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EXECUTIVE SUMMARY

A wide variety of advanced technological tools hdesn implemented throughout Georgia’'s
transportation network to increase its efficienthese systems are credited with reducing or
maintaining freeway congestion levels in light otreasing travel demands. In Georgia these
benefits are primarily gained through the Traffiadhgement Center’s freeway monitoring and
quick response in ridding the roadway of any olletathat may reduce freeway service levels.
There have been a number of efforts to leveragevtbrk done by TMCs to provide travelers
with more current traffic information such as Gear§1ll and Navigator. In addition, private
efforts and partnerships have made the TMC’s in&tiom more accessible to travelers, aiding
their traveler decisions. The effort presentechis teport aims to compliment real-time freeway
information by addressing the more limited avaiigbiof real-time arterial performance meas-
ures.

This research project explores the feasibilityrwégrating real-time data streams with an
arterial simulation to support an arterial perfont@ monitoring system. Such information will
facilitate increased efficiency in facility utilitan by enabling more informed decisions in the
use and management of Georgia’s transportatiofiti@si This objective was accomplished by

undertaking the following tasks:

1. Describe the current state of practice concerniregdstimation of real-time ar-
terial performance measures.
2. Develop a federated (integrated) simulation tesitfloe testing procedures and al-

gorithms.



3. Determine the feasibility of integrating point sendata with simulation to create
a data-driven, on-line simulation tool.

4. Develop procedures and algorithms to calibraterahn@ simulation tool that es-
timates of travel time and other performance messur real-time.

5. Determine any potential improvements in travel tiestimation resulting from
sensors placed in atypical locations, such immelji@lownstream of an intersec-
tion.

6. Field-test the data-driven, on-line arterial sintiola tool on a target corridor.

7. Devise method(s) to deliver travel time and othperational characteristics to

GDOT and the general public. .

These tasks lead to the following findings.

Description of the Current State of Practice

Efforts related to estimating performance measalesg freeways and arterial are presented as
lessons from those experiences inform the develapwiethe methodology used to accomplish
the research objective. A series of mathematiadirtigues is also be explored as previous re-
searchers have developed performance measure &stintechniques based on vehicular input
onto roadways. In addition to these techniquesmaathodologies, efforts that involve real-time,

data-driven simulations, outside the transportatwiustry are explored.



Simulated Test Bed Environment

The first step in developing the real-time, dateet microscopic simulation tool was the con-
struction of such a framework in a laboratory eawment (Task 2). To achieve this, the team
federated (integrated) two simulation instanceBaaised as a test bed. VISSIM is employed to
represent the two simulation instances. These tmalation instances, referred to as the “refer-
ence world” and “modeled-world” have the same roaghand signal timing configuration. The
primary aim of this test bed was to determine & thodeled-world reflects the reference-world
performance measures when driven by point sendarfaan the reference-world, i.e. data simi-
lar to that streamed by field detectors. For thautated test-bed, point sensor data included
time, vehicle speed, and location. It was seenguiis test bed that the underlying real time ap-
proach could be successful in a simulated envirommi@ addition, the simulated test bed
enabled subsequent tasks through the developmeahedbility to utilize data streams to suc-

cessfully drive a VISSIM simulation during runtime.

Federation of Real-Time Detector Stream with Simulaon

A “hardware-in-the-loop” framework was developeatthirectly inputs detector data into a si-
mulation model during runtime (task 3). Successftdgration of the data stream with VISSIM

enabled a field evaluation of the framework on grr&l using streaming point sensor data. A
key attribute of the federation is the ability fibre simulation to receive a PVR (per vehicle

record) detector data stream in a real-time, algwor the use of multiple detector technologies.



Real-Time, Data-Driven Arterial Simulation Algorit hms

The arterial simulation algorithms provide the prsgd framework with the necessary mechan-
isms to ensure that simulated performance measetflest those of the field (Task 4). Itis an-
ticipated that a number of assumptions about talel firaffic system parameters (e.g. turning
movement percentages) will change as time progsesse the performance measures from the
simulated environment to remain aligned with thok#he field, a series of algorithms and tech-
niques are developed to as part of the real timt#gsm. Two primary areas in which significant
advances were made are in the placement and ititegad point sensor data and model calibra-
tion.

The point sensor technology implemented througttwitest bed is capable of extracting
and streaming a number of different traffic relatlada. Therefore, it was necessary to identify
which data combination is best suited to aid in dlbeurate estimation of current performance
measures (Task 2 and Task 4). In addition, the swtdble location for each point sensor is also
explored (Task 5). The location of each detectamigortant as it dictates the type of data ex-
tracted from the roadway. For example, a mid-bldetection is more suitable for speed detec-
tion while stop-bar detection is suited for vehiplesence detection. It was seen in this effort
that simulation boundary detectors (i.e. detedtotbe field placed at the boundary of the simu-
lated area) are critical to the success of the lgitiom. It was also noted where advances in inter-
section detection are needed to allow for a bgidéning of simulated vehicle travel paths with

vehicles in the field.



It was shown that a number of parameters will redidstments to ensure that the esti-
mated performance measures alignment with thoskeofield (Task 4 and Task 6). It is antic-
ipated that real time adjustments will be indicabgdthe differences in performance measures
that will be collected from the real world and gimulated environment. A calibration process is
presented for adjusting VISSIM's calibration paréeng in which the underlying performance
measure distribution is considered rather thammglel mean of the performance measure. This
more robust calibration procedure enables a mocerate real-time simulation environment.
The significant role played my pedestrians andrnteéed for a model to accurately account for
pedestrian activity is investigated and discusdéds seen that relying on default simulation pa-
rameters to model pedestrian behavior can resudinmulated pedestrian behavior significantly

different from that of pedestrians in the field.

Real-World Test-Bed and Field Test

Integral to the creation of a test bed (Task 6)d&tectors that are capable of streaming traffic
data in real-time to a central server. The devealdpest bed utilized video detection systems ca-
pable of streaming per vehicle records. The prindata transmitted included detection time-
stamp, presence, speed, location, and lane nufbisrdata was sent to a central server respon-
sible for data processing and transmitting the dathe VISSIM client. Utilizing this test bed
several real time simulation experiments were uaten. These experiments demonstrated the
ability of the real time simulation, for the givegstem, to provide reasonable estimates of travel

time. However, in several instances differenceewsted. These difference where attributed to



several causes: detector errors at simulation emyndetectors resulting in volume discrepan-
cies between the simulation and field, differenoetsveen individual vehicle turning movements
in the field and simulated environment, challengethe synchronization of field and simulated
signal indications, model calibration, and dowrestnecongestion influencing simulations boun-
dary conditions. Future efforts will seek to conogrto improvement the real time environment in
each of these areas.

To test the proposed real-time approach in an enmient that allowed for eliminating or
significantly reducing the errors resulting frone throceeding issues a “pseudo” real time field
test was undertaking using the FHWA Next Generatamulation (NGSIM) program. The
NGSIM program created high fidelity data sets idth for use in the study of traffic behavior
and the development of the next generation ofitraffnulation tools and algorithms. Utilizing
this data set to create a pseudo real time daarstit is seen that the real time approach is capa-
ble of providing accurate performance measuresnghigh quality data inputs. Future efforts
will seek to explore the relationship between ddgt@ans in data accuracy and performance

measure estimates.

Real-Time Presentation of Arterial Performance Measres

Finally, a web-based interface was developed ptegethe arterial performance measures in
real time. The data generated by the simulatigrolked in real-time to generate time space dia-
grams and summary charts and statistics of thewsperformance measures. An animated re-

presentation of traffic moving through the studyricor is also provided
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1 INTRODUCTION

1.1 Background and Motivation

Traffic congestion is a one hundred billion dolaoblem in the US. In 2010, Americans spent
approximately five billion additional hours and plased an estimated two billion gallons of
additional gas due to congestion. The State of @adras shared in these congestion challenges.
For example, in Atlanta, 116 million hours was gp@ncongestion, which resulted in the pur-
chase of approximately 53 million gallons of excksd. In total, the cost of congestion to At-
lanta’s traveling population was approximately taal half billion dollars in 2010. [1]

Like the United States, Atlanta’s cost of congestias been trending upwards over the
last few decades, Figure 1. Also like the Unitealt&, Georgia has been taking strides to reduce

congestion levels.
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Figure 1 Total Cost of Congestion in the United Stas and Atlanta, GA [1]

This research project explores the feasibilityraégrating real-time data streams with an
arterial simulation. Such an integration is geawagards providing the Georgia Department of
Transportation (GDOT) and the public with currestirmates of arterial performance measures.
This additional information will facilitate incread efficiency in facility utilization by enabling
more informed decisions in the use and managenfe@Gkeorgia’s transportation facilities. To
accomplish this, the research team utilizes fixealssers in the development of an online, data-
driven, microscopic traffic simulation tool to detene and provide arterial performance meas-

ures.
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1.2 Problem Statement

A wide variety of advanced technological tools héesn implemented throughout Georgia’'s
transportation network to increase the efficier8gme of these tools include Advance Traffic
Control System (ATCS), Advance Traffic Managemegst8ms (ATMS), Advanced Traveler
information System (ATIS), and Ramp Metering andnisiged Lane Strategies. Currently, these
systems are credited with reducing or maintainnegway congestion levels in light of increas-
ing travel demands. In Georgia these benefits anegpily gained through the Traffic Manage-
ment Center’'s freeway monitoring and quick respdnsedding the roadway of any obstacles
that may reduce freeway service levels. There Hmen a number of efforts to leverage the
work done by TMCs to provide travelers with morerent traffic information such as Georgia
511 / Navigator [2]. In addition, private effortadapartnerships with companies such as Google,
NAVTEQ, and INRIX have made the TMC’s informatiorore accessible to travelers, aiding
their traveler decisions [3—6]. This effort aimsdommpliment real-time freeway information by
addressing the lack of available real-time artggeaformance measures.

In comparison to the vast investments in equipfiegways with advance technology to
improve mobility widespread outfitting of arterialgth similar technologies in its early stages.
Successful ITS arterial deployments include botveade and adaptive traffic signal control sys-
tems and various surveillance efforts. The benefitthese limited deployments range from a
reduction in the number of stops along an artes@gment to increases in traveler satisfaction
[2]. Also, more recently, real-time traffic inforan providers have been supplying information

regarding traffic condition along arterials, the@a@cy of which is still being improved.
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Table 1 and Table 2 highlight the current differehan the ITS related benefits expe-
rienced by travelers on arterials and freewaygeetsvely. The difference in disseminating ITS
information to the traveling public is noticeablable 2, referring to freeways, demonstrates that
presenting traffic information to the travellinglpie has positive impacts on safety, mobility,
and customer satisfaction. From Table 1 (refertmm@rterials) one notices that there is insuffi-
cient data to support a conclusion regarding theetis of disseminating traffic information to
the travelling public along arterials. One of tleasons for this lack of conclusion is that infor-
mation disseminated is very limited. Of the artesitreets network in the nation’s largest 108
metropolitan areas, arterial traffic informationoisly available for approximately two percent of
the network miles [2]. This effort seeks to addréss lack of available real-time arterial traffic
information and aid in the realization of all pddsibenefits that may be experienced by poten-

tial travelers, drivers and transportation facihtanagers.
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Table 1 ITS Arterial Management Benefits Summary [2
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Table 2 ITS Freeway Management Benefits Summary [2]
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1.3 Research Objective

As stated the overall objective of this researctoidetermine the feasibility of integrating real-
time data with an arterial simulation to estimagef@rmance measures in real-time and provide

such information to facility managers and travel@isis objective was accomplished by under-

taking the following tasks:

1. Describe the current state of practice concernimggédstimation of real-time ar-

terial performance measures.

2. Develop a federated (integrated) simulation tesitfloe testing procedures and al-

gorithms.
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3. Determine the feasibility of integrating point sendata with simulation to create
a data-driven, on-line simulation tool.

4. Develop procedures and algorithms to calibraterahn@ simulation tool that es-
timates of travel time and other performance messur real-time.

5. Determine any potential improvements in travel tiestimation resulting from
sensors placed in atypical locations, such immelji@lownstream of an intersec-
tion.

6. Field-test the data-driven, on-line arterial sintioka tool on a target corridor.

7. Devise method(s) to deliver travel time and othperational characteristics to

GDOT and the general public. .

1.4 Organization of Report

The organization of the remaining report is asofwfi. Chapter 2, Literature Review, provides a
comprehensive review of previous work that madalesr towards estimating arterial perfor-

mance measures and highlights how this effort builld upon these previous efforts. Chapter 3,
Methodology, presents the methodology that has begaloped to achieve the objectives of this
research project. Chapter 4, TRTI Transportation-Rume Infrastructure, highlights the details

of the integral communication mechanism developedHe project to manage data transmission
amongst the various components of the system. €h&pExperimentation and Evaluation, de-
tails the execution and results of number fieldezkpents that were used to validate the devel-

oped methodology. Chapter 6, Advanced Model CaidmaProcedure, summarizes a procedure

23



that was developed to calibrate a VISSIM simulatadel. Chapter 7, Modeling Pedestrian
Behavior, gives insight into how to address theassf pedestrian-vehicle interaction in a simu-
lation environment. Chapter 8, visualization okael performance, provides means of visualiz-
ing and presenting performance measures to usedrsaaiity managers. Chapter 9, future re-
search, offers readers a few tasks that will bklegcin the future to increase the robustness of
this method. Chapter 10, Implementation Plan, tsreeaders to requirements and challenges
that will have to be addressed in order for prapgrlementation and the fulfillment of the goals
that the system is intended to accomplish. Fin&lyapter 11, Closing Remarks, concludes this
report by highlighting the objectives of this taskd the manner in which they were accom-
plished and the anticipated impact to transpontatioGeorgia as well as possible impacts on the

state of the practice.
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2 LITERATURE REVIEW

The following chapter provides a comprehensiveawvof previous efforts in estimating and
predicting performance measures along signalizetialr streets. A number of estimation mod-
els, along with their successes and contributiorthé field of estimating performance measures
will be presented. Models that have been develapguedict performances measures along ar-

terial will also be reviewed.

2.1 Estimating Arterial Performance Measures

Estimating performances measures along arteriadftén more challenging than for freeways.
The primary reason for this is that freeways amgtrodled access facilities with limited mainline
traffic control (i.e. no signals, stop signs, etghile arterials are often uncontrolled (or limited
control) access facilities. That is, vehicles may on and off the facility at multiple locations,
interaction with potentially numerous crossing aale may be significant, and control devices
(e.g. traffic signals) can significantly influengehicle movements. As a result of such interrup-
tions volume and speed are extremely varied. Gtlienlarge variations in speed and volume
along arterials, the ability to determine perforc@measures can be dependent on significant
data needs and more advance mathematical techrilq@eshose employed to extract perfor-

mance measures from freeways.
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2.1.1 TheEarly Models

In 1977 P.G. Gipps provided one of the earliest @edor estimating performance measures
along arterials. Gipps developed a regression ntbdélemployed occupancy measurements and
vehicle arrival times, from loop detectors, to mstie arterial link travel times. The model was
then validated using simulated data. Despite séweodel adjustments and the relative success
of the model, Gipps noted that in order to imprthe accuracy of his model, incorporating other
parameters such as signal timing plans, numbeanad, and link length was needed. In building
on the accomplishments of Gipps’ 1977 model, a remdf researchers used his model as a
foundation for their own model to improve the estiion of arterial performance measures.
Gault and Taylor sought to improve Gipps’ 1977 mdrecalibrating it to a two lane roadway
and eliminating a few of the parameters that thegnd to have minimal impact on the relevant
performances measures. [7-9]

A review of a number of the earlier works, incluglithe two previously mentioned mod-
els, was conducted by Sisiopiku and Pouphail [&F Timitations presented ranged from the lack
real-world validation results to use of assumptitre may prevent the respective model from
being implemented in the real-world. Table 3 prés@nnumber of early models and their asso-

ciated limitations and validations results [8].
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Table 3 Limitation and Validation Results for the “Early” Models [8]

Model Limitations Validation

Gipps - Lack of empirical validation With simulaled data only;
- Signal settings/geometry not considered MSE®= 10-15%
- Correlation of the parameters exists

Gault et al® - Underestimates travel time for occ.>50% With simulated data only;

~ Lack of empirical validation Within 10% of the mean
Gault* - Bounded (occ. should be < 70%) With video tape data;

- Not appropriate for oversaturation Within 10% (rarely up to 50%)
Abours - Signal settings are ignored With floating car data;

- Formulation not reported RMSE?= 13%
Luk et al - Requirement of stop-line detectors Not reported
Usami - Applicable for oversaturation only With simulation & field data

' RMSE = 10-19%

Luk - Flow conservation assumption With wheelbase data

- More suitable for freeway environment Within 10% of the mean

- Requirement of stop-line detectors

Takaba - Linearity assumption between Error ratio = 12-24%
travel time & flow in congestion
- Neglect of dependency between links

“MSE: Mean Square Error

bArrival Type Model

“Occupancy Model

YRMSE: Relative Mean Square Error

Zhang and Kwon also presented an overview of adéthe earlier models that were
used to estimate arterial performance measureshidrreport, the authors grouped the models
being studied into five (5) categories. These rhedéegories are regression, dynamic input-

output, pattern matching, sandglass, and modelglaeed by the Bureau of Public Roads
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(BPR). The following will sections will briefly ghlight the characteristics of these categories

as well as their limitation as it pertains to estimng performance measures along arterial. [10]

2.1.1.1 Regression Travel Time Estimation Models

Regression models attempt to use data that isrtlyravailable via today’s surveillance and
control systems. These models are capable of atnguior the various different factors that
may affect arterial travel time, however, the medaten become location specific and difficult
to transfer to other arterials. One of the mainilsinties among the different regression models
is required input data. The input data neededHesd may include time registered by a vehicle
on a loop detector, occupancy (derived from a Idegectors), offsets, and other signal parame-
ters. Despite the applicability of these modelsirtbstimation of travel times, when compared to
those from the field, are often less than satisfgcand therefore in need of further improve-

ments. [7], [9], [10]

2.1.1.2 Dynamic Input-Output Link Travel Time Models

Generally these models use input-output traffiavfleelationships, measured at upstream and
downstream detectors, along with assumptions desgrthe change in flow characteristics be-
tween the detectors. This class of models is abkstimate both link and route travel times us-
ing minimal site specific data. However, a disadage of these models can be an inability to

predict travel times (as opposed to estimatingeruriravel times) and they require a greater data
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sampling rate than what is currently available wile use of today surveillance equipment.

