 - Web Splice 4.1 4.5

2 JBSB - Beam #15 - Flange Splice 15.7 14.4

6 JBSB - Beam #15 - Web Splice 14.6 14

3 JBSB - Beam #14 - Flange Splice 15.5 8.8

8 JBSB - Beam #14 - Web Splice 14.6 12.8

4 JBSB - Beam #12 - Flange Splice 14.1 15.6

7 JBSB - Beam #12 - Web Splice 11.3 11

TABLE 2.4
Bolts - Proof Load and Wedge Tension Test Results

Bolt Label Location

Proof Load Test

(1) 28,400 lb

Proof Load Test (2) 29,350

lb 5 Test (1) + 3%

Wedge tension test

40,100 lb to pass

1 BNBL - Beam #11-Flange Splice PASS N/A 50,660 lb PASS

5 BNBL - Beam #11 - Web Splice PASS N/A 49,540 lb PASS

2 JBSB - Beam #15 - Flange Splice PASS N/A 48,220 lb PASS

6 JBSB - Beam #15 - Web Splice PASS N/A 49,750 lb PASS

3 JBSB - Beam #14 - Flange Splice PASS N/A 50,800 lb PASS

8 JBSB - Beam #14 - Web Splice FAIL PASS 44,720 lb PASS

4 JBSB - Beam #12 - Flange Splice PASS N/A 52,030 lb PASS

7 JBSB - Beam #12 - Web Splice FAIL FAIL 42,640 lb PASS

NOTE: All the bolts tested were L0 HS ASTM A325.
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specified mechanical properties and performance
inspection in the manufacturing process. For example,
for a lot size of 35,000 fasteners according to ASTM
F1470, four (4) randomly selected fasteners should be
tested for hardness (approximately 0.012% fasteners
tested from the considered lot) and three (3) randomly
selected fasteners should be tested for proof load and
tensile strength (approximately 0.009% fasteners tested
from the considered lot). If any of the samples fails the
test, the entire lot is rejected.

Additionally, hardness test results of the nuts also
suggest the fire did not have any negative effect on the
integrity of the nuts.

3. INSTRUMENTATION PLAN AND DATA
AQUISITION

On December 16 and 17, 2009 long-term monitoring
instrumentation was installed by the Purdue Research
Team on the I-465 bridges. Instrumentation was
primarily focused on the eastbound structure with
limited instrumentation on the westbound bridge. The
primary intent of the monitoring was to capture live
load stress ranges in predetermined areas of interest.
These areas included the location of maximum moment
as well as the locations where core samples were
removed for metallurgical testing. Using the live load
stress ranges it could be determined if or to what extent
the composite action was compromised. Additionally,
the stress ranges were used to evaluate the fatigue
performance of the structure; specifically, in those areas
where cores were removed and subsequently reduced
the fatigue resistance.

Two types of tests were performed over the four
month monitoring period: controlled truck load testing
and in-service long-term monitoring. Identical instru-
mentation plans were used for both of these tests. As-
built instrumentation drawings that contain the specific
location of all strain gages can be found in Appendix A.

A total of eighteen (18) uniaxial resistance-type strain
gages were installed on the two bridges: seventeen (17)
strain gages on the eastbound structure and only one
(1) strain gage on the westbound structure. Seven beam
lines of the eastbound bridge had strain gages installed
on the top and bottom flange near midspan, totaling
fourteen (14) gages. The remaining four (4) strain gages
were placed near three (3) core holes in the bottom
flange cover plate of both bridges. Figure 3.1 shows the
fourteen (14) strain gages installed at midspan of the
eastbound bridge.

3.1 Strain Gages

Strain gages were installed to capture the local
response of particular details, for example where core
samples were removed from the bottom flange cover
plate of the girders. Strain gages were also used to
establish the global response of the bridge as a system.
The particular strain gages installed on the steel
girders of the I-465 bridges were produced by Vishay

Micro-Measurements model LWK-06-W250B-350 with
an active grid length of 0.25 inches. These are uniaxial
weldable resistance-type strain gages and were selected
to be used at this site for their easy installation
techniques in the field. Additionally, the selected strain
gages have proven to produce accurate strain measure-
ments over long periods of time (anywhere from
months to years). Other notable specifications for this
particular strain gage type include that they are
temperature-compensated for use on structural steel
and have a resistance of 350 ohms. An excitation
voltage of 10 volts was used for the strain gages.

The strain gages come pre-bonded to a metal strip by
the manufacturer. To attach them to the bridge in the
field, multiple pinprick sized resistance spot welds are
used as shown in Figure 3.2. The spot welds pose no
concern with respect to fatigue. To prepare the surface
for installation the metal is simply ground smooth and
cleaned with degreaser. The final step in the installation
process involves covering the strain gage with a proven
multi-layer weatherproofing system to protect it against
the extreme outdoor conditions. Figure 3.3 shows the

Figure 3.1 General view of strain gage locations.

Figure 3.2 Weldable strain gage.
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final condition of the strain gage after installation and
sealing.

3.2 Data Acquisition System

A data logger, cellular modem and antenna were
installed to collect and transmit data. A battery back-up
was provided should there be a loss of power on-site.
Additional equipment including battery chargers, mar-
ine batteries, a charge controller, and power inverter
were also required at the site for monitoring. What
follows is a brief description of notable equipment used
as part of the monitoring system. Also, Figure 3.4 is a
photograph of the complete data acquisition system.

A Campbell Scientific CR9000X data logger was used
for data collection for the duration of testing. The
CR9000X is a high-speed, multi-channel, 16-bit system
configured with digital and analog filters to assure noise-
free signals. Other notable features of the CR9000X
include its ease of programming, ability to develop stress-
range histograms using the rainflow cycle counting
method, and capability for live data viewing.

The cellular modem used onsite was an 882-EVDO
CDMA Data Modem and IP Router, manufactured
by CalAmp/LandCell. The 882-EVDO Cellular Data
Modem is an external 3G cellular broadband router
with integrated DHCP server, port forwarding and port
mapping capabilities providing wireless data connectiv-
ity through public cellular networks.

The high-speed cellular modem installed serves
several purposes. The first of which is to retrieve data
remotely. Data is initially collected locally and stored
onsite. Then using specialized software installed on a
server residing at Purdue University the data are
automatically downloaded at a predefined interval.
Secondly, the cellular modem makes it possible to view
live data in real time allowing the Research Team to
verify the monitoring system is still functional without
being onsite. One final attractive feature of the cellular
modem is the ability to reprogram the data logger
remotely through the cellular connection. This allows

the Research Team to update and change the program
based on the review of prior data.

The monitoring equipment (data logger, cellular
modem, charge controller, etc.) were enclosed in a
weather-tight steel box as shown in Figure 3.5. This box
was located under the eastbound bridge behind Bent
#2. The instrumentation box was locked and chained
to the bent to help deter anyone from tampering with
the equipment.

Power was provided from an electrical outlet
installed near Bent #2 where the instrumentation box
was placed. Power from the outlet was run to the box
and connected to a surge protector powering two
battery chargers. The two battery chargers were
connected to a charge controller. A charge controller
was used to ensure the six marine batteries maintained
an optimal charge level. The charge controller
also powered the cellular modem. Connecting the

Figure 3.3 Strain gage in final installed condition. Figure 3.4 Data acquisition system.

Figure 3.5 Weather-tight enclosure containing data acquisi-
tion system.
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instrumentation in this fashion insured the monitoring
system would have power for approximately three days
should external power be lost.

3.3 Remote Long-term Monitoring

3.3.1 Triggered Data

To minimize the volume of data collected during the
monitoring period, time-history data were not recorded
continuously. Rather, trigger events were used to start
and stop data collection. The trigger events were based
on predefined stress levels measured in the bottom
flange of the girders located in the left, center, and
rightmost lanes of mainline I-465. When the stress
produced by heavy trucks exceeded predefined levels
the data logger ‘triggered’ and recorded time-history
data from all strain gages for a defined period of time
before and after the event. For the duration of
monitoring, the time interval was set at six seconds
(three seconds before and three seconds after an event).
This time period was chosen to ensure the entire
loading event was captured. The strain gages used to
trigger the recording of data were selected so that
eastbound traffic in each lane could be identified and
stored in separate files. All the trigger channels were
located on the eastbound bridge. Table 3.1 explains the
trigger channels and levels used for data collection. The
duration of the trigger event and all trigger stress levels
were established by the Research Team based on a
review of data collected over the first month of
monitoring (December 17, 2009 through January 15,
2010).

3.3.2 Stress-Range Histograms

In addition to the recorded triggered events, stress-
range histograms for selected channels were generated
by the data logger using the rainflow cycle counting
algorithm. Not all channels were included in the
analysis of the stress-range histograms. Based on the
data from the first month of monitoring (December 17,
2009 through January 14, 2010), specific channels of
interest were chosen to be included in the analysis. The
rainflow cycle counting algorithm was programmed to
place all cycles in equally divided 0.5 ksi bins. The
exception to the 0.5 ksi bin size is the first bin which
holds cycles between 0.25 ksi and 0.5 ksi. Cycles less

than the 0.25 ksi threshold are neglected in the bin
counts.

4. CONTROLLED LOAD TESTING

A series of controlled tests were conducted to verify
the measurements obtained during in-service testing.
The controlled tests were performed using two similar
test trucks of known load and geometry, provided by
INDOT. These tests were conducted on March 25, 2010
between 12:30 AM and 2:30 AM. Night testing was
chosen to reduce the impact on interstate traffic in
the area as multiple lanes of I-465 were closed for the
testing. All control testing was performed on the
eastbound bridge where the majority of strain gages
were installed (seventeen (17) out of eighteen (18)
channels).

4.1 Test Trucks

As mentioned above, the two trucks used for testing
were similar but had slightly different axle spacing. The
first truck (ID #63480) was a tandem axle plow truck
with a gross weight of 48,000 pounds. Likewise, the
second truck (ID #63701) was also a tandem axle plow
truck with a gross weight of 47,180 pounds. Figure 4.1
is a photograph of truck #63480. While onsite the
Research Team obtained accurate measurements of
each truck and INDOT provided individual tire
weights. Figure 4.2 and Figure 4.3 show the geometry
and tire load data for truck #63480 and truck #63701
respectively.

4.2 Testing

Testing consisted of a series of five (5) static tests and
five (5) crawl tests. The static tests involved parking one
or both trucks at midspan between Piers #2 and #3 in

TABLE 3.1
Trigger Channels

Trigger Channel Lane Trigger Stress Level(ksi)

CH_4 Left 1.75

CH_8 Middle 2.5

CH_12 Right 2.5
Figure 4.1 Test truck #63480 used in the control load
testing.
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predetermined transverse locations. Likewise, the crawl
tests consisted of driving either one or two trucks across
the bridge at approximately five miles per hour in
predetermined transverse locations. A summary of
the controlled load tests performed is presented in
Table 4.1.

