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PREFACE

This report discusses the Mosebach theory of linear induction
motors and its application to the analysis of high-speed motors
used in ground transportation systems. It comprises the final
report in a three-part series devoted to a review of current LIM
theories and a study of computer predictions based on these
theories. The first two reports examined the Oberretl and
Yamamura theories of linear induction motors. Each report has as
its objective the comparison of the relative predictions given by.
each theory and an examination of their differences as they relate
to the models used in each theory.

The author is pleased to acknowledge the following individuals
for numerous discussion and helpful information: Mr. Matthew
Guarino, Jr. of the U.S. Federal Railroad Administration, Dr. Clem
Skalski of MITRE Corporation, Dr. David G. Elliott of the Jet
Propulsion Laboratory, and Professor James Melcher of the Mass-
achusetts Institute of Technology.
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1. INTRODUCTION

This report examines the Mosebach theory of linear induction
motors as outlined in the dissertation "Effekte der endlicheén
L4ng and Breite bei asynchronen Linearmoteren in Kurzstinder und
Kurzlduferbauform'" By H. Mosebach,lUniversify of Braunschweig,
Braunschweig, Germany. It is the third and final report in this
series dealing with current linear induction motor (LIM) theories
and their application to motor analysis. The first two reports,
which discuss LIM treatments by K. Oberretl2 and S. Yamamura,3
describe two different approaches to the solution of the field
equation of double-sided LIMs. Both treatments use LIM models
with finite length primary excitations (MMF) but assume the pri-
mary iron to extend to infinity in the plane of the motor. Their
solutions give predictions for LIM losses associated with the
finite size of the primary but are unable to predict the additional
losses arising from the finite size of the primary iron core. The
Mosebach theory described in this report uses a LIM model having
both finite MMF excitation and finite ferromagnetic primary. Its
predictions should provide information on these additional losses
and the effect which boundary related phenomena have on LIM per-
formance.

The report is divided into two principle subject areas. The
first describes the Mosebach theory and discusses various aspects
of the model upon which it is based. The second applies the one-
dimensional (Mosebach) computer program to predict the output
characteristics of the Tracked-Levitated-Research-Vehicle (TLRV)
and Linear-Induction-Research-Vehicle (LIMRV) motors. In the
latter material, comparisons are given of the motor characteristics
predicted by Mosebach (model) and those predicted by Yamamura,
Oberretl, and Elliott (models).



2. TECHNICAL DISCUSSION

2.1 THE MOSEBACH MODEL

Because exact solutions of the field equations for actual

LIMs are impossible, one must resort either to approximate solu-
tions of real structures, or to exact solutions of idealized models
of real structures. The Mosebach treatment takes the latter ap-
proach. It replaces the real motor, shown in Figure la, with an
idealized model as illustrated in Figure 1b. The stator winding
current is represented in the model by a surface current density
sheet propagating in the x-direction. The secondary is described
by a region with conductivity and dimensions equivalent to that of

the real secondary.

The coordinates used in the model description are shown in
Figure 1b. The origin is positioned at the center of the motor
and inside the secondary. The secondary moves in the x-direction
relative to the fixed primary. The y-axis denotes the direction
normal to the motor surface and the z-axis denotes the direction
along the transverse axis of the motor.

The LIM model simulates the fringing magnitude flux of the
real motor by means of the linear gap function of 51 degrees shown
in Figure 1b. 1In the idealized model, airgap flux is assumed to be
restricted to the y-direction in the absence of secondary. Con-
formal mapping studies of the flux distribution of the real motor
(comprising 90 degree air-iron interfaces at motor ends) without
secondary reveal that the y-directed flux of the real motor is
closely approximated by that of the idealized model at positions
along the x-axis of the motor.4

Two versions of the above model are considered by Mosebach
and referred to as the one-dimensional LIM model and the two-

dimensional LIM model. The one-dimensional model treats the

fringing fields at the motor ends only, by the use of the linear
gap function. The ferromagnetic primary is assumed to be con-
tinuous in the transverse direction. The two-dimensional model
uses the linear gap function to describe the varying magnetic

2



Figure la. Real LIM
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permeance at both the ends and the sides of the motor. Thus it
should provide a better description of magnetic boundary effects
than the one-dimensional model. However, this is partly offset by
the increased computer time required in the two-dimensional com-
puter analysis. The one-dimensional computer program is used ex-
clusively in this report for computer studies based on the Mosebach
LIM model.

End views of the one- and two-dimensional models are shown in
Figures 2a and 2b. The primary and secondary edges are located
at transverse positions z, and zzlrespectively. The secondary
half-thickness is ¥y, and the core-to-core separation is 2Y790.

The following assumptions are applicable to both versions of
the Mosebach model:

a. The permeability of the ferromagnetic primary is infinite.
The permeability of the secondary is equal to free-space permea-
bility.

b. Primary and secondary currents are confined to the x-z
plane.

€. Air-gap and secondary thickness are small compared with
the pole pitch. Y-directed flux components are assumed uniform in
both the airgap and the secondary.

d. Primary current density (surface) varies with distance
(x) and time (t) according to exp (jkx + wt).

The following additional assumptions are applicable to the
one-dimensional model:

e. Secondary currents inside the primary region (—zl<z<zl)
flow in the z direction.

f. Secondary currents outside the primary region flow in the
x-direction. Current density in the secondary overhang (sidebar)
is a uniform function of z.
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2.1.1 Magnetic Induction Equation: Two-Dimensional Model

The solution for the electromagnetic fields in the region
between the two sides of the primary follows from Ampere's law
with displacement current neglected and Faraday's law. Thus,

VxH=3
VxE=-9E 1)

where G is the secondary current density. For an isotropic medium
moving with velocity V, Ohm's law gives,

G=o0 (E+7Vx B (2)
Continuity of current inside the secondary requires,
V-G =0 (3)

Since assumption ¢ requires the normal field to be independent
of y, it is convenient to apply Ampere's law in integral form
around the contour shown in Figure 3. Thus,