[10], [11]

2.1.1.3 Pattern Matching Models

In pattern matching the upstream loop detectorsrdea sequence of voltage signatures from
various vehicle types. This sequence of voltageadiges is then compared to those collected
from a downstream loop detector. The time betwagstream and downstream matching se-
guences is the average travel time. This approactalso be used to estimate other performance
measures such as traffic density and space meau.spechallenge to pattern matching ap-
proaches is that they often require a data samphtg and accuracy that is higher than that
which is obtainable from today’s field detectori0], [12] A more recent example of a technol-
ogy that has demonstrated success using patterchimgitis the wireless traffic detection and

integrated traffic data systems offered by Senstsvinrks [13].

2.1.1.4 Sandglass Link Travel Time Models

These model use the concept that travel-time cagsbmated as the sum of time spent on two
segments of a link — a congested segment and angested segment. On the congested seg-
ment of the link there is no inflow of vehicles fmeexternal sources nor is there outflow to other
roads, thus travel times are essentially detertninggieuing delays. For the uncongested seg-
ment travel time is determined by using a conssgeied relationship. One with a challenge of

these models is that the required input is quenegths which may only be indirectly obtained
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from the field data. Therefore any error in estimgaigueue lengths from the loop detectors will
be propagated throughout travel time estimatiomthieumore, the accuracy of these models is

unsatisfactory especially for dynamic short-teraific management applications. [10], [14]

2.1.1.5 Bureau of Public Roads (BPR) Models

The models developed by the BPR to estimate pedoce measure along arterial have primari-
ly been used in transportation planning and int#rse studies. Like sandglass models, travel-
times are computed as the sum of time spent orségments in a link, the free-flow travel time
and intersection delay. The input required for ¢hewdels is traffic volume data which is ob-
tained directly from loop and video detectors. Heare despite the anticipated accuracy of these

model, when tested the result tended to be unaetesfy. [10], [15]

2.1.2 Developmentsin Estimation Models

Building on the successes and lessons learned damirer models, a number of recent efforts
have been devoted to addressing the limitationsrafatusing the assumptions of earlier mod-
els. One of the first significant attempts to bwliearlier models was presented by H. M. Zhang
in 1998. Zhang developed the Link-Journey-Spee&)Indodel which estimates the speed, and
subsequently the travel time, along signalizedriattee The LJS model combines the speeds es-
timated from the roadway’s critical volume to capacatio and the one calculated from the vo-
lume and occupancy measurements from loop detectbes model has been demonstrated to

work well in under capacity conditions although ntagak down under congestion conditions -
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particularly when the built up queues are not lengugh to be detected by upstream detectors.
[16]

In 2007, Liu and Ma presented a time-dependent trtodestimate travel time along arte-
rials. In this paper the authors developed a mitdglused loop detector and signal status data to
calculate travel time along an arterial corridorhél calculating travel time the model decom-
poses travel time into two components; free floavéd time and intersection delay. Although the
presented model estimates travel time along alseféérly accurately its validation was com-
pleted in a simulated environment. Additionallyyen that the model greatly relies on loop de-
tector and signal status data, a real-world implaateon of this model may be met with a num-
ber of challenges relating to data accuracy anusingtting the data from the field to a remote
location to be implemented in the model. [17]

Wang and Hobeika present a modified HCM2000 maalektimate travel time along ar-
terials. Similar to previous models, this modelraates travel times as a sum of free flow link
travel time and delay experienced at an intersectssential to this model is the speed and vo-
lume data collected by upstream loop detectorse@as these data free flow travel time is a
simple calculation involving travel speed and liakgth while intersection delay is calculated by
grouping vehicles together and using the relatign&letween average intersection delay and
number of vehicles per cycle length as a well asaye intersection delay and the delay of the
first vehicle in a group of vehicles. The proposeddel was validated using average intersection
delay from a single intersection in the field aredlay computed using the HCM 2000 method.

Despite the accuracy with which this model estimatéersection delay for a single intersection
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along an arterial, the authors acknowledge thanelhg the model to involve a number of inter-
sections will further demonstrate the feasibilifyemploying this model to estimate arterial tra-
vel time. Additionally, a potential limitation ohis model is that it requires upstream loop detec-

tors, which are not often times available in thed-wgorld. [18]

2.1.3 Automatic Vehicle Location and | dentification Estimation Methods

As technological advancements have been made ifietds of global position systems and var-
ious vehicle identification technologies, a numbtresearchers have employed the use of such
technologies to better estimate transportation odtywerformance measures, particularly travel
time. Although the usage of these technologieshess largely geared toward freeway imple-
mentation there are a number of efforts that areediat extracting performance measures along
arterial streets. Dailey and Cathey, in 2002 dgyedioa estimation methodology that used transit
vehicles that were equipped with advance vehiabatlon (AVL) technology, with the aid of
Kalman filtering to estimate speeds and travel sirakong freeway and principal arterials [19].
Li and McDonald in 2002 presented a link traveldigstimation model that used GPS data from
a single probe vehicle. This model uses the tine=gpprofile of the probe vehicle to produce a
maximum continuous acceleration and an averagedspaleie to be inputted into fuzzy set.
Once these values enter the sets they will be aedlwith historical traffic data to derive travel
time along the link being studied. Despite the peimg results from this research effort the
model’s use of a single (or a few probe vehicles)epresent the traffic in its entirety along a

particular arterial may provide erroneous data paréicular driver’'s behavior may not be repre-
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sentative of the traffic’s current condition. Fuatimore building fuzzy sets of driving patterns for
a large arterial network may be a tedious and laiiensive process. [20]

Choi and Chung in 2003 presented an algorithm tised data from GPS equipped ve-
hicles and loop detectors to estimate link trairees along arterials. This algorithm also em-
ployed the use of a voting technique, fuzzy regoes@and Bayesian pooling to aid in the estima-
tion of arterial travel time. The base of this prepd algorithm is a double fusion data process
while incorporating the historical traffic data tife link being studied to estimate link travel
time. The results from the model indicate that #igorithm does accurately estimated the travel
time for the arterial links understudy. Howeversgible limitations include lack of feasibility in,
near-term, real-world implementation of the aldamtgiven its dependency on GPS and trans-
mitted loop detector data. Also the authors in@idhat further tests need to be done to analyze
how the algorithm will perform under different tliafconditions. [21]

In 2009 Pu et al. [22] presented key limitationsoasated with AVL technologies to es-
timate arterial performance measures in real-tihnteaddress some of these limitations, the au-
thors developed a framework that employs histous &nd car speeds, and streaming AVL bus
speeds to estimate bus and car speeds, and traeslin real-time. Central to this framework is
the joint relationship between bus and car speddshahas been formulated through the use of
historic car and bus speeds. Despite the methadi®iping results, accurate estimates are de-
pendent on streaming AVL bus data which is not giravailable. Also, the authors highlighted
the need for further studies, before full scale lengentation, to evaluate the frameworks per-

formance under changing traffic conditions. [22]
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Lucas et al. (2004) [23] presented three notewdithiations when using GPS and other
forms of vehicle identification technologies. Inrpahese limitations are associated with the off-
site processing of vehicle identification data whiinders real-time implementation of such me-
thods, the cost associated with additional equigraad infrastructure investments, and privacy
concerns of drivers as they traverse to transpontatetwork. To address these limitations, the
authors presented an estimation methodology thit r@ties on vehicle platoon information
from loop detectors. Although promising a disadegetof this method is that it requires stream-
ing detector data which is a limitation of todayraffic controller. [23]

All of the above efforts attempt to estimate parfance measures in real-time. However,
this goal has been achieved with varying levelsumfcess and accompanied by different sets of
limitations. Some of these works present an entiethod to extract real-time performance
measures, albeit with limited success during fallls field implementations. Others are more
geared towards improving a particular componerda oéal-time performance estimation frame-

work and not necessarily developing a complete atstlogy.

2.1.4 Statistical Models

There is a large body of work of statistical estiota models that are aimed at approximating
performance measures along arterials. In this oayegf models traffic data such as vehicle
speed, occupancy, headway, traffic flow volume,, @i used as input variables for equations or
models that output performance measures such\ad ti@e [17]. These models may be divided

into sub-categories such as classical statisticadlels and more complex statistical models.
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Classical statistical models refer to models tre waditional estimation techniques such as li-
near, non-linear, and Bayesian techniques to esiaderial performance measures. The more
complex model refers to model that employ techrscgiech fuzzy logic, neural networks, etc. or
any combination of these techniques.

In terms of examples of classical statistics modeisier et al. [24] presented a series of
linear expressions to estimate speeds along dstemal subsequently travel time, Zhang [16]
presented a non-linear model that combines twodspemates to calculate arterial travel time
and Park and Lee [25] used a simple Bayesian estirag the basis of a model to estimate ar-
terial link travel speed. As for more complicateddels Park and Lee [25] paired a simple
Bayesian estimator with an expanded neural netwmréstimate link travel speeds along arte-
rials, Cheu et al. [26] uses a multi-layer feedafard neural network with back propagation
training to fuse various data streams to estimegtgial speed, Palacharla and Nelson [27] em-
ployed the use of fuzzy logic and neural networkslgynamically estimate arterial travel time
and Robinson and Polak [28] considered a k — Ne&teghbor methodology to determine ar-
terial travel time using loop detector data.

Some of the limiting factors of these models inelutat they can be site specific and
must be recalibrated for different locations antuanber of these have only been evaluated un-
der simulated conditions. In addition many of ghatistical models require large field data sets
not only for the purposes of statistical significarbut also for some of the learning algorithms to

have more training before estimating arterial p@ni@nce measures. [17], [18]

35



2.1.5 Real-Time/Online Estimation Models

Skabardonis and Geroliminis (2005 and modified 32@8posed an analytical model to estimate
travel times along arterial streets in real-tiffdis model utilizes data that can be had from loop
detectors such as, flow and occupancy, and paivghtsignal timing data such as, cycle length,
green time, and offset. Kinematic wave theory i used as the base of this model as it was
able to represent the spatial and temporal featmegueues formed at signalized intersections.
Similar to previous models the travel time on ateraal link is calculate as the sum of the link
free flow travel time and the delay experiencedhat intersection. In this model the delay in-
curred at an intersection is equal to the summaifahe three forms of delay, the approach de-
lay, queue delay, and delay due to oversaturabiohght of this model’s ability to estimate tra-
vel time with relatively high accuracy it was valtdd in a simulated environment and also with
limited field data. However, field data trials whesffline, not utilizing a real-time data stream.
[29], [30]

Tsekeris and Skabardonis (2004) examined five &inalynodels that have been primari-
ly develop for use in real-time estimation of pemi@ance measures along arterials. These five
models are the Spot Speed (SSM), BPR-Based, Uniizelay-Based (UDM), Overflow Delay-
Based (ODM), and the Generalized Delay-Based (Gbiddlels. The evaluation of these mod-
els’ ability to estimate performance measures ai-tieme was conducted in a simulated envi-
ronment. In their simulated environment they fotinat to fully evaluate the robustness and ac-
curacy of these methods, aggregated travel timdbganetwork level, and available signal tim-
ing information should be taken into consideratibngeneral, the GDM and ODM were the
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most promising approaches to estimate total averagel times at the network level. While the
other models provided better estimates of individin& travel times. The GDM and ODM were
also capable of improved network-wide travel tirséreates and greater output robustness when
there are discrepancies between field and simulsiggehl timings. However, it is not known
how these simulated findings would translate teela implementation. [31]

In 2009 Kwong et al. [32] presented a scheme famesing the distribution of travel
time on an arterial link. This scheme employedube of wireless sensors to acquire the magnet-
ic signature of each vehicle. An upstream signaisim@atched anonymously with the signature
from a downstream sensor to estimate the traved tina particular vehicle. The authors also
state that other performance measures such asdinkne, delay, and queue length can be de-
termined from this methodology as distributionse Theans of extracting performance measures
from a vehicle’s upstream and downstream magngiature is a statistical model of signature
distance that requires no additional detector dateh occupancy, or infrastructure data such as
signal timing plans. In light of the preliminaryccess of this model, there is a need for further
field evaluations as the current evaluation procedvas done on a simple network. In addition,
ground truth verification of determined performamaetrics is needed. [32]

Lucas, Mirchandani and Verma in 2004, [23], presérd methodology to extract travel
arterial time information without the need to intgnindividual vehicles. Their methodology
identified vehicle platoons as they traversed thagportation network. The platoons are identi-
fied with the use of loop detectors placed alorgdrterial corridor being studied. The results

presented by the authors are encouraging howegedban testing in a simulation environment
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only. As previously mentioned, Zhang and Kwon [b@jhlights that such techniques often en-
counter difficulties when trying to estimate perfance measures in real-time as the sampling
rate needed for platoon matching is often not abéeal in the field.

A preliminary study was untaken in Melbourne, Aab# to investigate the feasibility of
extracting arterial travel time measures in remleti The study was conducted along a small sig-
nalized arterial corridor controlled by SCATS (SgginCoordinated Adaptive Traffic System).
In this approach, SCATS datasets, aggregated se60nd bins, were used in conjunction with
historical travel time data from VicRoads to pravidstimates of real-time travel time. A draw-
back of this approach is that to obtain estimatedel time data the given signal system
(SCATS) must also be used. In addition additioredédtors for successful field implementation
may be required. [33]

A large scale attempt to extract arterial perforogameasures in real-time was presented
by Whale [34]. In this paper, the authors presermtadethodology that employed the use of a
cellular automaton microscopic traffic simulatiaftevare and approximately 750 inductive loop
detectors located throughout the study area, Dwysh@ermany, to estimate roadway perfor-
mance. In essence, this methodology acquiresdrafformation, namely vehicle counts, from
each of the approximately 750 detectors at a résalof 60 seconds. The data used as input to
the cellular automaton traffic simulation model.dopreceiving the data and performing the ne-
cessary data processes, the load on each linkemsgiresented to the consumers of this informa-
tion. Limitations of the approach include the usa cellular automaton traffic model which has

a few deficiencies in representing traffic and dribehavior on a microscopic scale, a lack of
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flexibility in the resolution at which traffic dats sent and process, and that the vehicle load
along a particular link is the only performance swa being delivered to the consumers of the
results this effort. [34]

In another effort a team of researchers from theséisity of Minnesota developed the
SMART-SIGNAL system (Systematic Monitoring of Ari@r Road Traffic and Signals). This
system is a data collection and performance esbmabol for arterial streets. Integral to the
functionality of this system is the collection afjh-resolution event based traffic data from an
arterial. The primary data sources for the systeensgynal controller cabinets that are located
throughout the arterial being studied. From thederets event based data such as vehicle actua-
tions and signal phase changes are collected,vahand processed. This rich dataset is then
archived and processed to determine a variety dbqpeance measures. Estimates of perfor-
mance measures include travel time, queue lengthnamber of stops, under a variety of condi-
tions. The field implantation of this system iralies that it is capable of producing accurate per-
formance estimates in real-time. One challengdisfdpproach is the requirement to gain access
to a signal cabinet to extract the event-basedasdpgta. In addition, this system is more feasible
for a corridor which is controlled by a network adntrollers with one being a master. Where a
master cabinet is not present real-time data atigmdecomes a more significant challenge par-
ticularly given the resolution required by this hmadology. [35]

From the above sections one realizes that a nuofteivancements have been made in
the field of performance measure estimation alanerials although significant limitations still

exist. It is also noted that while many of thesewabefforts discussed their finding and underly-
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ing algorithms they did not present significantormhation regarding data transmission methods
or requirements, the impact of lost data or errosaetections, required detector data filters, or
other implementation issues. Despite the succedgbg state-of-the-art methodologies and sys-
tems, there are few limitations that this reseafébrt is looking to address while building on the

capabilities of these earlier works.