As mentioned above, testing was conducted trans-
versely across the bridge. The transverse locations were
determined by the bridge lanes. In the first three static
tests, Truck #63480 was parked at midspan between
Piers #2 and #3, in each of the three lanes of mainline
I-465 (no tests were performed on the exit lane/ramp).
During the fourth and fifth static tests both trucks were

used. The trucks were parked side-by-side, again at
midspan between Piers #2 and #3, with the heavier
truck (#63480) located on the north side in both tests.
Transverse locations for these tests included left/middle
lanes and middle/right lanes. The five (5) crawl tests
used approximate transverse locations and the same
truck(s) as the five static tests. Note that during the
crawl tests only approximate transverse locations to the
static tests could be achieved depending on the skills of
the driver(s).

The night of the controlled testing INDOT was
performing an inspection of the bridge with their under
bridge snooper vehicle. Thus, one crawl test was

Figure 4.2 Geometry and tire load data for test truck #63480.

Figure 4.3 Geometry and tire load data for test truck #63701.
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performed in the left lane using the snooper (estimated
GVW 5 64,000 lbs) in order to compare the test results
obtained with the test trucks.

5. RESULTS OF CONTROLLED LOAD TESTING

As previously discussed, the controlled load testing
consisted of five (5) crawl tests and five (5) static tests,
using either a single truck or two trucks side-by-side of
known load and geometry. All the tests were performed
on the eastbound bridge, where the majority of the
strain gages were installed in the second span. As-built
instrumentation drawings that contain the specific
location of all strain gages can be found in Appendix
A. The results of the controlled load tests are discussed
in this section and are summarized in the five (5) cases
shown below. Each case is based on the truck(s)
position(s):

N Case 1: Single truck – static and crawl tests in the left lane

(PARK_1.DAT & CRL_1.DAT)

N Case 2: Single truck – static and crawl tests in the middle

lane (PARK_2C.DAT & CRL_2.DAT)

N Case 3: Single truck – static and crawl tests in the right

lane (PARK_4.DAT & CRL_4.DAT)

N Case 4: Two trucks side-by-side – static and crawl tests

in the left and middle lanes (PARK_3.DAT and

CRL_3.DAT)

N Case 5: Two trucks side-by-side – static and crawl tests

in the middle and right lanes (PARK_4.DAT &

CRL_4.DAT)

The response of channels installed near core hole
locations during controlled load testing along with
results from the snooper crawl test in the left lane are
also presented in this section. A summary of the
controlled load testing can be found at the conclusion
of this section.

5.1 Single Truck Tests in the Left Lane

5.1.1 Single Truck Crawl Test in the Left Lane
(CRL_1.DAT)

In general, the response of the bridge was as expected
and typical of a continuous multi-span steel bridge.
Figure 5.1 presents the response of CH_2, CH_3,
CH_4, CH_6, CH_8, CH_10, CH_12 and CH_14 as
the test truck (#63480) passed over the left lane. All
channels mentioned above were installed at midspan of
the second span (Span B) of the Eastbound Bridge. All
but one of the channels were installed on the bottom
flange cover plate of Beams #12 through #16. Only
CH_3 was installed on the top flange of Beam #13
(under left lane). As expected, the response in all eight
(8) channels is positive and maximum as the test truck
passed over the middle of the second span (where the
strain gages were installed) and then becomes negative
as it passes into the adjacent third span. Likewise, a
negative moment response was also observed as the
truck crossed span one. It is also important to note that
the positive response of CH_10, CH_12 & CH_14
before and after the maximum response of the test truck
is due to the light traffic in the right lane. The right lane
was open to traffic during testing. Some of responses
due to traffic in the right lane are highlighted in
Figure 5.1.

Figure 5.1 also shows good load distribution
between the girders. The maximum response was
observed in the girders closer to the test truck (CH_4
& CH_6) and a smaller response was observed in the
girders further away from the test truck (CH_2, CH_8,
CH_10, CH_12 & CH_14). This observation is very
clear as the test truck passed over the second span as
shown in Figure 5.1. As the truck passed over the other
spans the load distribution becomes less clear. This is a

TABLE 4.1
Summary of the Controlled Load Tests

Test

Lane(s) Truck(s)File Name Description

PARK_1.DAT Single parked Left Lane Truck #63480

CRL_1.DAT Single crawl Left Lane Truck #63480

PARK_2C.DAT Single parked Middle Lane Truck #63480

CRL_2.DAT Single crawl Middle Lane Truck #63480

PARK_3.DAT Double parked Left Lane 2 Truck #63480

Middle Lane Truck # 63701

CRL_3.DAT Double crawl Left Lane Truck #63480

Middle Lane Truck # 63701

PARK_4.DAT Single parked Right Lane Truck #63480

CRL_4.DAT Single crawl Right Lane Truck #63480

PARK_5.DAT Double parked Middle Lane Truck # 63480

Right Lane Truck # 63701

CRL_5.DAT Double crawl Middle Lane Truck # 63480

Right Lane Truck # 63701

SNOOP.DAT Single crawl Left Lane Under Bridge SNOOPER
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typical behavior expected in a continuous bridge
due to the substantial transverse and longitudinal
load distribution which occurs as loads move further
away from the instrumented section (2nd Span at
midspan).

Often times the strain gages can also help to identify
the number and type of vehicle(s) (i.e., number of axles)
that cross the bridge. Figure 5.2 presents a zoomed in
image of the boxed section of Figure 5.1. Using the
response from strain gages installed on the top flanges
of the girders, local bending effects can be observed that
help identify the vehicle. For example, CH_3 in
Figure 5.2 (red trace) clearly shows a vehicle having
three (3) axles (i.e., a test truck). This is best exemplified
with data collected from the controlled load test where
the truck configuration was known; however, this same
concept was used to identify vehicles in triggered time-
history data.

5.1.2 Single Truck Static Test in the Left Lane
(PARK_1.DAT)

The single truck static test consisted of a single test
truck being parked at midspan (2nd Span) in the left
lane for a short period of time as measurements were
taken. Figure 5.3 shows the response during the static
test (PARK_1.DAT) of the same channels considered
in test (CRL_1.DAT). Maximum stress values obtained
during both left lane single truck tests are summarized
in Table 5.1.

As it can be seen, the response of the static test
(PARK_1.DAT) was relatively similar to that of the
crawl test (CRL_1.DAT). The small difference between
the two tests can be explained by the transverse location
of the truck. During the crawl test (CRL_1.DAT) the
truck did not pass through the exact transverse position
as it was parked during the static test (PARK_1.DAT).

Figure 5.1 Response of strain gages installed at midspan (2nd span) – Crawl test: single truck in the left lane.
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5.1.3 Composite Action

Composite action is developed when two load
carrying structural members such as a concrete deck
system and the supporting steel beam, are integrally
connected and deflect as a single unit. When a system
acts compositely no relative slip occurs between the slab
and beam, resulting in a single neutral axis in a strain
diagram. This resulting neutral axis is located between
the neutral axis of the slab and that of the beam.
Figure 5.4 illustrates the strain variation in composite
beams.

The effective width of the slab, according to
AASHTO 2010 (2) - Article 4.6.2.6.1, can be taken as
one-half the distance to the adjacent stringer or girder
on each side of the component. Thus, in this case the
effective width of the slab is 79-40 for an interior beam.
Using the stresses recorded in the field during the
controlled load testing, the position of the neutral axis of

the composite section will be determined using a linear
stress diagram. Following is a summary of calculations
for locating the neutral axis of the composite section.
Two sets of calculations are included. First, the neutral
axis is calculated according to AASHTO 2010 (2). Then
it is determined from the stresses recorded during the
PARK_1.DAT controlled load test. It is also important
to note, that the distances to the centroid of individual
elements were all taken from the bottom of the cover
plate when calculating the position of the neutral axis.
Also, the position of the neutral axis is always referenced
from the bottom of the cover plate.

Calculations – Summary

1. Neutral axis of the composite section - AASHTO 2010

(2) (Figure 5.5)

Figure 5.2 Response of strain gages installed at midspan (2nd Span), as the test truck passes over the 2nd span.
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Neutral axis of the beam and cover plate only:

Acvr{plate~10in|0:5in~5in2

Abeam24W76~22:4in2

Atotal~22:4in2z5in2~27:4in2

ybeam{cvrplate~
11:95inz0:5inð Þ|22:4in2z0:25in|5in2

27:4in2

~10:23in

Neutral axis of the concrete deck only (includes the
haunch detail):

Figure 5.3 Response of strain gages installed at midspan (2nd Span) – Static test: single truck in the left lane.

TABLE 5.1
Maximum Stresses - Single Truck Tests in the Left Lane

Channel

CRL_1.DAT Max.

Stress (ksi)

PARK_1.DAT Max.

Stress (ksi)

CH_2 1.1 0.8

CH_3 0.4 0.3

CH_4 2.1 1.9

CH_6 2.0 2.3

CH_8 0.9 1.2

CH_10 0.4 0.5

CH_12 0.1 0.1

CH_14 0.0 0.0
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Atotal{conc:deck~88in|7:5inz2|4in|1in~668in2

yconc:deck~

0:5inz23:9inz0:32inz3:75inð Þ| 88in|7:5inð Þz 0:5inz23:9in{0:68inz0:25inð Þ|8in2

668in2

yconc:deck~28:42in

Neutral axis of the composite section:

Econcrete~1820
ffiffiffiffiffiffi
f ’c

p
~1820

ffiffiffiffiffiffiffiffiffi
3ksi
p

~3,152ksi

n~
Esteel

Econcrete

~
29,000ksi

3,152ksi
~9:2%9:00

ycomp: sec t~

27:4in2|10:23in
� �

z 7:5in|
88in

9

� �
|28:42in

27:4in2z7:5in|
88in

9

� �

~23:47in

2. Neutral axis of the composite section–from stresses
recorded in PARK_1.DAT

From Table 5.1 the stresses recorded by CH_3
(bottom face of top flange) and CH_4 (bottom flange
cover plate) are 0.3 ksi and 1.9 ksi, respectively. Using
these values and considering elastic section properties
(linear stress-strain diagram) the position of the neutral
axis of the composite section can then be determined
from similar triangles (geometry). Figure 5.6 shows
the position of the neutral axis of the composite
section determined from the stresses recorded in
PARK_1.DAT.

Using elastic section properties (linear stress-strain
diagram) and similar triangles (Figure 5.6) the position
of the neutral axis of the composite section is
determined:

1:9{0:3

23:72
~

1:9

N:A:

N:A:~
23:72|1:9

1:9{0:3
~28:17in

The location of the neutral axis of the composite
section determined from the field measured stresses is
above the location predicted by AASHTO 2010 (2)
(see Figure 5.5). Hence, full-composite behavior is
developed. This difference is not unusual since
AASHTO 2010 (2) does not take into consideration
the influence of the parapets and the overlay surface
which all contribute to the actual load distribution and
composite behavior.