H(x+Ax)-y2(x+Ax) - H(x)-yz(x) = KZ Ax + Gz-Ax Y1

or

é% (Byyz) = uo(Kz * Gzyl) (4)

i and GZ are the primary surface current density and second-

where Kz
ary (volume) current density, respectively, in the z-direction.

i . . . 3 ;
In the Mosebach notation, primary surface current density is given
by AZ instead of Kz.
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Figure 3. Contour Integration Used in Derivation
of Magnetic Induction Equation

For the y field component, Faraday's law gives,

aEX aEz _ aBy

oz ax at (5)

where the electric field components Ex’ Ez’ given by Equation (2)
take the form,

E. = 1g
X g X
_ 1
EZ ® < Gz - v By

Here v is the speed of the secondary in the x direction relative

to the motor. Substituting E E_ in Equation (5) gives,

x? Z

an/ax - an/az - o[aBy/at + o/ax (v By)] =0 (6)



Gx can be eliminated using Equation (3) after taking the partial
derivative of Equation (6) with respect to x.

2 2
a“G a“G aB
z Z _ Ja )4 a =
2 ° 2 ax <at T ooax (v By)) 0 (7)
ox oz ;

If GZ is calculated from Equation (4), Equation (7) can be re-
written in the form expressing the field B » air-gap yz(x), and
primary current density KZ in terms of the independent variables,

X, z, and t.

2 2

3 aB aB a”K a”K
T (Br72) * i (B2) - wgoyy Bt ¢ k] w S z
ax Y oaxaz ax az

(8)

A derivation of the corresponding equation for the one-dimensional
model is given below.

2.1.2 Magnetic Induction Equation; One-Dimensional Model

The one-dimensional model assumes secondary currents flow in
rectangular shaped paths as illustrated in Figure 4a. Inside the
primary region, secondary.currents flow in the z-direction; outside
the primary region, secondary currents flow in the X-direction.

No flux generated by the edge currents Couples to the primary
currents. The field inside the primary is constant in amplitude
and phase over the width of the primary.

Faraday's Law of Induction, Equation (1) written in integral
form, together with Ohm's law for the moving secondary, requires
that for a contour C in the secondary enclosing a surface S,

1 [z = « = — T oo g
E/G-dz+7t B-nda-/VxB-dJl—O (9a)

C S C

This general law is now applied to a current path having incre-
mental length Ax in the x direction, but finite width spanning
half of the secondary (Figure 4b).
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Zl Zl

G
1 1 X
3/ Gz( x +Ax)dz - 5/ Gz(x)dz - zAx

[6) [¢]

27 Z

_ 1
"V [By(x + AX) - By(x)] dz - gf ][ By, 8x dz =0 (9p)
[o} (o}

Here, the conductivity of the edges of the secondary is designated
as 0. as distinguished from o describing the central region of the
secondary.

Consistent with the one-dimensional model is the assumption
that GZ and By in the region “21<z<z; are independent of z so that
in the 1limit Ax~+0, Faraday's law requires that

z, oG G B oB
1 Z _ X _ D ANERD A I
0 ox o | (at *ax > 0 (9¢)

Just as an integral form of Faraday's law is used to bring
the edge effects into the one-dimensional model, so also is an
integral form of the current continuity equation, Equation (3),
now brought in. With the help of the incremental section of
secondary shown in Figure 4c, the continuity condition requires
that

ds [Gx(x + Ax) - Gx(x)] = Gz AX (10a)

and in the limit it follows that

oG

G, = d EEE (10b)

where the thickness of the edge is defined as ds =z - oz,

After taking the derivative with respect to x of Equation
(9c), use can be made of Equation (10b) to eliminate Gx’ and it
follows that

10



2

z, 0°G oB aB
148 1 o [%y _x} _
0_— m— o_s GZ Zl [at + Vv ax 0. (10C)

With the understanding that By and KZ are independent of z, Equa-
tion (4) can be introduced into this expression to eliminate GZ
and give Mosebach's expression for the magnetic flux density as a
function of the primary currents.

) ' oB oB
2 3 T —Jl—a* g - a_ ) Y+ y
ax (Byyz) 240.d, axX (Byyz) Y1¥o ox [at Vax ] (11)
2
s g o KZ ) GUO "
“ axz zlcsds =

The above equation determines the field distribution in the one-
dimensional Mosebach model.

2.1.3 Solution of Magnetic Induction Equation: Two-Dimensional
Model

The Mosebach treatment of the two-dimensional LIM model con-
sists of expanding the spatial distributions of the airgap flux
density By(x,z), primary current density Kz(x,z), and airgap
function yz(x,z) along both the longitudinal (x) and transverse
(z) axes of the LIM model. For this purpose, it is convenient to
define a 'motor unit cell' having a length & in the x direction
and width 2 Z, in the z direction. Inside the cell region, B
(x,2z), Kz(x,z), yz(x,z) are each described by a two-dimensional
Fourier series, each term in the series being characterized by a
wave propagation vector, k, given by

k=1 1 2w

(12a)

k=3I _na+71_mbd (12b)

11



where n, m are the harmonic orders associated with the X,z wave
vector components. In practice, the unit cell length 2 is set
approximately equal to a multiple of the primary winding length,
If KP denotes some integer greater than unity, then & = KP-Pr ,
where P is the number of (mmf) poles in the motorj- The width of
the unit cell, 2 Z,, can be chosen equal to the secondary width,
The two-dimensional function distributions then take the form,

j + + mb
By (x,z,t) = ReZmZB_nmeJ (wt + nax + mbz) (13)
K, (x,z,t) = Rezz KnmeJ (wt + nax + mbz) (14)
nm
Yy (x,2,t) =zz Y€ (rax + ubz) (15)
A

The harmonic amplitudes Knm and Ylu are found by taking the Fourier
transforms of the known spatial distributions of primary current
and airgap spacing respectively.

The substitution of Equations (13), (14), (15) in (8) yields the

following equation relating the amplitude cofficients Bn K and

m* “nm?

