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Abstract 

Stormwater from roadways could have negative effects on the environment and aquatic 

ecosystems. Typical highway runoff pollutants include solids; heavy metals, particularly 

cadmium, copper, and zinc; petroleum hydrocarbons; gasoline constituents; PAHs (polyaromatic 

hydrocarbons); oxygen demanding compounds measured as COD (chemical oxygen demand) 

and BOD (biochemical oxygen demand); and road salts. Roadway runoff falls under the 

legislation of the Clean Water Act (CWA) via the National Pollutant Discharge Elimination 

System (NPDES). CWA regulates discharge of nonpoint source pollutants, such as roadway 

runoff, by issuing permits to public entities which manage Municipal Separate Storm Sewer 

Systems (MS4s). Part of the Nebraska Department of Roads (NDOR) permitting requirement is 

to create a design guide for Best Management Practices (BMPs) tailored to remediate roadway 

runoff in Nebraska. 

The objectives of volume I of this research were to characterize the pollutants in roadway 

runoff and determine the effectiveness of the existing stormwater BMPs at the study site. To 

accomplish these objectives, eleven rainfall events were sampled from November 2008 through 

November 2010.  

First flush and composite highway runoff samples were analyzed for heavy metals, 

anions, nutrients, particulates, BOD, COD, VOCs, and SVOCs. In addition to the concentrations, 

event loads were calculated using the hydrologic information from the study site. The results 

were compared to the Nebraska standards for water quality to establish which contaminants 

could have a negative impact on the environment. Additionally, an assessment of the 

effectiveness of the existing detention basin was completed, using the pollutant loads from the 

different outlet pipes. 
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Heavy metals, especially copper and zinc, total suspended solids (TSS), total dissolved 

solids (TDS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were 

found to be the primary contaminants from the highway runoff. The current detention basin 

seems to be somewhat effective to reduce pollutant loads from small rainfall events. However, if 

pollutant reduction for all type of rainfall events is required, the basin should be modified into an 

extended detention basin which would provide better removal efficiency. 

The objective of volume II was to fulfill the NDOR permitting requirement of creating a 

design guide for BMPs to remediate roadway runoff in Nebraska. BMPs which were most 

applicable to treating roadway runoff were those which removed 80% of the total solid load in 

the runoff, reduced metal concentrations to below acute toxicity levels, had low maintenance 

burden, were cost effective, did not pose a safety hazard to motorists, could be implemented 

within the right-of-way, did not negatively impact the road subgrade, and were aesthetically 

pleasing. The BMPs which best fit these criteria were vegetated filter strips, vegetated swales, 

bioretention, sand filters, and horizontal filter trenches. In this study fact sheets and design 

guides were compiled for each of these BMPs. The fact sheet provides background on the BMP 

including cost considerations, siting constraints, and predicted maintenance requirements. The 

design guide provides the process for sizing the BMP, design criteria the BMP must meet, and a 

design example which goes through the design process for a hypothetical application. 
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Chapter 1 Introduction 

1.1 History of Roadway Stormwater Pollution Regulation 

Since the early 1970s, an increasing awareness about the environmental impact of storm 

runoff resulted in the creation of environmental laws, executive orders, and policies that protect 

water quality. The acts and regulations that include highway runoff are: the National 

Environmental Policy Act (NEPA), Clean Water Act (CWA), the National Pollution Discharge 

Elimination System (NPDES), the Nonpoint Source (NPS) Management Programs, the 

Department of Transportation (DOT) National Transportation Policy, the Federal Highway 

Administration (FHWA) Environmental Policy Statement (EPS), and the Coastal Zone 

Reauthorization Amendment (CZRA). For purposes of this study, the CWA and its amendments 

are more relevant. More information about the other laws and regulations can be found in 

Appendix A.  

The Clean Water Act (CWA) was originally called the Federal Water Pollution Control 

Act (FWPCA) of 1948. This law consisted of a regulatory system of water quality standards 

applicable to navigable waters. In 1972, the FWPCA included a system of standards, permits, 

and goals for fishable and swimmable waters to be achieved by 1983, and the total elimination of 

pollutant discharges into navigable waters by 1985. With the 1977 amendments, the name was 

changed to the Clean Water Act. The general purpose of this act was “to restore and maintain the 

chemical, physical, and biological integrity of the Nation’s waters” (Clean Water Act, 1977a), 

declaring unlawful the unregulated discharge of pollutants into all waters of the United States.  

The amended section 402 of the CWA created a permit system, the National Pollutant 

Discharge Elimination System (NPDES). These discharge permits could be granted by the 

Environmental Protection Agency (EPA) or by EPA through approved state programs. These 
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permits regulate discharges into navigable waters from point sources. According to the CWA, a 

point source is “any discernible, confined and discrete conveyance, including but not limited to 

any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, 

concentrated animal feeding operation, or vessel or floating craft, from which pollutants are or 

may be discharged" (Clean Water Act, 1977b). The permits require that the permittee comply 

with discharge limits based on the use of “best technology” and with discharge and monitoring 

and reporting obligations.  

The set of amendments passed in 1987 includes regulation of nonpoint source pollutants. 

According to these amendments, states are required to identify water bodies where water quality 

standards cannot be met without control of nonpoint source pollutants and to establish 

management programs for these water bodies. The plans need to include Best Management 

Practices (BMPs) for categories of sources, schedules of implementation milestones, and 

appropriate regulatory measures. Additionally, in Section 319 of the CWA, EPA is authorized to 

issue grants to states to help in the implementation of management programs that have been 

approved. Under these amendments, highway construction and operation was included as a 

source of pollution due to the accumulation of pollutants on the surface from oil, tires, dust, 

grease and other materials. These compounds may be washed into receiving waters during rain 

events. As a result, activities related with the construction, operation, and maintenance of roads 

and roadways need to be controlled and regulated by state regulations and programs related to 

nonpoint source pollution.  

Section 319 of the Clean Water Act also established the Nonpoint Source (NPS) 

Program. Congress chose not to address nonpoint sources through a regulatory approach; instead, 

under Section 319, a federal grant program was created to provide money to states, tribes and 
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territories for the development and implementation of NPS management programs. 

 Stormwater from roadways can contain several chemicals that could potentially have 

negative effects on the environment (FHWA and USGS, 2005). Therefore, several states have 

conducted studies to determine the contaminants and the potential impact that these pollutants 

may cause to the environment.  

  



 

 

4 

Chapter 2 Objectives and Scope 

2.1 Objectives 

  The objectives of this project were to determine water quality of runoff from a selected 

Nebraska high-use roadway, evaluate the potential for existing stormwater BMPs to remove 

pollutants from stormwater from roadways, and improve the guidelines of roadside stormwater 

BMPs for pollutant removal. This thesis covers the first two objectives of the project, and the 

remaining objective was undertaken in the second stage of the project.  

2.2 Scope 

 In order to accomplish these objectives, stormwater samples were collected in an existing 

detention basin located next to a high-traffic roadway. This detention basin receives water from a 

construction debris lot, two outlet pipes, and a grass section next to the roadway shoulder, and 

discharges the water to a nearby stream through an outlet pipe at the east end of the basin.  

Concentrations from the roadway outlet pipes were compared to the basin outlet pipe to 

determine if concentrations were reduced when the stormwater passed through the detention 

basin. Loads for all the sampling sites were calculated using the hydrologic information obtained 

from the HEC-HMS model created for the project. The total pollutant loads deposited into the 

stream by the roadway were determined by subtracting the construction debris lot loads from the 

basin outlet pipe. Additionally, concentrations and loads were compared against factors affecting 

highway runoff (e.g., total suspended solids concentrations, antecedent dry period, volume of 

runoff, and total rainfall) to determine if correlations existed.  

The first volume of this project is divided into seven sections and four appendices. 

Chapter 1 is an introduction to roadway stormwater pollution. Chapter 2 explains the purpose 

and scope of the project. Chapter 3 provides technical background on the topics covered in this 



 

 

5 

thesis. Chapter 4 discusses the methods used in the project. Chapter 5 summarizes the results 

obtained. Chapter 6 contains the discussion of results. Chapter 7 contains the conclusions from 

this project.  
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Chapter 3 Literature Review 

3.1 Typical Contaminants from Roadways 

As part of the urbanization process, highways have become a potential source for an 

extensive variety of contaminants to surface and subsurface waters (Gupta et al. 1981; Barret et 

al. 1995; Chui et al. 1982; Mitton and Payne 1997).  

3.1.1 Roadway Contaminant Sources 

Sources of highway runoff pollutants can be classified into three different categories: a) 

vehicle traffic, b) snowmelt and ice-melt containing deicing chemicals, and c) chemicals used to 

manage roadside vegetation (U.S Environmental Protection Agency [EPA], 2005). Young et al. 

(1995) reported the major sources of pollutants on highways are vehicles, dustfall, and 

precipitation. Table 3.1 shows the major highway pollutant constituents and their sources 

(Kobriger, 1984). 
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Table 3.1 Primary contaminants and their major sources in highway runoff 

Constituent Primary Source 

Particulates 
Pavement wear, vehicles, atmosphere, maintenance, 

snow/ice abrasives, sediment disturbance. 

Nitrogen, Phosphorus Atmosphere, roadside fertilizer use, sediments. 

Lead 
Leaded gasoline, tire wear, lubricating oil and grease, 

bearing wear, atmospheric fallout. 

Zinc Tire wear, motor oil, grease. 

Iron Auto body rust, steel highway structures, engine parts. 

Copper 
Metal plating, bearing wear, engine parts, brake lining 

wear, fungicides and insecticides use. 

Cadmium Tire wear, insecticide application. 

Chromium Metal plating, engine parts, brake lining wear. 

Nickel 
Diesel fuel and gasoline, lubricating oil, metal plating, 

brake lining wear, asphalt paving. 

Manganese Engine parts. 

Bromide Exhaust. 

Cyanide Anticake compound used to keep deicing salt granular. 

Sodium, Calcium Deicing salts, grease. 

Chloride Deicing salts. 

Sulphate Roadway beds, fuel, deicing salts. 

Petroleum 
Spills, leaks, blow-by-motor lubricants, antifreeze, 

hydraulic fluids, asphalt surface leachate. 

PCBs, pesticides 
Spraying of highway right of way, atmospheric deposition, 

PCB catalyst in synthetic tires. 

Pathogenic bacteria 
Soil litter, bird droppings, truck hauling 

livestock/stockyard waste. 

Rubber Tire wear 

Asbestos* Clutch and brake lining wear. 
*No mineral asbestos has been identified in runoff; however, some break-down products of asbestos have been measured. 

 

 

3.1.2 Factors Affecting Highway Pollutants 

Authors of different studies agree that runoff characteristics and pollutant accumulation 

are site-specific and are affected by several variables. Some of the factors affecting the pollutant 

accumulation (Gupta et al. 1981; Thiem et al. 1998; East-West 2000; Chui et al. 1982; Herrera 

2007; EPA 2005; Barret et al. 1995) are:  

 Traffic characteristics (volume, speed, braking); 
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 Climate conditions (intensity and form of precipitation, wind, temperature); 

 Maintenance policies (sweeping, mowing, repair, deicing, herbicides); 

 Surrounding land use (residential, commercial, industrial, rural); 

 Percent pervious and impervious areas; 

 Age and condition of vehicles; 

 Anti-litter laws and regulations covering car emissions and delivery trucks; 

 Use of special additives in vehicle operation; 

 Vegetation types on the highway right-of-way; and 

 Accidental spills. 

The East-West Gateway Coordinating Council (2000) suggests that a stronger correlation 

of potential runoff impacts exists with storm characteristics such as the number of dry days 

preceding the storm event, the intensity of the storm, and the elapsed time of the total storm 

event. Of these three characteristics, the most critical is storm intensity because many of the 

pollutants attach themselves to particulate matter (or sediment); and the more intense the storm, 

the greater the movement of particulate matter. Long-duration storms usually reduce the 

pollutant concentrations due to the increased volume; however, the overall loading of pollutants 

is greater with these storms than with shorter but more intense storms.    

In a study of particulates generated by traffic in Cincinnati (average daily traffic load was 

150,000 vehicles), Sansalone and Buchberger (1997) found that 44% to 49% of particulates 

originated from pavement wear, 28% to 31% from tire wear, and 15% from engine and brake pad 

wear. The authors also found that 6% of particulates were deposited from settleable exhaust and 

3% from atmospheric deposition.   

Several studies (e.g., Gupta et al. 1981; Barret et al. 1995) have found that traffic volume 
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is a factor affecting levels of pollutants in highway runoff. However, Driscoll et al. (1990) did 

not find any correlation between Total Suspended Solids (TSS), total solids, Biological Oxygen 

Demand (BOD), oil and grease, phosphorus, nitrate, Total Kjeldahl Nitrogen (TKN), or heavy 

metals with traffic density. Another study conducted by Kayhanian et al. (2003) at 83 highway 

sites in California, concluded that there is not an evident correlation between annual average 

daily traffic (AADT) and pollutant concentrations. This study found that a more consistent 

correlation emerged when mean and median concentrations were analyzed with medium and 

higher range of AADTs for urban highways. In another study, Kerri et al. (1985) also found that 

there was no statistically significant correlation between pollutant loads and the amount of traffic 

before the storm. Kerri et al. (1985) state that during dry periods there is a greater adherence of 

materials to the engine, undercarriage, and wheel walls of vehicles, while during a storm or wet 

period, there is more splashing and washing of materials from the vehicles. Therefore, they 

suggest that the number of vehicles during storm (VDS) may be a better predictor for constituent 

concentrations.  

Hoffman et al. (1985) found that concentrations of various pollutants in highway runoff 

varied within the storm event. That is, suspended solids, petroleum hydrocarbons, lead, 

cadmium, copper, and iron concentrations were higher during the first flush. Additionally, during 

this period the most highway litter, such as Styrofoam cups, cigarette butts, beverage cans, and 

fast food wrappers, were present in the runoff. Hoffman et al. (1985) concluded that in general, 

peaks in pollutant concentrations occur during high flow rates when transport of contaminants is 

more efficient. However, peak concentrations may occur during lower flow conditions, due to 

reduced dilution.  

Higher concentrations of pollutants are often observed during the first runoff from a 
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storm. This phenomenon is often described as “first-flush” (Barret et al. 1995). According to the 

Center for Watershed Protection (1994) the first flush contains around 90% of the annual 

stormwater pollutant load; therefore, to treat 90% of the annual load, it would be necessary to 

treat the first half inch of runoff. Recent studies conducted by Chang et al. (1990) reveal that 

even though the first flush concentration is significantly higher, in many cases the first half inch 

does not carry most of the storm pollutant load. This study found that for developments with 

large areas of impervious cover the first half inch of runoff cannot transport as much of the 

pollutant load that is produced during larger storms. For example, for a development with 90% 

impervious cover, the first half inch of runoff of larger storms removed only about 40% of the 

total storm pollutant load on average.  

Season and weather conditions may have a large impact on highway pollutant 

concentrations. Sansalone (1995) found that urban highway snowbanks can be significant sinks 

for metal elements and solids generated by traffic and maintenance activities. They also found 

that metal element concentrations are significantly correlated to solids concentrations in 

snowmelt. In contrast, metal element concentrations in rainfall events varied depending on the 

degree to which the metal element was dissolved, the presence of solid fractions, and the 

hydrology of the event and site. It is believed that physical entrapment and long residence times 

of metals and suspended solids in close proximity to the snow matrix may be the reason for a 

stronger correlation for snow wash-off events than rainfall-runoff events.     

3.2 Sampling Methods for Roadway Pollutants 

Studies done on highway runoff have used a variety of sampling methods. Some have 

used automatic samplers (Gupta et al. 1981; Granato and Smith, 1999; Horner et al. 1979; Desta 

et al. 2007; Kayhanian et al. 2003; Khan et al. 2006; Sansalone and Buchberger, 1997; Barrett et 



 

 

11 

al. 1998; Wu et al. 1998). Others have used grab sampling methods (Horner et al. 1979; 

Kayhanian and Stenstrom, 2005; Khan et al. 2006; Hoffman et al. 1985; Shinya et al. 2000; 

Thiem et al. 1998; Little et al. 1983; Marsalek et al. 1997) and some have used a combination of 

two or more sampling techniques (Mitton and Payne, 1997; Wu et al. 1998). 

Gupta et al. (1981) obtained data on traffic characteristics, highway maintenance, 

precipitation, air particulate fallout (dustfall), and runoff quantity and quality at numerous sites. 

The monitoring of storm events was conducted for a minimum 12 month period at each site.  

Instrument Speciality Company (ISCO) water quality samplers (models 1392 and 1680) were 

used to sample the storm events. Two ISCO samplers were installed at each site to collect 

samples at intervals of 5 and 15 min. The samplers were installed behind weirs and flumes where 

a maximum turbulence was experienced during the runoff events. Manual grab samples were 

required to analyze for oil and grease, pesticides/herbicides, and PCBs because plastic bottles 

used in the autosamplers may absorb some of these pollutants.  

Gupta et al. (1981) recommend that during the first stages of the event, discrete samples 

should be collected at more frequent intervals. Drainage areas with a high proportion of paved 

area require sampling frequencies of 2 to 5 min during first flushes, and 15 to 30 min after that 

until runoff ends. Drainage areas with a high proportion of unpaved area require sampling 

frequencies of 5 to 15 min during first flushes and 15 to 60 min after that.    

Granato and Smith (1999) used an automated sampler that took samples immediately 

downstream of the throat section of a Palmer-Bowles flume in order to take advantage of the 

mixing action of the flume throat. The automated sampler was triggered by changes in specific 

conductivity.  

Desta et al. (2007) used a full-size portable automatic water quality sampler (ISCO 6712) 
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with 24 glass bottles each with 350 mL capacity. The sampler was programmed to trigger during 

storm events and collect samples according to the volume of runoff passing the measuring 

section. The 24 bottles were divided into two parts: Part A (bottles 1 to 6) and Part B (bottles 7 to 

24). Bottles in Part A were used to account for the first-flush effect sample, approximately 25% 

of the storm, and the last 18 were used in Part B for the rest of the event. 

Barrett et al. (1998) used ISCO 3700 automatic samplers. The automatic samplers were 

programmed to sample based on the volume of runoff passing the sampler. At two sites, the 

sampler was programmed to draw samples at set volumes of flow. At a third location, the 

sampler was initially programmed to collect samples on a timed basis, but was later converted to 

collect flow-weighted composite samples.       

Kayhanian and Stenstrom (2005) collected a series of grab samples during storm events. 

In the first year, five to six grab samples were collected during the first hour and a manually 

composited sample was collected over the following hours. In the second, third, and fourth years, 

five grab samples were collected in the first hour, followed by one grab sample per hour until the 

end of the 8th hour. If the storm lasted beyond the 8th hour, one or two additional grab samples 

were collected to characterize the tail of the runoff. Samples were collected in 4 L amber glass 

bottles.    

Thiem et al. (1998) used glass and plastic (HDPE) bottles to collect runoff samples. Their 

major goal was to collect samples in the period immediately after the beginning of the storm. 

During this initial rainfall period (approximately 30 min in duration), samples were taken every 

five minutes. After this period, the sampling interval time was gradually increased to one sample 

every 30 min.  

Shinya et al. (2000) collected runoff samples manually with a clean 20-L plastic bucket. 
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Samples were collected during four different periods during a rainfall event. At the beginning of 

the storm, samples were collected every 5 min for the first 15 min, and then every 15 min until 

one hour had elapsed from the beginning of the storm. Then two samples every half an hour were 

taken. Finally, samples were taken every hour until the end of water runoff or six hours had 

elapsed from the beginning of the storm.  

Hoffman et al. (1985) collected samples manually from the outfall with buckets. A metal 

bucket was used for hydrocarbons and solids, and a plastic bucket was used for heavy metals 

analysis. Sampling was started at the beginning of the rainfall event and ended when the drain 

flow subsided following the end of the storm. Samples were usually collected every 30 min or 

more frequently (every 10 to 15 min) when flow rates were high or rapidly changing.  

Little et al. (1983) used the composite sampling system and procedures developed by 

Clark et al. (1981). This system consisted of a calibrated flow-splitter and collection tanks. The 

flow-splitters were designed for each sampling site to capture a set proportion of the design 

storm flow, typically 1% to 2%.    

Marsalek et al. (1997) used custom-made fluidic devices in the form of a stainless steel 

flow splitter, formed by a cylinder with closed bottom and 16 openings (D = 12 mm) in the side 

wall, just above the bottom. Each of the openings conveyed 1/16 of the inflow. Outflow from 

one of the openings was then directed to a second stage splitter of similar design. Outflows from 

the remaining 15 openings were discarded.  

Wu et al. (1998) used ISCO or American Sigma automatic samplers to collect discrete 

samples from two of the three study sites. For site III, an elliptical flow divider was installed at 

the end of the drain pipe to collect composite samples. The divider provides accurate diversion 

for a fixed fraction of runoff, proportional to the flow rate. Water coming out the divider was 
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collected in a holding of 48 X 47 X 36 in. capacity. The automatic samplers were programmed 

depending on the runoff event. Each automatic sampler was programmed to collect discrete 

samples at a preset time increment to ensure the collection of at least six to eight samples. 

Composite sampling was done by taking a fixed amount of sample at equal flow intervals during 

a storm. 

Khan et al. (2006) collect both grab and composite samples. Grab samples, 4 L each, 

were collected at 15 min intervals during the first hour of runoff and at one hour intervals over 

the next seven hours. For storms lasting more than seven hours, additional grab samples were 

collected to capture the end of the storm. Grab samples were collected by bailing from a freefall 

of runoff exiting a discharge pipe. An American Sigma model 950 automatic sampler was used 

for flow-weighted composite samples. The automatic sampler was allowed to run until the end of 

runoff.       

Horner et al. (1979) took three different types of samples where discrete sampling was 

the most common. For the discrete samples, one-liter portions of highway runoff were collected 

in plastic bottles. These samples were typically collected every 5 to10 min during the first hour 

of a storm, every 15 to 20 min during the second and third hours and every 30 to 60 min 

thereafter. Composite samples were taken directly from drums after the contents were thoroughly 

mixed with a stick. Composite sampling was used at the beginning of the storms when runoff 

began to collect before the technician reached the monitoring station. The third set of samples 

was collected using an ISCO Model 1680 and a Manning Model 4050 automatic samplers. 

Mitton and Payne (1997) collected grab samples (usually at the upstream end of a flume) 

within 30 min of the onset of runoff, or as soon thereafter as possible. Remaining samples were 

collected using an automatic sampler that held 28 1-L bottles. The flow-composited samples 
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were collected based on even increments of flow.         

As discussed above, different techniques can be used to collect samples. Selection of a 

specific sampling technique depends on the specific sampling goals for the study. If the study 

requires analyzing VOCs, automatic samplers cannot be used because VOCs will likely 

volatilize as a result of agitation during automatic sampler collection (U.S. EPA, 1992). Table 

3.2 shows a comparison between manual and automatic sampling techniques. 
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Table 3.2 Comparison of manual and automatic sampling techniques* 

Sampling Method Advantages Disadvantages 

Manual grab 
 Appropriate for all pollutants 

 Minimum equipment required 

 Labor-intensive 

 Environment possibly dangerous to 

field personnel 

 May be difficult to get personnel and 

equipment to the storm water outfall 

within the 30 min requirement 

 Possible human error 

Manual flow-weighted 

composites (multiple 

grabs) 

 Appropriate for all pollutants 

 Minimum equipment required 

 Labor-intensive 

 Environment possibly dangerous to 

field personnel 

 Human error may have significant 

impact on sample 

representativeness 

 Requires flow measurements taken 

during sampling 

Automatic grabs 

 Minimizes labor requirements 

 Low risk of human error 

 Reduced personnel exposure 

to unsafe conditions 

 Sampling may be triggered 

remotely or initiated 

according to present 

conditions 

 Samples collected for oil and grease 

may not be representative 

 Automatic samplers cannot 

properly collect samples for volatile 

organic compounds analysis 

 Costly if numerous sampling sites 

require the purchase of equipment 

 Requires equipment installation and 

maintenance 

 Requires operator training 

 May not be appropriate for pH and 

temperature 

 May not be appropriate for 

parameters with short holding times 

(for example, fecal streptococcus, 

fecal coliform, chlorine) 

 Cross-contamination of aliquot if 

tubing/bottles not washed 

Automatic flow-

weighted composites 

 Minimizes labor requirements 

 Low risk of human error 

 Reduced personnel exposure 

to unsafe conditions 

 May eliminate the need for 

manual compositing of 

aliquots 

 Sampling may be triggered 

remotely or initiated 

according to on-site 

conditions 

 Not acceptable for volatile organic 

compounds sampling 

 Costly if numerous sampling sites 

require the purchase of equipment 

 Requires equipment installation and 

maintenance, may malfunction 

 Requires initial operator training 

 Requires accurate flow-

measurement equipment tied to 

sampler 

 Cross-contamination of aliquot if 

tubing/bottles not washed 
  *(Adapted from U.S. EPA 1992).
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3.3 Flow Monitoring 

Gupta et al. (1981) indicated that two components are required for the measurement of 

flow in an open channel: 

 A calibrated device inserted in a channel. 

 A level sensing instrument which measures the water level upstream of the calibrated 

device. 

In this study, V-notch weirs and Palmer-Bowlus flumes were used as calibrated devices.  

Flow measurements are used to develop composite water samples. According to the U.S. 

EPA (1992), flow rates for storm water discharges are most accurately measured using either 

primary or secondary flow measurement devices. Primary flow measurement devices are man-

made flow control structure which is inserted into an open channel, creating a geometric 

relationship between the depth of the flow and the rate of the flow. The most common primary 

flow devices are weirs and flumes. Secondary flow measurement devices are automated forms of 

flow rate and volume measurement. Usually, a secondary device is used in conjunction with a 

primary device to automatically measure the flow depth or head. Some secondary devices are 

floats, ultrasonic transducers, pressure transducers, and bubblers.  

 It is also possible to estimate the flow rates using float methods, bucket and stopwatch, 

slope and depth, and runoff coefficient. These methods are not as accurate as the primary and 

secondary devices, but are appropriate for sites where primary or secondary devices are not 

practical or economically feasible. A full description of these methods can be found in U.S. EPA 

(1992).  

Flow rates have been monitored using several devices or structures. Hoffman et al. 

(1985) used a Marsh-McBirney portable flow meter mounted on the drain headwall to monitor 
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the flow velocities. A scale was painted on the interior of the drain to measure the water height 

during a rainfall event. Height measurements were taken at the time of sample collection.  

Mitton and Payne (1997) used Parshall flumes with 3-in. or 6-in. throats to measure 

runoff flow rates. Flumes with 3-in. throats were used to measure runoff flows ranging from 0.03 

to 0.89 ft
3
/s, and flumes with 6-in. throats were used to measure flows ranging from 0.05 to 2.06 

ft
3
/s.     

Wu et al. (1998) used an automatic sampler to continuously record flow stages that later 

were converted to flow rates. They also used a potentiometric water-level recorder to measure 

the level in the holding tank. These measurements were converted to flow rates.   

Barrett et al. (1998) measured water-levels using bubble flow meters (ISCO 3230). These 

measurements were later converted into flow rates using a rating curve developed for each study 

site. 

Horner et al. (1979) measured flow rates at least once during the period between samples. 

Flow rates were determined by measuring the level rise in the water collection drums with a 

meter stick over an interval timed by a stop watch. Measurement of the cross-sectional area of 

the drums permitted conversion of the timed level rise to units of volume per unit of time.  

Desta et al. (2007) used two types of flow meters to measure flow rates. A bubble module 

(ISCO 730) was used to measure head over a weir which relates water level to flow rate. An 

area-velocity module (ISCO 750) was used to measure flow in all piped drainage systems where 

installation of a weir was not possible due to the risk of causing blockage. 

Hallberg and Renman (2008) used two Parshall flumes to measure flows. The first 

Parshall flume was designed for flows between 1 l/s to 20 l/s, and the second flume was used for 

flows between 20 l/s and 600 l/s. The flow from 1 l/s to 20 l/s was registered with a Chanflo 
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Open Channel (Danfoss) flowmeter (0 to 0.3 m) with a Sonolev sensor (100 KHz). The flow 

between 20 l/s to 600 l/s was registered with Chanflo Open Channel (Danfoss) flowmeter (0 to 1 

m) with a Sonolev sensor (100 KHz). The data from the flow measurements were collected every 

60 s during the runoff event with a Campbell Scientific CR 10X data logger.  

Thiem et al. (1998) installed a V-notch weir on a paved waterway where the samples 

were collected. The depth over the crest was measured with a ruler every time a sample was 

taken. At other sites, Manning’s equation was used to determine the flow in partly full pipes.   

3.4 Pollutant Concentrations and Loadings 

The pollution discharging from a highway can be characterized in terms of concentration 

or in terms of loading rates. There are several ways to characterize the pollutant concentration in 

highway runoff. For example, pollutant concentrations can be reported as the concentrations in 

discrete sequential samples collected at intervals during a single storm event, or they can be 

reported as event mean concentrations (EMC) (Driscoll et al. 1990). The EMC is the average 

pollutant concentration found in the total volume of runoff from a storm event (Driscoll et al. 

1990).  

Loading rates for a storm are typically calculated by multiplying the EMC times the total 

volume of runoff during the storm. This method gives the mass of a pollutant discharged per 

time or per event. In a slightly different way, Wu et al. (1998) reported the long-term average 

pollutant loading rates (kg/ha-yr). To obtain these loads, the site mean loading rates are 

multiplied by the ratio of average storm duration to the average time between storms.  

Shinya et al. (2000) reported initial concentration, EMC, and pollutant load. Initial 

concentration refers to the concentration in the first runoff water. Pollutant load was calculated 

using equation 3.1: 



 

 

20 

 

                                   
 

 
∫           

 

where A is the drainage area, C(t) is the time-variable concentration, Q(t) is the time-variable 

flow, and t is the time elapsed from the start of the event.  

 

Barrett et al. (1998) reported the EMCs and the annual pollutant loads for three selected 

sites along the MoPac Expressway in the Austin, Texas area. The annual constituent loads were 

calculated based on the “simple method” described by Schueler (1987). The “simple method” is 

used to estimate stormwater runoff pollutant loads for urban areas. This method is based on 

regression correlations to predict loads based on land use. The information required in this 

method is the subwatershed drainage area and impervious cover, stormwater runoff pollutant 

concentrations, and annual precipitation. Equation 3.2 was used to estimate pollutant loads: 

 

  [
           

    
]      

 

where L is the annual pollutant load in kg/ha, P is the annual precipitation (825 mm/yr), CF is the 

correction factor that adjusts for storms where no runoff occurs (0.9), Rv is the average runoff 

coefficient, and Ci is the event mean concentration.  

 

The United States Geological Survey (USGS) developed a set of equations based on 

regression analyses of data from different sites around the country (Driver and Tasker, 1990). 

These equations can be used to predict storm-runoff loads and volumes, storm-runoff mean 

concentrations, and mean seasonal or annual loads.   

(3.1) 

(3.2) 
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Chapter 4 Methods 

4.1 Site Selection 

The site selected was in Omaha, Nebraska. The site is the property of the Nebraska 

Department of Roads (NDOR). This location was selected for two main reasons: 1) the site is 

next to the intersection of two major Interstates in Omaha (I-80 and I-680). In 2006, this 

intersection was ranked the third busiest intersection in the Omaha metro area (Metropolitan 

Area Planning Agency [MAPA], 2010); and 2) a detention basin is present to collect runoff from 

the site and to provide flood protection for the area. This basin might help to reduce some of the 

pollutant load coming from the highway. The location of the study site is shown on figure 4.1.   

4.2 Site Description 

 The site is located in the southeast corner of the junction between Intestate I-80 and I-

680. The Average Daily Traffic (ADT) on the road section under study is 145,100 vehicles per 

day (MAPA, 2008). For purposes of this study, the site was subdivided into 6 subbasins. 

Characteristics of each subbasin are given table 4.1.   

 

Table 4.1 Characteristics of the study site 

Subbasin Area (mi
2
) Cover Type 

Subbasin 1 0.00969 Construction debris material 

Subbasin 2 0.00287 Grass, pavement 

Subbasin 3 0.00143 Pavement 

Subbasin 4 0.00125 Grass 

Subbasin 5 0.006275 Pavement 

Subbasin 6 0.00502 Grass 
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Figure 4.1 Zoom out to show I-680, I-80, 108
th

 St (Location site)  

 

4.3 Sampling 

4.3.1 Sampling Goals 

The sampling goals for this project were: obtain first flush and event mean concentrations 

(EMC) for the pollutants found in highway runoff, determine the pollutant loads discharging 

from the roadway at this site, and evaluate the impacts these contaminants may cause to the 

receiving waterway. There are five sampling sites (A, B, C, D, and E) shown in figure 4.2. 

 

 

(dogis.com) 
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Figure 4.2 Study site, subbasins show drainage areas leading to sampling sites A-E 

(dogis.com) 

(Google earth) 

(Google earth) 
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4.3.2 Storm Identification 

Since this study required grab samples of the first flush from runoff events, potential 

runoff-producing storms had to be identified in advance so that preparations for sampling could 

be made.  

To identify potential storms to be sampled, the Weather Channel (Weather, 2009), the 

National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2009), Accuweather 

(Accuweather, 2009), and Weather Underground (Weather Underground, 2009) websites were 

monitored. The main data used to identify the storms were the predicted chance of precipitation 

and the Doppler weather radar. The sampling team was notified of a possible sampling event if 

the chance of precipitation approached 70%. After the team was notified, the weather was 

closely monitored to report any change that may affect the sample collection. Storms were 

targeted for potential sampling if they were predicted to be at least 1 hr long and have a 

minimum depth of 0.5 in.  

4.3.3 Flow Measurement 

4.3.3.1 Flow Monitoring 

To measure the flow at the site, three different kinds of structures were built and 

installed. At site A (discharge point from the construction debris lot), a rectangular sharp-crested 

weir made of 1 in. thick treated wood supported by a 2 X 4 (treated wood) frame was constructed 

and covered by 1/16” plastic (to make impermeable and provide sharp crest). This weir was 

installed at the east side of the lot where discharge from the lot enters the basin. Figure 4.3 shows 

the weir being installed at site A. At site B (ditch), a V-notch weir was installed where flow in 

the ditch discharged to the basin. A 6-in. high berm lined with plastic sheeting (i.e., creating a 

long “sand bag”) was built along the fence to direct all flow toward weir and basin. Figure 4.4 
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shows the V-notch weir installed at site B. For sites A and B, a metallic ruler was used to 

determine the flow depth at the rectangular and V-notch weir, respectively. Measurements were 

taken when samples were collected at each site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Rectangular weir installed at site A 

 

For sites C and D (west pipe and east pipe outlets), 8-in. wide by 6-ft long rectangular 

flumes were installed. At site E (basin outlet pipe), a 24-in. by 6-ft long rectangular flume was 

installed (fig. 4.5). In sites C, D, and E, Isco 2150 Area Velocity (AV) Flow Modules and 

Sensors were installed. At first, the sensors were mounted 2 in. above the channel’s bottom on a 

vertical PVC pipe placed at the end of each flume. After the first two sampling events, the pipes 
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were removed because debris was getting trapped in the channel, affecting the sensor readings. 

From the third storm, sensors were mounted on the bottom of each flume. Flow modules were set 

to obtain a reading every five minutes. Also, during the first three storms, manual depth and 

velocity monitoring measurements were taken with a ruler and float to corroborate sensor 

readings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 V-notch weir installed at site B  
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Figure 4.5 Rectangular flume installed at site E 

 

The flow at site A was calculated using the following equation for a rectangular sharp-

crested weir with end contractions (U.S. Department of Interior Bureau of Reclamation, 2001).  

 

  
 

 
  √           [(  

  
 

  
)
   

 (
  
 

  
)
   

] 

Where: 

 Cd = Discharge coefficient, 0.6  

 g = Gravitational acceleration (32.2 ft/sec
2
) 

 L = Weir length (ft) 

 n = Number of end contractions 

  (4.1) 
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 H = Water height above the crest of the weir (ft) 

 v0 = Approach velocity (ft/sec) 

 

The weir installed at site A was contracted at both ends; therefore, the value of n was 2. 

The approach velocity was estimated by using equation 4.1 iteratively until the discharge (Q) and 

head (H) in the equation matched.  

Methods to estimate the flow in site B have not been applied because there has not been 

flow in this site during the sampled storms. It was believed that the sampled storms had 

insufficient intensity to produce measurable runoff at site B (generally high intensity storms were 

not sampled because of dangerous lightning). However, on July 4, 2010, the sampling team had 

the chance to sample a high intensity storm that did not produce any lightning. During this storm, 

it was found that significant amounts of runoff were leaking through the berm at the fence and 

bypassing site B. As a result, the flow estimates for this site were developed from the HEC-HMS 

model.    

For sites C, D, and E, the flow was measured by the AV flow modules and sensors. The 

AV sensor has an internal differential pressure transducer that measures the flow depth. The AV 

sensor has a pair of ultrasonic transducers which measure the average velocity using sound 

waves and the Doppler Effect. The first transducer sends the ultrasonic wave, and the second 

transducer receives the wave reflected by bubbles and particles in the stream (Isco, 2005). Using 

the information obtained by the AV sensor, the AV flow module internally estimates the flow 

rate in the channels based on the channel dimensions and the sensor’s height above the channel 

bottom.  
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4.3.3.2 Hydrologic Model 

An HEC-HMS model of the site was developed and calibrated using data obtained from 

2008 and 2009 storm events. The six subbasins shown in figure 4.1 were further divided into 

eight different subbasins by splitting subbasin 1 and subbasin 5 into two subbasins each. Table 

4.2 shows the identification name and the description of each subbasin created in the model. 

 

Table 4.2 HEC-HMS subbasins  

Identification Name Description 

Subbasin 1A Hard packed driveway in the construction debris lot. 

Subbasin 1B 
Construction material piles and soil in the construction 

debris lot. 

Subbasin 2 
Area along the fence, interstate shoulder, and some of I-80 

Eastbound entrance lane. 

Subbasin 3 

Tributary area for the west pipe inlet. This area includes 

the two outside lanes of the I-80 East bound and interstate 

shoulder. 

Subbasin 4 

Grass and shoulder area and some pavement from the 

center lanes that provide runoff directly into the detention 

basin. 

Subbasin 5A 

Tributary area for the east pipe inlet. This area includes 

the two inside lanes of the I-80 Eastbound and the four 

lanes of the I-80 Westbound. 

Subbasin 5B 

Tributary area for the East pipe inlet. This area includes a 

segment of the two outside lanes of the I-80 Westbound 

and the grass area between I-80 Westbound and the Exit 

445 ramp. 

Subbasin 6 Detention basin. 

 

 

The construction debris area and the tributary area of the east pipe were each divided into 

two sub-areas because these sub-areas exhibit different runoff characteristics. For example, water 

coming from the hard packed driveway in the construction debris area moves faster compared to 

water coming from the construction material piles. In a similar way, water coming from the 
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pavement on I-80 moves faster than water coming from the grass strip between I-80 and the Exit 

445 ramp.  

The HEC-HMS model provided hydrographs of the flows at each sampling point. These 

flows were used to determine the aliquots to use in the sample compositing process as described 

below. A full description of the HEC-HMS model and its application is given in Appendix B.  

4.3.4 Sample Collection 

Samples were collected using grab sampling methods. Nalgene and glass bottles were 

used to collect the samples. Bottles were rinsed twice with the stormwater prior to sample 

collection.  In the construction debris lot, samples were collected downstream of the rectangular 

weir. For the east and west pipe inlet, samples were collected as close as possible to the pipe 

outlets, before the water reached the flumes. For the outlet pipe, samples were collected after 

water flowed through the flume and before it reached the outlet pipe.   

Two sets of samples were taken during the first sampling round. The first set of samples 

captured the first flush, and the second set was used as part of the composite sample. To catch 

the first flush required the first sampling round to be taken within about 15 min after the 

beginning of the storm. Samples used in the composite were then taken approximately every 20 

min from the beginning of the storm. Table 4.3 summarizes the date each sample was taken, type 

of bottles used, and sample preservation. 
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Table 4.3 Type of bottles and preservatives used for each sampling event 

Date Analytes Type of Bottle Used Preservative 

11/10/2008 

Metals, COD, BOD, TP, SP, TS, TSS,TDS, 

TVS, VSS, VDS, VOCs, PAH, F
-
, Br, Cl

-
, 

PO4P, SO4
2-

, HCO3
-
, NO3

-2
, NO2

-
, O&G 

2-L Nalgene Ice 

5/12/2009 

Metals, COD, BOD, TP, SP, TS, TSS,TDS, 

TVS, VSS, VDS, VOCs, PAH, F
-
, Br, Cl

-
, 

PO4P, SO4
2-

, HCO3
-
, NO3

-2
, NO2

-
, O&G 

2-L Nalgene Ice 

6/1/2009 

Metals, COD, BOD, TP, SP, TS, TSS,TDS, 

TVS, VSS, VDS, VOCs, PAH, F
-
, Br, Cl

-
, 

PO4P, SO4
2-

, HCO3
-
, NO3

-2
, NO2

-
, O&G 

2-L Nalgene Ice 

7/3/2009 

Metals, COD, BOD, TP, SP, TS, TSS,TDS, 

TVS, VSS, VDS, PAH, F
-
, Br, Cl

-
, PO4P, 

SO4
2-

, HCO3
-
,O&G 

2-L Nalgene Ice 

VOCs, 300-mL glass Ice 

7/31/2009 

O&G, F
-
, Br, Cl

-
, PO4P, SO4

2-
,Si, HCO3

-
, 

TP, SP, TS, TSS, TDS, TVS, VSS, VDS, 

COD 

2-L Nalgene Ice 

PAH 1-L glass Ice, H2SO4 

Heavy metals 500-mL glass Ice, HNO3 

TKN, NO2N, NO3N 250-mL glass Ice, H2SO4 

VOCs 40-mL vials Ice, HCL 

9/3/2009 

O&G, F
-
, Br

-
, Cl

-
, PO4P, SO4

2-
,Si, HCO3

-
, 

TP, SP, TS, TSS, TDS, TVS, VSS, VDS, 

COD 

2-L Nalgene Ice 

PAH 1-L glass Ice, H2SO4 

Heavy metals 500-mL glass Ice, HNO3 

TKN, NO2N, NO3N 250-mL glass Ice, H2SO4 

VOCs 40-mL vials Ice, HCL 

3/27/2010 

5/7/2010 

5/20/2010 

7/4/2010 

9/13/2010 

11/12/2010 

Ca, Mg, Na  500-mL Nalgene Ice, HNO3 

BOD, TSS, TDS, Cl
-
, Diss. Ortho P 1-L Nalgene Ice 

COD, NO3, TKN, TP 250-mL Nalgene Ice, H2SO4 

Heavy metals 1-L glass Ice 

VOCs 40-mL vials Ice, H2SO4 

SVOCs 1-L glass Ice 

 

 

4.4 Pollutant Concentration Calculation 

4.4.1 Chemical/Biological Analyses 

The samples from the first six storms were analyzed by the University of Nebraska-

Lincoln Water Sciences Laboratory, and the samples from the remaining six storms were 

analyzed by Midwest Laboratories. The specific analyte lists from these two labs are slightly 

different, but the primary analytes of interest were quantified by both labs. A complete list of the 
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analytes and the methods used at each laboratory can be found in Appendix C.   

4.4.2 Sample Compositing Method 

There are generally two potential methods of sample composting, flow-weighted or time-

weighted. In flow-weighted compositing, the time interval between samples is held constant, and 

the volume of each aliquot in the composited sample is proportional to the flow at the time each 

sample was taken. In time-weighted sampling, the sampler must monitor the flow through time, 

calculating the runoff volume at the sampling point during each sampling period. Then, the 

sampler would collect samples representing equal volumes (i.e., after a preset amount of runoff 

passes the sampling point).  

For this project, the flow-weighted compositing process was used. Samples were taken 

approximately every 30 min. Each sample was assumed to be representative of the time period 

between half-way to the previous sample and half-way to the next sample. Flow rate data from 

the HEC-HMS model and time intervals were used to calculate the volume of stormwater for 

each sampling period. A volume fraction from each sample (i.e., aliquot) was taken such that the 

aliquot’s fraction of the total composite sample was equivalent to that sample’s fraction of the 

total storm volume. That is, if a sample represented 10% of the total storm volume, its aliquot 

would make up 10% of the total composite sample volume. Figure 4.6 shows a typical 

hydrograph used to determine the aliquot for each of the samples taken during this sample storm. 

. 
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Figure 4.6 Typical hydrograph used in the compositing process 

 

4.5 Pollutant Load Calculations 

4.5.1 Event Pollutant Load Calculations 

 To determine the event pollutant loads, it is necessary to use the area of each subbasin, 

the volume of runoff, and the EMC from each individual storm. The volume of runoff can be 

obtained from the HEC-HMS hydrologic model. Equation 4.2 was used to calculate the pollutant 

loads. 

 

      

Where: 

L = event pollutant load (Kg/event) 

C = event mean concentration (Kg/m
3
) 

(4.2) 
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V = volume of runoff (m
3
/event)  

4.5.2 Annual Pollutant Load Calculations 

 

 To determine the annual pollutant loads, total precipitation for all rainfall events for 2009 

and 2010 were collected from the weather station located at the Millard Airport, (located at 2.6 

miles southwest from the study site) (Weather Underground, 2010). The volumes of runoff for 

the not-sampled rainfall events were obtained from a rating graph (total precipitation vs. volume 

of runoff) for the east and west outlet pipes for the sampled events. The volume of runoff from 

each individual storm was multiplied by the annual (2009 and 2010) mean EMC for the east and 

west outlet pipe; then, the pollutant loads were summed to obtain the annual pollutant load for 

each location. Finally, an average between the 2009 and 2010 pollutant loads were calculated for 

the east and west pipe outlets.     

4.6 Efficiency of Existing Detention Basin 

 Loads from the different subbasins were used to evaluate the efficiency of the detention 

basin. The construction debris lot, the west and the east outlet pipes are the major pollutant 

contributors. Pollutants from the construction debris lot are not highway related; therefore, loads 

should be excluded from the total loads at the detention basin outlet. Once the loads from the 

construction debris lot are subtracted, the adjusted total pollutant loads are compared to the 

combined pollutant loads from the east and west pipe outlets. If the pollutant loads at the 

detention basin outlet are significantly smaller, the detention basin would have some 

effectiveness in reducing pollutant loads. If the pollutant loads are approximately the same, the 

detention would not be effective in reducing pollutant loads.          
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Chapter 5 Results 

5.1 Highway Runoff Rates 

5.1.1 Precipitation 

Precipitation was measured using an ISCO 6700 rain gauge. Table 5.1 shows a summary 

of the 2009 and 2010 rainfall events, duration, antecedent dry days, and total rainfall. Antecedent 

dry days are defined as the number of days since a precipitation event of at least 0.10 in.    

 

Table 5.1 Summary of rainfall events sampled 

 

 

 

 

 

 

 

 

5.2 Highway Runoff Pollutant Concentrations 

Analyses to determine the First Flush (FF) and Event Mean Concentrations (EMC) were 

conducted. The mean and median values for the FF and EMC results for each site across all the 

storm events are shown in table 5.2 through table 5.6. The complete results can be seen in 

Appendix B. 