5.2 Single Truck Tests in the Middle Lane

5.2.1 Single Truck Crawl Test in the Middle Lane
(CRL_2.DAT)

Figure 5.7 presents the response of CH_2, CH_4,
CH_6, CH_7, CH_8, CH_10, CH_12 and CH_14 as the
test truck (#63480) passed over the middle lane. The

Figure 5.4 Strain variation in composite beams.

Figure 5.5 Neutral axis of the composite section – AASHTO 2010 (2).
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response in all eight (8) channels is positive as the test
truck passed over the second span (where the channels
were installed). Negative moments were observed as the
truck passed through the first and third spans. Also, as
previously discussed in section 5.1.1, using the response
from strain gages installed on the top flange of the
girders, the type (number of axles) and number of
vehicle(s) can be identified. This can be seen in CH_7
(pink trace) of Figure 5.7 where a tandem axle truck
can be observed.

5.2.2 Single Truck Static Test in the Middle Lane
(PARK_2C.DAT)

The single truck static test consisted of the test truck
being parked at midspan (2nd span) for a short period of
time while measurements were made. Figure 5.8 shows
the response during the static test PARK_2C.DAT of
the same channels considered in Figure 5.7. Maximum
stress values obtained during the single truck tests in the
middle lane are summarized in Table 5.2. The response
of the static test was relatively similar to the response
from the crawl test (CRL_2.DAT). Again, the small
difference in stresses between these two tests is explained
by the transverse positioning.

Heavy traffic was noted in the right lane during the
static test (PARK_2C.DAT). Figure 5.9 shows the
response of the strain gages to this heavy traffic. In
the figure, CH_11 indicates three (3) semi-trailers
passed back-to-back in the right lane. The semis were
identified by the top flange response to the axles. An
expanded view of the response to one of the semis
exemplifies how they were identified.

5.2.3 Composite Action

As presented in section 5.1.3, to determine if full
composite action is being developed between the
concrete deck and the steel girder, the neutral axis of
the composite section determined from field stress
measurements must be located above the position
indicated by AASHTO 2010 (2). From Table 5.2, the
stresses recorded in test PARK_2C.DAT by CH_7
(bottom face of top flange) and CH_8 (bottom flange
cover plate) are 0.3 ksi and 2.2 ksi, respectively.
Figure 5.10 shows the position of the neutral axis of
the composite section using the stresses recorded in
PARK_2C.DAT.

Using elastic section properties (linear stress-strain
diagram) and similar triangles (Figure 5.10) the

Figure 5.6 Neutral axis of the composite section – from stresses recorded in PARK_1.DAT.
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position of the neutral axis of the composite section is
determined:

2:2{0:3

23:72
~

2:2

N:A:

N:A:~
23:72|2:2

2:2{0:3
~27:47in

The position of the neutral axis of the composite
section determined from the field measured stresses is
above the position indicated by AASHTO 2010 (2) (see
Figure 5.5). Hence, full composite-behavior is devel-
oped. As previously explained in section 5.1.3, this
difference is not unusual since there are other factors
(parapets and overlay surface) that contribute to the
load distribution and composite action in turn influen-
cing the position of neutral axis.

5.3 Single Truck Tests in the Right Lane

5.3.1 Single Truck Crawl Test in the Right Lane
(CRL_4.DAT)

When the controlled tests were performed in the right
lane, the traffic on I-465 was stopped; thus, only the
test truck was on the bridge. Figure 5.11 presents the
response of CH_2, CH_4, CH_6, CH_8, CH_10,
CH_11, CH_12 and CH_14 as the test truck (#63480)
passed the bridge in the right lane. The response in all
eight (8) channels is the same as in the previous single
truck crawl tests: positive as the test truck passed over
the second span (where the channels were installed) and
negative as it passes through the first and third spans.
Also, as for the previous two single truck positions, the

Figure 5.7 Response of strain gages installed at midspan (2nd Span) – Crawl test: single truck in the middle lane.
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response from strain gages installed on the top flange of
the girders can identify the type (number of axles) and
number of vehicle(s). In Figure 5.11, CH_11 (yellow
trace) shows a tandem axle truck crossing the bridge.

5.3.2 Single Truck Static Test in the Right Lane
(PARK_4.DAT)

The single truck right lane static test consisted of the
test truck being parked at midspan (2nd Span) of the
right lane for a short period of time while measure-
ments were made. Figure 5.12 shows the response of
the same channels considered in Figure 5.11 during the
static test PARK_4.DAT. Maximum stress values
obtained during the single truck tests in the middle
lane are summarized in Table 5.3.

Figure 5.8 Response of strain gages installed at midspan (2nd Span) – Static test: single truck in the middle lane.

TABLE 5.2
Maximum Stresses - Single Truck Tests in the Middle Lane

Channel

CRL_2.DAT Max.

Stress (ksi)

PARK_2C.DAT Max.

Stress (ksi)

CH_2 0.2 0.2

CH_4 0.9 0.6

CH_6 1.9 1.5

CH_7 0.3 0.3

CH_8 2.4 2.2

CH_10 1.6 1.7

CH_12 0.6 0.6

CH_14 0.2 0.3
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The response of the channels was relatively similar to
the response from the crawl test (CRL_4.DAT). As
previously discussed, the small difference between the
static and crawl tests can be explained by difference in
transverse position between the two tests.

5.3.3 Composite Action

As discussed in section 5.1.3, to determine if full
composite action is being developed between the
concrete deck and the steel girder, the neutral axis of
the composite section determined from field stress
measurements must be located above the position
indicated by AASHTO 2010 (2). From Table 5.3 the
stresses recorded in test PARK_4.DAT by CH_11
(bottom face of top flange) and CH_12 (bottom flange
cover plate) are 0.2 ksi and 2.1 ksi, respectively.
Figure 5.13 shows the position of the neutral axis of
the composite section determined from the stresses
recorded in PARK_4.DAT.

Using elastic section properties (linear stress-strain
diagram) and similar triangles (Figure 5.13) the posi-
tion of the neutral axis of the composite section is
determined:

2:1{0:2

23:72
~

2:1

N:A:

N:A:~
23:72|2:1

2:1{0:2
~26:22in

The position of the neutral axis of the composite
section determined from the field measured stresses is
above the position indicated by AASHTO 2010 (2) (see
Figure 5.5). Hence, full-composite behavior is devel-
oped. As previously explained in section 5.1.3, this
difference is not unusual since there are other factors
(parapets and overlay surface) that contribute in the
load distribution and composite action in turn influen-
cing the position of neutral axis.

5.4 Trucks Side-by-Side in the Left and Middle Lanes

5.4.1 Trucks Side-by-Side in the Left and Middle Lanes –
Crawl Test (CRL_3.DAT)

Figure 5.14 presents the response of CH_2, CH_3,
CH_4, CH_6, CH_8, CH_10, CH_12 and CH_14 as
both test trucks passed side-by-side over the bridge

Figure 5.9 Response of CH_11 indicates semis passing in the right lane during the single truck static test in the middle lane.
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in the left and middle lanes during crawl test
CRL_3.DAT. The figure shows very good load
distribution between the girders. Comparing the results
of the double truck test to those from the single truck
crawl test in left lane (CRL_1.DAT – see section 5.1.1)
the responses of CH_6 (Beam #14) and CH_8
(Beam #15) are much greater in the second test
(CRL_3.DAT). These channels have a greater response
because both trucks load these girders heavily. In the
first test (CRL_1.DAT), CH_6 and CH_8 recorded
stresses of 2.0 ksi and 0.9 ksi respectively, while in the
second test (CRL_3.DAT) these channels recorded
stresses of 3.6 ksi and 3.1 ksi respectively.

However, the effect of the second truck has little
impact on the exterior girder. Comparing Figure 5.1
and Figure 5.14, the effect of a second truck in the
middle lane has little influence on the stress in Beam
#12 (CH_2). In other words, all the load of the truck in
the middle lane was distributed out among the girders
near the middle lane. This is best observed when
comparing the stresses recorded during these two tests.
In the first test (CRL_1.DAT), CH_2 recorded a
maximum stress of approximately 1.1 ksi while in the
second test (CRL_3.DAT) a maximum stress of 1.0 ksi
was recorded. A similar response is also seen when
looking at the first interior girder (Beam #13).
Comparing the response of CH_4 for both truck
configurations, only a small increase of approximately
0.5 ksi is observed when the second truck is added in
the middle lane. A comparison of the maximum bottom
flange cover plate stresses recorded for each of these

crawl tests (CRL_1.DAT & CRL_3.DAT) is presented
in Table 5.4.

5.4.2 Trucks Side-by-Side in the Left and Middle Lanes –
Static Test (PARK_3.DAT)

The double truck static test consisted of both test
trucks being parked side-by-side in the left and middle
lanes at midspan (2nd Span) for a short period of time
while measurements were recorded. Figure 5.15 shows
the response during the static test PARK_3.DAT of the
same channels considered in Figure 5.14.

The maximum stresses recorded during the side-by-
side trucks tests (crawl and static tests) in the left and
middle lanes are summarized in Table 5.5. As discussed
in section 5.1.2, there are some small differences
between the static and crawl tests responses accounted
for by the transverse position of the trucks during each
test. A comparison of maximum stresses recorded in the
single truck static test (PARK_1.DAT) and the trucks
side-by-side static test (PARK_3.DAT) is presented in
Table 5.6.

5.4.3 Composite Action

As presented in section 5.1.3, to determine if full
composite action is being developed between the
concrete deck and the steel girder, the neutral axis of
the composite section determined from field stress
measurements must be located above the position
indicated by AASHTO 2010 (2). From Table 5.5 the

Figure 5.10 Neutral axis of the composite section – from stresses recorded in PARK_2C.DAT.
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stresses recorded in test PARK_3.DAT by CH_3
(bottom face of top flange) and CH_4 (bottom flange
cover plate) are 0.4 ksi and 2.7 ksi, respectively.
Figure 5.16 shows the position of the neutral axis of
the composite section using the stresses recorded in
static test PARK_3.DAT.

Using elastic section properties (linear stress-strain
diagram) and similar triangles (Figure 5.16) the posi-
tion of the neutral axis of the composite section is
determined:

2:7{0:4

23:72
~

2:7

N:A:

N:A:~
23:72|2:7

2:7{0:4
~27:85in

The position of the neutral axis of the composite
section determined from the field measured stresses is
above the position indicated by AASHTO 2010 (2) (see
Figure 5.5). Hence, full-composite behavior is devel-
oped. As previously discussed in section 5.1.3, this
difference is not unusual since there are other factors
(parapets and overlay surface) that contribute to the
load distribution and composite action in turn influen-
cing the position of neutral axis.