SSSS [-j(nﬂ)sas . j(m)a(mu)zbZ] Yy Boped (48 (o0 axe menvz)

) oyluozzzz(jna)(jw * jvna)B oJ (wt + nax + mbz) (16)
n m

“Hop Y [Gna)? v (mb)?] keI (6t * max + mbz)
nm

-’.
Mosebach uses Po to denote number of pole pairs.
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Transforming the summation indices n, m, in Equation (16),
m+ um
n+ Ayn

and collecting coefficient of terms with identical space and time
dependences,

sy K
. n ‘20 - __nm
25:2 YuABm‘u,n-A T on \2 (M7 7 Bom = JHg
2

2n \m
L. P
KpP 2z Kp ™o
(17)
where r is the magnetic Reynolds number
H_way
r= —9 -1 (18a)
ﬂ
) Y20
p
and S, is the harmonic slip given by
= _[Zmn -
S, = 1 (K;?) (1 s) (18b)

The quantity Y20 in Equation (17) denotes the half-spacing between
primary cores (see Figure 2b). Equation (17) describes a set of
linear, complex equations relating the unknown flux density
amplitudes, Bnm' In matrix notation, the equation takes the form,

(1 + 5 r1)-F =X (19)

[Y] is a real, quadratic matrix and is independent of slip. [R] is
a real, diagonal matrix with slip-dependent elements. The solution
of Equation (19) is obtained by setting,

13



=
I
o |
+
-
(>~}

and solving for the real and imaginery parts of B,

ool
=l
=
1
~
| S |
=
)
—
| S—
=
(=]

r IY] + [RIy 1R

K; + F}'[R]

i (Y]

o
n

2.1.4 Solutions of Magnetic Induction Equation: One-Dimensional
Model

The procedure for solving the one-dimensional field equation
is identical in principle to that used in the solution of the two-
dimensional equation. In the one-dimensional model, the airgap
field By’ primary current density Kz, and airgap spacing function
Y, are expanded in Fourier series along the x axis.

B, (x,t) = Re zz B e (Wt *+ nax) (20)
n=-cw
K00 = Red S K el (0T + nax) (21)
n=-oo
Y00 = 3 y,ed (Rax) (22)
A=~

Substituting the above equations in Equation (1D) gives,
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: . j t + +A
22 = J[(n+>\)3a3 + O—Zid— Ln+>\)aj| Y}‘BneJ N (n )ax]

Y s“1"s

. z u owyna (1 . VI:)&) BneJ [wt + nax]

n

= - Uojz [}na)z TS g d ] Knej[wt ' nax] (23)

s1"s
n

Transforming the summation indice n in the first summation, n+i-n,
and collecting coefficients with common space and time dependence,

' s y. B u
. n n’i "n - _ : 0
EEYA Bn—k ] nz B J na Kn (24)
A

where rﬁ is the magnetic Reynolds number associated with the
fundamental spatial harmonic in the 'motor unit cell', i.e.,

rffaz(“a G ) (25)

szldsa n
and Sh is as defined by Equation (18b). In matrix form, the above
equation becomes,
[Y] + j[R] -B =K (26)

For a system comprising the set of harmonics -2 < n < 2, [R] and
[Y] take on the form,

(R} =) 0] 0 0] o] 3 = |V Yy | Yol Yoy 1Y
ol o lolfLsl o Y3|Y2|Y1|Y0|g1

— A= — -4+ =
OO0 o] o |22 YalXs Y2 ] Yy | Y

b s — — — — — — — —
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where r' is given by Equation (25) and the matrix elements YA are
determined from

L/2
Y, = yz(x)e-JAaxdx
~%/2
B and K are complex vectors
r—- - r -|
B_2 K-z
O Ks1
E = 0 K = 0
By S
2 | %

The solution for the real and imaginery parts of B are given by

r - [,
BRI

Ki + Br'[R]

B, = T — (28)

The current density harmonic Kn is found by taking the Fourier

v=]
It

(27)

transform of the primary current distribution over the length 2 of
the unit cell. 1In Practice, it is desirable to compute the current
density harmonics for each phase winding since the "phase harmonics"
are required for the subsequent constant voltage analysis. Thus

if Kﬁ denotes the nth harmonic of the kth phase,

%/2
KK - %:/f £,) K¥(x)e Inaxgy (29)
L0/2

where fk(x) is a 'slot distribution function' which defines the
occupancy of a givgn stator slop, i.e.,

16



fk(x) =0 slot unoccupied by kth phase winding

fk(x) =1 slot occupied by kth phase winding; reference
phase equals zero

fk(x) = -1 slot occupied by kth phase winding; reference

phase equals 180 degrees

In closed form, fﬁ can be expressed as,

zk zk

kK - (ank,- jbnk>‘K (30)
where Kk is the primary current density amplitude
K¢ = 3Nq 7k (31)

“p

In a similar manner it is possible to express the nth harmonic of
flux density associated with the kth primary phase as,

k _ ¥ Kk .ok) ok
B = " amy cp - Jdy ) K (32)
20
where the complex coefficient cg - jdﬁ determines the amplitude

k

and phase of Bn‘

2.1.5 Constant Voltage Source

The solution for the case of a LIM with constant voltage ex-

citation requires the calculation of currents flowing in each phase

winding produced by the fixed input voltage excitation. Each phase

current is uniquely determined once the input impedance of the
given phase winding is known.

