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PREFACE

This report discusses the Yamamura two-dimensional theory of
linear induction motors and its application to the analysis of
the high-speed propulsion characteristics of linear induction
motors. It is the second in a three-part series devoted td a
review of current LIM theories and the presentation of computer
programs based on these theories. The first report, dealing with
the Oberretl theory, and the final report, treating the Mosebach
theory, discuss important aspects of idealized models used in the
respective theories. The three reports taken together provide an
interesting comparison of predicted motor characteristics and
their relation to the models upon which they are based.

The author is pleased to acknowledge the following individuals

for numerous discussions and helpful information: Mr. Matthew
Guarino, Jr., of the U.S. Federal Railroad Administration, Dr,
David G. Elliott of Jet Propulsion Laboratory, Dr. Clem Skalski
of MITRE Corporation, and Professor James Melcher of the
Massachusetts Institute of Technology.
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1. INTRODUCTION

This report discusses the Yamamura theory of the linear induc-
tion motor (LIM) as presented in the text, "Theory of Linear
Induction Motors" by S. Yamamura (University of Tokyo, Japan).l
It represents the second in a series of reports dealing with
current theories of linear induction motors and their application
to computer analysis. The previous report, entitled "Evaluation
of Linear Induction Motor Characteristics: The Oberretl Model"
discussed the Oberretl theory of,the linear induction motor as
presented at the Symposium on Linear Motors, Capri, Italy, June
19-21, 1973. A third report dealing with the Mosebach (University
of Braunschweig, Germany) remains to be published. The latter will
comprise the final in this series of reports reviewing current

theories of linear induction motors.

This report has three primary objectives. The first is to
examine the Yamamura LIM model and the basic assumptions upon which
it is derived. The second is to develop the computer software
needed for numerical studies of LIMs based on the Yamamura model.
The third is to apply the software technology to computer analyses
of the TLRV and LIMRV LIM propulsion characteristics.

The Yamamura treatment of the linear induction motor differs
from that of the others in several respects. It assumes the pri-
mary mmf to be describable by a single spatial harmonic and
neglects the higher-order mmf harmonics resulting from the Fourier
analysis of the actual winding current distribution of the LIM.
The Yamamura approach uses the Fourier transform representation to
describe the magnetic vector potential and evaluates the thrust

using the theorem of residues.

The organization of the report is as follows. Section 2.1
discusses the Yamamura LIM model and its application to evaluating
LIM thrust. Subsections 2.1.1 through 2.1.4 consider the residue
theorem and the comparative thrusts obtained using the residue-
versus-numerical integration techniques. Section 2.2 and subsequent
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2. TECHNICAL DISCUSSION

2.1 THE YAMAMURA LIM MODEL AND MATHEMATICAL REPRESENTATION

The model for the two-dimensional analysis (neglecting edge-
effects) is shown in Figure 1 with coordinate axes as indicated
in the figure. The model is divided into three regions along the
y-direction and into three zones along the x-direction. Region 1
is the iron core (primary), Region 2 is the secondary conductive
sheet, and Region 3 is the air gap separating primary and
secondary. '

The assumptions appropriate to the Yamamura LIM model are:

1) The field is uniform in the z-direction and all variables
are independent of z, i.e., d( )/dz=0.

2) The stator windings are approximated by sinusoidally
traveling surface current sheets existing between x=0
and x=L of the stator core surface.

jl = Jl ej(wt - kx) (1)

Winding slot perturbations and effect of three-phase
stator current unbalance are ignored.

3) The stator core extends to infinity in both directions
of x-coordinate and has permeability H>>u . Magnetic
end-effects are neglected.

The Yamamura treatment considers spatial variations of current
and flux density only along the x- and y-directions. Since primary
current flows in the z-direction, B and H have x and y components
but no z component. The formulation of the electrodynamic problem
begins with Maxwell's equations using a flux density, B, derived
from the vector potential, K,

B = VxA (2)
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Figure 1. Yamamura Model for Two-Dimensional Analysis

of a Linear Induction Motor



and

The general field equation expressed in terms of the vector poten-
tial then becomes,

A oA :
2 _ iy Z
Vi B “"(W "y W) 3

where A has only a z component. V is the velocity of the second-
ary relative to the fixed primary (stator), o is the electrical
conductivity of the rail, and u its permeability.

The complete solution of the wave equation requires the
boundary conditions to be satisfied at each interface of a given
zone of the LIM model. Writing Maxwell's equations at the boundary
of each region gives the following relations:

1x X . 1 1 1 3
D, S —_— - = == at y =+ aZONEII (4
Wy Hg 1 Hpdy  ug o dy SRt A 4
where j1 is the surface current density defined by Equation (1).
dA;  dAg
Bly = Bsy d—x—- = dT at y = + a ZONE 11 (5)
B B dA dA
3x . _2x 1 3 _1 72 at y = + b ZONE II (6)
3 M2 Hz3 dy Wz dy }
dA3 dA2
B = ——— = t = +
3y BZy = = at y + b ZONE IT (7)

The solution for the vector potential in the airgap region
(Region 3) is given by the Fourier transform.

oo

J[ u031[coshchoshE(y-b) + % sinhYbsinhg(y-bﬂ

Az (x,y) = %; :
gcoshybsinhg(a-b) + ysinhybcoshE(a-b)

ejgxdg

(8)



Where

(10)

€qual to the Sum of the
Thus jif f(z) jis an analytjc functlon
7lT J/;(z) dz = :S residues (12)
g Cclosed
contour



The solution for the residues directly follows once the poles of

f(z) are found within the specified analytic region.

It is helpful to simplify the form of Equation (8) through

the following substitutions:

TP
G(EYy) = coshybcoshé&(y-b) + izt sinhybsinh &(y-b)
2

ULy
H(& = é&coshyb sinh&(a-b) + ié— sinhycoshg(a-b)
2

Then the airgap vector potential is given by

. f . EX -3 (E+K)L
= Uo J e -1 G(
Ay(x,y) = 32 j[ Jpe F+ Kk o

where the poles of f(z) correspond to the roots of

(¢ + k) H(g) =0

Equating the three principal roots of Equation (16) to El, EZ’

(13)

(14)

(15)

(16)

and 53, the residue theorem leads to the following relation for

the vector potential in the airgap in Zone 2(0 < x < L).