2.1.6 Available Real-Time Traffic Information Services

Currently, there are number of providers that offaffic information in real-time. A few of the
major participants in this arena include Google [Bijaffic.Com (NAVTEQ) [5], INRIX [36],
Total Traffic Network (TTN) of Clear Channel Radi®7], and Speedinfo [38]. Although this
short list highlights individual organizations thee currently providing information regarding
traffic performance, it is noted that a numbertafse and similar organization offer these servic-
es in collaboration with similar organizations.

The primary means by which these service providétain data to estimate real-time
traffic performance measures is through infieldsses and GPS enabled devices. For instance,
Google relies on individuals that have their GPSebla mobile Google Maps smart phone appli-
cation enabled. Google aggregates these individdata to estimate the current state of traffic,
primarily on arterial streets [4]. As for freewagtd, Google as well as other traffic service pro-
viders also rely on point sensor data often praviol regional and local transportation agencies,
such as departments of transportation. Traffic.camaffiliate of NAVTEQ, acquires its data

from its own network of digital traffic sensors,namercial and government partners, and their
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own traffic operations centers [5]. Speedinfo usesolar powered, DVSS-100 Doppler radar
Speed Sensor system which measures the speedidkEseain both sides of the highway [38]. In
addition to some of the previously mentioned dataces INRIX gathers information from GPS
enabled commercial vehicle fleets to estimateitrgférformance [36]. TTN employs informa-
tion from Airborne/Mobile Spotter Vehicles, Digit&lcanners that cover many local emergency
services, Police Callouts, and Traffic “Tip Lind87].

Accuracy of the traffic information being offereg these service providers is highly de-
pendent of the facility type and acceptable comfgdeband for the particular consumer’s appli-
cation. The freeway performance accuracy is comynoigher than that for surface streets. This
is primarily due to limited access nature of fregsvand more uninterrupted flow characteristics.
These attributes of a freeway facility lends itgelfaccurate performance measures being ex-
tracted, particularly on the macroscopic scalehwifairly narrow confidence band. As for sur-
face streets, both vehicle speeds and volume ghaytwariable due to intersections (signalized
and unsignalized) and frequent, uncontrolled acpests. In addition, to date, only macroscop-
ic level information is available for both freewagd arterial facilities, representing roadway

segments instead of individual vehicle performance.
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3 PROPOSED METHODOLOGY

The methodology employed by the research teanzesilpoint sensor traffic data to drive a mi-
croscopic traffic simulation in real-time. The d&tam the detectors was transmitted and used as
input to a simulation model of the area being sddiArterial performance measures are then
estimated from the real time simulation. In desoglthe methodology this section first presents
the conceptual framework for the effort followed the current implementation status. In the

current research effort the microscopic simulapaokage VISSIM is utilized.

3.1 Conceptual Framework

Figure 2 illustrates the conceptual framework feveloping a real-time, online, data-driven si-
mulation tool. The first step in the process i®kdain real-time traffic related data from the net-
work’s roadway detectors. These data are then pseceby the data processing server. Next, the
current traffic state is estimated by streamingpfecessed detector data into a calibrated simu-
lation model of the area being studied. Once th#idis current state is captured in the simu-
lated environment, the model may be used to prediat-term future traffic conditions. For ex-
ample, instances of the traffic’'s current state rbhaygenerated and run faster than real-time to
provide a series of possible future traffic state®m these future states, a probable future state
may then estimated. The current research effotses on the use of real-time data to estimate
the current traffic state however future reseaf@brts will seek to extend the current estimation

platform for use in near-term traffic prediction.
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Figure 2 Conceptual Framework for Proposed Methodagy

3.1.1 The Network and Detectors

As stated, the goal of this project is to deliveeaal performance measures in real-time using
an online data driven microscopic traffic simulatid@his research assumes an arterial network
where point sensor (i.e. loop detectors, videodete, etc.) detection equipment is available, or
may be deployed, capable of transmitting detedtiata in real-time. It is noted that while real
time transmission capabilities are not commonlijagttl such technology exists and is being in-
creasingly adapted. It is further assumed thatiitector location is known and may be mapped
to the simulation environment. Minimum requiredadatreamed from the detector include indi-
vidual vehicle actuations and speed. Other trafflated data such as occupancy, headway, and

volume may also be available however is not requioe the current research effort.
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3.1.2 Data Processing and Communication

The communication infrastructure to implement thal time simulation has three primary tasks:
1) manage the transmission of traffic data betwtberpoint sensors and the data processing unit,
2) facilitate the communication between the datacessing unit and the simulation, and 3)
broadcast the current and most probable futurédrsthtes.

For the current implementation in the first task thata that is sent from the point sensors
is processed by a central data processing unéditithte implementation of the data into the si-
mulated environment. The data processing unit réaelslata from the detector technology and
converts this data into the appropriate messagedbfor transmission to the simulation model.

The second task facilitates the passing of infoionabetween the processing unit and the
traffic simulation. Given the specific requiremefuds data transmission, processing, and sharing
with simulation instance(s), a customized commuiocatool is employed. This tool is referred
to as the Transportation Runtime Infrastructure TIRTRTI is a High Level Architecture
(HLA) inspired communication framework that managdles passing of information between
clients (i.e. simulations, data processing unit,)eSection 4 and Appendix A provide detailed
TRTI development, functionality, implementationaniation.

The third task broadcasts the current and estifudtiee states for use in traveler infor-
mation systems or in traffic control optimizatighweb-based application for presenting the in-
formation has been developed. For transportatioiitfamanagers, it is also envisioned that in

addition to the web-based application they will @access to the raw data. This will allow for
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the use of model outputs in systems capable ofsadgitraffic system parameters in real time,

such as signal timings, allowing for increasedfitafontrol system responsive.

3.1.3 The Simulated Environment

VISSIM, distributed by PTV, is a high resolutiomilation program that is capable of modeling
multi-modal traffic flow. VISSIM also has the cajldly to visually represent traffic. VISSIM
also provides a COM (Component Object Model) itegf which allows VISSIM to be auto-
mated by other applications. The COM interfac®e alovides users access to VISSIM objects,
so that they may be created, manipulated, or delef®r additional information regarding VIS-
SIM and it VISSIM COM interface see [39] and [40].

It is noted that one of the most critical aspedtshis research project is the need to have
a well calibrated simulation model of the area festudied. Section 6 documents the calibration
effort undertaken as part of this research. Curcahbration efforts are focused arpriori cali-
bration of the model parameters (i.e. vehicle aredibn, look ahead, safety distance, etc.). Fu-
ture research will explore real-time calibration\d5SIM model parameters. However, a well
calibrated base model will remain critical as iaigticipated that the real-time calibration provi-

sions will work best where only small adjustmet¥tSSIM parameters are required.

3.14 TestBed

Video cameras were selected as the point sensbis used for this test bed developed as part of

this research project. Ten video cameras have inest¢alled in a test bed located next to the
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Georgia Institute of Technology campus. A Videodatibn System (VDS) was selected as the
accompanying hardware and software, facilitatedréla¢-time transmission of event-based traf-
fic data to a remote location. In addition theenddetection system is capable of extracting a
significant portion of available roadway data. f@uatly, the ten cameras that have been installed
transmit their video via fiber optic cable to thetal processing unit. This unit then processes the
videos and sends all the relevant traffic dataniad or wireless connection to a client personal
computer. This client then parses the data streamirguts it accordingly into a VISSIM model
of Georgia Tech’s campus. Figure 3 presents thebt$s location, camera positions and their

respective views.
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| Flgure 3 Test Bed Location and Camera Layout and Ceerage [4]

3.2 Summary

In the following chapters the above conceptual &ark will be expand. First the
TRTI will be presented in detail. This will be foled by a series of method implementations,
ranging from lab implementations to full field tesfThese implementation presentations will
then be followed by discussion on related reseiechs explored as part of this effort including

calibrations and the treatment of pedestriansrambtime vehicle based simulation model.
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4 TRANSPORTATION RUN-TIME INFRASTRUCTURE

As discussed the real time simulation requires rmrsanication infrastructure to facilitate the
passing of information between the central proogsanit and the traffic simulation. Given the
specific requirements for data transmission, preiogs and sharing with simulation instance(s),
the use a customized communication tool is employids tool is referred to as the Transporta-
tion Runtime Infrastructure (TRTI).

The development of the TRTI has been conductedlyobetween this project and an
NSF’s Division of Emerging Frontiers in Researchd dnnovation (EFRI) project. TRTI is a
High Level Architecture (HLA) inspired communicatiéramework that manages the passing of
information between simulation instances, refeteeds federates. TRTI is an application pro-
gramming interface (API) or middleware that opesatising a publish/subscribe model. This
mode of operation allows clients and groups (fe@s)ato publish data to other federate(s) and
receive data from federate(s) that they have siliestto. Note, one of these federates can act as
a server (i.e. the central data processing urdt) dinchestrates the sharing of information among
the other federates. The TRTI allows users to m@nereate, add or delete simulations whenev-
er there is a need to do so. Thus, for examp&gle data processing unit could serve multiple
simulations, each modeling a different arteriahe Teminder of this chapter provided details in-

to the background, development, and use of the TRTI
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4.1 Related Run-Time Infrastructure Work

Simulation experts and researchers around the wale developed several Run-Time Infra-
structure (RTI) frameworks for varying purposesary of these frameworks have incorporated
features and functions defined by the US DepartnoériDefense’s High Level Architecture
(HLA) specification, resulting in interoperabilibetween them. Georgia Tech researchers have
developed toolkits to address a wide range of requents common to distributed simulations.
For example, the Federated Simulations Developigrn(DK) is a framework designed to fa-
cilitate the development of an RTI, especiallyhe tontext of distributed simulations. The FDK
contains two fully functional RTI implementatiortee Basic RTI (B-RTI) and the Detailed RTI
(D-RTI). The B-RTI provides only the minimum ses®s necessary for time-managed and mes-
sage-passing simulations. In contrast, the D-RoVvides the entire spectrum of services de-
tailed in the HLA specification [41].

With advances in sensor technology and the inangagbiquity of wireless communica-
tions, simulations that incorporate real-time daften referred to as "symbiotic” simulation sys-
tems) have been receiving increased attentiondeffi Darema categorized these simulations
as Dynamic Data Driven Application Systems (DDDASBY has described issues related to their
development [42]. Considerable research and dpretat has been devoted to the creation of
such systems, yielding several application exampldse LEAD project is applying these prin-
ciples to weather prediction [43]. Other work @&rig conducted to accurately model and predict
wildfire behaviors [44]. The AMBROSia project pides a generic toolkit for collecting, ana-

lyzing, and validating data from sensors in sciengxperiments [45]. Researchers at the Uni-
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versity of Birmingham (UK) have been exploring {hatential role of artificial intelligence (Al)
agents within a DDDAS [46]. The COERCE effort esearching ways to design increasingly
flexible DDDASSs that dynamically adapt to conditsooutside the scope of a simulation's origi-
nal design [47]. Additionally, the Agency for Seee, Technology and Research in Singapore
(A*STAR) has been exploring the use of DDDASSs tdldintegrated Manufacturing and Ser-
vice Systems (IMSS) that integrate and streamivesl of the business processes of the manu-
facturing sector [48].

Research is also being performed in the contextaffic modeling and simulation. For
example, Sisiopiku et. al provide a review of tlee wf sensor-driven simulations to optimize
signal timings and individual vehicle routings [8)et another specific project involves accu-
rately predicting travel times on arterial roadsusyng loop detectors in a symbiotic simulation
[10].

Leveraging the work done by others and recognitirag the proposed methodology re-
quires a robust communications framework; the meteteam developed the Transportation

Run-Time Infrastructure (TRTI).

4.2 TRTI: Overview

Inspired by the HLA specification, the TRTI is addieware communication framework based
upon the designs of the B-RTI mentioned in Secfidn but modified for traffic applications. It
provides mechanisms for group-oriented messagengassing the publication-subscription pa-

radigm. Because of the dynamic nature of a tramapon system, the TRTI was designed to
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allow individual nodes (which are referred to asdérates” in HLA literature) to communicate
over any available network with other federategh@ system. (The total collection of nodes
within a system is referred to as a “federationTQ ensure its versatility, the TRTI remains ag-
nostic toward the underlying network medium so lasgit is IP-based. As a result, the TRTI
may operate across a variety of network mediapding Ethernet, Wi-Fi, 3G, 4G, and several
others. In addition, the TRTI supports both theRJ&hd TCP protocols, thereby allowing fede-
rates to tailor individual connections to theirremnt network conditions.

In relation to the methodology being developed, TRE| provides a communication in-
terface for a wide variety of federates. For eximpaffic cameras, vehicle counters, vehicle-
based simulators, and traffic management centaulatians are classified as federates that con-
tribute to the simulation. The TRTI allows thea&tom all of these federate types to communi-
cate seamlessly in spite of their differing rolad aetwork media.

Rather than sending messages to multiple fedeithe3,RTI offers the ability to arrange
federates into groups. Groups are purely logicalstructs that provide mechanisms for segre-
gating messages. When a group is created, ivenga uniqgue name that distinguishes it from
other groups within a federation. When a fedevaghes to subscribe to a group, the TRTI uses
the target group’s name to identify the correctugrand establish a subscription. Messages pub-
lished to a group are automatically propagatedltmembers of that group. The TRTI frees fe-
derates from having to maintain an ever-changiag df message recipients, from having to
transmit several copies of each message, and framaging connections to each of the other

intended recipients.
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Because the TRTI is designed to operate in thenglbsef any infrastructure, federates
are entirely responsible for group management.fatditate this, the TRTI provides federates
with mechanisms to create, subscribe to, and wathdrom groups. Any federate can create a
group irrespective of its role within a federatioRederates can also join and leave groups arbi-
trarily, as well as send messages to and receiwsages from a group. When a federate pub-
lishes a message to a group, the TRTI ensureshbanessage is propagated to all other fede-
rates that have subscribed to the group, and preveinom being sent to nonsubscribers. Such
segregation ensures that each federate receivesmassages in which it is interested. As a re-
sult, the need to broadcast each message to tine faaeration is eliminated, thereby reducing

its overall bandwidth consumption.

4.3 TRTI Architecture: A Closer Look

4.3.1 Initialization

Within a federation, each federate utilizes a laesiance of the TRTI as its communica-
tions gateway. The TRTI serves as a middlewaredsst federates and handles all aspects of
message reception and delivery. At initializatitthe TRTI provisions the necessary resources to
enable message passing via both the UDP and TG&cpte. The TRTI also records the name
of a message handler function that will be callégtmvthe TRTI receives a message intended for
the federate. Each instance of the TRTI is idahtiegardless of the role of the federate within
the simulation. As a result, all federates haweess to all features of the TRTI. Figure 4 pro-

vides an overview of the TRTI's architecture.
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Figure 4 TRTI Architecture Overview

Each federate will initialize its local instancetbé TRTI at the beginning of its participation in
the simulation. In the online traffic simulatiopstem described in Section 3, the cameras, road-
side sensors, and traffic management center simogainitialize their instances of the TRTI

immediately after being brought online.

4.3.2 Messages

Messages passed by the TRTI conform to a standardormat. When a federate publishes a
message, the TRTI attaches a header to the beginhthe message containing its size and type,
the name of the group to which the message is toubéished, and the IP address of the mes-
sage’s source. The message is then deliveredetéetterate that serves as the host of the in-

tended group which subsequently propagates theagess group subscribers. The TRTI oper-
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ates under the assumption that no messages aiia tostsit and therefore does not employ any
delivery confirmation mechanisms. The process e§sage propagation is detailed in Section
4.3.6.

As an example, the cameras of the test bed systeaddtast messages that typically con-
tain the following information:

4, 2,18, 13:00:45, 1278608487.375490
These fields represent the following (from leftright):

*Detector number - ID of the source camera for thessage

sLane Number - lane which the camera is monitoring

*Vehicle speed - measured in miles per hour

*Timestamp - formatted as hh:mm:ss

*Epoch timestamp - number of seconds from 12:00MAAL/1970
Given the fact that current efforts are limitecatemall geographical area, only one group is spe-
cified. As a result, all of the simulators in #estem all receive the same messages.

However, not all of the messages sent by the TR&ludilized by federates. Because
disparate TRTI instances require a collaborativamseof managing groups, the TRTI employs
group management messages separate from federsetgel group messages. When a fede-
rate creates a group, its local TRTI instance sudldyroup management message that details the
new group and delivers it to the intended groug.hd$ie group host's local TRTI instance then
processes the message internally and performsctlems described in Section 4.3.6. Requests
for group subscriptions and subscription termimagialso result in group management messages
that are handled in a similar fashion. Howeverewh federate requests that a message be pub-

lished to a group, the TRTI creates a group mesaadalelivers it to the appropriate recipients.
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When a group message is received, the local TRSthnte delivers the message's data to the

federate by calling the message handler functiesddbed in Section 4.3.3).