The equation for the voltage drop in the kth phase winding of
the LIM is,
k _ k vk} -k k
L (Rl * JX1)°I * Vinduced (33)
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The first term on the right-hand side includes the winding resist-
ance and primary leakage reactance. The second term describes the
voltage induced by the air-gap field as a result of currents flow-
ing in the different phase windings of the motor. The induced
voltage can be computed by integrating the electric field over the
length of the conductors in the given phase. For the nth harmonic
flux wave,

E = —2 (34)

Expressing Bn in terms of phase currents Ik using Equations (31)
and (32),

u
- L s 0 3Ng kf k .,k
En Jna na y T EE i <;n Jdn) (35)
20 'p X

The phase voltage found by integrating the electric field Ez(x,t),
E_(x,t) =2E ed (Wt + nax) (36)
z n
n

over all conductors of the k'th phase is,

s/2
]
Vk

ft
[\ ]
N

i E,(x,t) 284 £k’ (yyqy
p

P k', .. k!
= Jdn).(an + Jbl’]:)

(37)

-2s/2

1]
|
—
=
NE
o
(3]
™
=
TN
Al
7
\/
(3%}
P
~ M)
=
=
= M)
0O
B =

The voltages in a three-phase system can be written in the
form,
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v 211 * 212 Z13 I
RY + jX] : {
v2 ||z, | _zz_ZT_I 2, | |12 (38)
| %+ jx] |
)t
N N b S

Identifying the impedance elements of the above matrix with
Equation (37) gives for the mutual impedance between the k and
k'th phases.

o k ..k k' ke
wp 2z 2 (c - jd )-(a + jb )
. '0““14% [ 3N n n n n
Z = -] (T < E 7 (39)
a” yo0 P n

=-c0

2.1.6 LIM Output Parameters

The electromagnetic characteristics of a LIM can be determined
once the air-gap flux density and secondary current density have
been found for the specified primary current density excitation.
The nth harmonic of the second current density G(n) is related to
the nth harmonic of air-gap flux density B(n),+

ows

G(n) = —= B(n) (40)

an

The thrust Fx is found by integrating the force density over the
volume of the secondary.

F = - /1/2 Re (Gz B;) v (41)
v

¥ . . . e as . .
For clarity, the harmonic order is indicated in the parenthesis
rather than subscripts as previously given.
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Substituting the Fourier series expansions for Gz’ By in the above

equation and integrating,

* *
Z Fe(n) = 2z3y;K,Pt Y (B(n)c (n) + B (n)G(n)> (42)
- .

Mechanical power Pm’ is equal to the product of thrust and
motor speed. It can also be expressed as the summation of the
products of thrust harmonics and speed harmonics. Since the nth
harmonic wave has a speed v(n)=(I-sn)w/na, the mechanical power is

=me(n) =sz(n) (1-s) 3% (43)
n n

The air-gap power which is the real power tranferred to the
secondary, is given by

Pag =D Pag(m) - ) Fo(n) 3% (44)
n

n

The secondary powerlloss equal to the heating losses in the
secondary is

S
Poc =2 Peect®) =3 Fyn) B (45)
n

n

The form which these harmonic spectra takes is illustrated in
Figure 6 for the TLRV operating at a speed of 300 MPH,

2.2 MOSEBACH ONE-DIMENSIONAL COMPUTER PROGRAM

2.2.1 Choice of Fourier Cell Length £ and Maximum Harmonic Order
NMAX

The Mosebach theory uses Fourier series expansions to describe
the spatial distributions of airgap flux density and airgap func-
tion yz(x). These series are expanded on the basis of a periodic

20



length in the x direction equal approximately to some multiple of
the motor (primary) length. Thus & = KP P Tp where KP is some
integer greater than unity. The criteria for choosing & is de-
termined by the requirement that the flux density at the exit end
of the motor cell be sufficiently attenuated so as to have neg-
ligible effect on the boundary conditions at the entrance end of
the motor cell. A choice of cell (periodicity) length which
results in the flux being attenuated to one percent of its maximum
value is considered adequate. If % is chosen larger than necessary
to satisfy the above condition, the number of harmonics required to
describe the Fourier distribution becomes unduly large leading to

excessively high computing times.

The dependence of LIM motor characteristics on the choice of
KP is illustrated in the table below in which LIM thrust, airgap
power, and secondary power loss are computed for the TLRV LIM for
KP = 2, 4, and 8. Motor conditions correspond to primary phase
current of 530 amperes, excitation frequency of 165 Hertz, and
speed equal to 300 mph. In order to include the same relative
range of harmonics in the spectral distribution, the maximum
harmonic order NMAX, was increased roughly proportional to KP.
Sketches showing the airgap functions for the different values of

KP are given in Figure 5.

The results given in Table 1 show that airgap power and
secondary power loss are relatively insensitive to KP (cell length)
while the thrust shows a functional dependence when KP varies from
2 to 4. For KP greater than 4, the motor output parameters vary
only slightly, with no change being observed in LIM thrust. For
all examples considered in Table 1, the cell length is sufficient
to insure attenuation of the airgap flux density to one percent of

maximum value.

NMAX specifies the range of harmonic orders, -NMAX < n < NMAX,
required to describe the field and current distributions in the
motor. Experience has shown that a value of NMAX equal to three
times the harmonic order of peak flux density amplitude is general-
ly adequate. Table 2 gives the TLRV LIM output parameters computed
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TABLE 1. TLRV OUTPUT PARAMETERS VERSUS NORMALIZED
FOURIER CELL LENGTH

KP NMAX THRUST AIRGAP POWER SECONDARY
(N/side) (KW/side) POWER LOSS
(KW/side)
2 15 1569 668.66 458.16
4 25 1663 673.97 450.94
8 50 1663 670.30 449.21

TABLE 2. TLRV OUTPUT PARAMETERS VERSUS MAXIMUM
HARMONIC ORDER

NMAX THRUST AIRGAP POWER SECONDARY
(N/side) (KW/side) POWER LOSS
(KW/side)
8 4593 801.8 185.7
10 4550 800.6 190.3
16 4497 796.9 193.7
24 4481 : 797.1 196.1
50 4450 797.2 200.3

for five NMAX values for the LIM operated at 530 amperes/phase, an
excitation frequency of 200 Hertz, and speed of 300 mph. With KP
equal to two, the peak field and current harmonics corresponded to
the fifth harmonic order. Table 2 shows that an increase in NMAX
from 16 to 50 results in only a one percent change in thrust and

an almost insignificant change in airgap power. The dependence of
secondary power loss on NMAX is somewhat greater, due to the fact
that a large number of harmonics is necessary to describe the sharp
peak in secondary current which normally exists at the trailing
edge of the LIM at high speeds.