 

 

 

Date 
Duration 

(hr) 

Antecedent Dry 

Days 

Total Rainfall 

(in) 

November 10, 2008 3.8 1 0.17 

May 12, 2009 3 10 0.18 

June 1, 2009 2 6 0.03 

July 3, 2009 9 7 0.50 

July 31, 2009 2.5 10 0.32 

September 3, 2009 7 7 5.1 

March 27, 2010 3 7 0.14 

May 7, 2010 2 4 0.24 

May 20, 2010 7 8 0.38 

July 4, 2010 2.8 11 1.38 

September 13, 2010 1.5 11 0.19 

November 12, 2010 2.5 17 0.74 
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Table 5.2 Arithmetic mean and median for first flush and event mean concentrations for site A 

for all sampled events 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Antimony (total) (mg/L) 0.0007 0.0007 0.001 0.0008 

Arsenic (total) (mg/L) 0.0063 0.006 0.006 0.0055 

Beryllium (total) (mg/L) 0.001 0.001 0.001 0.001 

Cadmium (dissolved) (mg/L) 0.002 0.002 0.004 0.004 

Cadmium (total) (mg/L) N.D N.D N.D N.D 

Calcium (dissolved) (mg/L) 91.9 58.6 56.1 13.6 

Calcium (total) (mg/L) 65.6 59.6 53.0 59.6 

Chromium (dissolved) (mg/L) 0.02 0.02 0.01 0.01 

Chromium (total) (mg/L) 0.03 0.03 0.02 0.02 

Copper (dissolved) (mg/L) 0.01 0.01 0.01 0.01 

Copper (total) (mg/L) 0.02 0.02 0.01 0.01 

Iron (dissolved) (mg/L) 0.009 0.004 0.042 0.002 

Lead (dissolved) (mg/L) 0.005 0.0017 0.005 0.004 

Lead (total) (mg/L) 0.01 0.01 0.01 0.01 

Magnesium (dissolved) (mg/L) 21.4 7.90 10.1 6.30 

Magnesium (total) (mg/L) 27.2 36.9 21.7 22.3 

Mercury (dissolved) (mg/L) 0.016 0.005 0.005 0.004 

Mercury (total) (mg/L) N.D N.D N.D N.D 

Nickel (dissolved) (mg/L) 0.013 0.008 0.006 0.007 

Nickel (total) (mg/L) 0.01 0.01 0.01 0.01 

Potassium (dissolved) (mg/L) 32.7 25.4 36.5 21.3 

Selenium (total) (mg/L) 0.0 0.0 0.0 0.00 

Silver (total) (mg/L) N.D N.D N.D N.D 

Sodium (dissolved) (mg/L) 239.5 252.0 253.4 183.0 

Sodium (total) (mg/L) 258.3 278.0 254.1 295.0 

Thallium (total) (mg/L) N.D N.D N.D N.D 

Zinc (dissolved) (mg/L) 0.062 0.085 0.055 0.037 

Zinc (total) (mg/L) 0.03 0.03 0.03 0.03 

Silica (mg/L) 19.1 18.9 16.6 14.9 

N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 
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Table 5.2 Arithmetic mean and median for first flush and event mean concentrations for site A 

for all sampled events (cont.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.D: Non-detected 

 

  

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Bromide (mg/L) 0.15 0.10 0.21 0.10 

Chloride (mg/L) 315.3 247.0 340.7 328.0 

Fluoride (mg/L) 0.15 0.12 0.17 0.14 

Nitrate (mg/L) 1.10 1.29 1.43 1.36 

Nitrite (mg/L) 0.10 0.10 0.10 0.10 

Nitrate/Nitrite Nitrogen (mg/L) 1.30 1.30 0.90 1.00 

Phosphate (mg/L) 0.10 0.10 0.10 0.10 

Sulfate (mg/L) 142.9 101.2 155.1 170.2 

Soluble Phosphate (mg P/L) 0.19 0.02 0.12 0.03 

Phosphorus (dissolved ortho) (mg/L) N.D N.D 0.06 0.06 

Total Phosphorus (mg P/L) 0.17 0.10 0.17 0.15 

Total Kjeldahl Nitrogen (mg/L) 1.81 1.58 1.60 1.61 

Total Dissolved Solids (mg/L) 1030.7 1178.0 1012.5 1212.0 

Total Suspended Solids (mg/L) 748.3 377.0 393.9 223.5 

Total Solids (mg/L) 2544.4 2506.0 1608.8 1422.0 

Volatile Dissolved Solids (mg/L) 160.0 196.0 155.4 110.0 

Volatile Suspended Solids (mg/L) 144.4 136.0 69.4 54.0 

Total Volatile Solids (mg/L) 304.4 338.0 224.8 264.0 

Alkalinity as CaCO3 (mg/L) 142.2 137.1 116.5 142.2 

Oil and Grease (mg/L) 25.9 25.9 28.5 28.5 

TEH as Diesel (μg/L) 208.3 155.0 170.0 120.0 

BOD (mg/L) 8.3 7.0 7.5 8.0 

COD (mg/L) 109.5 101.2 97.3 83.6 

n-Hexane (μg/L) N.D N.D N.D N.D 

Methyl t-Butyl Ether (μg/L) N.D N.D N.D N.D 

Benzene (μg/L) N.D N.D N.D N.D 

Toluene (μg/L) N.D N.D N.D N.D 

Ethylbenzene (μg/L) N.D N.D N.D N.D 

Napthalene (μg/L) 0.114 0.11 0.1 0.1 
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Table 5.3 Arithmetic mean and median for first flush and event mean concentrations for site B 

for all sampled events 

N.D: Non-detected 

 

 

 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Antimony (total) (mg/L) 0.0010 0.0010 0.0008 0.00075 

Beryllium (mg/L) N.D N.D 0.001 0.001 

Arsenic (mg/L) 0.002 0.002 0.0032 0.003 

Lead (mg/L) 0.0032 0.0032 0.0069 0.003 

Copper (mg/L) 0.01 0.010 0.0082 0.01 

Chromium (mg/L) N.D N.D 0.01 0.01 

Zinc (mg/L) 0.06 0.060 0.0617 0.04 

Phosphorus (dissolved ortho) (mg/L) 0.93 0.93 0.235 0.245 

Phosphorus (Total) (mg/L) NA NA 0.34 0.34 

Nitrate/Nitrite Nitrogen (mg/L) 0.7 0.70 0.55 0.45 

Total Kjeldahl Nitrogen (mg/L) 2.75 2.75 1.693 1.62 

Magnesium(Total) (mg/L) 2.09 2.0900 2.685 2.585 

Bichemical Oxygen Demand (mg/L) N.D N.D 6.33 6.6 

Calcium (Total) (mg/L) 11.4 11.4 20.683 17.0 

Total Suspended Solids (mg/L) 31.0 31.0 38.166 42.0 

Chemical Oxygen Demand (mg/L) 68.0 68.0 57.0 56.0 

Sodium (total) (mg/L) 54.0 54.0 79.75 84.45 

Chloride (mg/L) 38.0 38.0 95.8 97.5 

TEH as Diesel (μg/L) 172.0 172.0 119.5 119.5 

Total Dissolved Solids (mg/L) 288.0 288.0 394.0 396.0 

 2 - Methylphenol (μg/L) N.D N.D N.D N.D 

 4 - Methylephenol (μg/L) N.D N.D N.D N.D 

1,2,4-Trichlorobenzene (μg/L) N.D N.D N.D N.D 

1,2-Dichlorobenzene (μg/L) N.D N.D N.D N.D 

1,2-Diphenylhydrazine (μg/L) NA NA N.D N.D 

1,3-Dichlorobenzene (μg/L) N.D N.D N.D N.D 

1,4-Dichlorobenzene (μg/L) N.D N.D N.D N.D 

2- methylnaphthalene (μg/L) N.D N.D N.D N.D 

2- Nitroaniline (μg/L) N.D N.D N.D N.D 

2,4 - Dichlorophenol (μg/L) N.D N.D N.D N.D 

2,4,5 -Trichlorophenol (μg/L) N.D N.D N.D N.D 

2,4,6 -Trichlorophenol (μg/L) N.D N.D N.D N.D 

2,4-Dichlorophenol (μg/L) N.D N.D N.D N.D 

2,4-Dinitrophenol (μg/L) N.D N.D N.D N.D 

2,4-Dinitrotoluene (μg/L) N.D N.D N.D N.D 

2,6-Dinitrotoluene (μg/L) N.D N.D N.D N.D 
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Table 5.3 Arithmetic mean and median for first flush and event mean concentrations for site B 

for all sampled events (cont.) 

N.D: Non-detected 

 

 

 

 

 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

2-Chloronapthalene (μg/L) N.D N.D N.D N.D 

2-Chlorophenol (μg/L) N.D N.D N.D N.D 

2-Nitrophenol (μg/L) N.D N.D N.D N.D 

3 - Nitroaniline (μg/L) N.D N.D N.D N.D 

3,3'-Dicholorobenzidine (μg/L) N.D N.D N.D N.D 

4 - Bromophenyl Phenyl Ether (μg/L) N.D N.D N.D N.D 

4- Chloroaniline (μg/L) N.D N.D N.D N.D 

4- Nitroaniline (μg/L) N.D N.D N.D N.D 

4,6 Dintro -2- methylphnol (μg/L) N.D N.D N.D N.D 

4-Chloro-3-methylphenol (μg/L) N.D N.D N.D N.D 

4-Chlorophenyl Phenyl Ether (μg/L) N.D N.D N.D N.D 

4-Nitrophenol (μg/L) N.D N.D N.D N.D 

Acenaphthene (μg/L) N.D N.D N.D N.D 

Acenaphthylene (μg/L) N.D N.D N.D N.D 

Anthracene (μg/L) N.D N.D N.D N.D 

Benzene (μg/L) N.D N.D N.D N.D 

Benzo ( g,h,i)Perylene (μg/L) N.D N.D N.D N.D 

Benzo (a) Anthracene (μg/L) N.D N.D N.D N.D 

Benzo (a) Pyrene (μg/L) N.D N.D N.D N.D 

Benzo (b) Fluoranthene (μg/L) N.D N.D N.D N.D 

Benzo (k) Fluoranthene (μg/L) N.D N.D N.D N.D 

bis ( 2- Chloroethoxy) Methane (μg/L) N.D N.D N.D N.D 

Bis (2-ethylhexyl) Phthalate (μg/L) N.D N.D N.D N.D 

bis(2-Chloroethyl) Ether (μg/L) N.D N.D N.D N.D 

bis(2-Chloroisopropyl) Ether (μg/L) N.D N.D N.D N.D 

Butyl Benzyl Phthalate (μg/L) N.D N.D N.D N.D 

Cadmium (mg/L) N.D N.D N.D N.D 

Chrysene (μg/L) N.D N.D N.D N.D 

Crabazole (μg/L) N.D N.D N.D N.D 

Di -n-octyl Phthalate (μg/L) N.D N.D N.D N.D 

Dibenz (a,h) Anthracene (μg/L) N.D N.D N.D N.D 

Dibenzofarun (μg/L) N.D N.D N.D N.D 

Diethyl Phthalate (μg/L) N.D N.D N.D N.D 

Dimethyl Phtalate (μg/L) N.D N.D N.D N.D 
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Table 5.3 Arithmetic mean and median for first flush and event mean concentrations for site B 

for all sampled events (cont.) 
 

N.D: Non-detected 

 

 

 

 

 

 

 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Di-n-butyl Phthalate (μg/L) N.D N.D N.D N.D 

Ethylbenzene (μg/L) N.D N.D N.D N.D 

Fluoranthene (μg/L) N.D N.D N.D N.D 

Fluorene (μg/L) N.D N.D N.D N.D 

Hexachlorobenzene (μg/L) N.D N.D N.D N.D 

Hexachlorobutadiene (μg/L) N.D N.D N.D N.D 

Hexachlorocyclopentadiene (μg/L) N.D N.D N.D N.D 

Hexachlorocyclopentadiene (μg/L) NA NA N.D N.D 

Hexachloroethane (μg/L) N.D N.D N.D N.D 

Indeno (1,2,3,-cd) Pyrene (μg/L) N.D N.D N.D N.D 

Isophorone (μg/L) N.D N.D N.D N.D 

Mercury (mg/L) N.D N.D N.D N.D 

Methyl t-Butyl Ether (μg/L) N.D N.D N.D N.D 

Naphtalene (μg/L) N.D N.D N.D N.D 

Napthalene (μg/L) N.D N.D N.D N.D 

n-Hexane (μg/L) N.D N.D N.D N.D 

Nickel (mg/L) N.D N.D N.D N.D 

Nitrobenzene (μg/L) N.D N.D N.D N.D 

N-Nitroso-di-n-propylamine (μg/L) N.D N.D N.D N.D 

N-Nitrosodiphenylamine (μg/L) N.D N.D N.D N.D 

Pentacholorophenol (μg/L) N.D N.D N.D N.D 

Phenanthrene (μg/L) N.D N.D N.D N.D 

Phenol (μg/L) N.D N.D N.D N.D 

Pyrene (μg/L) N.D N.D N.D N.D 

Selenium (mg/L) N.D N.D N.D N.D 

Silver (mg/L) N.D N.D N.D N.D 

TEH as Gasoline (μg/L) N.D N.D N.D N.D 

TEH as Waste Oil (μg/L) N.D N.D N.D N.D 

Thallium (mg/L) N.D N.D N.D N.D 

Toluene (μg/L) N.D N.D N.D N.D 

Total Purgeable Hydrocarbons (μg/L) N.D N.D N.D N.D 

Total Xylenes (μg/L) N.D N.D N.D N.D 
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Table 5.4 Arithmetic mean and median for first flush and event mean concentrations for site C 

for all sampled events 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 

  

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Antimony (total) (mg/L) 0.0053 0.0031 0.0051 0.0037 

Arsenic (total) (mg/L) 0.005 0.002 0.005 0.005 

Beryllium (total) (mg/L) 0.001 0.001 0.001 0.001 

Cadmium (dissolved) (mg/L) 0.004 0.004 0.003 0.003 

Cadmium (total) (mg/L) 0.004 0.004 0.0015 0.0015 

Calcium (dissolved) (mg/L) 23 21.4 14.4 15.4 

Calcium (total) (mg/L) 82.4 56.6 77.4 57.7 

Chromium (dissolved) (mg/L) 0.02 0.005 0.015 0.006 

Chromium (total) (mg/L) 0.05 0.03 0.04 0.03 

Copper (dissolved) (mg/L) 0.04 0.02 0.02 0.01 

Copper (total) (mg/L) 0.100 0.060 0.048 0.030 

Iron (dissolved) (mg/L) 0.3 0.03 0.05 0.04 

Lead (dissolved) (mg/L) 0.01 0.001 0.008 0.004 

Lead (total) (mg/L) 0.039 0.018 0.019 0.007 

Magnesium (dissolved) (mg/L) 1.2 0.8 0.7 0.4 

Magnesium (total) (mg/L) 8.77 4.00 8.52 9.1 

Mercury (dissolved) (mg/L) 0.004 0.004 0.004 0.004 

Mercury (total) (mg/L) N.D N.D N.D N.D 

Nickel (dissolved) (mg/L) 0.012 0.006 0.008 0.008 

Nickel (total) (mg/L) 0.03 0.03 0.01 0.01 

Potassium (dissolved) (mg/L) 4.3 2.5 1.133 1.4 

Selenium (total) (mg/L) 0.001 0.001 0.001 0.001 

Silver (total) (mg/L) N.D N.D N.D N.D 

Sodium (dissolved) (mg/L) 53.5 61.8 39.5 18.4 

Sodium (total) (mg/L) 120.8 159.0 290.4 103.0 

Thallium (total) (mg/L) N.D N.D N.D N.D 

Zinc (dissolved) (mg/L) 0.04 0.02 0.05 0.03 

Zinc (total) (mg/L) 0.057 0.029 0.027 0.012 

Silica (mg/L) 4.22 2.51 3.20 2.60 
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Table 5.4 Arithmetic mean and median for first flush and event mean concentrations for site C 

for all sampled events (cont.) 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Bromide (mg/L) 0.10 0.10 0.10 0.10 

Chloride (mg/L) 141 124 207 93 

Fluoride (mg/L) 0.460 0.430 0.342 0.275 

Nitrate (mg/L) 1.00 1.19 0.88 0.90 

Nitrite (mg/L) 0.680 0.000 0.020 0.000 

Nitrate/Nitrite Nitrogen (mg/L) 1.33 0.40 0.90 0.50 

Phosphate (mg/L) 0.64 0.49 0.43 0.35 

Sulfate (mg/L) 47.4 43.7 29.5 18.4 

Soluble Phosphate (mg P/L) 0.150 0.143 0.230 0.120 

Phosphorus (dissolved ortho) (mg/L) 0.107 0.100 0.095 0.090 

Total Phosphorus (mg P/L) 0.82 0.60 0.39 0.27 

Total Kjeldahl Nitrogen (mg/L) 5.02 5.57 2.53 1.64 

Total Dissolved Solids (mg/L) 207.0 106.0 514.3 122.0 

Total Suspended Solids (mg/L) 520.9 321.0 258.6 116.0 

Total Solids (mg/L) 637.3 584.0 379.0 223.0 

Volatile Dissolved Solids (mg/L) 83.3 83.5 37.8 23.0 

Volatile Suspended Solids (mg/L) 117.5 72.0 101.2 52.5 

Total Volatile Solids (mg/L) 157.7 139.0 116.0 94.0 

Alkalinity as CaCO3 (mg/L) 80.0 77.9 51.4 51.5 

Oil and Grease (mg/L) 10.4 10.4 14.0 14.0 

TEH as Diesel (μg/L) 963.7 880.0 411.3 455.0 

BOD (mg/L) 32.3 28.0 14.3 12.5 

COD (mg/L) 120.1 82.4 95.6 47.0 

n-Hexane (μg/L) N.D N.D N.D N.D 

Methyl t-Butyl Ether (μg/L) N.D N.D N.D N.D 

Benzene (μg/L) N.D N.D N.D N.D 

Toluene (μg/L) N.D N.D N.D N.D 

Ethylbenzene (μg/L) N.D N.D N.D N.D 

Napthalene (μg/L) 0.09 0.08 0.0833 0.08 
N.D: Non-detected 
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Table 5.5 Arithmetic mean and median for first flush and event mean concentrations for site D 

for all sampled events 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Antimony (total) (mg/L) 0.005 0.005 0.004 0.003 

Arsenic (total) (mg/L) 0.005 0.005 0.003 0.002 

Beryllium (total) (mg/L) 0.0010 0.0010 0.0010 0.0010 

Cadmium (dissolved) (mg/L) 0.0028 0.0028 0.0028 0.0028 

Cadmium (total) (mg/L) 0.003 0.003 0.0015 0.0015 

Calcium (dissolved) (mg/L) 23.2 21.4 14.2 13.4 

Calcium (total) (mg/L) 65.6 93.7 47.7 46.5 

Chromium (dissolved) (mg/L) 0.013 0.004 0.011 0.005 

Chromium (total) (mg/L) 0.035 0.035 0.027 0.020 

Copper (dissolved) (mg/L) 0.04 0.02 0.026 0.017 

Copper (total) (mg/L) 0.05 0.04 0.03 0.02 

Iron (dissolved) (mg/L) 0.0046 0.0037 0.0045 0.003 

Lead (dissolved) (mg/L) 0.008 0.002 0.006 0.003 

Lead (total) (mg/L) 0.023 0.014 0.014 0.006 

Magnesium (dissolved) (mg/L) 1.28 1.3 0.82 1.00 

Magnesium (total) (mg/L) 5.27 4.03 3.60 2.16 

Mercury (dissolved) (mg/L) 0.0034 0.0030 0.0033 0.0030 

Mercury (total) (mg/L) N.D N.D N.D N.D 

Nickel (dissolved) (mg/L) 0.011 0.003 0.007 0.002 

Nickel (total) (mg/L) 0.03 0.03 0.009 0.009 

Potassium (dissolved) (mg/L) 3.6 3.2 1.9 1.6 

Selenium (total) (mg/L) 0.0025 0.0025 N.D N.D 

Silver (total) (mg/L) N.D N.D N.D N.D 

Sodium (dissolved) (mg/L) 79.9 75.7 56.5 41.5 

Sodium (total) (mg/L) 172.0 106.0 166.7 128.2 

Thallium (total) (mg/L) N.D N.D N.D N.D 

Zinc (dissolved) (mg/L) 0.011 0.008 0.009 0.011 

Zinc (total) (mg/L) 0.041 0.030 0.024 0.012 

Silica (mg/L) 4.57 2.09 3.40 2.30 
N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 
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Table 5.5 Arithmetic mean and median for first flush and event mean concentrations for site D 

for all sampled events (cont.) 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Bromide (mg/L) N.D N.D N.D N.D 

Chloride (mg/L) 234.5 136.3 139 66 

Fluoride (mg/L) 0.44 0.44 0.29 0.24 

Nitrate (mg/L) 0.4 0.4 0.4 0.4 

Nitrite (mg/L) 1.20 1.20 N.D N.D 

Nitrate/Nitrite Nitrogen (mg/L) 1.10 0.50 0.97 0.70 

Phosphate (mg/L) 0.42 0.35 0.29 0.23 

Sulfate (mg/L) 30.1 27.3 24.0 9.9 

Soluble Phosphate (mg P/L) 0.090 0.075 0.153 0.086 

Phosphorus (dissolved ortho) (mg/L) 0.107 0.100 0.095 0.090 

Total Phosphorus (mg P/L) 0.28 0.25 0.22 0.18 

Total Kjeldahl Nitrogen (mg/L) 2.63 2.63 1.76 1.18 

Total Dissolved Solids (mg/L) 497.8 328.0 336.6 157.0 

Total Suspended Solids (mg/L) 231.0 197.5 142.5 92.0 

Total Solids (mg/L) 529.0 560.0 432.7 370.0 

Volatile Dissolved Solids (mg/L) 47.2 48.0 60.0 37.0 

Volatile Suspended Solids (mg/L) 68.0 63.0 72.7 66.0 

Total Volatile Solids (mg/L) 103.7 106.0 109.0 101.0 

Alkalinity as CaCO3 (mg/L) 58.1 55.8 44.0 39.4 

Oil and Grease (mg/L) 9.7 9.7 9.6 9.6 

TEH as Diesel (μg/L) 610.7 260.0 401.0 420.0 

BOD (mg/L) 19.7 18.0 13.3 11.5 

COD (mg/L) 72.7 29.2 53.5 29.0 

n-Hexane (μg/L) N.D N.D N.D N.D 

Methyl t-Butyl Ether (μg/L) N.D N.D N.D N.D 

Benzene (μg/L) N.D N.D N.D N.D 

Toluene (μg/L) N.D N.D N.D N.D 

Ethylbenzene (μg/L) N.D N.D N.D N.D 

Napthalene (μg/L) N.D N.D N.D N.D 
N.D: Non-detected 
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Table 5.6 Arithmetic mean and median for first flush and event mean concentrations for site E 

for all sampled events 
 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Antimony (total)
a
 (mg/L) 0.002 0.002 0.003 0.003 

Arsenic (total)
a
 (mg/L) 0.0035 0.0035 0.0028 0.003 

Beryllium (total)
a
 (mg/L) N.D N.D N.D N.D 

Cadmium (dissolved)
b (mg/L) 0.0010 0.0010 0.0023 0.0023 

Cadmium (total)
a
 (mg/L) N.D N.D N.D N.D 

Calcium (dissolved)
b
 (mg/L) 41.4 22.8 29.2 21.7 

Calcium (total)
a
 (mg/L) 70.4 85.7 41.4 32.8 

Chromium (dissolved)
b
 (mg/L) 0.008 0.01 0.009 0.008 

Chromium (total)
a
 (mg/L) 0.020 0.020 0.018 0.020 

Copper (dissolved)
b
 (mg/L) 0.01 0.01 0.01 0.01 

Copper (total)
a
 (mg/L) 0.02 0.02 0.014 0.03 

Iron (dissolved)
b
 (mg/L) 0.04 0.01 0.03 0.01 

Lead (dissolved)
b
 (mg/L) 0.04 0.003 0.04 0.005 

Lead (total)
a
 (mg/L) 0.007 0.005 0.003 0.007 

Magnesium (dissolved)
b
 (mg/L) 5.14 2.60 4.50 3.25 

Magnesium (total)
a
 (mg/L) 8.83 7.84 6.56 4.27 

Mercury (dissolved)
b
 (mg/L) 0.0032 0.0027 0.0031 0.0027 

Mercury (total)
a
 (mg/L) N.D N.D N.D N.D 

Nickel (dissolved)
b
 (mg/L) 0.010 0.010 N.D N.D 

Nickel (total)
a
 (mg/L) 0.00 0.00 0.00 0.00 

Potassium (dissolved)
b
 (mg/L) 7.62 5.00 8.7 8.2 

Selenium (total)
a
 (mg/L) 0.0020 0.0020 0.0300 0.0300 

Silver (total)
a
 (mg/L) N.D N.D N.D N.D 

Sodium (dissolved)
b
 (mg/L) 207 107 133 107 

Sodium (total)
a
 (mg/L) 343.9 380.0 171.6 128.5 

Thallium (total)
a
 (mg/L) N.D N.D N.D N.D 

Zinc (dissolved)
b
 (mg/L) 52.3 10.0 31.3 2.3 

Zinc (total)
a
 (mg/L) 0.11 0.07 0.077 0.08 

Silica (mg/L) 7.25 2.34 6.28 4.70 
N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 
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Table 5.6 Arithmetic mean and median for first flush and event mean concentrations for site E 

for all sampled events (cont.) 

 

Analyte Unit 
First Flush EMC 

Mean Median Mean Median 

Bromide (mg/L) N.D N.D N.D N.D 

Chloride (mg/L) 246 196 207 149 

Fluoride (mg/L) 0.39 0.38 0.26 0.22 

Nitrate (mg/L) 0.6 0.7 0.6 0.6 

Nitrite (mg/L) 0.37 0.37 0.37 0.37 

Nitrate/Nitrite Nitrogen (mg/L) 0.73 0.40 0.78 0.50 

Phosphate (mg/L) 0.32 0.38 0.26 0.23 

Sulfate (mg/L) 55.5 36.6 55.2 40.6 

Soluble Phosphate (mg P/L) 0.187 0.069 0.066 0.060 

Phosphorus (dissolved ortho) (mg/L) 0.055 0.055 0.105 0.105 

Total Phosphorus (mg P/L) 0.17 0.15 0.18 0.16 

Total Kjeldahl Nitrogen (mg/L) 1.79 1.77 1.50 1.19 

Total Dissolved Solids (mg/L) 717.8 537.0 516.7 470.0 

Total Suspended Solids (mg/L) 239.4 172.5 248.6 190.0 

Total Solids (mg/L) 871.7 785.0 843.0 825.0 

Volatile Dissolved Solids (mg/L) 59.8 45.0 98.7 52.0 

Volatile Suspended Solids (mg/L) 92.2 84.0 69.2 55.0 

Total Volatile Solids (mg/L) 128.0 97.0 117.0 91.0 

Alkalinity as CaCO3 (mg/L) 83.9 88.3 84.3 68.8 

Oil and Grease (mg/L) 11.5 11.5 8.8 8.8 

TEH as Diesel (μg/L) 310.3 160 407.8 275.0 

BOD (mg/L) 11.0 11.0 13.8 11.0 

COD (mg/L) 66.8 49.6 69.5 52.3 

n-Hexane (μg/L) N.D N.D N.D N.D 

Methyl t-Butyl Ether (μg/L) N.D N.D N.D N.D 

Benzene (μg/L) 0.06 0.06 0.06 0.06 

Toluene (μg/L) 0.11 0.1 0.08 0.08 

Ethylbenzene (μg/L) N.D N.D N.D N.D 

Napthalene (μg/L) 0.105 0.105 0.08 0.08 
N.D: Non-detected 
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5.3 Pollutant loads 

The mean and median values for the pollutant loads from the east, west, and basin outlet 

pipes are shown in table 5.7 and table 5.8. Table 5.7 included the pollutant loads for the 

September 3, 2009 rainfall event. This event was the largest rainfall event sampled in this study; 

therefore, runoff from subbasin 2 (ditch), subbasin 4 (grass strip), and subbasin 6 (detention 

basin) contributed to the pollutant loads at the detention basin outlet. Table 5.8 excluded the 

pollutant loads from this rainfall event. The average annual loads for the east, west, basin outlet 

pipes are shown in table 5.9. The complete results can be seen in Appendix D. 
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Table 5.7 Arithmetic mean and median for pollutant loads for the west, east, and basin outlet 

pipes for all sampled events  

 

Analyte 

Load (Kg/event) 

West Outlet Pipe East Outlet Pipe Basin Outlet Pipe 

Mean Median Mean Median Mean Median 

Antimony (total)a 3.12E-05 3.24E-05 2.74E-05 3.24E-05 1.25E-04 7.76E-05 

Arsenic (total)a 3.81E-05 3.81E-05 1.68E-05 1.36E-05 5.62E-04 1.03E-04 

Beryllium (total)a N.D N.D N.D N.D N.D N.D 

Cadmium (dissolved)b 1.62E-05 1.62E-05 2.03E-05 2.03E-05 7.66E-05 7.66E-05 

Cadmium (total)a 1.84E-05 1.84E-05 1.84E-05 1.84E-05 N.D N.D 

Calcium (dissolved)b 1.27 0.306 1.22 0.251 18.3 1.77 

Calcium (total)a 0.675 0.241 0.35 0.193 5.53 1.72 

Chromium (dissolved)b 2.07E-04 1.17E-04 2.78E-04 1.21E-04 0.00308 0.00065 

Chromium (total)a 2.59E-04 3.67E-04 1.73E-04 2.45E-04 0.00280 0.00176 

Copper (dissolved)b 4.71E-04 2.43E-04 4.84E-04 2.13E-04 0.00370 0.00114 

Copper (total)a 2.88E-04 2.98E-04 2.28E-04 2.11E-04 0.00293 0.00155 

Iron (dissolved)b 0.00134 0.0013 0.00671 0.0015 0.017 0.0011 

Lead (dissolved)b 6.98E-05 2.89E-05 6.66E-05 3.58E-05 7.16E-04 7.66E-05 

Lead (total)a 1.02E-04 4.76E-05 7.48E-05 4.46E-05 0.00159 4.08E-04 

Magnesium 

(dissolved)b 
0.0481 0.0112 0.106 0.0122 4.48 0.242 

Magnesium (total)a 0.033 0.0156 0.0203 0.0123 0.825 0.135 

Mercury (dissolved)b N.D N.D N.D N.D N.D N.D 

Mercury (total)a N.D N.D N.D N.D N.D N.D 

Nickel (dissolved)b 1.22E-04 1.03E-04 1.48E-04 1.22E-04 0.0016 0.000240 

Nickel (total)a 1.84E-04 1.84E-04 1.22E-04 1.22E-04 0.0016 0.000240 

Potassium (dissolved)b 0.153 0.0298 0.147 0.0276 14.8 0.675 

Selenium (total)a 1.36E-05 1.36E-05 N.D N.D 0.00228 0.00228 

Silver (total)a N.D N.D N.D N.D N.D N.D 

Sodium (dissolved)b 1.62 0.64 2.39 1.04 94.1 7.54 

Sodium (total)a 2.85 0.265 1.35 0.228 14.0 5.5 

Thallium (total)a N.D N.D N.D N.D N.D N.D 

Zinc (dissolved)b 0.00159 1.02E-03 0.001374 6.84E-04 0.00714 0.00256 

Zinc (total)a 0.00157 1.04E-03 0.00143 1.19E-03 0.00915 0.00465 

Silica 0.0419 0.0529 0.0531 0.0427 0.347 0.278 

Bromide 0.0476 0.0476 N.D N.D N.D N.D 

Chloride 3.35 0.417 2.46 1.13 74.0 10.6 

Fluoride 0.0193 0.00651 0.0164 0.00727 0.116 0.0203 

Nitrate 0.0606 0.0180 0.0313 0.00858 0.590 0.0422 

Nitrite N.D N.D N.D N.D N.D N.D 

Nitrate/Nitrite 

Nitrogen 
0.01014 0.00306 0.01018 0.00809 0.099 0.075 

Phosphate 0.0416 0.0104 0.0323 0.00892 0.254 0.0351 

Sulfate 0.856 0.338 0.907 0.329 43.4 3.21 

Soluble Phosphate 0.0125 0.0026 0.0109 0.0034 0.034 0.00717 

Phosphorus (dissolved 

ortho) 
6.83E-04 5.51E-04 6.34E-04 7.22E-04 0.0515 0.0041 

Total Phosphorus 0.00829 0.00356 0.00758 0.00350 0.0471 0.0107 

Total Kjeldahl 

Nitrogen 
0.103 0.02 0.0712 0.0150 0.603 0.0731 

Total Dissolved Solids 12.5 2.50 5.46 3.06 274 19.2 

Total Suspended Solids 7.04 1.28 4.70 1.21 184 7.20 

Total Solids 26.1 4.19 17.5 7.16 721 32.1 

Volatile Dissolved 

Solids 
2.43 0.82 2.33 0.84 103 39.9 

Volatile Suspended 11.4 0.61 6.58 1.45 17.8 3.94 
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Analyte 

Load (Kg/event) 

West Outlet Pipe East Outlet Pipe Basin Outlet Pipe 

Mean Median Mean Median Mean Median 

Solids 

Total Volatile Solids 13.4 1.18 8.31 2.30 69.3 5.23 

Alkalinity as CaCO3 3.19 0.810 3.43 0.76 61.4 4.98 

Oil and Grease N.D N.D N.D N.D N.D N.D 

TEH as Diesel 1.21 0.00318 1.10 0.0035 0.0348 0.0522 

BOD 0.101 0.0651 0.100 0.07 1.60 0.67 

COD 1.13 0.298 0.523 0.41 30.5 2.48 

n-Hexane N.D N.D N.D N.D N.D N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D 

Toluene N.D N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D N.D N.D 

N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 
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Table 5.8 Arithmetic mean and median for pollutant loads for the west, east, and basin outlet 

pipes for all sampled events (excluding 9/03/09 event)  

 

Analyte 

Load (Kg/event) 

West Outlet Pipe East Outlet Pipe Basin Outlet Pipe 

Mean Median Mean Median Mean Median 

Antimony (total)
a
 3.12E-05 3.24E-05 2.74E-05 3.24E-05 1.25E-04 7.76E-05 

Arsenic (total)
a
 3.81E-05 3.81E-05 1.68E-05 1.36E-05 5.62E-04 1.03E-04 

Beryllium (total)
a
 N.D N.D N.D N.D N.D N.D 

Cadmium 

(dissolved)
b 1.62E-05 1.62E-05 2.03E-05 2.03E-05 7.66E-05 7.66E-05 

Cadmium (total)
a
 1.84E-05 1.84E-05 1.84E-05 1.84E-05 N.D N.D 

Calcium (dissolved)
b
 0.244 0.258 0.193 0.246 1.66 1.77 

Calcium (total)
a
 0.675 0.241 0.354 0.193 4.51 1.72 

Chromium 

(dissolved)
b
 

1.48E-04 1.16E-04 1.14E-04 9.32E-05 1.55E-03 6.53E-04 

Chromium (total)
a
 2.59E-04 3.67E-04 1.73E-04 2.45E-04 0.00280 0.00176 

Copper (dissolved)
b
 2.43E-04 2.02E-04 2.23E-04 2.01E-04 0.00163 0.00114 

Copper (total)
a
 2.88E-04 2.98E-04 2.28E-04 2.11E-04 0.00237 0.00155 

Iron (dissolved)
b
 8.87E-04 1.02E-03 6.71E-03 8.30E-04 0.0202 0.00109 

Lead (dissolved)
b
 6.17E-05 2.02E-05 5.81E-05 3.53E-05 6.28E-04 7.66E-05 

Lead (total)
a
 1.02E-04 4.76E-05 7.48E-05 4.46E-05 0.001276 4.08E-04 

Magnesium 

(dissolved)
b
 

0.0125 0.00973 0.0137 0.0117 0.329 0.242 

Magnesium (total)
a
 0.0332 0.0156 0.0203 0.0123 0.687 0.135 

Mercury (dissolved)
b
 7.84E-05 5.42E-05 9.63E-05 8.14E-05 4.33E-04 3.34E-04 

Mercury (total)
a
 N.D N.D N.D N.D N.D N.D 

Nickel (dissolved)
b
 8.03E-05 2.24E-05 1.14E-04 7.60E-05 5.06E-04 2.40E-04 

Nickel (total)
a
 1.84E-04 1.84E-04 1.22E-04 1.22E-04 #DIV/0! #NUM! 

Potassium 

(dissolved)
b
 

0.0251 0.0260 0.0290 0.0267 0.636 0.675 

Selenium (total)
a
 1.36E-05 1.36E-05 N.D N.D 0.00228 0.00228 

Silver (total)
a
 N.D N.D N.D N.D N.D N.D 

Sodium (dissolved)
b
 0.531 0.506 0.866 0.942 8.24 7.54 

Sodium (total)
a
 2.85 0.265 1.35 0.228 11.5 5.53 

Thallium (total)
a
 N.D N.D N.D N.D N.D N.D 

Zinc (dissolved)
b
 0.00159 0.00102 0.00137 6.84E-04 0.00722 0.00455 

Zinc (total)
a
 0.00157 0.00104 0.00143 0.00119 0.00744 0.00465 

Silica 0.0524 0.0555 0.0664 0.0643 0.521 0.456 

Bromide N.D N.D N.D N.D N.D N.D 

Chloride 3.00 0.407 1.75 0.786 12.2 10.6 

Fluoride 0.00633 0.00603 0.00623 0.00638 0.0214 0.0203 

Nitrate 0.0141 0.0134 0.00821 0.00755 0.0416 0.0422 

Nitrite N.D N.D N.D N.D N.D N.D 

Nitrate/Nitrite 

Nitrogen 
0.0101 0.00306 0.0102 0.00809 0.0821 0.0748 

Phosphate 0.00785 0.00773 0.00659 0.00746 0.0308 0.0351 

Sulfate 0.295 0.313 0.258 0.277 3.94 3.21 

Soluble Phosphate 0.00531 0.00185 0.00399 0.00240 0.00783 0.00717 

Phosphorus 

(dissolved ortho) 
6.83E-04 5.51E-04 6.34E-04 7.22E-04 0.0347 0.00413 

Total Phosphorus 0.00255 0.00303 0.00277 0.00312 0.0357 0.0107 
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Analyte 

Load (Kg/event) 

West Outlet Pipe East Outlet Pipe Basin Outlet Pipe 

Mean Median Mean Median Mean Median 

Total Kjeldahl 

Nitrogen 
0.0171 0.0184 0.0167 0.0117 0.162 0.0731 

Total Dissolved 

Solids 
6.86 2.17 3.85 2.52 37.9 19.2 

Total Suspended 

Solids 
1.58 1.07 0.990 0.759 30.4 7.20 

Total Solids 4.02 3.88 7.41 5.94 89.1 32.1 

Volatile Dissolved 

Solids 
0.697 0.749 2.33 0.843 21.9 21.9 

Volatile Suspended 

Solids 
0.701 0.554 1.08 1.09 3.64 3.94 

Total Volatile Solids 1.23 1.12 2.77 1.68 14.6 5.23 

Alkalinity as CaCO3 0.726 0.719 0.717 0.681 6.68 4.98 

Oil and Grease N.D N.D N.D N.D N.D N.D 

TEH as Diesel 1.21 0.00318 1.10 0.00349 1.80 0.0522 

BOD 0.101 0.0651 0.0996 0.0683 1.37 0.673 

COD 1.13 0.298 0.523 0.409 7.15 2.48 

n-Hexane N.D N.D N.D N.D N.D N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D 

Toluene N.D N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D N.D N.D 

N.D: Non-detected 
a
 Total metal concentrations were analyzed for 2010 samples. 

b
 Dissolved metal concentrations were analyzed for 2008 and 2009 samples. 
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Table 5.9 Annual pollutant loads for the west, east, and basin outlet pipes  

 

Analyte 

Annual Load (Kg/yr) 

West Outlet 

Pipe 
East Outlet Pipe Total Pollutant Load 

Antimony (total) 0.0091 0.21 0.217 

Arsenic (total) 0.010 0.17 0.185 

Beryllium (total) 0.0020 0.058 0.060 

Cadmium (dissolved) 0.0029 0.16 0.168 

Cadmium (total) 0.0060 0.17 0.180 

Calcium (dissolved) 19.1 50.1 69.1 

Calcium (total) 131 2368 2499 

Chromium (dissolved) 0.029 0.77 0.796 

Chromium (total) 0.074 1.55 1.62 

Copper (dissolved) 0.040 0.92 0.964 

Copper (total) 0.085 1.89 1.97 

Iron (dissolved) 0.070 0.88 0.953 

Lead (dissolved) 0.012 0.27 0.280 

Lead (total) 0.032 0.67 0.702 

Magnesium (dissolved) 0.90 2.89 3.79 

Magnesium (total) 8.55 177 186 

Mercury (dissolved) 0.0049 0.012 0.0165 

Nickel (dissolved) 0.017 0.59 0.605 

Nickel (total) 0.060 1.16 1.22 

Potassium (dissolved) 2.99 6.69 9.68 

Selenium (total) 0.0020 N.D 0.0020 

Sodium (dissolved) 52.3 199 251 

Sodium (total) 475 7934 8409 

Zinc (dissolved) 0.25 5.97 6.21 

Zinc (total) 0.47 11.9 12.3 

Silica 3.02 8.26 11.3 

Chloride 432 6189 6621 

Fluoride 0.38 0.87 1.25 

Nitrate 0.85 1.60 2.45 

Nitrate/Nitrite Nitrogen 1.85 53.8 55.6 

Phosphate 0.57 1.03 1.60 

Sulfate 41.5 95.1 137 

Soluble Phosphate 0.33 0.58 0.906 

Phosphorus (dissolved ortho) 0.20 5.09 5.29 

Total Phosphorus 0.44 8.58 9.02 

Total Kjeldahl Nitrogen 3.82 51.5 55.3 

Total Dissolved Solids 1074 12826 13899 

Total Suspended Solids 378 4154 4532 

Total Solids 578 1191 1769 

Volatile Dissolved Solids 27.4 214 241 

Volatile Suspended Solids 147 237 384 

Total Volatile Solids 147 349 496 

Alkalinity as CaCO3 64.9 157 222 

Oil and Grease 18.5 34 52.3 

TEH as Diesel 0.826 22.96 23.8 

BOD 26.6 721 748 

COD 168 2341 2509 

N.D: Non-detected  
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Chapter 6 Data Analysis and Discussion of Results 

6.1 Correlations Between Pollutant Concentrations and Factors Affecting Highway Runoff  

Previous studies on highway runoff pollution found that several factors may have an 

influence on the pollutant concentrations and loads (Hoffman et al. 1985; Kerri et al. 1985; 

Dricoll et al. 1991). For this study, concentration of total suspended solids, antecedent dry period 

(ADP), rainfall amount, and volume of runoff were compared against pollutant concentrations 

and loads to see if they correlated. Chromium (Cr), copper (Cu), lead (Pb), chloride (Cl
-
), and 

total phosphorus (TP) were selected because these pollutants were present in all the rainfall 

events sampled.      

6.1.1 Pollutant Relationship with Total Suspended Solids 

 Concentrations and loads for chromium (Cr), copper (Cu), lead (Pb), chloride   (Cl
-
), and 

total phosphorus (TP) were compared to the concentration of total suspended solids for each of 

the sampled events for the west, east, and basin outlet pipes. These comparisons are shown in 

figures 6.1 through 6.15. From these figures, it is noticeable that most of the samples have a TSS 

concentration between 0 to 300 mg/L. Results from the literature showed a high correlation 

between TSS and the runoff pollutants (Driscoll et al. 1990; Sansalone et al. 1995). A poor linear 

correlation can be observed for the EMC for heavy metals (Cr, Cu, and Pb) and TP 

concentrations from the West and East outlet pipes. This correlation is not evident for the Basin 

outlet pipe, or for Cl
-
 in any of the pipes.  

 A strong correlation between TSS and heavy metals was expected because these elements 

tend to adsorb onto suspended solids. This relationship is important because if the metals are 

adsorbed to suspended solids, treating or removing solids would reduce the concentrations and 

loads of the pollutants associated with suspended solids. This relationship may not be well 
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observed in this study due to the high variability of TSS concentrations at the east and west pipe 

outlets.        

6.1.2 Pollutant Relationship with Antecedent Dry Period 

Concentrations and loads for chromium (Cr), copper (Cu), lead (Pb), chloride   (Cl
-
), and 

total phosphorus (TP) were compared to the antecedent dry periods for each of the sampled 

events for the west, east, and basin outlet pipes. This comparison is shown in figures 6.16 

through 6.30. It was expected that concentrations, especially the first flush concentrations, would 

be higher for longer ADP; however, the figures do not show any type of trend. It seems that 

concentrations are independent from ADP.   
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Figure 6.1 Cr and TSS concentrations for the west pipe outlet  

Figure 6.2 Cr and TSS concentrations for the east pipe outlet 
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Figure 6.3 Cr and TSS concentrations for the basin outlet pipe 

 

Figure 6.4 Cu and TSS concentrations for the west pipe outlet 
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Figure 6.5 Cu and TSS concentrations for the east pipe outlet 

Figure 6.6 Cu and TSS concentrations for the basin outlet pipe 
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Figure 6.7 Pb and TSS concentrations for the west pipe outlet  

 

Figure 6.8 Pb and TSS concentrations for the east pipe outlet 
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Figure 6.9 Pb and TSS concentrations for the basin outlet pipe 

Figure 6.10 Cl
-
 and TSS concentrations for the west pipe outlet 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0

0.002

0.004

0.006

0.008

0.01

0.012
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

P
o

llu
ta

n
t 

Lo
ad

 (
K

g/
Ev

en
t)

 

P
b

 C
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

TSS Concentration (mg/L) 

Pb conc. vs TSS Concentration for the Basin Outlet Pipe 

First Flush

EMC

Load

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0

50

100

150

200

250

300

350

400

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

P
o

llu
ta

n
t 

Lo
ad

 (
K

g/
Ev

e
n

t)
 

C
l-  C

o
n

ce
n

tr
at

io
n

 (
m

g/
L)

 

TSS Concentration (mg/L) 

Cl- conc. vs TSS Concentration for the West Pipe Outlet  

First Flush

EMC

Load



 

 

60 

Figure 6.11 Cl
-
 and TSS concentrations for the east pipe outlet 

 

Figure 6.12 Cl
-
 and TSS concentrations for the basin outlet pipe 
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Figure 6.13 TP and TSS concentrations for the west pipe outlet 

Figure 6.14 TP and TSS concentrations for the east pipe outlet 
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Figure 6.15 TP and TSS concentrations for the basin outlet pipe 

Figure 6.16 Cr and ADP for the west pipe outlet 
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Figure 6.17 Cr and ADP for the east pipe outlet  

Figure 6.18 Cr and ADP for the basin outlet pipe  
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Figure 6.19 Cu and ADP for the west pipe outlet 

Figure 6.20 Cu and ADP for the east pipe outlet 
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Figure 6.21 Cu and ADP for the basin outlet pipe   

Figure 6.22 Pb and ADP for the west pipe outlet  
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Figure 6.23 Pb and ADP for the east pipe outlet 

Figure 6.24 Pb and ADP for the basin outlet pipe 
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Figure 6.25 Cl
-
 and ADP for the west pipe outlet 

Figure 6.26 Cl
-
 and ADP for the east pipe outlet 
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Figure 6.27 Cl
-
 and ADP for the basin outlet pipe 

Figure 6.28 TP and ADP for the west pipe outlet 
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Figure 6.29 TP and ADP for the east pipe outlet 

Figure 6.30 TP and ADP for the basin outlet pipe 
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6.1.3 Pollutant Relationship with Total Rainfall 

Concentrations and loads for chromium (Cr), copper (Cu), lead (Pb), chloride (Cl
-
) 

and total phosphorus (TP) were compared to the total rainfall for each of the sampled 

events for the west, east, and basin outlet pipes. This comparison is shown in figures 6.31 

through 6.45. The figures do not show a clear relationship between concentrations and 

total rainfall for any of the analytes used in the comparison. Concentrations for high 

intensity events seem to be lower than for lower intensity storms. However, during the 

study, few high intensity storms were sampled; therefore, it is not possible to be 

completely sure about this trend.   

6.1.4 Pollutant Relationship with Volume of Runoff 

Concentrations and loads for chromium (Cr), copper (Cu), lead (Pb), chloride (Cl
-
) 

and total phosphorus (TP) were compared to the volume of runoff for each of the 

sampled events for the west, east, and basin outlet pipes. This comparison is shown in 

figures 6.46 through 6.60. Concentrations for chromium, copper, lead, and total 

phosphorus seem to be unaffected by the volume of runoff for the east and west pipe.     
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Figure 6.31 Cr concentration and total rainfall for the west pipe outlet 

Figure 6.32 Cr concentration and total rainfall for the east pipe outlet 
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Figure 6.33 Cr concentration and total rainfall for the basin outlet pipe 

Figure 6.34 Cu concentration and total rainfall for the west pipe outlet 
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Figure 6.35 Cu concentration and total rainfall for the east pipe outlet 

Figure 6.36 Cu concentration and total rainfall for the basin outlet pipe 
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Figure 6.37 Pb concentration and total rainfall for the west pipe outlet 

Figure 6.38 Pb concentration and total rainfall for the east pipe outlet 
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Figure 6.39 Pb concentration and total rainfall for the basin outlet pipe 

Figure 6.40 Cl
-
 concentration and total rainfall for the west pipe outlet 
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Figure 6.41 Cl
-
 concentration and total rainfall for the east pipe outlet 

Figure 6.42 Cl
-
 concentration and total rainfall for the basin outlet pipe 
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Figure 6.43 TP concentration and total rainfall for the west pipe outlet 

Figure 6.44 TP concentration and total rainfall for the east pipe outlet 
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Figure 6.45 TP concentration and total rainfall for the basin outlet pipe 

Figure 6.46 Cr concentration and volume of runoff for the west pipe outlet 
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Figure 6.47 Cr concentration and volume of runoff for the east pipe outlet 

 

 

Figure 6.48 Cr concentration and volume of runoff for the basin outlet pipe 
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Figure 6.49 Cu concentration and volume of runoff for the west pipe outlet 

 

 

Figure 6.50 Cu concentration and volume of runoff for the east pipe outlet 
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Figure 6.51 Cu concentration and volume of runoff for the basin outlet pipe  

 

 

Figure 6.52 Pb concentration and volume of runoff for the west pipe outlet 
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Figure 6.53 Pb concentration and volume of runoff for the east pipe outlet 

 

Figure 6.54 Pb concentration and volume of runoff for the basin outlet pipe  

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

P
o

llu
ta

n
t 

Lo
ad

 (
K

g)
 

P
b

 C
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

Volume of Runoff (in) 

Pb conc. vs Volume of Runoff for the East Pipe Outlet 

First Flush

EMC

Load

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0
.5 1

1
.5 2

2
.5 3

3
.5

P
o

llu
ta

n
t 

Lo
ad

 (
K

g)
 

P
b

  C
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

Volume of Runoff (in) 

Pb conc. vs Volume of Runoff for the Basin Outlet Pipe 

First Flush

EMC

Load



 

 

83 

Figure 6.55 Cl
-
 concentration and volume of runoff for the west pipe outlet  

 

 

Figure 6.56 Cl
-
 concentration and volume of runoff for the east pipe outlet 
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Figure 6.57 Cl
-
 concentration and volume of runoff for the basin outlet pipe  

 

 

Figure 6.58 TP concentration and volume of runoff for the west pipe outlet  
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Figure 6.59 TP concentration and volume of runoff for the east pipe outlet 

 

Figure 6.60 TP concentration and volume of runoff for the basin outlet pipe 
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6.2 Comparison with Similar Studies 

 As mentioned in the introduction, highway runoff pollution has been a study subject for 

the past 30 yrs. Table 6.1 shows a comparison between the EMC from the current study and 

other studies done in California (Kayhanian et al. 2007), North Carolina (Wu et al. 1998), Texas 

(Barret et al. 1998), and a summary of several studies done by the Federal Highway 

Administration (FHWA) (Driscoll et al. 1990b).  

Kayhanian et al. (2007) obtained samples from 34 highway sites in California, covering 

different annual average daily traffic levels and environmental conditions. Table 6.2 shows the 

characteristics of the sampled sites by Kayhanian et al.  

Wu et al. (1998) studied three highway sites located inside the city of Charlotte. The site 

used for comparison purposes is a section of the W.T. Harries Blvd. that carries an average 

traffic of 25,000 vehicles/day and is a major artery around the north and east sites of the city of 

Charlotte, extending from I-77 on the north to U.S. 74 on the southeast. The drainage area was 

0.37 acres and the surrounding land use was 69% woods, 24% residential, and 6% heavy 

commercial.  

Barret et al. (1998) monitored three sites along the MoPac Expressway in the Austin, 

Texas area. The site selected for comparison with this study was the MoPac at 35
th

 Street which 

had an average daily traffic of 60,000 vehicles per day. The land use of the area adjacent to the 

highway was mixed residential and commercial and the catchment area was 1.32 acres. 

Driscoll et al. (1990) compiled results from 31 sites around the United States. Table 6.3 

show the location and characteristics of the sites compiled by Driscoll et al.  
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Table 6.1 Comparison with similar studies  

<DL: Below detection limit 
a
 W.T. Harries Blvd, Charlotte, NC. ADT 25,000 vehicles/day. Drainage area 0.37 acres. Adjacent area: woods, residential, heavy commercial. 

b
  34 highway sites in California. Detailed information about the sites can be found in table 6.2. 

c
 MoPac at 35

th
 Street, Austin, TX. ADT 60,000 vehicles/day. Catchment area 1.32 acres. Adjacent area: residential and commercial. 

d 
31 sites along the United States. Detailed information can be found in table 6.3.