5.5 Trucks Side-by-Side in the Middle and Right Lanes

5.5.1 Trucks Side-by-Side in the Middle and Right Lanes
– Crawl Test (CRL_5.DAT)

Figure 5.17 presents the response of CH_2, CH_4,
CH_6, CH_7, CH_8, CH_10, CH_12 and CH_14 as

Figure 5.11 Response of strain gages installed at midspan (2nd Span) – Crawl test: single truck in the right lane.
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both test trucks passed side-by-side in the middle and
right lanes in crawl test CRL_5.DAT. The same type of
behavior (load distribution between the girders) is
encountered in this crawl test (CRL_5.DAT) as
presented in section 5.4.1. Maximum stresses were
recorded in channels located on the girders nearest to
the load. In this case CH_8, CH_10 and CH_12
recorded stresses of 2.8 ksi, 3.2 ksi and 2.6 ksi,
respectively. Again, as seen in section 5.4.1, by
comparing the response of CH_2 (Beam #12) and
CH_4 (Beam #13) in both truck configurations
(CRL_2.DAT & CRL_5.DAT) it is observed that the
presence of a second truck in the right lane has little to
no influence on these two (2) girders.

Figure 5.12 Response of strain gages installed at midspan (2nd Span) – Static test: single truck in the right lane.

TABLE 5.3
Maximum Stresses – Single Truck Tests in the Right Lane

Channel

CRL_4.DAT Max.

Stress (ksi)

PARK_4.DAT Max.

Stress (ksi)

CH_2 0.0 0.0

CH_4 0.0 0.1

CH_6 0.2 0.3

CH_8 0.6 0.7

CH_10 1.5 1.8

CH_11 0.2 0.2

CH_12 2.0 2.1

CH_14 1.5 1.3
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A comparison of stresses recorded in these two crawl
tests (CRL_2.DAT & CRL_5.DAT) is presented in
Table 5.7.

5.5.2 Trucks Side-by-Side in the Middle and Right Lanes
– Static Test (PARK_5.DAT)

The double truck static test consisted of both test
trucks being parked side-by-side in the middle and left
lanes at midspan (2nd Span) for a short period of time
while measurements were recorded. Traffic on I-465
was stopped during the test. Figure 5.18 shows the
response during the static test PARK_5.DAT of the
same channels considered in Figure 5.17. As discussed
in section 5.1.2, there are some small differences
between the static and crawl tests response. These
differences are attributed to the transverse position of
the trucks. The maximum stresses recorded during
both side-by-side trucks tests are summarized in
Table 5.8. A comparison of maximum stresses recorded
during the single truck static test in the middle lane
(PARK_2C.DAT) and the two trucks side-by-side
static test in the middle and right lanes (PARK_
5.DAT) is presented in Table 5.9.

5.5.3 Composite Action

As discussed in section 5.1.3, to determine if full
composite action is being developed between the

concrete deck and the steel girder, the neutral axis of
the composite section determined from field stress
measurements must be located above the position
indicated by AASHTO 2010 (2). From Table 5.9 the
stresses recorded in test PARK_5.DAT by CH_7
(bottom face of top flange) and CH_8 (bottom flange
cover plate) are 0.3 ksi and 2.7 ksi, respectively.
Figure 5.19 shows the position of the neutral axis of
the composite section using the stresses recorded in
static test PARK_5.DAT.

Using elastic section properties (linear stress-strain
diagram) and similar triangles (Figure 5.19) the posi-
tion of the neutral axis of the composite section is
determined:

2:7{0:3

23:72
~

2:7

N:A:

N:A:~
23:72|2:7

2:7{0:3ð Þ~26:69in

The position of the neutral axis of composite section
determined from the field measured stresses is above
the position indicated by AASHTO 2010 (2) (see
Figure 5.5), hence full-composite behavior is developed.
As previously explained in section 5.1.3, this difference
is not unusual since there are other factors (parapets
and overlay surface) that contribute in the load
distribution and composite action in turn influencing
the position of neutral axis.

Figure 5.13 Neutral axis of the composite section – from stresses recorded in PARK_4.DAT.
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5.6 Under Bridge Snooper Crawl Test in the Left Lane
(SNOOP.DAT)

Figure 5.20 presents the response of CH_2, CH_3,
CH_4, CH_6, CH_8, CH_10, CH_12 and CH_14 as the
under bridge snooper passed over the left lane in crawl
test SNOOP.DAT. This test was performed in order to
compare the results with those obtained from the single
truck crawl test in the left lane (CRL_1.DAT). As
expected, the response of the channels was higher in
SNOOP.DAT then CRL_1.DAT, as the under bridge
snooper weighs approximately 16,000 lbs more than the
test truck.

The greatest stress values were recorded in CH_4
and CH_6 for both crawl tests (CRL_1.DAT and
SNOOP.DAT). This was because the load was directly

Figure 5.14 Response of strain gages installed at midspan (2nd Span) – Crawl test: trucks side-by-side in the left and middle lanes.

TABLE 5.4
Comparison of Maximum Stresses – CRL_1.DAT and
CRL_3.DAT

Channel

CRL_1.DAT Max.

Stress (ksi)

CRL_3.DAT Max.

Stress (ksi)

CH_2 1.1 1.0

CH_4 2.1 2.6

CH_6 2.0 3.6

CH_8 0.9 3.0

CH_10 0.4 2.0

CH_12 0.1 0.8

CH_14 0.0 0.3
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above these channels. For the single truck test
(CRL_1.DAT), the maximum recorded values in CH_4
and CH_6 were approximately 2.3 ksi and 2.0 ksi
respectively; while, for the snooper test (SNOOP.DAT),
the maximum recorded values in these channels were
approximately 3.1 ksi and 2.9 ksi respectively. Although
the gross weight of the under bridge snooper was
approximately 16,000 lbs more than that of the test truck
(33% increase), due to a greater axle spacing of the
snooper, the load was more longitudinally distributed.

This resulted in moderately higher stresses than in the
first test (CRL_1.DAT). Also, it must be taken into
consideration that during the tests these vehicles did not
pass through the exact same transverse location. A
summary of stresses recorded by channels installed at
midspan in these two tests is presented in Table 5.10. As
presented in sections 4.1 and 4.2, the GVW for Truck
#63480 was 48,000 lbs while for the under bridge
snooper GVW was estimated at 64,000 lbs, resulting in
an approximate GVW ratio of 1.33.

Figure 5.15 Response of strain gages installed at midspan (2nd Span) – Static test: trucks side-by-side in the left and middle lanes.
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5.7 Composite Action Summary

As discussed in previous sections, composite action is
developed when two load carrying structural members,
such as a concrete deck system and the supporting steel
beams, are integrally connected and deflect as a single
unit. Stresses measured during the controlled load tests
were used to construct stress diagrams and calculate the
position of neutral axis of the composite section.
Table 5.11 summarizes the positions of the neutral axis
of the composite section during the controlled load
tests.

From Table 5.11 it is observed that the position of
the neutral axis of composite section determined from
the field measured stresses (stress diagrams) is located
above the neutral axis position indicated by AASHTO
2010 (2). This indicates full composite action behavior.
As stated, this difference is not unusual since AASHTO
2010 (2) does not take into consideration the influence
of the parapets and the overlay surface which all
contributes in the load distribution and composite
action in turn influencing the position of the neutral
axis of the composite section.

5.8 Load Distribution Summary

This section will reveal that the fire did not have any
negative effects on the steel superstructure by demon-
strating that a good load distribution between the
girders is present. Data collected during the controlled

TABLE 5.5
Maximum Stresses – Trucks Side-by-Side Tests in the Left and
Middle Lanes

Channel

CRL_3.DAT Max.

Stress (ksi)

PARK_3.DAT Max.

Stress (ksi)

CH_2 1.0 1.0

CH_3 0.5 0.4

CH_4 2.6 2.7

CH_6 3.6 3.6

CH_8 3.1 3.0

CH_10 2.1 2.0

CH_12 0.8 0.7

CH_14 0.3 0.2

TABLE 5.6
Maximum Stresses – Single Truck Tests in the Left Lane

Channel

PARK_1.DAT Max.

Stress (ksi)

PARK_3.DAT Max.

Stress (ksi)

CH_2 0.8 1.0

CH_3 0.3 0.4

CH_4 1.9 2.7

CH_6 2.3 3.6

CH_8 1.2 3.0

CH_10 0.5 2.0

CH_12 0.1 0.7

CH_14 0.0 0.2

Figure 5.16 Neutral axis of the composite section – from stresses recorded in PARK_3.DAT.
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load testing (static tests) will be used in the load
distribution assessment. Distribution load factors will
be determined according to AASHO 1965 (1) (the
specification used in the original design) and AASHTO
2010 (2) (current specification). These values will then
be compared to the distribution load factors obtained
from the stress measurements during the controlled
load tests (see Table 5.12 and Table 5.13).

5.8.1 Distribution Load Factors – AASHO 1965

Distribution of wheel loads is covered in Section 3 of
AASHO 1965 (1). For a bridge with two (2) or more
traffic lanes, the distribution load factor for bending
moment for interior longitudinal beams is calculated as
follows:

TABLE 5.7
Comparison of Maximum Stresses – CRL_2.DAT and
CRL_5.DAT

Channel

CRL_2.DAT Max.

Stress (ksi)

CRL_5.DAT Max.

Stress (ksi)

CH_2 0.2 0.2

CH_4 0.9 0.6

CH_6 1.9 1.6

CH_7 0.3 0.3

CH_8 2.4 2.8

CH_10 1.6 3.2

CH_12 0.6 2.6

CH_14 0.2 1.6

Figure 5.17 Response of strain gages installed at midspan (2nd Span) – Crawl test: trucks side-by-side in the middle and right
lanes.
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DF~
S

5:5
~

7’{4’’
5:5

~
7:33’
5:5

~1:33

Where:

S 5 distance in feet between outside and adjacent
interior stringers (S , 149)

For exterior longitudinal beams, the distribution
load factor for bending moment is determined as
follows:

DF~
S

4:0z0:25S
~

7:33’
4:0z0:25|7:33’

~1:26

Where:
S 5 distance in feet between outside and adjacent

interior stringers (69 , S , 149)
It is important to note that these distribution factors

(DF) are applied to wheel loads (one set of wheels –
front and rear). Thus, the distribution factors obtained

Figure 5.18 Response of strain gages installed at midspan (2nd Span) – Static test: trucks side-by-side in the middle and right
lanes.
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from AASHTO 2010 (2) and field measured stress
values need to be multiplied by two (2) when compared
to these values.

5.8.2 Distribution Load Factors – AASHTO 2010

The distribution factors for AASHTO 2010 (2) are
covered in Section 4: Structural Analysis and Eva-
luation. Distribution factors per lane for moment in the
interior longitudinal beams are determined according to
Table 4.6.2.2.2b-1 as follows:

Case I: One Design Lane Loaded

DF~0:06z
S

14

� �0:4

: S

L

� �0:3

: Kg

12:0:L:t3
s

� �0:1

Case II: Two or More Design Lanes Loaded

DF~0:075z
S

9:5

� �0:6

: S

L

� �0:2

: Kg

12:0:L:t3
s

� �0:1

Where:
S5 spacing of beams or webs – ft – (3.5 # S # 16.0)
L5 span of beam – ft – (20 # L # 240)
ts 5 depth of concrete slab – in – (4.5 # ts # 12.0 )
Kg 5 longitudinal stiffness parameter – in4 –

(10000# Kg # 7000000)
Also, for the above equations to apply for the

distribution load factors, the minimum number of
beams is four (4). All of the above conditions are met
by the I-465 bridges.