The computed spectral distributions of flux density, thrust,
ajrgap power, and secondary power are shown in Figure 6 for the
motor conditions applicable to Table 2. The form of the spectral
distribution suggests that little loss in accuracy results from
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restricting the harmonic orders to negative values. In its present
form, the Mosebach computer program sums over equal numbers of
positive and negative harmonic orders so that some modification of
the program to limit the region of harmonic summation would seem

worthwhile.

2.3 BOUNDARY-EFFECT CONSIDERATIONS

2.3.1 Magnetic End-Effect

The effect of the finite 1eﬁgth of primary iron (core) on LIM
performance or so-called magnetic end-effect, can be important at
high motor speeds and low slip-frequencies. The magnetic end-
effect is examined in this section using the ekample of the TLRV
operating at rated speed and stator current excitation. Two LIM
models are considered: the first has a finite length primary iron
(Model A) and the second has continuous primary iron (Model B).
The difference in LIM characteristics of the two models describes
the effect of the limited iron length on motor performance.

The TLRV output characteristics are computed at rated speed
(300 mph) and stator current (530 amperes/phase) as a function of
excitation frequency. Motor parameters required for the calcula-
tions are summarized in Table 4. To insure convergence of the
Fourier series for the case of the continuous primary iron (Model
B), it is necessary to increase the length of the periodic cell to
about eight times the length of the primary winding. The computer
parameters used in the calculations are given below:

MODEL KP NMAX
A 2 15
B 8 50

Figure 7 presents the LIM thrust for Models A and B as a
function of stator excitation frequency. The magnetic end-effect
as represented by the difference in the curves becomes quite small
above 200 Hz but has a large effect at lower frequencies. Thus at
a frequency of 165 Hz corresponding to a slip of 0.0928, LIM thrust
is reduced approximately fifty percent by magnetic end-effect.
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Figure 8 presents the airgap power Pag’ mechanical power Pm’

and secondary power PS predicted by the Mosebach theory for

finite length and cont?guous primary iron models. Airgap power is
almost unaffected by the length of the primary iron core, in
contrast to the mechanical and secondary powers which are consid-
erably affected by the length of the primary iron. This suggests
that magnetic end-effects do not affect the total real power to
the motor but alter the division of this power into usable mechan-

ical work and secondary power loss (heating).

The power factor was also computed for the same set of condi-
tions applicable to Figures 7 and 8. The change in power factor
with magnetic end-effect included was relatively small, and typi-
cally increased four percent at a slip of .0928. The results
suggest that LIM real and reactive power components are insensitive
to the extention of iron beyond the region of the primary winding.

The airgap flux density along the longitudinal (x) axis of
the motor is insensitive to magnetic end-effect within the primary
(-xl < x < xl) but can be strongly dependent on magnetic end-effect
in the region outside the primary (x > Lxll). Figure 9 shows the
flux density amplitude computed for the TLRV at 300 mph (530
amperes/phase, 165 Hz) for continuous primary ferromagnetic region
and a finite ferromagnetic region given by the actual core size.
The trailing flux density in the exit end of the LIM attenuates
exponentially with distance in both cases. This is illustrated in
Figure 10 in which the log of the flux density amplitude is plotted
against distance along the x axis. The linear slopes of these flux
attenuation characteristics yileld the attenuation constants given
below. Also shown is the corresponding attenuation constant pre-
dicted by the Yamamura theory3 for the case of continuous primary

iron.
Mosebach Yamamura
Model Model
Continuous iron 0.211m-1 0.25m" %
primary
Finite iron 1.61m-1 =
primary
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2.3.2 Transverse Edge-Effect: Mosebach Versus Bolton Treatments

The Mosebach treatment of the transverse edge-effect differs
5 In the Mosebach

one-dimensional model, the actual secondary overhang is replaced

considerably from the approach used by Bolton.

by ficticious sidebars which serve to conduct all the longitudinal-
ly directed currents flowing in the secondary. The secondary
current is also assumed to flow in rectangularly-shaped patterns
(Figure 4a). These flow patterns remain independent of frequency
so that the mutual coupling (inductance) between primary and
secondary is independent of frequency. Changes in the secondary
impedance (as seen by the primary) are then identified with changes
in the secondary leakage inductance and secondary resistance,
rather than with changes in the secondary magnetizing inductance

and secondary resistance. In the Bolton model, the finite second-
ary width does not cause any restriction in the secondary current
paths. Secondary currents flow in patterns described by Bolton as
'television screen' or 'distorted television screen' shaped pat-
terns. These flow patterns change with slip frequency in order to
accommodate flow paths of minimum secondary reactive impedance.

In terms of equivalent circuit parameters, this requires a slip-

dependent mutual inductance and secondary resistance.

The secondary current flow pattern was computed by Mosebach
using a two-dimensional theory which allows for unrestricted
current flow in the x, z plane. His results are shown in Figure 11
for two values of effective Reynolds number (r's). For large r's the
flow pattern is nearly rectilinear and similar to the flow lines
shown sketched in Figure 4a., For r's equal to five, a more nearly
television-screen type pattern results. Since the one-dimensional
Mosebach theory is restricted to rectilinear-type flow patterns,
it should yield more accurate results when applied under conditions
of large effective Reynolds numbers.

The Mosebach treatment of the transverse edge-effects leads to
3 » - * .
an effective secondary conductivity ¢ , which depends on the lon-
gitudinal harmonic order n,
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* o
o = 7 (46)
1+ zldsa n

The effect of the sidebars is contained in the term in the denom-
inator which is a function of the overhang distance ds’ the half-
core width zq1, and wave vector amplitude a n. Since the overhang
distance d_ cannot be zero in the Mosebach model, as otherwise
there remains no return path for the secondary currents, this
poses a problem in treating LIMs with zero or near-zero overhand

distances.