4.3.3 Handlers

The TRTI employs two types of handler functionsrst: message handler functions serve as a
federate's inbox for messages from the TRTI. AsigmMmessages are received, the TRTI passes
the contents of the incoming message to the fezleratessage handler. Similarly, the TRTI
employs internal message handlers for processiognimg group management messages.
These handlers operate independently and asynalsiynfivom the federate's software, thereby
freeing the federate from any group managementnaesksage propagation tasks. While these
internal handlers are defined within the TRTI fravoek, the federate's incoming message hand-
ler function is defined entirely by the federatenly one incoming message handler function can
be defined for each instance of the TRTI. The micg message handler must be defined when
the TRTI is initialized.

Second, the TRTI allows for group handlers to béndd by federates. Group handlers
are used to perform processing tasks on messaged@their delivery to each of the intended
recipients. Group handlers also allow for commaorcessing tasks to be consolidated, thereby
eliminating duplicative effort by the individualderates. They also allow for group-level infor-
mation to be reported to group members. For exanglransportation simulation may imple-

ment a group handler that determines the numbeehutles subscribed to the current group and
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appends it to each message, thereby providing ghrestimate of how many vehicles are in the
area.

Unlike message handlers, there is no limit to tinalper of group handlers that can be as-
sociated with a group. Group handlers are exedwegtoup hosts and can be associated with or
disassociated from a group at any time. When eréad publishes a message, its local TRTI in-
stance transmits the message to the group's hse host TRTI instance then executes the
group handlers associated with the group and pedpaghe processed message to the group
subscribers. Group handlers are executed indepdndad asynchronously from the federate's

software.

4.3.4 Connections

As mentioned in Section 4.2, the TRTI supports mgsgassing via both TCP and UDP proto-
cols. Federates can use unreliable datagram seriricareas where weak signal strengths disal-
low reliable connections, and use persistent cdiorecwhere strong signals prevail. This flex-
ibility maximizes a federate’s ability to remainncected with a federation in spite of changing
network conditions.

When a federate subscribes to a group, it designaltéch protocol is to be used when
transferring messages both to and from the grdtip. federate specifies a persistent TCP con-
nection, the TRTI takes responsibility for maintagithe connection. In transportation simula-
tions, connections often become disrupted whenclehidrive through “dead zones” in wireless

network coverage. When this occurs, the TRTI ed#isthes any persistent connections as soon
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as the vehicle returns to an area with adequatalsapverage. However, if a federate specifies
that the UDP protocol is to be used, no such caroremaintenance procedures are required due

to the connectionless nature of UDP.

4.3.5 Message Queues

The TRTI handles the delivery and receipt of messagynchronously from the federate’s soft-
ware. To facilitate this, the TRTI employs a seré¢ queues to store messages until the federate
is prepared to accept them. For example, whenagessare received, the federate’s local TRTI
instance stores them in the incoming message quetiethe federate calls for them to be
processed. The messages are then passed to ¢natéeith the order they were received. In the
context of transportation simulation, this queualdes the federate to control when new data is
incorporated into the simulation.

When handling outgoing messages, the TRTI can bégroed in one of two ways. By
default, it is configured to deliver messages imiaiedly. In this case, when the federate passes
the message to its local TRTI instance, it immedyabegins publishing it. An alternate confi-
guration allows outgoing messages to be storedqgueaie. The messages remain queued until
the federate explicitly requests that they be @eéd. At this point, the TRTI publishes all
gueued messages in the same order that the fegeoaided them. In both configuration scena-

rios, the TRTI publishes messages asynchronousty the federate’s software.
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4.3.6 Groups

Any federate within a federation can create and gogroup. When a federate creates a group, it
specifies a group name and the address of thedtedérat will host the group. Each group
host’s TRTI instance will maintain a list of allderates that are currently subscribed to the group
and ensure that each published message is propgagasdl group subscribers. When federates
subscribe to a group, they must specify both thgetagroup name and the address of the group
host. Once subscribed, the federates will recalivmessages from the group and may broadcast
messages to all other members of the group.

Naming conventions for groups can be based oniatyasf criteria. Examples include
generating names based on a federate’s geogragatdn, its role within the federation, the
type of messages being sent, or numerous otharsactGroup naming is completely arbitrary
from the TRTI's perspective and is left entirelythe® federates to determine. In a transportation
simulation system, possible naming conventionsuihel using street address ranges, sensor-
specific names, and/or latitude-longitude coordisat

Group creation involves three steps illustrateBigure 5. First, a federate sends a group
creation message that includes the new group's mare intended group host. (Any federate
can send and/or receive these messages to anyfedleeate. They can even send these requests
to themselves if they intend to host the new grgupdpon receipt, the message is placed in the
group host's incoming message queue (describeedtio8 4.3.5). Second, the group creation

request is relayed to the group host's group ameatiessage handler (described in Section
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4.3.3). Third, the group host creates an entrigsiglobal groups list for the new group. (The

global groups list contains a list of all groups ¥dhich this federate serves as the group host.)
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Figure 5 Steps taken by TRTI when groups are create

When a federate subscribes to a group, the TRTanees of both the group subscriber and
group host take several steps as illustrated iorEi§. First, the subscriber's TRTI instance adds
an entry to its locally-registered groups list talicate that it has joined the target group.
Second, the subscriber opens a connection to thedrost and stores it in its connections list
(described in Section 4.3.4) for later use. Ifshbscriber is not using a persistent connection or
had already stored an open connection to the ghagp previously, this step is skipped. The
third step only occurs if the subscriber's TRTkamge is configured to use an outgoing message
gueue (described in section 4.3.5). In this ceesubscriber creates a group subscription mes-

sage and adds it to the outgoing message queuxt, tNe message is transmitted to the group
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host and placed in its incoming message queuehdlfarget group does not yet exist on the in-
tended host, the group host creates the group tgrpeng the steps shown in Figure 5.) Fifth,
the group subscription request is relayed to tle@ighost's group subscription handler (also de-
scribed in section 4.3.3). Finally, the handlerdifies the target group's entry in its global

groups list to reflect the new subscription.
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Figure 6 Steps taken by TRTI when federates subsdre to groups

After a group has been formed and federates hamedpthe subscribers can begin publishing
messages to the group as shown in Figure 7. Bifsigerate generates a message and passes it
to its local TRTI instance for publication to agat group. The TRTI finds the target group in its
locally-registered group list and transmits the sage to the group's host. Upon receipt, the
group host's TRTI places the message in its incgmiessage queue. Second, if any group

message handlers (described in Section 4.3.3) bagr associated with the target group, the
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group host's TRTI relays the message to them focgmsing. Third, the group host generates a
copy of the processed message for each of the 'greubpscribers as indicated by the host's glob-
al groups list. Fourth, if the host's TRTI is dgofed to use an outgoing message queue, copies
of the processed message are then placed in thee.quéfth, the copies are transmitted to all
group subscribers and subsequently placed onittoeiming messages queues. (If the message's
source is a subscriber, it will also receive a copyhe message.) Finally, each subscriber's
TRTI instance relays the message to the fedenatsing message handler that was designat-

ed during the TRTI's initialization (as mentionedSection 4.3.1).
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Figure 7 Steps taken by TRTI when group messagesepublished

The steps required for leaving a group are sinidahe subscription process shown in Figure 6.
First, the departing federate removes the grouptsy drom its locally-registered groups list.

Second, the federate generates a group removabhgeessd, if configured to do so, places the
message in its outgoing message queue. Thirdnéssage is transmitted to the group host and
subsequently added to its incoming message qusagt, the group host relays the request to its
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subscription termination message handler. Fitlle, handler modifies the group's entry in its
global groups list to reflect that the departinddeate has terminated its subscription. Finally, i
the departing federate was using a persistent ctioneand has terminated its subscriptions to
all of this host's groups, the group host closesféuerates connection. The departing federate

subsequently disposes of the corresponding enitg connections list.

4,37 Miscellaneous

The TRTI is written in the C programming languagel das been optimized to minimize the
overhead of message propagation. While many elenuérthe TRTI are conceptually inspired
by the HLA, its design deviates significantly frahe original specification in order to compen-
sate for the highly dynamic nature of transportaggstems.

Some of the commercially-available traffic simubatiplatforms on the market today,
such as VISSIM, provide developers with a VisuasiB4VB) interface for expanding the plat-
form’s functionality. To accommodate this, the TIR&s been compiled as a dynamically linked
library (DLL) to maximize compatibility with VB andther languages with DLL support. For
additional details on how to initialize and use TRinctions, Appendix B provides the Applica-

tion Programming Interface (API) for TRTI.

4.3.8 Limitations of the TRTI

Because it was not designed as a peer-to-peervrarkethe TRTI’s architecture is its most sig-

nificant limitation. Specifically, no mechanismists for federates to "explore" a network, the-
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reby preventing them from finding one another withosing some form of directory lookup ser-
vice. Section 4.3.6 illustrates this limitation &yplaining that federates must provide the IP ad-
dress of group hosts, implying that the addressready known. Such is the case for the method
being proposed. To compensate, a single statiaditiyessed federate (whose address was hard-
coded into each federate's software) was desigm@atéide host of all groups. However, in cases
where the address of group hosts is not previokisbyvn, a directory service must be used to
provide federates with the IP address of each ¢sdugst.

Another related limitation stems from the requir@ett®at groups be hosted by a specific
federate. When a group host goes offline, the giisudissolved. Any messages published to
that group in the future will no longer be propaght For the group to be restored, it must be
recreated on a new host, and each federate mustréadto the new group.

Several minor TRTI limitations are dictated by #twmputing hardware. For example,
the maximum number of queued messages, groupsgraoag members is determined by the
amount of memory available on the host machinéne (TRTI can be configured to enforce arbi-
trary maximums on the size of these structuredgo,Anessage propagation speed is limited by
both processor speed and network bandwidth. Graugbslarge numbers of subscribers may
experience significant latency in message delitiengs due to these factors.

Another issue arises from the wide variety of hawused in distributed simulations.
Not all hardware manufacturers construct their potslto use the same endian format. Because
of the TRTI's agnostic approach toward messagepdyl it does not modify any numerical data

in the message and thereby does not ensure comipabbtween federates of different endian-
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ness. As a result, federates may receive mess$ageappear corrupt. To avoid this, federates
should implement standards for bit ordering witthiair federations. A simple solution involves

utilizing the functions provided by the standardlszs library to encode numerical values both
to and from network bit order. If messages areery encoded before being sent to and after

being received from the TRTI, bit ordering problewil be averted.
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5 EXPERIMENTATION AND EVALUATION

Three experiments were conducted to determine dhsiljility of the proposed methodology.
The first of was a proof of concept test which wasducted in a simulated environment. The
second and third were field tests, with the primgifference being the use of temporary versus

permanent detectors. The following presents thaildetind results for each experiment.

5.1 Experiment #1: Simulated Environment - Proof of Corcept

The proof of concept seeks to provide insight i feasibility of the proposed real time simu-
lation framework. This experiment uses two VISSIMnglation instances. One instance
represents the “real-world” or field and the oth&empts to replicate the “real-world” simula-
tion in real-time (referred to as the “modeled-widyl The inputs to the real-world model include
traffic volumes over a 4-hour period (reflectiveaopeak period), signal timing data, and vehicle
turning movements. The modeled-world simulation thessame roadway configuration, signal
timing data, and historical turning movement petages. The modeled-world simulation is not
given any vehicular volumes as part of the inplaisfiInstead, as will be discussed, vehicles are
generated according to the data obtained from ¢hectbrs in the real-world simulation instance.
This initial experiment explores the feasibility approximating traffic conditions of the real-
world simulation in the modeled-world simulationo Tetermine how well the modeled-world
replicates the real-world travel time and delayraepresentative paths, and queue lengths at the

approaches of the various intersections, are delle@nd compared.
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5.1.1 Experimental Design

A three intersection arterial was created usingSIMg with each intersection under two-phase
semi-actuated signal control. Each roadway is awayg arterial, with one lane in each direction.
In the real-world simulation a loop detector isgald 100 feet from the upstream end of each en-
trance link, for a total of eight boundary loop efgbrs. These detectors are responsible for cap-
turing the presence and speed of a vehicle agerseithe network. In both the real-world and
modeled-world there are 6 additional detectors, @ameach intersection cross street approach.
These detectors are used to implement semi-actiraifid signal control. No data is currently
passed from these detectors in the real-world sititul to the modeled-world simulation. Both
models simulate a 4 hour time period during whiclh mmaximum network volume reached is
approximately 1200 vehicles/hour and a minimumpgraximately 550 vehicles/hour.

A framework in C++ was developed to implement tystesm shown in
Figure 8. In this framework VISSIM COM is utilized provide a direct means of interacting
with a simulation during runtime. To establish coomication between the two simulation mod-
els a unidirectional named pipe is created. A Bpe specific section of memory that is used for
the purposes of communicating between a serveoaadr more clients. When using pipes the
pipe-server is the process that creates the pigatrenpipe-client is the process that connects to
the created pipe [49]. In the named pipe that weated the real-world simulation model served
as pipe-server and was able to write to the pipe. dipe-client was the modeled-world simula-

tion and was able to read from the pipe. While pigee capable of two-way communication for
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the purposes of this experiment a unidirectionpepvas sufficient. Subsequent experiments re-
place pipes with the TRTI.

Each of the eight detectors that are placed aetlye of the real-world simulation net-
work are polled for vehicle speed, location, amielaata once every simulation second. In this
example, given the fixed detector locations, aaetelD would be sufficient in place of the lo-
cation and lane data, however, passing locationlamel data was undertaken to allow for more
robust data streams in future experimental itengtid\t the end of each second the pipe server
writes an [8] x [3] array to the pipe containing ttletector information over the last second. The
array is then read by the pipe-client and the mfaron is implemented in the modeled-world
simulation. For a graphical representation of tkgeeimental design, see Figure 8 Experimental

Design for Proof of Concept.

Real-World Modeled-World §
| | Server [8] x [3] Client |
Vissim- Named Pipes Vissim-
| | CcoM COM | |
.s-peer;
VISSIM location VISSIM

lane
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The execution of the model world is driven by tkal-world model, with the modeled-
world executing a simulation second only when asdof data is received from the real-world
data server. In this experiment, reliable, ordezechmunications are assumed with the named
pipe operating on a first-in-first-out (FIFO) basissuring that the modeled-world and real-world
simulations remain synchronized. Subsequent vessodrthe framework using the TRTI inte-
grate timestamps directly into the data streamiaocdrporate data consistence checks. The fol-

lowing pseudo-code further illustrates the struetoirthe server — client relationship.

Pipe-server (Real-World)

for (i =0, i <= simulation period, i++)

{ advance simulation 1 sec

read vehicle speeds from the 8 detectors
write [8]x[3] to pipe }

Pipe-client (Modeled-World)

for (i =0, i <= simulation period, i++)

{ read [8]x[3] from pipe

input vehicle speeds into simulation
advance simulation 1 sec }

5.1.1.1 Simulated Time Frame

A four hour simulation time period is used, captgrihe transition into and out of the peak pe-
riod. The flow rate is 500 vehicles per hour on thain arterial for the first hour, increasing

steadily to 900 vehicles per hour over the secamtlthird hours and then returning to 550 ve-
hicles per hour in the fourth hour. At the end lod simulation period the average travel times

and delays from seven representative paths, aldthgtie queue lengths at each intersection ap-
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proach are collected from both the real-world aratieled-world simulations (Figure 9 and Ta-

ble 4). These performance measures are preseni€dnmnute interval aggregations.

5.1.1.2 Scenarios

The results from two scenarios are presented. Soehaassumes ideal detector performance,
with every real-world vehicle and its associateéesp accurately detected and passed to the
modeled-world. Under such an assumption the pringiififgrence between the real-world and
modeled-world results will be due to randomnesdriver and vehicle characteristics and poten-
tially different path selection decisions of a \@&iin the real-world and its simulated counter-
part in the modeled-world. Scenario 2 introduceseof the variability expected in a field im-
plementation from detector failures and speed nreasent inaccuracies. The detectors random-
ly failed to detect vehicles with a frequency ofpegpximately 2%. Additionally, the detected
speeds were allowed to randomly vary higher or Idweup to 10% of the actual vehicle speed.

In both scenarios the vehicle speed measured beetidtector in the real-world is used
as the desired vehicle speed for the vehicle plac#dte modeled-world. However, if the vehicle
speed was lower than the expected range of deseeds (48 to 58 kph) it is assumed the ve-
hicle is within congested conditions and the desspeed is randomly set within the preceding
desired speed range. In this instance the velscfdaced in the modeled-world at the highest
speed possible given traffic conditions without eeding the desired speed. If the vehicle is
traveling more slowly than its desired speed il witempt to accelerate to its desired speed as

quickly as possible.
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5.1.2 Resultsand Analysis

Five replicate runs (R-1 through R-5) were perfatmiach replicate run consisted of a mod-
eled-world being driven by the streamed detectta d&the real-world simulation, allowing for
paired comparisons of the real-world and modeleddvamulations. Each replicate run utilized
different random seeds for real-world and modeledladvsimulation instances.