The longitudinal stiffness parameter Kg is deter-
mined as follows:

TABLE 5.9
Comparison of Maximum Stresses – PARK_2C.DAT and
PARK_5.DAT

Channel

PARK_2C.DAT Max.

Stress (ksi)

PARK_5.DAT Max.

Stress (ksi)

CH_2 0.2 0.1

CH_4 0.9 0.6

CH_6 1.9 1.6

CH_7 0.3 0.3

CH_8 2.4 2.7

CH_10 1.6 3.1

CH_12 0.6 2.5

CH_14 0.2 1.6

Figure 5.19 Neutral axis of the composite section – from stresses recorded in PARK_5.DAT.

TABLE 5.8
Maximum Stresses – Trucks Side-by-Side in the Middle and
Right Lanes

Channel

CRL_5.DAT Max.

Stress (ksi)

PARK_5.DAT Max.

Stress (ksi)

CH_2 0.2 0.1

CH_3 0.6 0.6

CH_4 1.6 1.6

CH_6 0.3 0.3

CH_8 2.8 2.7

CH_10 3.2 3.1

CH_12 2.6 2.5

CH_14 1.6 1.6
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Kg~n IzA:e2
g

� �

Where:

n5 modulus ratio;

n~
EB

ED

EB5 modulus of elasticity of beam material (ksi)

ED5 modulus of elasticity of deck material (ksi)
I5 moment of inertia of beam (in.4)

A5 area of beam (in.2)
eg5 distance between the centers of gravity of the

basic beam and deck (in.)
Determine the longitudinal stiffness parameter (Kg)

(see Figure 5.21):

TABLE 5.10
Stresses Recorded in Crawl Tests: SNOOP.DAT and
CRL_1.DAT

Channel

SNOOP.DAT

Max. Stress (ksi)

CRL_1.DAT

Max. Stress (ksi)

Ratio of

Stresses

CH_2 1.3 1.1 1.18

CH_3 0.7 0.4 1.75

CH_4 3.1 2.1 1.48

CH_6 2.9 2.0 1.45

CH_8 1.3 0.9 1.44

CH_10 0.6 0.4 1.50

CH_12 0.1 0.1 1.00

CH_14 0.0 0.0 1.00

Figure 5.20 Response of strain gages installed at midspan (2nd Span) – Crawl test: under bridge snooper in the left lane.
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Econcrete~1820
ffiffiffiffiffiffi
f ’c

p
~1820

ffiffiffiffiffiffiffiffiffi
3ksi
p

~3,152ksi

n~
Esteel

Econcrete

~
29,000ksi

3,152ksi
~9:2%9:00

Determine the moment of inertia of the beam (I):

A1~22:4in2

I1~2100in4

A2~0:5in|10in~5in2

A~A1zA2~22:4in2z5in2~27:4in2

I2~
bh3

12
~

10|0:53

12
~0:104in2

ycog~
y1A1zy2A2

A1zA2

~
0:5inz11:95inð Þ|22:4in2z0:25in|5in2

22:4in2z5in2
~10:23in

I~I1zA1d2
1zI2zA2d2

2

I~2100in4z22:4in2 0:5inz11:95in{10:23inð Þ2

z0:104in4z5in2 10:23in{0:25inð Þ2

I~2708:5in4

Determine the distance between the centers of gravity (eg):

Atotal{conc:deck~88in|7:5inz2|4in|1in~668in2

yconc:deck~

05inz23:9inz0:32inz3:75inð Þ| 88in|7:5inð Þz 0:5inz23:9in{0:68inz0:25inð Þ|8in2

668in2

yconc:deck~28:42in

eg~28:42in{10:23in~18:19in

Then:

Kg~90| 2708:5in4z27:4in2| 18:19inð Þ2
�h i

~105,971in4

TABLE 5.11
Neutral Axis Positions

Controlled Load Test

N.A. of Girder &

Cover Plate* (Only)

N.A. of Concrete

Deck* (Only)

N.A. of Composite Section

(AASHTO 2010)*

N.A. of Composite Section

(Stress Diagrams)*

PARK_1.DAT 10.230 28.420 23.470 28.170

PARK_2C.DAT 10.230 28.420 23.470 27.470

PARK_4.DAT 10.230 28.420 23.470 26.220

PARK_3.DAT 10.230 28.420 23.470 27.850

PARK_5.DAT 10.230 28.420 23.470 26.690

*N.A. 5 neutral axis.

NOTE: Distances are referenced from the bottom face of the cover plate – see Figure 5.5.

TABLE 5.12
Response of Strain Gages Installed at Midspan (2nd Span) – Static tests: Single Truck

Channel

(PARK_1.DAT) (PARK_2C.DAT) (PARK_4.DAT)

Max. Stress (ksi) Max. Stress (ksi) Max. Stress (ksi)

CH_2 0.8 0.2 0.0

CH_4 1.9 0.6 0.1

CH_6 2.3 1.5 0.3

CH_8 1.2 2.2 0.7

CH_10 0.5 1.7 1.8

CH_12 0.1 0.6 2.1

CH_14 0.0 0.3 1.3

TABLE 5.13
Response of Strain Gages Installed at Midspan (2nd Span) –
Static tests: Trucks Side-by-Side

Channel

(PARK_3.DAT) (PARK_5.DAT)

Max. Stress (ksi) Max. Stress (ksi)

CH_2 1.0 0.1

CH_4 2.7 0.6

CH_6 3.6 1.6

CH_8 3.0 2.7

CH_10 2.0 3.1

CH_12 0.7 2.5

CH_14 0.2 1.6
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Finally, the distribution factors (per lane) for
moment in interior longitudinal beams can be calculated:

Case I: One Design Lane Loaded

DF~0:06z
7:33

14

� �0:4

: 7:33

55:5

� �0:3

: 105,971

12:0:55:5:7:53

� �0:1

DF~0:06z 0:77:0:55:0:91)~0:45ð

Case II: Two or More Design Lanes Loaded

DF~0:075z
7:33

9:5

� �0:6

: 7:33

55:5

� �0:2

: 105,971

12:0:55:5:7:53

� �0:1

DF~0:075z 0:86:0:67:0:91ð Þ~0:6

The distribution factors (per lane) for moment in
exterior longitudinal beams are determined according to
Table 4.6.2.2.2d-1 as follows:

Case I: One Design Lane Loaded

DF - determined with Lever Rule (see Figure 5.22)

From Figure 5.22:

R|88in{
P

2
|88in{

P

2
|16in~0

R|88in~
P

2
|104in

R~0:59P

DF~0:59

Case II: Two or More Design Lanes Loaded

In this case the distribution factor is obtained from
the equation presented in Case II for interior long-
itudinal beam modified by the following factor:

0:77z
de

9:1

Where:

de 5 distance between the exterior web of exterior
girder to the face of traffic barrier (ft.) (de 550, see
Figure 5.22)

Then:

DF~ 0:77z
de

9:1

� �
|0:6~ 0:77z

0:42

9:1

� �
|0:6~0:49

5.8.3 Distribution Factors Determined from Stress
Measurements – Controlled Load Tests

In order to determine the distribution factors, the
section properties of the composite section need to be
determined first. Following is a summary, showing the
calculations for both cases: interior and exterior
beam.

Figure 5.21 Sketch for determination of the longitudinal stiffness parameter Kg.

Figure 5.22 Distribution load factor – exterior longitudinal
beam – Lever Rule.
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Neutral axis of the beam and cover plate:

Acvr{plate~10in|0:5in~5in2

Abeam24W76~22:4in2

Atotal~22:4in2z5in2~27:4in2

ybeam{cvrplate~
11:95inz0:5inð Þ|22:4in2z0:25in|5in2

27:4in2

~10:23in

Neutral axis of the concrete deck (includes the
haunch detail):

Atotal{conc:deck~88in|7:5inz2|4in|1in~668in2

yconc:deck~

0:5inz23:9inz0:32inz3:75inð Þ| 88in|7:5inð Þz 0:5inz23:9in{0:68inz0:25inð Þ|8in2

668in2

yconc:deck~28:42in

Neutral axis of the composite section:

Econcrete~1820
ffiffiffiffiffiffi
f ’c

p
~1820

ffiffiffiffiffiffiffiffiffi
3ksi
p

~3,152ksi

n~
Esteel

Econcrete

~
29,000ksi

3,152ksi
~9:2%9:00

ycomp: sec t~

27:4in2|10:23in
� �

z 7:5in|
88in

9

� �
|28:42in

27:4in2z7:5in|
88in

9

� �

~23:47in

Determine the moment of inertia (I) for the
composite section:

Icomp: sec t~I1zA1
:d2

1zI2zA2
:d2

2

Determine the moment of inertia of the beam and
cover plate (I1):

Abeam~22:4in2

Acvr:plate~0:5in|10in~5in2

Ibeam~2100in4

Icvr:plate~
b:h3

12
~

10:0:53

12
~0:104in2

I1~IbeamzAbeam
:d2

beamzIcvr:platezAcvr:plate
:d2

cvr:plate

I1~2100in4z22:4in2: 0:5inz11:95in{10:23inð Þ2z

0:104in2z5in2: 10:23in{0:25inð Þ2

I1~2708:5in4

A1~AbeamzAcvr:plate~22:4in2z5in2~27:4in2

Determine the moment of inertia of the concrete
deck (I2):

A2~Atotal{con:deck~668in2

yconc:deck~28:42in

I2~Iconc:deck~
b:h3

12
~

88in: 7:5inð Þ3

12
~3094in4

Then:

Icomp: sec t~I1zA1
:d2

1zI2zA2
:d2

2

Icomp: sec t~2708:5in4z27:4in2: 23:47in{10:23inð Þ2z

3094in4z668in2: 28:42in{23:47inð Þ2

Icomp: sec t~26,973in4

Neutral axis of the beam and cover plate:

Acvr{plate~10in|0:5in~5in2

Abeam24W76~22:4in2

Atotal~22:4in2z5in2~27:4in2

ybeam{cvrplate~
11:95inz0:5inð Þ|22:4in2z0:25in|5in2

27:4in2

~10:23in

Neutral axis of the concrete deck (includes the
haunch detail):

Atotal{conc:deck~65in|7:5inz2:4in:1in~495:5in2

yconc:deck~

65inz7:5inð Þ| 0:5inz23:9inz0:32inz3:75inð Þz8in2| 0:5z23:9in{0:68inz0:25inð Þ
495:5in2

yconc:deck~28:40in

Neutral axis of the composite section:

Econcrete~1820
ffiffiffiffiffiffi
f ’c

p
~1820

ffiffiffiffiffiffiffiffiffi
3ksi
p

~3,152ksi

n~
Esteel

Econcrete

~
29,000ksi

3,152ksi
~9:2%9:00

ycomp: sec t~

27:4in|10:23inð Þz 7:5in|
65in

9

� �
|28:40in

27:4in2z7:5in|
65in

9

� �

~22:30in

The moment of inertia of the beam and cover plate
(I1) was determined previously:

I1~2708:5in4

A1~AbeamzAcvr:plate~22:4in2z5in2~27:4in2

Determine the moment of inertia of the concrete
deck (I2):
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A2~Atotal{con:deck~495:5in2

yconc:deck~28:40in

I2~Iconc:deck~
b:h3

12
~

65in: 7:5inð Þ3

12
~2285in4

Determine the moment of inertia (I) for the
composite section:

Icomp: sec t~I1zA1
:d2

1zI2zA2
:d2

2

Icomp: sec t~2708:5in4z27:4in2: 22:30in{10:23inð Þ2z

2285in4z495:5in2: 28:40in{22:30inð Þ2

Icomp: sec t~27,423in4

Now that the section properties of the composite
section are known, the moments can be determined
from the stresses recorded during the controlled
load tests. Table 5.14 and Table 5.15 summarize the

section properties along with the moments calculated
from the stresses recorded during the controlled load
tests.