The Bolton treatment of the transverse edge-effect leads to
an effective secondary resistance in parallel with an effective

magnetizing reactance given by

=
]

=

=

<
n
~

where K1 and K2 are defined by,

2

242 442
1+ s°G KR/Kx K

1l + s

For the TLRV operating at 165 Hz, K1 varies from 1.0 to 0.4 as the

slip goes from 0.0 to 1.0, and K, varies from 2.47 to 2.72 as the

slip goes from 0.0 to 1.0. The %atter range of parameter values
is to be compared with the denominator of Equation (46) which
equals 2.32 evaluated at the harmonic order of peak flux density
amplitude. (For KP equal to two, the peak flux density harmonic
occurs at n equal to five.)

In the Yamamura theory of linear induction motors,6

the Bolton
factors Kl’ K, are used to correct for the finite width of the LIM,
but in a different manner than used by Bolton in his analysis.
The Yamamura treatment assumes Xm remains constant and secondary
conductivity is modified by the factor KI/KZ‘ In addition the
primary current density is replaced by K; X (primary current
density. When applied correctly, the Yamamura treatment is equiva-

lent to that of Bolton.



It is interesting to compare the different results which would
have been obtained had the Bolton factors been used in place of
Equation (46) to-compensate for edge-effect. Table 3 gives the
thrust and airgap power for the TLRV computed for two slips using
the two different methods for treating edge-effect. To provide a
further comparison with Yamamura's treatment, the LIM model was
assumed to comprise a continuous primary iron. The Bolton cor-
rection was applied to the Mosebach results by setting o* = g, and
replacing the secondary conductivity by (Kl/K2°c), taking care to
correct the final results for the reduced primary current density
using the K1 factor as described above. Both methods yield almost
the same thrust value at s = .0928 but give somewhat poorer agree-
ment at s = 1.0. This is not surprising since the edge-effect
correction is greater at high slip-frequencies and large values of
slip. For comparison, the thrust and airgap power computed with
the Yamamura theory is given in Table 3. It is interesting that
the Yamamura results tend to lie midway between those computed via
the Mosebach theory using the two methods for correcting edge-
effect. The exception to this is the thrust computed for slip of
0.0928.

TABLE 3. TLRV THRUST AND AIRGAP POWER COMPUTED USING THE
MOSEBACH AND BOLTON METHODS FOR EDGE-EFFECT
CORRECTION (Included in table are results obtained
using Yamamura theory with Bolton methods for edge-
effect correction)

Edge Correction Thrust (n/side) Airgap Power
(KW/side)
Mosebach Yamamura|Mosebach Yamamura
Mosebach: Eq'n 46 3398 - 674 -
s=.,0928
Bolton: Kl’KZ 3380 3621 600 634
Mosebach: Eq'n 46 1201 183
s=1.0
Bolton: Kl,K2 1421 1299 208 195
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2.3.3 Further Boundary-Effect Considerations

LIM characteristics are altered in varying amounts by the
finite size of the primary winding and primary iron core structure.
In this section, the cumulative effects of finite primary current
winding and finite primary iron core on the TLRV thrust-versus-

slip characteristics are examined.

Four different LIM models were considered for this purpose
having boundary limiting characteristics as shown below. Model A
corresponds to an 'ideal' LIM having no boundary limitations, while
Model D describes a LIM having finite primary winding and finite
length of iron core. Models B and C describe configurations with
boundary limitations intermediate between those of Model A and D.

Model Primary Winding Primary Ferromagnetic Region
A Infinite in x,z Infinite in x,z plane
plane
B Finite in x-dir. Infinite in x,z plane

Infinite in z-dir.

C Finite in x-dir. Infinite in x,z plane
Finite in z-dir.

D Finite in x-dir. Finite in x-direction
Finite in z-dir. Infinite in z-direction

The LIM thrust computed as a function of motor slip is shown
in Figure 12 for the different models. In the absence of boundary
limitation effects, Model A predicts a peak thrust approaching 51
kilonewtons at a slip near 0.01. The finite length of primary
winding (Model B) mainly causes a reduction in thrust at slips
below 0.2. Limiting the width of the primary winding (Model C)
results in a large increase in thrust over the full range of slips,
while the addition of finite ferromagnetic primary (Model D)
reduced thrust at slips below 0.2, in a manner not dissimilar to
that produced by the finite length of primary winding.
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2.4 COMPUTER STUDIES OF TLRV § LIMRV LIMS

This section considers the thrust prediction based on the
Mosebach model and compares them with results supplied by Dr. D.
Elliott and computer predictions based on the Oberretl and Yamamura
LIM models. The latter computer predictions were obtained using

2,3

computer programs described in the first two reports™’™ in this

series.

The LIM parameters describing the TLRV and LIMRV motors are
given in Tables 4 and 5. The value of primary core separation
(airgap) and secondary thickness includes corrections for the
Carter factor and the structural'(web-like) characteristics of the
secondary. The widths of the secondaries are adjusted to compen-
sate for asymmetrical positioning of the secondaries relative to

7 The same values of

the primaries, using the theory of Bolton.
LIM parameters are used in the computer studies in order to pro-

vide a consistent basis for comparing the computer results.

2.4.,1 TLRV LIM Thrust at Rated Speed

The TLRV thrust versus stator excitation frequency is shown
in Figure 13 for four different LIM models. Above 185 Hz, the
Mosebach, Oberretl, and Yamamura models give predicted thrusts
which are in fair agreement, with the maximum divergence in pre-
dicted thrust amounting to ten percent. Below 185 Hz, the Mosebach
prediction drops off sharply as a result of the finite length of
the primary iron core. A similar decrease in the Elliott thrust
is also observed, though at the lowest frequency considered (165
Hz), the Elliott model predicts greater thrust than does the
Mosebach model.