Travel time and delay results for seven paths amiig lengths for three approaches were
compared between the real and modeled-world simulatstances for the two scenarios.
Figure 9 presents the network link naming converstiand Table 4 the performance measure

links considered. All links in the network areglmlane.

s Bs u |2 20 o

7 8 13 14 17 18

Figure 9 Roadway Network and Link Names
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Table 4 Description of Performance Measures

Measures Path Links Distance (m)
Travel Time Delay
TT-1 DL-1 1-4-9-15 1308
T-2 DL-2 16-10-3-2 1309
TT-5 DL-5 11-13 290
TT-8 DL-8 4-12 366
TT-9 DL-9 10-13 382
TT-10 DL-10 4-9 381
TT-11 DL-11 10-3 383
Queue Length

QL-1 1

QL-6 14

QL-7 10

5.1.2.1 Individual Performance Measures

For most of the monitored performance measureStemario 1 and Scenario 2 modeled-world
simulations captured the performance of the realdveimulations accurately. For example,
consider Figure 10 and Figure 11 which presentdtees of the travel time for path 2 (TT-2),
from replication 2 (R-2), and of the queue lengithgath 6 (QL-6), from replication 3 (R-3), re-
spectively, over the four-hour simulated time périds seen, the modeled-world in both scena-
rios is able to reasonably track performance measaf the real-world through the four hour

period.
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Figure 10 Average Travel Time for Travel Time Path2 (TT-2), Replication 2 (R-2), for the
Real-World and the Modeled World Scenarios 1 and 2.
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Figure 11 Average Queue Length for Queue 6 (QL-6Replication 3 (R-3), for the Real-
World, and the Modeled-World Scenarios 1 and 2

72



For instance, in Figure 10 and Figure 11 the alsdlifferences among the measures
from the various scenarios analyzed are minimag dverage and standard deviation of the dif-
ference between the values of TT-2 from Scenarwel2.06, and 1.55 seconds; and 2.10, and
2.12 seconds, respectively for Scenario 2. SimyildHe average and standard deviation of the
difference between the values of QL-6 from Scenaraye 1.96, and 1.46 car-lengths; and 1.96,
and 1.57, car lengths, respectively for Scenario 2.

However, when considering all replicated experimiastances it was found that the
model-world did not always consistently track tlealtworld. For instance, consider Figure 12
and Figure 13, which represent the travel timepfth 1 (TT-1) from replication 4 (R-4) and the
delay for path 1 (DL-1) from replication 3 (R-3gspectively. There is a large discrepancy in the
estimates of these particular performance measategeen 8000 and 11000 seconds, the high-
est demand period of the simulated time frame. mbdeled world travel time estimate approx-
imately 73% of the real world travel time for b&hkenario 1 and Scenario 2. The delay estimate

from the modeled world is approximately 44% of #s¢éimate from the real-world.
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the Modeled-World Scenarios 1 and 2
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Two potential sources of these errors are: 1) ramméiss in vehicle routing and 2) a
smoothing of flows in the model-world. In these esments the randomness in vehicle routing
is limited to a vehicle’s turning movement selectat an intersection. Of primary concern is the
selection between through and left turn movemehRts. example, the intersection midway
through the arterial has the highest left turn nmoget percentage at 16% in each direction. The
impact of the randomness in left turn movementciele is seen through which vehicles in a
particular platoon turn left. The left-turn vehigdacement in the queue can dramatically impact
operations as flows approach capacity, particuliariyis study network as a left-turning vehicle
waiting for a gap will block all following (left,nirough, or right turning) vehicles. For example,
if the 1st vehicle in a platoon is attempting t@oigate a left turn at the arterial’s middle inter-
section and is unable to do so the waiting delapasrred not only for the turning vehicle but
also for those vehicles queued behind the turnefgcle. Should the last vehicle in the platoon
attempt to make a left turn, any delay while wagthor a gap will be experienced only by that
left-turning vehicle.

This particular source of error cannot be addressetdoundary point sensors without
knowledge of every real-world vehicle’s desiredhptitrough the network. The currently data-
driven simulation is based on the hypothesis theh glata is likely to be unavailable, at least in
the near future. However, detector data from irgkenetwork detectors may provide a means to
address this issue. For example, a mainline detettthe stop-bar could be used to identify

when vehicles are not moving during a green phasdetlas information could be passed to the
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modeled-world simulation. The use of internal netwdetector information will be one direc-
tion of future research efforts.

The second issue, a smoothing of flows in the nemtelorld, has the potential to
“smooth” out traffic fluctuations. Currently, irngective of the headway with which cars enter
the real-world, the modeled-world implementatiogoaithm has the effect of rounding the
headway to the nearest second. This is particuterigworthy for actuated traffic control, where
a few tenths of a second can be the differencedmtva signal gaping out and a car receiving an
extension of the green phase. For example, imdpkcate runs where the divergence in travel
time was seen at the middle intersection it was at#ed that the side streets tended to receive
slightly more green time. Overall this would dec®dhe time given to the mainline and de-
crease the modeled-world delays. Headway smoottfiige entering flows is a likely explana-
tion of the extended side street green time. Fugtfaats will consider methods to eliminate this

unintended bias.

5.1.2.2 Consistency of Results

The consistency of the performance measures agpisate runs was explored by cal-
culating the difference between the real-world amodeled world performance measures for
each replicate trial and then averaging over theplicates. Table 14 and Figure 15 illustrate the
concept of stability using average differencesuewe lengths from Scenario 1 and travel times

from Scenario 2, respectively.
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The above figures indicate that the methodologyndpeonsidered is rather stable except
for a few instances were performance measureseliffduring the period being considered in a
particular replicate trial. The reason for thedéedences is discussed in the previous section and
will be the focus of future efforts. Overall, theodeled-world is generally successful at replicat-
ing performance measures of the real-world. Intamidthe method is seen to be resilient to rea-
sonable detection errors, that is, drasticallytfadhta or complete detector failure is not consi-

dered in this analysis.

5.1.3 Limitation and Future Direction

In designing the proof of concept experiment, ggearch team limited the data passed from the
real-world simulation to the modeled-world simubetito data that could be obtained in a field
implementation. That is, the modeled-world was pratvided with more information than may
be detected on today’s roadways. However, in VIS8iste are approximately 12 potentially
influential parameters that are used for the puepad calibrating traffic simulation models. Ta-
ble 5 lists these parameters [39]. In the discusspériment these 12 parameters are the same in
the real-world and modeled-world simulations. Thesults in the modeled-world simulation

having “perfectly” calibrated parameters relatigetie real-world.
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Table 5 Description of VISSIM Calibration Parameters

Parameters
Emergency stopping distance Minimum headway
Lane changing distance Desired safety distancenpeas
No. observed preceding vehicles Maximum decelaratio
Maximum look ahead distance -1 m/s”2 per distance
Average stand still distance Accepted deceleration
Waiting time before diffusion Distance of standangd 50km/h

One of the key next steps is the exploration ofitlygact of these calibration parameters
and other sources of randomness in the simulaBention 6 presents an in depth discussion on
model calibration. In additional next research stalso include identifying, quantifying, and ad-
dressing the factors that resulted in the signifioczariation noted during the peak demand pe-
riod. Of primary interest will be two issues dissad in section 5.1 however other possible
sources for the variation will also be sought.

Finally, the current model is limited to detect@nboundary points of the model. Future
work will seek the incorporation of detection d&tam internal detectors into the model calibra-
tion. This will consider standard detections (fygical actuated control layouts) and the possible

of new detector placement specifically designedidoa real-time simulation.

5.1.4 Experiment #1 Summary

This experiment explored a methodology to develaai@-driven online simulation tool to de-
liver real-time performance measures with the didhiwroscopic traffic simulation. The major

objective of this experiment was to demonstratefelasibility of such as real-time simulation. A
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proof of concept experiment was designed to hawe mitroscopic traffic simulation instance
reflect the performance measures of second modiglg wnly data that could be polled from a
detector. This experiment was accomplished throtlghuse of two VISSIM simulation in-
stances, where one represented the real-worldhenother, the modeled-world.

The results from this experiment demonstrated tiatmodeled-world is capable of re-
flecting the performances measures of the realdvaith a relatively high level of accuracy.
However, some notable discrepancies were seen.itBdbp current discrepancies and limita-
tions of the experimental design, the results prieskesupport the likely feasibility of this ap-

proach.

5.2 Experiment #2: Field Test with Temporary Detectors

In experiment #1, the results of preliminary stsdie determine the feasibility of the proposed
framework are presented. Given the feasibilityhaf proposed methodology in a simulated envi-
ronment, a field test was developed to explorenteéhodology’s robustness. The goal of the ini-
tial field test was, in part, to determine whethéfISSIM simulation instance could be driven by
real-time, real-world, detector data and producdop@mance measures that reflect those of the
area being simulated. To conduct this experiméststh Street / Ferst Drive corridor in the mid-
town Atlanta area on the Georgia Tech campus wiaeted as the arterial to be studied (see
Figure 16). The experiment was conducted for 90uteisy, during the peak noontime period on

July 16, 2009.
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A VISSIM model for the test bed area was develogeedal time detector data was
streamed into the VISSIM simulation model from bdary detectors (Figure 17). While not
used in this experiment midblock detector data alss streamed and logged for potential use in
future concept development efforts. For this expent temporary detectors where utilized. De-
tector data was transmitted over Georgia Tech'®less network to a central data processing
server. A time stamped message was sent for edublevghat crossed a detector. The time
stamped data included the link number and lane eummbthe reporting detector and the meas-
ured vehicle speed. In addition, the corridor watfitbed with temporary cameras located at
each of the six intersections that record arteedrations during the experiment. The cameras
facilitate the post-hoc extraction of travel timatal to be used in the evaluation of the real-time
simulation performance. In addition, two GPS eqappehicles logged their location and speed
data as they traversed the study corridor durirgetkperiment. Figure 17 shows the VISSIM
representation of the test site and the locatidretectors and cameras along tfeSreet NW
and Ferst Drive NW corridor. At the end of the 90we test period the logged data was
processed and various performance measures egtracteomparison with the simulation out-

put.
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Figure 17 VISSIM Representation of the Study Corricr
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5.2.1 Resultsand Analysis

The camera and video based field travel time d&t@wompared with the VISSIM mod-
el to determine how well the data-driven simulatiwas able to reflect field travel times. Two
primary sets of travel times were obtained: eastdd&B) and westbound (WB). Scatter plots of
the data are shown in Figure 18 and

Figure 19. For the eastbound data,

Figure 19, one can readily infer that the VISSIsivil times are similar to the field tra-
vel times, with exceptions at the boundaries ofgfamhic where the VISSIM travel times appear
to be higher than the field travel times. For thestbound data sets, Figure 18, there is less simi-
larity between the VISSIM and field travel timegom the westbound graphic the field travel

times appear systematically in the lower rangeafd times output by VISSIM.

83



Travel Time (sec)

Westbound Travel Time

#VISSIM (n=128) MField (n=56)
350

300

250

[
(=)
=3

@
=]

100

50

0 T T T T T T
11:29:46 11:44:10 11:58:34 12:12:58 12:27:22 12:41:46 12:56:10
Time

Figure 18 Westbound Travel Times - VISSIM vs. Field

Travel Time (sec)

Eastbound Travel Time
+VISSIM (n=113) EField (n=50)

350
|
a0 W r~ . 4 B '
2 - L 2
250 = | . e ’= = -+.
b
o !.*’0 ot w'ulle ‘mm® o "z
He o **® me He *
. ’nl: ® e, ¢ #
L 2 L
- o o %o o0 . ’
100 .
50
0 : . : . i T
11:29:46 11:44:10 11:58:34 12:12:58 12:27:22 12:41:46 12:56:10
Time

Figure 19 Eastbound Travel Times VISSIM vs. Field
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The descriptive statistics were next examined @d&)|l In the eastbound dataset, the
VISSIM travel times have a mean of 183.1 secondsastandard deviation of 39.3 seconds.
The field measured travel times have a mean of42&8conds and a standard deviation 50.1
seconds. The higher eastbound field measured! tiave does not appear to be systematic but
heavily influenced by a cluster of high values némr end of the run. An analysis of the data
removing the last fifteen minutes reduces the bffiee in average travel time between the East-
bound simulated and field results by approximat&9o percent, from a travel time of 218.4 to
202.3 seconds. Potential reasons for this clustiébe discussed later in the section. For the
westbound direction, the mean and standard dewmiaifothe VISSIM travel times are 157.5
seconds and 38.9 seconds respectively, while #he fneasured travel times the mean and stan-

dard deviation are 113.4 seconds and 63.0 secmypectively.

Table 6 Descriptive Statistics for Eastbound and Watbound Travel Times

Statistic Eastbound Travel Time Westbound Travel Time
VISSIM Field VISSIM Field
Mean 183.1 218.4 157.5 113.4
Standard Deviation  39.3 50.1 38.9 63.0

Next, statistical tests were conducted to determwhether the VISSIM and the field
measured travel times are statistically differéfitst the distributions were tested for normality
as this will influence the statistical test choskifliefors normality tests were conducted on all
the travel time data sets. The results of the nbtynasts are presented in Table 7. From these
results one is unable the reject the null hypothdsat the eastbound VISSIM and Field travel

times are normally distributed. However for westhdISSIM and Field travel times the nor-
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mality test results provides sufficient evidencedoe to reject the assumption that these datasets
are normally distributed. These conclusions werth&ér corroborated after examining a series of

density plots, Figure 20 and Figure 21, and Q-Qspléigure 22 and Figure 23.

Table 7 Statistical Test Results

Statistical Test p-Value Interpretations
Normality Test
| EB VISSIM | 0.3255 | Unable to reject normality assumption |
WB VISSIM 0.0001 Reject normality assumption
| EB Field ‘ 0.6760 ‘ Unable to reject normality assumption |
WB Field 0.0088 Reject normality assumption
| 2 Sample t-Test ‘ ‘ |
EB VISSIM vs. EB Field 0.0001 Reject equal mean assumption
| WB VISSIM vs. WB Field ‘ 0.1125 ‘ Unable to equal mean assumption |
Wilcoxon Sum Rank Test
| EB VISSIM vs. EB Field ‘ 0.0001 ‘ Reject equal median assumption |
WB VISSIM vs. WB Field 0.0408 Reject equal median assumption
| Chi-Square Test ‘ ‘ |
EB VISSIM & EB Field 0.3654 Unable to reject same distribution assumption
| WB VISSIM & WB Field ‘ 0.1560 ‘ Unable to reject same distribution assumption |
Kolmogorov-Smirnov Test
| EB VISSIM & EB Field ‘ 0.0016 ‘ Reject same distribution assumption |
WB VISSIM & WB Field 0.0235 Reject same distribution assumption
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Figure 23 Q-Q Plots of Field and VISSIM Eastbound Tavel Times

A series of other statistical tests were condudteturther explore the differences be-
tween Field and VISSIM travel time estimates. Ehtests were also used to quantify some of
the similarities and dissimilarities that were abvee, especially from the density plots. The test
results are also included in Table 7.

From the above results one can conclude that ikaaestatistical difference between the
VISSIM and the actual (mean / median) travel timedjoth the eastbound and the westbound
directions. However, it is again noted that if tast fifteen minutes of data were not included in
the eastbound analysis the result is reversed, thathiest failing to reject equal means. This fur-

ther indicates an event specific issue ratherdlststemic problem eastbound.
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Several areas are perceived as potential sourcegbdadiscrepancies between the esti-
mated and actual performance measures. These aeegenerally related to model calibration
and facility representation. For model calibratiba parameters that reflect driver behavior were
left unchanged in VISSIM, potentially indicatingatithe default driver behavior in the VISSIM
model may not be representative of the behaviangatbe study corridor. Accurately capturing
driver behavior may improve VISSIM estimates oWélatimes. In addition, considerable differ-
ences in simulated vs. field volumes were obseoredome links. In part this is a result of simu-
lated turning movement distributions at the variousrsections throughout the corridor differ-
ing significantly from the field movements. Histal turning movement percentages where uti-
lized as real-time turning counts were not avadall is also noted that volume discrepancies
could result from detector errors. The Tech Troli@n on-campus shuttle) was also not
represented. By not capturing the Trolley behawd§SIM is not able to simulate the increase
in travel time for other vehicles that the Trolleay inhibit as it traverses the corridor.

There are two aspects of the study corridor thatewet represented in the VISSIM
model of the area. The first was the roadway grdadighich is positive from west to east, and
the second, the pedestrian and pedestrian fasiieng the corridor. Thus, any influence from
these factors is not reflected in the VISSIM modekedestrians in particular were noted as a po-
tential significant factor. The probe vehicle dnv@éoted instances where pedestrian movements
significantly interfered with traffic flow. For exnple, at the intersection of Street and Spring
Street left turning vehicles yielding to crossingdpstrians would prevent through vehicles be-

hind the left turning vehicle from traversing timarsection. As no pedestrians were modeled in
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VISSIM this behavior was not reflected. For thd teed the pedestrian interference was particu-
larly notable as given the nature of a college aartpere tends to be periods in which signifi-
cant, short duration, increases in pedestrianigictrecur. The influence of pedestrian activity on

simulation models is investigated and discussetetail in Section 8.