&X EoX
J J
) G(E,Y)e G(E,,y)e
As 06D = Moy | TE ) ' 0 a
9% |g=¢,

63X
(E3*K) L]

G(g5,y)e”
+ T_«..ETES_'- H
TEe-g
3

(17)



2.1.2 Solution of H(g)=0 via the Newton-Raphson Method3

The residues of the vector potential integral described by
Equation (9) are found once the roots of Equation (16) have been
determined. One root is simply £1=-k. An infinite number of
additional roots remain, however, corresponding to the solution of
the transcendental equation H(E) = 0. Such an infinite number of
roots is characteristic of wave solutions describing the prdpaga-
tion of waves within regions with multi-defined boundaries, as for
example, the propagation of electromagnetic and sonic waves inside
cylinderical waveguides. Yamamura points out (Ref. 1, p. 73) that
only two of these infinite number of roots need to be considered
in his mathematical treatment since the other roots lie far from
the origin in wave number space and describe waves which are
highly attenuated. The justification for this is later born out
in the results of Section 2.1.4, in which the thrust evaluated by
numerically integrating the "exact'" thrust function (described by
an infinite number of wave vector roots) is closely equal to the
thrust found in the Yamamura method (in which only the dominant

roots, 51, EZ, 53, are considered).

Yamamura suggests the application of the Newton-Raphson
method for evaluating the roots gz and FL According to this
method, starting with an initial approximation to the root, suc-
cessive iterations are made leading to increasingly better approx-
imations to the final root. Thus if &' represents the initial
estimate of the root given by the thin sheet approximation, the
Newton-Raphson method states that the new approximation to the
root is obtained by repeated iterations of

g =g
ng!E}

Tables 1 and 2 give the roots computed for the TLRV and
LIMRV LIMs according to Newton-Raphson method using the motor

i E=g"

parameters shown below:



TABLE 1. ROOTS OF H(£) = 0 FOR TLRV LIM;
EDGE-EFFECTS NEGLECTED. LIM SPEED = 300 MPH

Fﬁgq- £ £, £3

150 -7.012 -7.02+j0.07 0.21-j262.04
155 -7.012 -7.26+3j0.08 0.21-3262.04
160 -7.012 -7.49+j0.08 0.22-j262.04
165 -7.012 -7.73+j0.09 0.23-j262.04
170 -7.012 -7.96+3j0.10 0.23-j262.04
175 -7.012 -8.20+j0.10 0.24-3262.04
180 -7.012 -8.43+j0.11 0.25-j262.04
185 -7.012 -8.66+j0.11 0.25-j262.04
190 -7.012 -8.90+j0.12 0.26-j262.04
195 -7.012 -9.13+j0.13 0.27-j262.04
200 -7.012 -9.37+j0.13 0.27-j262.04

TABLE 2. ROOTS OF H(£) = 0 FOR LIMRV LIM; EDGE-
EFFECTS NEGLECTED. LIM SPEED = 250 MPH

F;gq. El EZ Es

160 ~8.840 °8.99+30.19 0.25-3186.309
165 -8.840 -9.27+§0.20 0.26-j186.39
170 -8.840 -9.55+30.21 0.27-j186.39
175 -8.840 -9.83+j0.22 0.27-7186.39
180 -8.840 -10.11+j0.23 0.28-7186.39
185 -8.840 -10.39+30.25 0.29-7186.39
190 -8.840 -10.67+30.26 0.30-j186.39
195 -8.840 -10.95+3j0.27 0.30-j186.39
200 -8.840 -11.23+j0.29 0.31-7186.39




TLRV LIM Parameters

Turns per Coil (N) = 4

Pole Pitch (Tp) = 0.448 m.

Core Width (2¢) N 0.1905 m,

Poles (P) . 5

Core Length (Qs) B 2.56 m.

Air Gap (g) B 0.0171 m.

Phases (m) = 3

Slots per Phase (qQ) = 5

End Half-filled Slots (e) B 5

Secondary Thickness '(b) = .0066 m.

Secondary Resistivity (0) = .416x10'7ohm-m.
LIMRV LIM Parameters

Turns per Coil (N) = 1

Pole Pitch (Tp) = +355 m.

Core Width (2¢) N .254 m.

Poles (P) = 10

Core Length (%) = 3.81 m.

Air Gap (g) = .024 m.

Phases (m) = 3

Slots per Phase (a) = 5

End Half-filled Slots (e) =

Secondary Thickness (b) = .0071 m,

0.416x10'7ohm-m.

Secondary Resistivity (p)

These roots describe the propagation constants of the three
principal waves in Zone II. (See Figure 1.) El corresponds to
the propagation number of the 'driving'wave, 52 the propagation
number of the entrance end-effect wave, and 53 the propagation
number of the exit end-effect wave. The large imaginery part of
£3 indicates that the exit end-effect is highly damped for both
LIM examples. It should, therefore, contribute little to the total
LIM thrust.

2.1.3 Calculation of Thrust Residues (Edge-Effects Neglected)

The LIM thrust in the Yamamura model is found by substituting
Equation (8) in Equation (10) and performing the required integra-
tion over the length of the motor. The solution obtained by

10



Yamamura for the time-average thrust is given in terms of three

F F

thrust residue functions, Fl’ s Fzo

where
) _ i
J .
_ uo"1 Re|jkLG(-k,a)
Fi 73 |: H(-k) J G
( j(€2+k)i)
2
F o= uo’1 Re Ez(l-e yn 'G(&;,2) ' (20)
2 2 £,+k H/dE . _
1 E_EZ
j(€3+k)L< j(gsﬂ()L)
, e
u JI Rel&,e l-e G(&,,a)
_ o1 3 3
F3 = (21)

2
(Eg+k)“aH/de, o

1 FZ’ F3 describe the thrusts

developed by the normal wave, the entrance end-effect wave, and

The three thrust components, F

the exit end-effect wave.