Analyte 

NDOR Study Wu et al.a Kayhanian et al.b Barret et al.c Driscoll et al.d 

West Pipe (EMC) East pipe (EMC) Monitoring Site I (EMC) 
Range 

 

Median 

 

Mean 

 

35th Street (EMC) 
National Highway Runoff 

Report 

Range Median Mean Range Median Mean Range Median Mean Range Median Mean Range Median Mean 

Cu (μg/L) 5 - 115.2 30 48 5.1 - 76.8 17 26 
9.0 - 

52 
15 24.2 1.1 - 130 14.9 10.2 

2.0 – 

120 
34 38 5 - 155 52 39 

Cd (μg/L) - 3 3 - 2.8 2.8 <DL <DL <DL 0.2 - 8.4 0.24 0.13 - - - - - - 

Cr (μg/L) 
1.3 - 

58.9 
30 40 1.1 - 39.3 20 27 

5.0 - 

20 
6.5 8.1 1.0 - 23 3.3 2.2 - - - - - - 

Pb (μg/L) 
0.2 - 

47.1 
7 19 0.2 - 30.8 6 14 

7.0 - 

56 
15 21 1.0 - 480 7.6 1.2 7 – 440 50 99 

11 - 

1457 
525 234 

Fe (μg/L) 2.8 - 125 40 50 2.9 – 106 3 4.5 - - - 32 - 3310 378 150 
300 – 

10000 
2606 3537 - - - 

Ni (μg/L) 
0.6 - 

29.9 
N.D. 10 

0.6 – 

20.0 
N.D. 9 

9.0 - 

17 
9 8.1 1.1 - 40 4.9 3.4 - - - - - - 

Zn (μg/L) 4.5 – 82 11.5 27.3 0.7 - 66 12.5 23.5 - - - 3 - 1017 68.8 40.4 34 – 590 208 237 
40 - 

2892 
368 217 

TDS (mg/L) 
42 – 

3226 
122 509 10 - 1334 157 332 

61 - 

577 
107 157 3.7 - 1800 87.3 60.3 - - 

 
- - - 

TSS (mg/L) 
47 – 

1040 
116 240 10 - 419 70 120 

32 - 

771 
215 283 1. - 2988 112.7 59.1 33 – 914 131 202 9 - 406 143 93 

COD (mg/L) 
14.6 – 

276 
46 90 

20.1 – 

200 
30.6 52.1 

4 - 

177 
48 70 - - - 18 – 464 126 149 

41 - 

291 
103 84 

NO3 + 

N2
- (mg/L) 0.2 - 2.4 0.5 0.8 0.23 - 1.8 0.5 0.63 

0.08 - 

13.37 
0.38 2.25 0.01 - 4.8 1.07 0.6 

0.0 – 

3.66 
1.03 1.25 

0.19 - 

3.32 
0.84 0.66 

TKN (mg/L) 
0.64 - 

9.04 
1.62 2.40 

0.49 - 

3.86 
1.2 1.71 

0.76 - 

2.45 
1 1.42 0.1 - 17.7 2.06 1.4 - - - 

0.38 - 

3.51 
1.79 1.48 

Ortho 

P 
(mg/L) - - - - - - 

0.01 - 

0.74 
0.08 0.15 0.01 - 2.4 0.11 0.06 - - - - - - 

Total P (mg/L) 
0.05 - 

0.81 
0.22 0.248 

0.07 - 

0.51 
0.2 0.215 

0.04 - 

1.54 
0.2 0.43 

0.03 - 

4.69 
0.29 0.18 

0.07 - 

1.09 
0.33 0.42 - - - 

O&G (mg/L) - < DL < DL - < DL < DL 
1.0 - 

11-1 
3.3 4.4 1. - 20 6.6 6 

0.8 - 

35.1 
4.1 6.5 - - - 
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Table 6.2 Characteristics of the sampled sites by Kayhanian et al. 

Monitoring site 

identification 
Highway 

Average 

annual 

rainfall (mm) 

Catchments 

area (ha) 

Average 

annual daily 

traffic 

Surrounding land use
a
 

1-34 299 1016 0.20 9100 Rural 

1-35 36 1016 0.48 3300 Rural 

1-36 101 1016 0.87 5800 Rural 

1-39 175 914 0.35 1800 Rural 

2-01 36 889 0.65 2150 Rural 

2-02 5 889 0.65 29,000 Rural 

3-05 99 381 0.08 47,500 Commercial 

3-06 80 762 0.60 74,000 Commercial 

3-07 50 533 0.70 127,000 Commercial 

3-224 65 742 1.21 36,000 Commercial 

4-35 680 635 0.65 53,000 Rural residential 

4-38 680 635 0.14 13,200 Agricultural, rural 

4-39 580 635 0.09 134,000 Rural 

5-03 25 660 0.04 2250 Rural 

5-04 46 558 1.30 23,000 Rural 

5-05 227 584 0.01 15,000 Commercial 

5-06 1 660 5.95 55,000 Rural 

6-05 198 178 0.37 14200 Agricultural 

6-06 99 178 0.25 43,000 Agricultural 

6-205 180 279 0.75 7200 Residential, Commercial 

6-209 41 279 0.18 127,000 Residential 

7-201 101 226 1.28 328,000 Residential 

7-202 405 209 1.69 260,000 Residential, commercial 

7-203 405 228 0.39 322,000 Residential, commercial 

8-07 10 260 1.20 18,300 Rural 

8-08 10 381 0.48 63,000 Residential 

8-10 91 279 1.21 231,000 Rural 

9-01 395 152 0.82 5800 Rural 

10-02 120 965 0.73 4950 Mixed use 

10-03 5 330 0.48 70,000 Rural 

10-04 132 787 0.65 2100 Commercial 

11-98 805 254 0.77 177,000 Residential, commercial 

11-100 805 254 1.13 212,000 Residential, Army 

11-101 8 330 0.19 175,000 Rural 

           aRunoff from surrounding land use did not contribute to the monitored drainage area. 
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 Table 6.3 Characteristics of study sites compiled by Driscoll et al. 

Site Location 

Avg. Daily Traffic 

(1000 VDP) 

Number of Traffic 

Lanes 
Section Type 

Surface 

Type 
Curb Land Use 

Area 

(Acres) 

Percentage 

Impervious 

Annual 

Rainfall 

(in/yr) Total 
Monitored 

Lanes 
Total 

Monitored 

Lanes 

Little Rock I-30 42 42 4 4 Bridge, fill Asphalt No Urban – Residential 1.5 90 48.7 

Los Angeles I-405 200 200 8 8 Fill Concrete Yes 
Urban – Commercial/ 

residential 
3.2 100 12.6 

Sacramento Hwy 50 86 43 8 4 At grade Concrete Yes Urban – Suburban 2.45 82 16.3 

Walnut Creek I-680 70 70 6 6  Concrete Yes Urban – Residential 2.1 100 20.3 

Denver I-25 149 149 10 10 At grade Asphalt Yes Urban – Suburban 35.3 37 14.8 

Broward CO Hwy 834 20 20 6 6 At grade Asphalt Both 
Urban – Commercial/ 

residential 
58.3 36 62 

Miami I-95 140 70 6 3 Bridge Asphalt Yes Urban - Undefined 1.43 100 59.8 

Minneapolis I-94 80 80 10 10 Cut Concrete Yes 
Urban – Commercial/ 

residential 
21 55 24.8 

St Paul I-94 65 65 6 6 Cut and fill Concrete Yes 
Urban – Commercial/ 

residential 
16.3 49 24.8 

Efland I-85 26 26 4 3 At grade Asphalt No Non-urban – Undefined 2.49 51 43.6 

Harrisburg I-81 (Ph. 1) 24 24 6 6 At grade Concrete No Urban – Suburban 18.5 27 37.7 

Harrisburg I-81 (Ph. 2) 56 28 4 2 At grade Concrete No Urban – Suburban 2.81 45 37.7 

Nashville I-40 88 88 6 6 Cut – At grade Concrete Yes Urban - Undefined 55.6 37 45.0 

Montesano SR-12 7.3 7.3 2 2 At grade Asphalt Yes Non-urban – Agricultural 0.28 100 84.0 

Pasco SR-12 4.0 2.0 4 2 Cut Concrete Yes Non-urban - Desert 1.25 
100 

7.5 

Pullman SR-270E 5.0 2.5 2 1 At grade Asphalt Yes Non-urban – Agricultural 0.25 
100 

18.0 

Seattle I-5 106 53 8 4 At grade Concrete Yes Urban – Residential 1.22 
100 

34.1 

Seattle SR-520 84 42 4 2 Bridge Concrete Yes Urban - Undefined 0.099 
100 

35.0 

Snoq. Pass I-90 15 7.7 6 3 At grade Concrete Yes Non-urban – Forest 0.18 
100 

97.0 

Spokane I-90 35 17 6 3 Bridge Concrete Yes Urban – Undefined 0.22 
100 

17.2 

Vancouver I-205 17 8.6 6 3 At grade Concrete Yes Urban – Suburban 0.28 
100 

39.0 

Milwaukee Hwy 45 85 85 6 6 Cut – At grade Concrete Yes Urban – Residential 106 31 27.6 

Milwaukee I-794 53 53 8 8 Bridge Concrete Yes Urban - Undefined 2.1 100 27.6 

Milwaukee I-94 116 116 8 8  Asphalt Yes Urban – Residential 7.6 64 27.6 
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Comparing the data obtained in this study with similar studies, it is possible to see that 

the data from this study are comparable to those of other studies. Concentrations of lead, TDS, 

and TSS differ the most comparing the other studies.  

Lead concentrations from other studies (e.g., Barret et al. and Driscoll et al.) are higher 

than the concentrations found in this study. The reason for this discrepancy is not clear, the 

values reported in our study are for dissolved lead, and some of the other studies may have 

included total lead results: however, this alone would not likely account for the large 

discrepancy. 

6.3 Environmental Impact of Highway Pollutants  

6.3.1 Surface Water Quality Standards 

The Nebraska Department of Environmental Quality (NDEQ, 2009) established general 

criteria for aquatic life. Table 6.4 and table 6.5 show the acute and chronic concentrations for 

Metals and Inorganics and Selected Organic Compounds, respectively.  
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Table 6.4 Comparison of NDEQ criteria for aquatic life for metals and inorganics and mean EMC for the west and east outlet pipes  

 

Analyte 
Acute 

(mg/L) 

Chronic 

(mg/L) 

Mean EMC 

for the West 

Pipe Outlet 

(mg/L) 

Max. 

Concentration 

for the West Pipe 

Outlet 

(mg/L) 

Mean EMC 

for the East 

Pipe Outlet 

(mg/L) 

Max. 

Concentration 

for the East 

Pipe Outlet 

(mg/L) 

Mean EMC for 

the Detention 

Basin Outlet 

Pipe 

(mg/L) 

Max. 

Concentration for 

the Detention 

Basin Outlet Pipe 

(mg/L) 

Antimony 0.088 0.030 0.0045 0.0098 0.0036 0.0068 0.00255 0.003 

Arsenic 0.34 0.0167 0.005 0.008 0.0030 0.006 0.00280 0.003 

Beryllium 0.130 0.0053 N.D 0.001 N.D 0.001 N.D N.D 

Cadmium 0.0017 0.0002 0.0015 0.003 N.D 0.00283 0.0023 0.0023 

Chromium (III) 0.489 0.064 0.04 0.059 0.027 0.03928 0.009 0.01964 

Copper 0.011 0.008 0.048 0.115 0.03 0.0768 0.014 0.0288 

Lead 0.053 0.002 0.019 0.047 0.014 0.0308 0.003 0.0083 

Mercury 0.0014 0.00077 0.0037 0.006 0.0033 0.005 0.003 0.0044 

Nickel 0.400 0.044 0.01 0.030 0.009 0.01996 0.004 0.014 

Selenium 0.02 0.005 N.D 0.001 N.D N.D N.D 0.003 

Silver 0.003 (Reserved) N.D N.D N.D N.D N.D N.D 

Thallium 1.4 0.0063 N.D N.D N.D N.D N.D N.D 

Zinc 0.100 0.101 0.0273 0.0802 0.0235 0.066 0.077 0.166 

Chloride 

Not to exceed 860 mg/l at 

any time or a four-day 

average concentration of 

230 mg/l. 

207.3 1709 139 690 207.3 510 
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Table 6.5 NDEQ criteria for aquatic life for selected organic compounds 

Analyte 
Acute 

(µg/L) 

Chronic 

(µg/L) 

Monocyclic Aromatics except Phenols, Cresols, and Phthalates 

Benzene 5300 712.8 

Chlorinated benzenes 250 50 

Dichlorobenzenes 1120 763 

Ethylbenzene 32,000 29,000 

Hexachlorobenzene 6.0 .0077 

Nitrobenzene 27,000 1,900 

Pentachlorobenzene (Reserved) 41 

1,2,4,5-tetrachlorobenzene (Reserved) 29 

1,2,4-trichlorobenzene (Reserved) 940 

Toluene 17,500 200,000 

2,4-dinitrotoluene 330 91 

Polycyclic Aromatic Hydrocarbons (PAHs) 

Acenaphthene 1,700 520 

Anthracene (Reserved) 110,000 

Benzo(a)anthracene (Reserved) 0.49 

Benzo(a)pyrene (Reserved) 0.49 

Benzo(b)fluoranthene (Reserved) 0.49 

Benzo(k)fluoranthene (Reserved) 0.49 

Chrysene (Reserved) 0.49 

Dibenzo(a,h)anthracene (Reserved) 0.49 

Fluoranthene 3,980 370 

Fluorene (Reserved) 14,000 

Ideno(1,2,3-cd)pyrene (Reserved) 0.49 

Naphthalene 2,300 620 

2-chloronaphthalene 1,600 4,300 

Phenanthrene 30 6.3 

Pyrene (Reserved) 11,000 

 
 

 

Comparing the results obtained from the analyzed samples with the Nebraska surface 

water quality standards, copper and zinc have been found to be above the acute toxicity levels. 

Cadmium was found to be above the acute toxicity levels on two rainfall events; however, it was 
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below the detection limits for the other storm events. Sodium was found to have high 

concentrations comparing to other metals. Sodium, calcium, and other salts are included in the 

NDEQ criteria for TDS and it should be less than 500 mg/L. For most of the rainfall events, the 

TDS criterion was exceeded.  

The NDEQ criteria for aquatic life apply to streams rather than at a discharge point; 

therefore, pollutant concentrations may not exceed the NDEQ standards once the discharged 

water is diluted into the stream. Sampling the stream would be required to verify if the discharge 

from the study site would cause the stream to exceed the NDEQ criteria. However, dilution 

would reduce nearly all of the concentrations to below the acute criteria.     

Another major pollutant found in this study was Total Extractable Hydrocarbons (TEH) 

as diesel. Diesel fuels are similar to fuel oils used for heating (fuel oils no.1, no.2, and no. 4). 

Fuel oils consist of complex mixtures of aliphatic and aromatic hydrocarbons. The aliphatic 

alkanes (paraffins) and cycloalkanes (napthenes) are hydrogen saturated and make approximately 

80% to 90% of the fuel oils. Aromatics (e.g., benzene) and olefins (e.g., styrene and indene) 

make 10% to 20% and 1% respectively, of the fuel oils. Diesel fuels predominately contain a 

mixture of C10 through C19 hydrocarbons, which include approximately 64% aliphatic 

hydrocarbons, 1% to 2% olefinic hydrocarbons, and 35% aromatic hydrocarbons (USDHHS, 

1995). The compounds that were detected and reported as “diesel” are not generally included in 

the list of chemicals of environmental concern and are, therefore, not included in the list of 

VOCs and VOCs and SVOCs that are typically monitored in environmental studies. VOCs and 

SVOCs analyzed in this study were mostly below the detection limit or were at very low 

concentrations because most of these analytes are not a significant diesel fuel constituent.       
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6.3.2 Impact of Highway Pollutants on Aquatic Life 

 Cadmium is a very toxic element and it can easily accumulate in the body. The salmonid 

species of fish are more sensitive to cadmium than the cyprinid varieties. An increase in water 

hardness reduces its toxicity (Dojlido and Best, 1993). Although concentrations for cadmium 

were found to be below the water quality criteria for the mean EMC at the east and detention 

basin outlet pipes, there were two events in which cadmium was observed to slightly exceed the 

NDEQ criteria. However, it does not appear that cadmium will pose a significant ecological 

problem in the receiving water body because expected dilution will reduce concentrations to the 

water quality criteria.  

Small amounts of copper are essential to life; however, large doses are toxic, especially to 

plants (Dojlido and Best, 1993). According to Moore and Ramamoorthy (1984), copper restricts 

the growth of aquatic plants at concentrations greater than 100 µg/L (as cited in Dojlido and 

Best, 1993). Copper mean EMC concentrations were found to be slightly above the water quality 

criteria for the east, west, and detention basin outlet pipes; however, the maximum EMC were 

found to be 7, 10, and 2 times higher than the acute water quality criteria, respectively. These 

high concentrations may be of concern for potential ecological effects. 

Mercury compounds are very toxic to aquatic organisms. At a concentration of a few 

µg/L, the growth of plants may be inhibited. The lethal levels for fish vary from 2 mg/L for 

shrimp (daphnia), to 2 mg/L for insects, and from 30 mg/L for guppies to 1 mg/L for tilapia 

(Dojlido and Best, 1993). Mercury mean EMC concentrations were found to be slightly above 

the water quality criteria for the east, west, and detention basin; however, EMC concentrations 

were found to be 5, 6, and 4 times higher than the acute water quality criteria, respectively. 

These high concentrations may be of concern for potential ecological effects.       
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6.3.3 Comparison Between BOD and COD 

 A comparison between BOD and COD gives information about the sources of the oxygen 

demanding constituents and their ability to biodegrade. Table 6.6 shows the BOD/COD ratio for 

the west and east outlet pipes for the sampled rainfall events where both indicators were 

analyzed.  

 

Table 6.6 Comparison between BOD and COD for selected sampled events 

Rainfall Event 

BOD/COD ratio 

West Pipe Outlet East Pipe Outlet 

First Flush EMC First Flush EMC 

11/10/2008 0.051 0.150 0.188 0.134 

3/27/2010 0.071 0.052 0.105 0.070 

5/7/2010 0.224 0.091 0.116 0.300 

5/20/2010 - 0.234 - 0.196 

7/4/2010 0.400 0.292 0.304 0.207 

9/13/2010 0.205 0.205 0.225 0.225 

 

 

 

    The BOD/COD ratio ranges from 0.051 to 0.400. These values indicate that most of the 

oxygen demand comes from inorganic chemicals.     

6.4 Effectiveness of the Detention Basin  

 The effectiveness of the current detention basin as a water quality BMP at the study site 

can be determined by comparing the calculate loads from the basin outlet with the loads from the 

west and east outlet pipes. Loads at the basin outlet correspond to the total load for the study site; 

therefore, in order to estimate the BMP effectiveness, it is necessary to subtract the loads from 

non-highway runoff sources. For this study, the only non-highway source monitored was the 

construction debris lot. Once the loads from this source were subtracted, the results were 

compared to the loads from the east and the west pipe outlets. Table 6.7 shows the loads entering 

and exiting the detention basin.   
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Table 6.7 Comparison between pollutant loads entering and exiting the detention basin 

Analyte 

Rain Storm Event 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 

Loads 

Into the 

Basin 

(Kg) 

Loads Out 

of the 

Basin 

(Kg) 

Loads Into 

the Basin 

(Kg) 

Loads Out 

of the 

Basin 

(Kg) 

Loads Into 

the Basin 

(Kg) 

Loads Out 

of the 

Basin 

(Kg) 

Loads Into 

the Basin 

(Kg) 

Loads Out 

of the 

Basin 

(Kg) 

Loads Into 

the Basin 

(Kg) 

Loads Out 

of the 

Basin 

(Kg) 

Cadmium (dissolved) 4.17E-05 3.19E-05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Calcium (dissolved) 0.49 1.12 0.32 0.58 0.61 1.37 0.58 -4.54a 11.8 89.2 

Chromium (dissolved) 4.74E-05 1.86E-05 4.99E-05 -9.84E-05a 2.11E-04 4.32E-04 2.71E-04 1.55E-04 0.0020 0.0113 

Copper (dissolved) 4.18E-04 3.23E-04 2.91E-04 1.99E-04 4.03E-04 -0.00110a 6.52E-04 1.22E-03 0.0051 0.0180 

Iron (dissolved) 0.0028 0.0002 1.12E-04 1.82E-04 0.00052 0.00052 0.027 0.0117 0.0055 0.0176 

Lead (dissolved) 6.16E-05 1.27E-05 5.64E-06 5.37E-06 1.881E-05 4.36E-05 3.04E-04 -1.76E-04a 2.86E-04 1.20E-03 

Magnesium (dissolved) 0.048 0.496 0.020 0.063 0.023 0.023 0.019 -0.415a 0.67 19.35 

Mercury (dissolved) N/A N/A 4.52E-05 4.94E-05 3.95E-04 1.30E-04 1.70E-04 1.75E-04 0.0021 0.0070 

Nickel (dissolved) N/A N/A 3.29E-05 2.07E-05 5.27E-05 1.39E-04 4.74E-04 8.49E-04 6.19E-04 0.00491 

Potassium (dissolved) 0.20 0.36 0.43 -0.262a 0.50 0.02 1.78 -1.95a 10.8 50.6 

Sodium (dissolved) 0.63 5.77 1.89 0.74 1.95 4.97 1.24 -8.14a 14.5 296.3 

Zinc (dissolved) 0.41 0.16 <0.10 <0.10 0.028 <0.10 7.20 14.31 <0.1 <0.1 

Silica 0.18 0.26 0.060 0.045 0.15 0.40 0.097 -0.498a <0.1 <0.1 

Chloride 0.88 8.15 3.08 1.33 1.86 3.84 1.23 -10.7a 80.6 379 

Fluoride 0.014 0.012 0.0092 0.014 0.017 0.022 0.012 0.019 0.10 0.45 

Nitrate <0.10 -0.00242a 0.013 -0.00292a 0.022 0.025 0.036 -0.00917a 0.77 1.09 

Phosphate <0.10 <0.10 0.0048 0.0099 0.021 0.037 0.018 0.033 0.25 1.01 

Sulfate 0.32 1.47 0.75 -0.638a 0.62 1.20 0.57 -3.50a 6.61 146.9 

Soluble Phosphate 0.0028 0.0010 0.0017 0.0025 0.0060 0.013 0.027 -0.00153a 0.080 0.140 

Total Phosphorus 0.0087 0.0074 0.0013 0.0028 0.0090 0.0227 0.0062 0.0088 0.11 0.15 

Total Kjeldahl Nitrogen N/A N/A 0.025 0.030 0.045 0.010 0.079 -0.117a 1.44 4.60 

Total Dissolved Solids 1.71 0.00 7.38 -1.94a 8.43 90.50 4.43 -27.9a 78.1 1616.3 

Total Suspended Solids N/A N/A 1.19 -1.15a 6.40 118.9 4.55 -26.5a 94.3 1235.2 

Total Solids 15.7 15.6 8.47 -3.09a 14.8 209.4 8.98 -54.4a 172 2852 

Volatile Dissolved Solids 1.71 <10 <10.0 <10.0 6.77 37.28 0.79 -8.78a 195 195 

Volatile Suspended Solids 2.08 5.25 1.19 1.01 2.78 0.12 1.37 -0.674a 82.8 55.0 

Total Volatile Solids 3.79 2.57 0.96 -0.459a 9.56 37.40 2.15 -9.46a 92.3 250.3 

Alkalinity as CaCO3 1.21 3.25 1.11 1.22 2.00 9.45 1.60 0.27 27.3 232.6 

COD 0.73 2.24 0.48 -0.635a 4.08 7.34 0.718 -0.00595a 234 234 

N/A: Not data available.     
a
 Negative values indicates that loads at the construction debris lot are higher than loads at the detention basin outlet  
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Table 6.7 Comparison between pollutant loads entering and exiting the detention basin (cont.) 

 

 N/A: No data available.     
a
 Negative values indicates that loads at the construction debris lot are higher than loads at the detention basin outlet 

Analyte 

Rain Storm Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 

Loads Into the 

Basin 

(Kg) 

Loads Out of 

the Basin 

(Kg) 

Loads Into the 

Basin 

(Kg) 

Loads Out of 

the Basin 

(Kg) 

Loads Into the 

Basin 

(Kg) 

Loads Out of 

the Basin 

(Kg) 

Loads Into the 

Basin 

(Kg) 

Loads Out of 

the Basin 

(Kg) 

Antimony (total) 9.37E-05 4.73E-05 3.528E-05 1.10E-04 1.176E-09 3.30E-04 <0.0010 <0.0010 

Arsenic (total) 7.902E-05 2.05E-05 9.878E-05 1E-05 0.0003666 3.67E-04 8.82E-09 0.0023 

Calcium (total) 1.04 1.00 2.00 0.49 3.95 3.95 5.58E-05 16.4 

Chromium (dissolved) 5.54E-04 3.43E-04 4.16E-04 8.41E-04 1.37E-08 0.0024 0.0075 0.0075 

Chromium (total) 5.64E-04 3.49E-04 4.23E-04 8.56E-04 1.4E-08 0.0024 0.0077 0.0077 

Copper (dissolved) 0.0013 0.0005 0.0015 0.0015 1.08E-08 0.0023 2.42E-08 0.0074 

Copper (total) 0.0014 0.0005 0.0016 0.0016 1.12E-08 0.0024 2.52E-08 0.0077 

Lead (dissolved) 4.40E-04 1.37E-04 1.25E-04 2.59E-04 2.97E-09 4.54E-04 1.41E-08 0.0043 

Lead (total) 5.56E-04 1.74E-04 1.58E-04 3.28E-04 3.75E-09 5.74E-04 1.78E-08 0.0054 

Magnesium (total) 0.12 0.03 0.45 -0.43 4.52E-06 6.46E-01 8.59E-06 2.50 

Nickel (dissolved) 2.82E-04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Nickel (total) 2.82E-04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sodium (total) 2.14 4.93 10.4 -1.1a 9.67E-05 18.3 1.23E-04 31.0 

Thallium (total) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Zinc (dissolved) 0.00817 0.00290 0.0022 0.0042 3.83E-08 8.37E-03 7.39E-08 0.023 

Zinc (total) 0.00835 0.00296 0.00226 0.0043 3.92E-08 0.0086 7.56E-08 0.023 

Chloride 1.56 7.38 9.26 1.53 2.09E-04 22.6 1.56E-04 30.0 

Nitrate/Nitrite Nitrogen 0.0068 0.0070 0.040 0.075 4.48E-07 0.073 0.23 0.23 

Phosphorus (dissolved 

ortho) 
0.0010 <0.05 0.0042 0.0042 <0.05 <0.05 2.14E-07 0.100 

Total Phosphorus 0.0075 0.0037 0.0069 0.0153 8.96E-08 0.021 6.68E-07 0.23 

Total Kjeldahl Nitrogen 0.028 0.012 0.073 0.139 7.196E-07 0.12 3E-06 0.91 

Total Dissolved Solids 6.08 15.7 38.6 -7.3 3.96E-04 63.5 3.30E-04 98.3 

Total Suspended Solids 5.73 2.12 3.73 4.35 5.29E-05 8.31 3.91E-04 83.0 

TEH as Diesel 0.0062 -2.16a 0.012 -2.24a 0.032 0.032 1.31E-07 0.055 

BOD 0.16 0.20 0.47 1.19 4.76E-06 1.10 1.76E-05 5.38 

COD 2.66 2.18 4.57 2.56 4.28E-05 7.33 9.45E-05 33.03 
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 A reduction of some contaminants can be observed in low intensity rain events 

(11/10/2008, 5/12/2009, 7/31/2009, 3/27/2010, and 5/07/2010). The total rainfall in these events 

ranges from 0.14 to 0.32 in. The reduction was observed in heavy metals, chloride, COD, and 

TSS. This reduction may be due to the low flow generated during low intensity storms; therefore, 

more particulates are absorbed by the soil and grass cover in the detention basin. Conversely, 

during high-intensity events the higher flow conditions in the basin may not have allowed 

particulate settling, and indeed, some of the previously particulates may have been picked up, 

increasing the pollutant loads at the detention basin outlet.             

 Since the detention basin was not designed to reduce pollutant loads from the highway 

runoff, it is not surprising that little load reduction is observed. To improve pollutant removal, 

the basin should be re-designed to increase detention time, sedimentation rates, and biological 

activity.  

6.5 Possible Measures to Reduce Pollutants 

 Heavy metals, COD, BOD, suspended solids, dissolved solids, and diesel fuel are the 

main concerns from the highway runoff at the study site. An option that can be considered to 

reduce the concentration and loads from these pollutants is the construction of an extended 

detention basin. This type of structure typically provides 68% to 90% removal of sediments, 42% 

to 90% removal of heavy metals, and 42% to 50% removal of COD (FHWA, 1996). The existent 

detention basin could be adapted by making changes in the outlet design. For an extended basin, 

the outlet would be much smaller, extending the detention time in the basin.      

  



 

 

99 

Chapter 7 Conclusions 

 Twelve highway runoff samples were collected from November 2008 through November 

2010. For each sampled year, two rain events for each weather season (spring, summer, and fall) 

were sampled. Winter snowfalls were not sampled in this study. A first flush and a composite 

sample for each sampling location were analyzed for every rainfall event. Heavy metals, anions, 

nutrients, BOD, COD, SVOCs, and VOCs concentrations were obtained from the Water Science 

Laboratory at UNL and Midwest Laboratories for 2009 and 2010 respectively. The results of the 

samples show: 

 Metals (especially copper, chromium, and sodium), BOD, COD, suspended solids, and 

dissolved solids are the primary contaminants found in the highway runoff. 

 The metals of most concern to the environment are copper, mercury, and cadmium. 

 TEH as diesel was found in all 2010 samples (it was not analyzed for the 2009 samples). 

According to the laboratory, this result does not correspond specifically to diesel. 

Instead, the results correspond to a mixture of compounds with diesel-range molecular 

weights that cannot be classified as gasoline, diesel, oil, fuel additives, coolant fluid, or 

brake fluid. 

 Chloride, total phosphorus, and TKN were found in all of the sampled events. However, 

the concentrations were low, having little or no apparent impact to the receiving stream.  

 SVOCs and VOCs were found to be below the detection limits in most of the sampled 

events.  

 Total suspended solids (TSS), antecedent dry period (ADP), total rainfall, and volume 

of runoff are typically believed to influence highway runoff pollutant concentrations. 

However, no strong correlations between pollutant concentrations and these variables 
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were found in this study. 

 The existing detention basin has minimal effectiveness in reducing the pollutants from 

the highway.  
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Chapter 8 Volume II Introduction 

8.1 History of Stormwater Regulation  

 As water quality regulations have developed, a greater focus has been put on remediating 

pollutants associated with stormwater runoff. The main piece of surface water quality legislation 

is the Clean Water Act (CWA). The CWA was originally passed in 1972 as the Federal Water 

Pollution Control Amendments of 1972, and became known as the CWA after 1977 amendments 

were made. The goal of the CWA was to “Restore and maintain the chemical, physical, and 

biological integrity of the nation’s waters” (CWA 1977a). The original CWA was implemented 

to regulate discharges into navigable waters from discrete point sources. Point sources were 

considered to be any “pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, 

rolling stock, concentrated animal feeding operation, or vessel or float craft” (Clean Water Act 

1977a). Regulations were based on effluent limitations which were enforced through permitting 

in the National Pollutant Discharge Elimination System (NPDES). Permitting for a facility 

included conditions for effluents limitation, monitoring, operation and maintenance, upset and 

bypass provisions, record keeping, and inspections.  

 Although stormwater runoff, known as non-point source pollution, is conveyed through 

measures which are considered point sources (i.e., ditches, pipes, or channels), they were not 

regulated until the 1987 amendments to the CWA which included them into the NPDES (CWA 

1977b). Runoff under NPDES is regulated for construction and post-construction considerations. 

Highway construction and operation permits are regulated under NPDES due to the build-up of 

pollutants associated with automobiles and wear of the driving surface. However, not all 

highway systems currently require permitting. Permits are only required where the roadway 

discharges into a Municipal Separate Storm Sewer System (MS4), which have discrete outfalls to 
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receiving waters and are located in urban areas (NDOR 2010). Storm Water Management Plans 

are developed for MS4 permits which feature the following 6 minimum Best Management 

Practice (BMP) programs: public education and outreach, public participation and involvement, 

illicit discharge detection and elimination, construction site runoff control, post-construction site 

runoff control, and pollution prevention and good house-keeping (CWA 1977a). The permitting 

does not include effluent limitations, but does stipulate that the above six minimum BMP 

programs should be instituted to remediate runoff to the maximum extent practicable (CWA 

1977a). BMPs can be broadly categorized as structural or non-structural. Structural BMPs 

actively remove pollutants from runoff while non-structural are generally related to source 

control. 

8.2 Pollutants Discharging from Roadways 

 Knowing which pollutants are present in runoff from the roadway is essential to remedial 

efforts.  
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Table 8.1 shows the primary constituents of runoff from Interstate 80 near the 108
th

 street 

crossing in Omaha, Nebraska which had been sampled between 2009 and 2011 for the Nebraska 

Department of Roads (NDOR) (Torres 2010). Many of the contaminants are innocuous in 

themselves or in such low concentrations that they will not impact the ecosystem.  
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Table 8.1 Roadway pollutants (Torres 2010) 

 

Calcium 
Total Kjeldahl 

Nitrogen 
Total Phosphorus Lead 

Magnesium 
Total Dissolved 

Solids 
Nitrate Mercury 

Potassium 
Total Suspended 

Solids 
Nitrite Nickel 

Sodium Total Solids Phosphate Oil and Grease 

Cadmium 
Volatile Dissolved 

Solids 
Sulfate COD 

Chromium 
Volatile Suspended 

Solids 
Zinc Soluble Phosphate 

Copper Total Volatile Solids Silica Chloride 

Iron Alkalinity as CaCO3 Bromide Fluoride 
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Pollutants of concern found in the Nebraska study are metals (primarily copper, mercury, 

and cadmium) total solids, dissolved solids (in the form of sodium), and diesel and gasoline 

constituents (Torres 2010). Although nutrients such as nitrogen and phosphorous were found 

they were not at high enough concentrations to adversely impact receiving waters (Torres 2010). 

Sampling found high concentrations of total extractable hydrocarbons (TEH). The TEH are 

generally compounds with molar weights consistent with gasoline or diesel. There is no toxicity 

data available for the TEH, so it is not generally classified as a chemical of environmental 

concern (Torres 2010). 

It would be ideal to establish primary pollutants for each site where BMPs are being 

considered. However, this is not always feasible. The data collected during the NDOR study will, 

therefore, be considered to be characteristic of runoff contamination across the state. Metals and 

solids will be the pollutants the BMPs will be designed to remediate. 
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Chapter 9 Volume II Objectives 

 The objective of volume II was to assemble a set of design guides of Best Management 

Practices (BMPs) tailored to treating runoff from roadways. This will be accomplished by 

identifying which BMPs are applicable to roadside scenarios, compiling fact sheets on the 

applicable BMPs, and establishing the design processes for the selected BMPs. The fact sheets 

are to be consulted in order to determine which BMP is best for site-specific conditions. Then the 

design guide for that BMP will be used to ensure the selected BMP will function properly. This 

work has been developed to comply with requirements for a NPDES permit for the MS4 

servicing highways in Nebraska. 
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Chapter 10 Volume II Literature Review 

10.1 Historical Perspective 

 The forerunner of BMPs came with the Soil Conservation Act of 1935. This Act was 

enacted to counter the soil erosion of the dust bowl era and spawned a Soil Conservation District 

movement (Ice 2004). Although this Act did not directly regulate discharges to water, it did 

begin legislation directed towards protecting environmental resources. 

 In 1949 the Yearbook in Agriculture published the article “Watersheds and How to Care 

for Them.” This article stressed the importance of maintaining the land and streams, which 

would allow them to continue to be usable. It called for the implementation of better land 

practices to protect receiving waters and prevent erosion, much like BMPs are used today (Ice 

2004). 

 The watershed approach from 1949 can be seen mirrored in modern Total Maximum 

Daily Load (TMDL) requirements. TMDLs are the acceptable loading of a given compound in a 

water-body which is considered safe for the intend use of the water-body. Non-point source 

pollution has been ruled in the case of Pronsolino v Nastri to be considered in the TMDL (Ice 

2004). This ruling furthered the need for BMPs on a watershed scale.  

 One of the first BMPs to be developed and rigorously studied was the surface sand filter 

by the city of Austin, Texas (Landphair et al. 2000).  

10.2 Expected Quality of Runoff From Roadways   

Pollutant concentrations can vary widely. Table  shows a comparison of observed 

pollutant concentrations coming from roadways. These results show a significant variation on a 

site-to-site basis. Runoff from roadways is generally low in nitrogen and phosphorous 

concentrations, but may contain excessive amounts of solids, metals, or oil and grease.
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Table 10.1 Comparison of contaminant concentrations in roadway runoff (Torres 2010) 

 

Analyte 

NDOR Study Wu et al.a Kayhanian et al.b Barret et al.c Driscoll et al.d 

West Pipe (EMC) East pipe (EMC) Monitoring Site I (EMC) 
Range 

 

Median 

 

Mean 

 

35th Street (EMC) 
National Highway Runoff 

Report 

Range Median Mean Range Median Mean Range Median Mean Range Median Mean Range Median Mean 

Cu (μg/L) 
5 - 

115.2 
30 48 

5.1 - 

76.8 
17 26 

9.0 - 

52 
15 24.2 

1.1 - 

130 
14.9 10.2 

2.0 – 

120 
34 38 

5 - 

155 
52 39 

Cd (μg/L) - 3 3 - 2.8 2.8 <DL <DL <DL 0.2 - 8.4 0.24 0.13 - - - - - - 

Cr (μg/L) 
1.3 - 

58.9 
30 40 

1.1 - 

39.3 
20 27 

5.0 - 

20 
6.5 8.1 1.0 - 23 3.3 2.2 - - - - - - 

Pb (μg/L) 
0.2 - 
47.1 

7 19 
0.2 - 
30.8 

6 14 
7.0 - 
56 

15 21 
1.0 - 
480 

7.6 1.2 7 – 440 50 99 
11 - 
1457 

525 234 

Fe (μg/L) 
2.8 - 

125 
40 50 

2.9 – 

106 
3 4.5 - - - 

32 - 

3310 
378 150 

300 – 

10000 
2606 3537 - - - 

Ni (μg/L) 
0.6 - 

29.9 
N.D. 8 

0.6 – 

20.0 
N.D. 9 

9.0 - 

17 
9 8.1 1.1 - 40 4.9 3.4 - - - - - - 

Zn (μg/L) 
4.5 – 

82 
11.5 27.3 0.7 - 66 0.2 0.4 - - - 3 - 1017 68.8 40.4 

34 – 
590 

208 237 
40 - 
2892 

368 217 

TDS (mg/L) 
42 – 

3226 
122 509 

10 - 

1334 
157 332 

61 - 

577 
107 157 

3.7 - 

1800 
87.3 60.3 - - 

 
- - - 

TSS (mg/L) 
47 – 

1040 
116 240 

10 - 

419 
70 120 

32 - 

771 
215 283 

1. - 

2988 
112.7 59.1 

33 – 

914 
131 202 

9 - 

406 
143 93 

COD (mg/L) 
14.6 – 
276 

46 90 
20.1 – 

200 
30.6 52.1 

4 - 
177 

48 70 - - - 
18 – 
464 

126 149 
41 - 
291 

103 84 

NO3 

+ N2
- (mg/L) 

0.2 - 

2.4 
0.5 0.8 

0.23 - 

1.8 
0.5 0.63 

0.08 - 

13.37 
0.38 2.25 

0.01 - 

4.8 
1.07 0.6 

0.0 – 

3.66 
1.03 1.25 

0.19 - 

3.32 
0.84 0.66 

TKN (mg/L) 
0.64 - 
9.04 

1.62 2.40 
0.49 - 
3.86 

1.2 1.71 
0.76 - 
2.45 

1 1.42 
0.1 - 
17.7 

2.06 1.4 - - - 
0.38 - 
3.51 

1.79 1.48 

Ortho 

P 
(mg/L) - - - - - - 

0.01 - 

0.74 
0.08 0.15 

0.01 - 

2.4 
0.11 0.06 - - - - - - 

Total 

P 
(mg/L) 

0.05 - 

0.81 
0.22 0.248 

0.07 - 

0.51 
0.2 0.215 

0.04 - 

1.54 
0.2 0.43 

0.03 - 

4.69 
0.29 0.18 

0.07 - 

1.09 
0.33 0.42 - - - 

O&G (mg/L) - < DL < DL - < DL < DL 
1.0 - 
11-1 

3.3 4.4 1. - 20 6.6 6 
0.8 - 
35.1 

4.1 6.5 - - - 
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10.2.1 Sources of Pollutants 

Roadway pollutants are associated with wear and maintenance of the roadway surface, 

vehicle operation, and atmospheric loading. Wear of the surface creates particulates which are 

then washed off the road by rainfall. Vehicles can deposit heavy metals, oil/grease, poly-

aromatic hydrocarbons (PAHs), petroleum hydrocarbons, benzene, toluene, ethyl benzene, 

xylene (BTEX), as well as debris from careless drivers throwing trash out as they drive (MSSC 

2008; Nixon & Saphores 2007). 

Vehicles also discharge contaminants into the atmosphere which then settle back onto 

roads. These pollutants include heavy metals, dust, and PAHs (Barrett et al. 1995). Atmospheric 

loading is also shown to deposit nutrients, accounting for as much as 90% of the nitrogen loading 

(Wu et al. 1998).   

Deicing considerations must be taken in winter months in order to keep roadways 

running efficiently (MSSC 2005). Deicing salts add high levels of sodium and chloride to runoff, 

as well as adding suspended solids. These loads can be reduced by employing more benign salts, 

such as Calcium Magnesium Acetate and Potassium Acetate, which will have less negative 

environmental impacts (FHA 1997a). Vegetated systems adjacent to roadways may also be 

negatively affected by road salt (Barrett et al. 1995). When the roadside vegetative cover 

decreases it promotes channelization of runoff causing erosion, which adds to particulate loading 

(FHA 2002a). Sand added for traction during the winter also contributes to particulate loading 

(MSSC 2005). 

10.2.2 Factors Affecting Pollutant Loads 

Pollutant concentrations and constituents vary with season, time between runoff events, 

road usage, and within individual events. Average daily traffic has been found to result in higher 
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concentrations of some pollutants in urban area and higher concentrations of other pollutants in 

rural (Kayhanian et al. 2003). Urban areas have been shown to have high metals and solids but 

low nutrient loads (Flint and Davis 2007) while rural areas may have higher nutrient loads from 

agricultural practices.  This finding implies there are factors besides traffic volume affecting 

pollutant concentration.  

Required roadway maintenance can cause pollutant fluctuation with the seasons (Barrett 

et al. 1995). Table  lists necessary maintenance practices which may impact receiving waters 

(Kramme et al. 1985). The potential for these activities to adversely affect water quality 

increases with proximity to the receiving water (Barrett et al. 1995). 

 

Table 10.2 Maintenance activity which may contribute to highway contamination (Kramme et 

al. 1985) 

 

Activities with Probable Impact Activities with Possible Impact 

Repairing slopes, slips, and slides Full depth repairs 

Cleaning ditches, channels and drainage 

structures 

Surface treatments 

Repairing drainage structures Blading and repairing unpaved berms and 

/or ditches 

Bridge painting Bridge surface cleaning 

Subsurface repair Bridge deck repairs 

Chemical vegetation control Mowing 

 Planting or care of shrubs, plants, and trees 

 Seeding, sodding, and fertilizing 

 Application of abrasives 

 Care of rest areas 

 Washing and cleaning maintenance 

equipment 

 Bulk storage of motor fuels 

 Disposal of used lubricating oil 
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There also may be concentration differences between wet and dry periods due to time 

between runoff events (Lee et al. 2004). Periods with little rain allow pollutants to build-up on 

roadways creating higher loads when the accumulated pollutants are subsequently washed away.  

Although traffic volume, antecedent dry period, rainfall intensity, and rainfall depth have 

been demonstrated to affect pollutant loading and concentration, that is not always the case. 

Multiple studies have shown weak correlations to these factors (Desta et al. 2007; Torres 2010). 

Site-specific sampling is required to get an accurate prediction for contamination loads. 

However, this may not be cost effective, and the wide variation within an individual site, as 

shown in Table , often still leaves significant uncertainty. 

10.2.3 First Flush  

 Pollutants tend to be washed from the surface of the roadway by the initial runoff in a 

phenomenon known as the first flush. If the majority of pollutants are contained within the first 

small portion of rainfall, BMPs only need to be sized to accommodate that volume. The first 

flush can be described by the first percentage of a storm which runs off or as the first depth of 

runoff, regardless of total event precipitation. Using the first percentage from roadways method 

has yielded inconclusive or unsatisfactory results for pollutant loading (Hallberg & Renman 

2008; Flint & Davis 2007). Therefore, basing the first flush will be based on an initial runoff 

depth. The first flush has been observed to remove 81% to 86% of contaminants in the first 0.5 

in. and 89% to 96% of pollutants in the first 0.75 in. (Flint & Davis 2007).  

 Early spring rain events and snow melt may also cause a seasonal first flush phenomenon 

(Sansalone et al. 1995; Stenstrom & Kayhanian 2005). For example, a spike in pollutants during 

spring may be due to the washing away of pollutants which have built up on roadways during the 

winter such as deicing agents, and sand and gravel applied to the roadway (MSSC 2005).   
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Chapter 11 Volume II Methods 

11.1 BMP Selection Criteria 

 The following criteria, which are based on guidance from NDOR, were considered when 

determining which BMPs were most applicable for roadside applications: 

- Pollutants to be remediated: 80% removal TSS (MSSC 2008; KCDENR 2009), heavy 

metal  (Torres 2010), total extractable hydrocarbons (gasoline and diesel) (Torres 2010) 

- Low maintenance 

- Cost Effective 

- No permanent pools  

- Implement BMP within existing right of way  

- Infiltration should not be primary removal mechanism near roadway 

- Peak flow reduction 

- Aesthetics 

o Green infrastructure 

11.2 BMP Selection Process 

 Many BMPs were considered for this manual based on the selection criteria. The BMPs 

which were selected for this manual are vegetated filter strips, vegetated swales, bioretention, 

sand filters, and horizontal filter trenches.  

 Vegetated filter strips and vegetated swales have shown adequate pollutant removal while 

providing low construction and maintenance costs. They also have high retrofit potential 

within the right-of-way and provide pleasing aesthetics of vegetation near roadways 

(UDFC 2010; CEI & NHDES 2008).  

 Bioretention is also an effective pollutant removal BMP while providing positive 
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aesthetics (UDFCD 2010; CEI & NHDES 2008) and is flexible enough to be located 

within the right-of-way or in urban areas (SEMCOG 2008).  

 Sand filters were selected based on their track record of successful application in storm 

water management (Landphair et al. 2000) and their ability to be used in urban areas 

where land availability limits other BMPs.  

 Horizontal filter trenches are a BMP which is being developed. They were selected for 

this design guide because they are a relatively simple BMP which will fit within the 

right-of-way and will not require a significant amount of maintenance.   

 After evaluating the criteria, some common BMPs which were not deemed suitable for 

roadside applications were detention facilities, retention ponds, permanent wetlands and 

infiltration facilities. These were not further evaluated in this work. 

 Detention ponds were not included due to limited solids removal compared to other 

BMPS (CEI & NHDES 2008; EPA 2006a) and space constraints within the right-of-way. 

 Retention ponds and permanent wetlands were not considered due to the inherent danger 

of locating standing water near roadways. 

 Inclusion of infiltration facilities would have been redundant because design variations to 

the horizontal filter trench enable it to act as an infiltration trench, and variations to 

bioretention allow it to perform as an infiltration basin. 

 Ultra-urban BMPs, such as inlet inserts and hydrodynamic separators, were not 

considered in this report due to their general ineffectiveness as stand-alone BMPs in 

regard to removal of dissolved solids and metals (EPA 2006e; FHA 2002). These 

products also tend to be expensive compared to the selected BMPs, particularly in regards 

to treatment attained (UNH 2005). There are also generally high maintenance burdens to 
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avoid a drop off in performance (EPA 2006e; UNH 2005; FHA 2002c).  

11.3 Hydrology 

11.3.1 Water Quality Flow and Volume 

11.3.1.1 First Flush 

 The first flush is the initial runoff which comes off the roadway. This value can be 

defined by percentage of pollutant load, percentage of total runoff, or as a static value of runoff 

depth (e.g., 0.5 in. or 0.75 in.). The latter definition is a simple yet effective means to quantify 

the first flush. The first 0.5 in. has been shown to contain 81% to 86% of pollutants and is 

commonly used to define the water quality volume (WQV) that requires treatment (Flint and 

Allen 2010). Therefore, a depth of 0.5 in. was used to represent the first flush and to determine 

the WQV runoff throughout this document.  

11.3.1.2 Calculating the Design Precipitation  

To determine the rainfall that produces the first flush, or WQV, back calculations using 

the National Resource Conservation Service (NRCS) method and 0.5 in. of runoff were 

performed using equation 11.1 (NRCS 1986): 

 

       
         

        
       (11.1) 

   

where: 

 Q: Depth of runoff over the watershed (in or cm) 

 P: Precipitation (in or cm) 

 S: Potential maximum retention of water by the soil (in or cm) 
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 Potential maximum retention is a function of the Curve Number (CN) calculated with 

equation 11.2: 

 

        
    

    
        (11.2) 

 

 Table  shows the curve numbers for various land uses and hydrologic soil groups. Table  

defines these soil groups.  

 

Table 11.1 Curve numbers for various land uses and conditions 

 

Description of Land Use  Hydrologic Soil Group  

   A  B  C  D  

Paved parking lots, roofs, driveways  98  98  98  98  

Streets and Roads:  

     Paved with curbs and storm sewers  98  98  98  98  

     Gravel  76  85  89  91  

     Dirt  72  82  87  89  

Cultivated (Agricultural Crop) Land:  

     Without conservation treatment (no terraces)  72  81  88  91  

     With conservation treatment (terraces, contours)  62  71  78  81  

Pasture or Range Land:  

     Poor (<50% ground cover or heavily grazed)  68  79  86  89  

     Good (50–75% ground cover; not heavily grazed)  39  61  74  80  

Meadow (grass, no grazing, mowed for hay)  30  58  71  78  

Brush (good, >75% ground cover)  30  48  65  73  

Woods and Forests:  

     Poor (small trees/brush destroyed by over-grazing or burning)  45  66  77  83  

     Fair (grazing but not burned; some brush)  36  60  73  79  

     Good (no grazing; brush covers ground)  30  55  70  77  

Open Spaces (lawns, parks, golf courses, cemeteries, etc.):  

     Fair (grass covers 50–75% of area)  49  69  79  84  

     Good (grass covers >75% of area)  39  61  74  80  

Commercial and Business Districts (85% impervious)  89  92  94  95  

Industrial Districts (72% impervious)  81  88  91  93  

Residential Areas:  

     1/8 Acre lots, about 65% impervious  77  85  90  92  

     1/4 Acre lots, about 38% impervious  61  75  83  87  

     1/2 Acre lots, about 25% impervious  54  70  80  85  

     1 Acre lots, about 20% impervious  51  68  79  84  

(NRCS 1986) 
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Table 11.2 Hydrologic soil groups 

 

Group  Minimum Infiltration Rate (in/hr) Texture 

A 0.3–0.45 Sand, loamy sand, or sandy 

loam 

B 0.15–0.3 Silt loam or loam 

C 0.05–0.15 Sandy clay loam 

D 0–0.05 Clay loam, silty clay loam, 

sandy clay, silty clay, or 

clay 

(Gupta 2008) 

 

For impervious surfaces, such as pavement, a CN of 98 was assigned resulting in S = 0.2 

from equation 11.2. 

   
    

    
 

 

 Equation 11.1 was then used, in accordance with Nebraska Department of Roads 

(NDOR) guidance, with the calculated S value and a known Q of 0.5 in. (WQV) in the NRCS 

equation, the design precipitation was determined to be approximately 0.75 in. The 0.75 in. event 

will produce 0.55 in. of runoff. This 0.75 in. storm was then used for BMP designs.  