5.2.2 Experiment #2 Summary

In experiment #2 the researchers were able to dstmate the fundamentals of the proposed me-
thodology in a field test using readily availabézhnology. The microscopic traffic simulation
model was able to be driven in real-time by reatld/dlata streams. The comparative analysis
demonstrated some success particularly when caomgidihe eastbound travel times. It is antic-
ipated that once sources of identified discrepanare addressed the VISSIM model will be able

to produce better estimates of travel times.
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5.3 Experiment #3: Field Test with Temporary and Permament Detectors

Test #3 is a full scale test of the methodologye Tield test was conducted on July 8, 2010, be-
tween 1:00PM and 3:00PM. The study area is the sasrtbe previous test (Figure 16:). Both
permanent (Video Detection System (VDS)) and tempodetectors, capable of streaming indi-
vidual vehicle records, were employed during teis.tIn addition to the temporary and perma-
nent detectors six camcorders were used to co#dditional traffic information for post
processing. Four camcorders were used to detectdaoy conditions (i.e. when vehicles enter
and exit the network) while two were used to cdlignal phase information at the intersections
of 5" Street and Spring Street, arfli Street and W. Peachtree Street. The locationaf datec-
tor, and their respective detection zones, inclydime camcorders and their view angles are
shown in Figure 24. In addition, probe vehicle #@lanoutes were added to allow for a more ro-
bust evaluation of the system. In this field tesirfroutes are monitored, each of which are tra-

versed by two probe vehicles, see Figure 25.
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=y Route #3

= = wp  Route #4
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Each permanent VDS camera is connected to the aebegh fiber network and is ca-
pable of detecting and transmitting individual \edirecords in real-time. The temporary detec-
tors consisted of research assistants with laptoppaters using a script to record and transmit
individual vehicle data back to the server in thedratory. These detectors were primarily
tasked with detecting the four probe vehicles. 8gntifying the probe vehicles in the field in
real time they could be identified as they entetfe®l simulation, allowing for a more robust
paired travel time comparison in the later analy3ise temporary detector on th& Street
bridge was also tasked with detecting non-probecleshas a permanent VDS camera was not
available for this site.

Each packet of transmitted detector data includediedds. They are detector number
(each detector location having a unigue numbeng laumber, speed (in miles per hour), detec-
tor time, and epoch time. Table 8 provides a sampletreamed data. Clock time is also pre-
sented in the sample below but it is determinethftbe epoch and not transmitted by the detec-

tors.
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Table 8 Sample of Streamed Detector Data

Detector # Lane # | Speed (mph)| Timestamg Epoch Time | Clock Time
4 2 18 13:00:45 | 1278608487.3754| 13:01:27
11 1 22 11:04:17 | 1278608487.5783 13:01:28
11 3 8 11:04:17 | 1278608487.6772 13:01:28
11 2 6 11:04:17 | 1278608487.7791 13:01:28
10 1 17 13:01:25 | 1278608487.9355 13:01:29
5 1 26 13:00:20 | 1278608487.2008] 13:01:29
1 1 6 12:57:53 | 1278608487.4192| 13:01:29
11 3 9 11:04:19 | 1278608487.7780, 13:01:30

During a preliminary test, videos feeds were cormgao VISSIM animation to verify
that as a vehicle entered a detection zone thectdetdata was successfully transmitted and
VISSIM generated a vehicle in the appropriate pasit Figure 26 is an example image from the

verification process.
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VISSIM CAMERA VIEW

Figure 26 Permanent Detector Generating Vehicle iWISSIM in Real-Time

Data was collected for approximately 120 minutdsthe end of this data collection, six

different data streams were available:

* GPS data from the 4 probe vehicles

» Signal phase information from the two signalizetgigections
* Vehicle presence from permanent video detectors

* Probe vehicle presence from temporary detectors

* Individual vehicle travel times over the pre-detimeutes

* VISSIM trajectory data for all vehicles generateaht the arriving data stream
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5.3.1 Resultsand Analysis

Where the previous tests focused on aggregatd times this experiment sought to evaluate the
real time simulations ability to estimate an indival vehicle’s travel time through paired travel
time comparisons. Probe vehicle travel times wateaeted from the video footage and from the
simulation’s equivalent vehicle. These two setg@iel times were then compared.

The following discussion focuses on travel timasgimbe vehicles traveling along routes
#2 and #4 as similar inferences can be made frenanlalysis of the data from routes #1 and #3.
Route #2 is approximately 1300 feet in length aaddrses three signalized intersections (Figure
25). Route #4 is approximately 1600 feet in lerggth includes three signalized intersections.

Twenty four pairings of travel times were collecteam Route #2 and 36 from Route #4.
Each pairing consists of a field probe vehicle ¢éfdime and the respective simulation estimate.
The average field travel time for Route #2 is appmately 94 seconds and the simulation esti-
mate is approximately 85 seconds. The Route #d tiiavel time estimate is approximately 136
seconds and the simulation estimate is approximd2l seconds. These and other descriptive
statistics can be seen in Table 9. Figure 27 agdr€i28 present scatter plots of individual travel
time estimates. Figure 29 and Figure 30 are aldaded to present travel time data from Route
#1 and Route #3. Figure 31 presents four pairseatitly plots to further compare each pair of

travel time estimates for each route.
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Table 9 Descriptive Statistics of Travel Times foRoute #2 and #4

Mean Travel Time | Standard Deviation Travel Time
Route #| VISSIM Field VISSIM Field
1 138.6 141.5 20.9 20.6
2 84.8 93.5 27.7 27.1
3 42.8 45.65 23.0 31.8
4 121.3 135.6 30.6 27.2
Route #2 Travel Time
*VISSIM (n=24) ®Field (n=24)
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Figure 27 Route #2 Travel Times - VISSIM vs. Field
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Figure 31 Density Plots of VISSIM and Field TravelTimes for Routes #1 - #4

Similar to the previous analysis a series of dia#istests was conducted. The conducted

tests include a paired t-test and a sum rank ttesthpmpare means/medians, and chi-square test

and a Kolmogorov-Smirnov test, to compare distidnd. The results of these tests are pre-

sented in Table 10.
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Table 10 Test Statistics

Statistical Test p-Value Interpretations
Normality Test
| Rt. #2 VISSIM | 0.00001 | Reject normality assumption |
Rt. #4 VISSIM 0.00000 Reject normality assumption
| Rt. #2 Real-World (RW) | 0.06387 | Unable to reject normality assumption |
Rt. #4 Real-World (RW) 0.00198 Reject normality assumption
| 2 Sample t-Test (Paired) | | |
Rt. #2 VISSIM vs. Rt. #2 RW 0.28670 Unable to reject equal mean assumption
| Rt. #4 VISSIM vs. Rt. #4 RW | 0.00013 | Reject equal mean assumption |
Wilcoxon Sum Rank Test
| Rt. #2 VISSIM vs. Rt. #2 RW | 0.05382 | Unable to reject equal median assumption |
Rt. #4 VISSIM vs. Rt. #4 RW 0.00549 Reject equal median assumption
| Chi-Square Test | | |
Rt. #2 VISSIM & Rt. #2 RW 0.28930 Unable to reject same distribution assumption
| Rt. #4 VISSIM & Rt. #4 RW | 0.15740 | Unable to reject same distribution assumption |
Kolmogorov-Smirnov Test
| Rt. #2 VISSIM & Rt. #2 RW | 0.03101 | Reject same distribution assumption |
Rt. #4 VISSIM & Rt. #4 RW 0.00864 Reject same distribution assumption

Based on the scatter plot data and the statiséstd it may be concluded that the simula-
tion reasonably reflects the real world howevefetdlé@nces do exist. It is noted immediately that
a significant improvement from the previous tesswa synchronization the signal in the simu-
lation with the field, likely accounting for mucli the improved performance.

However, several issues may be readily noted wherewing the analysis. Firstly, the
simulated estimates of the probe vehicles’ trawveettend to be lower than the field measured
travel time. One potential reason for this ressilveéhicle acceleration rate in the field versus the
simulation. During the test run the research teated that the vehicles in the simulation ap-
peared to accelerate to their desired speeds nggressively than vehicles in the field. Accele-

ration rates can be a significant factor, partidulan a network dominated by signalized inter-
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sections. These rates can determine whether aleeives on red or green at a downstream
intersection, which directly affects travel timaiemtes as well as other performance measures.
For instance, on several occasions it was obsdhatd simulated vehicle successfully traversed
a downstream signal with the corresponding vehicl¢he field arriving a few seconds later
stopped at a red light. While differences in aa@ien rates do not often lead to such dramatic
differences, they also can lead to more subtle gdmn This again highlights the need for under-
lying calibration of the simulation model.

There are a several other subtleties that may beilboting to the discrepancies in travel
time estimates. As mentioned previously, threehef more significant contributing factors are
signal synchronization, vehicular volume traverdimg network, and turning movement distribu-
tions. In the preceding experiment the researam t@as able to develop a methodology to syn-
chronize the signals in the simulated environmewt the field. However, real time methodolo-
gies are not yet available to address the otherigaues. The next reported test attempts to re-

move these issues and explore the capabilitiegedlgime simulation given (near) perfect data.

5.4 Experiment #4: NGSIM’s Peachtree Corridor Study
5.4.1 Motivation and Background
Experiment #4 may be described as a pseudo fistdTae experiment utilizes a near ideal data

set (tenth of a second resolution of vehicle posgion the corridor, route data for every vehicle,

individual vehicle turning movement data, and sigtatus at a tenth of a second resolution) to
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determine the performance of the real time simoitatinder ideal conditions. That is, under ideal
data collection conditions is a real time simulateapable of providing a reasonable reflection
of the real world. This experiment uses previowusiitected field data as input to the real time
simulation, streamed in wall clock time. This datas collected as part of the FHWA Next Gen-
eration Simulation (NGSIM) program [50]. The NGSpvogram created high fidelity data sets
intended for use in the study of traffic behavioddhe development of the next generation of
traffic simulation tools and algorithms.
The NGSIM data set utilized is for Peachtree StrAdanta GA. The studied segment

extended just south of the intersection of Peaeharel 18 Street and north of the intersection

of Peachtree and {4street, Figure 32. [50]
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Figure 32 Peachtree Study Corridor [4]

The NGSIM Peachtree dataset comprises of trajeckaty (with a resolution of a tenth of

a second) for all vehicles traversing the corridioring the study period. Trajectory data was ga-

thered on November 8, 2006, between 12:45PM ar@PMOand 4:00PM and 4:15PM. In addi-

tion signal phase information at each intersectarigin-destination data (OD) for each vehicle,

turning movement distribution at each intersectamd a series of other traffic related informa-
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tion were also collected. Video of the entire aioriis also available during data collection pe-

riods.

5.4.2 The Study

For the experiment, a detailed VISSIM model of ¢ihedy area (Figure 33) was created. Road-
way geometry was based on existing conditions atithe of the experiment and additional in-
formation such as vehicle volume, turning movendistribution, routing decisions and signal
timing plans were added based on the NGSIM dateSesfteral verification iterations were com-
pleted to ensure that the model correctly represktite area being studied, as well as the traffic
conditions during the study period. During thisifreation process issues related to the number

of vehicles traversing the corridor and to sigirairig plans were identified.
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Figure 33 VISSIM model of Peachtree Study Corridorf4]

For instance, the number of vehicles, and subséquemng movement distributions,
were initially based on the summary reports produag the NGSIM program. However, the
team noticed that there were discrepancies betwesse summaries and counts extracted by

hand from the videos. To address this issue, tvaoé tool was developed to help record vehi-
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cular volume and turning movement counts from tidees. Errors identified in the NGSIM da-
ta were corrected, as best as possible, in theadiVISSIM data set.

The NGSIM data also provided a direct observatibthe signal indications. The observed sig-
nal indication did not appear to coincide with firevided signal timing controller data, likely
indicating that the provided controller data was @iudate. Thus, the signal indication data and
engineering judgment was utilized to develop likelgnal timing plans that would match the
indication observations. The final simulation moaebased on these plans, which includes off-
set observations. It is noted that during the olzgem periods (approximately 15 minutes) the
offsets did appear to drift by a few seconds inNi@&SIM data. To address this issue an average

estimated offset is utilized.

5.4.2.1 Simulating Data Stream

To simulate streaming detector data the team usgectory and OD data to create a VISSIM
trip-chain file which approximates the processtod@aming detector data into the real-time simu-
lation. A trip chain file is able to approximateletector stream as each file’s record consists of a
time-stamp, indicating when a vehicle entered tbevark (i.e. crossed a boundary link detec-
tor), and a zone number indicating a vehicle’siar{ge. the boundary detector crossed) and des-
tination. This string of information is similar tbat from a detector, except for a vehicle’s desti
nation. However, destination zones are often timggroximated through historical turning

movement.
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With this method of approximating streaming detecata, a number of issues were en-
counter during the creation of the trip-chain filehe most important piece of information that is
needed to create a trip-chain file is correct ODdspaddowever after examination of the OD in-
formation given by the NGSIM program it was notidedt a number of OD pairs were poten-
tially incorrect. For example, there were OD pairat suggested an unusually large number of
vehicles performed a u-turn maneuver. To verifgsth maneuvers the OD distribution tables
from NGSIM’s Summary Reports and the correspongidgos were examined [51], [52].

Simultaneous examination of the distribution talaled videos revealed errors associated
with assigned OD pairs. For instances, the u-tureie often left turns from the mainline to ap-
proaches leaving the network. In addition, theezenassigned OD pairs that were not traversed
by any vehicles during the study period. Thesersrtargely occurred when the tracking soft-
ware lost its handle on a vehicle that it had idiext and began a new track for the same vehicle.
To correct these issues engineering judgment wasauglentify potentially erroneous OD pairs

and necessary corrections were made by observinggethicle on the video.

5.4.3 Preliminary Results and Analysis

Using the corrected NGSIM data final trip-chairesilwhere created and used for the VISSIM
data input. Ten replicate runs were conducted Herdomparison between field and simulated
performance measures. Similar to previous tesagekrtime is the performance measure moni-

tored and compared. Table 11 presents a summade gimulated travel times from each of the
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10 replicates and a summary of the field travek8mNote, data corresponding to the 12:45PM —

1:00PM period is referred to as the Noon period&00PM — 4.15PM is referred to as Evening.

Table 11 NGSIM versus VISSIM (VSM) Travel Time Resits

Noon - North Noon - South Evening - North Event South
Avg (s) | Std Dev Avg (s) | Std Dev| Avg (s)] Std Dey Avg(s) Std Dev
VSM Run # 1] 120.0 31.7] 102.0 20.5 108.1 28.8| 100.3 29.0
2 120.7 33.9| 100.9 21.7 113.3 32.4 99.3 29.8
3 117.4 34.5 98.4 22.9 111.5 30.4 94.6 27.6
4 118.1 32.2 98.6 25.1 118.8 29.8| 100.2 28.2
5 116.0 31.5 96.6 22.6 116.7 34.0/ 103.1 29.5
6 112.5 31.1 98.8 234 112.5 32.1| 104.8 30.1
7 113.7 32.2 96.4 24.6 114.2 32.2| 102.4 29.8
8 119.0 33.1 99.3 22.9 113.6 36.0 99.8 28.9
9 116.5 31.8| 100.0 20.4 108.7 33.6| 104.2 315
10 113.8 31.2 95.1 25.8 113.1 32.7| 103.1 28.8
VSM Avg. 116.8 32.3 98.6 23.0 113.1 32.2| 101.2 29.3
NGSIM 1315 36.7| 106.6 17.1 140.4 35.4| 133.9 29.6
% Error 11.2 11.8 7.5 34.1 19.5 9.0 24.4 0.9

In the following discussion the referenced VISS®4ults are the average of the 10 repli-
cate runs. It is noted that there are some disnmgs between the simulated and field travel
time estimates. A key difference is that VISSIMdeno under estimate field travel times. The
smallest difference between VISSIM and field trawale is approximately eight seconds, occur-
ring for the Noon-South time period. While the kesgdifference, 32.7 seconds, occurred for the
Evening-South period. The simulation does a shgh#tter job estimating travel times for the

noon period versus the evening. When comparingtidredard deviations in Table 11, the values
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produced by VISSIM are similar to those from thedi This is observation is encouraging as it

indicates that VISSIM’s approximation of the vaioat travel time estimates is rather similar to

that of the field. With dissimilar means and “sianfl standard deviations the research team an-

ticipates that the observed discrepancies may Hdeessked through a more rigorous calibration

effort. Density plots were examined to further otwrate this hypothesis, see Figure 34.
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Figure 34 Density Plots of Field vs. VISSIM (singleun) Travel Times

The density plots of the simulated travel timesegahy capture the bi-modal or tri-

modal form of the field travel times. The diffecers between the plots tend to be a shifting of

the centroid of the modes or proportionality betwé®e different modes. However, in all cases
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the general form of the distribution is reflect@dyery encouraging finding, likely indicating
many of the differences can be addressed in ctblbra

Finally, in addition to the travel time distributigplots the Time-Space-Diagrams for the
field and simulated data were generated. Distirsttrepancies in driver behavior were observed

as illustrated in Figure 35 and Figure 36.
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In the above figures each line represents thecti@je of a vehicle as it traverses the
length of the study corridor with respect to timEhe colors along each trajectory represent cur-
rent vehicle speed relative to the maximum speedgathe corridor. Red represents speeds of
approximately zero mph, green represents speedsppfoximately 35 miles-per-hour, and
shades of each color represent speeds between Ebamdes-per-hour. In comparing field and
simulated trajectories it is apparent the simuldtaffic is less variable (i.e. the traffic flow is
“smoother”), with less interaction between vehicl@se of the more recognizable differences is
that simulated vehicles tend to achieve their édsapeed more quickly and maintain that speed
for longer periods. A likely reason for this diféerce is that simulated drivers are being modeled
with more aggressive tendencies than their fieldnterparts and less variability in aggressive-
ness across drivers. As a result of this more aggre driving by simulated vehicles they will
tend to traverse the corridor in less time verselsiales in the field, and may clear an intersec-
tion during the green or amber phase while theidfcounterpart may not make through that in-
tersection at that point in time. Such scenari@ssapported by the travel time measurements
that are presented in Table 11 as VISSIM tendsittetestimate real-world travel times.