The data presented in Figure 5.25, show the
moments determined from measured stresses during
the single truck controlled load tests (see Table 5.15 for
raw values).

The data presented in Figure 5.26 show how the load
was distributed among the girders during the single truck
controlled load tests. When the test truck is parked in the
left lane, the maximum percentage of the total load
received by an interior girder, in this case Beam #14 -
CH_6, is 34% (DF 5 0.34). The maximum percentage of
the total load received by the exterior girder, in this case
Beam #12 – CH_2, is only 12 % (DF 5 0.12). A
comparison of these values with those obtained from
AASHO 1965 (1) and AASHTO 2010 (2) (see sections
5.8.1 and 5.8.2) shows the specification values being
higher. This is expected since the load is also distributed
longitudinally, while the specifications do not take this
into consideration, offering a more conservative esti-
mate of the portion of the load distributed to one of the

TABLE 5.14
Stresses Measured during the Static Controlled Load Tests and Section Properties of the Composite Section

Channel

Max. Stresses Measured during the Static (Parked)

Controlled Load Tests (ksi)

Section Properties

(Composite Section)*

PARK_1.DAT PARK_2C.DAT PARK_4.DAT PARK_3.DAT PARK_5.DAT I (in4) c (in)

CH_2 0.8 0.2 0.0 1.0 0.1 27,423 22.30

CH_4 1.9 0.6 0.1 2.7 0.6 26,973 23.47

CH_6 2.3 1.5 0.3 3.6 1.6 26,973 23.47

CH_8 1.2 2.2 0.7 3.0 2.7 26,973 23.47

CH_10 0.5 1.7 1.8 2.0 3.1 26,973 23.47

CH_12 0.1 0.6 2.1 0.7 2.5 26,973 23.47

CH_14 0.0 0.3 1.3 0.2 1.6 26,973 23.47

*I and c were determined for the composite section (see Figure 5.23 and Figure 5.24).

Figure 5.23 Section properties – composite section (interior beam case).
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TABLE 5.15
Moments Determined from the Stresses Measured during the Static Controlled Load Tests

Channel

Moments determined from the stresses measured during the static controlled load tests(kip-ft)*

PARK_1.DAT PARK_2C.DAT PARK_4.DAT PARK_3.DAT PARK_5.DAT

CH_2 82.00 20.5 0.0 102.5 10.2

CH_4 182.0 57.5 9.6 258.6 57.5

CH_6 220.3 143.7 28.7 344.8 153.2

CH_8 114.9 210.7 67.0 287.3 258.6

CH_10 47.9 162.8 172.4 191.5 296.9

CH_12 9.6 57.5 201.1 67.0 239.4

CH_14 0.0 28.7 124.5 19.2 153.2

*Moment was determined from the following relation: s~
M|c

I
.

Figure 5.25 Moments determined from stresses recorded during single truck static tests.

Figure 5.24 Section properties – composite section (exterior beam case).
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girders. It is also worth noting that the AASHTO
equations for distribution factor need to account for
minor skews, many types of girders, and different
section properties (i.e., estimated vs. actual effective
width). Hence, the agreement between the calculated
and measured distribution factors is acceptable.

An average maximum distribution factor of 33%
(DF 5 0.33) was determined from the controlled load
tests (see Figure 5.26) for the interior beam with one
lane loaded. For the exterior girder, a distribution
factor of 0.63 was determined according to AASHO
1965 (1) (1.26/2 5 0.63, see section 5.8.1) and 0.59
according to AASHTO 2010 (2) using the lever rule
(see section 5.8.2 ). From the measured stresses during
the single truck test in the left lane, a distribution factor
of 12% (DF 5 0.12) was determined for the exterior
girder (Beam#12). However, during the controlled load
test, the position of the truck was 8.75 feet away from
the concrete parapet (see APPENDIX A–Drawing#9).
Conversely, while determining the distribution factor
according to AASHTO 2010 (2) for the exterior girder
using the lever rule, the worst case scenario was chosen
(5 inches away from the concrete parapet, directly
above the exterior girder, see Figure 5.22). This is done
in design for the extreme situations that may occur
during the life of the bridge. Using the lever rule,
according to AASHTO 2010 (2), for the exterior beam
load distribution factor and considering the truck
positioned 8.75 feet away from the concrete barrier
(as in PARK_1.DAT) the distribution factor calculated
this way would be DF 5 0.17 or 17%. This would be
closer to what was determined from the field measure-
ments (DF 5 0.12 or 12%).

The data presented in Figure 5.27, show the
moments determined from measured stresses during
the side-by-side trucks controlled load tests (see
Table 5.15 for raw values). The graphs presented in
Figure 5.28 show how the load was distributed among
the girders during the side-by-side trucks controlled
load tests.

Comparing the graphs in Figure 5.28, for single
truck tests and side-by-side truck tests (Figure 5.25 and
Figure 5.27), and using the moments summarized in
Table 5.15, the load effects can be verified using
superposition. For example the moments produced by
the single truck in left lane (PARK_1.DAT) added with
the moments produced by the single truck in the middle
lane (PARK_2C.DAT) should be the same as the
moments produced by the side-by-side trucks in the left
and middle lane (PARK_3.DAT). Table 5.16 sum-
marizes the superposition of loads for all the static
controlled load tests.

From Table 5.16 it is observed that the moments
from the side-by-side tests are very close to those
obtained from superposition of single truck tests. There
are mainly two (2) reasons for the small differences
outlined in column eight (8) of the table. First, there are
small differences between the test trucks like: geometry
(axle, wheel spacing) and weight (gross weight, axle
weight). Figure 4.2 and Figure 4.3 from Chapter 4 are
diagrams of the tests trucks and outline these geometric
and weight differences. This is important since only
truck #63480 was used in the single truck tests. Second,
the transverse positions of the truck(s) during the
parked tests were not identical. For example, during the
single truck test in the left lane (PARK_1.DAT) the

Figure 5.26 Load distribution between girders – single truck static tests.
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Figure 5.27 Moments determined from stresses recorded during side-by-side trucks static tests.

Figure 5.28 Load distribution between girders – trucks side-by-side static tests.

TABLE 5.16
Superposition of Loads Summary – Controlled Load Static Tests

Channel

Moments - single

truck tests (kip-ft)

Moments determined

from the superposition(kip-ft)

Moments - side-by-side

trucks tests(kip-ft) Difference (kip-ft)

PARK_

1.DAT

PARK_2C.

DAT

PARK_

4.DAT

PARK_1.DAT

& PARK_

2C.DAT

PARK_2

C.DAT

& PARK_4.DAT

PARK_

3. DAT

PARK_

5. DAT

Col. 4

& Col.

6

Col. 5

& Col. 7

1 2 3 4 5 6 7 8

CH_2 82.00 20.5 0.0 102.5 20.5 102.5 10.2 0 10.3

CH_4 182.0 57.5 9.6 239.5 67.1 258.6 57.5 19.1 9.6

CH_6 220.3 143.7 28.7 364.0 172.4 344.8 153.2 19.2 19.2

CH_8 114.9 210.7 67.0 325.7 277.7 287.3 258.6 38.4 19.1

CH_10 47.9 162.8 172.4 210.7 335.2 191.5 296.9 19.2 38.3

CH_12 9.6 57.5 201.1 67.1 258.6 67.0 239.4 0.1 19.2

CH_14 0.0 28.7 124.5 28.7 153.2 19.2 153.2 9.5 0
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distance from the concrete parapet to test truck was
8.75 feet (see drawing #9 – Appendix A). During the
side-by-side trucks test in the left and middle lanes
(PARK_3.DAT), the distance from the concrete para-
pet to test truck in the left lane was only 7.00 feet (see
drawing #11 – Appendix A). This can explain why the
distribution is not exactly the same.

In conclusion, the steel superstructure of the bridge
was not negatively affected by fire since composite
action between deck and girders is present (see section
5.7) and there is excellent load distribution among the
girders.

5.9 Response of Channels near Core Hole Locations

A total of four (4) strain gages were placed near
locations where cores were cut for metallurgical
investigation to monitor the stress levels during the
long-term monitoring and controlled load testing. At
these regions, the condition at the cored hole could be
classified as an AASHTO Category D fatigue detail
(CAFL 5 7.0 ksi). Prior to cutting the cores the fatigue
detail category at these locations was most likely
Category B (CAFL 5 16.0 ksi). Thus, the fatigue
resistance at this location has been significantly
reduced. However, this reduction in fatigue category
may not be significant if the actual in-service live load
stress ranges at these locations are low.

This section will be focused on the three (3) channels
(CH_16, CH_17 and CH_18 - see Appendix A,
Drawing #1 and Drawing# 4) that were installed near
core holes on the eastbound bridge. Only one (1) strain
gage (CH_15) was installed on the westbound bridge
which will be covered in Chapter 6. Since there was no
controlled load testing performed on the westbound
bridge the response of this channel would not be valid.
As-built instrumentation drawings that contain the
specific location of all strain gages can be found in
Appendix A. The response (maximum stress, minimum
stress and stress range) of channels CH_16, CH_17 and
CH_18 during the controlled load tests that were

discussed in sections 5.1 through 0 are summarized in
Table 5.17.

The maximum stress range observed for these three
(3) channels (CH_16, CH_17 and CH_18) during the
controlled load tests was only 3.8 ksi (CH_18 in test
CRL_3.DAT). This is well below Category D fatigue
detail (CAFL 5 7 ksi). Figure 5.29 shows the response
of these three (3) channels as both test trucks passed
side-by-side over the bridge in the left and middle lane
in crawl test CRL_3.DAT. Further discussion on the
fatigue resistance of these locations will follow in
Chapter 6.