 

    
            

           
 

 

11.3.1.3 Peak Flow-Rate Calculations 

 Separate peak flow calculations were performed for the WQV peak flow rate, which was 

used to size the BMP treatment processes, and peak flow for the 10-yr storm, which was used as 

a design to check for potential scouring. 
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Peak Water Quality Flow Rates. Peak flows have been calculated and displayed in  

 

Table  for impervious surfaces, such as pavement, up to 5 acres. For pervious areas or 

areas larger than 5 acres, peak flow rates were determined by using the 0.75 in. design storm 

with a type II NRCS 24 hr distribution and equation 11.3 (NRCS 1986). 

 

                     (11.3) 

 

Where: 

   : Peak discharge (cfs) 

   : Unit peak discharge (cfs/   /in) (Figure  or Table ) 

   : Drainage area (   ) 

 Q: Runoff depth corresponding to 24-hr rainfall (in) (Table  for WQV) 

   : Pond or swamp adjustment factor (1.0 for Nebraska) 

 

 

Table 11.3 Peak water quality flows and water quality volumes for impervious watersheds up to 

5 acres 

 

Drainage 

Area (ac) 
                 

(cfs) 
     

(   ) 

Drainage 

Area (ac) 
                 

(cfs) 
     

(   ) 

0.1 0.095 181.5 1.25 1.184 2268.75 

0.2 0.189 363 1.5 1.421 2722.5 

0.3 0.284 544.5 1.75 1.657 3176.25 

0.4 0.379 726 2 1.894 3630 

0.5 0.474 907.5 2.5 2.368 4537.5 

0.6 0.568 1089 3 2.841 5445 

0.7 0.663 1270.5 3.5 3.315 6352.5 

0.8 0.758 1452 4 3.788 7260 

0.9 0.852 1633.5 4.5 4.262 8167.5 

1 0.947 1815 5 4.735 9075 
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a) Calculated with equation 11.3 and the 0.75 in. design storm 

b) Calculated with equation 11.4 and 0.5 in. of runoff 

0.1             0.2                            0.4               0.6          0.8       1                                2                               4                  6            8        10    

*csm/in = 
   

      
 

Figure 11.1 Unit peak discharge for type II distribution (NRCS 1986) 

Time of Concentration (  ) (hrs) 



 

 

 
 

1
1
8
 

Table 11.4 Unit peak discharge (qu) and initial abstraction (Ia) for various curve numbers (CN), for the water quality volume (WQV), 

and scour check (10-yr) storms (NRCS 1986) 

CN 
    

(in) 

  

       

 
 

(WQV

) 

  
 

    
     

(10 

yr) 

               

(10 yr) 

(
   

      
) 

CN 
    

(in) 

  

       

 
 

(WQV

) 

      

(WQV) 

(
   

      
) 

  
 

    
     

(10 

yr) 

          

(10 yr) 

(
   

      
) 

CN 
    

(in) 

  

       

 
 

(WQV

) 

      

(WQV) 

(
   

      
) 

  
 

    
    

(10 

yr) 

                      

(10 yr) 

(
   

      
) 

40 3.00 4.00 0.60 550 60 1.33 1.78 - 0.27 965 80 0.50 0.67 550 0.10 1000 

41 2.88 3.84 0.58 550 61 1.28 1.71 - 0.26 965 81 0.47 0.63 550 0.09 1000 

42 2.76 3.68 0.55 550 62 1.23 1.63 - 0.25 965 82 0.44 0.59 550 0.09 1000 

43 2.65 3.53 0.53 550 63 1.18 1.57 - 0.24 970 83 0.41 0.55 550 0.08 1000 

44 2.55 3.39 0.51 550 64 1.13 1.50 - 0.23 970 84 0.38 0.51 550 0.08 1000 

45 2.44 3.26 0.49 580 65 1.08 1.44 - 0.22 970 85 0.35 0.47 600 0.07 1000 

46 2.35 3.13 0.47 610 66 1.03 1.37 - 0.21 975 86 0.33 0.43 720 0.07 1000 

47 2.26 3.01 0.45 700 67 0.99 1.31 - 0.20 975 87 0.30 0.40 795 0.06 1000 

48 2.17 2.89 0.43 720 68 0.94 1.25 - 0.19 975 88 0.27 0.36 880 0.05 1000 

49 2.08 2.78 0.42 800 69 0.90 1.20 - 0.18 975 89 0.25 0.33 910 0.05 1000 

50 2.00 2.67 0.40 815 70 0.86 1.14 - 0.17 980 90 0.22 0.30 955 0.04 1000 

51 1.92 2.56 0.38 840 71 0.08 0.11 - 0.02 980 91 0.20 0.26 965 0.04 1000 

52 1.85 2.46 0.37 880 72 0.78 1.04 - 0.16 980 92 0.17 0.23 970 0.03 1000 

53 1.77 2.37 0.35 900 73 0.74 0.99 - 0.15 985 93 0.15 0.20 975 0.03 1000 

54 1.70 2.27 0.34 910 74 0.70 0.94 550.00 0.14 985 94 0.13 0.17 980 0.03 1000 

55 1.64 2.18 0.33 925 75 0.67 0.89 550.00 0.13 990 95 0.11 0.14 985 0.02 1000 

56 1.57 2.09 0.31 935 76 0.63 0.84 550.00 0.13 990 96 0.08 0.11 990 0.02 1000 

57 1.51 2.01 0.30 950 77 0.60 0.80 550.00 0.12 995 97 0.06 0.08 1000 0.01 1000 

58 1.45 1.93 0.29 950 78 0.56 0.75 550.00 0.11 995 98 0.04 0.05 1100 0.01 1100 

59 1.39 1.85 0.28 960 79 0.53 0.71 550.00 0.11 995 

      a) Initial abstraction is a function of the CN and was found in TR-55 (NRCS 1986) 

b) Initial abstraction to precipitation ratio for WQV (0.75 in.) rainfall 

c) Determined from Figure  with a   = 5 min and the corresponding  
  

 
 value 

d) Initial abstraction to precipitation ratio for 10-yr (5 in) rainfall       
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Table 11.5 Curve numbers with their associated runoff depths for 0.75 in. rainfall (WQV) 

 

CN 
    
(in) 

CN    (in) 

≤73 0 86 0.088 

74 0.001 87 0.105 

75 0.002 88 0.124 

76 0.004 89 0.145 

77 0.007 90 0.170 

78 0.011 91 0.198 

79 0.017 92 0.230 

80 0.023 93 0.266 

81 0.030 94 0.307 

82 0.039 95 0.355 

83 0.049 96 0.410 

84 0.060 97 0.475 

85 0.073 98 0.551 

a) Calculated using equation 11.1 

 

 

The unit peak discharge (  ) is a function of the time of concentration, the 
  

 
 ratio, and 

the rainfall distribution type. The time of concentration is dependent on watershed characteristics 

and is defined as the time it takes for water to move from the hydraulically most distant point in 

the watershed to the outlet. The 
  

 
 ratio was determined by dividing the initial abstraction (  ), 

which can be found in Table , by the total precipitation (0.75 in. for the design storm). The entire 

state of Nebraska falls within the type II rainfall distribution. 

For runoff from impervious areas and rainfall depth of 0.75 in. the 
  

 
 ratio is ~0.055. This 

value, along with time of concentration, was then used to determine    from Figure . Using a 

conservative 5 min time of concentration,    was found to be approximately 1100 
   

      
. This 

value was extrapolated from Figure .  
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The accuracy of this method will be reduced for values of 
  

 
 outside of the range shown 

on Figure . If the values fall outside of this range use the tabular hydrograph method as stated in 

the TR-55 manual (NRCS 1986). There are also several software packages which are equipped 

to perform these calculations for complicated basins. 

When considering a watershed with both impervious and pervious ground cover, the area 

can either be considered completely impervious, or a weighted flow may be calculated. 

Assuming total imperviousness would result in larger than actual flows and, therefore, oversized 

BMPs. For this reason the weighted flow method is recommended.  

 When using the weighted flow method, consider the impervious and pervious sections of 

the watershed individually and sum the resulting peak flows from each section. This method 

differs from the weighted curve number method by taking into account the runoff which flows 

directly from the impervious area to the BMP without first encountering the pervious area. The 

weighted flow method results in larger flows which are more realistic in many roadway 

scenarios. 

Peak ten year flow rates. The peak ten-year (scouring) flow rate will be used for scour 

checks in coordination with storm sewer sizing for expressways (NDOR 1996) and is calculated 

using equation 11.3. The equation 11.3 variables associated with the 10-yr storm can be found in 

these locations: 

    can be found on Table  or Figure  

 Q can be found on Table  

    is 1.0 for Nebraska 

    is site-specific   
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 When calculating the 10-yr scour flow a 5-in. rainfall will be used. The 5 in. rainfall 

represents the highest peak precipitation in the state of Nebraska for the 10-yr storm. Using the 

largest rainfall event will result in adequate or conservative sizing across the state. Similarly to 

the WQV calculations, the weighted flow method should be used.  

  

Table 11.6 Curve numbers with their associated runoff depths for 5 in. rainfall (10-yr storm) 

 

CN    (in) CN    (in) CN    (in) CN    (in) 

31 0.01 48 0.59 65 1.65 82 3.08 

32 0.03 49 0.64 66 1.73 83 3.17 

33 0.04 50 0.69 67 1.80 84 3.27 

34 0.06 51 0.75 68 1.88 85 3.37 

35 0.08 52 0.80 69 1.96 86 3.47 

36 0.11 53 0.86 70 2.04 87 3.57 

37 0.14 54 0.92 71 2.12 88 3.67 

38 0.17 55 0.98 72 2.20 89 3.77 

39 0.20 56 1.04 73 2.28 90 3.88 

40 0.24 57 1.10 74 2.36 91 3.98 

41 0.27 58 1.17 75 2.45 92 4.09 

42 0.31 59 1.23 76 2.54 93 4.20 

43 0.35 60 1.30 77 2.62 94 4.31 

44 0.40 61 1.37 78 2.71 95 4.42 

45 0.44 62 1.44 79 2.80 96 4.53 

46 0.49 63 1.51 80 2.89 97 4.65 

47 0.54 64 1.58 81 2.99 98 4.76 

a) Calculated using equation 11.1 

 

 

11.3.1.4 Calculating the Water Quality Volume 

 Water quality volumes for impervious surfaces, such as pavement, up to 5 acres have 

been calculated and displayed in  

 

Table . For pervious areas or areas larger than 5 acres, use the following methodology. 
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The water quality volume is found by multiplying the new development area (e.g., newly 

constructed roadway) by 0.5 in. (equation 11.4). This volume will then be incorporated into the 

BMP design. 

 

                     
                         

  
  

  

    (11.4)   

 

11.3.1.5 Calculating Run-On Volume 

Run-on (         ) is water from surfaces (impervious or pervious), other than the 

new development area, that is co-mingled with water from the new development area. Because 

run-on co-mingles with the           , it must be treated in the BMP.  

Run-on volume from pervious surfaces during the 0.75 in. rainfall event will result in less 

than 0.5 in. of runoff. Table  shows the runoff depth from a 0.75 in. rainfall for areas with 

various curve numbers.  

For areas that contribute run-on that will co-mingle with the           , the run-on 

volume (         ) can be calculated by using equation 11.5: 

 

                             
                      

  
  

  

   (11.5) 

 

The total water quality volume (        ) is the sum of the runoff from new impervious 

areas (          ) and run-on (         ) as shown in equation 11.6. 

 

                                       (11.6) 
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 This volume is the minimum amount of water to be treated.  

In-line BMPs need to be designed to either handle the flow of larger storms, or they need 

to be able to bypass larger flows. For offline BMPs the WQV from the new roadway to be 

treated must be routed through the BMP. 

11.3.2 Design Example 

The urban highway in Figure  is being redeveloped. The redeveloped highway 

contributes 3.3 acres which will contribute to the water quality volume and peak flows. There are 

vegetated areas north and south of the highway that account for 4 acres of extra drainage (run-

on) to the system.  

 

 

 

 

 

 

 

 

 

 

 

 

11.3.2.1 Calculating Peak Water Quality Flow Rates 

 The WQV and peak WQV flow rate were calculated using precipitation of 0.75 in. which 

corresponds to 0.5 in. of runoff from impervious surfaces. The peak water quality flow rate was 

Redeveloped Roadway        

(3.3 acres) 

Area contributing run-on 

(2.7 acres) 

Area contributing run-on 

(1.3 acres) 

Figure 11.2 Plan view of redeveloped highway 
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found by summing the peak flow coming off the 3 subbasins within the system. The individual 

peak flow rates were found using equation 11.3. 

 The curve number for each section is given in Table . The CN was used to determine the 

runoff depth (Q) from Table . The redeveloped roadway is paved, so it has a curve number of 98 

according to Table . The vegetated sections were considered open space with grass cover of 

greater than 75% in soil type C, as described by Table , so they each have a curve number of 74. 

Table  shows that a curve number of 98 produces a runoff, Q, of 0.551 in. for the design 0.75 in. 

rainfall, and a curve number of 74 produces a runoff depth, Q, of 0.001 in. for the design 0.75 in. 

rainfall.  

The unit peak discharge (  ) can be found on Table , or it can be determined by using the 

initial abstraction (  ) in the ratio of initial abstraction (  ) to precipitation (P) (
  

 
), found on 

Table , along with Figure  and an assumed time of concentration (  ). A curve number of 98 

results in a    of 1100 
   

      
, and a curve number of 74 results in a    of 550 

   

      
 for the 

WQV rainfall.  

 The swamp adjustment factor   is assumed to be 1 for the state of Nebraska. 

Equation 11.3 (          ) is then solved for each area, these values are given for 

impervious areas in  

 

Table  but must be calculated for the pervious areas.  

   

 

Redeveloped roadway: 
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                      = 3.03 cfs 

 

2.7 acre vegetated area: 

 

       
   

      
                     = 0.0022 cfs 

 

1.3 acre vegetated area: 

 

       
   

      
                      =0 .0011 cfs 

 

 The flows from each area were then summed to find the peak WQV flow of the drainage 

area. 

 

                                        

 

 The peak WQV flow was found to be 3.03 cfs.  
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Table  summarizes calculations for peak water quality flow. 
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Table 11.7 Calculations for peak WQV flow 

 

 

 

11.3.2.2 Calculating Peak Flow Rates for Scour Evaluation 

 The peak flow rate was used to evaluate the need for scour protection in flow-through 

BMPs. It was found by summing the peak flow coming from the 3 subbasins within the system 

from the 10-yr (5-in.) storm. The individual peak flow rates were found using equation 11.3 

(          ). 

 The curve number (Table ) for each section was used to find the runoff depth (Q) from 

Table . The redeveloped roadway is paved, so it has a curve number of 98 and a Q of 4.76 in. 

The vegetated sections are considered open space with grass cover of greater than 75% in soil 

type C, as described by Table , so they each have a curve number of 74 and a Q of 2.36 in.. 

 The unit peak discharge (  ) can be found on Table  or can be determined by using the 

initial abstraction (  ) in the ratio of initial abstraction (  ) to precipitation (P) (
  

    
), found on 

Table , along with Figure  and an assumed time of concentration (  ). A curve number of 98 

resulted in a    of 1100 
   

      
, and a curve number of 74 resulted in a    of 985 

   

      
 for the 

10-yr rainfall.  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

  
(acres) 

P (in) CN 
  

  
(min) 

   (in) 
  
 

 

 
(

   

      
) 

  
   

   (in) 
Area (A) 

 (   ) 
   

  
  

 (cfs) 

3.3 0.75 98 5 0.04 0.053 1100 0.551 0.005 1 3.031 

2.7 0.75 74 5 0.7 0.933 550 0.001 0.004 1 0.002 

1.3 0.75 74 5 0.7 0.933 550 0.001 0.002 1 0.001 

a) Use with Figure  to find    

b) Found with Figure  or Table  

c) Found in Table  

d) (7)*(8)*(9)*(10) 

   Total 

(cfs) 

3.03 
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 The swamp adjustment factor   was assumed to be 1 for the state of Nebraska. 

 Equation 11.3 (          ) was then solved for each area.  

 Redeveloped roadway: 

 

        
   

      
                     = 26.2 cfs 

 

 2.7 acre vegetated area: 

 

       
   

      
                    = 9.3 cfs 

 

 1.3 acre vegetated area: 

 

       
   

      
                     = 4.6 cfs 

 

 The flows from each area are then summed to find the peak flow of the drainage area. 

 

                                  

 

 The peak flow was found to be 40.1 cfs. 

  

 

Table 2 summarizes the calculations for peak scour flow. 
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Table 2.8 Calculations for peak scour flow 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

  
(acres) 

P 

(in) 
CN 

  
  

(min) 
   

(in) 

  
 

 

 

  
  

(
   

      
) 

   
(in) 

Area (A) 

(   ) 
   

  
  

(cfs) 

3.3 5 98 5 0.04 0.008 1100 4.76 0.005 1 26.180 

2.7 5 74 5 0.7 0.140 985 2.36 0.004 1 9.298 

1.3 5 74 5 0.7 0.140 985 2.36 0.002 1 4.649 

a) Use with  to find    

b) Find with  or Table  

c) Found in Table  

d) (7)*(8)*(9)*(10) 

   

Total 

(cfs) 

40.1 

 

 

11.3.2.3 Calculating Water Quality Volume 

 The total water quality volume (WQV) is the sum of the WQV from new development 

(e.g. pavement) (          ) and the volume of run-on which co-mingles with the 

           (         ).            was found by multiplying the newly constructed or 

redeveloped area by 0.5 in. using equation 11.4.  

 

                  
                         

  
  
  

 

 

 For this example, the area of newly developed pavement was 3.3 acres (143,747    ). 

Thus the            was: 
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 In order to calculate the run-on volume (         ) the depth of runoff (Q) from the 

0.75 in. storm must be found for the associated curve numbers of the contributing areas 

determined by Table . This value was incorporated into equation 11.5 to find the          . 

 

                         
                      

  
  
  

 

 

 The           for the 2.7 acre vegetated area was:  

 

                        
          

  
  
  

          

 

 The           for the 1.3 acre vegetated area was: 

 

                        
         

  
  
  

          

 

 Equation 11.6 was then used to find the total volume requiring treatment. 
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Chapter 12 Volume II Results and Discussion 

12.1 Fact Sheets 

 The fact sheets provide the design engineer the background on each BMP which will be 

used to determine the applicability of a specific BMP or determine which BMP is best for site-

specific conditions. Each fact sheet typically includes the following: 

 Description: Provides a basic description of the BMP. 

  Pollutant removal potential: Shows pollutant removal based on multiple studies.  

  Initial costs: Provides projected capital costs and costs observed during case studies. 

  Maintenance costs: Provides estimates and case study results of maintenance costs as 

well as required maintenance hours. 

  Siting constraints: Identifies applicable locations and conditions for the BMP.  

 Maintenance and operation considerations: Identifies ways to prevent and repair 

potential problems with the BMP. 
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12.1.1 Vegetated Filter Strip 

 

 

 

Figure 12.1 Roadside vegetated filter strip (TWG 2008) 

 

12.1.1.1 Description 

Vegetated filter strips, also known as vegetated buffers or grass filter strips, are sloped 

vegetated surfaces which are intended to treat runoff from adjacent impervious areas. These 

areas must have sufficient vegetative cover and minimal slope perpendicular to flow (cross 

slope) to facilitate treatment. Treatment of runoff is accomplished primarily through filtration, 

biological processes associated with the vegetation, and infiltration.  

The primary requirement with vegetated filter strips is maintaining sheet flow. If runoff is 

allowed to channelize there are two primary drawbacks. The first drawback is the formation of 

rills, which can occur when concentrated flows locally erode surface soils. This eroded material 

then adds to the solids load of the runoff. The second problem comes from short-circuiting 

associated with rill formation. Rills allow runoff to bypass the vegetation where treatment 

occurs. Vegetated filter strips become largely ineffective if channelization is allowed to occur.  
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One way to maintain sheet flow is through the use of a level spreader. Level spreaders are 

used to slow and evenly distribute runoff. Roadside level spreaders include gravel filled trenches, 

earthen berms, rip-rap, or treated lumber which have minimal cross slope. It is recommended to 

use level spreaders at the top of the buffer.  

12.1.1.2 Pollutant Removal Potential 

 Vegetated filter strips primarily remediate runoff through filtration, biological processes, 

and infiltration. High solids removal has been shown in the first 13 ft (4 m) of the strip (Barrett 

2005), and it plateaus after 33 ft (10 m) (Zhang et al. 2010). The slope should not exceed 15% to 

keep velocities low and pollutant removal high. Removal of solids peaks at 10% slope, though 

has been shown to be effective at steeper slopes (Zhang et al. 2010). Table 3 shows observed 

pollutant removals by vegetated filter strips. 

 

Table 3.1 Pollutant removal potential for vegetated filter strips 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 hang et al.

1
 

2010 

Li et al. 

2008 

Caltrans 

2004 
Winston and Hunt 

  1 

3

 
Barrett and Walsh 

1998

4

 

 Removal % 
Removal 

% 

Removal 

% 
Removal % Removal % 

Pollutant      

Total 

Suspended 

Solids (TSS) 

86 35.7 83 68 85 

Total 

Nitrogen 

(TN) 

68.3 4.7 44 13 48 

Total 

Phosphorous 

(TP) 

71.9 -121 -76 12 45 

Total Metals 

(TM) 
- 49.7 89.3  - 635 

1) Results of a literature review 

2) Average of Cu, Pb, & Zn 

3) Average of 6 sites 

4) Load reduction of existing infrastructure 

5) Average of Zn, PB, & Fe 
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12.1.1.3 Cost Considerations 

Initial cost. The small amount of design and infrastructure associated with vegetated filter 

strips makes them a relatively inexpensive BMP. The construction costs of vegetated buffers 

included grading, vegetating the strip, and installation of a level spreader. The cost of grass 

installation has been estimated at $13,000 per acre for seeding and $30,000 per acre for sod as of 

2006 (EPA 2006d). Level spreader costs range from $5 to $20 per foot as of 2006 (DEPBWM 

2006), and grading costs vary with site size and conditions.  

Another major expense was the availability of the land required to place this BMP. The 

large foot print can make vegetated filter strips impractical in urban areas where acquiring the 

necessary land is expensive. However, it has been shown that existing vegetation along roadways 

can act as vegetated filters (Barrett 2005). Sites which are already acting in this capacity require 

very little initial capital. 

Maintenance costs. Maintenance costs are also low with vegetated filter strips. Annual 

maintenance costs have been estimated at $350 per acre of filter strip based on a report from 

1991 (EPA 2006d). A study (CalTrans 2004) demonstrated that the majority of maintenance 

overlapped with general roadside maintenance. A related study was performed which showed 

that the pollutant removal effectiveness of existing roadside vegetation, which had only regular 

maintenance, compared favorably with filter strips designed for water quality improvement 

(CalTrans 2003).  

12.1.1.4 Siting Constraints 

Vegetated filter strips are applicable for use in most areas, and are effective as 

pretreatment BMPs in a treatment train. Runoff from small areas, such as parking lots or 
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roadways, is a good candidate for treatment by vegetated strips. However, the relatively large 

spatial requirement of filter strips is a major restricting factor.  

Although filter strips are suited for most climates, they may need some climate-specific 

considerations. For example, in cold or seasonal climates vegetation should be selected that is 

salt tolerant, especially when adjacent to roadways. In more arid regions lack of rainfall may 

require irrigation to maintain acceptable vegetated cover which may make vegetated filter strips 

cost-prohibitive.  

The large size requirement creates the potential for the required width of the buffer to 

extend beyond the standard right of way. Intrusion on neighboring properties causes an increase 

in cost which may limit the practicality of filter strips. Other BMPs, with a smaller footprint, 

may be better suited for densely developed areas. 

Another constraining factor is the requirement for minimal slope perpendicular to flow. 

This is of particular concern for some roadway applications because the land adjacent to roads 

generally has a similar topography. Highways which have vertical curves of more than 2% will 

likely not be able to effectively accommodate a vegetated filter strip. Other forms of vegetated 

filtration such as vegetated swales may be considered in these areas. See the Vegetated Swale 

Fact Sheet of this work to determine their applicability. 

There must be safe access to all parts of the filter strip. Due to the nature of this BMP, 

maintenance vehicle access at the top of the slope should be sufficient for the majority of 

maintenance activities. Any necessary vehicle traffic on the strip should occur when the ground 

is dry, and vehicles should travel horizontally across the strip as much as possible. The ruts 

formed decrease vegetated cover which can reduce the performance of this BMP, and if the ruts 

are created running down-hill they will promote channelization.  
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12.1.1.5 Maintenance and Operation Considerations 

It is very likely that much of the cost of operation and maintenance will overlap with 

general vegetation maintenance along roadways (Barrett 2005). The primary focuses of 

maintenance are maintaining healthy vegetation, removing litter and detritus, and the 

preservation of sheet flow throughout the length and width of the filter strip. Maintaining healthy 

vegetation consists of keeping vegetated cover above 80%. This should be done, as much as 

possible, without the use of pesticides or herbicides which can contribute to contaminants in the 

runoff. 

In a retrofit study, the California Department of Transportation (Caltrans 2004) found 

that 105 hrs/yr were required to maintain an effective filter strip serving 4.9 acres. Sixty-seven of 

these hours were spent mowing and removing woody vegetation, which are standard roadside 

maintenance activities. 
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Table  shows the potential maintenance and operation requirements of vegetated filter 

strips which could be observed during inspection and suggests corrective procedures. 
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Table 12.2 Operations and maintenance considerations and suggested corrective procedures 

 

Inspection 

Frequency 

Problem Suggested Corrective Procedure 

Annually Level spreader is not distributing 

runoff evenly across strip due 

unevenness or clogging. 

Level the flow spreader and clean 

out clogs (NCDENR 2007). 

Substantial channelization or 

rilling. 

Regrade and reseed the strip  

(DEPBWM 2006). 

Semi-

Annually 

Burrowing animals cause 

vegetated cover to drop below 

80%. 

Take applicable action which will 

vary with pest type. 

Sediment accumulation of 3 or 

more inches near outlet or 

enough to cover vegetation 

within the strip. 

Remove sediment, re-level, and 

replant where applicable. 

Regularly/

As Needed 

Grass becomes unacceptably tall. 

Maintain grass length from  ”–6”. 

Clippings should be removed if 

nutrients are pollutants of concern. 

Mowing should be performed 

across the slope when it is dry so 

rutting caused by tires will not 

promote channelization 

(DEPBWM 2006). 

Weeds or unwanted vegetation 

begin to dominate strip. 

Weeds should be removed by hand 

ideally, otherwise a herbicide which 

is not toxic to recommended 

vegetation should be used 

(NCDENR 2007). 

Bare areas form within strip. Remulch and reseed bare areas. 

Rills of less than 8” wide form. 

Fill rills with gravel which will 

soon be overtaken by grass 

(SEMCOG 2008). 

Litter and detritus build up. 

Remove litter which is aesthetically 

unpleasant, negatively affects 

performance of the strip, or is itself 

harmful to the environment  

(CalTrans 2004).  

Not enough rainfall to sustain 

vegetation.  

Irrigation may be necessary to 

maintain adequate cover. It is 

suggested that grasses be selected 

which are drought tolerant and will 

not require irrigation. 

Standing water beyond 48 hrs of 

isolated storm event. 

Repair grade where runoff pools 

and take any necessary vector 

control measures (SEMCOG 2008). 



 

 

139 

12.1.2 Vegetated Swale 

 

 

 

Figure 12.2 Roadside swale (CalTrans 2012) 

 

12.1.2.1 Description 

 Vegetated swales are open channels which have vegetative (usually grass) linings that 

provide water quality benefits while conveying stormwater runoff. Swales rely on maintaining 

low flow velocities to promote sedimentation, filtration through the vegetation, and infiltration. 

The low velocity also decreases peak runoff rates from impervious drainage areas. The vegetated 

channels also have more aesthetic appeal than rock or concrete lined channels.    

 Swales can be enhanced with check dams to reduce flow velocity and to create temporary 

ponding which promote sedimentation and infiltration. Check dams can improve the 

functionality of the BMP as well as increase the life span of vegetated swales (Landphair et al. 

2000).  
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12.1.2.2 Pollutant Removal Potential 

 Vegetated swales have shown good removal for solids and metals and moderate removal 

for nutrients, such as phosphorous and nitrogen (UDFCD 2010).  Pollutant removals by 

vegetated swales, as reported by several researchers, are presented in  

 

Table .  

 

 

Table 

12.3 
Polluta

nt 

remov

al 

potenti

al for 

vegetat

ed 

swales 

 

 

 

 

 

 

 

 

 

 

 Landphair 

et al.     

 

 
MSSC 

2005 
CalTrans    4

3
 

DEPBW

M 2006 

Clar et al. 

2004 

Pollutant Removal 

% 
Removal % Removal % 

Removal 

% 
Removal % 

Total 

Suspended 

Solids  

(TSS) 

81–98 85 76 50 83 

Total Nitrogen  

(TN) 
40–99 35 67 50 25 

Total 

Phosphorous  

(TP) 

18–99 50 1 20 29 

Total Metals  

(TM) 
78.5

 
 80 85

4
  59

5
 

Hydrocarbons  

(oil and grease) 
- 80 -  75 

1) Average of 6 sites 

2)  Zn: 60–99; Pb: 50–99 

3) Average of 6 sites 

4) Average of Pb, Cu, and Zn 

5) Average of Pb, Cu, and Zn 
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12.1.2.3 Cost Considerations 

Initial cost. Initial capital costs for vegetated swales are generally low. Existing 

infrastructure should be used as much as possible to keep costs low. In many cases it is possible 

to meet municipal separate storm sewer discharge permit requirements as specified in the Clean 

Water Act Section 401 by adding check dams to existing drainage measures (Landphair et al. 

2000).  Construction costs can result from swale size, grading, clearing, grubbing, or plant 

establishment. The EPA has predicted swale construction costs to range from $0.25 to $0.50 per 

ft
 
 ($2.75 to $5.50 per m   based on a report from 1997 (EPA 2006b).  

 The Pennsylvania Stormwater BMP Manual reported costs of $8.50 to $50 per linear foot 

($28 to $165 per meter) in 2006 (DEPBWM 2006). The Michigan LID Manual predicts costs 

ranging from $4.50 to $8.50 per linear foot ($15 to $28 per meter) for seeding and $15 to $20 per 

linear foot ($50 to $66 per meter) for sodding as of 2008 (SEMCOG 2008). These values 

compare favorably to capital costs for underground pipes ($2 per foot per inch of diameter) and 

curb and gutter systems ($13 to $15 per foot) (SEMCOG 2008).  

 Another method of cost estimation is based on cost per volume treated. Cost per volume 

can range from $0.50 per ft
3
 ($18 per m3  (CH2MHILL 2008) to $1.50 per ft

3
 ($52 per m3  

(CalTrans 2004). The cost of the swale per volume treated can vary based on the size of the 

contributing watershed and the scope of the construction project. Although these values are good 

for estimation, larger drainage areas have been shown to have lower costs per volume treated 

(CalTrans 2004), so a linear relationship may not be reliable. Construction costs can also be 
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mitigated by constructing the swale in conjunction with other construction activities within a 

larger project (Lampe et al. 2005).  

Maintenance costs. Vegetated swales are considered to have a low life cycle cost when 

compared to other BMPs (UDFCD 2010). Annual maintenance costs for swales are expected to 

be 5% to 7% of the construction costs (CH2MHILL 2008). This estimate fits with a 2004 study 

which projects $2,736 of annual maintenance for a swale serving 6 acres (CalTrans 2004).   

12.1.2.4 Siting Constraints 

 Vegetated swales are useful along roadways, parking lots, and as components of 

treatment trains (KCDNRP 2009). Their linear nature and combination of drainage and water 

quality benefits make them ideal for use along roadways (KCDNRP 2009). Existing drainage 

areas within the right-of-way, such as ditches and medians, are often compatible with the use of 

vegetated swales. Existing drainage infrastructure (e.g., ditches) may already be functioning as a 

vegetated swale, but any retrofit project requires confirmation with the constraints laid out in the 

Vegetated Swale Design Guide section of this work. When using swales along roadways, they 

can effectively replace the curb and gutter system (UDFCD 2010).  

 Contributing drainage area also limits the applicability of what vegetated swales are best 

suited for. Ideally, swales will not treat more than 5 acres (SEMCOG 2008). However, guidance 

of up to 10 acres has been given (Clar et al. 2004). If treating more than 5 acres, less than 5 acres 

of the contributing area should be impervious (KCDNRP 2009).  

 If vegetated swales have a gentle slope (i.e., < 1%) they should not be used where the 

seasonal high watertable, or bedrock is within 2 feet (0.61 m) of the bottom of the swale. 

Building the swale with inadequate drainage considerations could result in dewatering problems 

which can lead to mosquito breeding grounds (SEMCOG 2008). Dewatering is also a concern 
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with NRCS type D (i.e., clay) soils (Landphair et al. 2000). Swales may still be used in type D 

soils, but an adequate slope (i.e., greater than 1%) must be maintained throughout the course of 

the swale to facilitate drainage. When considering swales for urban or residential applications, 

the number of driveways crossing the swale must be considered. Driveways crossing the swale 

require culverts to pass flows. Culverts can reduce pollutant removal by vegetated swales (Clar 

et al. 2004).   

12.1.2.5 Maintenance and Operation Considerations 

 Maintenance of vegetated swales overlaps significantly with normal vegetated roadside 

maintenance (Landphair et al. 2000). These maintenance considerations are focused on 

supporting healthy grass, removing trash, mowing, and keeping woody vegetation down. 

Additional considerations for water quality swales include sediment removal, preventing and 

fixing erosion, providing even distribution of flow across the channel, and maintaining check 

dams (if present). A study found that vegetated swales, when designed properly, should require 

approximately 50 hrs of maintenance annually for a swale serving 6 acres (CalTrans 2004).  
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Table 12.4 Operations and maintenance considerations and suggested corrective procedures 

 

Inspection 

Frequency 

Problem Suggested Corrective Procedure 

Annually Sediment inhibits grass growth in 

more than 10% of the swale 

length or inhibits even spread of 

runoff 

Remove sediment by hand or with 

flat shovel and reseed with same mix 

as soon as possible (KCDNRP 2009) 

Substantial channelization or 

rilling. 

Regrade and reseed the swale  

(KCDNRP 2009) 

Semi-

Annually 

Burrowing animals cause 

vegetated cover to drop below 

80%. 

Take applicable action which will 

vary with pest type. 

Sediment accumulation of 3 or 

more inches near outlet or enough 

to cover vegetation within the 

strip. 

Remove sediment, re-level, and 

replant where applicable (Clar et al. 

2004, CalTrans 2004) 

Check dam gets clogged with 

debris or sediment 

Remove sediment or debris and 

reseed with same mix as soon as 

possible (Landphair et al. 2000)  

Regularly/

As Needed 
Grass becomes unacceptably tall. 

Maintain grass length from 3–4 in. 

(FHA 1997b). Clippings should be 

removed if nutrients are concern 

pollutants (Clar et al. 2004).   

Weeds or unwanted vegetation 

begin to dominate strip. 

Weeds should be removed without 

using tactics which adversely affect 

recommended vegetation  

(CalTrans 2004). 

Rills of less than 8” wide form. 

Fill, compact, and reseed eroded 

area with same seed mix (Clar et al. 

2004) 

Litter and detritus build up. 

Remove litter which is aesthetically 

unpleasant, negatively affects 

performance of the swale, or is itself 

harmful to the environment (FHA 

1997b).  

Not enough rainfall to sustain 

vegetation.  

Irrigation may be necessary to 

maintain adequate cover (SEMCOG 

2008). It is suggested that grasses be 

selected which are drought tolerant 

and will not require irrigation. 

Standing water beyond 48 hrs of 

isolated storm event. 

Repair grade where runoff pools and 

take any necessary vector control 

measures (MSSC 2005). 
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12.1.3 Bioretention Cell 

 

 
 

 

12.1.3.1 Description 

 Bioretention BMPs are highly customizable and flexible vegetated soil filters that are 

designed to retain and treat the water quality volume (WQV) and filter it through an engineered 

soil mix. Remediation is accomplished through filtration, plant uptake, and potentially, 

infiltration. The soil mix must allow the retained runoff to drain in 24 to 48 hrs while performing 

remediation functions and supporting the vegetation in the system (MDEP 2009). 

 The vegetation can be very diverse in bioretention; however, using grass as the only 

vegetation can produce excellent water quality results (Davis et al. 2009). Trees should not be 

used near roadways due to safety concerns. If vegetation is properly selected and maintained 

bioretention cells can be very beneficial aesthetically along with their environmental benefits. 

Vegetation selection and planting strategies are discussed in the Bioretention Design Guide. 

Figure 12.3 Highway median bioretention in Delaware (DelDOT 2012) 
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 Bioretention BMPs can be designed as either infiltration or filtration facilities. Infiltration 

is encouraged if it does not threaten surrounding buildings or roadways. Infiltrating the WQV 

contributes to ground water recharge as well as decreasing runoff which could contribute to 

stream channel erosion. In situations where infiltration is not desirable, an under- drain is used to 

discharge treated runoff. Under-drain systems are ideal for areas with impermeable soils or in 

highly developed areas. Figure  shows a bioretention facility in a roadway median, and Figure  

shows a plan and section view of a potential bioretention layout. 
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Figure 12.4 Bioretention facility plan and section view (Landphair et al 2000) 
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12.1.3.2 Pollutant Removal Potential 

 Pollutant removal was primarily achieved through filtration and uptake from plants and 

microbials. Solid removal was high but has been shown to plateau at 10 
mg

L
 regardless of initial 

concentration (Lampe et al. 2005). Table 12.5 shows the pollutant removal from several studies.  

 

Table 12.5 Pollutant removal potential for bioretention 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.1.3.3 Cost Considerations 

Initial Cost. Initial capital costs for bioretention facilities are considered low to moderate 

(WSDOT 2010). The city of Bellingham, Washington installed rain gardens in place of in-

ground storage and saved 75% to 80% on construction costs (LeCroix et al. 2004). Bioretention 

 Li and Davis 

    

 

 
Atchison 

et al. 

2006 

MSSC 

2008 
Davis et al  

    

 

 
 asseport et al  

    

 

 

Pollutant Removal % Removal 

% 

Removal 

% 

Removal % Removal % 

Total Suspended 

Solids (TSS) 

96 
90 85 54–99

3
 - 

99 

Total Nitrogen 

(TN) 

-3 
65–75 45   –    

56 

97 47 

Total 

Phosphorous (TP) 

-36 
80 50   4 –79

5
 

53 

100 68 

Total Metals 

(TM) 

75 
95 95 57–99

6
  

99 

Fecal Coliforms 
95 

90 35 - 
95 

100 85 

1) 2 sites  

2) Average of multiple studies 

3) 5 studies  

4) 5 studies  

5) 7 studies  

6) 5 studies for Zinc  

7) 2 grass only sites  
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facilities installed in 2004 cost $12,800 to treat 4400    , which is equivalent to the WQV for 2.4 

acres, and $5,600 to treat 2300    , which is equivalent to the WQV for 1.3 acres (LeCroix et al. 

2004). These costs were supported by the EPA who projected new construction of bioretention in 

commercial areas to be $12,357 and retrofits in commercial areas to be $12,355 for drainage 

areas no greater than 1 acre in 2004 (Clar et al. 2004). The precise initial capital requirement is 

site-specific and related to availability of materials, size of contributing drainage area, and 

necessity of under-drains.     

Maintenance Costs. The average expected maintenance cost for bioretention facilities 

was estimated to be $1,000 annually in 2004 (Lampe et al. 2004). Maintenance will need to be 

more rigorous, and therefore more costly, until plants can be established.  

  Maintenance costs can be tempered through community involvement. Because 

bioretention facilities are aesthetically pleasing, the public may be more prone to embrace and 

support their use. Community groups or business associations might be willing to participate in 

maintaining these BMPs. However, inspections and some maintenance activities would still be 

required.  

12.1.3.4 Siting Constraints 

 The flexibility of bioretention allows it to fit into most water treatment scenarios. 

Bioretention systems are very diverse and can be altered to site-specific conditions. The primary 

differentiation between types of bioretention systems are those which infiltrate the runoff and 

those which do not.  

 Infiltrating runoff benefits groundwater recharge as well as protects streams from erosion 

caused by high peak flows. However, infiltration is not always acceptable. The following 

instances do not allow for infiltration: 
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 The seasonal high ground water level is within 3 ft (0.9 m) of the bottom of the system 

(MSSC 2005). 

 Treating a pollutant hot spot (i.e., gas station) where groundwater contamination is 

possible. 

 Inadequately drained subgrades (hydraulic conductivity ≤  .5  in hr⁄  (1.3 cm hr⁄ )). 

 Potential interference with foundations/infiltration into basements. 

 Infiltration interferes with the subgrade of roadways. 

For applications that do not permit infiltration, under-drains can be used. Bioretention 

facilities with under-drains can be used in a wide variety of situations, and can be easily 

integrated into an urban landscape. When incorporating an under-drain, nearby structures must 

still be considered. If the bioretention cell is located adjacent to a building, roadway, or sidewalk, 

a concrete vault should be employed to prevent possibly harmful infiltration.   

12.1.3.5 Maintenance and Operation Considerations 

 Maintenance on bioretention BMPs focuses on keeping the plants healthy and preventing 

clogging of the filter media. Increased maintenance for these BMPs is required during the 

vegetation establishment period. Vegetation will require watering in times of little rainfall. 

Watering should be done weekly for the first 2 to 3 months and bi-weekly during summer 

months (Hartsig 2009).   
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Table  shows expected maintenance and corrective procedures for the BMP. 
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Table 12.6 Operations and maintenance considerations and suggested corrective procedures for 

bioretention cells 

 

Inspection 

Frequency 

Problem Suggested Corrective Procedure 

Annually 

Mulch layer thins  

Evenly place mulch to a depth of 2–

3 in. (5.1–7.6 cm) (Davis et al. 

2009) 

Substantial rill formation 

Fill rills with washed pea gravel 

and reconsider pretreatment to 

better attenuate flow velocity 

(DEPBWM 2006). 

Semi-

Annually 

Burrowing animals cause 

vegetated cover to drop below 

80% 

Take applicable action which will 

vary with pest type. 

Sediment accumulation in fore-

bay (if used) 

Remove sediment and dispose of 

off-site (Clar et al. 2004). 

Regularly/As 

Needed Undesirable vegetation grows 

All weeds and woody vegetation 

should be removed as soon as 

possible (SEMCOG 2008). 

Litter and detritus build up. 
Remove and discard trash  

(MSSC 2008). 

Not enough rainfall to sustain 

vegetation.  

Irrigation may be necessary to 

maintain adequate cover. It is 

suggested that vegetation be 

selected which is drought tolerant 

and will not require irrigation. 

Watering may be required to 

establish plants  

(LeCroix et al. 2004). 

Standing water beyond 48 hrs 

of isolated storm event. 

Tilling the top layer should be done 

initially. If problems persist, 

remove filter media and replace 

with a better draining mix 

(NCDENR 2007).  

Vegetation becomes overgrown 

Prune vegetation according to 

vegetation-specific requirements  

(Davis et al. 2009). 

Under drain clogs 
Clean out pipes and dispose of 

sediment off-site (SEMCOG 2008). 

Under drain is damaged Replace damaged pipe  

Vegetation is dead or diseased 

Replace plants. If the plant species 

seems unsuited for this application 

select another species  

(Le Croix et al. 2004). 
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12.1.4 Basin Sand Filter 

 

 
Figure 12.5 Sand filter for treatment of highway runoff (CalTrans 2004) 

 

12.1.4.1 Description 

 Basin sand filters are flow-through BMPs which temporarily detain the water quality 

volume (WQV) and filter it through sand. Treatment is accomplished primarily through filtration 

and secondly through sedimentation which occurs in a sedimentation chamber before the runoff 

is introduced to the filter media. Systems are typically designed for the sedimentation chamber to 

drain in 24 hrs and the entire WQV to pass through the filter in 40 hrs. 

 Sand filters are well suited to treat the first flush, but to avoid over-loading they should 

be designed so that flows in excess of the WQV bypass the system. They should not be used as 
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in-line BMPs. Therefore, flow splitters should be employed upstream of the filter to prevent 

flows in excess of the WQV from entering the system.  

12.1.4.2 Pollutant Removal Potential 

 Sand filters have been shown to be very effective at removing sediment and metals from 

stormwater runoff. However, the moderate removal of nutrients provided by the sand filter 

prevents it from being a stand-alone BMP if discharging into nutrient impaired waterways. 

Observed removal rates are presented in Table . 

 

Table 12.7 Pollutant removal potential for filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.1.4.3 Cost Considerations 

Initial Cost. Sand filters have relatively high construction costs. High costs are due in 

large part to construction costs for the concrete vaults which house many filters. These costs can 

 
S MC      8

1
 

MSSC 

2005 CalTrans    4  
NCDENR 

2007 

Young et al. 

1996 

Pollutant 
Removal % 

Removal 

% 
Removal % 

Removal 

% 
Removal % 

Total 

Suspended 

Solids  

(TSS) 

80–92 75–85 90 85 70–86 

Total Nitrogen  

(TN) 
30–47 0–35 32 35 31–47 

Total 

Phosphorous  

(TP) 

41–66 0–50 39 45 50–65 

Total Metals  

(TM) 
- 45–85 7 

 
 - 78–84

4
 

Hydrocarbons  

(oil and grease) 
- 80  8

3
 - - 

1) 18 studies 

2)  Average of Pb, Cu, Zn 

3) Average of TPH as oil and diesel 

4)  Average of Pb and Zn 
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be tempered by substituting earthen barriers or prefabricated vaults (SEMCOG 2008). Cost 

estimates have projected the treatment costs to be $16,000 per impervious contributing acre for 

filters less than 2 acres in 2002 (FHA 2002b). The cost-benefit of using prefabricated vaults is 

shown by a study which found costs of approximately $10,000 to treat 0.8 acres in 2008 

(SEMCOG 2008).  

  Contributing watershed size is a major factor in the cost-effectiveness of sand filters. 

Watersheds greater than 10 acres are suggested to provide the greatest treatment value 

(Landphair et al. 2000). In 2002 the Federal Highway Administration projected initial filter costs 

to be $16,000 per impervious contributing acre when treating 2 acres or less and $3,400 per 

impervious contributing acre for watersheds greater than 5 acres (FHA 2002b).  

 Construction costs vary widely between studies. In a 2004 retrofit study, construction 

costs at 5 sites ranged from approximately $200,000 to approximately $315,000. The treated area 

in these sites ranged from 0.74 to 2.7 acres (CalTrans 2004). These wide ranges make it difficult 

to project construction costs based on area treated. Site-specific factors, such as excavation 

requirements can have effects on construction costs, and should be closely assessed when 

projecting facility costs. 

Maintenance Costs. A 2004 retrofit study projects that 43 hrs will be spent servicing 

filters annually (CalTrans 2004), which corresponds with approximately $2,900 maintenance 

costs (CalTrans 2004). This budget is projected for years in which the filter media needs to be 

replaced. Since media rehabilitation is not an annual expense, maintenance costs will be lower on 

the off years.     
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12.1.4.4 Siting Constraints 

  Applicable locations for sand filters include highway medians or within the roadway 

setbacks (Hubert et al. 2006). When being deployed near roadways, some safety concerns must 

be addressed. Sand filters or their components can act as fixed object hazards. Impact concerns 

can be mitigated by minimizing facility heights, employing appropriate setbacks, traffic barriers, 

and designing the structures to crumple when struck (Hubert et al. 2006).  

 Roadways and other transportation infrastructure, such as fueling and maintenance 

stations or park and rides are also ideal contributing watersheds because sand filters perform the 

best when treating runoff from highly impervious areas (MSSC 2005, DEPBWM 2006, CalTrans 

2004). Sand filters may also be designed to occupy limited open space within right-of-ways or in 

an urban street setting where vegetated BMPs are impractical (Hubert et al. 2006). Although 

sand filters are adaptable for urban settings, industrial settings may be the most applicable due to 

a lack of aesthetic appeal compared to bioretention (MSSC 2005). 

 In order to facilitate gravity flow, and to avoid using pumps, there must be at least 3 ft (1 

m) of elevation difference between the inlet of the system and the discharge point (Hubert et al. 

2006, CalTrans 2004). The bottom of the facility should be at least 2 ft (0.61 m) above the high 

groundwater table to prevent possible facility damage and flooding of the under-drain (Hubert et 

al. 2006, CalTrans 2004). In areas where achieving sufficient heads causes interaction with the 

groundwater, the facility must be designed with sufficient mass to avoid buoyancy effects 

(Hubert et al. 2006). Leaching of groundwater into the system can be mitigated by lining the 

areas beneath the groundwater table with impervious geotextiles or using a concrete vault to 

house the filter. 
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12.1.4.5 Maintenance and Operation Considerations 

  Sand filters should be inspected after the first storm of each year to ensure proper 

drainage and system functions (KCDNRP 2009). Inspections of contributing area should also be 

performed. If the contributing area is unstable or erosive the maintenance for the sand filter will 

be more intensive (Hubert et al. 2006). Removal of the top 2 to 5 in. (50 to 125 mm) of filter 

media is generally required every 3 to 5 yrs for properly designed filters (Landphair et al. 2000, 

MSSC 2005). The maintenance burden will be lower for contributing drainage areas with higher 

impervious areas, as there are typically fewer fines in the runoff (FHA 2002b).   
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Table  shows potential operations and maintenance issues along with suggested procedures to 

correct them. 
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Table 12.8 Operations and maintenance considerations and suggested corrective procedures 

 

Inspection 

Frequency 

Problem Suggested Corrective Procedure 

Annually 

 

 

 

 

 

 

Filter bed is not draining in 

design time 

Manually manipulate surface, if this is 

inadequate remove top 2 to 5 in. (50 to 

125 mm) and replace (if removal drops 

media depth under 18 in. (460 mm)).  

(MSSC 2005) 

Substantial channelization or 

rilling. 

Fill any rills with sand and ensure level 

spreader is not clogged or damaged 

(KCDNRP 2009). If level spreader is in 

working order add erosion protection. 

(NCDENR 2007) 

Flow spreader is clogged or 

damaged 

For clogs remove and dispose of 

sediment. For damage make necessary 

repairs or replace depending on 

severity. (NCDENR 2007)  

Semi-

Annually 

Surface of media has 

hardened  

Rake to break up surface.  

(Huber et al. 2006, SEMCOG 2008) 

Deterioration, spalling, or 

cracking of concrete 

Patch damaged area. (Huber et al. 

2006, MSSC 2005) 

6 in. (150 mm) or more of 

sediment built up in 

sedimentation chamber 

Remove sediment. (MSSC 2005, 

Landphair et al. 2000) 

Regularly/As 

Needed 
Under-drains are clogged 

Flush out under-drains (NCDENR 

2007) 

Litter and detritus build up. 
Remove litter and detritus.  