Given the above results for the NGSIM pseudo fedderiment and the insights afforded
by the time space diagrams the research team pattsi that more accurate estimates of field
travel times may be achieved through an advanckorai@on procedure. This procedure will
involve a Monte Carlo parameter selection methoctlwldetermines the most effective parame-
ters to calibrate a VISSIM simulation model. Clea® will present this proposed calibration

procedure in detail.
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6 ADVANCED MODEL CALIBRATION PROCEDURE

As seen calibration is a key step in developingaecurate simulation model. The calibration
process involves the selection of values for adhlstmodeling parameters that allow a particu-
lar model to most accurately reflect the specitwork conditions under consideration. A num-
ber of procedures have been proposed for calilgrataffic simulation models. While most of
these procedures focus on determining values finall set of parameters for relatively simple
models, many modern simulation tools include anmeasingly complex array of parameters
available for calibration. Many of these additiopafameters may have little influence on simu-
lation results, while others may have a signifidamact.

The following will summarize a sensitivity proceduior determining which model pa-
rameters are most important for calibrating a satioh model. As a case study, this sensitivity
procedure is applied to an arterial simulation nhdidesed on the VISSIM microscopic simula-
tion tool to identify critical parameters that wduleed to be evaluated during subsequent model

calibrations. For greater details regarding thé&thnd, readers are encouraged to consult [53].

6.1 The Method

The developed sensitivity-based process for thecieh of parameters to be included in model

calibration is comprised of four sequential stepsinitial parameter selection, 2) performance
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measure selection, 3) Monte Carlo simulations, &nparameter elimination. Steps 3 and 4 are

repeated until the stopping criterion is satisfied.

6.1.1 Initial Parameter Selection

In the first step of the process, model paraméteatsare known a priori to have little, if any, im-
pact on simulation results due to the structurthefmodel are eliminated prior to the sensitivity
analysis. For example, in the VISSIM modeling systbe Wiedemann (1974) and Wiedemann
(1999) car following equations are used to defirterml operations and freeway operations re-
spectively [54], [55]. If the model being calibedtdoes not include one these facility types, pa-
rameters related to the respective car followingagigns may be removed from the calibration.

A priori elimination of parameters that do not ughce a model will reduce the computa-
tional effort in subsequent analysis, lesseningtitne and resources required to select the final
set of parameters for calibration. However, iitincertain whether a parameter should be elim-
inated it is recommended that the parameter remaime experiment. Also, if resources permit,
this step may be eliminated in its entirety andpallameters included in the subsequent selection

process.

6.1.2 Performance Measure Selection

As part of the calibration process it is necessaigelect the performance measure(s) that will be
used to gauge the acceptability of the simulatimdeh Common performance measures in-

clude travel times, flows, capacities, delay, quiemgths, etc. Measures of effectiveness should
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be selected such that critical network componenish as key intersections or interchanges, and
the overall network, i.e. end-to-end corridor tlauwme, may be evaluated. The measure(s) must
also be field measurable, allowing for the collectof field data to be used in the calibration

process. Analyst judgment is normally requirethi@ selection of performance measures for the
particular model under study. However, in the aliftages, it is recommended to include a wide
cross section of potential measures, paring dowmtbasures in later analysis to those that are

most informative.

6.1.3 Monte Carlo Simulation Experiment

A Monte Carlo experiment is next used to deterntiveelikely influence of the remaining para-
meters on the simulation model performance. InMloate Carlo simulation experiment simula-
tion runs are generated based on randomly selpeteaneter values with the results aggregated
in an effort to find underlying relationships beemeparameter values and model performance

measures.

6.1.3.1 Parameter Range Selection

Before generating random parameter values for tbat® Carlo experiment it is necessary to
determine parameter ranges over which the randduevavill be assigned. There is generally
no exact method for this determination. Thesee@amgust be determined through a combination

of past experience, simulation documentation, tesflother studies, and engineering judgment.
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For instance, the VISSIM documentation providesgimsinto model behavior and reasonable
ranges for a number of parameters. The objectivarafe selection is to cover all feasible para-
meter values while excluding values which may idtree impractical or flawed behavior in the
model. When the analyst is uncertain of a reasenphiameter range it is recommended in the
initial step to use a more inclusive range andgeifessary, narrow the range in later process ite-

rations.

6.1.3.2 Random Parameter Generation

Random parameter values within the given paramrateges must be generated. A random set
of parameters is required for each simulation reandom numbers should be generated using a
reasonable random number generator [56]. The nuofggarameter sets needed is determined
using standard sample size statistics [39] infleenby level of effect in the selected perfor-
mance measure deemed to be significant (e.g. 1%et%changes), the reasonable range of pa-
rameter values, and the sensitivity of performameasure to changes in the parameters. While
the sensitivity to parameters must be based orystnaxpertise, initial assumptions may be vali-
dated using the observed variability from the atitieration of the methodology. For instance, it
was seen in this effort that the modeling varis&piiased on parameter variation (parameters va-

ried within a reasonable range) was typically wethin ten percent.
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6.1.3.3 Simulation Runs and Sensitivity Analysis

Each set of randomly generated parameter valuesad to generate simulation trials in the
Monte Carlo study. The results of the simulationsrare evaluated to determine which parame-
ters appear insignificant. It is important to nthtat this step is not attempting to quantify the ma
thematical relation-ship between the performancasues and parameter; it is only intended to
identify the potential existence of a relationsh#p.convenient method to quickly identify these
potential patterns is to visually inspect a scapiet of the parameter value versus the perfor-
mance measure (a unique plot for each parametee) afalyst may also wish to include a best
fit line to aid in the visual assessment. Scattetspallow for a quick visual assessment of the
influence of the given parameter over its considesnge, allowing for a ready recognition of
any potential relationship between the parametdr@erformance measures since human ana-
lysts are more likely to identify patterns when aaxist than to miss patterns that are actually
present.

In addition to the scatter plot it is also recomuohexhto evaluate the effect each parameter
has on the mean value of the performance measheeeffect on the mean is equal to the slope
of the best fit line of the scatter plot multiplibgl the absolute value of the range of values for
the given parameter, Equation 1. These values heaylie used to rank each parameter based on

its effect on the mean of each selected measwfaitiveness.

Effect of the mean = slope((MOE valueg)* (Parameter Values),)
* abs (Parameter Upper Bound — Parameter Lower Run (1)
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This ranking requires a simplifying assumption dihaar relationship between parameter values
and the performance measure. Based on the spédterfor the study described in this effort
this was deemed to be a reasonable assumption eamsidering parameter values within a rea-
sonably narrow range. However, in inspection ef ghatter plots it should be considered if the
relationship between the parameter value and pedioce measure differ significantly from li-
near. Should this exist, then a more robust rapkietric should be considered.

Finally, the variance of the performance measuuoe, i changes in parameter values,
should be considered. If the variance increasedeoreases then the corresponding parameter

should remain in the analysis, even if the impacth® mean value is minimal.

6.1.4 Parameter Elimination

Parameters found to display minimal impact on satioh model output through either visual
inspection of the scatter plots or the effect anrtiean should be eliminated from further consid-
eration. To avoid analyst bias in the parametkcsien it is useful to develop guidance for de-
termining whether a parameter should be considgigguficant. Such guidance would be specif-
ic to each model and performance measure. The stnadyst decide what level of impact is
deemed significant for the particular study. Fatamce in an initial alternative analysis a 10%
error may be tolerable and therefore the effort m@sdurces should not be expended to calibrate
parameters whose effect is under 10%. Whereadetailed final design application it may be
desirable to consider any parameter whose possilplact on the performance measures may be

within just a few percent.
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To avoid eliminating parameters that may be sigaiit it is advised that conservative
elimination guidance be employed, particularlyhe tnitial iteration of the parameter selection.
Additionally, it may be desirable to carry forwaadpbarameter that intuitively seems significant
but does not appear to be significant in the cantenation, allowing for confirmation of signi-
ficance (or insignificance) in the next iteratidine number of variables to be eliminated per ite-
ration is ultimately an analyst judgment. While rerameter reduction should be a function of
the findings, a general guideline for good practieghat number of parameters eliminated
should not exceed approximately one-half of thaltparameter set in the initial iteration and

one-third in subsequent iterations.

6.1.5 lteration

After parameter elimination the Monte Carlo simidatexperiment (random parameter genera-
tion, simulation trails, and sensitivity analysst)ould be repeated using the reduced parameter
set. Based on the updated Monte Carlo simulagsualts the remaining parameters should again
be considered for potential elimination. This @& should be repeated until no parameters are
eliminated after a Monte Carlo simulation experitmen

After each iteration the parameter ranges of shbaldeexamined using the scatter plots.
If there are obvious abnormalities in the datahsag extremely high travel times, or large num-
bers of recorded errors during the simulation tiienrange for that parameter should be reconsi-
dered. Similarly if there is reason to believe tih@ range of values for that parameter should be

larger, then that range should be modified as well.
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6.2 Procedure Application Case Study: Cobb Parkway Mode

The model area is a 1.4 mile, eleven intersectegment of Cobb Parkway (U.S. Highway 41)
in Cobb County, GA Figure 37. Cobb Parkway is anary arterial in Cobb County, with four

lanes in each direction. The model was construgsaty 2004 intersection AM peak count data.
Controller signal timing data was obtained and nedieising the VISSIM NEMA signal con-

troller. The posted speed limit is 45 mph. Priontodel parameter calibration significant effort
was spent on model development to ensure the ¢oessof the underlying model construction.
Details on the base model development, corridonmggry, signal timing, etc, may be found in

[40] and [57].

...... . @D
"EG\. “
w = ot :
i o '"‘_
J@. W0
i
. ,
N,
g 2
™ st B &
PR N : @0 _J,"
& e g "’\‘ F
[ 1

Figure 37 Cobb Parkway Model and VISSIM Overview
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Figure 38 Travel Time Segments along Cobb Parkway

6.2.1 Initial Parameter Selection

In the initial step, parameters that can be elitgiddrom consideration due to specific model
characteristics are identified. For the Cobb Pagkmadel twenty-eight of the available parame-
ters were eliminated, leaving twenty-two parametersfurther consideration. Twelve of the

eighteen car following parameters were eliminatedhés model only includes parameters re-
lated to Wiedemann (1974). Parameters associatbdveficle the acceleration and deceleration
functions were also eliminated because the modrlsied only on signalized arterials (i.e. the

Wiedeman (1999) equations for freeway operationgwet considered). Additional parameters
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that are based on the mechanical capabilitieseoftterage vehicle on the network were also not
considered as there is little justification for ngang their default values. Parameters relating to
the acceleration functions were also not considasethe driver's acceleration decisions are like-
ly dominated by car following considerations duethe close spacing of signals and level of
congestion.

In addition, the general lane change behavior vedstics free lane selection as Cobb
Parkway does not have a designated "fast lane'vahitles often pass each other on both the
left and right sides. This also eliminates a patameased only in conjunction with right-side rule
instead of free lane selection behavior. All of leral behavior parameters were also eliminat-
ed as there is no lateral behavior present inntiuidel.

These reductions left twenty-two parameters forsaeration. One additional parameter
for the simulation run, random seed value, was @ddeallow for an exploration of the impact of

randomness due to inherent model stochasticityitg bhe total parameter set to twenty-three.

6.2.2 Performance Measure Selection

For the performance measures five travel time satgneere chosen. Travel time data provides
the advantages of being straightforward, easilgrpreted, and reflective of model changes. The
five travel time segments include two end-to-engnsents, a segment over the most traveled
route in the network, and two short two-intersattgegments, Figure 38. Segment #1 is the
southbound end-to-end segment. It is 11,294 fewf énd includes 10 intersections. Segment #2

is the northbound end-to-end segment. It is 11884 long and also includes 10 intersections.
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The third segment is representative a typical cotemoute. It is 6955 feet long and covers the
most heavily traveled route on the network, from tlorthern arterial entrance to the intersection
of Cobb Parkway and 1-285. Segments #4 and #5hemtes segments at 1670 feet and 1426 feet
respectively that include two heavily traveled esufrom the 1-285 exit ramp to Cobb Parkway

northbound and southbound. Each of these routésdies two traffic signals.

6.2.3 Parameter Range Selection

The parameter value ranges were chosen to be ldrgertypically used in similar studies but
within any limits described in the VISSIM documeida. An initial set of simulations were un-
dertaken to evaluate the reasonableness of theaddsrlimits using randomly varied parameter
sets to ensure model stability and performance.ré/parameter values resulted in unrealistic
performance measures or a significant number afrteg modeling errors the range is adjusted
to exclude those values.

The initial and final parameter ranges for thetfirsration of the methodology are shown
in the Table 12. An empty value in the final raropdumn indicates that the parameter was not

changed.
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Table 12 Selected Parameter Ranges

Parameter Initial Range Final Range
1 | Desired Speed Distribution Range +0.0-10.0 mpk0.5-10.0 mph
2 | Look-ahead distance min 0-900 ft 0-300 ft
3 | Look-ahead distance max 500-1000 ft 500-1200 f
4 | Number of observed vehicles 2-8
5 | Average standstill distance, ax 0.0-20.0 ft -2Mft
6 | Additive part of safety distance, fax 0.0-8.0 0.0-3.0
7 | Multiplicative part of safety distance, Jax 0.0-8.0 0.0-3.0
8 | Maximum Deceleration (own) -20.0 - -3.0 ftfs?
9 | Maximum Deceleration (trailing) -20.0 - -3.0sft/}
10 | Accepted Deceleration (own) -6.0 - -0.33 ft/s?
11| Accepted Deceleration (trailing) -6.0 - -0.334t(s
12 | Reduction rate (own) 50-300 50-200
13 | Reduction rate (trailing) 50-300 50-200
14 | Waiting time before diffusion 20-80 sec 40-80 sec
15| Min. headway (front/rear) 1.64-25.00 ft
16 | Safety distance reduction factor 0.0-1.0
17 | Max. deceleration for cooperative braking -35:8.0 ft/s2
18 | Reduction factor for changing lanes before a sigraf3-0.9
19 | Start upstream of stop line 200-600 ft
20 | End downstream of stop line 200-600 ft
21 [ Emergency stop distance 6.56—30.0 ft
22 | Lane change distance 300-1000 ft 500-1000 {t
23 | Random seed value 1-999

6.2.4 Calibration Parameter Set Determination

To determine the final calibration parameters, eseof Monte Carlo simulation experiments
are undertaken and parameters with minimal infleemt the simulation outputs are eliminated.
This process is repeated until no remaining pararsetan be eliminated based on the results of
the Monte Carlo simulations.
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In the case study, three iterations were requieddrb no parameters could be eliminat-
ed. Each iteration began with the creation of 1668 of random parameter values (23 parame-
ters in the initial round) within their stated ra&asgusing Microsoft Excel in conjunction with a
Visual Basic script. These parameter sets werd tesereate 1,000 corresponding VISSIM in-
put files, for each of two volume cases (i.e. 1088 volumes and 75% AM volumes) for a to-
tal of 2000 runs using a PERL script. While thisueais approximately one order of magnitude
higher than the minimum number required by the &atan variability at our selected level of
significance (approximately 85 tests for each vaurase, assuming a 10% run variability and
4% desired accuracy) the greater number of tekised for easier visual examination of the
resulting scatter plots. A modified version of tleulti-run" script, provided with VISSIM, was
used to automate the model runs and to colleabuitygut datg9).

For this study a parameter had to demonstrate de4%i effect on the mean travel time of
at least two segments or an observable relationehipe scatter plots to be retained for subse-
guent iterations. Other thresholds could, of coulbgeconsidered and future studies will explore

the impact of the threshold selection on methodreayence.