2.4.2 LIMRV LIM Thrust at Rated Speed

The LIMRV thrust versus stator excitation frequency is shown
in Figure 14 for four different LIM models. The agreement in the
thrust predictions is reasonably good, both in terms of absolute
thrust and general shape of thrust characteristic. Omitting the
Yamamura prediction at frequencies below 175 Hz considerably im-

proves the overall thrust agreement. In this case, thrust
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TABLE 4. TLRV LIM PARAMETERS
Turns per Coil (N) = 4
Pole Pitch (Tp) = 0.448 m,
Core Width (2¢) = 0.1905 m.
Poles (P) = 5
Core Length (ls) = 2.56 m.
Air Gap (g) = 0.0171 m.
Phases (m) = 3
Slot per Phase (q) = 5
End Half-filled Slots (e) = 5
Secondary Thickness (b) = .0066 m.
Secondary Resistivity (p) = .416x10" " ohm-m.
TABLE 5. LIMRV LIM PARAMETERS
Turns per Coil (N) = 1
Pole Pitch (Tp) = .355 m.
Core Width (2¢) = .254 m,
Poles (P) = 10
Core Length (gs) = 3.81 m.
Air Gap (g) B .024 m.
Phases (m) =
Slots per Phase (q) =
End Half-filled Slots (e) =
Secondary Thickness (b) = 0071 m,
Secondary Resistivity (p) = 0.416x10-7ohm-m.

38




THRUST - kN

15

OBERRETL

YAMAMURA

ELLIOTT

> L MOSEBACH
TLRV LIM
Speed = 300 MPH
Stator Current = 530 Amps/Phase
0 | | . I L )
160 170 180 190 200 210 220

STATOR EXCITATION FREQUENCY - Hz

Figure 13. TLRV LIM Thrust as Predicted by Four Leading
Theories
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deviations amount to 0.5 kN at 200 Hz and 1.7 kN at 165 Hz, or
percent deviations of 7 and 22 percent respectively.

The comparison of the Mosebach, Elliott thrust curves which
include magnetic end-effects, with the Oberretl, Yamamura thrust
curves which neglect magnetic end-effects, shows little evidence
of any appreciable magnetic end-effects in the motor character-
istics. Only at the lowest frequency considered, namely 165 Hz,
does the Mosebach (and Elliott) curve fall below the thrust pre-
dictions of Oberretl and Yamamura. This is in sharp contrast to
the thrust results for the TLRV LIM given in Figure 14 which show
magnetic end-effects becoming an important factor at frequencies
even above the frequency of peak LIM thrust. This points up im-
portant differences in the high-speed behavior of the LIMRV and
TLRV motors; namely, the comparative insensitivity of the LIMRV
motor to magnetic end-effects and the models used to describe its

performance.

2.4.3 LIMRV Thrust at 5, 40, 80, and 112 M/S

The peak thrust developed by the LIMRV at four different motor
speeds was computed and used to predict the maximum thrust capabil-
ity of the LIMRV over the full range’of motor speeds. The peak
thrust at a given motor speed was determined by computing the
thrust-versus-speed characteristic in the region of peak LIM thrust
The input motor phase current was set at 2200 amps/per phase, or
1100 amps/per phase per core side, corresponding to the maximum
current for continuous operation of the LIM.

Figures 15-18 show LIMRV thrust-versus-frequency computed at
motor speeds of 5, 40, 80, and 112 M/S. The thrust predicted by
the Mosebach one-dimensional model is shown along with the compara-
tive predictions based on the Oberretl and Yamamura models.

The locus of peak thrust is shown plotted in Figure 19 for the
Mosebach, Oberretl, Yamamura, and Elliott models. Data for the
Elliott model was kindly supplied by Dr. D. Elliott. The decrease
in peak thrust with increasing motor speed is due primarily to the
MMF end-effect. In the limit of zero motor speed (locked-motor),
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end-effects become unimportant and the peak thrust should approach
that of a rotary motor with equivalent primary current excitation.

The measured thrust at 90 and 179 MPH obtained from test runs
at Pueblo, Colorado (Test Run No. 105-4) are indicated in the
figure. The data points were adjusted for an average stator cur-
rent of 2200 amps/phase. The measured thrust tends to exceéd the
predicted thrusts by about 400-450 pounds. The theoretical thrust
curves shown in Figure 19 were computed on a constant input current
basis. Later calculations using the Mosebach computer program on
a constant input voltage basis yielded considerably better agree-
ment at higher motor speeds. These latter results are presented

in Section 2.5.2.

2.4.4 LIMRV LIM Equivalent Circuit

The equivalent circuit parameters for the LIMRV motor are ex-
amined in this section using the Mosebach theory together with
empirical data obtained from test runs at Pueblo, Colorado. Figure
20 shows the equivalent LIM circuit and characteristic impedance
parameters. The input impedance of the motor (Zin) is equal to the
air-gap impedance (Zag) plus the series winding resistance and
leakage reactance, '

Z. =R

in 1 (47)

+ in +Zag
The input impedance (per phase) is determined from the measur-
ed voltage, current ratio (per phase) and the measured power factor
angle 0.
Zin = W/I)/s (48)
The air-gap impedance is computed from the Mosebach theory as equal
to the voltage induced in the phase winding when currents of one

ampere flow through each of the phase windings. From Equation
(47),

Ry + 3X; = 25, - Z (49)
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The magnetizing reactance (jxm) is found from the air-gap impedance
evaluated for zero secondary conductivity.

2{0) = jx

ag m (50)

It then follows that the secondary impedance parameters Rz,'Xz,

are determined from,

Y 1 (51)
Ry + 3% = T——1~
ag zag(O)

The Mosebach theory predicts that R2 and Xz will vary with
slip frequency, R, increasing with slip frequency and the ratio
XZ/Xm decreasing with slip frequency. The above functional depend-
ences are expected since the secondary current flow lines are
forced to alter their paths due to the large impeding fluxes set up
by the longitudinal currents at increased slip frequencies.s The
result is a constriction of current flow in the secondary and a
shift in the x-directed secondary currents away from the active
region of the motor which leads to an increase in secondary resist-
ance and decrease in secondary leakage inductance, respectively.