The values of these thrust components were computed for the
examples of the TLRV and LIMRV LIM's as described by the motor
parameters previously given. The computed thrust components for
these two motors are presented in Tables 3 and 4 as a function of
motor excitation frequency. The tables demonstrate the relatively
small magnitude of the exit end-effect thrust component compared
to the entrance end-effect thrust component. The magnitude of
F_ increases sharply with decreasing slip frequency and approaches

2

the magnitude of F, at zero slip frequency. The data in Table 4

1
also illustrates the oscillatory-like characteristics of FZ as a
function of slip frequency. The study of thrust residues will
be continued in Section 2.2.1 where the effect of finite LIM

width on thrust will be examined.

11



TABLE 3.

COMPUTED THRUST "RESIDUES" FOR TLRV LIM; EDGE-

EFFECTS NEGLECTED. LIM SPEED = 300 MPH

Freq. F1 Fo Fz Fx

Hz N. N. N. N.
150 9380 -9750 2.74 - 360
155 14100 -13800 2.74 343
160 7730 -6720 2.74 1020
165 5270 -3670 2.74 1600
170 3990 -1930 2.74 2060
175 3210 - 845 2.74 2370
180 2680 - 179 2.74 2510
185 2310 186 2.74 2490
190 2020 333 2.74 2360
195 1800 329 2.74 2130
200 1620 238 2.74 1860

TABLE 4. COMPUTED THRUST "RESIDUES" FOR LIMRV LIM; EDGE-

EFFECTS NEGLECTED. LIM SPEED = 250 MPH

Freq. Fq Fo Fz Fyx

Hz N. N. N. N.
160 15700 -14500 2.6 1210
165 11100 -7810 2.6 3320
170 7450 -2860 2.6 4590
175 5510 - 619 2.61 4890
180 4360 + 08.8 2.61 4460
185 3590 + 81.6 2.61 3680
190 3060 - 120 2.61 2940
195 2660 - 218 2.61 2440
200 2350 - 165 2.61 2190

12



2.1.4 Thrust Calculation: Theorem of Residues-Versus-Numerical

Integration Methods

Yamamura applies the theorem of residues to evaluate the
magnetic vector potential and subsequently the thrust based on
Equation (10). A similar approach is adopted by Iwamoto4 to com-
pute LIM thrust. However, instead of applying the theorem of
residues to evaluate the vector potential integral, he uses a
numerical integration approach since it is claimed that the latter
approach leads to a '"more accurate analysis of the end-effect."
This section will examine the two mathematical methods in terms of

their computed LIM thrusts.

The Iwamoto expression for the thrust given by Equation (16)
of Reference 4 is equivalent to the Yamamura expression for thrust
as found by substituting Equation (8) in (10) and replacing the
current density with its Fourier transform as given by Equation
(9). (Note that the Yamamura thrust is computed for one core side
only while the Iwamoto thrust is for both LIM sides.) The
Yamamura expression for thrust can be rewritten as

2 ©
uJ
F g 1 j[ Re[ (s;nf&;k)L) Ecé%é?}] dg per side (22)

where j v-1. The integral can be converted to a series format
by replacing the variable wave number, £, by v times the wave
number increment, 2n/%, where £ is a periodic length of a "unit
cell" forming the basis for the fundamental wave number. Equation

(22) then takes the form.

4 ( %— k) :
_ sinz R - G( )
K = E ST . e(JE_(:’)_)> (23)
SL

where v is summed over -» to +». The effect of finite primary
width is not included in the above equation in its present form.

A comparative study was next undertaken to examine the pos-

sible variations in the thrust which result from the application

13



62 NI. :
_ 1 sinqa/2 . o'm
1 Tp Ssing/2  Sin— (24)

where rp is the slot pitch and a' isg the pitch factor equal to
2/3. The remaining Parameters associated with the TLRV LIM are
given in Table 1. The expression for the Primary current density

sin p(Yngu-n ,

I6NIVZ m  sinuqe/2 s_o'y
Jo(v) = —_ —v——ﬂ7—— ST/ sipo'm (25)
1 TL sinva/2 2 sin(umqa n) 2
The slot pitch for this case jis equal to

o = Motor iength : 2% (26)

cal integration method to study the effect of the size of the wave
Vector increment on the thrust Tesult. The numerical Summationsg
were made over 3 range considered sufficient to eéncompass the main
Spectrum of the thrust distribution function, The numbers in



TABLE 5. COMPARATIVE TLRV LIM THRUSTS COMPUTED BY THEOREM OF
RESIDUES AND NUMERICAL INTEGRATION METHODS

Freq. ' Residue Method(a) Numerical Integration(b)
Hz (Yamamura) N. (Iwamoto) N.

k%
155 : 343 784 (129) 347- (1)
160 1020 714(-30) 1011 (-1)
165 1600 1484 (-7) 1597 ( 0)
170 2060 . 2241(9) 2063 ( 0)
175 2370 2255(-5) 2379 ( 0)
180 2510 2464 (-2) 2536 (1)
185 2490 2554 (2) 2541 ( 2)
190 2360 2362(0) 2418 ( 2)
195 2130 2146(1) 2202 ( 3)
200 1860 1885(1) 1935 ( 4)

(a) computed with J1 defined by Equation (19)
(b) computed with Jl(v) defined by Equation (20)
33.212m.

& periodic length 2

L periodic length & 132.848m.

LIM speed = 300 MPH

15




parentheses specify the percent deviation in the thrust computed
by the two methods. A glance at the table shows that the agree-
ment is excellent between the residue method and the numerical
summation method for the choice of a unit cell length equal to
132.848m. and reasonably good for the choice of a unit cell length
equal to 33.212m. The results substantiate the equivalence of the
two methods but point up the importance of the proper choice of
wave number increment when numerically summing the thrust.