5.10 Controlled Load Testing – Summary

The response of the bridge during the controlled load
tests was typical of a multi-span continuous composite
steel bridge with good load distribution among the
girders. The stress range recorded during the controlled
load testing was well below the Category D fatigue
detail (CAFL 5 7 ksi) at the locations where coupons
(cores) were retrieved for metallurgical investigation.
Table 5.18 summarizes the stress ranges recorded in all
the channels during the crawl tests.

6. LONG-TERM MONITORING

The long-term monitoring of the bridges was
conducted from January 15, 2010 through May 04,
2010, for approximately 109 days. Long-term monitor-
ing included all eighteen (18) strain gages originally
installed. The monitoring consisted of collecting stress-
range histograms and triggered time-history data.
Table 6.1 shows a summary of the channels and
monitoring period for each strain gage. The table also
indicates whether triggered time history and/or stress-
range histograms were developed.

Triggered time history data along with the stress-
range histograms recorded during the monitoring phase
gave an estimate of the magnitude of the stresses caused
by the normal daily traffic. Stresses of higher magni-

TABLE 5.17
Response of CH_16, CH_17 and CH_18 during the Controlled Load Tests

Controlled Load Test

CH_16 (ksi) CH_17 (ksi) CH_18 (ksi)

smax smin Ds smax smin Ds smax smin Ds

PARK_1.DAT 20.4 2 2 20.2 2 2 0.0 2 2

CRL_1.DAT +0.2 21.0 1.2 +0.1 20.5 0.6 +0.2 20.9 1.1

PARK_2C.DAT 20.2 2 2 20.3 2 2 20.1 2 2

CRL_2.DAT +0.2 20.9 1.1 +0.5 21.0 1.5 +1.3 21.8 3.1

PARK_3.DAT 20.6 2 2 20.4 2 2 0.0 2 2

CRL_3.DAT +0.3 21.8 2.1 +0.4 21.5 1.9 +1.2 22.6 3.8

PARK_4.DAT 0.0 2 2 0.0 2 2 +0.2 2 2

CRL_4.DAT 0.0 20.1 0.1 +0.1 20.3 0.4 +0.2 20.5 0.7

PARK_5.DAT 20.2 2 2 20.3 2 2 0.0 2 2

CRL_5.DAT +0.2 20.8 1.0 +0.6 21.2 1.8 +1.5 22.2 3.7
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tude than those encountered during the controlled load
testing (see section 5.10) were observed. This is not an
uncommon observation since the normal daily traffic in
that area includes many heavy trucks that cross the

bridges individually, side-by-side, or in tandem. These
truck configurations are easily capable of producing
larger stress cycles than those measured during the
controlled load testing.

TABLE 5.18
Stresses in all Channels during the Single Truck and Side-by-Side Trucks Crawl Tests

Channel

Single truck

in left lane

(CRL_1.DAT)

Single truck

in middle lane

(CRL_2C.DAT)

Single truck

in right lane

(CRL_4.DAT)

Side-by-side trucks in

left and middle lanes

(CRL_3.DAT)

Side-by-side

trucks in middle and

right lanes (CRL_5.DAT)

smi

(ksi)

smax

(ksi)

Ds

(ksi)

smin

(ksi)

smax

(ksi)

Ds

(ksi)

smin

(ksi)

smax

(ksi)

Ds

(ksi)

smin

(ksi)

smax

(ksi)

Ds

(ksi)

smin

(ksi)

smax

(ksi)

Ds

(ksi)

CH_1 20.1 +0.2 0.3 0.0 +0.1 0.1 0.0 0.0 0.0 20.1 +0.2 0.3 0.0 +0.1 0.1

CH_2 20.2 +1.0 1.2 20.1 +0.2 0.3 0.0 0.0 0.0 20.3 +1.0 1.3 20.1 +0.2 0.3

CH_3 20.1 +0.4 0.5 0.0 +0.1 0.1 0.0 0.0 0.0 0.0 +0.5 0.5 0.0 0.0 0.0

CH_4 20.3 +2.2 2.5 20.2 +0.8 1.0 0.0 0.0 0.0 20.5 +2.6 3.1 20.3 +0.6 0.9

CH_5 20.1 +0.3 0.4 0.0 +0.1 0.1 0.0 0.0 0.0 20.1 +0.4 0.5 0.0 +0.1 0.1

CH_6 20.3 +2.0 2.3 20.3 +1.9 2.2 20.1 +0.2 0.3 20.6 +3.6 4.2 20.4 +1.6 2.0

CH_7 0.0 +0.1 0.1 0.0 +0.3 0.3 0.0 0.0 0.0 0.0 +0.3 0.3 0.0 +0.3 0.3

CH_8 20.3 +0.9 1.2 20.4 +2.4 2.8 20.2 +0.6 0.8 20.6 +3.0 3.6 20.5 +2.8 3.3

CH_9 0.0 +0.1 0.1 0.0 +0.1 0.1 0.0 +0.1 0.1 0.0 +0.2 0.2 20.1 +0.3 0.4

CH_10 20.2 +0.4 0.6 20.3 +1.5 1.8 20.3 +1.4 1.7 20.5 +2.1 2.6 20.6 +3.2 3.8

CH_11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +0.2 0.2 0.0 0.0 0.0 0.0 +0.3 0.3

CH_12 0.0 +0.3 0.3 20.2 +0.6 0.8 20.3 +2.0 2.3 20.2 +0.8 1.0 20.5 +2.6 3.1

CH_13 0.0 +0.0 0.0 0.0 0.0 0.0 0.0 +0.1 0.1 0.0 0.0 0.0 0.0 +0.1 0.1

CH_14 20.1 +0.2 0.3 20.1 +0.2 0.3 20.3 +1.5 1.8 20.1 +0.3 0.4 20.4 +1.6 2.0

CH_15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

CH_16 +0.2 21.0 1.2 20.9 0.2 1.1 0.0 0.0 0.0 21.8 +0.3 2.1 20.8 +0.2 1.0

CH_17 0.1 20.5 0.6 21.0 +0.5 1.5 20.3 +0.1 0.4 21.5 +0.4 1.9 21.2 +0.6 1.8

CH_18 +0.1 21.0 1.1 21.8 1.3 3.1 20.5 +0.1 0.6 22.6 +1.2 4.2 22.2 +1.5 3.7

Figure 5.29 Response of CH_16, CH_17 and CH_18 - Crawl test: trucks side-by-side in left and middle lanes.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2012/1240



6.1 Triggered Time-History Data

6.1.1 Background

The duration of the trigger event and all trigger stress
levels were established by the Research Team based on
a preliminary review of data collected over the first
month of monitoring (December 17, 2009 through
January 15, 2010). Recording of the data in all channels
was triggered when a predefined stress value was
measured in CH_4, CH_8 or CH_12. Data was then
recorded for a defined period of time before and after
the trigger event. These channels were placed on the
bottom flanges of beams located under the left, middle
and right lanes respectively. For every trigger event,
three (3) seconds of data prior to the event and three (3)
seconds of data after the event were recorded. This was
done to ensure the entire loading event was captured.
All the trigger channels (CH_4, CH_8 and CH_12)
were located on the eastbound bridge. As-built
instrumentation drawings that contain the specific
location of all strain gages can be found in Appendix
A. Table 6.2 explains the trigger channels and levels
used for data collection.

6.1.2 Typical Trigger Event

A typical trigger event is shown in Figure 6.1. The
figure presents measured stresses from strain gages
located at midspan of the girders beneath the middle
and right lanes of mainline I-465. During this event two
(2) semi tractor trailers were crossing the eastbound
bridge side-by-side in the middle and right lanes. Using
the response from strain gages installed on the top
flange of the girders (blue and green traces), the type
(number of axles) and number of vehicle(s) can be
identified. Another typical trigger event is shown in
Figure 6.2. This figure presents measured stresses from
strain gages located at midspan of a girder beneath the
middle lane as a semi tractor trailer was crossing
the eastbound bridge in the middle lane. Most of the
triggered events recorded were single semi tractor
trailers or single tandem-axle (or tri-axle) trucks that
were crossing the bridge in the right or middle lane.

6.1.3 Maximum Trigger Events

MATLAB routines were created to search through
the triggered data files and identify the maximum stress
ranges for channels of interest. Table 6.3 summarizes
these findings for the channels of interest located on
the eastbound bridge. Figure 6.3 shows the maximum
stress range event recorded by CH_2 on February 6,
2010. This event occurred while a tandem-axle truck
crossed the bridge in the left lane. Plots of the
maximum stress range events from triggered data for
the remaining channels presented in Table 6.3 can be
found in Appendix D.

6.2 Stress-Range Histograms

6.2.1 Stresses in Girder Bottom Flange Cover Plate at
Midspan – Fatigue Life Determination

Seven (7) strain gages, CH_2 through CH_14 (even
channels labels), were installed on the bottom flange
cover plate of Beams #12 through #18 at the location
of maximum moment (see Appendix A for as-built
instrumentation plans). The detail category for these
locations can be classified as Category B (CAFL 5 16
ksi) per the AASHTO Specification.

Throughout the duration of monitoring no stress
range cycles greater than the Category B CAFL (16 ksi)

TABLE 6.2
Trigger Channels and the Corresponding Trigger Stress Levels

Trigger Channel Lane

Trigger Stress

Level(ksi)

CH_4 Left 1.75

CH_8 Middle 2.5

CH_12 Right 2.5

TABLE 6.1
Summary of the Channels Included in the Long-Term Monitoring

Channel

Number

Monitoring

Period

(Days) COMMENTS

CH_1 108.51 Triggered Time History

CH_2 108.51 Triggered Time History / Stress-range

histograms

CH_3 108.51 Triggered Time History

CH_4 108.51 Triggered Time History / Stress-range

histograms

CH_5 108.51 Triggered Time History

CH_6 108.51 Triggered Time History / Stress-range

histograms

CH_7 108.51 Triggered Time History

CH_8 108.51 Triggered Time History / Stress-range

histograms

CH_9 108.51 Triggered Time History

CH_10 108.51 Triggered Time History / Stress-range

histograms

CH_11 108.51 Triggered Time History

CH_12 108.51 Triggered Time History / Stress-range

histograms

CH_13 108.51 Triggered Time History

CH_14 108.51 Triggered Time History / Stress-range

histograms

CH_15 108.51 Triggered Time History / Stress-range

histograms

CH_16 108.51 Triggered Time History / Stress-range

histograms

CH_17 108.51 Triggered Time History / Stress-range

histograms

CH_18 108.51 Triggered Time History / Stress-range

histograms

41Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2012/12



Figure 6.2 Typical trigger event: Semi tractor trailer in the middle lane.

Figure 6.1 Typical trigger event: Two semi tractor trailers side-by-side in the middle and right lanes.
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were measured at any of the instrumented locations.
The maximum stress range measured was 6.8 ksi at
CH_8, which was installed on Beam # 15. Table 6.4
shows the stress-range histogram for the channels
installed on the bottom flange cover plate of the main
girders at midspan. This data was collected over the
period from January 15, 2010 to May 4, 2010.