(NCDENR 2007) 

Contributing area is erosive  
Stabilize contributing area. (Hubert et 

al. 2006) 

Flow diversion structure (if 

used) is clogged or damaged 

For clogs remove and dispose of 

sediment. For damage make necessary 

repairs or replace depending on 

severity. (NCDENR 2007) 

Runoff is short circuiting the 

filter 

Check clean out pipes and ensure there 

are no leaks in the filter or sediment 

chambers. 
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12.1.5 Horizontal Filter Trench 

12.1.5.1 Description 

 Horizontal filter trenches are sloped pea gravel-filled trenches which intercept runoff, 

pass it through the gravel filter media, and discharge it from the downstream end. Cobbles are 

used as armoring on top of the gravel-filled trench to prevent higher flows from washing away 

the pea gravel as well as slowing flows. The primary treatment processes in horizontal filter 

trenches is filtration, but infiltration can also be substantial depending on the characteristics of 

native soils. 

 The cobble armoring may not be sufficient for scour protection if flow velocities become 

too high. Therefore, stone check dams may be employed to slow the runoff. Check dams for 

horizontal filter trenches should not be earthen due to the potential for fines to migrate into and 

clog the filter. Rip-rap check dams function to slow runoff while not damaging the filter. 

 To ensure the filter trench is draining properly observation wells should be installed 

along the length of the trench. Observation wells will typically be 1 to 2 in. PVC pipe with 

perforations at the base. The PVC should be wrapped in filter fabric and capped to prevent 

clogging or contamination from outside sources.  

Figure  shows an observation well. Observation wells should be located at a minimum of 50 ft 

intervals for the length of the filter trench. 
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Figure 12.6 Observation well 

 

 

12.1.5.2 Pollutant Removal Potential 

  The horizontal filter trench is a BMP which is currently being developed for the 

Nebraska Department of Roads (NDOR), so there have not been opportunities to study pollutant 

removal potential. Horizontal filter trenches are expected to show high removal of solids, metals, 

and particulate phosphorous while nitrogen removal is expected to be low.  

12.1.5.3 Cost Considerations 

Initial Cost. Construction materials associated with horizontal filter trenches are well 

known, and accurate cost assessments can be made by contacting local vendors. Costs of 

materials in filter trenches include filter media, cobble armoring, geotextile, and PVC for the 

observation wells. Besides material costs, site preparation must be considered in cost 

assessments. The major costs of site preparation are excavation and stabilizing the contributing 

area.  
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 The materials, processes, and designs required for construction of horizontal filter 

trenches are very similar to those required for construction of infiltration trenches, so reasonable 

cost estimates for the filter trench construction can be drawn from construction costs of 

infiltration trenches. Observations during a 2004 retrofit study indicated construction costs of 

nearly $150,000, or $21 per cubic foot treated (CalTrans 2004). The EPA estimated a lower cost 

of $5 per cubic foot of runoff treated in 2006 (EPA 2006c). Costs will vary with availability of 

aggregate. 

Maintenance Costs. Maintenance costs for horizontal filter trenches will also be similar 

to those for infiltration trenches. A 2004 retrofit study predicts 27 hrs will be required annually 

for maintenance with costs of approximately $2,600 for a 4.9 acre contributing area (CalTrans 

2004). Trench refurbishing costs are expected to be higher than initial construction costs.  

12.1.5.4 Siting Constraints  

 Horizontal filters are ideally located in long, narrow spaces with moderate slopes. 

Therefore, roadside applications are well suited for using horizontal filters. Existing roadside 

ditches are likely prime candidates for retrofit with horizontal filter trenches. Horizontal filter 

trenches can be incorporated into any swale or ditch system which has pretreatment for removal 

of particulates. The variability of sizing allows horizontal filter trenches to be incorporated into 

areas which may not otherwise be utilized (DEPBWM 2006). 

 For areas with flat topography the horizontal filter will act as an infiltration trench. 

Infiltration should not be allowed in the following circumstances: 

 The seasonal high ground water level is within 3 ft (0.9 m) of the bottom of the system 

(MSSC 2005). 

 Treating a pollutant hot spot (e.g., gas station) where groundwater contamination is 
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possible. 

 Inadequately drained subgrades (hydraulic conductivity ≤  .5  in hr⁄  (1.3 cm hr⁄ )). 

 Potential interference with foundations/infiltration into basements. 

 Infiltration interferes with the subgrade of roadways. 

 If used where high solids loadings could occur, horizontal filter trenches should be 

located downstream of a pretreatment system which removes solids. When receiving sheet flow, 

vegetated filter strips are an ideal pretreatment. If remediating concentrated flow (e.g., end of 

pipe scenarios) a vegetated swale or rip-rap lined fore-bay can be employed. Pretreatment is 

important for these systems to prevent clogging with particulates and to avoid the large costs of 

rehabilitation. 

12.1.5.5 Maintenance and Operation Considerations 

 Maintenance associated with horizontal filter trenches focuses on limiting particulate 

loading to the trench. As with all BMPs, proper maintenance is required to extend the functional 

life of horizontal filter trenches and to prevent failure and costly rehabilitation. A summary of 

typical maintenance activities is provided in  
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Table . 
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Table 12.9 Operations and maintenance considerations and suggested corrective procedures for 

horizontal filter trenches 

 

Inspection 

Frequency 

Problem Suggested Corrective Procedure 

Annually Filter media clogs with 

sediment. 

Remove and wash or replace clogged 

media.  

Filter fabric clogs. 

Remove sediment from filter fabric. 

Cobbles may need to be replaced as 

well. 

Semi-

Annually 
Trees growing near filter 

trench. 

Remove woody vegetation without 

harmful chemicals and with minimal 

soil disturbance. Re-vegetate with 

grass as soon as possible (MSSC 

2005). 

Erosion at the inlet or outlet of 

the trench. 
Fill eroded area with cobbles. 

Solids deposit on cobble 

armoring. 

Replace cobbles or wash in a location 

that does not drain to the trench. 

Check dam gets clogged with 

debris or sediment 

Remove debris and replace rip-rap or 

wash in a location which does not 

drain into the trench.  

Regularly/As 

Needed 

Contributing area shows rilling 

or substantial erosion. 

Reseed or otherwise stabilize 

contributing area. 

Weeds or unwanted vegetation 

begin to dominate the trench. 

Weeds should be removed without 

using environmentally harmful 

chemicals  

(CalTrans 2004). 

Sediment build-up 

unacceptable in pretreatment 

(dependent on type of 

pretreatment). 

Remove sediment from pretreatment. 

Litter and detritus build up. 

Remove litter which is aesthetically 

unpleasant, negatively affects 

performance of the trench, or is itself 

harmful to the environment  

(FHA 1997b).  
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12.2 Design Guides 

 Once the fact sheets are reviewed and the ideal BMP for a site is selected, the BMP 

design guide is consulted to ensure proper use of the BMP. The design guides typically include: 

 Design process: Provides the procedure for designing the BMP. 

 Design criteria: Identifies BMP-specific design parameters. 

 Design example: Provides an example site and performs the design process.  

Design guides for the vegetated filter strip and vegetated swale will be based on the peak 

flow of the water to be treated. The bioretention cell and basin filter design will be based on the 

volume of water to be treated (WQV), and design of the horizontal filter trench will be based on 

the peak flow as well as the WQV. 

12.2.1 Vegetated Filter Strip 

12.2.1.1 Design Process 

Step 1: Evaluate applicability of vegetated filter strip considering site constraints. 

Step 2: Calculate Peak Water Quality Flow (    ).  

Step 3: Calculate Water Quality Flow Depth (    ). 

Step 4: Calculate Water Quality Flow Velocity (    ). 

Step 5: Check Scour Velocity for 10-yr Storm (  ). 

Step 6: Determine Pretreatment Method. 

Step 7: Specify Vegetation Plan. 
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Figure 12.7 Plan view of vegetated filter strip (adapted from WSDOT 2010) 

LEVEL SPREADER: 
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12.2.1.2 Design Criteria  

 Table  contains the criteria to be considered while working through the design process.  

 

Table 12.10 Design criteria for vegetated filter strip 

 

Design Parameter Minimum Maximum 

Vegetated strip slope 

parallel to flow 
  

6,7,8
 15 

 ,4,7,8
 

Strip length (parallel to 

flow) 
15 ft (4.6 m)

1,5,8
 

Pollutant removal plateaus 

at 65 ft (   m)
 ,8

 

Ground cover 8  
1
 - 

Flow through strip - 

Must not cause erosion 

during events larger than 

the Water Quality Flow. 

Side slope (perpendicular to 

flow) 
-   

4,7
 

Velocity through strip - 1 
ft

s
 ( .3 

m

s
)

1,3

 

Depth through strip - 1 in  ( .39 cm)
1,4,7

 

Runoff flow path before 

entering BMP 
- 

75 ft ( 3 m)
 ,3

 over 

impermeable surface or 

15  ft (46 m)
 ,3,4,7

 over 

permeable surface. 

1) Caltrans (2010a) 

2) Clar et al. (2004)  

3) FHA (2002a) 

4) KCDNRP (2009) 

5) Li et al. (2008) 

6) MSSC (2005) 

7) WSDOT (2010) 

8) Zhang et al. (2010) 

 

 

Step 1: Evaluate Applicability of Vegetated Filter Strip Considering Site Constraints. 

Vegetated filter strips can be applied adjacent to roadways, parking areas, or as an end-of-pipe 

(i.e., storm sewer outlet) BMP. They are best suited in locations where they can receive sheet 

flow from relatively horizontal surfaces such as parking lots or level roadways. When adjacent to 

roadways the cross slope (parallel to the roadway) is often the controlling factor in hilly areas. 

The cross-slope must be smaller than 2% in order for runoff to flow parallel to the design length 
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of the strip. Locating a vegetated strip adjacent to a roadway in an urban setting may require too 

much area. If there is not enough space for the strip next to the road, it may be possible to install 

a vegetated filter strip as an end-of-pipe BMP, or another BMP more suited to an ultra-urban 

environment may be selected. For end-of-pipe applications vegetated filter strips generally must 

incorporate level spreaders and may require pretreatment such as sediment basins or velocity 

reduction systems. Design considerations for these facilities can be found in step 6. 

 Outlet works for vegetated filter strips include unmanaged discharge directly into 

receiving waters or swale systems. Direct discharge may require slope stabilization, such as rip-

rap if the slope to the waterway is susceptible to erosion. When direct discharge is not an option, 

a swale system may be constructed at the base of the strip to transport the runoff to receiving 

waters or another intermediate conveyance system such as a pipe. Adequately designed swales 

can also provide additional treatment. Design for swale systems can be found in the Vegetated 

Swale Design Guide section of this work. 

Step 2: Calculate Peak Water Quality Flow (    ). Peak flows have been calculated and 

displayed in  

 

Table  for impervious surfaces, such as pavement, up to 5 acres. For pervious areas or 

areas larger than 5 acres, peak flow rates are determined by using the 0.75 in. design storm with 

a type II NRCS 24 hr distribution and equation 12.1(NRCS 1986). A detailed description of the 

use of this equation is given in section 11.3. 

 

                     (12.1) 

 

Where: 
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   : Peak discharge (cfs) 

   : Unit peak discharge (
   

      
) (Figure  or Table ) 

   : Drainage area (   ) 

 Q: Runoff corresponding to 24-hr rainfall (in.) (Table ) 

   : Pond or swamp adjustment factor (1.0 for Nebraska) 

 

 When considering a watershed with both impervious and pervious ground cover, the area 

can either be considered completely impervious, or a weighted flow may be calculated. 

Assuming total imperviousness would result in larger than actual flows and, therefore, oversized 

BMPs. Therefore, the weighted flow method is recommended, as described in the Hydrology 

Section of this work.  

Step 3: Calculate Water Quality Flow Depth (    ). The design flow depth can be 

calculated using the peak flow rate (    ) found in step 2 and equation 12.2, which is derived 

from the Manning equation (WSDOT 2010, Cal Trans 2010): 

 

       (
     

   
 

 ⁄
)
 

 ⁄

      (12.2) 

 

Where: 

     : Water Quality Flow (cfs or cms) 

 S: Slope parallel to flow (
  

  
    

 

 
) 

 n: Manning’s coefficient ( . 4 for well-established dense grass    

 (CalTrans 2010a)) 
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 k: constant (1 for Metric Units 1.486 for English Units) 

 W: Width of strip perpendicular to flow (ft or m) 

 d: Depth (ft or m) 

 

 Assuming that the width of the sheet flow is significantly larger than the depth, equation 

12.2 can be rearranged into equation 12.3: 

 

          
 

 
  

 
 ⁄  

 
 ⁄        (12.3) 

 

 

 If the depth is greater than 1 in. (0.39 cm), measures need to be taken to reduce flow or to 

expand width; otherwise, vegetated filter strips should not be used (Caltrans 2010a, KCDNRP 

2009, WSDOT 2010). Depths greater than 1 in. (0.39 cm) will not be effective in treatment and 

will pose a higher risk of scour. 

 For new construction or end-of-pipe considerations, solving for the minimum width may 

be beneficial. A maximum depth of 1 in. (0.39 cm) will be used to determine the minimum width 

of the filter strip. Solving for W, equation 12.3 is reorganized into equation 12.4: 

 

       
     

  
 

 ⁄  
 

 ⁄
       (12.4) 

 

 

 For existing grass filter strips adjacent to roadways, the width generally coincides with 

the length of the roadway. This existing infrastructure should be checked against equation 12.4 to 

determine if it will act as a properly designed vegetated filter strip.  



 

 

172 

Step 4: Calculate Water Quality Flow Velocity, (    ). The flow rate and flow depth can 

be used to calculate the runoff velocity through the BMP with equation 12.5. 

 

          
    

  
         (12.5) 

 

 The velocity of the water quality volume (    ) must be less than 1 
  

 
 (0.3

 

 
) over the 

entire length of the filter strip (FHWA, Caltrans 2010a). Excess velocities will result in scour and 

short circuiting of the system. Short circuiting will adversely affect pollutant removal by not 

allowing the runoff to interact with an adequate amount of vegetation. 

Step 5: Check Scour Velocity for 10-yr Storm (  ). Vegetated filter strips are often flow-

through BMPs. This means that they will be required to facilitate flows greater than the water 

quality design flow. Vegetated filter strips must be able to accommodate these flows without 

being damaged.  

 Scour velocity will be calculated with the same process used for the water quality flow 

analysis (i.e., equations 12.1 to 12.5); however, scour velocity was calculated for the 10-yr, 24-hr 

storm, which was 5 in. according to TP 40 (Hershfield 1961). The resulting velocity will then be 

compared to the values in   
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Table , which show the scour velocities for common soil classes and their retardance classes. 

Retardance classes are defined in  

Table . 
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Table 12.11 Scour velocities in channels with various soil types and ground covers (USDA 

1979) 

 

 

 

 

Table 12.12 Ground cover retardance classes (Kilgore & Cotton 2005) 

Soil Texture 
Bare Channel Scour 

Velocity (ft/s) 

Vegetated Channel Scour Velocity (ft/s) 

Retardance Class Vegetation Condition 

 Poor Fair Good 

Sand, silt, 

sandy loam, 

silty loam 

1.5 

B 1.5 

3 
3 4 

C 1.5 2.5 3.5 

D 1.5 2 3 

Silty clay 

loam, sandy 

clay loam 

2 

B 2.5 4 5 

C 2.5 3.5 4.5 

D 2.5 3 4 

Clay 2.5 

B 3 5 6 

C 3 4.5 5.5 

D 3 4 2 

Retardance 

Class 
Ground Cover Condition 

B Kudzu Very dense growth, uncut 

Bermuda Grass Good stand, tall, average 300 

mm (12 in) 

Native Grass Mixture (little bluestem, 

bluestem, blue gamma, and other long and 

short midwest grasses) 

Good stand, unmowed 

Weeping lovegrass Good stand, tall, average 610 

mm (24 in) 

Lespedeza sericea Good stand, not woody, tall, 

average 480 mm (19 in) 

Alfalfa Good stand, uncut, average 280 

mm (11 in) 

Weeping lovegrass Good stand, unmowed, average 

330 mm (13 in) 

Kudzu Dense growth, uncut 

Blue Gamma Good stand, uncut, average 280 

mm (11 in) 

C Crabgrass Fair stand, uncut 250 to 1200 

mm (10 to 48 in) 

Bermuda grass Good stand, mowed, average 

150 mm (6 in) 
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Step 6: Determine Pretreatment Methods. Vegetated filter strips may require 

pretreatment to slow runoff, remove coarse sediment, and evenly distribute flow over the width 

of the BMP.  Level spreaders can be used to adequately address these three concerns. Runoff 

must be slowed and evenly distributed if it is entering the system as concentrated flow, or if it 

has traveled greater than 75 ft over impervious ground cover or greater than 150 ft over 

impervious ground cover (Clar et al. 2004). 

 When located adjacent to an impervious surface, a simple gravel trench, such as shown in 

Figure , is adequate as a level spreader. These trenches should be 1 ft (0.3 m) wide and 2 to 3 ft 

(0.61 to 0.91 m) deep. The fill gravel should consist of clean washed, uniformly graded coarse 

aggregate to the AASHTO # 3 specification (SEMCOG 2008). There should also be a 1 to 2 in. 

(2.5 to 5.1 cm) drop from the impervious surface to the trench (SEMCOG 2008). 

Common Lespedeza Good stand, uncut, average 280 

mm (11 in) 

Grass-Legume mixture--summer (orchard 

grass, redtop, Italian ryegrass, and common 

lespedeza) 

Good stand, uncut, 150 to 200 

mm (6 to 8 in) 

Centipede grass Very dense cover, average 150 

mm (6 in) 

Kentucky Bluegrass Good stand, headed, 150 to 300 

mm (6 to 12 in) 

D Bermuda Grass Good stand, cut to 60 mm (2.5 

in) height 

Common Lespedeza Excellent stand, uncut, average 

110 mm (4.5 in) 

Buffalo Grass Good stand, uncut, 80 to 150 

mm (3 to 6 in) 

Grass-Legume mixture-fall, spring (orchard 

grass, redtop, Italian ryegrass, and common 

lespedeza) 

Good stand, uncut, 100 to 130 

mm (4 to 5 in) 

Lespedeza sericea After cutting to 50 mm (2 in) 

height. Very good stand before 

cutting. 
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Figure 12.8 Level spreader adjacent to roadway or parking lot (SEMCOG 2008) 

 

Level spreaders are made up of a trench with one edge which is lower and level allowing 

water to exit evenly along its length. This trench can be open or filled with gravel. If the trench is 

open, it is acceptable to line it with vegetation or concrete. Pipes discharging into the level 

spreader should be oriented parallel to the trench. Discharging into the trench lengthwise will 

minimize overloading and over-flow in a localized section of the level spreader. Figure  shows 

proper entrance to a flow spreader, and Figure  shows an improper entry angle. 
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Figure 12.10 Improper entry to level spreader (Winston et al. 2010) 

Figure 12.9 Proper entry to level spreader (Winston et al. 2010) 
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 The downstream (level) edge of the level spreader may be reinforced with treated wood, 

gravel, or concrete. Regardless of reinforcement the downstream edge must be level and straight 

to uniformly distribute the runoff. It must also be more than 1 in. (2.54 cm) lower than the uphill 

edge. If flow enters a level spreader as sheet flow the trench may be filled with evenly graded 

coarse aggregate. The gravel adds filtration, as well as controlling mosquito breeding. Gravel 

may not be ideal for trenches which accept concentrated flow because the gravel would inhibit 

uniform filling of the trench, causing uneven discharge along the length of the level spreader. 

 The storage volume in the level spreader must be large enough to adequately handle and 

distribute the peak runoff flows. Level spreaders designed for handling concentrated flow should 

not have depths exceeding 1 ft (0.3m), and they should be as wide as the vegetated filter strip it 

discharges into. Level spreaders should be wide enough to discharge the WQV flow, which was 

found with equation 12.1, without exceeding a flow depth of 1 in. (2.54 cm). Equation 12.4 can 

be used to find the minimum width of the level spreader. Gravel-filled level spreaders, which are 

ideal for handling sheet flow, may be 2 to 3 ft (0.6 to 0.9 m) deep (SEMCOG 2008). 

 Overflow bypass should be provided for large flows. The manner of bypass structure will 

be largely dependent on the BM ’s surroundings. Bypass solutions may include a spillway at the 

end of the trench which discharges into a swale or under-drains discharging into a sewer system. 

Drainage measures must be implemented in open-channel level spreaders to allow draw-down 

within 24 hrs to control mosquitoes. Vegetated trenches may need an under-drain if local soils do 

not allow for the infiltration of the design storm within the required 24 hrs. The under-drains 

should discharge into the same structure as the overflow.  

Step 7: Specify vegetation plan. The vegetation in vegetated filter strips should be able to 

survive periods of saturation and periods of drought. Plants must also be able to withstand salts 
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associated with deicing processes necessary in Nebraska’s seasonal climate. Vegetation should 

be limited to grasses, or other vegetation which provides low ground cover. Nebraska’s regional 

climate and soil compositions make it impractical to identify a single seed mix for the entire 

state. The Nebraska Department of Roads (NDOR) has established 6 landscape regions and has 

determined applicable grass mixtures for each. These suggested mixes are presented in Appendix 

E. 

12.2.1.3 Design Example  

 A 2-lane highway was being constructed which will add 0.5 acres of impervious area. 

There was an existing 30 ft adjacent grass strip at an 8% slope away from the roadway. The 

longitudinal slope of the highway, and subsequent cross slope of the vegetated filter strip, was 

1%. Figure 1 shows the plan view for this design example. 

 

 
Figure 1 Plan view for vegetated filter strip design example 1 

 



 

 

180 

Step 1: Evaluate Applicability of Vegetated Filter Strip Considering Site Constraints.

 The lack of other structures in the right-of-way and acceptable slopes make this an ideal 

site to employ a vegetated filter strip adjacent to the roadway.  

Step 2: Calculate Peak Water Quality Flow (    ).  

 

Table  shows that the design peak water quality flow is 0.474 cfs for 0.5 impervious 

acres.  

Step 3: Calculate Water Quality Flow Depth (    ). Equation 12.2 was used to 

determine the flow depth:  

 

  (
     

   
 

 ⁄
)

 
 ⁄

 (
     

   

      

               √    
)

 
 ⁄

          

 

Using  
wqv

   .474 
   

 
, n = 0.24, k = 1.486, S = 0.08, and W = 544.5 ft, d = 0.01 ft.  

 

 The width of the vegetated filter is equivalent to the length of the roadway. Two 12 ft 

wide lanes with an 8 ft shoulder were assumed for this example. The calculated depth of 0.125 

in. is less than the maximum of 1 in., so the width is satisfactory. 

Step 4: Calculate Water Quality Flow Velocity (    ). Equation 12.5 was used to 

determine the flow velocity. 
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Using  
wqv

   .474 
   

 
, W = 544.5ft, and d = 0.125 in.:            

  

 
, the calculated velocity 

is less than the   
  

 
 maximum, so it is acceptable. 

Step 5: Check Scour Velocity (  ). The 10-yr, 24-hr storm was used to check scour 

velocities. Peak flows were found using equation 12.1: 

 

           

 

 Table  shows a curve number of 98 for impervious areas. The curve number was then 

used with the ratio of initial abstraction (  ) to precipitation (P) to find the unit peak discharge 

(  ). Figure  or Table  can both be consulted for the    value. A curve number of 98 produces a 

   of 1100 
   

      
. Table  shows a runoff depth (Q) of 4.76 in for the 10-yr storm. The swamp 

adjustment factor (  ) for the state of Nebraska is 1. Using equation 12.1 gave: 

 

        
   

      
                                

 

 Equation 12.2 was then used to find flow depth: 

 

  (
       

   
 

 ⁄
)

 
 ⁄

 (
    

   

      

               √    
)

 
 ⁄

          

 

 Equation 12.5 was then used to find the flow velocity: 
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 The calculated value is less than any value on   
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Table  and therefore passes for any ground condition. For example, a fair stand of Kentucky 

Bluegrass, which has a retardance class of C according to  

Table , in a silty loam soil would be adequate as it resists velocities of 2.5 
  

 
. 

Step 6: Determine Pretreatment Methods. Because the runoff did not travel 75 feet or 

more over an impervious surface before entering the filter strip it will enter as sheet flow, which 

does not require pretreatment. Had the runoff traveled over 75 ft, a 1-ft wide, 2-ft deep gravel 

filled level spreader would be a sufficient pretreatment.  

Step 7: Specify Vegetation Plan. A grass mixture should be selected which can survive 

the climatic and roadway conditions (e.g., salt) expected at the site. Suggested mixtures are 

described in Appendix E. 

12.2.1.4 Design Example 2 

 A 2-lane highway was being constructed which will add 0.5 acres of impervious area. 

There was little adjacent land area available, and acquiring it would have been prohibitively 

expensive. However, there was ample room at the outfall, so an end-of-pipe vegetated filter strip 

will be employed. A slope of 8% will be used for the vegetated filter strip.  

Figure 2 shows the plan view for design example 2. 
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Figure 2 Plan view for vegetated filter strip design example 2 

 

Step 1: Evaluate applicability of vegetated filter strip considering site constraints. The 

lack of available space next to the road requires the vegetated filter strip to be used off-site as an 

end-of-pipe BMP.   

Step 2: Calculate Peak Water Quality Flow (    ).  

 

Table  gives a design peak flow of 0.474 cfs for 0.5 impervious acres. 
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Step 3: Calculate Water Quality Flow Depth (    ). For end-of-pipe applications, the 

filter width must be calculated. The minimum width is found using equation 12.4 and assuming 

the flow depth to be the maximum 1 in.  

 

  
     

  
 

 ⁄  
 

 ⁄
 

      
   

      

          
 

 ⁄        
 

 ⁄
      

 

Using            
   

 
, n = 0.24, k = 1.486, S = 0.08, and d = 1 in,        . 

Step 4: Calculate Water Quality Flow Velocity (    ). Equation 12.5 was used to 

determine the flow velocity. 

 

     
    

  
 

      
   

 
             

       
  

 
 

 

Using            
   

 
, W = 17 ft, and d = 1 in,            

  

 
, which is <   

  

 
 so it is 

acceptable. 

Step 5: Check Scour Velocity (  ). Using a vegetated filter strip in this configuration will 

not require a scour check, because it is not set up as a flow through BMP.  An overflow weir is 

located 1 in. above the lip of the level spreader to allow the WQV to discharge at its maximum 

allowable depth while allowing excess flows to bypass. The level spreader configuration is 

shown in Figure 3.  

Step 6: Determine Pretreatment Methods. The runoff is being transported as concentrated 

flow, so a level spreader must be employed to slow and evenly distribute the design flow.  The 
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level spreader will be a trapezoidal trench with 3:1 side slopes, 1 ft of depth, and a bottom width 

of 2 ft. The downstream (level) edge of the trench will be reinforced by treated lumber and 

gravel armoring. Overflow bypass will be provided by a rectangular weir at the end of the trench, 

which is 1 in. strip. The overflow weir will discharge into a swale running parallel with the filter 

strip and discharge into the same receiving water. Figure 3 shows the level spreader set-up. 

 

 

 
Figure 3 Level spreader for vegetated filter strip design example 2 

 

 

Step 7: Specify Vegetation Plan. A grass mixture should be selected which can survive 

the climatic and roadway conditions (e.g., salt) expected at the site. Suggested mixtures are 

described in Appendix E. 

12.2.2 Vegetated Swale 

12.2.2.1 Design Process 

Step 1: Evaluate Applicability of Vegetated Swale Considering Site Constraints. 

Step 2: Calculate Peak Water Quality Flow ( 
W V

). 

Step 3: Dimension the Swale. 
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Step 4: Calculate the Water Quality Flow Depth (DW V). 

Step 5: Calculate Water Quality Flow Velocity (VW V). 

Step 6: Check Scour Velocity for 10-yr Storm (VS). 

Step 7: Design and Position Check Dams (if necessary). 

Step 8: Specify Vegetation Plan. 

 
Figure 4 Plan and profile view of vegetated swale (adapted from Clar et al. 2004) 

 

12.2.2.2 Design Criteria  

   

VELOCITY LESS THAN 1 FPS FOR 

0.5” RUNOFF 

Pipe 

2’ to 8’ width 
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Table 4 contains the criteria to be considered while working through the design process.  
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Table 4 Design criteria for vegetated swale 

 

Design Parameter Minimum Maximum 

Bottom Channel Slope of 

Swale 
1 

4,5,6
 5 

1,3,5,7
 

WQV Flow Depth Across 

Swale 
- 4 in

4,5
 

WQV Velocity Parallel to 

Swale 
- 1 

ft

s

1, ,4,7

 

Bottom Channel Width of 

Swale 
  ft

1, ,4,5,6,7
 8 ft

1,5,6
 

Channel Side Slope - 3:1
 ,5,6,7

 

1) CalTrans (2010b) 

2) CalTrans (2004) 

3) Clar et al. (2004) 

4) KCDNRP (2009) 

5) MSSC (2005) 

6) SEMCOG (2008) 

7) WSDOT (2010) 

 

 

Step 1: Evaluate Applicability of Vegetated Swale Considering Site Constraints. 

Vegetated swales may not provide enough treatment to be considered a stand-alone BMP (EPA 

2006b). However, when site conditions are satisfactory, vegetated swales are a significant and 

viable BMP. They are particularly useful where soils are relatively permeable (NRCS hydrologic 

soil groups A through C); soils should have infiltration rates of 0.18 
in

hr
 (4.5 

mm

hr
) or higher 

(Landphair et al. 2000). Vegetated swales are often effectively located up or down stream of 

other BMPs. When upstream they provide pretreatment by filtering out debris and other solids. 

When employed downstream they provide additional treatment while transporting the treated 

runoff from the primary BMP to a discharge point. In addition to the treatment benefits, 

vegetated conveyance systems are more aesthetically pleasing than concrete-lined channels. 

 The linear nature of vegetated swales makes them excellent treatment and conveyance 

systems for runoff from roadways. Roadway drainage systems may already be functioning swale 

systems, or they may be easily retrofit for pollutant removal (CalTrans 2003).  
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 Vegetated swales may not be suited for ultra-urban areas due to the necessity for 

relatively large areas. For densely developed areas, pipes are likely a more efficient and cost 

effective conveyance system, as they do not require as much area. 

Step 2: Calculate Peak Water Quality Flow ( 
W V

). Peak flows have been calculated and 

displayed in  

 

Table  for impervious surfaces, such as pavement, up to 5 acres. For pervious areas or 

areas larger than 5 acres, peak flow rates were determined by using the 0.75 in. design storm 

with a type II NRCS 24 hr distribution and equation 12.6 (NRCS 1986). 

 

     q
p
  q

u
Am Fp       (12.6) 

 

Where: 

 q
p
: Peak discharge (cfs) 

 q
u
: Unit peak discharge (

   

      
) (Figure  or Table ) 

 Am: Drainage area (   ) 

 Q: Runoff corresponding to 24-hr rainfall (in) (Table  for WQV) 

 Fp: Pond or swamp adjustment factor (1.0 for Nebraska) 

 

When considering a watershed with both impervious and pervious ground cover, the area 

can either be considered completely impervious, or a weighted flow may be calculated. 

Assuming total imperviousness would result in larger than actual flows and, therefore, oversized 
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BMPs. Therefore, the weighted flow method is recommended, as described in the Hydrology 

Section of this work.  

Step 3: Dimension the Swale. Swale dimensions include the channel’s bottom width, side 

slopes, and longitudinal slope. The design guidelines and limitations for these parameters are 

presented in   
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Table 4. Swale dimensions will largely rely on site-specific considerations and existing 

drainage strategies. 

Step 4: Calculate the Water Quality Flow Depth (DW V). Once the shape of the swale 

is decided upon, equation 12.7 (Manning’s  quation) can be applied to determine flow depth 

(NRCS 1986). 

 

      
wqv

  
k

n
AR

 
3⁄ S

1
 ⁄       (12.7) 

 

Where: 

  
wqv

: Peak Water Quality Flow (cfs or cms) 

 S: Slope in direction of flow (
  

  
    

 

 
) 

 R: Hydraulic Radius (  
 

  
) 

  A: Cross sectional area of flow (    or   ) 

  w: Wetted Perimeter (ft or m) 

 n: Manning’s coefficient ( . 4 for well-established dense grass (Caltrans    

 2010)) 

 k: constant (1 for Metric Units; 1.486 for English Units) 

 

The necessary equations for the elements of trapezoidal cross-sections can be found in  

 

Table 5. 

 

T
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Table 5 Geometric elements of trapezoidal cross section (Adapted from WSDOT 2010) 

 

Area of flow (A) (ft
 
 or m )  b my y 

Wetted perimeter ( w) (ft or m) b  y√1 m  

Hydraulic radius (R) (ft or m)  b my y

b  y√1 m 
 

 

 

 Inserting these geometric elements into equation 12.7 results in equation 12.8: 

 

    
wqv

 (
k

n
)   b my y [

 b my y

b  y√1 m 
]

 
3⁄

  S
1
 ⁄      (12.8) 

 

 

Equation 12.8 with the peak water quality flow found in step 2 and the dimensions 

decided upon in step 3 can be used to verify whether the depth of the flow will be less than 4 in. 

(7.6 cm) (table 12.13). If the depth is > 4 in. the swale will need to be redimensioned, or check 

dams can be employed.  

y  
1 1 

m 
m 

b
  Figure 5 Reference shape for table 12.14 
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Step 5: Calculate Water Quality Flow Velocity (VW V). The velocity of the flow through 

the BMP can be determined with equation 12.9 through the flow rate and the cross-sectional area 

of flow. The cross-sectional area can be found using  

 

Table 5. 

 

      v  
 wqv

A
       (12.9) 

 

The velocity for the water quality flow parallel to swale should not exceed 1.0 
  

 
 (table 12.13). 

Higher flows will result in less treatment of the runoff. 

Step 6: Check Scour Velocity for 10-yr Storm (VS). Vegetated swales are often flow-

through BMPs. This means they will be required to handle flows greater than the water quality 

flow. Vegetated swales must be able to accommodate these flows without being damaged.  

Scour velocity was found using the same methodology as the WQV velocity (steps 2 

through 5). However, scour velocity analysis was performed based on the 10-yr, 24-hr storm. For 

the state of Nebraska, the maximum rainfall depth for the 10-yr, 24-hr storm was 5 in. according 

to TP 40 (Hershfield 1961). The resulting velocity (calculated using steps 2 through 5) was then 

compared to the values in Table 6, which shows the appropriate scour velocities for common soil 

classes and their retardance classes. Retardance classes are defined in Table 7.  
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Table 6 Scour velocities in channels with various soil types and ground covers (USDA 1979) 

 

Soil Texture 
Bare Channel Scour 

Velocity (ft/s) 

Vegetated Channel Scour Velocity (ft/s) 

Retardance Class Vegetation Condition 

 Poor Fair Good 

Sand, silt, 

sandy loam, 

silty loam 

1.5 

B 1.5 

3 
3 4 

C 1.5 2.5 3.5 

D 1.5 2 3 

Silty clay loam, 

sandy clay 

loam 

2 

B 2.5 4 5 

C 2.5 3.5 4.5 

D 2.5 3 4 

Clay 2.5 

B 3 5 6 

C 3 4.5 5.5 

D 3 4 2 

 

 

 

Table 7 Ground cover retardance classes (Kilgore & Cotton 2005) 

 

Retardance 

Class 
Ground Cover Condition 

B Kudzu Very dense growth, uncut 

Bermuda Grass Good stand, tall, average 300 

mm (12 in.) 

Native Grass Mixture (little bluestem, 

bluestem, blue gamma, and other long and 

short midwest grasses) 

Good stand, unmowed 

Weeping lovegrass Good stand, tall, average 610 

mm (24 in.) 

Lespedeza sericea Good stand, not woody, tall, 

average 480 mm (19 in.) 

Alfalfa Good stand, uncut, average 

280 mm (11 in.) 

Weeping lovegrass Good stand, unmowed, 

average 330 mm (13 in.) 

Kudzu Dense growth, uncut 

Blue Gamma Good stand, uncut, average 

280 mm (11 in.) 

C Crabgrass Fair stand, uncut 250 to 1200 

mm (10 to 48 in.) 

Bermuda grass Good stand, mowed, average 

150 mm (6 in.) 
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Common Lespedeza Good stand, uncut, average 

280 mm (11 in.) 

Grass-Legume mixture-summer (orchard 

grass, redtop, Italian ryegrass, and common 

lespedeza) 

Good stand, uncut, 150 to 

200 mm (6 to 8 in.) 

Centipede grass Very dense cover, average 

150 mm (6 in.) 

Kentucky Bluegrass Good stand, headed, 150 to 

300 mm (6 to 12 in.) 

D Bermuda Grass Good stand, cut to 60 mm 

(2.5 in.) height 

Common Lespedeza Excellent stand, uncut, 

average 110 mm (4.5 in.) 

Buffalo Grass Good stand, uncut, 80 to 150 

mm (3 to 6 in.) 

Grass-Legume mixture-fall, spring (orchard 

grass, redtop, Italian ryegrass, and common 

lespedeza) 

Good stand, uncut, 100 to 

130 mm (4 to 5 in.) 

Lespedeza sericea After cutting to 50 mm (2 in.) 

height. Very good stand 

before cutting. 

 

 

 

Step 7: Design and Position Check Dams (if necessary). Check dams may be necessary to 

keep the WQV velocity below 1 
ft

s
. Check dams are installed perpendicular to the flow. Although 

certain check dams provide some treatment through sedimentation or filtration, those effects are 

secondary to velocity dissipation and are not the focus of check dam design.  

Roadside check dams should be easily maintained while not interfering with maintenance 

of the swale itself. Swale mowing operations, in particular, should not be adversely affected by 

the check dams. This is done by maintaining small slopes (5:1 to 10:1 (Clar et al. 2004)) on the 

up and downstream sides of the check dams, respectively. The low slopes also prevent check 

dams from being a hazard to motorists who could potentially crash into or ramp off them.  
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A roadside check dam can be constructed by installing rip-rap, railroad ties, wood chips, 

or a vegetated berm across the width of a swale. Regardless of the material, the check dam height 

should not exceed 2 ft (0.61 m) (Landphair et al. 2000 ; Clar et al. 2004). A 1 ft (0.3 m) wide 

gravel trench may be required to protect the downstream edge of the check dam from erosion 

(Landphair et al. 2000). This trench will serve as a flow spreader to evenly distribute flows and 

act as armor for the soil. Figure 6 shows an example of a check dam design. It is important for 

the top of the check dam to be level, so it can evenly distribute detained flows. If flows are 

allowed to concentrate, erosion will occur, and the check dam will have a negative effect on both 

the flow and water quality.  

Some check dams may require an under-drain or weep holes to discharge runoff trapped 

after storm events. Areas with NRCS soil types A, B, or C can safely assume that any trapped 

water will infiltrate prior to providing mosquito breeding habitat. 

 

 

 

 

Rock, coarse 

backfill, or scrap 

tire fill 

Figure 6 Check dam cross-section (Landphair et al. 2000) 
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The minimum spacing of check dams should be such that the lower edge of an upstream 

check dam is at the same elevation as the peak of a downstream check dam, as shown in Figure 

7. Equation 12.10 was used to calculate the minimum check dam spacing (Landphair et al. 

2000). 

 

     L   
h

g
        (12.10) 

 

Where: 

L: Minimum horizontal distance between check dams (ft or m) 

h: Height of check dam (ft or m) 

g: Longitudinal channel slope (
ft

ft
 or 

m

m
) 

 

 It is suggested (Landphair et al. 2000) that the check dams be placed at six times the 

minimum required distance. Spacing should, therefore, be found with equation 12.11: 

 

     L   6  
h

g
     (12.11) 

 

Spacing of check dams should also help maintain sheet flow in the BMP. Sheet flow 

typically channelizes after 150 ft (45.7 m) of flow over pervious ground cover (Clar et al. 2004); 

therefore, a check dam should be located every 150 ft (45.7 ft) regardless of whether flow 

velocities are calculated to be large enough to create scour (Clar et al. 2004). 
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Figure 7 Minimum check dam spacing (BE 2001) 

 

 

Step 8: Specify Vegetation Plan. The vegetation in vegetated swales should be able to 

survive periods of saturation and also be drought resistant. Plants must also be able to withstand 

salts associated with deicing processes necessary in Nebraska’s seasonal climate. Vegetation 

should be limited to grasses, or other vegetation which provides low ground cover. Nebraska’s 

regional climate and soil compositions make it impractical to identify a single seed mix for the 

entire state. The Nebraska Department of Roads (NDOR) has established 6 landscape regions 

and determined applicable grass mixtures for each. These suggested mixes are presented in 

Appendix E. 
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12.2.2.3 Design Example 

 A 0.5 mile long, 2-lane highway (Area = 1.94 ac; CN = 98) was being constructed, as 

shown in Figure 8. The highway drainage system will also have to handle run-on from an 8-ft 

wide grass segment running parallel to the highway (Area = 0.97 ac; CN = 80). A vegetated 

swale which has a longitudinal slope of 3% was being considered as a conveyance BMP for 

runoff from the highway which has passed through an end-of-pipe vegetated filter strip. The 

swale must transport the runoff 200 ft before discharging into receiving waters. To simplify the 

example, calculations will be done assuming no infiltration occurs in the filter strip.  

 

 

Figure 8 Plan view of vegetated swale design example 
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Step 1: Evaluate Applicability of Vegetated Swale Considering Site Constraints. A 

drainage ditch was selected to convey the flows from the vegetated filter strip to the receiving 

water. The drainage ditch can be designed so that it acts as a vegetated swale, thereby treating 

the water as it is conveyed. 

Step 2: Calculate Peak Water Quality Flow ( 
W V

). Interpolation of  

 

Table  shows that the peak water quality flow is approximately 1.84 cfs from an 

impervious area of 1.94 acres. Table  shows that there will be 0.023 in. of runoff from the run-on 

areas from the WQV storm. Equation 12.6 was then used to determine the flow from run-on: 

 

q
p
  q

u
Am Fp  55  

cfs

mi
 
 in

  .  15 mi
 
  .  3 in 1              

 

The Hydrology Section of this work contains the values for  q
u
 in Table  or Figure  and Q in 

Table  for the WQV,    is 1 for Nebraska.  

 The flow from the new development was then added to the run-on flow to find the flow 

occurring at the WQV storm, which results in a total flow of 1.86 cfs. 

 

1.84 cfs    . 19cfs   1.86cfs 

 

Step 3: Dimension the Swale. Propose a side slope of 4:1 (table 12.13, max m = 3:1) with 

an 8 ft bottom width, as shown in Figure 9, and a longitudinal slope of 3% which matches the 

existing topography. If the WQV depth (from Design Step 4) or velocity (from Design Step 5) is 
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not satisfactory, increase the bottom width and/or side slopes to reduce the values until they are 

within the requirements in   
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Table 4.  

 

 

 

 

 

 

 

 

 

 

Step 4: Calculate Design Flow Depth (    ). Equation 12.7 and the geometric elements 

associated with this channel were combined to obtain equation 12.8: 

 

q
p
 (

k

n
)   b my y [

 b my y

b  y√1 m 
]

 
3⁄

 S
1
 ⁄  

 

1.86  (
1.49

 . 4
)  ( 8 4y y) [

 8 4y y

8  y√1 4
 
]

 
3⁄

   . 3 
1
 ⁄   

 

 The depth (y) was calculated to be 4.6 in., which is more than 4, so it is unacceptable 

based on the parameters in   

8 ft 

4 

1 1 

4 

 

Figure 9 Design example swale cross-section 
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Table 4. The channel bottom width is already at the maximum allowable shown in   
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Table 4, so either the side slope should be increased or check dams should be used to improve the 

design. Here, check dams will be employed to slow velocities and prevent the creation of rills 

along the swale. 

Step 5: Calculate Design Flow Velocity (    ). The flow and area are utilized to 

determine the velocity with equation 12.9: 

 

v   
 

A
   

  

( 8 4y y)
   

1.86

( 8 4  .383  .383)
    .5 

ft

s
  

 

 Using the WQV flow of 1.86 cfs and the depth of 4.6 in. (0.383 ft) as found in the 

previous step, the velocity was 0.5 
ft

s
, which is less than 1 

ft

s
; therefore it is satisfactory. 

Step 6: Check Scour Velocity for 10-yr Storm (VS). The scour velocity was checked using 

the same process as the WQV design but with a 10-yr, 24-hr storm. The first step was to 

determine the peak flow. Peak flow was found with equation 12.6: 

 

q
p
  q

u
 Am  *Fp 

 

Values for    for various CNs are found in Table , values for Q are found in Table .  

 Flow contribution from new construction (CN = 98): 

 

q
p
   11  

cfs

mi
 
 in

  .  3mi
 
 4.76 in 1   15.7 cfs 

 

 Flow contribution from run-on (CN = 80):    



 

 

206 

 

q
p
  1   

cfs

mi
 
 in

  .  15 mi
 
  .89 in 1   4.3 cfs 

 

 The contributing flows were summed to find a total peak flow (  ) of 20 cfs. 

 The flow depth in this BMP was found with equation 12.8: 

 

     (
1.49

 . 4
)  ( 8 4y y) [

 8 4y y

8  y√1 4
 
]

 
3⁄

   . 3 
1
 ⁄   

 

 The flow depth (y) in this BMP was found to be 1.4 feet. The depth was then used to find 

the area which was used with the calculated flow to obtain velocity by the following equation: 

 

v   
 

A
   

  

( 8 4y y)
   

   

( 8 4 1.4 1. )
   1   

ft

s
 

 

 The velocity was found to be 1.1 
ft

s
 which is less than the limiting velocities for all 

parameters shown in Table 6.  

Step 7: Design Check Dams (if necessary). Since the flow depth for the water quality 

storm was unacceptable, a check dam is required. A check dam is also required because the 

swale has a length greater than 150 ft. The check dam height will be 6 in., to mitigate the 

unacceptable 4.6 in. flow depth for the WQV storm. Equation 5.11 was used to determine 

spacing of the check dams: 
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L   6   
h

g
   6   

 .5 ft

 . 3
   1   ft  

 

 The calculated spacing of 100 ft is acceptable because it does not allow flows to travel 

greater than 150 ft, which is the estimated length where rills begin to form for flows over 

pervious surfaces. The check dam will have a 5:1 front slope and 10:1 back-slope. This swale is 

being installed in NRCS type B soil so any water detained by the check dam after a rainfall event 

will infiltrate. An earthen check dam will be used. Establishment and maintenance of vegetation 

on the check dam will coincide with the vegetated swale.  

 

 

 

 

Step 8: Specify Vegetation Plan. A grass mixture should be selected which can survive 

the climatic and roadway conditions (e.g., salt) expected at the site. Suggested mixtures are 

described in Appendix E. 

12.2.3 Bioretention Cell 

12.2.3.1 Design Process 

Step 1: Evaluate Applicable Location Considering Site Constraints. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). 

Step 3: Specify Filter Media Type. 

Step 4: Determine Necessary Media Depth. 

Figure 10 Swale design example check dam profile 
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Step 5: Calculate Surface Area. 

Step 6: Select Dimensions for Bioretention Area. 

Step 7: Design Inlet System and Pretreatment. 

Step 8: Design Under-drain (if necessary). 

Step 9: Select and Size Overflow Method. 

Step 10: Specify Vegetation Plan. 

 

 
 

Figure 11 Bioretention cross-section 

 

 

 

12.2.3.2 Design Criteria  
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Table 8 contains the criteria to be considered while working through the design process.  
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Table 8 Design considerations 

 

Design Parameter Minimum Maximum 

Depth of ponding                               

Depth of amended filter 

media 
                            

Ponding drawdown time                           

1) Atchison et al. (2006) 

2) Clar et al. (2004) 

3) Hartsig and Rodie (2010) 

4) Hinman (2005) 

5) MDEP (2009) 

6) NCDENR (2007) 

 

 

Step 1: Evaluate Applicable Location Considering Site Constraints. Bioretention is a 

flexible BMP which can be located in many locations, from a downtown setting to the 

interchange of a rural highway. Bioretention’s pleasing aesthetics result in a socially acceptable 

means of treating runoff. Bioretention is also flexible in that it does not require a large or 

contiguous footprint. If a watershed is too large for a single cell, there are often multiple 

locations on-site to facilitate the use of multiple cells. Bioretention BMPs are also strong 

candidates for retrofit projects due to the adaptability of their layout. 

 Bioretention facilities can be designed as either infiltration or filtration BMPs. Infiltration 

is encouraged to facilitate ground water recharge. However, when the subsurface has a 

permeability less than 0.5 
in

hr
 (1.3 

cm

hr
), the bioretention cell will not drain properly and will 

function as a filter requiring an under drain (Davis et al. 2009). Under drains may also be 

included if infiltration will be detrimental to surrounding structures or roadways. Under drains 

should also be used when treating runoff from pollutant hot spots (e.g., gas stations).   

Step 2: Calculate Water Quality Volume to be Treated (WQV). The water quality volume 

(WQV) is the amount of runoff requiring treatment. The water quality volume was calculated by 

summing the volume which came from newly constructed impervious areas and the volume of 
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run-on from adjacent property which comingled with run off from the new development. The 

WQV can be found by summing equations 12.12 and 12.13: 

 

The volume from the new development was found with equation 12.12:  

 

  

    W V
New Dev

   .5in   
Area Treated (ft

 
)

1 
in

ft

    (12.12) 

 

 

 
 The volume of run-on was found with the following equation 12.13: 

 

    W V
Run- n

    (in)  
Area Treated (ft

 
)

1 
in

ft

   (12.13) 

 

 

 
 Q is the runoff depth found in Table .  

Step 3: Specify Filter Media Type. The filter media shall be a uniform mix, free of stones, 

stumps, roots or other similar objects larger than two in. (MDE 2000). Media in a bioretention 

cell needs to accommodate vegetation, drain adequately, and provide treatment. These goals can 

be accomplished with a variety of soil mixes, suggested by a variety of agencies. A common 

thread throughout is requiring a homogenous mix free of detritus or roots. 

  The Minnesota Pollution Control Agency provided two sets of soil media. The first was 

primarily based on water quality and was 55% to 65% construction sand, 10% to 20% top soil, 

and 25% to 35% organic leaf compost (MSSC 2008). The second mix was designed for 

enhanced filtration and includes 50% to 70% construction sand and 30% to 50% organic leaf 

compost (MSSC 2008). The water quality mix will have higher nutrient removal than the 
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filtration mix, which was primarily designed to remove solids and metals. Construction sand for 

these two mixes should meet AASHTO M-6 or ASTM C-33 specifications (MSSC 2008), or 

have similar gradations as described in Appendix F. A bioretention garden design manual 

prepared for the Omaha region suggests a 50/50 mix of fine sand and compost or sphagnum peat 

mix (Hartsig and Rodie 2010). Loamy sand or sandy loam has been suggested by the North 

Carolina Department of Environment and Natural Resources (NCDENR 2007) and the Puget 

Sound Action Team (Hinman 2005), while the Maine Department of Environmental Protection 

suggests using a silty sand mix (MDEP 2009). The EPA has published specifications calling for 

loamy sand, sandy loam, or a loam, sand mix and notes that the minimum sand content should be 

50%, and the maximum fines should be 10% (Clar et al. 2004). The EPA also states that 

amending the soil with 20% to 50% compost can be very beneficial for plant growth and 

pollutant removal (Clar et al 2004).  

   Selecting which mix is right for a certain location is at the discretion of the designing 

engineer. Site-specific problem pollutants should be considered, as well as media cost. If nutrient 

removal is the primary concern, a higher percentage of compost and top soil should be used. 