The expression for current density given by Equation (27)
neglects the high-order harmonics associated with the number of
slots per phase belt and number of phase belts per pole. A more
complete description of the harmonic current density spectrum is

given by the expression,

- . (Y o-m/m
J(v) & LONIJZ TS P(\ﬂga_z) . sinvqa/2 , 28 I(a_q:;m_)
™ 2 sin M) sinva/2 51n(_.9_2—)

2

Ye (ng- ) 27)

sin
where m is the number phases, and e is the number of half-filled
slots in the winding end turns. Table 6 presents the thrusts
computed using Equations (25) and (27) for the example of the
TLRV LIM. The value of periodic length was & = 132.848 m. for
both sets of calculations. The data shows that the use of the
more complete current density expression given by Equation (27)
results in significantly lower thrust values at low slip frequen-

cies.

Several conclusions can be drawn from the thrust calculations
presented in this section. The residue method and the numerical
integration method yield equivalent results if the integration
interval is made sufficiently narrow and the current densities
used for both methods are consistent. Errors which result from
the use of integration intervals which are too large tend to be
more pronounced at low slip frequencies. When higher-order har-
monics are included in the current density distribution function,

16



TABLE 6. COMPARATIVE TLRV LIM THRUSTS COMPUTED USING Jj(v)
DEFINED BY EQUATIONS (25) and (27). LIM SPEED =

300 MPH
Freq. Fx Fx
Hz (J1: Eqn 20) (J1: Eqn 22)
N. N.
155 347 -49.3
160 1011 696
165 1597 1384
170 2063 | 1957
175 2379 2368
180 2536 2597
185 2541 2644
190 2418 2535
195 2202 2313
200 1935 2027

17



without regard to the effect of a finite primary width. When the
finite width of the LIM is included in the analysis, the value of
computed thrust jis considerably altered. A study of linear in-

only approximately realized in practice, numerical studies based

on the Bolton analysis have yielded satisfactory results in terms
of actual-versus-computed flux density in the LIM air gap. The

use of the Bolton method, therefore, represents a reasonable first-
approximation approach to the edge-effect LIM correction.

2.2.1 The Bolton Correction for Finite LIM Width

The finite width of the Primary is taken into account in the
Yamamura analysis by utilizing the Bolton Theory5 of linear induc-
tion motors for Symmetrically positioned secondaries. The Yamamura
model corrects for edge-effects by introducing an effective good -
ness factor and secondary current into the calculations, The



flux density with edge currents as that determined in the absence
of edge current and using the unmodified goodness factor and
secondary current. In the presence of edge-effect, the effective
goodness factor ‘becomes,

G' = (Kp/Ky) G (28)

where G = wuoob/aK2

The effective current density, Ji, likewise becomes,

J! =.K1 J1 (29)
where

= _i A

- KR =1 - Re{(l jsG) ey tanhaa} (30)
. A

KX =1 + Re{(Gs+J) Gs Ty tanhaa} (31)

1+ s262kZ /K2
K1 = Ky (32)

1 + szG2

Yamamura ascribes to the secondary conductivity the same edge-
effect dependence as that assigned to the goodness factor via
Equation (28). This is only valid if the magnetizing reactance
is held fixed and leads to some confusion when comparing equi-
valent parameters with those of Bolton.

LIM thrust including edge-effects is found by summing Equa-
tions 19-21, using the effective goodness factor G' in place of

1

be exercised in substituting Ji for J1 since this substitution is

made to '"correct'" the flux density at the primary resulting from

G, and the effective current density J! instead of Jl' Care must

the edge-effect perturbation. The primary current density remains
constant in the Yamamura model as given by Equation 1. The cor-
rection for edge-effects requires that J% in Equations 19-21 be

2

replaced with Jl'Ji and not Ji .
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The parameters K1 and KR/KX were computed for the examples of
the TLRV and LIMRVLIM's operating at the respective speeds of 300
and 250 mph. Tables 7 and 8 list the values of these parameters
as a function of driving frequency. The effective secondary con-
ductivities of bothLIM's are reduced by a factor of at least two;
the effective current densities also exhibit a pronounced decrease

with increasing slip frequency.

2.2.2 Solution of H(g)=0 Via the Newton-Raphson Method; Edge-
Effect Included

The solution of Equation (14) when the edge-effect is included
in the treatment will be presented for completeness. The procedure
described in Section 2.1.2 for determining the roots via the Newton-
Raphson method was applied to the present calculations. Some dif-
ficulty was experienced in applying this method to the example of
the TLRV LIM at higher slip frequencies, a situation not occurring
in the previous calculation presented in Tables 3 and 4. When an
attempt was made to determine 53 using as an initial approximation
of root of Equation (14) for small secondary thickness and airgap
distance, the root determined by the Newton-Raphson method con-
verged to EZ. The computer program was subsequently modified so
as to set the initial approximation of 53 equal to the value of
the previous computed root determined at a somewhat different
driving frequency. No difficulty was subsequently experienced in
evaluating the roots of H(£) after this modification.