A summary of the magnitude of the maximum stress
range, effective stress range, number of cycles measured
per day, and the estimated remaining fatigue life for the
details is presented in Table 6.5. As can be seen from
the table, the fatigue life calculations indicate an infinite
remaining life for all seven (7) instrumented bottom
flange cover plate locations. Calculations on how the

remaining fatigue life was determined in Table 6.5 can
be found in Appendix B.

6.2.2 Stresses Near Core Holes Locations – Fatigue Life
Determination

Four (4) strain gages, CH_15 through CH_18,
were installed near core holes locations to monitor
the stresses. Most of the strain gages were installed
on the eastbound bridge on Beams #14 and #15.
Only one channel (CH_15) was placed on the
westbound bridge on the exterior girder (Beam
#11). As built instrumentation plans can be found
in Appendix A. The detail category for these

Figure 6.3 Maximum stress range recorded in CH_2 from triggered data.

TABLE 6.3
Maximum Stress Ranges Determined from Triggered Data Files

Channel Truck(s) Type Truck(s) Location Stress range (ksi) Date / Time

CH_2 Tandem-axle truck Left Lane 1.7 02/06/2010 2:45 AM

CH_4 Two tractor-semi trailers Left and Middle Lanes – side-by-side 2.9 01/22/2010 1:05 PM

CH_6 Tractor-semi trailer Middle Lane 4.7 02/26/2010 12:46 AM

CH_8 Tractor-semi trailer Middle Lane 6.1 02/26/2010 12:46 AM

CH_10 Tractor-semi trailer Right Lane 5.2 04/02/2010 1:13 PM

CH_12 Tractor-semi trailer Right Lane 5.5 04/05/2010 04:38 PM

CH_14 Tractor-semi trailer Right Lane 4.8 04/05/2010 4:38 PM

CH_16 Tractor-semi trailer Middle Lane 2.3 02/26/2010 12:46 AM

CH_17 Tractor-semi trailer Middle Lane 3.7 03/08/2010 8:47 AM

CH_18 Tractor-semi trailer Middle Lane 6.9 03/08/2010 8:47 AM
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locations can be classified as Category D (CAFL 5 7
ksi) per the AASHTO Specification. No stress range
cycles greater than the Category D CAFL (7 ksi) for
this detail were measured at any of the four
instrumented locations. The maximum stress range
measured was 6.8 ksi by CH_18, which was installed

on Beam #15. Table 6.6 shows the stress–range
histogram for the channels mentioned above. This
data was collected over the period from January 15,
2010 to May 4, 2010.

A summary of the maximum stress range, effective
stress range, number of cycles measured per day, and

TABLE 6.5
Summary of Fatigue Life Calculations for CH_2, CH_4, CH_6, CH_8, CH_10, CH_12 and CH_14

Channel

Fatigue Life Calculations Summary

Srmax

(ksi)

Cycles .

CAFL
Sreff

1

(ksi)

Cycles /

Day2

Monitoring

Period (Days)

Remaining

Life (Years)3

Detail

Category

Location 2nd Span

(Midspan)# %

CH_2 2.75 0 0 0.79 647 108.51 Infinite B Bottom Flange

CP Beam #12

EB Bridge

CH_4 3.25 0 0 0.79 1097 108.51 Infinite B Bottom Flange

CP Beam #13

EB Bridge

CH_6 5.25 0 0 1.13 980 108.51 Infinite B Bottom Flange

CP Beam #14

EB Bridge

CH_8 6.75 0 0 1.42 2025 108.51 Infinite B Bottom Flange

CP Beam #15

EB Bridge

CH_10 5.25 0 0 1.33 2553 108.51 Infinite B Bottom Flange

CP Beam #16

EB Bridge

CH_12 5.75 0 0 1.36 1990 108.51 Infinite B Bottom Flange

CP Beam #17

EB Bridge

CH_14 4.75 0 0 1.14 2525 108.51 Infinite B Bottom Flange

CP Beam #18

EB Bridge

NOTES:

1. The effective stress range calculations ignore cycles less than 0.5 ksi.

2. The number of cycles per day were estimated for vehicles over 20 kips, using the stresses recorded during the controlled load tests (see

Table 5.12) and number of cycles/bin size (see Table 6.4).

3. The remaining fatigue life calculations are from 2010 forward and assume current traffic represents past traffic.

TABLE 6.4
Stress-Range Histograms for CH_2, CH_4, CH_6, CH_8, CH_10, CH_12 and CH_14 from 01/15/2010 to 05/04/2010

Stress Range Bin Size (ksi) Number of Cycles /Channel/ Bin Size 01/15/2010 – 05/04/2010

Srmin Srmax Sravg CH_2 CH_4 CH_6 CH_8 CH_10 CH_12 CH_14

0.25 0.5 0.375 67945 497436 895209 1138643 1248915 1228375 564581

0.5 1.0 0.75 2202 116046 154368 282005 328669 287110 168743

1.0 1.5 1.25 74 2176 80398 114720 132045 115770 75194

1.5 2.0 1.75 2 569 24047 41937 111411 46458 27578

2.0 2.5 2.25 1 235 1378 48356 28326 45343 1578

2.5 3.0 2.75 1 18 466 13333 3462 6560 811

3.0 3.5 3.25 0 3 73 884 1402 808 115

3.5 4.0 3.75 0 0 21 303 269 792 15

4.0 4.5 4.25 0 0 1 117 59 186 3

4.5 5.0 4.75 0 0 1 16 17 30 1

5.0 5.5 5.25 0 0 2 15 4 8 0

5.5 6.0 5.75 0 0 0 10 0 1 0

6.0 6.5 6.25 0 0 0 1 0 0 0

6.5 7.0 6.75 0 0 0 1 0 0 0

7.0 7.5 7.25 0 0 0 0 0 0 0
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the estimated remaining fatigue life for the details is
presented in Table 6.7. As can be seen from the table,
the fatigue life calculations indicate an infinite remain-
ing life for all four (4) details. Calculations on how the
remaining fatigue life was determined in Table 6.7 can
be found in Appendix B.

7. SUMMARY AND CONCLUSION

The following section provides a summary of the
project and the results of the controlled load testing and

long-term monitoring conducted on the I-465 Bridges
in Indianapolis, Indiana.

Laboratory Testing

1. Immediately after the accident, samples of the structural

steel (from the web and cover plate of the girders) and

HS bolts were removed from both bridges and sent to

independent testing laboratories. A set of samples taken

from an area protected by the embankment on the

westbound bridge were used as control data set.

TABLE 6.7
Summary of Fatigue Life Calculations for CH_15, CH_16, CH_17 and CH_18

Channel

Fatigue Life Calculation Summary

Srmax

(ksi)

Cycles .

CAFL
Sreff

(ksi)

Cycles /

Day

Monitoring

Period (Days)

Remaining

Life (Years)3

Detail

Category Location 2nd Span# %

CH_15 2.75 0 0 1.12 27 108.51 Infinite D Bottom Flange CP Beam #11

69-30 E of Bent #2 WB Bridge

CH_16 3.25 0 0 0.81 1405 108.51 Infinite D Bottom Flange CP Beam #14

59-100 W of Bent #3

EB Bridge

CH_17 5.25 0 0 1.12 2950 108.51 Infinite D Bottom Flange CP Beam #15

69-30 W of Bent #3

EB Bridge

CH_18 6.75 0 0 1.61 1764 108.51 Infinite D Bottom Flange CP Beam #15

79-90 W of Bent #3

EB Bridge

NOTES:

1. The effective stress range calculations ignore cycles less than 0.5 ksi.

2. The number of cycles per day were estimated for vehicles over 20 kips, using the stresses recorded during the controlled load tests (see

Table 5.17) and number of cycles/bin size (see Table 6.6).

3. The remaining fatigue life calculations are from 2010 forward and assume current traffic represents past traffic.

TABLE 6.6
Stress-Range Histograms for CH_15, CH_16, CH_17 and CH_18

Stress Range Bin Size (ksi) Number of Cycles/Channel/Bin Size

Srmin Srmax Sravg CH_15 CH_16 CH_17 CH_18

0.25 0.5 0.375 2591 182296 422341 1545558

0.5 1.0 0.75 266 141812 200135 398837

1.0 1.5 1.25 15 10208 82970 82523

1.5 2.0 1.75 9 454 35996 85742

2.0 2.5 2.25 8 17 796 42954

2.5 3.0 2.75 4 1 168 39753

3.0 3.5 3.25 2 1 16 20533

3.5 4.0 3.75 0 0 1 1691

4.0 4.5 4.25 0 0 0 299

4.5 5.0 4.75 0 0 0 233

5.0 5.5 5.25 0 0 0 117

5.5 6.0 5.75 0 0 0 32

6.0 6.5 6.25 0 0 0 14

6.5 7.0 6.75 0 0 0 6

7.0 7.5 7.25 0 0 0 0
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2. Based on the hardness test results it is the opinion of the
Purdue Research Team that the fire did not have any
effect on the ultimate strength (Fu) of the structural steel
in the bridges.

3. Charpy V-notch impact tests were performed on CVN
specimens obtained from the web and cover plate cores
samples. The notch, for the web CVN specimens, was
oriented transverse to the longitudinal axis of the girder.
For the cover plate CVN specimens, the notch was
oriented parallel to the longitudinal axis (provides a
conservative lower bound of the longitudinal mechanical
properties). Based on the measured data and the
orientation of the CVN specimens, it is the opinion of
the Purdue Research Team that the CVN impact energy
data are adequate for these bridges.

4. A total of eight (8) bolts and eight (8) nuts were
removed from various web and flange splices for
hardness, proof load and wedge tension testing.
Considering there was no physical damage/evidence of
fire on the bolts (i.e. no heat or damaged paint) and
based on the test results, it is the opinion of Purdue
Research Team that there was no measurable fire
damage to the bolts. Additionally the hardness test
results of the nuts, also suggest the fire did not have
negative effect on the integrity of these nuts.

Instrumentation Plan

1. Instrumentation consisted of eighteen (18) uniaxial
resistance-type strain gages installed on the two bridges:
seventeen (17) strain gages were installed on the east-
bound structure and

2. The primary intent of the monitoring was to capture live
load stress ranges in predetermined areas of interest:
location of maximum moment as well as the locations
where core samples were removed for metallurgical
testing.

Controlled Load Testing

1. The results of the controlled load tests showed good load
distribution between the girders. The maximum response in
the instrumented girders was observed when the test truck
was directly located over the instrumented detail, as expected.

2. The response of the bridge was typical of a multi-span
continuous composite steel bridge. The concrete deck and
girders behave compositely, as designed.

Long-Term Monitoring

1. The maximum stress range cycles observed during the
remote long-term monitoring program were all below the
CAFL of instrumented details.

2. Infinite fatigue life was estimated for all the instrumented
details
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