However, if solids or metals are the main problem using a higher percentage of sand will result 

in adequate treatment. 

Step 4: Determine Necessary Media Depth. The depth of the filter media must be 

between 18 and 48 in. (45.7 to 121.9 cm) (Clar et al. 2004). The depth can vary depending on 

what types of pollutants require remediation. Metal concentrations have been shown to decrease 

exponentially while moving down through the soil column (Weiss et al. 2010). This was 

supported in another study which found that most metals accumulate within 4 to 8 in (10 to 20 

cm) of the surface (Li and Davis 2008). Similar results were found for total suspended solids 
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(TSS) removal. TSS was shown to be removed within 2 to 8 in. (5 to 20 cm) of the surface (Li 

and Davis 2008). Lab and field tests have both shown that petroleum hydrocarbons were 

removed and biodegraded primarily in the layer of mulch (Davis et al. 2010). Sorbed 

phosphorous removal coincides with TSS removal, and dissolved phosphorous removal begins at 

approximately 12 in. (30.5 cm) below grade (NCDENR 2007). Nitrogen removal has been 

shown to begin at around 30 in. (76 cm) (NCDENR 2007). Researchers in North Carolina 

suggest that the addition of a permanent saturated zone, at least 12 in. deep (30.5 cm), within the 

media can increase nitrogen removal by facilitating de-nitrification (NCDENR 2007). An 

anaerobic zone can be created by having the under drain discharge through an upturned pipe or a 

weir in the discharge area.  

Figure 12 shows general profiles of the riser pipe and weir method. 

 Media depth must also be thick enough to sustain the vegetation in the cell. Sufficient 

depth is needed for the root zone for the health of the plants and to keep roots away from the 

under drain system. Different types of vegetation have varying root penetration. Plant selection 

should be factored into selecting an adequate depth of filter media. Plants selection is discussed 

in step 10 of this section. 
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Figure 12 General saturated zone discharge designs 

 

Step 5: Calculate Surface Area. The surface area of the bioretention facility must be large 

enough to accommodate the WQV while not exceeding the maximum ponding depth (6 to 12 

in.). Equation 12.14 was used to determine the required surface area (NCDENR 2007): 

 

     A   
W V

DMa   ond
     (12.14) 

 

Where:  

 A: Area of bioretention facility (ft
 
 or m ) 

 WQV: Water quality volume (ft
3
 or m3) 

 DMa   ond: Maximum ponding depth (0.5 to 1 ft or 0.15 to 0.3 m) 

 

 Equation 12.14 conservatively calculates the required surface area due to the assumption 

that the entire WQV will require ponding before it enters the filter media. Equation 12.18 
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accounts for flow through the media and can be used if an appropriate hydraulic conductivity (K) 

can be found for the selected media (Clar et al. 2004). 

Step 6: Select Dimensions for Bioretention Area. The bioretention system needs to be 

sized in conjunction with the area found in step 5. The required surface area does not need to be 

one centralized bioretention cell. The potential for division of the surface area over the watershed 

makes bioretention a flexible BMP. Although multiple cells can be employed, each bioretention 

cell must account for the first half inch of runoff from the sub-watershed draining into it. The 

Maine Department of Environmental Protection suggests that no single cell be greater than 2,000 

ft
 
 (186 m ) (MDEP 2009).  

Step 7: Design Inlet System and Pretreatment. Inflow to bioretention can be concentrated 

from a pipe, culvert, or curb, or it can enter the system as sheet flow. Bioretention cells receiving 

concentrated flow should incorporate a forebay which will slow runoff, reduce erosion, and 

function as pretreatment by allowing solids to settle out.  

 Figure 13 shows a properly constructed and utilized forebay. The volume of the forebay 

should be 0.05 in. (0.13 cm) multiplied by the impervious drainage area (Clar et al 2004). Rip-

rap is suggested as lining for the forebay due to its drainage potential and its resistance to erosion 

during times of high flow.  
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Pretreatment will focus on removal of solids which could clog the media. Pretreatment 

methods for sheet flow include: grass filter strips, gravel diaphragms, or a mulch layer (MSSC 

2005). Grass filter strips are excellent pretreatment systems, and their design can be found in the 

Vegetated Filter Strip Design Guide section of this work. Gravel diaphragm systems consist of a 

small gravel filled trench. These trenches should be at least 1 ft (0.3 m) wide and 2 to 3 ft (0.61 

to 0.91 m) deep. The gravel fill should consist of clean washed, uniformly graded coarse 

aggregate to the AASHTO # 3 specification (SEMCOG 2008), as described in Appendix F. 

There should also be a 1 to 2 in. (2.5 to 5.1 cm) drop at the inlet to the gravel diaphragm 

(SEMCOG 2008). A layer of mulch can be used as pretreatment if grass is not selected as 

vegetation. The mulch should be 2 to 3 in. deep (5.1 to 7.6 cm) (MDEP 2009; Clar et al. 2004). 

Aged, shredded hard wood bark mulch is recommended (Clar et al. 2004).  

 When capturing runoff from gutters, a curb cut may be used, as shown in Figure 14. It is 

suggested to armor the entrance to the BMP from the curb cut to prevent erosion. Erosion needs 

to be avoided as it adds solids to the system which may result in clogging. Control measures for 

Figure 13 Properly utilized forebay (NCDENR 2007) 
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erosion include implementing a gravel diaphragm (as described above) or using rip-rap. The rip-

rap in this case does not need to be as large as it does in forebays receiving concentrated flow. It 

can be decorative, as well as functional, and it can be used to complement the aesthetic appeal of 

the bioretention cell. Figure 14 demonstrates the use of aesthetically pleasing rip-rap to prevent 

erosion using a curb cut. 

  

 

 

 

 

 

 

 

 

 

Curb cuts can be used in series to achieve a more uniform application to the bioretention 

cell. Using a series of curb cuts allows less flow, and velocity, entering at each location while 

also maintaining a curb for the majority of the roadway for traffic safety. 

Step 8: Design Under-drain (if necessary). Bioretention facilities in areas where 

infiltration is an acceptable and possible alternative generally do not require under-drains. In 

fact, under-drains are not recommended in these situations to promote groundwater recharge and 

to decrease the impact of impervious areas on peak stream flows. However, the following 

situations will require the use of an under-drain: 

Figure 14 Curb cut inlet system (NCDENR 2007) 

Curb cut Curb cut 

Rip-rap 
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- Inadequately drained subgrades (hydraulic conductivity ≤  .5  in hr⁄  (1.3 cm hr⁄ )), 

- Infiltration is harmful to surrounding structures (e.g., possible damage to 

foundations), 

- The seasonal high groundwater table is within 3 ft (0.9 m) of the bottom of the 

bioretention cell (MSSC 2005), 

- Treating a pollutant hot spot (e.g., gas station) where groundwater contamination is 

probable. 

For situations where infiltration would be particularly harmful, a concrete vault is 

suggested to house the bioretention system. Not all systems which require an under-drain will 

call for a concrete vault encasement. Infiltration should not be avoided unless it is detrimental to 

the bioretention system or neighboring structures. 

If required, the under-drain system will consist of 4 to 6 in. (10.2 to 15.3 cm) diameter 

slotted PVC pipes wrapped in geotextile and set in a 16-in. (40.6 cm) thick gravel bed at a 1% 

down slope to the outlet (NVPDC & ESI 1996). The gravel will over-top the pipes by at least 2 

in. (5.1 cm) and conform to the AASHO #3 standard as described in Appendix F (VCSQMP 

2001, NVPDC & ESI 1996).  The pipes will be no more than 8 ft (2.4 m) apart (MDEP 2009). 

There must also be a nonwoven geotextile layer between the BMP filter media and the under 

drain media. The geotextile must meet the specification presented in   
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Table 9. 
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Table 9 Geotextile specifications (VCSQMP 2001) 

 

Geotextile property Specification Test 

Grab strength 90 lbs ASTM D4632 

Elongation at peak load 50% ASTM D4632 

Puncture strength 24 lbs ASTM D3787 

Permitivity 0.7       ASTM D4491 

Burst strength 180 psi ASTM D3786 

Toughness 5500 lbs 
% Elongation * Grab 

strength 

Ultraviolet resistance  70% ASTM D4355 

 

 

Step 9: Select and Size Overflow Method. Bioretention facilities can be designed as either 

on-line or off-line facilities. For on-line facilities any volume beyond the WQV must be allowed 

to bypass. For off-line facilities the WQV can be separated before it enters the system, while 

excess flows are allowed to bypass. 

 Flow splitters are the primary means for separating out the WQV before it enters the 

BMP.  

Figure 15 is a potential layout for a bioretention cell using a flow splitter. Flow splitters can use a 

weir overflow device that is generally located in either a manhole or vault, as shown in  

Figure 16. The elevation of the overflow weir is often set at the WQV elevation of the cell. 

Keeping these elevations constant will allow for bypass of flows beyond the allowable depth 

while ensuring the WQV enters the bioretention facility.  
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Figure 15 Off-line bioretention cell layout (adapted from NCDENR 2007) 

 

 

 

 
 

Figure 16 Flow splitter 

 

 

 The hydraulics of the flow splitter are very important design elements. A long weir is 

ideal to maximize flow rate while minimizing head. However, a longer weir will require a larger 

vault, which may not be as cost effective. The outlet pipe to the bioretention cell must be sized to 

pass the WQV regardless of storm intensity. If the pipe is inadequately sized, flows could back 

up and discharge over the weir prematurely. 
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 When used as an on-line system, bioretention facilities should include an overflow 

structure, such as a weir or grate, to discharge excess runoff. Overflow structures should be sized 

to discharge volumes greater than the WQV. The outlet should be located at the design depth of 

the cell, which will ensure the WQV is trapped in the cell.  

Step 10: Specify Vegetation Plan. Vegetation can be widely varied in bioretention cells. 

Although plants and shrubs are generally considered to be an integral part of the system, grass-

only cells have been proven equally as effective in pollutant remediation (Davis et al. 2009), 

albeit without the aesthetic value which accompanies blooming plants. 

 The majority of vegetation used should be native to Nebraska or the Great Plains, 

although they can be integrated with non-native plants which are not intrusive and have proven 

they thrive regionally. Nebraska Bioretention and rain Garden Plants Guide is a publication 

which includes descriptions for a wide variety of applicable plants as well as their applications 

within bioretention facilities (Rodie & Todd 2010). 
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12.2.3.3 Design Example 

 Bioretention was selected as the BMP for a new roadway going through a developed 

downtown area. Bioretention was selected due to its flexibility in sizing and aesthetic benefits. A 

maintenance plan was developed with business owners to take care of day-to-day maintenance 

and monitoring of the cells.  

Figure 17  is the plan view showing the area. 

 

 
 

Figure 17 Site plan view for bioretention example 
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Step 1: Evaluate Applicable Location Considering Site Constraints. The watershed (i.e., 

the new roadway surface and area contributing run-on) has been broken down into 10 sub-

watersheds labeled WS1-WS10 in  

Figure 17. The sub-watersheds discharge into the bioretention cells with the 

corresponding numbers. Each bioretention cell is responsible for treating the runoff from half of 

the new 27 ft wide roadway as well as the 15 ft wide sidewalk, no other run-on comingles with 

the roadway runoff. Each cell intrudes 5 ft into the sidewalk, which leaves 10 ft of walking room 

for pedestrian traffic at the bioretention areas.  

Although the bioretention cells are not treating a pollutant hotspot, the seasonal high 

groundwater table is well below the bottom of the cells, and the subsurface has permeability 

greater than 0.5 
in

hr
, infiltration, for this example, cannot be used due to the harm it would cause 

the adjacent roadway and building foundations. Therefore, an under-drain system must be 

employed. In this situation a concrete vault should be employed to enclose each bioretention cell. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). The water quality volume 

must be calculated for each sub-watershed. The sidewalks and roadway are impervious and have 

a curve number of 98. The area of each sub-watershed can be found by multiplying its length by 

half the width of the roadway (13.5 ft) for contributing drainage area from new development or 

the width of the sidewalk (15 ft) for the contributing run-on area. It should be noted that the 

watersheds were symmetrical from the center of the road and were calculated as such. 

Contributing drainage area for new development in WS1: 
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A   L   W   6  ft 13.5 ft   837 ft  

 

Contributing drainage area for run-on for WS 1:  

 

A   L   W   6  ft 15 ft   93  ft  

 

The volume from new impervious area of WS 1 was found by using equation 12.12: 

 

W V
New Dev

   .5in  
837 ft 

1 
in
ft

 35 ft3 

 

The run-on volume from the sidewalks in WS 1 was found by using equation 12.13: 

 

W V
Run on

   .5 in  
93  ft

 

1 
in
ft

 39ft
3
 

 

The total WQV of WS 1 was found by taking the sum of equation 12.12 and equation 

12.13: 

 

35 ft
3
  39ft3   74ft3 
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Table 10 shows the WQVs for the other sub-watersheds.  

 

 

 

Table 10 WQV for each sub-watershed 

 

WS 1 & 2 WS 3 & 4 WS 5 & 6 WS 7 & 8 WS 9 & 10 

74 ft3 192 ft3 175 ft3 213 ft3 59 ft
3
 

 

 

Step 3: Specify Filter Media Type. The filter media for each bioretention cell will consist 

of 60% clean washed AASHTO M-6 sand, 5  fines, and 35  compost, per the   A’s guidance 

(Clar et al. 2004).  

Step 4: Determine Necessary Media Depth. The depth will be designed for treatment of 

solids, metals, petroleum hydrocarbons (with the mulch), and sorbed phosphorous. Nitrogen and 

dissolved phosphorous will also be treated, but are not critical to design as they were not the 

priority pollutants in this case. For this reason there will not be a permanent saturated zone in 

these bioretention cells. Depth of roots must also be considered. Therefore, each cell will have 36 

in. of filter media. Figure 18 shows the media profile for cell 2. 
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Figure 18 Cross-section A for bioretention example 

 

 

Step 5: Calculate Surface Area. Equation 12.14 will be used to calculate the area of cell 

1, and  

 

Table 11 shows the results for all watersheds: 

 

ACell     
W V

DMa   ond

   
74ft

3

 .5 ft
   148 ft  

 

 

Table 11 Required bioretention area per sub-watershed 

 

WS 1 & 2 WS 3 & 4 WS 5 & 6 WS 7 & 8 WS 9 & 10 

148    385    350    426    119    
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Step 6: Select Dimensions for Bioretention Area. The bioretention area will be limited to 

5 ft wide to accommodate pedestrian traffic on the sidewalk. Each cell will run parallel to and 

directly adjacent to the roadway. The required length for each cell is shown in Table 12.  

Figure 19 shows the plan view for cell 2. 

 

Table 12 Required lengths for bioretention cells 

 

 

 

 

 

 

 

               

 

 

 
 

Figure 19 Plan view of Cell 2 for bioretention example 

 

 

Cell 1 & 2 Cell 7 & 8 

Length 

(ft) 

Width 

(ft) 

Area 

(ft
 
) 

Length 

(ft) 

Width 

(ft) 

Area 

(ft
 
) 

30.00 5 150 86.00 5 430 

Cell 3 & 4 Cell 9 & 10 

Length 

(ft) 

Width 

(ft) 

Area 

(ft
 
) 

Length 

(ft) 

Width 

(ft) 

Area 

(ft
 
) 

77.00 5 385 25.00 5 125 

Cell 5 & 6 

   Length 

(ft) 

Width 

(ft) 

Area 

(ft
 
) 

   70.00 5 350 
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Step 7: Design Inlet System and Pretreatment. Curb cuts will be used to divert runoff to 

the bioretention cells. These cuts will be placed 1 ft upstream of the stormwater inlets and then 

every 20 ft upstream from there, as shown in  

Figure 19 for cell 2. This will allow for the majority of the runoff to be captured and 

distributed over the length of the cell. Upon entering the cells, the runoff will be passed over 

decorative cobbles which will act to slow the runoff and prevent erosion. Additional removal of 

solids will be achieved with a 3-in. thick layer of shredded hard wood mulch spread evenly over 

the cells. 

Step 8: Design Under-drain (if necessary). Each cell will require the installation of an 

under-drain. It will be 2, 4-in. diameter slotted PVC pipes spaced 3 ft apart running 

longitudinally down the length of the cells. Two pipes are used to ensure functionality if one 

clogs. The pipes will be laid in a 16-in. deep bed of gravel, with 6 in. of gravel above the pipe 

and 6 in. below. The pipes will have a 1% slope towards the outlet. A geotextile to the 

specifications presented in table 12.18 will overlay the gravel to prevent transport of the filter 

media into the gravel layer and outlet pipe. The pipe will discharge into the existing sewer 

system, as shown in Figure 20. 

 

 
Figure 20 Cross-section B of Cell 2 for bioretention example 
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Step 9: Select and Size Overflow Method. This system will not incorporate an overflow 

system. The bottom of the curb cuts will be positioned at the same elevation as the design depth 

of the WQV. This orientation will allow for volumes greater than the WQV to either discharge 

from the curb cuts or flow by without entering the cell.  

Step 10: Specify Vegetation Plan. The vegetation for each cell will be a mix of local 

herbaceous grasses and flowers. Bottlebrush sedge will be coordinated with prairie blazing star 

in each cell. These species are both well-suited for saturated conditions. Drought conditions 

should also be factored into plant selection. Although these plants are not drought resistant, the 

local business owners who are doing the day-to-day maintenance of these cells will water them 

between rainfall events. Areas with less intensive maintenance opportunities should put a greater 

emphasis on drought resistance. 

12.2.4 Basin Sand Filter 

12.2.4.1 Design Process 

Step 1: Evaluate Applicable Location Considering Site Constraints. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). 

Step 3: Size Sediment Basin. 

Step 4: Determine Filter Media Characteristics. 

Step 5: Select Filter Bed Depth. 

Step 6: Calculate Filter Surface Area. 

Step 7: Design Sediment Basin Outlet Riser. 

Step 8: Specify Filter Inlet Characteristics. 

Step 9: Design Under-drain. 
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Figure 21 Sand filter design (Barrett 2003) 

 

 

 

 
Figure 22 Filter bed cross section (NVPDC 1996) 

Level Spreader 

Ponding  

Depth 

POTENTIAL 
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12.2.4.2 Design Criteria  

 Table 13 contains the criteria to be considered while working through the design process. 

  

Table 13 Design considerations for basin filters 

 

Design Parameter Minimum Maximum 

Sediment basin layout (L:W)                 

Depth of filter media                        - 

Infiltration rate of filter media     
  

   

           

 

Diameter of under drain pipes                 

Slope of under drain pipes           

Slope of sedimentation basin     

Time for filter surface 

drawdown 
              

Drawdown time for sediment 

basin 
        

1) CalTrans (2010c) 

2) Landphair et al. (2000) 

3) KCDNRP (2009) 

4) SEMCOG (2008) 

5) MSSC (2005) 

6) NCDENR (2007) 

7) NVPDC (1996) 

8) VCSQMP (2001) 

 

 

Step 1: Evaluate Applicable Location Considering Site Constraints. Filtration systems are 

a viable option for ultra-urban situations due to their small footprint and layout flexibility. They 

can be located at stormwater inlets and discharge into the existing sewer system. Sand filters can 

also serve as end-of-pipe BMPs with the forebay acting as an energy dissipater. 

 Sand filters perform best when treating highly impervious watersheds (MSSC 2005). 

Impervious watersheds contribute less total suspended solids, thus limiting the amount of fines 

entering the system (CalTrans 2004). Treating impervious areas will extend the life of the filter 

as well as reduce maintenance costs. 
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Step 2: Calculate Water Quality Volume to be Treated (WQV). The water quality volume 

(WQV) is the amount of runoff requiring treatment. The water quality volume was calculated by 

summing the volume which comes from newly constructed impervious areas and the volume of 

run-on from adjacent property which comingles with run off from the new development. The 

volume from impervious areas can be found with equation 12.15: 

 

                      
                  

  
  

  

  (12.15) 

 

The volume running off pervious areas was found with equation 12.16: 

 

                      
                  

  
  

  

  (12.16) 

 

The runoff depth (Q) can be found in Table . 

 

Step 3: Size Sediment Basin. The sediment basin should be sized to retain the entire 

WQV. A riser pipe will discharge into the infiltration basin. The basin geometry should have at 

least a 2:1 length-to-width ratio (NVPDC & ESI 1996). This ratio will facilitate the settlement of 

particles within the basin. The inlet and riser pipe outlet should be on opposite ends of the basin 

to promote residence time and to decrease the amount of dead zones within the system. Runoff 

should enter the basin at 3 
  

 
 (0.9 

 

 
) or less. An energy dissipation device, such as a rip-rap 

apron or basin, should be used for larger velocities (NVPDC & ESI 1996).  

 The minimum surface area of the sediment basin was calculated using equation 12.17 

(Camp Hazen Equation) (NCDENR 2007): 
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        (
  

 
)                (12.17) 

 

where: 

   : Surface area of sedimentation basin             

   : Outflow (cfs or cms) 

 E: Trap efficiency of the chamber (unitless) (E = 0.9) (KCDNRP 2009) 

 w: Critical settling velocity of particle (
  

 
    

 

 
) 

 

 Settling velocity is a function of particle size, and therefore, percent imperviousness of 

the watershed. For watersheds with ≥ 75  impervious, w    .  33 
  

 
 and for watersheds < 75%, 

w = 0.0004 
  

 
 (KCDNRP 2009).  

 Sedimentation chambers should be at least 1.5 feet (0.46 m) wide (parallel to flow) 

(NCDENR 2007), with an L:W ratio between 4:1 and 2:1 (Table 13) (VCSCQMP 2001). 

Ponding depth in the sedimentation basin should be 2 to 6 ft (0.61 to 1.8 m) (CEI & NHDES 

2008). 

Step 4: Determine Filter Media Characteristics. Filter media can be sand or a mixture of 

sand, mulch, clay, or wood fiber. Different mixes have varying hydraulic characteristics, 

pollutant removal capabilities, and costs. Costs are largely based upon the availability of the 

media in question.  Regardless of the media mixture, an infiltration rate of 3.5 
  

   
 (8.9

  

   
) must 

be maintained throughout the life of the system. If sand is the only media being used, it should be 

similar to ASTM C-33 Concrete Sand, as described in Appendix F (NVPDC &ESI 1996). The 

King County Surface Water Design Manual (KCDNRP 2009) suggests use of sand meeting the 
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specifications presented in Table 14, which is based on the weight of sand which will pass 

standard sieves. Each of these sand specifications is ideal due to the small portions of fines they 

contain. Fines should be avoided in the filter media to avoid premature media clogging. 

 

Table 14 Sand Media Specifications 

 

U.S. Sieve Size  Percent passing 

U.S. No. 4  95% to 100%  

U.S. No. 8  70% to 100%  

U.S. No. 16  40% to 90%  

U.S. No. 30  25% to 75%  

U.S. No. 50  2% to 25%  

U.S. No. 100  Less than 4%  

U.S. No. 200  Less than 2%  

          (KCDNRP 2009) 

 

Step 5: Select Filter Bed Depth. As shown in Table 13, the filter depth must be at least 18 

in. (45.7 cm) deep (KCDNRP 2009). The minimum is acceptable but may require more labor 

intensive maintenance. A deeper filter bed will allow for the top 2 in. (5 cm) where the majority 

of clogging occurs, (CalTrans 2004 & Hatt et al. 2010), to be removed without the immediate 

addition of more media.  

 Hydraulic requirements may limit the depth of media. The elevation change between the 

inlet and outlet must exceed the total depth of the water over the filter, the filter media, and the 

under-drain system (CalTrans 2004). Deeper media may not allow gravity flow through the 

system and into existing sewer systems. Pumping can be employed but increases expenses and 

potential problems.  
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Step 6: Calculate Filter Surface Area. The surface area of the filter was determined by 

equation 12.18, the Austin Sand Filter Equation (NCDENR 2007): 

 

       
      

        
      (12.18) 

 

where: 

   = Surface area of sand bed (         )  

WQV: Water Quality Volume (         ) 

  = sand bed depth (ft or m) 

K = Hydraulic conductivity for sand filter (0.29 
  

   
 or 0.088 

 

  
) (NCDENR 2007) 

h = average depth of water above surface of sand media (ft or m); half of maximum 

ponding depth  

t = time required for runoff volume to pass through filter media (hours) 

 

 The average filter head (h) is half of the maximum filter head. Ponding above the filter 

should be limited to 6 in. (15.2 cm) (SEMCOG 2008) to ensure drainage in 40 hrs. 

Step 7: Design Sediment Basin Outlet Riser. The riser between the sediment basin and the 

filter bed should be designed to drawdown the WQV within 24 hrs (NVPDC & ESI 1996). There 

should be a grate around the riser which will act as a trash rack preventing debris from clogging 

the orifices.  

Figure 23 shows a profile view of a riser pipe. 
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Figure 23 Profile of riser pipe (CASQA 2003) 

  

 

 Riser pipe design was done using equation 12.19 (CASQA 2003): 

 

             
        

         [                          ] 
       (12.19) 

 

Where: 

   : Total area of orifices (   ) 

 A: Surface area of sedimentation basin (   ) 

     : Maximum height from lowest orifice to highest water level (ft) 

                      : Height from lowest orifice to centroid of orifices (ft) 

C: Orifice coefficient (0.66 for pipe material equal to or less than the diameter of the 

orifice or 0.8 for pipe material thicker than the diameter of the orifice) (CASQA 2003) 

 T: Drawdown time of full basin (hrs) 

 g: Gravity (32.2 
  

  
) 

 

In order to maintain drainage if an area of the riser is clogged, orifices should be placed 

on the riser in 2 even rows. These rows should be 120 degrees apart horizontally. Vertical 
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spacing between holes should be three times the diameter of the hole (CASQA 2003). This 

spacing will protect against clogging of multiple holes simultaneously.    

Step 8: Specify Filter Bed Inlet Characteristics. Discharge from the riser pipe must be 

evenly and safely distributed over the area of the filter. Concentrated flows could create scour or 

short circuiting of the filtration process. For this purpose energy dissipaters or flow spreaders are 

required at the filter bed inlet. 

 The King County Surface Water Design Manual suggests criteria for an effective flow 

spreader (KCDNRP 2009): 

 “a) If the sand filter is curved or an irregular shape, a flow spreader shall be provided for 

 a minimum of 20% of the filter perimeter.  

 b) If the length-to-width ratio of the filter is 2:1 or greater, a flow spreader must be 

 located on the longer side and for a minimum length of 20% of the facility 

 perimeter. 

 c) In other situations, use good engineering judgment in positioning the spreader.” 

 Figure 24 demonstrates placement of flow spreaders for irregular shapes as discussed 

 above. 
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Figure 24 Flow spreader placement for irregular shaped filters 

 

 The King County Surface Water Design Manual (KCDNRP 2009) also requires 1 ft (0.3 

m) of erosion protection between the flow spreader and the filter bed. The uses of weighted-

down geotextile or coarse aggregates are acceptable erosion protection practices. Figure 25 

shows a profile of the transition between the sediment basin and the filter bed. Level spreaders 

constructed from concrete must utilize weep holes so the entire WQV can drain into the filter 

bed. 
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Figure 25 Transition from sedimentation basin to filter bed (NVPDC 1996) 

 

Step 9: Design Under-drain. Once the runoff has passed through the filter media it will 

be collected and discharged by an under-drain system. This system will be composed of 6-in. 

diameter slotted PVC pipes wrapped in geotextile and set in a 16-in. thick gravel bed at a 1% 

down-slope to the outlet (NVPDC & ESI 1996). The gravel will over top the pipes by at least 2 

in. and conform to the AASHO #3 standard as described in Appendix F (VCSQMP 2001, 

NVPDC & ESI 1996).  The pipes will be no more than 10 ft apart (NVPDC & ESI 1996). There 

must also be a nonwoven geotextile layer between the filter and under-drain media. The 

geotextile must meet the specification presented in   

LEVEL SPREADER 
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Table 15. 
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Table 15 Geotextile specifications (VCSQMP 2001) 

 

Geotextile property Specification Test 

Grab strength 90 lbs ASTM D4632 

Elongation at peak load 50% ASTM D4632 

Puncture strength 24 lbs ASTM D3787 

Permitivity 0.7       ASTM D4491 

Burst strength 180 psi ASTM D3786 

Toughness 5500 lbs 
% Elongation * Grab 

strength 

Ultraviolet resistance  

(% strength after 500 

Weatherometer hours) 

70% ASTM D4355 

 

 

12.2.4.3 Design Example 

 A newly constructed section of urban highway requires treatment of runoff from 0.8 acres 

of impervious surface (CN 98) and 0.2 acres of adjacent grass (CN 83). The area requires the use 

of a BMP with a relatively small footprint, so a sand filter was selected. Figure 26 shows the plan 

view of the site. 
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Figure 26 Example site plan view for basin sand filter 

 

 

Step 1: Evaluate Applicable Location Considering Site Constraints. A sand filter was 

selected for this location because the watershed is highly impervious, and the available land in 

the right-of-way is very limited. 

Step 2: Calculate Water Quality Volume to be Treated (   ). The water quality volume 

can be found by summing the volumes of runoff from the pervious and impervious surfaces. This 

can be done through summing equations 12.15 and 12.16: 
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Table  shows a Q of 0.049 in. for CN = 83.  

 

               
            

   

  

  
  
  

              
           

   

  

  
  
  

           

 

Step 3: Size Sediment Basin. The sediment basin needs to be sized to store the WQV and 

to drain within 24 hrs. Equation 12.17 was used to find the minimum required area of the 

sediment basin: 

 

    (
  

 
)             

  

    (

       

      
 

    
      

       
  
 

)                     

 

 Settling velocity (w) was        
  

 
 because the contributing watershed had greater than 

75% impervious area. A        sedimentation basin would require a depth of 124 ft, which is 

unacceptable. With limiting depths of 2 to 6 ft, a 33x11 ft sedimentation chamber with a depth of 

4 ft will be used. This configuration allows for a 3:1 ration which provides an adequate flow path 

while also storing the WQV at a depth of 4 ft, a 6-in. free board will be included.  
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Figure 27 shows the orientation of the sedimentation basin. 

 

 
 

Figure 27 Plan view of example sand filter  

 

 

Step 4: Determine Filter Media Characteristics. Because there are no special 

requirements for treatment, the filter will be composed entirely of sand which adheres to the 

ASTM C-33 Concrete Sand standard. Fines should be avoided as they can clog the media.  

Step 5: Select Filter Bed Depth. This filter bed will be 24 in. deep initially. This will 

allow for maintenance crews to remove the top 3 in. 2 times before requiring additional sand be 

brought in to replenish the system.  

Figure 28 shows the cross-section of the system. 

 

 

 
 

Figure 28 Profile view of example sand filter 
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Step 6: Calculate Filter Surface Area. Equation 12.18 was used to determine the required 

surface area of the filter bed. 

 

   
      

 (    ) 
 

   
              

     
  
  

                     
         

 

 

 The dimensions of the filter bed will be 11 x 11 ft, which provides 121 ft
 
 of surface area.  

Figure 27 shows the plan view of the system. 

Step 7: Design Sediment Basin Outlet Riser. The required area of holes in the riser pipe 

can be found with equation 12.19: 

 

 

 

at   
 A hma  

36  CT  g[hma  hcentroid orifices]  .5
   

 (363) 4 

36    .66  4  (3 . )[4  ]  .5
    

 .  45 ft
     .65 in  

 

 Using the geometry of the sedimentation basin to determine a maximum depth of 4 ft and 

using a riser height of 4 ft, an area requirement of 0.65     is found. 

 An orifice diameter of 0.25 in. was selected for this riser. This diameter requires 13 

orifices to account for the total required orifice area. These orifices will be positioned in two 

parallel columns 120 degrees apart from each. They will be vertically spaced 7 in. apart 

beginning 6 in. above the bottom of the sedimentation basin. Figure 29 shows the orifice spacing. 
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Figure 29 Detail of example riser pipe 

 

Step 8: Specify Filter Inlet Characteristics. The level spreader in the filter bed will be a 

4-in. deep, 1-ft wide reinforced concrete trench. The trench will run against the wall the filter 

vault shares with the sedimentation basin. Water will discharge over a one-foot wide strip of 

coarse gravel as it enters the sand filter. 

Step 9: Design Under-drain. The under-drain will consist of a 16-in. deep coarse 

aggregate layer which has 2, 6-in. diameter perforated PVC pipes which run the width of the 

chamber and slope down to the outlet at 1%. The pipes will be 3 ft from the outside walls. The 

uphill end of the PVC will be 5 in. beneath the top of the gravel layer. That depth will increase as 

the pipes slope downward. The two pipes will feed into a 6-in. collector pipe at the downhill 

edge of the filter chamber which will be discharged through a single outlet. There will be a 

geotextile between the sand layer and the gravel layer, as well as around the pipes, which 

conforms to the requirements set out in   
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Table 15. Figure 30 shows the layout of the under-drain system. 

 

 

Figure 30 Under-drain layout for example sand filter 

 

 

12.2.5 Horizontal Filter Trench 

12.2.5.1 Design Process 

Step 1: Evaluate Applicable Location Considering Site Constraints. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). 

Step 3: Select Filter Media Specifications. 

Step 4: Select Armoring Specifications. 

Step 5: Calculate Trench Dimensions. 

Step 6: Verify Armoring Size by Checking Scour Potential. 

Step 7: Select Pretreatment. 
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Figure 31 Profile of filter trench length 

 

 

 
 

Figure 32 Profile of filter trench width 

 

 

Step 1: Evaluate Applicable Location Considering Site Constraints. Horizontal filter 

trenches are best suited for linear applications. Prime siting areas are in ditches or swales along 

roadways and as end of pipe treatment systems. There is high retrofit potential for horizontal 

filter trenches in existing roadside drainage ditches. Although some existing infrastructure adds 

water quality benefits already, a horizontal filter trench can be placed in the bottom of drainage 

ditches if existing vegetation is insufficient to treat the runoff, or if expected flows will damage 
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vegetated systems. Filter trenches may not be cost effective if the existing ditch is wide with 

gentle side sloped due to armoring requirements. However, these types of channels may already 

act as vegetated filter strip/vegetated swale systems, or they could with minor modifications.  

The trench can be placed the entire length of the treated roadway or downstream from the treated 

area, depending on site constraints such as availability of land in the right-of-way and slope 

adjacent to the roadway. Roadside vegetation on the slope leading to the bottom of the ditch may 

also act as a pretreatment for solids removal.  

Horizontal filters are designed for use on sloped surfaces. If there is no slope, the filter 

will not be able to discharge and will act as an infiltration trench. Horizontal filter trenches 

should not be used as infiltration trenches in the following situations: 

However, the following situations will require the use of an under-drain: 

- Inadequately drained subgrades (hydraulic conductivity ≤  .5  in hr⁄  (1.3 cm hr⁄ )), 

- Infiltration that is harmful to surrounding structures (e.g., possible damage to 

foundations), 

- The seasonal high groundwater table is within 3 ft (0.9 m) of the bottom of the 

bioretention cell (MSSC 2005), 

- Treating a pollutant hot spot (e.g., gas station) where groundwater contamination is 

probable. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). The water quality volume 

(WQV) is the amount of runoff requiring treatment. The water quality volume was calculated by 

summing the volume which comes from newly constructed impervious areas and the volume of 

run-on from adjacent property which comingles with run-off from the new development. The 
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WQV can be found by summing equation 12.20, which calculates the volume coming off newly 

developed areas, and equation 12.21, which calculates the volume of run-on: 

 

                      
                  

  
  

  

  (12.20) 

 

 

 

                      
                       

  
  

  

  (12.21) 

 

Q is the runoff depth found in Table .  

 

Step 3: Select Filter Media Specifications. The filter media should be 3 8⁄ – 3 4⁄  in. (0.95–

1.9 cm) clean washed media. There should be very few fines to avoid clogging and to prolong 

the life of the BMP. Potential media constituents include pea gravel, shredded tires, or a mixture 

of the two. A porosity of 0.3 will be used in calculations for the filter media.  

 Shredded tires, if being considered, should conform to the same sizing criteria as pea 

gravel. If shredded tires are the only media, filter depth should not be greater than 3.3 ft (1 m) 

(Humphrey 1999) or self-heating may be a problem. Guidelines to avoid self-heating were 

established by an Ad Hoc Civil Engineering Committee of government and industry entities 

(AHCEC 1997) and published as ASTM D6270-98 (ASTM 1998). These guidelines for avoiding 

self-heating of scrap tires for depths of 3.3 to 10 ft (1 to 3 m) follow: 

 • Tire shreds shall be free of contaminants such as oil, grease, gasoline, diesel fuel, etc., 

 that could create a fire hazard 

 • In no case shall the tire shreds contain the remains of tires that have been subjected to a 

 fire 
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 • Tire shreds shall have a ma imum of  5  (by weight) passing 1½-in. sieve 

 • Tire shreds shall have a ma imum of 1  (by weight) passing no. 4 (4.75-mm) sieve 

 • Tire shreds shall be free from fragments of wood, wood chips, and other fibrous organic 

 matter 

 • Tire shreds shall have less than 1  (by weight) of metal fragments that are not at least 

 partially encased in rubber 

 • Metal fragments that are partially encased in rubber shall protrude no more than 1 in. 

 from the cut edge of the tire shred on 75% of the pieces and no more than 2 in. on 100% 

 of the pieces 

 • Infiltration of water into the tire shred fill shall be minimized (see below) 

 • Infiltration of air into the tire shred fill shall be minimized 

 • No direct contact between tire shreds and soil containing organic matter, such as topsoil 

 • Tire shreds should be separated from the surround soil using a geote tile 

 • Use of drainage features located at the bottom of the fill that could provide free access 

 to air should be avoided 

 For the purposes of the horizontal filter trench, water and air will need to infiltrate into 

the tire media. Self-heating can be avoided by mixing the tire with granular media (Edil et al. 

2004) or by keeping the depth below 3.3 ft (1 m). Shredded tires have been shown to avoid self-

heating when used in depths less than 3.3 ft (1 m) in several landfill drainage applications (Edil 

et al. 2004; Humphrey 1999).  

Step 4: Select Armoring Specifications. Armoring for the trench should adhere to the 

Federal Highway Administrations definition of cobbles by having a diameter of 2.5 to 5 in. (6.4 

to 13 cm) (Kilgore and Cotton 2005). They are generally alluvial, uniformly graded, and 
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rounded. Armoring depth should be at least 1.75 times the diameter of stone for which 50%, by 

weight, of gradation is finer (   ) (OES & WWE 2000). 

 Armoring must be placed over the filter trench and up the side slopes. The armoring 

should reach 1 ft (0.3 m) above the water surface for the 10-yr, scour check storm (OES & WWE 

2000). A geotextile is required between the armoring and both the trench and the adjacent soil. 

The geotextile facilitates maintenance and prevents mobilization of the underlying media into the 

cobbles. 

Step 5: Calculate Trench Dimensions. The trench must be sized so the WQV can be 

stored in its pore space. The armoring will store and slow runoff but will not be considered to 

add directly to the treatment, so pore space in the armoring will not be counted towards the 

WQV storage.  

 The required trench size to accommodate the WQV was found with equation 12.22: 

 

    
W V

p
  L   W   D     (12.22) 

 

Where: 

 L: Trench length (ft or m) 

 W: Trench width (ft or m) 

 D: Media depth (ft or m) 

 p: Media porosity 

 

 The available width and length of the trench will be site-specific based on the geometry 

of the existing drainage ditches, available right-of-way, and existing grade. The depth of media 

should not be less than 1 ft (0.3 m). Trenches should not be deeper than 5 ft (1.5 m) due to the 
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added costs of a protective system required at that depth (NIOSH 2011). The bottom of the 

trench should not be within 2 ft (0.61 m) of the seasonal high groundwater table.  

Step 6: Verify Armoring Size by Checking Scour Potential. Armoring must be able to 

withstand scouring effects of the peak flows. Peak scour flow rates were determined by using the 

10-yr design storm with a type II NRCS 24 hr distribution and equation 12.23 (NRCS 1986). 

 

                   (12.23) 

 

 

Where: 

   : Peak discharge (cfs) 

   : Unit peak discharge (
   

      
) (Figure  or Table ) 

   : Drainage area (   ) 

 Q: Runoff corresponding to 24-hr rainfall (in) (Table ) 

   : Pond or swamp adjustment factor (1.0 for Nebraska) 

 

When considering a watershed with both impervious and pervious ground cover, the area 

can either be considered completely impervious, or a weighted flow may be calculated as 

described in the Hydrology Section of this work. Assuming total imperviousness would result in 

larger than actual flows and, therefore, oversized BMPs. For this reason the weighted flow 

method is recommended.  

  nce the peak flow is found, the roadside ditch geometry (channel’s bottom width, side 

slopes, and longitudinal slope) must be determined. Side slopes should be no greater than 3:1 

(horizontal:vertical) to avoid slope damage from channelization and to facilitate mowing.  
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 Once the shape of the swale is determined, equation 12. 4 (Manning’s  quation) can be 

applied to determine flow depth (NRCS 1986). 

 

            
 

 
  

 
 ⁄  

 
 ⁄     (12.24) 

 

Where: 

       : Flow from10-yr storm (cfs or cms) 

 S: Slope in direction of flow (
  

  
    

 

 
) 

 R: Hydraulic Radius (  
 

  
) 

  A: Cross sectional area of flow (    or   ) 

   : Wetted Perimeter (ft or m) 

 n: Manning’s coefficient  

 k: constant (1 for Metric Units; 1.486 for English Units) 

 

The equations for the elements of trapezoidal cross-sections can be found in   
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Table 16. 

 

 

 

 

 

 

  

Figure 33 Reference shape for 

 

Table 16 
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Table 16 Geometric elements of trapezoidal cross section (Adapted from WSDOT 2010) 

 

Area of flow (A) (ft
 
 or m )  b my y 

Wetted perimeter ( w) (ft or m) b  y√1 m  

Hydraulic radius (R) (ft or m)  b my y

b  y√1 m 
 

 

 

 Inserting these geometric elements into the Manning’s equation results in equation 12.25, 

which was then used to solve for the depth of flow (y) by trial and error. 

 

    
p
   (

k

n
)   b my y  [

 b my y

b  y√1 m 
]

 
3⁄

  S
1
 ⁄    (12.25)  

 

 

 

Manning’s coefficient (n) can be calculated for rock-lined channels using equation 12.26 

(OES & WWE 2000).  

 

                  
 

 ⁄     (12.26) 

 

 

Where:  

n: Manning’s coefficient 

   : Diameter of stone for which 50%, by weight, of gradation is finer (ft) 

 

 The velocity of the flow through the BMP can be determined with equation 12.27 using 

the peak flow rate and area of flow. The cross-sectional area of flow can be found using   
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Table 16.  

        
  

 
     (12.27) 

 

 The scour velocity found with equation 12.27 must be less than or equal to 7 
  

 
 (2.1 

 

 
) 

(Caltrans 2003). If the velocity found with equation 12.27 is greater than 7 
  

 
 (2.1 

 

 
) corrective 

action must be taken. Corrective action can consist of resizing the channel, selecting larger 

cobbles, or incorporating check dams. 

 Check dams for horizontal filter strips should not be earthen. Earthen check dams could 

leach fines which would contribute to clogging of the filter media. Rip-rap check dams are best 

suited for use with horizontal filters. The large void spaces associated with rip-rap check dams 

are not a problem in this situation as temporary ponding is not essential to the functionality of the 

trench. The check dams simply act to slow the flows, thereby preventing scour. The Vegetated 

Swale Design Guide section of this work describes sizing and spacing requirements for check 

dams. 

Step 7: Select Pretreatment. Pretreatment for horizontal filter trenches should be designed 

to remove solids and, if receiving concentrated flows, act as an energy dissipater. Pretreatment 

can extend the life of the trench dramatically by preventing clogging and scour.  

 When retrofitting an existing ditch, vegetation on the side slopes of the ditch can serve as 

vegetated filter strips. This pretreatment will remove solids but may not adequately attenuate 

velocities. However, runoff directly from the roadway will likely be in the form of sheet flow 

and will not require pretreatment for velocity. Vegetated filter strip design considerations can be 

found in the Vegetated Filter Strip Design Guide section of this work. If the filter trench does not 

run the entire length of the roadway it is treating, the ditch up stream of the filter trench may also 
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act as pretreatment. The drainage ditch should be designed to the specifications in the Vegetated 

Swale Design Guide section of this work. If existing vegetation is not dense enough it may 

require refurbishing.  

 Shallow forebays at the initial point of the channel can be employed as treatment for 

solids and as energy dissipaters. Rip-rap forebays are well suited as pretreatment for horizontal 

filters.  The volume of the forebay should be 0.05 in. (0.13 cm) multiplied by the impervious 

acres of the drainage area (Clar et al. 2004). Rip-rap is suggested as lining for the forebay 

because it will drain readily and will resist being washed away during times of high flow. Figure 

34 shows a properly designed forebay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.2.5.2 Design Example 

 A 500 ft section of a 6-lane divided highway is being redeveloped. Figure 35 shows the 

layout of the 6-lane divided highway. Each direction features 3, 12-ft wide lanes with 6 ft 

shoulder on each side. The watershed will need to be broken into 3 sub-watersheds to 

accommodate drainage from each side of the highway. There is also a 25-ft wide median and two 

Figure 34 Rip-rap forebay (NCDENR 2007) 
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25-ft wide drainage ditches which run the length of the roadway. Horizontal filter trenches will 

be placed in the bottom of each ditch to treat the runoff, with a third filter trench in the median of 

roughly double the size. The median and ditches have a 3:1 side slopes with a 7 ft bottom width. 

The longitudinal slope is 5%. The vegetated areas have a CN of 80. There is no run-on from 

neighboring properties.  

 

 

Figure 35 Site plan for horizontal filter example 

 

Step 1: Evaluate Applicable Location Considering Site Constraints. This is an ideal site 

for horizontal filters due to the existing median and drainage ditches. They are well suited to 

accommodate the filter trenches. 

Step 2: Calculate Water Quality Volume to be Treated (WQV). The WQV for the 

contributing area for each subwatershed must be calculated. Example calculations for WS 1 will 

be performed. Equation 12.20 will be used to find the runoff from the newly developed roadway 

for WS 1: 



 

 

261 

 

W V
New Dev WS1

    .5in  
(18 ft   6 ft)   5   ft

1 
in
ft

   5  ft
3
 

 

 The volume of run-on for WS 1 (i.e., the runoff from the grassy areas in WS 1) was 

found with equation 12.21, Q for a CN of 80 was found to be 0.023 in from Table : 

 

W V
Run  n

    .  3 in  
  5ft   5   ft

1 
in
ft

    4ft
3 

 

 The entire ditch and median area were considered for run-on because it was unknown at 

this stage what the dimensions of the horizontal filter trench were. 

 The total WQV was then the sum of the runoff from the new development and the run-on 

volume: 

 

5   ft3    4 ft3   5 4 ft3 

 

 

 

Table 17 shows the calculated WQVs for each subbasin. 

 

 

Table 17 Subbasin WQVs 

 

Sub Basin 

WQV 

(   ) 
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WS 1 524 

WS 2 1024 

WS 3 524 

 

 

Step 3: Select Filter Media Specifications. The filter media will be clean washed pea 

gravel ranging in size from 3 8⁄ – 3 4⁄  in. 

Step 4: Select Armoring Specifications. Cobbles with an average diameter by weight (d5 ) 

of 3 in. will be initially selected for design, because it is readily available from a local quarry. If 

this selection proves to be insufficient at preventing erosion, the design process will revert to this 

step and select a larger cobble size which prevents scour. 

Step 5: Calculate Trench Dimensions. The width of each trench will coincide with the 7 

ft bottom width of the drainage ditches. The length and depth of the trench required for the filter 

media are dependent variables when considering the WQV. The required length and depth for 

WS 1 was calculated by using equation 12.22. For example, the WQV for WS 1 is 5 4ft
3
which 

requires a trench volume of 1747 ft
3
 assuming a porosity of 0.3. 

 

      

p
  L   W   D  

5 4ft
3

 .3
   1747 ft

3 

 

 

 Several length and depth relationships were checked, the dimensions decided upon are 

shown in Table 18. 

 

Table 18 Dimensions of filter media in trench 

 

Sub Basin 

Width 

(ft) 

Depth 

(ft) 

Length 

(ft) 
Volume 
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WS 1 7 1 250 1750 

WS 2 7 2 245 3430 

WS 3 7 1 250 1750 

  

 

 A constant length was selected which required the center sub basin (WS 2) to have a 2 ft 

depth. Had a constant 1 ft depth been used the WS 2 trench would have been 490 ft. A shorter 

trench was selected to be more cost effective for WS 2. Figure 36 shows the longitudinal profile 

of the horizontal filter trench for WS 2, and Figure 37 shows the width cross-section for WS 2. 

 

 

Figure 36 Longitudinal cross-section for example horizontal filter trench in WS 2 

 

 

 

 

 

 

Figure 37 Width cross-section for example horizontal filter trench in WS 2 
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Step 6: Verify Armoring Size by Checking Scour Potential. Sample calculations will be 

performed for WS 1. First the peak flows were calculated for the new development and run-on 

using equation 12.23. Then the flows from the two contributing areas were summed to find the 

total: 

 

 For new development: 

q
p
    q

u
Am Fp   11  

cfs

mi
 
in
    .   43mi

 
   4.76in   1    . 5cfs 

 

 For run-on: 

q
p
   q

u
Am Fp   1   

cfs

mi
 
in
   .   45mi

 
    .89in   1   1.3cfs 

 

 Total peak flow: 

 . 5cfs   1.3cfs   3.55 cfs 

 

 The peak flow (q
p
 ) was then used to determine the flow depth and area, which led to the 

scour velocity. Unit peak discharge (  ) was found in Figure , and the runoff depth (Q) was 

found in Table . The swamp adjustment factor (    for Nebraska is 1. 

 Equation 12. 4 (Manning’s  quation) was then used to find the depth of flow, which will 

be used in flow velocity calculations. The geometric elements of a trapezoid, from   
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Table 16, were inserted into equation 12.24 transforming it into equation 12.25: 

 

 
p
   (

k

n
)     B my y   [

 B my y

B  y√1 m 
]

 
3⁄

  S
1
 ⁄  

 

 Equation 12.26 was used to find Manning’s coefficient (n) for rock lined channels:  

 

n    . 395 d5  
1
6⁄     . 395  . 5 

1
6⁄     . 31 

 

3.55 cfs   (
1.468

 . 31
)     7ft 3y y  [

 7ft 3y y

7 ft  y√1 3
 
]

 
3⁄

   . 5
1
 ⁄  

 

 Flow depth (y) was found by trial and error to be 1.92 in. (0.16 ft). This depth was then 

used to calculate the area of flow with the equation in   
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Table 16: 

 

A    B my y    7ft 3  .16ft  .16ft   1. ft  

 

Flow velocity was then found with equation 12.27: 

 

v   
 

p

A
 
3.55

ft
3

s

1. ft
 
   3

ft

s
 

 

 

The resulting velocity is less than 7
ft

s
; therefore, it is satisfactory.  