The computed roots are presented in Tables 9 and 10 for the
examples of the TLRV and LIMRV LIMs using the Bolton parameters
given in Tables 7 and 8. For both motors, the imaginary part of €3
is large, indicating that the corresponding '"exit" end-effect waves
are highly damped. The relative effect of the finite LIM width on
£, can be seen by comparing the corresponding roots given in Tables
1 and 9 for the TLRV LIM and those given in Tables 2 and 10 for the
LIMRV LIM. The tables show that the main effect of finite stator
width is to increase the imaginary part of EZ resulting in in-
creased damping of the entrance end-effect wave. This is expected

on a physical basis since edge-effects produce a constriction of

20



TABLE 7. BOLTON PARAMETERS COMPUTED FOR TLRV LIM.
MOTOR SPEED = 300 MPH

Kp

Fégq' Kx 1

150 .40 1.0

155 .40 .99
160 .38 .95
165 .37 .91
170 .35 .87
175 .33 .83
180 .31 .79
185 .30 .76
190 .29 .73
195 .28 .71
200 .27 .69

TABLE 8. BOLTON PARAMETERS COMPUTED FOR LIMRV LIM.
MOTOR SPEED = 250 MPH

Kp

el Ky 1

160 .57 .99
165 .55 .96
170 .52 .91
175 .49 .87
180 .46 .83
185 .44 .80
190 .42 .77
195 .41 .75
200 .39 .79
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TABLE 9. ROOTS OF H(&)=0 FOR TLRV LIM; EDGE-EFFECTS
INCLUDED. LIM SPEED = 300 MPH

F;:q- €1 £, £z

150 -7.012 -7.02+j0.18 0.40-j252.63
155 " -7.25+30.20 0.42-3252.40
160 a -7.48+30.22 0.44-3251.86
165 i -7.71+j0.25 0.48-j251.11
170 i -7.94+3j0.27 0.52-j250.27
175 i -8.17+j0.31 0.56-j249.40
180 i '-8.40+30.34 0.60-j248.55
185 i -8.63+j0.37 0.65-j247.7
190 " -8.86+j0.41 0.69-j246.98
195 " -9.09+j0.45 0.74-3246.29
200 " -9.32+3j0.48 0.78-j245.64

TABLE 10. ROOTS OF H(g)=0 FOR LIMRV LIM; EDGE-EFFECTS
INCLUDED. LIM SPEED = 250 MPH

ngq. &1 £, £

150 -8.840 -8.41+j0.29 0.36-j182.64
155 i -8.69+3j0.30 0.37-j182.84
160 u -8.97+j0.32 0.38-j182.83
165 i -9.25+j0.35 0.40-j182.65
170 " -9.53+j0.39 0.43-j182.35
175 " -9.80+j0.43 0.46-3182.00
180 " -10.08+j0.47 0.49-j184.64
185 " -10.35+j0.52 0.52-j181.29
190 " -10.63+j0.56 0.55-7180.96
195 " -10.90+j0.61 0.58-3180.65
200 i -11.17+30.66 0.61-j180.37
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secondary current flow near the stator edges and an increase in the
secondary resistance; this results in more rapid attenuation in the

end-effect wave distance.

2.2.3 Yamamura LIM Thrust with Edge-Effects Included

The thrust was next computed for the LIM models based on the
TLRV and LIMRVLIM's and including the corrections for the finite
width of the primary. Tables 11 and 12 give the magnitudes of the
thrust components, Fl(normal wave), Fz(entrance end-effect wave),
Fs(exit end-effect wave) for the TLRV and LIMRV LIM's driven at
different line frequencies. The F3 thrust component is negligibly

small compared with F., and FZ and can be discarded with little

1
error in the final thrust result. This leads to an appreciable
reduction in computer time, since it eliminates the lengthy calcu-

lation of one of the two roots of H(§) = 0.

A comparison of the thrusts computed by the Yamamura, Oberretl,
and Elliott%»’
LIMRVLIM's, The Yamamura model gives consistently larger thrusts
than the Elliott model. At peak thrust, the Yamamura thrust was
15 percent larger than the Elliott thrust for the LIMRV LIM and
about 22 percent larger than the Elliott thrust for the TLRV LIM.
The Yamamura model gave thrusts which correlated better with the
Oberretl model than with the Elliott model, particularly for the
TLRV LIM. It is interesting that for the TLRV LIM, the Yamamura
and Oberretl models gave identical results at frequencies below
170 Hz.

models is given in Figures 2 and 3 for the TLRV and

It is worthwhile to review certain aspects of the different
LIM models in the light of the results previously presented. The
Yamamura model considers the fundamental mmf harmonic only and
neglects higher-order mmf components. The inclusion of higher-
order mmf harmonics in the Yamamura calculation would likely result
in some reduction in computed thrust due to the negatively pro-
pagating 5-th harmonic wave; it is unlikely, however, that the
thrust reduction would be sufficient to bring the Yamamura thrust
into agreement with the Elliott result. Both Yamamura and Elliott
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TABLE 11. PREDICTED THRUST FOR TLRV LIM USING YAMAMURA THEORY
WITH EDGE-EFFECTS INCLUDED. MOTOR SPEED = 300 MPH

Freq. Fq F> F3 Fy

Hz N. N. N. N.

150 3910 -4460 2.90 -548

155 24300 -23300 2.87 987

160 16900 -14500 2.78 2420

165 12300 -8670 2.67 3620

170 9570 -5050 2.56 4520

175 7830 -2750 2.46 5080

180 6620 -1310 2.36 5310

185 5740 - 476 2.28 5270

190 5070 - 58.8 2.21 5010

195 4540 86.4 2.15 4630

200 4110 73.9 2.10 4190

TABLE 12. PREDICTED THRUST FOR LIMRV LIM USING YAMAMURA THEORY
WITH EDGE-EFFECTS INCLUDED. MOTOR SPEED = 250 MPH

Freq. Fq Fo Fz Fx

Hz N. N. N N,
160 12700 -10800 2.68 1910
165 14800 -10000 2.63 4770
170 11500 -5010 2.56 6470
175 9000 -2070 2.47 6940
180 7340 - 804 2.39 6540
185 6180 - 431 2.32 5750
190 5340 - 378 2.26 4960
195 4690 - 356 2.20 4340
200 4190 - 286 2.15 3906
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COMPUTED TLRV THRUST AT 134 M/S (300 MPH) AND 700 AMPS/PHASE
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Figure 2. Computer Thrust Predictions for the TLRV LIM
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THRUST

COMPUTED LIMRV THRUST AT 112 M/S (250 MPH) AND 2400 AMPS/PHASE
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Computer Thrust Predictions for the LIMRV LIM
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models compensate for edge-effects by modifying the values of the
secondary resistivity and magnetizing reactance according to the
method of Bolton. In deriving the appropriate factors to modify
the secondary resistivity and magnetizing reactance, Bolton
neglects end-effects. A glance at Tables 11 and 12 shows that end-
effects have a dominant effect at low slip frequencies and could
not be neglected when computing thrust. The possible error intro-
duced into the result by neglecting end-effects in calculating

Bolton factors and ultimately thrust remains unknown.