The equivalent circuit parameters for the LIMRV motor were
computed using the Mosebach one-dimensional computer program to-
gether with data obtained from test runs of the LIMRV at Pueblo,
Colorado. The circuit parameters were evaluated at five motor
speeds chosen at approximately 40 MPH intervals. Table 6 lists the
values of equivalent circuit parameters for each motor speed. The
increase in AC resistance of the primary winding (Rl) is as ex-
pected due to the eddy current effect at higher frequencies. L2
decreases with frequency and R2 exhibits a slight increase with
frequency as predicted above. The values given in the table repre-

sent average values for all three phase windings.
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The predicted LIM thrust is compared with measured thrust in
Table 7 using the Mosebach computer program and assuming constant
voltage excitation of the primary. The agreement at high frequen-
cies is excellent, but tends to fall off as the frequency is re-
duced. At the lowest frequency (and speed) the percent deviation
is slightly under ten percent,

TABLE 6. LIMRV EQUIVALENT CIRCUIT PARAMETERS
COMPUTED USING MOSEBACH THEORY

SgégD EEE? SLIP R1 ' L1 Lm R2 L2
(MPH) (OHM) (MH) (MH) (OHM) (MH)
20 17.2 .269 .0161 .203 .843 .0294 .116
60 45.5 173 .0267 .221 .843 .0283 111
100 72.9 .138 .0309 .245 .843 .0285 .114
140 101.1 .130 .0361 .224 .843 .0291 . 095
178 127.9 .125 .0400 .235 .843 .0296 .084 .

TABLE 7. COMPARISON OF MEASURED AND PREDICTED LIMRV THRUST

LIM FREQ MEASURED COMPUTED DEVIATION
SPEED (HZ) THRUST* THRUST* (PERCENT)
(MPH) (LBS) (LBS)

20 17.2 2903 2621 -9.7

60 45.5 3661 3352 -8.4
100 72.9 3505 3286 -6.2
140 101.1 3468 3356 -3.2
178 127.9 3214 3166 -1.5

*
Thrust for one core side
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3., CONCLUSIONS

The Mosebach theory of double-sided linear induction motors
has been reviewed and used to predict LIM characteristics of two
high-speed motors (TLRV & LIMRV LIM's). The effects of finite iron
core and primary MMF excitation on LIM performance are examined
using the one-dimensional version of the Mosebach theory. The LIM
characteristics predicted by the Mosebach theory are compared with
predictions given by theories developed by K. Oberretl, S.
Yamamura, and D. Elliott.

Magnetic end-effects caused by the finite length of primary
core are shown to degrade LIM performance under conditions of high
motor speed and low slip. This phenomena has certain character-
istics similar to those associated with the MMF end-effect, high
motor speed, and low slip. Under such conditions the total real
power delivered to the motor remains constant but the fraction
converted in usable mechanical power is reduced. This is reflected
in a drop in motor efficiency at high speeds. For the TLRV operat-
ing at rated speed (300 MPH) and a slip of about 1/10, theory pre-
dicts a drop in motor efficiency from 77 to 33 percent due to mag-
netic end-effects.

The method of treating MMF edge-effect in the Mosebach theory
is examined and compared with the Bolton treatment as applied in
the Yamamura LIM theory. Both methods use approximations required
to make the solutions tractable. In the Mosebach approach, these
approximations take the form of severe restrictions in the flow
pattern of the secondary currents and the neglect of the transverse
functional dependence of the air-gap flux density (one-dimensional
model). In the Bolton approach, the secondary current is restrict-
ed only to flow in the plane of the secondary (eddy currents
neglected). The correction for the edge-effect is derived for the
condition of no MMF end-effects. Since end-effects and edge-effects
are coupled phenomena, the neglect of cross-coupling between the two
boundary effects leads to errors when both effects become important.
Studies of the effect of different boundary perturbations on TLRV
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LIM performance show that MMF edge-effect is an important factor
in thrust development at all motor slips.

The TLRV and LIMRV thrust-versus-frequency characteristics
were computed for rated motor speeds using the Mosebach (one-
dimensional) computer program and compared with similar studies
using the Oberretl, Yamamura, and Elliott computer programs.
(Results of Elliott computer studies are kindly supplied by Dr. D.
Elliott.) At high slip-frequencies, the computed thrusts were in
reasonably agreement, with maximum spread in thrust values amount-
ing to less than ten percent. At low slip frequencies where
magnetic end-effects were important, the Mosebach and Elliott
thrust values were lower than those of Oberettl and Yamamura.
Magnetic end-effects were observed to be considerably more pro-
nounced in the TLRV LIM than in the LIMRV LIM, a result due to the
characteristicly higher speed of the TLRV LIM.

Constant input voltage calculations were made for the LIMRV
LIM at five different motor speeds. The computed Mosebach thrusts
were compared with thrust data obtained from test runs at Pueblo,
Colorado. At speeds of 140 and 178 MPH, the predicted thrusts
were within three percent of measured thrusts and at low speeds,
within ten percent of measured thrusts. Similar calculations
performed on a constant input current basis gave somewhat poorer
agreement at the higher motor speeds than those on a constant

voltage basis.

The equivalent circuit parameters of the LIMRV LIM were com-
puted using the Mosebach theory and empirical data obtained from
test runs at Pueblo, Colordao. A1l circuit parameters except the
magnetizing inductance vary with frequency (and motor speed). The
primary series resistance increases with frequency due to eddy
currents. The increase in secondary resistance and decrease in
secondary leakage inductance with frequency is attributed to the
change in secondary current paths required to accommodate the in-
Creased reactive impedance in the secondary circuit.

The method used by Mosebach to include finite iron primary in
the LIM model using an effective air-gap function requires further
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study. In certain instances, the amplitudes of the air-gap
harmonics can be comparable with pole pitch and thereby violate a
basic assumption used in formulating the LIM model. The error
introduced by this process could be important and should be examin-
ed in applications requiring accurate results.

The computer time needed for a given run is a function of the
primary winding and the harmonics necessary to describe the field
and current distributions of the motor. Substantial savings in
computer time might be realized if fewer Fourier harmonics were
utilized in the numerical calculations. Restricting the maximum
harmonic order to 2.5-3.0 times the harmonic order of the funda-
mental would probably be sufficient for most computations. The
reduction in the number of positive harmonic orders used in the
field expansion should be considered since they contribute very
little to the ultimate answer.
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