Step 7: Select Pretreatment. Pretreatment for these trenches will be provided by the 

vegetated slopes. They must be maintained to specifications presented in the Vegetated Filter 

Strip Fact Sheet portion of this work. If they are not initially to those standards, the slope must be 

refurbished before installation of the trenches. 
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Chapter 13 Volume II Conclusions 

 Several conclusions can be drawn for each BMP which can be used to remediate run-off 

from highways and protect receiving waters. 

 Vegetated filter strips are a viable option for pollutant removal. Existing roadside 

vegetation may already be acting as a BMP or may be easily retrofit to do so. The length, 

vegetation density, and slope are the primary design elements affecting performance of 

vegetated filter strips. 

 Vegetated swales have shown to be a viable treatment option as stand-alone BMPs in 

some cases, as well as within a treatment train. They show high retrofit potential in 

existing drainage ditches which, when coupled with existing vegetated filter strips, may 

already be satisfying pollution removal requirements. Check dams may be required to 

protect vegetated swales from flow velocities which would damage, or limit their 

functionality. 

 Bioretention is a flexible BMP which can add great aesthetic appeal. Bioretention is a 

very flexible BMP in regards to siting, targeting specific pollutants, vegetation, and 

infiltration capacity. Maintenance of bioretention facilities is generally higher than other 

BMPs, particularly early in the life of the BMP when plants are getting established. 

 Sand filters have a track record as an effective BMP. Pollutant removal with sand filters 

has been shown to be very high. Although the initial construction cost of sand filters is 

substantial, maintenance is not overly burdensome or costly. The major component to the 

longevity of sand filters is the prevention of fine sediment reaching the filter, which can 

be done by stabilizing the watershed and incorporating a sedimentation basin. 

 Horizontal filter trenches require more research, but their simplicity, applicability for 
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roadside scenarios, and low maintenance burden suggest they are a strong candidate for 

remediating roadway runoff. The primary concern for horizontal filter trenches is 

preventing fine sediment from clogging the system. 
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Appendix A Additional Regulations Related to Stormwater Pollution 

A.1 The National Environmental Policy Act 

The main objective of National Environmental Policy Act (NEPA) was to create a way 

for considering environmental impacts consistent with other national needs, such as economic 

development. To accomplish this objective, NEPA established a policy that obligates all 

Administered Federal Programs to become more environmentally efficient, imposing 

environmental responsibilities on all agencies of the Federal Government. As part of NEPA, 

Federal Agencies are required to conduct a preliminary impact analysis in the early planning 

process and in all cases prior to the undertaking of any project or action.   

A.2 The Coastal Zone Management Act 

The Coastal Zone Management Act of 1972 (CZMA), was approved by Congress to 

“preserve, protect, develop, and where possible to restore and enhance the resources of the 

Nation’s coastal zone for this and succeeding generations” (C MA, 197 ). This act encourages 

states and territories to develop comprehensive programs to protect and manage coastal 

resources, including the Great Lakes. In 1990, the Coastal Zone Act Reauthorization 

Amendments (CZARA) mandate to all State Coastal Programs and state nonpoint sources 

programs (including highway programs) to work in the solution of nonpoint source pollution that 

may affect coastal water quality.  

A.3 The Safe Drinking Water Act 

The Safe Drinking Water Act of 1974 (SDWA) and its 1984 amendment has as its main 

objective the “protection of the Nation’s sources of drinking water and the protection of public 

health to the maximum extent possible, using proper water treatment techniques” (SDWA, 

1974). In the SDWA, underground sources of drinking water and aquifers were included to be 

protected. Therefore, in order to be in compliance with SDWA, highway projects required 
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additional planning and analysis, and possible permitting if the project is located in the recharge 

area of a drinking water aquifer. 
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Appendix B Modeling Runoff with HEC-HMS 

The HEC-HMS model was used to estimate runoff from the subbasins at the study site. 

The HEC-HMS incorporates several sub-models to compute runoff. To determine the cumulative 

losses, HEC-HMS offers the following sub-models: Initial and constant rate loss, deficit and 

constant-rate, SCS curve number (CN), and Green and Ampt loss. For Unit-Hydrograph (UH) 

models, HEC-HMS offers the following sub-models: Snyder’s UH model, SCS UH model, 

Clark’s UH model, ModClark model, and Kinematic-wave model. HEC-HMS also offers sub-

models to determine the baseflow; however, in this model baseflow was estimated to be 

insignificant compared to runoff-event flows.   

For this study, the model uses the SCS curve number method to determine the cumulative 

losses. This model was chosen because it requires a single variable (curve number) that is 

characterized by data that were available for the site; i.e., the type of soil, soil cover and 

antecedent moisture. Additionally, as this model was developed for agricultural watersheds in the 

Midwest, it is applicable for conditions in this study.  

The unit-hydrograph model used for this basin model was the SCS UH model. This 

model was chosen because it requires a single variable (lag time) which could be estimated from 

the physical characteristics of the site and from the measured hydrographs from the site 

subbasins. Additionally, some of the parameters required for other models are difficult to 

determine at a site like the NDOR site because the area is very heterogeneous and does not have 

open channels with constant characteristics. 

The HEC-HMS model requires specification of the area for each subbasin. Areas for each 

subbasin were determined using drawings of the drainage system, highway vertical alignments, 

and section profiles of the site. Additionally, aerial photos obtained at the Geographic 
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Information Systems for Douglas County website (DOGIS, 2009) were used to measure 

distances and areas inside of the NDOR site.  

The model requires specification of the curve number (CN) which was used to determine 

the losses for each subbasin. The CN was obtained from table 2.2a, 2.2b, 2.2c, and 2.2d 

contained in the Urban Hydrology for Small Watersheds, Technical Release 55 (U.S. 

Department of Agriculture, 1986). In addition, HEC-HMS requires specifications of the 

percentage of impervious area for each subbasin. The percent impervious area for each subbasin 

was assumed to be 0.0. No impervious area was used because all of the surfaces (including 

pavement) have some permeability. Table B.1 shows the CN for each subbasin in the HEC-HMS 

basin model.  

 

Table B.1 Curve numbers for each subbasin 

Subbasin Description CN 

Subbasin-1A Hard packed driveway in the construction debris lot. 98 

Subbasin-1B Construction material piles and soil in the construction debris lot. 60 

Subbasin-2 
Area along the fence, interstate shoulder, and some of I-80 Eastbound/D 

entrance lane. 
69 

Subbasin-3 
Tributary area for the west pipe inlet. This area includes the two outside 

lanes of the I-80 East bound and interstate shoulder. 
99 

Subbasin-4 
Grass and shoulder area that runoff directly into the detention basin and 

some pavement from the center lanes.  
80 

Subbasin-5A 
Tributary area for the east pipe inlet. This area includes the two inside 

lanes of the I-80 Eastbound and the four lanes of the I-80 Westbound.   
98 

Subbasin-5B 

Tributary area for the East pipe inlet. This area includes a segment of the 

two outside lanes of the I-80 Westbound and the grass area between I-80 

Westbound and the Exit 445 ramp.    

89 

Subbasin-6 Detention basin. 69 

 

 

As shown in table B.1, a value between 95 and 98 was assigned to the hard packed 

driveway in the construction debris lot and the highway pavement. The CN for subbasin 1B was 
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more difficult to determine because there are different kinds of material piles with characteristics 

that differ from one to the other. As it was seen in the field, water running off the material piles 

was minimal comparing with water coming from the driveway. As a result, a small CN was 

assigned to this subbasin (representing the material piles) because most of the water infiltrates 

into the piles.  

For subbasin 2 a CN of 69 was assigned, to reflect the low runoff from this subbasin. It 

was discovered late in the project (fall of 2010) that significant amounts of flows in the ditch 

were leaking through the berm separating the ditch site from the construction debris lot. 

Therefore, direct flow measurements (i.e., from the weir at sample site B) were not reliable. 

Consequently, flows from the ditch/shoulder site were estimated by the HEC-HMS model using 

typical input values for the properties at that site.  

For subbasin 4 and 5A, the CN values correspond to typical values for an area covered 

with grass. The CN for subbasin 5B is smaller compared to the one for subbasin 4 because the 

area of subbasin 5B is not covered completely with grass and is apparently more compacted 

(based on runoff measurements). 

For subbasin 6, a CN of 69 was assigned. During the sample period, negligible flow was 

observed coming from the detention basin floor (i.e., away from the central channel). This is 

likely because of the small slope in the detention basin, the permeability of the surface, and the 

low intensity storms.   

The SCS unit hydrograph requires the lag time as an input. To calculate the initial lag 

time values, the time of concentration tc was used as it was suggested by the NRCS (NRCS, 

1986). Equation B.1 shows the relation between lag time and time of concentration. 
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In the Revised Technical Release (NRCS,1986), the NRCS published that water moves 

though a watershed sequentially as sheet flow, shallow concentrated flow, open channel flow, or 

a combination of the three before reaching an inlet of the sewer system (as cited in Gupta, 2001). 

Time of concentration was calculated as the sum of the travel time for sheet flow, shallow 

concentrated flow, and open channel flow. Equation B.2 was used to calculate the travel time for 

sheet flow. 

 

       
           

            

 

Where: tsheet = travel time for sheet flow, s. 

 n   Manning’s roughness coefficient. 

 L = flow length, ft. 

 P2 = 2-yr 24-hr rainfall, in. (3.2 in for Omaha) 

 S = land slope.   

 

Equation B.3 was used to calculate the travel time for shallow concentrated flow. 

 

         
 

 
 

 

  
 

 

Where: tshallow = travel time for shallow concentrated flow, s. 

 L = flow length, ft. 

 (B.1) 

(B.2) 

(B.3) 
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 V = average velocity, ft/s 

 

The average velocity can be obtained from standard references such as the Technical 

Release 55 (NRCS, 1986) and Hydrology and Hydraulic Systems (Gupta, 2008). The time in 

open channel flow can be calculated using Manning’s equation.  quation B.4 shows Manning’s 

equation for open channels.  

 

  
     

 
         

 

Where: V = mean velocity of flow in an open channel, ft/s. 

 R = hydraulic radius, ft. 

 S = slope of energy line. Equal to channel bottom for uniform flow. 

 n   Manning’s roughness coefficient.  

 

The lag times obtained from these equations were the initial values used in the HEC-

HMS basin model. Once data from the rain events were obtained, these values were adjusted to 

make the model match the measured data. Table B.2 shows the lag times used for the different 

subbasins in the HEC-HMS basin model. Lag times for subbasin 2 and 6 could not be adjusted 

due to lack of runoff measurements from these sites during the rain events. Therefore, the values 

used for these subbasins are the lag time obtained using the above equations (SCS method). 

In the HEC-HMS basin model, junctions were created as the discharge point from one or 

more basins. The model included five junctions (see fig. 4.6). Table B.3 shows the junctions with 

their connections upstream and downstream.  

(B.4) 
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Table B.2 Lag times for each subbasin in the HEC-HMS model 

Subbasin 
Surface Flow 

Material/ Condition 

Length 

of Flow 

Path 

(ft) 

Lag 

Time 

(min) 

Subbasin-1A Hard packed driveway 560 8.1 

Subbasin-1B 
Mixed construction 

material piles 
270 37 

Subbasin-2 Grass-fair condition 370 29.5 

Subbasin-3 Pavement 550 5 

Subbasin-4 Grass-fair condition 260 10.51 

Subbasin-5A Grass-fair condition 600 4.5 

Subbasin-5B Pavement 540 25 

Subbasin-6 Grass-poor condition 290 20.7 

 

 

Table B.3 Junctions and connections in the HEC-HMS model 

Junction 
Upstream 

Connections 

Downstream 

Connection 

Junction 1 
Subbasin 1A 

Subbasin 1B 
Junction 3 

Junction 2 Subbasin 3 Reach 2 

Junction 3 
Subbasin 2 

Reach 2 
Reach 3 

Junction 4 
Subbasin 5A 

Subbasin 5B 
Reach 5 

Junction 5 

Reach 3 

Reach 4 

Reach 5 

Reach 6 

None 

 

 

Junction 1 represented the point where water coming from Site A entered the basin. 

Junction 2 represented where the west pipe entered the basin. Junction 4 represented the 

beginning of the channel that conducted water from the west side of the detention basin to the 
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outlet pipe. Junction 5 represented the east pipe. Junction 5 represented the outlet pipe, where 

water from the detention basin, I-80 runoff, and construction debris lot were collected and 

discharge into the creek.  

Reaches were created to connect subbasins with junctions or to connect one junction with 

another junction. The routing method used in the reaches was the lag method. This method was 

used because it required the lag times in the reach, and these had been calculated as described 

above. Other routing methods (e.g. kinematic wave, Muskingum, Modified puls) were not 

selected because the reaches had different types of surfaces, and the channels are not well 

defined. The initial lag times were calculated based on the topography and the distance between 

the subbasin or junction connected by the reach. Elevations and distances were obtained from 

DOGIS (DOGIS, 2009). Lag times values were adjusted to match as close as possible the data 

obtained from the measured hydrographs during rain events.  

The model was calibrated using the rain and flow measurements obtained from an ISCO 

rain gauge and the flow measurement devices installed in each of the sampling sites respectively.  
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Appendix C Complete List of Analytes 

Table C.1 List of inorganics and anions tested at the University of Nebraska-Lincoln Water 

Sciences Laboratory 

 

Inorganics 

Detection 

Limit 

(DL) 

Method Used Anions 
Detection 

Limit (DL) 

Method 

Used 

Calcium (Ca) 0.1 mg/L 
AA 

Spectrophotometry 

Bromide 0.10 mg/L EPA 300.0 
Magnesium (Mg) 0.1 mg/L 

AA 

Spectrophotometry 

Potassium (K) 0.1 mg/L 
AA 

Spectrophotometry 

Chloride 0.10 mg/L EPA 300.0 
Sodium (Na) 0.1 mg/L 

AA 

Spectrophotometry 

Cadmium (Cd) 1.0 µg/L ICPMS 6020A 

Chromium (Cr) 1.0 µg/L ICPMS 6020A 

Copper (Cu) 0.5 µg/L ICPMS 6020A 

Fluoride 0.10 mg/L EPA 300.0 
Iron (Fe) 1.0 µg/L ICPMS 6020A 

Lead (Pb) 0.2 µg/L ICPMS 6020A 

Mercury (Hg) 0.1 µg/L ICPMS 6020A 

Nickel (Ni) 0.1 µg/L ICPMS 6020A 

Nitrate 0.10 mg/L EPA 300.0 

Zinc (Zn) 0.1 µg/L ICPMS 6020A 

Silica (SiO2) 0.20 mg/L EPA 370.1 

Soluble phosphate 0.02 mg/L EPA 365.1 

Alkalinity as 

CaCO3
 10.0 mg/L SM 2320 

BOD – 5 day 0.5 mg/L SM 5210 

Nitrite 0.10 mg/L EPA 300.0 

COD 5 mg/L SM 5220 

Total phosphorus 

(TP) 

0.02 

mgP/L 
EPA 365.1 

Total Kjeldahl 

Nitrogen (TKN)  
0.20 mg/L SM 4500 

Total Solids (TS) 10 mg/L SM 2540B 

Phosphate 0.10 mg/L EPA 300.0 

Total Suspended 

Solids (TSS)  
10 mg/L SM 2540D 

Total Volatile 

Solids (TVS) 
10 mg/L SM 2540G 

Volatile Dissolved 

Solids (VDS) 
10 mg/L SM 2540C 

Sulfate 0.10 mg/L EPA 300.0 
Volatile 

Suspended Solids 

(VSS) 

10 mg/L SM 2540E 

Oil and Grease 5.0 mg/L EPA 1664 
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Table C.2 List of VOCs and SVOCs tested at the University of Nebraska–Lincoln Water 

Sciences Laboratory 

 
Volatile Organic 

Compounds 

(VOCs) 

Detection 

Limit 

(DL) 

Method 

Used 

Semi-volatile Organic 

Compounds (SVOCs) 

Detection 

Limit 

(DL) 

Method 

Used 

Benzene 0.05 µg/L EPA 8260 1,2,4-Trichlorobenzene 0.10 µg/L EPA 8270 

Toluene 0.05 µg/L EPA 8260 1,2-Dichlorobenzene 0.10 µg/L EPA 8270 

o-Xylene 0.05 µg/L EPA 8260 1,3-Dichlorobenzene 0.10 µg/L EPA 8270 

m-Xylene + p-

Xylene 
0.20 µg/L EPA 8260 1,4-Dichlorobenzene 0.10 µg/L EPA 8270 

Ethylbenzene 0.05 µg/L EPA 8260 2-Chloronaphthalene 0.10 µg/L EPA 8270 

Isopropylbenzene 0.05 µg/L EPA 8260 2-Methylnaphthalene 0.10 µg/L EPA 8270 

Propylbenzene 0.05 µg/L EPA 8260 4-Chloroaniline 0.10 µg/L EPA 8270 

Butylbenzene 0.05 µg/L EPA 8260 Acenaphthene 0.10 µg/L EPA 8270 

sec-Butylbenzene 0.05 µg/L EPA 8260 Acenaphthylene 0.10 µg/L EPA 8270 

p-Isopropyltoluene 0.05 µg/L EPA 8260 Anthracene 0.10 µg/L EPA 8270 

1,2,4-

Trimethylbenzene 
0.05 µg/L EPA 8260 Benz[a]anthracene 0.10 µg/L EPA 8270 

Chlorobenzene 0.05 µg/L EPA 8260 Benzo[a]pyrene 0.10 µg/L EPA 8270 

2-Chlorotoluene 0.05 µg/L EPA 8260 Benzo[b]fluoranthene 0.10 µg/L EPA 8270 

4-Chlorotoluene 0.05 µg/L EPA 8260 Benzo[ghi]perylene 0.10 µg/L EPA 8270 

1,2-Dichlorobenzene 0.05 µg/L EPA 8260 Benzo[k]fluoranthene 0.10 µg/L EPA 8270 

1,3-Dichlorobenzene 0.05 µg/L EPA 8260 
Bis-(2-chloroethoxy) 

methane 
0.10 µg/L EPA 8270 

1,4-Dichlorobenzene 0.05 µg/L EPA 8260 Carbazole 0.40 µg/L EPA 8270 

1,2,3-

Trichlorobenzene 
0.05 µg/L EPA 8260 Chrysene 0.10 µg/L EPA 8270 

1,2,4-

Trichlorobenzene 
0.05 µg/L EPA 8260 Dibenz[a,h]anthracene 0.10 µg/L EPA 8270 

Bromobenzene 0.05 µg/L EPA 8260 Dibenzofuran 0.10 µg/L EPA 8270 

Naphthalene 0.05 µg/L EPA 8260 Fluoranthene 0.10 µg/L EPA 8270 

Styrene 0.05 µg/L EPA 8260 Fluorene 0.10 µg/L EPA 8270 

Chloroform 0.05 µg/L EPA 8260 Hexachloro-1,3-butadiene 0.10 µg/L EPA 8270 

1,1,1,2-

Tetrachloroethane 
0.05 µg/L EPA 8260 

Hexachlorobenzene 0.10 µg/L EPA 8270 

Hexachlorocyclopentadiene 0.10 µg/L EPA 8270 

1,2,3-

Trichloropropane 
0.05 µg/L EPA 8260 

Hexachloroethane 0.10 µg/L EPA 8270 

Indeno[1,2,3-cd]pyrene 0.10 µg/L EPA 8270 

cis-1,3-

Dichloropropene 
0.05 µg/L EPA 8260 

Isophorone 0.10 µg/L EPA 8270 

Naphthalene 0.10 µg/L EPA 8270 

trans-1,3-

Dichloropropene 
0.05 µg/L EPA 8260 Nitrobenzene 0.10 µg/L EPA 8270 

Hexachloro-1,3-

butadiene 
0.05 µg/L EPA 8260 

Phenanthrene 0.10 µg/L EPA 8270 

Pyrene 0.10 µg/L EPA 8270 
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Table C.3 List of inorganics tested at Midwest Laboratories 

 

Inorganics 
Detection 

Limit (DL) 
Method Used 

Antimony 0.0001 mg/L EPA 200.8 

Arsenic 0.001 mg/L EPA 200.8 

Beryllium 0.0005 mg/L EPA 200.7 

Cadmium (Cd) 0.002 mg/L EPA 200.7 

Calcium 0.01 mg/L EPA 200.7 

Chloride 50 mg/L SM 4500-CL E 

Chromium (Cr) 0.01 mg/L EPA 200.7 

Copper (Cu) 0.01 mg/L EPA 200.7 

Lead (Pb) 0.0005 mg/L EPA 200.8 

Magnesium (Mg) 0.01 mg/L EPA 200.7 

Mercury 0.0004 mg/L EPA 245.1 

Nitrate/Nitrite Nitrogen 0.2 mg/L EPA 353.2 

Nickel 0.01 mg/L EPA 200.7 

Phosphorus (dissolved ortho) 0.05 mg/L SM 4500-P G 

Phosphorus (total) 0.05 mg/L SM 4500-P H 

Sodium (Na) 0.01 mg/L EPA 200.7 

Selenium 0.001 mg/L EPA 200.8 

Silver 0.01 mg/L EPA 200.7 

Thallium 0.0005 mg/L EPA 200.8 

Zinc (Zn) 0.01 mg/L EPA 200.7 

Total Kjeldahl Nitrogen (TKN) 0.50 mg/L PAI - DK 02 

BOD 2 mg/L SM 5210B 

COD 5 mg/L ASTM D 1252-95-B 

Total dissolved solids 10 mg/L SM 2540C 

Total suspended solids 4 mg/L SM 2540D 
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Table C.4 List of VOCs and SVOCs tested at Midwest Laboratories 

 

Compound 

Detection 

Limit 

(DL) 

Method 

Used 
Compound 

Detection 

Limit 

(DL) 

Method 

Used 

Benzene 1 µg/L OA-1 bis(2-Chloroethyl) Ether 10 µg/L EPA 625 

Toluene 1 µg/L OA-1 1,3-Dichlorobenzene 10 µg/L EPA 625 

Ethylbenzene 1 µg/L OA-1 1,4-Dichlorobenzene 10 µg/L EPA 625 

Napthalene 1 µg/L OA-1 1,2-Dichlorobenzene 10 µg/L EPA 625 

Total Xylenes 1 µg/L OA-1 
bis (2-Chloroisopropyl) 

Ether 
10 µg/L EPA 625 

Total Purgeable 

Hydrocarbons 
10 µg/L OA-1 N-Nitrosodimethylamine 10 µg/L EPA 625 

TEH as Gasoline 50 µg/L OA-2 
N-Nitroso-di-n-

propylamine 
10 µg/L EPA 625 

TEH as Diesel 50 µg/L OA-2 Hexachloroethane 10 µg/L EPA 625 

TEH as Waste Oil 50 µg/L OA-2 Dibenz (a,h) Anthracene 10 µg/L EPA 625 

Isophorone 10 µg/L EPA 625 1,2-Diphenylhydrazine 10 µg/L EPA 625 

bis (2-Chloroethoxy) 

Methane 
10 µg/L EPA 625 Hexachlorocyclopentadiene 10 µg/L EPA 625 

1,2,4-Trichlorobenzene 10 µg/L EPA 625 Phenol 10 µg/L EPA 625 

Naphtalene 10 µg/L EPA 625 2-Chlorophenol 10 µg/L EPA 625 

Diethyl Phthalate 10 µg/L EPA 625 2-Nitrophenol 10 µg/L EPA 625 

N-Nitrosodiphenylamine 10 µg/L EPA 625 2,4-Dichlorophenol 10 µg/L EPA 625 

4-Bromophenyl Phenyl 

Ether 
10 µg/L EPA 625 2,4-Dimethylphenol 10 µg/L EPA 625 

Hexachlorobenzene 10 µg/L EPA 625 4-Chloro-3-methylphenol 10 µg/L EPA 625 

3,3'-Dicholorobenzidine 20 µg/L EPA 625 2,4,6-Trichlorophenol 10 µg/L EPA 625 

Chrysene 10 µg/L EPA 625 Benzo (g,h,i) Perylene 10 µg/L EPA 625 

Benzo (a) Anthracene 10 µg/L EPA 625 Hexachlorobutadiene 10 µg/L EPA 625 

Benzo (k) Fluoranthene 10 µg/L EPA 625 2-Chloronapthalene 10 µg/L EPA 625 

Indeno (1,2,3,-cd) 

Pyrene 
10 µg/L EPA 625 Dimethyl Phtalate 10 µg/L EPA 625 

Benzidine 50 µg/L EPA 625 Acenaphthylene 10 µg/L EPA 625 

Acenaphthene 10 µg/L EPA 625 2,6-Dinitrotoluene 10 µg/L EPA 625 

2,4-Dinitrotoluene 10 µg/L EPA 625 2,4-Dinitrophenol 50  µg/L EPA 625 

Benzo (b) Fluoranthene 10 µg/L EPA 625 4-Nitrophenol 10 µg/L EPA 625 

Benzo (a) Pyrene 10 µg/L EPA 625 4,6-Dinitro-2-methylphenol 25 µg/L EPA 625 

4-Chlorophenyl Phenyl 

Ether 
10 µg/L EPA 625 Pentacholorophenol 10 µg/L EPA 625 

Fluorene 10 µg/L EPA 625 Di-n-octyl Phthalate 10 µg/L EPA 625 

Nitrobenzene 10 µg/L EPA 625 n-Hexane 1 µg/L EPA 625 

Butyl Benzyl Phthalate 10 µg/L EPA 625 Methyl t-Butyl Ether 1 µg/L EPA 625 

Bis (2-ethylhexyl) 

Phthalate 
10 µg/L EPA 625 Anthracene 10 µg/L EPA 625 

Pyrene 10 µg/L EPA 625 Di-n-butyl Phthalate 10 µg/L EPA 625 

Phenanthrene 10 µg/L EPA 625 Fluoranthene 10 µg/L EPA 625 
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Appendix D Results from Each Sampled Site 

Table D.1 Concentrations for Site A 

 

Analyte
1 Unit 

Rainfall Event 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0008 0.0008 

Arsenic (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.005 0.005 

Beryllium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.0005 <0.0005 

Cadmium (dissolved) (mg/L) 0.0032 0.0038 <0.001 <0.001 <0.001 <0.001 0.0013 <0.001 <0.001 <0.001 <0.002 <0.002 

Cadmium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.002 <0.002 

Calcium (dissolved) (mg/L) 123 50.7 8.5 6 13.6 13.6 256 202 58.6 8.4 N/A N/A 
Calcium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 59.6 59.6 

Chromium (dissolved) (mg/L) <0.001 0.0032 0.0161 0.0121 0.002 0.0026 0.0472 0.0165 0.0064 0.0042 <0.01 <0.01 

Chromium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.01 <0.01 

Copper (dissolved) (mg/L) 0.0096 0.013 0.0119 0.0085 0.0074 0.0313 0.0221 0.0055 0.0038 0.0027 <0.01 <0.01 

Copper (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.01 <0.01 

Iron (dissolved) (mg/L) 0.016 0.122 0.004 <0.001 0.0015 <0.001 0.00298 0.002134 0.0178 0.0023 N/A N/A 
Lead (dissolved) (mg/L) 0.0023 0.0053 0.0004 0.0004 0.0002 0.0002 0.0211 0.0203 0.0003 0.0002 0.0011865 0.001187 

Lead (total) (mg/L) - - - - - - - - - - 0.0015 0.0015 

Magnesium (dissolved) (mg/L) 67.2 17.2 7.9 6.3 2.5 3.5 22.2 19.6 7.2 3.7 N/A N/A 
Magnesium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 37.3 37.3 

Mercury (dissolved) (mg/L) N/A N/A 0.0027 0.0027 0.0538 0.0102 0.007 0.0052 0.0026 0.0025 N/A N/A 
Mercury (total) (mg/L) N/A N/A - - - - - - - - <0.0004 <0.0004 

Nickel (dissolved) (mg/L) N/A N/A 0.0076 0.0044 0.0022 0.0013 0.0442 0.0117 0.0016 0.001 <0.01 <0.01 

Nickel (total) (mg/L) N/A N/A - - - - - - - - <0.01 <0.01 

Potassium (dissolved) (mg/L) 25.4 20.5 0.4 43 6.3 12.1 91.4 85.4 40 21.3 N/A N/A 
Selenium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.002 0.002 

Silver (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.01 <0.01 

Sodium (dissolved) (mg/L) 301 183 16.2 353 67.3 100 561 491 252 140 N/A N/A 
Sodium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 292 292 

Thallium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.0005 <0.0005 

Zinc (dissolved) (mg/L) 0.0018 0.016 <0.0001 <0.0001 <0.0001 <0.0001 0.0852 0.0439 <0.0001 <0.0001   

Zinc (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.01 <0.01 

Silica (mg/L) 30.9 21.4 7.57 8.2 14 8.3 23.8 28.5 N/A N/A N/A N/A 
Bromide (mg/L) <0.10 <0.10 0.1 0.1 0.1 0.1 0.31 0.54 0.1 0.1 N/A N/A 

 N/A: No data available.    
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Table D.1 Concentrations for Site A (cont.) 

 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Chloride (mg/L) 438.1 456.7 675.2 700.6 111.8 120.7 386.2 634.2 255 150.8 239 239 

Fluoride (mg/L) <0.10 <0.10 0.25 0.31 0.13 0.15 0.1 0.12 0.1 0.1 N/A N/A 
Nitrate (mg/L) <0.10 0.82 1.57 1.79 0.24 0.52 1.37 2.67 1.21 1.36 N/A N/A 
Nitrite (mg/L) <0.10 <0.10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 N/A N/A 

Nitrate/Nitrite Nitrogen (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.2 <0.2 

Phosphate (mg/L) <0.10 <0.10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 N/A N/A 
Sulfate (mg/L) 158.4 170.2 274.6 273.8 82.2 72.1 98.3 201 101.2 58.3 N/A N/A 

Soluble Phosphate 
(mg 

P/L) 
<0.02 <0.02 0.02 0.02 0.02 0.03 0.02 0.415 0.706 0.02 N/A N/A 

Phosphorus (dissolved 

ortho) 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <0.05 <0.05 

Total Phosphorus 
(mg 

N/L) 
0.08 0.13 <0.02 <0.02 0.03 0.06 <0.02 0.067 0.021 <0.020 0.1 0.1 

Total Kjeldahl Nitrogen (mg/L) N/A N/A 2.79 3.18 1.89 1.37 8.71 5.32 1.34 <0.020 1.42 1.42 

Total Dissolved Solids (mg/L) N/A N/A 1,510 1,998 1,406 210 1,830 1,380 758 468 1178 1178 

Total Suspended Solids (mg/L) N/A N/A 732 638 1,994 380 1,758 1,352 228 196 35 35 

Total Solids (mg/L) 2506 1422 2,242 2,636 3,400 590 3,588 2,732 986 664 N/A N/A 
Volatile Dissolved Solids (mg/L) 244 213 50 110 12 16 298 396 196 42 N/A N/A 

Volatile Suspended 

Solids 
(mg/L) 136 51 174 156 342 64 40 54 30 22 N/A N/A 

Total Volatile Solids (mg/L) 380 264 224 266 354 80 338 450 226 64 N/A N/A 
Alkalinity as CaCO3 (mg/L) 241.9 177.6 146.1 146.3 95.5 51.5 137.1 142.2 90.2 64.8 N/A N/A 

Oil and Grease (mg/L) N/A N/A 25.9 28.5 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 N/A N/A 
TEH as Diesel (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 340 340 

BOD (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 5 5 

COD (mg/L) 126.7 83.6 107.8 90.6 55.7 31.2 94.6 79.6 76 5 189 189 

n-Hexane (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <1 <1 

Methyl t-Butyl Ether (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <1 <1 

Benzene (μg/L) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <1 <1 

Toluene (μg/L) <0.05 <0.05 <0.05 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <1 <1 

Ethylbenzene (μg/L) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <1 <1 

Napthalene (μg/L) 0.11 0.11 0.11 <0.05 0.09 <0.05 0.09 <0.05 0.17 0.09 <1 <1 

 N/A: No data available.     
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Table D.1 Concentrations for Site A (cont.) 

 

Analyte Unit 

Rainfall Event 

5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First Flush EMC 
First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) 0.0006 0.0008 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway  

0.0014 <0.0010 <0.0010 0.0015 0.0015 

Arsenic (total) (mg/L) 0.006 0.006 0.008 0.008 0.005 0.013 0.013 

Beryllium (total) (mg/L) <0.0005 <0.0005 <0.0005 0.001 0.001 0.001 0.001 

Cadmium (dissolved) (mg/L) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Cadmium (total) (mg/L) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Calcium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Calcium (total) (mg/L) 83.7 65.5 N/A 53.4 33.8 54.30 54.30 

Chromium (dissolved) (mg/L) <0.01 0.00982 0.02946 0.02946 0.01964 0.02 0.02 

Chromium (total) (mg/L) <0.01 0.01 0.03 0.03 0.02 0.02 0.02 

Copper (dissolved) (mg/L) <0.01 <0.01 0.0096 0.0192 0.0096 0.019 0.019 

Copper (total) (mg/L) <0.01 <0.01 0.01 0.02 0.01 0.02 0.02 

Iron (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Lead (dissolved) (mg/L) 0.0041923 0.00356 0.006486 0.0092547 0.008147 0.0058 0.0058 

Lead (total) (mg/L) 0.0053 0.0045 0.0082 0.0117 0.0103 0.0073 0.0073 

Magnesium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Magnesium (total) (mg/L) 36.9 29.5 15.1 7.26 4.99 19 19 

Mercury (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Mercury (total) (mg/L) <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 

Nickel (dissolved) (mg/L) <0.01 <0.01 0.00998 0.00998 0.00998 0.01 0.01 

Nickel (total) (mg/L) <0.01 <0.01 0.01 0.01 0.01 0.01 0.01 

Potassium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Selenium (total) (mg/L) 0.001 <0.001 0.001 0.002 0.001 0.002 0.002 

Silver (total) (mg/L) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sodium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Sodium (total) (mg/L) 278 353 298 205 73.2 439 439.00 

Thallium (total) (mg/L) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Zinc (dissolved) (mg/L) 0.02 0.02 0.029 0.029 0.029 0.039 0.039 

Zinc (total) (mg/L) 0.02 0.02 0.03 0.03 0.03 0.04 0.04 

Silica (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Bromide (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Chloride (mg/L) 227 328 374 190 62 403 403 

Fluoride (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Nitrate (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Nitrite (mg/L) N/A N/A N/A N/A N/A N/A N/A 

  N/A: No data available.     
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Table D.1 Concentrations for Site A (cont.) 

 

Analyte Unit 

Rainfall Event 

5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First Flush EMC 
First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) <0.2 1 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway  

1.2 1.3 0.5 1.6 1.6 

Phosphate (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Sulfate (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Soluble Phosphate (mg P/L) N/A N/A N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
(mg/L) <0.05 <0.05 <0.05 <0.05 0.06 <0.05 <0.05 

Total Phosphorus (mg N/L) 0.1 0.13 0.16 0.32 0.28 0.46 0.46 

Total Kjeldahl Nitrogen (mg/L) 1.58 1.67 1.75 2.43 1.55 4.81 4.81 

Total Dissolved Solids (mg/L) 1246 1398 1246 668 228 1554 1554 

Total Suspended Solids (mg/L) 114 142 157 377 251 226 226 

Total Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
(mg/L) N/A N/A N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
(mg/L) N/A N/A N/A N/A N/A N/A N/A 

Total Volatile Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 (mg/L) N/A N/A N/A N/A N/A N/A N/A 

Oil and Grease (mg/L) N/A N/A N/A N/A N/A N/A N/A 

TEH as Diesel (μg/L) 130 120 <50 155 50 462 462 

BOD (mg/L) 7 9 8 13 8 22 22 

COD (mg/L) 146 244 107 80 46 302 302 

n-Hexane (μg/L) <1 <1 <1 <2 1 <1 <1 

Methyl t-Butyl Ether (μg/L) <1 <1 <1 <1 <1 <1 <1 

Benzene (μg/L) <1 <1 <1 <1 <1 <1 <1 

Toluene (μg/L) <1 <1 <1 <1 <1 <1 <1 

Ethylbenzene (μg/L) <1 <1 <1 <1 <1 <1 <1 

Napthalene (μg/L) <1 <1 <1 <1 <1 <10 <10 

  N/A: No data available.     
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Table D.2 Concentrations for Site B 

 
 

 

Analyte 

 

 

Unit 

   Rainfall Event    

4/15/2011 4/19/2011 5/12/2011 5/25/2011 6/25/2011 8/22/2011 

First Flush EMC First 

Flush 

EMC First 

Flush 

EMC First 

Flush 

EMC  First 

Flush 

EMC 

        First 

Flush 

EMC   

Antimony (total) (mg/L) 0.001 0.0007 N/A 0.0012 N/A 0.0008 N/A 0.0005 N/A <0.0005 N/A <0.0005 

Arsenic (mg/L) 0.002 0.003 N/A 0.003 N/A 0.004 N/A 0.003 N/A 0.002 N/A 0.003 

Copper (mg/L) 0.01 0.01 N/A 0.01 N/A 0.001 N/A <0.01 N/A 0.01 N/A 0.01 

Lead (mg/L) 0.0032 0.027 N/A 0.0041 N/A 0.0029 N/A 0.0014 N/A 0.0033 N/A 0.003 

Zinc (mg/L) 0.06 0.04 N/A 0.04 N/A 0.03 N/A 0.2 N/A 0.02 N/A 0.04 

Phosphorus (dissolved 

ortho) 
(mg/L) 0.93 0.28 N/A 0.19 N/A 0.29 N/A 0.21 N/A 

< 
0.0005 

N/A 0.32 

Phosphorus (Total) (mg/L) N/A 0.34 N/A N/A N/A N/A N/A N/A N/A 0.12 N/A N/A 

Nitrate/Nitrite Nitrogen (mg/L) 0.7 0.4 N/A 0.3 N/A 0.2 N/A 0.2 N/A N/A N/A 1 

Total Kjeldahl Nitrogen (mg/L) 2.75 1.22 N/A 1.04 N/A 1.97 N/A 2.26 N/A 0.5 N/A 2.4 

Magnesium(Total) (mg/L) 2.09 3.1 N/A 2.62 N/A 2.38 N/A 3.22 N/A 1.27 N/A 2.55 

Bichemical Oxygen 

Demand 
(mg/L) N.D 5 N/A 5 N/A 8 N/A 8 N/A 2.24 N/A 8 

Total Suspended Solids (mg/L) 31 20 N/A 38 N/A 53 N/A 11 N/A 4 N/A 61 

Calcium (Total) (mg/L) 11.4 24.4 N/A 15.5 N/A 18.5 N/A 38.6 N/A 46 N/A 14.2 

Chemical Oxygen 

Demand 
(mg/L) 68 49 N/A 39 N/A 69 N/A 76 N/A 12.9 N/A 63 

Sodium (total) (mg/L) 54 136 N/A 94.5 N/A 74.4 N/A 105 N/A 46 N/A 30.3 

Chloride (mg/L) 38 186 N/A 129 N/A 66 N/A 147 N/A 39.5 N/A 18 

Total Dissolved Solids (mg/L) 288 536 N/A 448 N/A 344 N/A 524 N/A 29 N/A 236 

Silver (mg/L) <0.01 <  0.01 N/A <  0.01 N/A <  0.01 N/A <  0.01 N/A 276 N/A <  0.01 

Selenium (mg/L) <0.001 < 0.001 N/A < 0.001 N/A < 0.001 N/A < 0.001 N/A <0.01 N/A < 0.001 

Mercury (mg/L) <0.0004 < 0.0004 N/A < 0.0004 N/A < 0.0004 N/A < 0.0004 N/A <0.0004 N/A < 0.0004 

Thallium (mg/L) < 0.0005 < 0.0005 N/A < 0.0005 N/A < 0.0005 N/A < 0.0005 N/A 0.0033 N/A < 0.0005 

Nickel (mg/L) < 0.01 < 0.01 N/A < 0.01 N/A < 0.01 N/A < 0.01 N/A < 0.005 N/A < 0.01 

2-ChloroN/Apthalene (μg/L) < 10 < 10 N/A < 10 N/A < 10 N/A < 10 0.01 N/A N/A < 10 

Beryllium (mg/L) <0.0005 <0.0005 N/A 0.001 N/A <0.0005 N/A <0.0005 N/A N/A N/A <0.0005 

Cadmium (mg/L) <0.002 <0.002 N/A <0.002 N/A <0.002 N/A <0.002 N/A 0.001 N/A <0.002 

Phenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <0.002 N/A <10 

N/A: No data available. 
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Table D.2 Concentrations for Site B (cont.) 

 
 

 

Analyte 

 

 

Unit 

Rainfall Event    

4/15/2011 4/19/2011 5/12/2011 5/25/2011 6/25/2011 8/22/2011 

First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC 

            

bis(2-Chloroethyl) Ether (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2-Chlorophenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

1,3-Dichlorobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

1,4-Dichlorobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

1,2-Dichlorobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

 2 - Methylphenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

bis(2-Chloroisopropyl) Ether (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

 4 - Methylephenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

N-Nitroso-di-n-propylamine (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Hexachloroethane (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Nitrobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Isophorone (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2-Nitrophenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2,4-Dichlorophenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

bis ( 2- Chloroethoxy) Methane (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2,4 - Dichlorophenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

1,2,4-Trichlorobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

N/Apthalene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

4- Chloroaniline (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Hexachlorobutadiene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

4-Chloro-3-methylphenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2- methylN/Aphthalene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Dibenzofarun (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

2,4-Dinitrotoluene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Anthracene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

N.A: No data available             
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Table D.2 Concentrations for Site B (cont.) 
 

 

 

Analyte 

 

 

Unit 

Rainfall Event     

4/15/2011 4/19/2011 5/12/2011 5/25/2011 6/25/2011 8/22/2011 

First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC 

            
Di-n-butyl Phthalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 

N/A <10 
N/A <10 

Fluoranthene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 
N/A <10 

Pyrene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 
N/A <10 

N/A <10 

Butyl Benzyl Phthalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 
N/A <10 

3,3'-Dicholorobenzidine (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 
N/A <10 

N/A <10 

Benzo (a) Anthracene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 
N/A <10 

Hexachlorocyclopentadiene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A < 25 N/A <10 

2,4,6 -Trichlorophenol (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A < 10 N/A <10 

Dimethyl Phtalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A < 10 N/A <10 

AceN/Aphthylene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

AceN/Aphthene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Bis (2-ethylhexyl) Phthalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Chrysene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Di -n-octyl Phthalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Benzo (b) Fluoranthene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Benzo (k) Fluoranthene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Benzo (a) Pyrene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Indeno (1,2,3,-cd) Pyrene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Dibenz (a,h) Anthracene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Benzo ( g,h,i)Perylene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Total Purgeable Hydrocarbons (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <25 N/A <10 

2,4-Dinitrophenol (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A <25 N/A <25 

4-Nitrophenol (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A <25 N/A <25 

4- Nitroaniline (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 
N/A <10 

N/A <25 

Hexachlorocyclopentadiene (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A 
N/A <10 

N/A N/A 

N.A: No data available 
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Table D.2 Concentrations for Site B (cont.) 

 
 

 

Analyte 

 

 

Unit 

Rainfall Event 

4/15/2011 4/19/2011 5/12/2011 5/25/2011 6/2/2011 8/22/2011 

First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC First Flush EMC 

            

Chromium (mg/L) <0.01 <0.01 N/A 0.01 N/A <0.01 N/A <0.01 N/A <0.01 N/A <0.01 

n-Hexane (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

Methyl t-Butyl Ether (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

Benzene (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

Toluene (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

Ethylbenzene (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

N/Aphtalene (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

Total Xylenes (μg/L) <1 <1 N/A <1 N/A <1 N/A <1 N/A <1 N/A <1 

2,6-Dinitrotoluene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Diethyl Phthalate (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

4-Chlorophenyl Phenyl Ether (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Fluorene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

N-Nitrosodiphenylamine (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

4 - Bromophenyl Phenyl Ether (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Hexachlorobenzene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

PheN/Anthrene (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

Crabazole (μg/L) <10 <10 N/A <10 N/A <10 N/A <10 N/A <10 N/A <10 

4,6 Dintro -2- methylphnol (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A <25 N/A <25 

Pentacholorophenol (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A <25 N/A <25 

2,4,5 -Trichlorophenol (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A < 25 N/A <25 

2- Nitroaniline (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A <25 N/A <25 

3 - Nitroaniline (μg/L) <25 <25 N/A <25 N/A <25 N/A <25 N/A < 25 N/A <25 

TEH as Gasoline (μg/L) <50 <50 N/A <50 N/A <50 N/A <50 146 N/A N/A <50 

TEH as Waste Oil (μg/L) <50 <50 N/A <50 N/A <50 N/A <50 N/A < 50 N/A <50 

TEH as Diesel (μg/L) 172 135 N/A 175 N/A 64 N/A 170 N/A < 50 N/A <50 

1,2-Diphenylhydrazine (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

N.A: No data available 
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Table D.3 Concentrations for Site C 

 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Arsenic (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Beryllium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Cadmium (dissolved) (mg/L) 0.0033 0.0018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Cadmium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (dissolved) (mg/L) 31.8 24.9 17.2 15.8 21.400 21.400 37.9 8.2 21.7 15.4 16.7 11.3 

Calcium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chromium (dissolved) (mg/L) 0.0022 0.0017 0.0048 0.003 0.00260 0.00260 0.014 0.0031 0.0052 0.0058 0.0011 0.0013 

Chromium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Copper (dissolved) (mg/L) 0.014 0.024 0.0196 0.0142 0.005 0.005 0.0312 0.005 0.0183 0.014 0.0059 0.0053 

Copper (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Iron (dissolved) (mg/L) 0.116 0.121 0.0044 0.0028 0.1250 0.1250 0.026 <0.001 1.322 0.0795 0.0073 0.0057 

Lead (dissolved) (mg/L) 0.005 0.0024 0.0003 0.0003 0.0004 0.0004 0.0003 0.0002 0.00108 0.006 0.0003 0.0003 

Lead (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (dissolved) (mg/L) 3.6 2.9 0.8 0.9 1.500 1.500 2.1 0.3 0.8 0.3 0.8 0.4 

Magnesium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (dissolved) (mg/L) N/A N/A 0.0026 0.0025 0.003900 0.003900 0.0063 0.0055 0.0045 0.0042 0.0024 0.0023 

Mercury (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nickel (dissolved) (mg/L) N/A N/A 0.0025 0.0014 0.006000 0.006000 0.0056 0.0006 0.0089 0.009 0.001 0.0007 

Nickel (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Potassium (dissolved) (mg/L) 5.9 5.3 2.5 2.4 6.5 6.5 7.9 0.8 <0.1 0.2 2.5 1.4 

Selenium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Silver (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (dissolved) (mg/L) 50.5 36.1 81.7 87.7 61.8 61.8 85.9 17.1 15 18.4 22.9 12.6 

Sodium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thallium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Zinc (dissolved) (mg/L) 0.016 0.021 <0.0001 <0.0001 0.0045 0.0045 0.0163 <0.0001 0.168 0.162 0.003 <0.0001 

Zinc (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Silica (mg/L) 7.4 6.9 2.51 3.44 1.280 1.280 8.3 1.8 1.6 2.6 N/A N/A 

Bromide (mg/L) <0.10 <0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <0.10 <0.10 0.1 0.1 

Chloride (mg/L) 125.1 48.4 112.2 111.6 93.000 93.000 134.9 10.2 17 21 255 150.8 

Fluoride (mg/L) 0.58 0.66 0.51 0.51 0.230 0.230 0.99 0.23 0.35 0.32 0.1 0.1 

Nitrate (mg/L) <0.10 <0.10 0.6 0.69 <0.10 <0.10 <0.10 0.36 1.19 1.11 1.21 1.36 

Nitrite (mg/L) <0.10 <0.10 0 0 0.000 0.000 3.3 0 0 0 0.1 0.1 

  N/A: No data available.     
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Table D.3 Concentrations for Site C (cont.) 
 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphate (mg/L) <0.10 <0.10 0.45 0.3 0.830 0.830 1 0.35 0.41 0.38 0.49 0.3 

Sulfate (mg/L) 57.1 20.2 30.2 41.7 84.100 84.100 82.9 7.71 13.1 16.6 17.2 6.52 

Soluble Phosphate (mg P/L) 0.18 0.13 0.07 0.11 0.170 0.170 0.27 0.07 0.093 0.811 0.116 0.087 

Phosphorus (dissolved 

ortho) 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Phosphorus (mg N/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Kjeldahl Nitrogen (mg/L) N/A N/A 1.73 1.64 9.040 9.040 6.6 0.71 2.41 1.6 7.54 1.8 

Total Dissolved Solids (mg/L) 1.01 89 236 272 106.000 106.000 172 78 86 90 64 122 

Total Suspended Solids (mg/L) N/A N/A 198 116 1040.000 1040.000 380 124 246 116 552 118 

Total Solids (mg/L) 744 92 434 388 1146.000 1146.000 552 202 332 206 616 240 

Volatile Dissolved Solids (mg/L) 101 89 <10.0 <10.0 <10.0 <10.0 66 24 32 22 134 16 

Volatile Suspended Solids (mg/L) 167 51 104 54 324.000 324.000 40 34 32 30 38 114 

Total Volatile Solids (mg/L) 268 140 76 56 260.000 260.000 106 58 64 52 172 130 

Alkalinity as CaCO3 (mg/L) 131.7 63.1 71 68.2 84.800 84.800 106 25.1 46 39.8 40.5 27.4 

Oil and Grease (mg/L) N/A N/A 6.8 <5.0 14 14 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 

TEH as Diesel (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BOD (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

COD (mg/L) 101.1 35.4 5.6 23.5 80.7 80.7 84 88.4 14 14.6 <5.0 <5.0 

n-Hexane (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Methyl t-Butyl Ether (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Benzene (μg/L) <0.05 <0.05 <0.05 <0.05 0.12 0.12 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Toluene (μg/L) <0.05 <0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 0.06 <0.05 <0.05 

Ethylbenzene (μg/L) <0.05 <0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Napthalene (μg/L) 0.11 0.11 <0.05 <0.05 0.08 0.08 <0.05 <0.05 <0.05 <0.05 0.08 0.06 

  N/A: No data available.   
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Table D.3 Concentrations for Site C (cont.) 
 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) 0.0108 0.0098 0.0031 0.0018 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

0.0037 0.0019 <0.0010 0.0027 0.0027 

Arsenic (total) (mg/L) 0.011 0.008 0.002 0.002 <0.001 0.002 <0.001 <0.001 <0.001 

Beryllium (total) (mg/L) 0.001 0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 

Cadmium (dissolved) (mg/L) 0.0038 0.0028 N/A N/A N/A N/A N/A <0.002 <0.002 

Cadmium (total) (mg/L) 0.004 0.003 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Calcium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (total) (mg/L) 153 97.2 56.6 186 18.2 37.6 8.18 16.20 16.20 

Chromium (dissolved) (mg/L) 0.08838 0.05892 <0.01 0.00982 0.02946 0.02946 0.01964 <0.01 <0.01 

Chromium (total) (mg/L) 0.09 0.06 0.03 0.03 0.02 0.02 <0.01 <0.01 <0.01 

Copper (dissolved) (mg/L) 0.1824 0.1152 <0.01 <0.01 0.0096 0.0192 0.0096 0.019 0.019 