The Yamamura model described in this report uses the same
value of secondary resistivity for both normal and end-effect
secondary current waves. The constricted current flow pattern of
the normal wave understandably results in an increased value of
secondary resistivity. However, it is questionable whether the
same current flow constriction exists for the end-effect current
wave and whether its effective resistivity should be the same as
that of the normal wave. The Oberretl treatment avoids the above
complication by describing the current distribution as a multiple-
harmonic Fourier representation and the secondary resistivity as

the actual secondary resistivity.

Both the Yamamura and Oberretl LIM models assume a continuous
primary ferromagnetic region and neglect the magnetic end-effect
associated with the ferromagnetic boundaries. Yamamura argues
that this assumption introduces little error into the calculation
of LIM performance since the boundary conditions at the entrance
end of the motor are very little affected by the highly damped
exit end-effect wave. The Yamamura method then should give the
correct normal and entrance end-effect waves and the LIM thrust,
which is almost entirely determined by these waves, should be
reasonably evaluated by this method. If the above condition is
true, then one must look for other reasons to explain the dis-
crepancies between the Yamamura and Elliott results. Part of the
discrepancy can be traced to the neglect of higher-order mmf
components in the Yamamura analysis and the use of a single
harmonic wave to describe the LIM spatial winding current distri-
bution. A more detailed study of the Yamamura-Elliott computer
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models would be required, together with a correlation study of

computed-versus-measured airgap flux densities, in order to explain

the discrepancies between the predictions of the two theories.
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3., CONCLUSIONS

The Yamamura analysis of the linear induction motor has been
examined and a computer study of two high speed LIM's has been
undertaken, based on the Yamamura LIM model. The results of the
study indicate that the Yamamura theory predicts LIM thrusts in
"reasonable'" agreement with the corresponding predictions of the
Oberretl and Elliott computer models. The Yamamura LIM thrusts
tend to agree more closely with the Oberretl predictions than with
those of Elliott. The divergence of the Yamamura and Elliott com-
puted thrusts lies in the range of 15-30 percent for the two LIM

examples considered.

The possible reasons for the predicted thrust discrepancies
have been considered. The Yamamura model describes the primary
mmf by a single spatial harmonic and neglects the effect of the
higher-order mmf components. A computer study of the effect of
these additional harmonics indicates that, for the example of the
TLRV LIM, the additional mmf harmonics reduce LIM thrust consider-
ably in the region of zero slip frequency and have a small effect
on LIM thrust at higher slip frequencies. In the Yamamura model,
edge-effects (current) are compensated by modifying the values of
secondary resistivity and magnetizing reactance according to the
theory by Bolton. The ultimate effect on LIM thrust of neglecting
end-effects in the derivation of the Bolton factor is questionable,
as is the effect of using a common value of effective secondary
resistivity for both normal and end-effect secondary current

waves.

The Yamamura LIM model assumes a continuous primary ferro-
magnetic region and neglects the magnetic end-effects associated
with the ferromagnetic boundaries. Yamamura states that the above
assumption results in ﬁegligible error in the LIM output character-
istics, since the important boundary conditions at the entrance
end of the motor are little affected by the highly damped exit
end-effect wave. If the above condition is correct, then other
explanations must be found to account for the discrepancies between

29



the Yamamura results and those of Elliott, based on a finite

primary iron model.

The computer time required to run the Yamamura computer pro-
gram is comparable with that required to run the Oberretl computer
program, namely about 40-60 seconds for 10 case runs. This is
approximately an order of magnitude less than the time required to
run the same number of cases using the Elliott computer program.
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APPENDIX

Equivalent
Computer Yamamura
Parameters Parameter
ATl I 5 Primary current amplitude
AJZ J1710 Primary current density . 19 (Amps/m)
AK k Propagation constant of traveling wave
AL L Primary length
AM my Number of pPrimary phases
AMU2 M3 Relative pPermeability of Region 2
AMU3 Hz Relative permeability of Region 3
AMBDA by Eq'n A-8, page 140, Ref.1.
AN W Turns per coil
B 26 Secondary thickness
C d Half primary width
C2 coshad Eq'n A-7, page 140, Ref.1
E - Number of half-filled slots in Stator winding
EFF n, Secondary efficiency
ETA1 = Eq'n A-15, page 141, Ref.1
ETA2 = Eq'n A-13, page 141, Ref.1
FQ - Synchronous frequency i
FREQ f Frequency N
F() H(&) Eq'n 119, page 72, Ref.1l
FX F Thrust
GAP a-b Airgap between pPrimary and secondary
G( ) G(&,a) Eq'n 118, page 72, Ref. 1
P Number of poles
P2 p! Secondary resistivity including edge-effect
PS o Secondary resistivity
PI T 3.14159
POWER P2 Airgap power
0 q Number of coils (slots) per phase belt
S s Slip
U u Eq'n A-11, page 141, Ref.1
uv u+j Eq'n A-11, page 141, Ref.1
\% v EqQ'n A-11, page 141, Ref.1
ZA,IB,ZIC 515’5! First approximation roots. Page 73, Ref. ]
Z(1) -k 4°e Wave number of driven wave
Z(2),2(3) £y &l Roots of H(E) = 0. “
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Listing of Yamamura Computer Program

C PROGRAM COMPUTES LIM OUTPUT PARAMETERS USING YAMAMURA THEORY FOR

.7 C CONSTANT CURPENY EXCITATION. EDGE EFFECT INCLUDED IN CALCULATION,
- C IMODE=]1 FOR VARYABLE FREQUENCY, IMODE=0 FOR VARIABLE SLIP,
» € ~~ THRUST AND POWEFR CUMPUTED FOR ONE CORE SIDE. MULTIPLY BY 2 FOR
. C TOTAL THRUSTe. POWER OF DLTM,
» € 7~ "REQUIRED TINPUT DATA: AL=P X TP, W=5EC WIDTHs C=HALF CORE WIDTH
w C B=SEC THICKNFSSs GAP=AIRGAPe. TP=POLE PITCHs P=NO. OF POLES
«w € E=NO., OF HALF FILLEC SLOTS, QR=SIUTS/PHASE BELTs AN=TURNS/SLOT
v C AM=NO, PHASESs IMOOE=FREQ-VERSUS=SLIP OUTPUTs PS=SEC RES X 10000000,
w € AMUZ=ZREL PERWM, TF SECs» AWMU3=REL PERM OF ATRs "ATI=CURRENT/CONDUCTOR
. C FREQ=MOTOR FREQUENCY, FOR VARIABLE FREQUENCY OUTPUT FORMAT, CHOOSE
-« C TFREU EQUAL TO INTTIAL INPUT FREQUENCY., FOU=MOTOR SPEED/Z./TP
C MKS UNITS. LENGTH IN METERSs FORCE IN NEWTONS
COMPLEX GAMMATY, TNHs AMBDA »UV -

COMPLEX FX215FX22+FX314sFX324FX11sFX42

COMPLEX ZB9Z2C+7(9) sGAMMAYET sE29C19C2051952
COMPLEX F(3)4DF (3) sCERF+G(3) sFX19FX24FX34DZ

" COMPLEX DGAMMA,AABF +sGAMMA?
n DIMENSION T(?O)oFX(ZO)oFY(?O)oDFL(3020)9P0HER(20)¢EFF(20)

M 2 FORMAT ( 17X02HFX06Xv9HP(AIPGAp)04X03HEFF)
A 3 FORMATUGXsFB,Z+2Ke2 (IXSETDN IV sIXoF 63T
» 4 FORMAT(IXo2HL =eF6e391X92HB=9F6,491Xe2HW=9F6, 301X02HC"0F6.3
w T T IXeGHGAP=»F& 9 IXe2HP=oFI ,UeIX32HM=9F2,0)
a S FORMAT(1X92HE=9F3.091Xe2HQA=eF 001X e3HP2=9F64391X92HN=»
TF 3,0+ IXsSHAMIIZ=4FBe2 9 IX+sOHAMUI=F6,.2)

= 6 FORMAT(2XoF4e09FTe3e2(1X02FTe2) 92X92(1XF403)4315)

w9 FORMATU{GXsTHF y3XySHXTT17Y 46X sSHXT(2V s IOXsSHAXT13) o+ EX94HETAL "
n 191Xo4HETAZ2 93X 9 4HIERO 91X 9 4HTER] 4 ) X9 4HIER2)

. %0 FORMATTIXs6FI0.3) — - e
x 41 FORMAT(6F10,4)

47 FORMATISFIU.T.T5)
43 FORMAT (4F10,7)
T 44 FORMATIZFIO.T)
SOT2=SQRT (2, L
S=T.0 R | S SR O S z:

P1=3,14159

ANU=4,¥PY
N=1
~— B8 CONTINUE — — 7 == = == == ] i ’ o -
READ (Ss419END= QQ)ALvUOC’BOGAPQTP
Sy sF +0 ¢ AN AM, TMODF
READ(5943)950‘MU205NU3.AI]

READT(S44TFREQFQ
XMONE=1IMODE
AK=PI/1TP
GF = 2.'pI*FREO'AMU'B/PS/(Bo?.'GAP)/AK/AK
— —ALPHAZPT/U7AN —— e e s R —
AKW1=SIN((AMRQ=F) /2, #ALPHA) #SIN(Q#ALPHA/2.)/SIN(ALPHA/2,)

2 £ & & = ¢ & & =z

RJZ=6,*SOTZ¥AN#ATI®ARWI/TF/7100000,
K=1
“C T NEXT COMPUTE BOLTON#S FAUTORS=ETAIZETAZ -
10 S=1.-FQ/FREQ#XMODE
GS=GF ¥
GAMMA1=AK*CSORT (1+(0+0+1.0)%*GS)

EZ2=CEXPIC¥GANNAT)
$2=0,5*(E2=1,/E2)

—_mm_.___._—. Eu=a A R M T U A A Sy
TNH=S2/C2
AMBDA=T./(1.+GAMMAT®TNR*TANH (AK% (W/2,=CY)/AK} —~ ~— T - s
UV AMBDA'TNH/GAMMAI/C v

=T I 6 ¢ =T ®E & ¢ T
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U=RE AL (uy)
V=AIMAG (yy)
*_‘“—‘“ETEIETI;:U46§3Vi7TIJ-GS‘V&ESiG§6U7

, ETA2=((l.-GS“V)"Z#(GS'U)"?’/(].-GS'V#GS'GS'U)

. _'_'_____T'_'_‘_2=PS/ET_T'_A T == 2107 /(14 -GS! Sdhcdnh 2

- C NEXT compuTE ROOTS ¢oF F(N) usIng NEHTON-RAPHSON METHOD, 28,72¢ ARE )
L IRST PROXTMAT TS,

. Al=?.“PI"FREO’AMU/P2 N R

: WWT@‘AWE??J_” B

. ZAz==pK
= ZB=l0.07:116)'K?VTTT;;ST:CSQQTTII]:§F35?3YU}DVTTD573R7Z?'2.)T

. Zc=(o.oo-1.0)~A2*t(!.-S)ccsonrtrl.-S)"zo(0.0,1.0)'AK/A2'2.)) o
~--'*ﬁh‘7TTT:?I"_“h_—“**‘h“‘_h"‘*““—_““‘*h_“'_—“"*hh‘"*"*“ *—"
o 2(2)=78

5

" Z(3r=7¢
" 15 CONTINUE . ——e,
" 5=(1.-FG/FREO}GXMODE+S*tl.-X"ODE)

" GS=GF+#S

" GAMMa1=AK~csnRTtl.o(o.o-l.oJ'GSJ
"n___L__€§3§§!EL£!§‘"MA1L_

e ZoF RS S

z Auann=1./(1.+Gauu41~T~H-TANH(AKn(wfe.-C))/AK)

: uv=nu90n»1~axenuua1/c R

oo _”ngiﬁﬁﬁLiH!l_‘____‘m_ﬁ____.