Copper (total) (mg/L) 0.19 0.12 0.05 0.03 0.03 0.06 0.01 0.02 0.02 

Iron (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lead (dissolved) (mg/L) 0.0667604 0.047144 0.004192 0.00356 0.006486 0.009255 0.008147 0.0025 0.0025 

Lead (total) (mg/L) 0.0844 0.0596 0.0136 0.0071 0.0059 0.0176 0.0037 0.0032 0.0032 

Magnesium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (total) (mg/L) 19.6 13 4 5.2 15.1 2.7 0.79 1.05 1.05 

Mercury (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (total) (mg/L) <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 

Nickel (dissolved) (mg/L) 0.0499 0.02994 <0.01 <0.01 0.00998 0.00998 0.00998 <0.01 <0.01 

Nickel (total) (mg/L) 0.05 0.03 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 

Potassium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Selenium (total) (mg/L) 0.001 <0.001 0.002 0.001 <0.001 0.001 <0.001 <0.001 <0.001 

Silver (total) (mg/L) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sodium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (total) (mg/L) 159 170 190 949 36 13.5 6.67 17.8 17.8 

Thallium (total) (mg/L) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Zinc (dissolved) (mg/L) 1.22 0.80 0.02 0.02 0.029 0.029 0.029 0.068 0.068 

Zinc (total) (mg/L) 1.25 0.82 0.18 0.13 0.1 0.29 0.04 0.07 0.07 

Silica (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Bromide (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chloride (mg/L) 166 206 332 1709 49 18 6 13.0 13.0 

Fluoride (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrite (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

N/A: No data available.     
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Table D.3 Concentrations for Site C (cont.) 
 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) 0.4 0.5 <0.2 1 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

1.2 1.3 0.5 1.0 1.0 

Phosphate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sulfate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Soluble Phosphate (mg P/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
(mg/L) 0.1 0.09 <0.05 <0.05 <0.05 <0.05 0.06 0.11 0.11 

Total Phosphorus (mg N/L) 1.5 0.81 0.1 0.13 0.16 0.32 0.28 0.28 0.28 

Total Kjeldahl Nitrogen (mg/L) 4.97 3 1.58 1.67 1.75 2.43 1.55 1.27 1.27 

Total Dissolved Solids (mg/L) 428 490 748 3236 156 22 <10 42 42 

Total Suspended Solids (mg/L) 1273 596 262 110 47 216 160 71 71 

Total Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Volatile Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Oil and Grease (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

TEH as Diesel (μg/L) 880 520 1780 650 390 231 85 407 407 

BOD (mg/L) 28 14 88 25 11 14 7 9 9 

COD (mg/L) 394 271 246 276 47 35 24 44 44 

n-Hexane (μg/L) <1 <1 <1 <1 <1 <2 1 <1 <1 

Methyl t-Butyl Ether (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Benzene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Toluene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Ethylbenzene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Napthalene (μg/L) <1 <1 <1 <1 <1 <1 <1 <10 <10 

N/A: No data available.     
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Table D.4 Concentrations for Site D 
 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Arsenic (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Beryllium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Cadmium (dissolved) (mg/L) 0.0017 0.0016 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Cadmium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (dissolved) (mg/L) 22.2 16.9 19.4 18.9 18.900 18.900 40.8 7.9 12.6 12.6 21.9 13.4 

Calcium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chromium (dissolved) (mg/L) 0.0017 0.002 0.0041 0.0023 0.00110 0.00110 0.0024 0.0025 0.0108 0.0073 0.003 0.003 

Chromium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Copper (dissolved) (mg/L) 0.013 0.013 0.02 0.0167 0.00510 0.00510 0.0119 0.0057 0.0221 0.0175 0.004 0.0054 

Copper (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Iron (dissolved) (mg/L) 0.083 0.106 0.0093 0.0091 0.0029 0.0029 0.0046 0.0032 0.0027 0.0012 0.0037 0.0059 

Lead (dissolved) (mg/L) 0.0024 0.0025 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003 0.0092 0.0087 0.0003 0.0003 

Lead (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (dissolved) (mg/L) 1.6 1.4 3.7 4.1 1.000 1.000 1.7 0.3 1 0.6 1.4 1 

Magnesium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (dissolved) (mg/L) N/A N/A 0.0025 0.0023 0.003000 0.003000 0.0053 0.005 0.0041 0.004 0.0023 0.0022 

Mercury (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nickel (dissolved) (mg/L) N/A N/A 0.0032 0.0021 0.002400 0.002400 0.0022 0.0008 0.0278 0.0139 0.0006 0.0006 

Nickel (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Potassium (dissolved) (mg/L) 2.2 1.9 7.7 8.2 3.400 3.400 7.5 1.3 4.6 0.7 1 1.3 

Selenium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Silver (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (dissolved) (mg/L) 25.7 19.5 121 150 75.700 75.700 184 34.8 43.3 41.5 8 17.8 

Sodium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thallium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Zinc (dissolved) (mg/L) 0.019 0.014 <0.0001 <0.0001 <0.0001 <0.0001 0.001 0.0007 0.197 0.186 0.0023 <0.0001 

Zinc (total) (mg/L) N/A N/A - - - - - - - - - - 

Silica (mg/L) 8.4 7.6 1.97 2.9 2.090 2.090 8.8 2.3 1.6 2.1 - - 

Bromide (mg/L) <0.10 <0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <0.10 <0.10 <0.10 <0.10 

Chloride (mg/L) 41.2 28.5 221.5 215.3 156.500 156.500 330.3 39.3 53.3 38.6 7.72 18.6 

Fluoride (mg/L) 0.61 0.5 0.58 0.47 0.170 0.170 0.82 0.21 0.3 0.27 0.17 0.12 

Nitrate (mg/L) 0.38 0.31 0.63 0.71 0.420 0.420 0.15 0.23 0.64 0.65 0.25 0.26 

Nitrite (mg/L) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 1.2 <0.10 <0.10 <0.10 <0.10 <0.10 

N/A: No data available.     
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Table D.4 Concentrations for Site D (cont.) 
 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphate (mg/L) <0.10 <0.10 0.5 0.21 0.310 0.310 0.35 0.2 0.66 0.51 0.28 0.23 

Sulfate (mg/L) 10.5 8.74 40.7 38.1 69.800 69.800 36.7 8.83 17.9 11 4.83 7.36 

Soluble Phosphate (mg P/L) 0.09 0.1 0.05 0.07 0.060 0.060 0.11 0.09 0.188 0.517 0.043 0.081 

Phosphorus (dissolved 

ortho) 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Phosphorus (mg N/L) 0.36 0.34 0.05 0.09 0.070 0.070 0.29 0.13 0.253 0.191 0.107 0.107 

Total Kjeldahl Nitrogen (mg/L)   1.26 1.04 3.860 3.860 2.85 0.49 2.63 2.2 <0.20 1.2 

Total Dissolved Solids (mg/L) 48 58 460 512 360.000 360.000 678 146 120 124 136 42 

Total Suspended Solids (mg/L)   154 <10.0 278.000 278.000 82 46 138 104 262 80 

Total Solids (mg/L) 506 904 614 512 638.000 638.000 760 192 258 228 398 122 

Volatile Dissolved Solids (mg/L) 48 58 <10.0 <10.0 10.000 10.000 26 156 58 16 94 <10.0 

Volatile Suspended Solids (mg/L) 114 100 74 72 128.000 128.000 24 40 16 36 52 60 

Total Volatile Solids (mg/L) 162 158 52 46 138.000 138.000 50 196 74 52 146 64 

Alkalinity as CaCO3 (mg/L) 51.5 41.2 60.1 50.2 76.800 76.800 86 28 38.1 37.5 36 30 

Oil and Grease (mg/L) N/A N/A 9.8 <5.0 9.6 9.6 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 

TEH as Diesel (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BOD (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

COD (mg/L) 29.2 26.1 24.9 27.8 32.1 32.1 50.1 20.1 21.8 20.1 9.6 <5.0 

n-Hexane (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Methyl t-Butyl Ether (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Benzene (μg/L) <0.05 <0.05 <0.05 <0.05 0.07 0.07 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Toluene (μg/L) <0.05 <0.05 <0.05 0.05 0.06 0.06 <0.05 <0.05 0.08 0.1 <0.05 <0.05 

Ethylbenzene (μg/L) <0.05 <0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Napthalene (μg/L) 0.11 0.11 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.06 

N/A: No data available.     
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Table D.4 Concentrations for Site D (cont.) 

 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) 0.0076 0.0068 0.0024 0.0017 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

0.0028 <0.0010 <0.0010 0.003 0.003 

Arsenic (total) (mg/L) 0.007 0.006 0.003 0.001 <0.001 <0.001 0.002 <0.001 <0.001 

Beryllium (total) (mg/L) 0.001 0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Cadmium (dissolved) (mg/L) 0.0028 0.0028 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Cadmium (total) (mg/L) 0.003 0.003 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Calcium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (total) (mg/L) 94.2 87.1 93.7 76.4 16.6 8.92 10.5 13.00 13.00 

Chromium (dissolved) (mg/L) 0.0491 0.03928 0.01964 0.01964 0.01964 <0.01 <0.01 <0.01 <0.01 

Chromium (total) (mg/L) 0.05 0.04 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 

Copper (dissolved) (mg/L) 0.1824 0.1152 0.048 0.0288 0.0288 0.0576 0.0096 0.0096 0.0096 

Copper (total) (mg/L) 0.1 0.08 0.04 0.02 0.02 0.01 <0.01 0.01 0.01 

Iron (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lead (dissolved) (mg/L) 0.0394709 0.03077 0.010758 0.0053 0.004113 0.003639 0.003006 0.0024 0.0024 

Lead (total) (mg/L) 0.0499 0.0389 0.0136 0.0067 0.0052 0.0046 0.0038 0.003 0.003 

Magnesium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (total) (mg/L) 10.9 9.02 4.03 2.49 1.06 0.89 1.83 0.83 0.83 

Mercury (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (total) (mg/L) <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 

Nickel (dissolved) (mg/L) 0.02994 0.01996 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Nickel (total) (mg/L) 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Potassium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Selenium (total) (mg/L) 0.003 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Silver (total) (mg/L) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sodium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (total) (mg/L) 106 209 399 386 47.4 11 24.5 15.30 15.30 

Thallium (total) (mg/L) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Zinc (dissolved) (mg/L) 0.83 0.65 0.29 0.14 0.108 0.078 0.029 0.078 0.078 

Zinc (total) (mg/L) 0.85 0.66 0.3 0.14 0.11 0.08 0.03 0.08 0.08 

Silica (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Bromide (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chloride (mg/L) 116 254 986 690 66 5 15 11.0 11.0 

Fluoride (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrite (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

N/A: No data available.     
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Table D.4 Concentrations for Site D (cont.) 
 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) 0.5 0.7 2.6 1.8 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

0.4 0.2 <0.2 0.8 0.8 

Phosphate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sulfate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Soluble Phosphate (mg P/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
(mg/L) 0.1 0.09 0.14 0.09 0.09 0.08 0.11 0.06 0.06 

Total Phosphorus (mg N/L) 0.66 0.51 0.51 0.36 0.16 0.18 0.25 0.16 0.16 

Total Kjeldahl Nitrogen (mg/L) 2.44 1.91 4.32 3.53 0.82 1.07 0.83 1.24 1.24 

Total Dissolved Solids (mg/L) 296 588 1884 1334 168 <10 34 10 10 

Total Suspended Solids (mg/L) 622 419 241 122 32 71 59 51 51 

Total Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Dissolved Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Suspended Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Volatile Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Oil and Grease (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

TEH as Diesel (μg/L) 260 570 1400 710 270 172 54 370 370 

BOD (mg/L) 18 14 34 24 9 7 6 9 9.0 

COD (mg/L) 172 200 292 80 46 23 29 40 40.0 

n-Hexane (μg/L) <1 <1 1 1 <1 <1 <1 <1 <1 

Methyl t-Butyl Ether (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Benzene (μg/L) <1 <1 <1 <1 1 <1 <1 <1 <1 

Toluene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Ethylbenzene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

Napthalene (μg/L) <1 <1 <1 <1 <1 <1 <1 <1 <1 

N/A: No data available.     
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Table D.5 Concentrations for Site E 

 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Arsenic (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Beryllium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Cadmium (dissolved) (mg/L) 0.002 0.0023 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Cadmium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (dissolved) (mg/L) 45.8 50.5 19.4 18.9 23.9 23.9 42.2 12.1 12.1 21.7 22.8 20.2 

Calcium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chromium (dissolved) (mg/L) 0.0015 0.0017 0.0018 0.0016 0.002 0.002 0.0012 0.0032 0.0082 0.0078 0.0033 0.0036 

Chromium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Copper (dissolved) (mg/L) 0.02 0.014 0.0116 0.0088 0.0083 0.0083 0.0103 0.0057 0.0133 0.016 0.0063 0.0044 

Copper (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Iron (dissolved) (mg/L) 0.104 0.049 0.0016 0.0052 0.0173 0.0173 0.0021 0.0027 0.0874 0.0915 0.0019 0.0042 

Lead (dissolved) (mg/L) 0.0024 0.0023 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0048 0.0054 0.0003 0.0003 

Lead (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (dissolved) (mg/L) 8.5 20.5 3.7 4.1 1.40 1.40 6.3 1.4 0.6 2.4 2.6 5 

Magnesium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (dissolved) (mg/L) N/A N/A 0.0023 0.0024 0.0027 0.0027 0.0047 0.0044 0.0039 0.0039 0.0022 0.0022 

Mercury (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nickel (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nickel (total) (mg/L) N/A N/A 0.0025 0.0022 0.0028 0.0028 0.0032 0.0012 0.0085 0.014 0.0013 0.0013 

Potassium (dissolved) (mg/L) 9.9 17.9 7.7 8.2 5.100 5.100 16.4 4.5 4.9 8.8 4 16.9 

Selenium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Silver (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (dissolved) (mg/L) 162 232 121 150 107 107 326 62.4 34.6 86 34.6 104 

Sodium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Thallium (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Zinc (dissolved) (mg/L) 0.029 0.0045 <0.10 <0.10 0.0193 19.3 <0.0001 <0.0001 0.265 0.164 0.0006 <0.0001 

Zinc (total) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Silica (mg/L) 14.5 15.3 2.34 4.28 2.0 2.0 15.9 5.1 1.5 4.7 N/A N/A 

Bromide (mg/L) <0.10 <0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <0.10 <0.10 <0.10 <0.10 

Chloride (mg/L) 275.5 400.1 242.6 293.8 196.1 196.1 604 64.1 41.5 109.5 114.8 123.7 

Fluoride (mg/L) 0.7 0.33 0.51 0.51 0.180 0.180 0.49 0.17 0.27 0.26 0.2 0.12 

Nitrate (mg/L) <0.10 0.23 0.32 0.57 0.690 0.690 0.47 0.32 0.67 0.87 0.94 0.66 

Nitrite (mg/L) <0.10 <0.10 <0.10 <0.10 0.370 0.370 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

N/A: No data available.     
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Table D.5 Concentrations for Site E (cont.) 

 

Analyte Unit 

Rainfall Event 

11/10/2008 5/12/2009 6/1/2009 7/3/2009 7/31/2009 9/3/2009 

First 

Flush 
EMC 

First 

Flush 
EMC First Flush EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphate (mg/L) <0.10 <0.10 0.4 0.32 0.120 0.120 <0.10 0.23 0.4 0.41 0.35 0.23 

Sulfate (mg/L) 41.8 104.4 90.6 81.7 31.3 31.3 129.1 32.6 12.2 33.3 28.1 47.9 

Soluble Phosphate 
(mg 

P/L) 
0.07 0.03 0.09 0.08 0.040 0.040 0.03 0.08 0.824 0.134 0.068 0.034 

Phosphorus (dissolved 

ortho) 
(mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Phosphorus 
(mg 

N/L) 
0.38 0.26 0.04 0.08 0.070 0.070 0.21 0.14 0.086 0.125 0.098 0.03 

Total Kjeldahl Nitrogen (mg/L) N/A N/A 2.33 2.03 2.79 2.79 1.89 0.55 0.66 0.6 1.64 0.9 

Total Dissolved Solids (mg/L) N/A N/A 650 674 424 424 1,168 548 118 184 50 470 

Total Suspended Solids (mg/L) N/A N/A 158 200 338 338 300 758 128 190 634 306 

Total Solids (mg/L) 1262 966 808 874 762 762 1,468 1,306 246 374 684 776 

Volatile Dissolved Solids (mg/L) 123 <10 <10.0 <10.0 <10.0 <10.0 50 200 40 44 26 52 

Volatile Suspended Solids (mg/L) 165 169 100 86 106 106 58 24 56 12 68 18 

Total Volatile Solids (mg/L) 288 170 84 84 98.0 98.0 108 224 96 56 94 70 

Alkalinity as CaCO3 (mg/L) 118 158 107 88.5 69.5 69.5 121.1 68 32.6 55 55 66.8 

Oil and Grease (mg/L) N/A N/A 13.1 7.8 9.8 9.8 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 

TEH as Diesel (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

BOD (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

COD (mg/L) 47.3 64.2 18.5 14.9 54.9 54.9 51.8 49.6 15.7 29 <5.0 47.4 

n-Hexane (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Methyl t-Butyl Ether (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Benzene (μg/L) <0.05 <0.05 0.06 0.06 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Toluene (μg/L) <0.05 <0.05 <0.05 <0.05 0.06 0.06 <0.05 <0.05 0.17 0.1 0.1 0.08 

Ethylbenzene (μg/L) <0.05 <0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Napthalene (μg/L) 0.11 0.11 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <0.05 0.1 0.05 

N/A: No data available.     
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Table D.5 Concentrations for Site E (cont.) 

 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Antimony (total) (mg/L) 0.003 0.003 0.0013 0.0024 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

0.0027 <0.0010 <0.0010 0.0021 0.0021 

Arsenic (total) (mg/L) 0.003 0.003 0.004 0.002 0.003 <0.001 0.003 0.003 0.003 

Beryllium (total) (mg/L) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Cadmium (dissolved) (mg/L) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Cadmium (total) (mg/L) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Calcium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Calcium (total) (mg/L) 85.7 78.9 114 33.2 32.3 11.4 21.3 28.4 28.4 

Chromium (dissolved) (mg/L) 0.0196 0.01964 0.0196 0.0196 0.0196 <0.01 0.00982 <0.01 <0.01 

Chromium (total) (mg/L) 0.02 0.02 0.02 0.02 0.02 <0.01 0.01 <0.01 <0.01 

Copper (dissolved) (mg/L) 0.0288 0.0288 0.0192 0.0288 0.0192 0.0096 0.0096 0.0096 0.0096 

Copper (total) (mg/L) 0.03 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.010 

Iron (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Lead (dissolved) (mg/L) 0.00973 0.00831 0.00419 0.00625 0.003718 0.002373 0.005537 0.0018 0.00182 

Lead (total) (mg/L) 0.0123 0.0105 0.0053 0.0079 0.0047 0.003 0.007 0.0023 0.00230 

Magnesium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Magnesium (total) (mg/L) 16.9 15.1 7.84 2.61 5.29 1.74 3.25 8.98 8.98 

Mercury (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mercury (total) (mg/L) <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 <0.0004 

Nickel (dissolved) (mg/L) 0.00998 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Nickel (total) (mg/L) 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Potassium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Selenium (total) (mg/L) <0.001 <0.001 0.002 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 

Silver (total) (mg/L) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sodium (dissolved) (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sodium (total) (mg/L) 380 389 621 107 150 30.6 40.4 111 111 

Thallium (total) (mg/L) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 

Zinc (dissolved) (mg/L) 
  

0.07 0.09 0.068 0.049 0.029 0.039 0.039 

Zinc (total) (mg/L) 0.2 0.17 0.07 0.09 0.07 0.05 0.03 0.040 0.040 

Silica (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Bromide (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Chloride (mg/L) 499 510 1092 149 185 25 39 118 118 

Fluoride (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Nitrite (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

N/A: No data available.     
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Table D.5 Concentrations for Site E (cont.) 

 

Analyte Unit 

Rainfall Event 

3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

First 

Flush 
EMC 

Nitrate/Nitrite Nitrogen (mg/L) 0.4 0.4 1.6 1.8 

First flush 

sample 

could not 

be 

collected 

because a 

previous 

low 

intensity 

showers 

wash off 

the 

pollutants 

from the 

highway 

0.6 0.2 0.3 0.900 0.900 

Phosphate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Sulfate (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Soluble Phosphate 
(mg 

P/L) 
N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
(mg/L) <0.05 <0.05 0.05 0.08 <0.05 0.06 0.13 0.07 0.070 

Total Phosphorus 
(mg 

N/L) 
0.25 0.25 0.21 0.34 0.17 0.15 0.3 0.21 0.21 

Total Kjeldahl Nitrogen (mg/L) 1.51 1.19 2.49 3.27 0.95 1.00 1.19 1.67 1.67 

Total Dissolved Solids (mg/L) 1262 1330 2054 372 520 16 128 512 512 

Total Suspended Solids (mg/L) 187 134 129 135 68 41 108 46 46.0 

Total Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Dissolved Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Volatile Suspended Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Total Volatile Solids (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Oil and Grease (mg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A 

TEH as Diesel (μg/L) 200 290 610 1010 260 121 71 597 597 

BOD (mg/L) 11 13 16 26 9 6 7 15 15.0 

COD (mg/L) 166 194 157 138 60 23 43 101 101 

n-Hexane (μg/L) <1 <1 <1 1 <1 <1 2 N/A N/A 

Methyl t-Butyl Ether (μg/L) <1 <1 <1 <1 <1 <1 <1 N/A N/A 

Benzene (μg/L) <1 <1 <1 <1 <1 <1 <1 N/A N/A 

Toluene (μg/L) <1 <1 <1 <1 <1 <1 <1 N/A N/A 

Ethylbenzene (μg/L) <1 <1 <1 <1 <1 <1 <1 N/A N/A 

Napthalene (μg/L) <1 <1 <1 <1 <1 <1 <1 N/A N/A 

N/A: No data available.     
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Table D.6 Pollutant loads for Site A 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Antimony (total) N/A N/A N/A N/A N/A 5.78E-06 1.59E-05 5.17E-11 N.D 1.54E-04 

Arsenic (total) N/A N/A N/A N/A N/A 3.61E-05 1.19E-04 2.95E-10 1.04E-09 0.00134 

Beryllium (total) N/A N/A N/A N/A N/A N.D N.D N.D 2.08E-10 1.03E-04 

Cadmium (dissolved) 4.24E-05 N.D N.D N.D N.D N/A N/A N/A N/A N.D 

Cadmium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Calcium (dissolved) 0.565 0.0749 0.964 6.74 14.15 N/A N/A N/A N/A N/A 

Calcium (total) N/A N/A N/A N/A N/A 0.431 1.30 N/A 7.03E-06 5.59 

Chromium (dissolved) 3.57E-05 1.51E-04 1.84E-04 5.51E-04 0.00707 N.D 1.95E-04 1.09E-09 4.09E-09 0.00202 

Chromium (total) N/A N/A N/A N/A N/A N.D 1.99E-04 1.11E-09 4.16E-09 0.00206 

Copper (dissolved) 1.45E-04 1.06E-04 0.00222 1.84E-04 0.00455 N.D N.D 3.55E-10 2E-09 0.00198 

Copper (total) N/A N/A N/A N/A N/A N.D N.D 3.69E-10 2.08E-09 0.00206 

Iron (dissolved) 0.00136 N.D N.D 0.0714 0.00387 N/A N/A N/A N/A N/A 

Lead (dissolved) 5.91E-05 4.99E-06 1.42E-05 6.78E-04 3.37E-04 8.58E-06 7.07E-05 2.4E-10 1.7E-09 5.95E-04 

Lead (total) N/A N/A N/A N/A N/A 1.08E-05 8.94E-05 3.03E-10 2.14E-09 7.52E-04 

Magnesium (dissolved) 0.192 0.0786 0.248 0.654 6.23 N/A N/A N/A N/A N/A 

Magnesium (total) N/A N/A N/A N/A N/A 0.270 0.586 5.58E-07 1.04E-06 1.96 

Mercury (dissolved) N/A 3.37E-05 7.23E-04 1.74E-04 0.00421 N/A N/A N/A N/A N/A 

Mercury (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Nickel (dissolved) N/A 5.49E-05 9.22E-05 3.91E-04 0.00168 N.D N.D 3.69E-10 2.08E-09 0.00103 

Nickel (total) N/A N/A N/A N/A N/A N.D N.D 3.69E-10 2.08E-09 0.00103 

Potassium (dissolved) 0.229 0.537 0.858 2.85 35.9 N/A N/A N/A N/A N/A 

Selenium (total) N/A N/A N/A N/A N/A 1.45E-05 N.D 3.69E-11 2.08E-10 2.06E-04 

Silver (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Sodium (dissolved) 2.04 4.41 7.09 16.4 236 N/A N/A N/A N/A N/A 

Sodium (total) N/A N/A N/A N/A N/A 2.11 7.01 1.10E-05 1.52E-05 45.2 

Thallium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Zinc (dissolved) 1.78E-04 1.25E-06 7.09E-06 0.00147 N.D N.D 3.88E-04 1.08E-09 6.11E-09 0.00403 

Zinc (total) N/A N/A N/A N/A N/A N.D 3.97E-04 1.11E-09 6.24E-09 0.00412 

Silica 0.239 0.102 0.588 0.952 N.D N/A N/A N/A N/A N/A 

Bromide N.D 0.00125 0.00709 0.0180 0.168 N/A N/A N/A N/A N/A 

Chloride 5.09 8.75 8.56 21.2 254 1.73 6.51 1.38E-05 1.29E-05 41.5 

Fluoride N.D 0.00387 0.0106 0.00401 0.168 N/A N/A N/A N/A N/A 

Nitrate 0.00914 0.0223 0.0369 0.0892 2.29 N/A N/A N/A N/A N/A 

Nitrite N.D 0.00125 0.00709 0.00334 0.168 N/A N/A N/A N/A N/A 

N/A: No data available.     

N.D: Non-detected 
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Table D.6 Pollutant loads for Site A (cont.) 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Nitrate/Nitrite Nitrogen N/A N/A N/A N/A N/A N.D 0.0199 4.43E-08 1.04E-07 0.165 

Phosphate N.D 0.00125 0.00709 0.00334 0.168 N/A N/A N/A N/A N/A 

Sulfate 1.90 3.42 5.11 6.71 98.2 N/A N/A N/A N/A N/A 

Soluble Phosphate N.D 2.50E-04 0.00213 0.0139 0.0337 N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
N/A N/A N/A N/A N/A N.D N.D N.D 1.25E-08 N.D 

Total Phosphorus 0.00145 N.D 0.00425 0.00224 N.D 7.23E-04 0.00258 5.91E-09 5.83E-08 0.0474 

Total Kjeldahl Nitrogen N/A 0.0397 0.0971 0.178 N.D 0.0103 0.0332 6.46E-08 3.23E-07 0.495 

Total Dissolved Solids N/A 24.9 14.9 46.1 788 8.51 27.8 4.60E-05 4.75E-05 160 

Total Suspended Solids N/A 7.96 26.9 45.1 330 0.253 2.82 5.80E-06 5.22E-05 23.3 

Total Solids 15.9 32.9 41.8 91.2 1118 N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
2.38 1.37 1.13 13.2 70.7 N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
0.569 1.95 4.54 1.80 37.1 N/A N/A N/A N/A N/A 

Total Volatile Solids 2.94 3.32 5.67 15.0 108 N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 1.98 1.83 3.65 4.75 109 N/A N/A N/A N/A N/A 

Oil and Grease N/A 0.356 N.D N.D N.D N/A N/A N/A N/A N/A 

TEH as Diesel N/A N/A N/A N/A N/A 2.46 2.38 N.D 1.04E-05 47.6 

BOD 0.00781 N/A N/A N/A N/A 0.0361 0.179 2.95E-07 1.66E-06 2.27 

COD 9.32E-04 1.131 2.21 2.66 8.42 1.37 4.85 3.95E-06 9.57E-06 31.1 

n-Hexane N.D N.D N.D N.D N.D N.D N.D N.D 2.08E-07 N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Toluene N.D 9.99E-07  N.D N.D N.D N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D 1.52E-04 N.D N.D N.D N.D N.D 

N/A: No data available.     

N.D: Non-detected 
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Table D.7 Pollutant loads for Site C 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Antimony (total) N/A N/A N/A N/A N/A 6.00E-05 2.46E-05 7.8E-11 N.D 4.02E-05 

Arsenic (total) N/A N/A N/A N/A N/A 4.89E-05 2.73E-05 N.D N.D N.D 

Beryllium (total) N/A N/A N/A N/A N/A 6.12E-06 N.D N.D N.D N.D 

Cadmium (dissolved) 1.51E-05 N.D N.D N.D N.D 1.73E-05 N/A N/A N/A N.D 

Cadmium (total) N/A N/A N/A N/A N/A 1.84E-05 N.D N.D N.D N.D 

Calcium (dissolved) 0.209 0.145 0.306 0.313 5.38 N/A N/A N/A N/A N/A 

Calcium (total) N/A N/A N/A N/A N/A 0.595 2.54 3.84E-07 7.84E-07 0.241 

Chromium (dissolved) 1.43E-05 2.76E-05 1.16E-04 1.18E-04 6.19E-04 3.60E-04 4.02E-04 4.14E-10 N.D N.D 

Chromium (total) N/A N/A N/A N/A N/A 3.67E-04 4.09E-04 4.22E-10 N.D N.D 

Copper (dissolved) 2.02E-04 1.31E-04 1.86E-04 2.85E-04 0.00252 7.05E-04 3.93E-04 6.07E-10 9.20E-10 2.86E-04 

Copper (total) N/A N/A N/A N/A N/A 7.34E-04 4.09E-04 6.33E-10 9.59E-10 2.98E-04 

Iron (dissolved) 0.00102 2.58E-05 <0.001 0.00162 0.00271 N/A N/A N/A N/A N/A 

Lead (dissolved) 2.02E-05 2.76E-06 7.46E-06 1.22E-04 1.43E-04 2.88E-04 7.66E-05 9.84E-11 2.81E-10 3.77E-05 

Lead (total) N/A N/A N/A N/A N/A 3.65E-04 9.69E-05 1.24E-10 3.55E-10 4.76E-05 

Magnesium (dissolved) 0.0244 0.00828 0.0112 0.00611 0.190 N/A N/A N/A N/A N/A 

Magnesium (total) N/A N/A N/A N/A N/A 0.0795 0.071 2.51E-08 7.57E-08 0.0156 

Mercury (dissolved) N.D 2.30E-05 2.05E-04 8.55E-05 0.00109 N/A N/A N/A N/A N/A 

Mercury (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Nickel (dissolved) 0 1.29E-05 2.24E-05 1.83E-04 3.33E-04 1.83E-04 N.D N.D N.D N.D 

Nickel (total) N/A N/A N/A N/A N/A 1.84E-04 N.D N.D N.D N.D 

Potassium (dissolved) 0.0446 0.0221 0.0298 0.00407 0.666 N/A N/A N/A N/A N/A 

Selenium (total) N/A N/A N/A N/A N/A N.D 1.36E-05 N.D N.D N.D 

Silver (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Sodium (dissolved) 0.304 0.807 0.638 0.374 6.00 N/A N/A N/A N/A N/A 

Sodium (total) N/A N/A N/A N/A N/A 1.04 12.9 7.59E-07 6.40E-07 0.265 

Thallium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Zinc (dissolved) 1.77E-04 N.D N.D 0.00330 N.D 0.00491 0.00173 2.06E-09 3.75E-09 0.00102 

Zinc (total) N/A N/A N/A N/A N/A 0.00502 0.00177 2.11E-09 3.84E-09 0.00104 

Silica 0.0580 0.0317 0.0671 0.0529 N.D N/A N/A N/A N/A N/A 

Bromide N.D N.D N.D N.D 0.0476 N/A N/A N/A N/A N/A 

Chloride 0.4 1.03 0.380 0.427 6.47 1.26 23.3 1.03E-06 5.75E-07 0.193 

Fluoride 0.00555 0.00469 0.00858 0.00651 0.0714 N/A N/A N/A N/A N/A 

Nitrate N.D 0.00635 0.0134 0.0226 0.200 N/A N/A N/A N/A N/A 

Nitrite N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

 N/A: No data available.     

 N.D: Non-detected 
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Table D.7 Pollutant loads for Site C (cont.) 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Nitrate/Nitrite Nitrogen N/A N/A N/A N/A N/A 0.00306 0.0327 1.05E-08 1.92E-08 0.0149 

Phosphate N.D 0.00276 0.0131 0.00773 0.143 N/A N/A N/A N/A N/A 

Sulfate 0.170 0.384 0.287 0.338 3.10 N/A N/A N/A N/A N/A 

Soluble Phosphate 0.00109 0.00101 0.00261 0.0165 0.0414 N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
N/A N/A N/A N/A N/A 5.51E-04 0.00123 1.9E-09 1.05E-08 0.00164 

Total Phosphorus 0.00303 4.60E-04 0.00410 0.00218 0.0600 0.00496 0.00409 5.06E-09 2.11E-08 0.00417 

Total Kjeldahl Nitrogen N/A 0.0151 0.0265 0.0326 0.875 0.0184 0.0423 2.51E-08 6.14E-08 0.0189 

Total Dissolved Solids N/A 2.50 2.91 1.83 58.0 3.00 44.0 3.29E-06 N.D 0.625 

Total Suspended Solids N/A 1.07 4.62 2.36 56.1 3.65 1.50 9.91E-07 5.75E-06 1.06 

Total Solids N/A 3.57 7.53 4.19 114 N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
0.749 N.D 0.895 0.448 7.61 N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
0.429 0.497 1.27 0.611 54.2 N/A N/A N/A N/A N/A 

Total Volatile Solids 1.18 0.515 2.16 1.06 61.9 N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 0.531 0.628 0.94 0.81 13.0 N/A N/A N/A N/A N/A 

Oil and Grease N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

TEH as Diesel N/A N/A N/A N/A N/A 0.00318 0.0089 8.23E-09 8.15E-09 6.05 

BOD 0.0446 N/A N/A N/A N/A 0.0857 0.341 2.32E-07 6.71E-07 0.134 

COD 0.298 0.216 3.30 0.297 N.D 1.66 3.77 9.91E-07 2.30E-06 0.655 

n-Hexane N.D N.D N.D N.D N.D N.D N.D N.D 9.59E-11 N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D N.D 2.11E-11 N.D N.D 

Toluene N.D N.D N.D 1.22E-06 N.D N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D 2.85E-05 N.D N.D N.D N.D N.D 

N/A: No data available.     

N.D: Non-detected 
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Table D.8 Pollutant loads for Site D 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Antimony (total) N/A N/A N/A N/A N/A 4.16E-05 2.32E-05 5.91E-11 <0.0010 4.46E-05 

Arsenic (total) N/A N/A N/A N/A N/A 3.67E-05 1.36E-05 N.D 1.92E-10 N.D 

Beryllium (total) N/A N/A N/A N/A N/A 6.12E-06 N.D N.D N.D N.D 

Cadmium (dissolved) 2.32E-05 N.D N.D N.D N.D 1.73E-05 N/A N/A N/A N.D 

Cadmium (total) N/A N/A N/A N/A N/A 1.84E-05 N.D N.D N.D N.D 

Calcium (dissolved) 0.246 0.168 0.295 0.256 6.38 N/A N/A N/A N/A N/A 

Calcium (total) N/A N/A N/A N/A N/A 0.533 1.04 3.5E-07 1.01E-06 0.19 

Chromium (dissolved) 2.91E-05 2.12E-05 9.32E-05 1.49E-04 0.00143 2.40E-04 2.68E-04 4.14E-10 N.D N.D 

Chromium (total) N/A N/A N/A N/A N/A 2.45E-04 2.73E-04 4.22E-10 N.D N.D 

Copper (dissolved) 1.89E-04 1.54E-04 2.13E-04 3.56E-04 0.00257 4.70E-04 2.62E-04 4.05E-10 N.D 1.43E-04 

Copper (total) N/A N/A N/A N/A N/A 4.89E-04 2.73E-04 4.22E-10 N.D 1.49E-04 

Iron (dissolved) 0.00154 8.37E-05 1.19E-04 0.025 0.00281 N/A N/A N/A N/A N/A 

Lead (dissolved) 3.63E-05 2.76E-06 1.12E-05 1.77E-04 1.43E-04 1.88E-04 7.23E-05 8.67E-11 2.88E-10 3.53E-05 

Lead (total) N/A N/A N/A N/A N/A 2.38E-04 9.14E-05 1.1E-10 3.64E-10 4.46E-05 

Magnesium (dissolved) 0.0203 0.0110 0.0112 0.0122 0.476 N/A N/A N/A N/A N/A 

Magnesium (total) N/A N/A N/A N/A N/A 0.06 0.0340 2.24E-08 1.75E-07 0.0123 

Mercury (dissolved) N/A 2.12E-05 1.86E-04 8.14E-05 0.00105 N/A N/A N/A N/A N/A 

Mercury (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Nickel (dissolved) N/A 1.93E-05 2.98E-05 0.0003 2.85E-04 1.22E-04 N.D N.D N.D N.D 

Nickel (total) N/A N/A N/A N/A N/A 1.22E-04 N.D N.D N.D N.D 

Potassium (dissolved) 0.0276 0.0258 0.0485 0.0142 0.619 N/A N/A N/A N/A N/A 

Selenium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Silver (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Sodium (dissolved) 0.283 1.04 1.30 0.845 8.47 N/A N/A N/A N/A N/A 

Sodium (total) N/A N/A N/A N/A N/A 1.28 5.27 1.00E-06 0.00 0.228 

Thallium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Zinc (dissolved) 2.03E-04 N.D N.D N.D N.D 0.00395 0.00187 2.27E-09 2.81E-09 1.16E-03 

Zinc (total) N/A N/A N/A N/A N/A 0.00404 0.00191 2.32E-09 2.88E-09 1.19E-03 

Silica 0.110 0.0267 0.086 0.0427 N.D N/A N/A N/A N/A N/A 

Bromide N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

Chloride 0.414 1.98 1.47 0.786 8.85 1.55 9.41 1.39E-06 1.44E-06 1.64E-01 

Fluoride 0.00727 0.00432 0.00783 0.00550 0.0571 N/A N/A N/A N/A N/A 

Nitrate 0.00450 0.00653 0.00858 0.0132 0.124 N/A N/A N/A N/A N/A 

Nitrite N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

N/A: No data available.     

N.D: Non-detected 
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Table D.8 Pollutant loads for Site D (cont.) 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Nitrate/Nitrite Nitrogen N/A N/A N/A N/A N/A 0.00428 0.0246 8.44E-09 N.D 1.19E-02 

Phosphate N.D 0.00193 0.00746 0.0104 0.109 N/A N/A N/A N/A N/A 

Sulfate 0.127 0.351 0.329 0.22 3.50 N/A N/A N/A N/A N/A 

Soluble Phosphate 0.00145 6.44E-04 0.00336 0.0105 0.0385 N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
N/A N/A N/A N/A N/A 5.51E-04 0.00109 N.D 1.15E-08 8.93E-04 

Total Phosphorus 0.00494 8.28E-04 0.00485 0.00389 0.0509 0.00312 0.00491 3.37E-09 2.40E-08 0.00238 

Total Kjeldahl Nitrogen N/A 0.00957 0.0183 0.0442 0.561 0.0117 0.0482 1.73E-08 7.96E-08 0.0184 

Total Dissolved Solids N/A 4.71 5.44 2.52 20.0 3.60 18.2 3.54E-06 3.26E-06 0.149 

Total Suspended Solids N/A 0.0920 1.72 2.12 38.1 2.56 1.66 6.75E-07 5.66E-06 7.59E-01 

Total Solids 13.1 4.71 7.16 4.64 58.0 N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
0.843 N.D 5.82 0.326 <10.0 N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
1.45 0.663 1.49 0.733 28.5 N/A N/A N/A N/A N/A 

Total Volatile Solids 2.30 0.423 7.31 1.06 30.5 N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 0.599 0.462 1.04 0.763 14.3 N/A N/A N/A N/A N/A 

Oil and Grease 0 N.D N.D N.D N.D N/A N/A N/A N/A N/A 

TEH as Diesel N/A N/A N/A N/A N/A 0.00349 0.0097 5.69E-09 5.18E-09 5.50 

BOD 0.0509 N/A N/A N/A N/A 0.0857 0.327 1.90E-07 5.75E-07 1.34E-01 

COD 0.379 0.256 0.749 0.409 N.D 1.22 1.09 9.70E-07 2.78E-06 5.95E-01 

n-Hexane N.D N.D N.D N.D N.D N.D 1.36E-05 N.D N.D N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Toluene N.D 4.60E-07 N.D 2.04E-06 N.D N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D 2.85E-05 N.D N.D N.D N.D N.D 

N/A: No data available.     

N.D: Non-detected 
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Table D.9 Pollutant loads for Site E 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Antimony (total) N/A N/A N/A N/A N/A 6.81E-06 1.24E-04 3.37E-04 N.D 3.12E-05 

Arsenic (total) N/A N/A N/A N/A N/A 6.81E-06 1.03E-04 3.74E-04 0.00228 4.46E-05 

Beryllium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Cadmium (dissolved) 7.66E-05 N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Cadmium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Calcium (dissolved) 1.68 0.681 2.42 1.86 103 N/A N/A N/A N/A N/A 

Calcium (total) N/A N/A N/A N/A N/A 0.179 1.72 4.03 16.2 0.422 

Chromium (dissolved) 5.66E-05 5.76E-05 6.39E-04 6.68E-04 0.0184 4.46E-05 0.00101 0.00245 0.00747 N.D 

Chromium (total) N/A N/A N/A N/A N/A 4.54E-05 0.00103 0.00249 0.00761 N.D 

Copper (dissolved) 4.66E-04 3.17E-04 1.14E-03 0.00137 0.0225 6.54E-05 0.00149 0.00239 0.00730 1.43E-04 

Copper (total) N/A N/A N/A N/A N/A 6.81E-05 0.00155 0.00249 0.00761 1.49E-04 

Iron (dissolved) 0.00163 1.87E-04 5.39E-04 0.0783 0.0215 N/A N/A N/A N/A N/A 

Lead (dissolved) 7.66E-05 1.08E-05 5.99E-05 4.62E-04 0.00153 1.89E-05 3.23E-04 4.64E-04 0.00421 2.71E-05 

Lead (total) N/A N/A N/A N/A N/A 2.38E-05 4.08E-04 5.86E-04 0.00533 3.42E-05 

Magnesium (dissolved) 0.682 0.148 0.280 0.205 25.6 N/A N/A N/A N/A N/A 

Magnesium (total) N/A N/A N/A N/A N/A 0.0343 0.135 0.660 2.47 0.134 

Mercury (dissolved) N/A 8.64E-05 8.79E-04 3.34E-04 0.0112 N/A N/A N/A N/A N/A 

Mercury (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Nickel (dissolved) N/A 7.92E-05 2.40E-04 0.00120 0.00665 N.D N.D N.D N.D N.D 

Nickel (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Potassium (dissolved) 0.596 0.295 0.899 0.753 86.4 N/A N/A N/A N/A N/A 

Selenium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Silver (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Sodium (dissolved) 7.72 5.40 12.5 7.36 532 N/A N/A N/A N/A N/A 

Sodium (total) N/A N/A N/A N/A N/A 0.883 5.53 18.7 30.7 1.65 

Thallium (total) N/A N/A N/A N/A N/A N.D N.D N.D N.D N.D 

Zinc (dissolved) 1.50E-04 N.D N.D 0.0140 N.D 3.77E-04 0.00455 0.00854 0.0223 5.82E-04 

Zinc (total) N/A N/A N/A N/A N/A 3.86E-04 0.00465 0.00873 0.0228 5.95E-04 

Silica 0.509 0.154 1.02 0.40 N.D N/A N/A N/A N/A N/A 

Bromide N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

Chloride 13.3 10.6 12.8 9.37 632 1.16 7.70 23.1 29.7 1.76 

Fluoride 0.0110 0.0184 0.0339 0.0223 0.613 N/A N/A N/A N/A N/A 

Nitrate 0.00766 0.0205 0.0639 0.0745 3.37 N/A N/A N/A N/A N/A 

Nitrite N.D N.D N.D N.D N.D N/A N/A N/A N/A N/A 

N/A: No data available.     

N.D: Non-detected 
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Table D.9 Pollutant loads for Site E (cont.) 

 

Analyte 
Pollutant Load (Kg/event) 

11/10/2008 5/12/2009 7/3/2009 7/31/2009 9/3/2009 3/27/2010 5/7/2010 5/20/2010 7/4/2010 9/13/2010 

Nitrate/Nitrite Nitrogen N/A N/A N/A N/A N/A 9.08E-04 0.0930 0.0748 0.228 0.0134 

Phosphate N.D 0.0115 0.0459 0.0351 1.18 N/A N/A N/A N/A N/A 

Sulfate 3.48 2.94 6.51 2.85 245 N/A N/A N/A N/A N/A 

Soluble Phosphate 9.99E-04 0.00288 0.0160 0.0115 0.174 N/A N/A N/A N/A N/A 

Phosphorus (dissolved 

ortho) 
N/A N/A N/A N/A N/A N.D 0.00413 N.D 0.099 0.00104 

Total Phosphorus 0.00866 0.00288 0.0280 0.0107 0.153 5.67E-04 0.0176 0.0212 0.228 0.00312 

Total Kjeldahl Nitrogen N/A 0.0731 0.110 0.0513 4.6 0.0027 0.169 0.118 0.905 0.0248 

Total Dissolved Solids N/A 24.3 109 15.7 2403 3.0 19.2 64.9 97.4 7.62 

Total Suspended Solids N/A 7.20 151 16.3 1564 0.30 6.98 8.48 82.2 0.684 

Total Solids 32.2 31.5 261 32.0 3967 N/A N/A N/A N/A N/A 

Volatile Dissolved 

Solids 
N.D N.D 39.9 3.77 266 N/A N/A N/A N/A N/A 

Volatile Suspended 

Solids 
5.63 3.10 4.79 1.03 92.0 N/A N/A N/A N/A N/A 

Total Volatile Solids 5.66 3.02 44.7 4.79 358 N/A N/A N/A N/A N/A 

Alkalinity as CaCO3 5.26 3.186 13.6 4.71 341 N/A N/A N/A N/A N/A 

Oil and Grease N.D 0.281 N.D N.D N.D N/A N/A N/A N/A N/A 

TEH as Diesel N/A N/A N/A N/A N/A 6.58E-04 0.0522 0.0324 0.0540 8.88 

BOD 0.190 N/A N/A N/A N/A 0.0295 1.34 1.12 5.33 0.22 

COD 2.14 0.536 9.91 2.48 242 0.440 7.13 7.48 32.7 1.50 

n-Hexane N.D N.D N.D N.D N.D N.D 5.17E-05 N.D 0.00152 N.D 

Methyl t-Butyl Ether N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Benzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Toluene N.D N.D N.D 8.56E-06 4.09E-04 N.D N.D N.D N.D N.D 

Ethylbenzene N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

Napthalene N.D N.D N.D N.D 2.56E-04 N.D N.D N.D N.D N.D 

N/A: No data available.     

N.D: Non-detected. 
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Appendix E Seed mixtures for Nebraska highways 

 Different regions in Nebraska are better suited for different grass mixtures. The Nebraska 

Department of Roads (NDOR) has separated the state into 6 landscape regions, as presented in 

Figure 38. There is a suggested seed mixture for each region in the following tables. Table 31 

shows suggested mix for urban areas, which gives a manicured appearance and can tolerate 

frequent mowing (NDOR 2010).  

 Each region has grass mix suggestions for the shoulder region and the foreslope, ditch, 

backslope areas. The shoulder areas is the area within 16 ft (4.9 m) of the paved surface, and the 

foreslope, ditch, backslope areas is the area from the shoulder area to the end of the limits of the 

project (NDOR 2010). 
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Figure 38 Nebraska Department of Roads landscape regions (NDOR 2010) 



 

324 

E.1 Seed Mixture for Region A: Loess Hills 

 

Table 19 Rural highway shoulder mix Region A (NDOR 2010) 

 

 

 

 

Table 20 Grass mixture for foreslopes, ditches, and backslopes for Region A (NDOR 2010) 

 

 
 PLS (pure live seed) describes the amount of seed that will germinate. 
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E.2 Seed Mixture for Region B: Loess and Glacial Drift 

 

Table 21 Rural highway shoulder mix Region B (NDOR 2010) 

 

 

 

Table 22 Grass mixture for foreslopes, ditches, and backslopes for Region B (NDOR 2010) 

 

 
 PLS (pure live seed) describes the amount of seed that will germinate. 
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E.3 Seed Mixture for Region C: Central Loess Plains and Rainwater Basin 

 

 

 

Table 23 Rural highway shoulder mix Region C (NDOR 2010) 
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Table 24 Grass mixture for foreslopes, ditches, and backslopes for Region C (NDOR 2010) 

 

 

 PLS (pure live seed) describes the amount of seed that will germinate. 
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E.4 Seed Mixture for Region D: Sandhills 

 

 

 

Table 25 Rural highway shoulder mix Region D (NDOR 2010) 
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Table 26 Grass mixture for foreslopes, ditches, and backslopes for Region D 

 

 

 PLS (pure live seed) describes the amount of seed that will germinate. 
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E.5 Seed Mixture for Region E: Shale Plains-Tablelands 

 

 

 

Table 27 Rural highway shoulder mix Region E (NDOR 2010) 

 

 
 

 

 

Table 28 Grass mixture for foreslopes, ditches, and backslopes for Region E (NDOR 2010) 

 

 
 PLS (pure live seed) describes the amount of seed that will germinate. 
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E.6 Seed Mixture for Region F: High Plains 

 

Table 29 Rural highway shoulder mix Region F (NDOR 2010) 

 

 



 

332 

Table 30 Grass mixture for foreslopes, ditches, and backslopes for Region F (NDOR 2010) 

 

 
 PLS (pure live seed) describes the amount of seed that will germinate. 

 

 

 

Table 31 Grass mixture for urban roadsides and lawns (NDOR 2010) 

 

 
 PLS (pure live seed) describes the amount of seed that will germinate. 
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Appendix F Gradation for common BMP media 

 

Table 32 Gradation for AASHTO M-6 and ASTM C33 sands 

 

  

Cumulative Passing by 

Weight 

U.S. 

Standard 

Sieve Size 

AASHTO M-

6 (Belgard 

2012) 

ASTM C33 

(Division 30 

2008) 

3/8” 100 100 

#4  95 to 100 95 to 100 

#8  80 to 100 85 to 100  

#16 50 to 85 50 to 85  

#30  25 to 60 25 to 60  

#50  10 to 30 0 to 30  

#100  2 to 10  2 to 10  

 

 

 

Table 33 Gradation for AASHTO #3 gravel 

 

  

Cumulative Passing by 

Weight 

U.S. 

Standard 

Sieve Size 

AASHTO # 3                                                

(PROP 2003) 

2.5"   

2" 100 

1.5" 90 to 100 

1" 35 to 70 

3/4" 0 to 15 

#4  0 to 5 

#200 <5 
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