. =AIMAG (UV)

~ . EIAA;flg:!?ﬁﬁ??)41!1:55!!:ﬁ§3§§39)

ETA?:rtl.-ssavnnﬁzo(Gs-U)~'2)/¢1.;esiv.céééSEUi
S P2=PS/ETAL - o
. A1=2.*PI-FREO'ANU/P2
: _ __AJLEEIAQEAQZA
Do 25 N=1,3
__TEND=g e g ¥ = -

IFMNea.iviENpSy
- DO _1n I=1,IEND e T
» ZR?=REAL(Z(?))
e _,._Zliiilﬂﬂﬁizfali_ ______ = 23 : .

v ennuns=znzdib2-zxzﬁzIaiiiﬁéfﬁikii-si/ék'
. G?ﬂﬁéﬁf@-'ZEQEZIZ:“l!ZRZiilg?SlLAK’Al

. GAMMA2=7 (N) %7 (N) ) '
. 16 _GAMMAZ= (GaMMAZ, 001,0)%A)% (2 (n) () =S)/AKs1,))

0 GAMMAZ= (GAMMAZ, (g, ¢ 11,0) %4 % (2 +=S) /AK ,zz____ﬁ____,ﬁ_ﬁ_____
\ GAMMA=CSORT (GAMMAZ)

~_‘Hﬂﬁﬂhgﬁéuﬂé?JZLN!:jﬂlnslgalzglfth-§1(2-/AK)/GAMMA
- E1=CExP (GAMMA®R, 3. )

~___m___§25c5x2121uzrgnpl. q__hmm__“““m__u____,h_%hﬂ___.___“..__,. =S
. Cl1=0.5%(E1+1, /£y

- £2=0,5% (F241,/F7) .

. S1=0,5%(F1-1, /F 1)

N __SEEQJEL(EE'I;(EZLh ¥ i = s . e

- IF(N.EQ.1) 60 70 20
w__ﬁ_hh_£A=§l:§goz(N)*cz*cz'LQ&EJ:AﬂUB/Aﬁgg*ﬁﬁﬂﬂst§1:§2:L§AE!__
" BB:Z(N)'B/Z.’S]’S?OAMU3/AMUE“(S]'C?OGAMMA'B/Z.'C]*CZJ
DERF=AA« B*DGAMMA
F(N):Z(N)'CI'SZ¢AMU3
D2=F (N) /DERF
ADZ=CABS (D7)
18 Z(N)=2 (N)-D7
c END‘EF‘NEWfbﬁ?EZBﬁsow CALCULATTON,
DE (N+K)==A) 0610 (AD7)

/AMUE’GAMMA*SI'CZ

DEL (NyK) =PaRAMFTER CEFINING ROOT CONVERGENCE, DEL SHouLp BE POST-

,SL_WH_IJXE_EHD_ﬁﬂEAIFR_Tﬁ‘NHQ_EQRﬁEQBEEQI_BE§HLI§:___*__. —
. 20 F(N»=zt~)~c1as;oanuafnuuecnnuM4-51oca

" .. __ DF(N)=pERF R

G(N)=c1-c2&cnﬁha-51-sé72(~) T
25 CONTINUE
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X ¥ ¥ E = Y ¥ ¥ a2 = w 3 ¥ 3 T T W 3 & 3 & &

T FXT==P#TP#*G(1)/F(1)%(0.091,0)

ZR2=REAL (Z(2))

Z12=ATMAG(Z(2))#AL
ZI3=ATMAG(Z{3))=AL

ZR3=REAL(Z (3))
JF(Z12.6T7.30.17272=30,

IF(ZTI3eLTe=30e)713=2=30,
FXZl:(l.-EXP(-?IZ)’CEXP((0.0.1.0)’(ZR20AKI’h512__ o

FX21=FX21/(Z (2) +AK)
FX31==(1,=EXP(Z2T3) *CEXP ((0,0+=1,) % (ZRI*AK) #AL))

FX22=6(2)/(Z (2Y+AK) /DF (2)
FX32=G{(3)/(Z(3)+AK)/(Z(3) +AK) /DF (3)

Fx2=FXx21#"Fx22
FX3=FX31#FX32 .

POWER (K)==PT®*FREQFAMUTAJI®AJZFREAL (FX1+F X2+FX3)#2,#C*1000,
FX(KYS0,S#AJZ*AJLI#AMUMREAL (Z (1) #F X142 (2) *FX2+Z(3) *FX3)

1#1000.%2,*C
EFF(KYSFX(K)#2,#TP*FREQ# (] ,=S) /POWER (K)

T(K)=FREQ#XMNDE+ (1 «=-XMODE) #5
K=K+

28

CONTINUE
FREQ=(FREQ+5,) #XMODE +FREQ#® (1 .,=XMODE)

S=(S=s1)2(1.=XMODE) +S#XMODE
IF(K=11115+15+30

30

PROGRAM COMPUTES 11 DIFFERFNT SLIP=FREQUENCY CASES.
CONTINUE

WRITE (6+411) (NEL (29K) sK=1911)
WRITE (6511) (DEL (3¢K)sK=1911)

11

FORMAT(1Xe11(1XeFlel))
WRITE(6+4)AL+BsWsCosCAP9PoAM

WRITE (64S)EsQsPSeANsAMUZ2»AMU3
WRITE(6s1)FREQsFQsAT1+TP

32

WRITE (6+2)
DO 35 K=1».11

WRITE (6+3) T(K) «FX(K) +POWER (K) sEFF (K)
Go To 8

99

SToOP
END

35
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