6.2.4.1 lteration |

The results from the 100% volume runs led to tiaiehktion of 11 parameters that had a neglig-
ible effect on the travel time measurements. Thaimed and eliminated parameters and their

impacts on travel times (Equation 1) are shownahl& 13 and Table 14 below.
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Table 13 1st Round - Retained Parameters’ Effect ollean Travel Times

Travel Time Segment

# Parameter #1 #2 #3 #4 #5

1 | Desired Speed Distribution Range -0.32%% 1.58% 8%.1| -0.59%| 3.15%
5 | Average standstill distance, ax 5.97% 7.62% 6.19% | 8.44% | 14.99%
6 | Additive part of safety distance, fx 6.20% | 19.28% [ 7.14% | 2.59% [ -5.61%
7 | Multiplicative part of safety distance, hx | 4.45% | 11.17% | 4.86% | 2.20% | -0.72%
8 | Maximum Deceleration (own) 11.41% | 1.15% | 7.30% | -1.11%| -20.93%
9 | Maximum Deceleration (trailing) 4.48% | -0.87% 2.60% | -0.87%U -7.94%
15 | Min. headway (front/rear) 17.71% | 4.27% | 12.54% | -1.87% | -28.78%
16 | Safety distance reduction factor 11.14% | -0.70% | 7.28% | -1.85% | -20.61%
17 | Max. deceleration for cooperative brakin{ 7.85% [ -1.82% | 4.45% | -1.42% | -9.90%

Reduction factor for changing lanes befpre

18 | a signal 1.61% | 14.61% | 2.96% 0.32%| -0.08%
22 | Lane change distance -17.91% | -0.85% | -11.85% | 1.45% | 22.94%

Table 14 1st Round - Eliminated Parameters’ Effecon Mean Travel Times

Travel Time Segment

# Parameter #1 #2 #3 #4 #5

2 | Look-ahead distance min 1.52% -1.94% 0.8% -1.269%6.73%
3 | Look-ahead distance max -2.31% -0.39% -1.4P% -0.059%.92%
4 | Number of observed vehicles 21006 052060  -0.68% 15%.| -0.72%
10 | Accepted Deceleration (own) 191% -0.37% 1.71% %4p -2.31%
11 | Accepted Deceleration (trailing) 1.38% -2.50p0  0.87%0.40% | -1.90%
12 | Reduction rate (own) -2.84% 3.28% -2.03% -0.2%% 6%5
13 | Reduction rate (trailing) 1.42% 2.10% 1.76%  0.34%0.24%
14 | Waiting time before diffusion 2.06% 0.67% 1.65% 240 | -3.68%
19 | Start upstream of stop line -0.41% -3.24% -0.4Y% .15% | -5.38%
20 | End downstream of stop line -0.31% -2.80% -1.08% 40% 2.50%
21 | Emergency stop distance 159% 425% 3.10% 0.30% 29%0.6
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Figure 39 shows the average travel time along segi® versus parameter value for the
minimum headway parameter and is illustrative olvhsratter plots are used in the analysis.
The plot shows a potential relationship betweeneiasing travel times and increasing minimum
headway values. Both this result and two resultsnfiwo segments above the 4% impact
threshold result in this parameter being retairdafsubsequent iterations. Figure 40 illustrates

the lack of an observable impact due to an elimptgdmeter (look ahead distance minimum).
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Figure 39 Mean Travel Times on Segment #3 vs. theiMmum Headway
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Figure 40 Mean Travel Times on Segment #1 vs. theobk Ahead Distance Minimum

It is noted that parameter #1, desired speed loligion range, was retained for the second
iteration even though it failed to meet the sewisytithreshold since this parameter had shown
significant impacts in other studies. Also, paranel8, reduction factor for changing lanes
before a signal, was retained. While only one travmee segment exceeded 4% the difference
was large, exceeding 14%. In addition the scalt@s indicated the parameter to be potentially
significant.
Similar results were obtained for 75% volume caBlke only difference between the two

scenarios is that the 75% volume case did not decharameter #9, the maximum decelerating

(trailing) parameter.
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6.2.4.2 lteration Il

For the second iteration the 11 remaining pararmdtem the 100% volume case and the 10 re-
maining parameters for the 75% volume case wemgedaiorward. For those parameters elimi-
nated in the first iteration, the default valuesnirthe initial model are used. As mentioned pre-
viously, the random seed value is also includedragdditional parameter to capture inherent
stochasticity. The results from the second iteraéice analyzed in a manner similar to that of the
previous runs. In addition, comparisons were magtevden the results of the simulations from
the first and second iterations to identify anyrgyes in travel times that might result from unde-
tected interactions of the eliminated parametarskigure 41 the average travel times for all
1,000 runs from each travel time segment are cosapfnr both parameter sets. The similarity

between these results helps support the firsttiberparameter eliminations.
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Figure 41 Comparison of Mean Travel Times from 1st2nd and 3% Parameter Set Runs

After completing the second iteration a list ofaieed parameters was generated for each scena-
rio. Note, the list of retained parameters was rd@teed in a manner similar to that described in
the first iteration. After second iteration of ruaisd analyses, parameters #1, desired speed dis-
tribution range, and #18, reduction factor for ajag lanes before a signal, were eliminated —

for both the 100% and 75% volume cases.

6.2.4.3 lteration Il

Similar to the second iteration, the nine remairsetected parameters from the 100% volume
case and the eight remaining selected parametets@5% volume case were carried forward.
For those parameters eliminated in the secondimaréhe default values from the initial model

were used. Similar to iteration two Figure 41, ajoshows the average travel times on each
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segment from the third parameter set runs comparéte average travel times on each segment
from the first and second parameter set runs. Qyéra results from the third iteration are very
similar to iteration one and two, supporting thiesgon of the parameters thus far eliminated.
From the results of the third iteration no paramseteere identified as insignificant. Thus, the
third iteration is the last and these parametgysesent the parameters that should be included in

the model calibration process. See Table 15 amieTES below for the final list of effective ca-

libration parameters.

Table 15 Final 100% Vol. Scenario - Retained Paranters’ Effect on Mean Travel Times

Travel Time Segment

# Parameter #1 #2 #3 #4 #5

5 | Average standstill distance, ax 6.25% 5.74% 6.54% | 9.19% | 11.11%
6 | Additive part of safety distance, hx 4.95% | 10.46% | 5.62% | 1.65% | -11.67%
7 | Multiplicative part of safety distance, hx 3.80% [ 6.47% 4.32% | 1.15% | -4.96%
8 | Maximum Deceleration (own) 9.86% 1.29% | 7.00% | -2.08% | -24.32%
9 | Maximum Deceleration (trailing) 5.54% 1.09% 3.78% | -1.75% -10.37%
15 | Min. headway (front/rear) 17.50% | 4.85% | 13.10% | -5.69% | -40.46%
16 | Safety distance reduction factor 10.57% | 2.39% | 7.22% | -4.96% | -28.45%
17 | Max. deceleration for cooperative braking 8.59% 0.66% | 5.48% | -2.85% | -15.16%
22 | Lane change distance -16.61% | -0.53% | -12.14% | 4.60% | 32.19%
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Table 16 Final 75% Vol. Scenario - Retained Paramets’ Effect on Mean Travel Times

Travel Time Segment

# Parameter #1 #2 #3 #4 #5

5 | Average standstill distance, ax 294% 1.89% 3.4] 4.75% | 27.08%
6 | Additive part of safety distance, hx 3.34% | 3.49%| 4.65% | 3.38% | -3.11%
7 | Multiplicative part of safety distance, hx 2.30% | 2.00%| 2.87% 241%  -0.259
8 | Maximum Deceleration (own) 4.75% | 0.77% | 2.50% 3.45%| -10.24%
15 | Min. headway (front/rear) 8.09% | 1.01% | 3.86% 1.88%| -18.11%
16 | Safety distance reduction factor 4.75% | 0.26% | 2.26% 1.04%| -9.70%
17 | Max. deceleration for cooperative braking 3.90% 330 [ 0.91% 0.25%] -8.84%
22 | Lane change distance -7.25% | -0.36%| -3.03%| 0.20%| 9.63%

6.2.5 Desired Speed

Of particular note in the preceding analysis is¢hmination of the desired speed range parame-
ter. Both iteration 1 and iteration 2 found theided speed range to be insignificant. To further
explore this somewhat counterintuitive result, wareined why this result might have an insig-
nificant effect on performance measures. The warkippothesis was that due to traffic condi-
tions on this corridor vehicles were unable to hetheir desired speed (45 mph) thus greatly re-
ducing its significance as a model parameter.

To test this hypothesis the runs were repeatedyubim 100% volume scenario and the
iteration #2 parameter set with the average desipeg¢d was lowered from 45 mph to 30 mph.
Thus the considered maximum potential range ofrdésipeeds would now be from 20 mph and

40 mph respectively. The results from the Montel&€Camulation experiments results for this

new scenario now showed that for all three of thregltravel time segments the desired speed
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distribution range was one of the most influenpatameters. Thus, while for the original model
the desired speed range was found to be insigntfitas seen that for other model configura-
tions the parameter can be highly significant. sThghlights the need to consider parameters for
each model as the impact of parameter calibratornvary from model to model.

To further explore the effects of the desired spaade calibration parameter, while cor-
roborating the above hypothesis, an additional exnt was conducted using the NGSIM
model introduced in Section 5.4. In the experimal$sussed in Section 5.4 the desired speed
range varied from 0 to 10 mile-per-hour. For thikofeing experiments the desired speed para-
meter is allow to range from 0 to 20 miles-per-hoApproximately 300 replicates of NGSIM
corridor model were created, with each replicaiagia different desired speed range expressed
as the difference between maximum and minimum e@éspeed. The desired speed range para-
meter was the only parameter varied between répic&or each replicate run the relevant travel
time measurements extracted. Figure 42 presertatiisplot of desired speed range versus av-
erage travel time for each segment. The red haatdime in Figure 42 represents the average

field travel time.
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In all four cases there is little change in the meavariability in travel over the desired speed
ranges (Max — Min) of 0 to 20 mph. This result utids the elimination of the desired speed
range parameter from the list of calibration paramss in the final stage of the advanced calibra-
tion procedure discussed previously as the maxinallowed variation was average desired
speed +/- 10mph. However, from the figure abogetha desired speed range increases beyond

20mph (i.e. average desired speed +/- 10 mph)ubeage travel time estimates and travel time



variability increase in three of the four segmentdus it is again seen, that depending on the
underlying base conditions (for instance, the \alitg in desired speed selected by drivers on a
corridor) the importance of parameter change. thisrparticular instance it is recommended to
generally retain desired speed as a calibrationress been demonstrated to influence model op-

erations under certain conditions.

6.3 Advance Calibration Procedure Summary

The previous sections described a general procdduidentifying parameters which should be
considered for calibration of particular simulatiodels. For the case study (Cobb Parkway in
Cobb County GA), application of this procedure feglin the selection of nine parameters and
eight parameters for two volume cases.
The sensitivity-based procedure was effective temeining which parameters had a significant
effect on the model. However, ultimately the comstion of the model itself is more significant
than the parameter values, as evidenced by ongyvapairameters influencing measured travel
time by more than 10%. As such, parameter caldmathould be used to fine tune a model, but
the results using the default parameter values ralusady be reasonably close to the values
from the field data in order for the calibrationti® successful.

The results from the application of this procedalsn show important differences from
previous studies. For instance, seven parametessopisly used for calibration purposes were
shown to be insignificant for calibration of the iboParkway model. These seven parameters

include: waiting time before diffusion, emergent¢gpsdistance, number of observed preceding
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vehicles, accepted deceleration (own), acceptedlei@tion (trailing), reduction rate (own) and
reduction rate (trailing). These parameters weckided in the previous studies for varying rea-
sons however it is clear that a general set atafiparameters requiring calibration in all models
does not exist. Application of the sensitivity-bdiggarameter selection method avoids the ex-
pense of unnecessary calibration, including thematl costs of field data collection of these
parameters. Thus, without confirmation of a param&ignificance it is possible that insignifi-
cant parameters are essentially being calibratedditrary values and significant parameters are
being missed.

In the future efforts of this research the discdssaibration procedure will be applied to
the NGSIM data based experiment. First a baserasdit model will be developed. As part of
this development the critical parameter set wilidentified. Given the calibrated base model the
need and methodology to calibrated parameter ihtirea will be investigated. For instance,
might it be expected that parameter values chamgeighout a day, congested traffic versus un-
congested, morning versus evening, etc.

Finally, as noted in the experimental results pressbin Chapter 5 significant pedestrian-vehicle
interactions was observed but not accounted fahensimulation. This pedestrian-vehicle inte-
raction had the potential to significantly affedteaial performance. The influence of pedestrians
on vehicles should not be address through caldoraif model but instead through direct inclu-
sion of pedestrians in the model. To model pedestvehicle interaction VISSIM’s pedestrian

model was examined to determine its ability to aawly reflect pedestrian behavior. A detailed
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study was undertaken on the test bed intersecfi@l Gtreet and Spring Street. The following

chapter describes this study.
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/ MODELING PEDESTRAIN BEHAVIOR

Many of the commonly utilized traffic simulationdis currently under-represent the complexity
of pedestrian behavior and their interactions hign various components of the traffic network.
While simulation packages have been developed fegaby for representing pedestrians, their
usage has generally been limited to modeling padasbehavior for special cases, such as a
building evacuation, large pedestrian interacti¢gg. stadiums), transit centers, etc. [58—62].
Although these packages utilize sophisticated behavalgorithms for pedestrian simulation,
they are usually not designed to specifically mguedestrian-vehicle interactions in the urban
traffic environment.

This section will explore the microscopic modelwigpedestrians crossing at an intersec-
tion with the use of VISSIM, while incorporating sdyved pedestrian behaviors at a crosswalk

and the influence of pedestrian-vehicle interagtion

7.1 Previous Works in Modeling Pedestrians

The impetus of this study was a set of observatp@mtormed by the research team on the simu-
lation test bed. While observing pedestrian belrapedestrians appeared relatively uninflu-
enced by the pedestrian signal. Instead, mostspeaies crossed whenever they found an ac-

ceptable gap in traffic, regardless of the pedastsignal indication.
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Several researchers have observed the similarsissiie pedestrian rule violations. For
instance, a study performed by Virkler [63] in Aadia he classified pedestrians as: “comply-
ing” (those who cross during the walk indicatiofiynners” (those who cross during the clear-
ance interval), and “jumpers” (those who cross mytihe red interval). This study found that
74.4% of pedestrians complied, and 15.8% were “gnsipcrossing on the red phase at oppor-
tune moments. Ishague and Noland [64] noted thaégigan compliance to signals should be
taken into account, as the signal affects the pexdepedestrian efficiency of an intersection.
They attempted to study the gap acceptance behakipedestrians crossing against the pede-
strian signal. One of their more immediate condusiwas that gap acceptance was dependent
on vehicular volumes at the intersections. Howetrez,study was limited as insufficient viola-
tions were observed to determine the distributibgaps accepted by rule-violators and of rule-
violating versus rule-following pedestrians. Yangk [65] developed a model of Chinese pede-
strian behavior that accounted for gap-seeking \nehaThey theorized that there were two
types of pedestrians, law-obeying and “opportuaistiThey observed that an average of 85% of
pedestrians were “opportunistic”.

There are a number of other research efforts tleafiogused on modeling observed pede-
strian behavior in a mixed-traffic simulation enment. Rouphail and Eads [66] used COR-
SIM to evaluate turning movement delay given alle¥g@edestrian flow. They compared this to
other methods, including the 1994 HCM and Canadiathod of predicting delay due to pede-
strians. CORSIM assigns delay values based onetied bf pedestrian volumes (none, light,

moderate, and heavy). Neither the HCM nor the Canachethods include adjustments for vi-
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olating pedestrians, although the Canadian metipedifscally calls for the volume of pede-
strians who cross during the walk and pedestriaarahce phases. Wan and Rouphail [67] had
previously looked at a gap-seeking models for raodts using ARENA. Schroeder and Rou-
phail [68] also looked at signalized crossing betiawm VISSIM at crossings near roundabouts.

Numerous researchers have also studied simulagdggtrian activity to quantify its ef-
fects on turning movements at signalized intersesti Milazzo et al. [69] noted that the High-
way Capacity Manual (HCM) has measures for empiyicketermining delay for right and left
turning vehicles from one way streets. They ingasged the impact of total pedestrian volumes
on turn movement delays. They determined that t8&IHshould add an adjustment factor for
pedestrian and cyclist saturation rates. Coyemadd-errere [70] also investigated factors that
could be applied to delay equations based on pealestolumes, but did not consider gap-
seeking pedestrian behavior. Hubbard et al. [7l¢nsed the question and examined the delay
that turning vehicles imposed on pedestrians asevalks. Based on their study, the authors rec-
ommended that the HCM be modified to include thpaots that turning vehicles have on pede-
strians.

Expanding beyond the individual intersection, ik|72] simulated pedestrian behavior
in a traffic network. In the Virkler study, the &otr developed a method of determining travel
time along pedestrian corridors that incorporaiefl travel times and time spent in queues at
nodes. Virkler also noted the effect of non-compimat walk signals and found that pedestrians

who did not comply with signals, on average, redubteir delay by 22%.
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These studies recognize the same general pedesalevior that was observed in the research
test bed. It is apparent that, to varying degrpedgstrians across cultures can be grouped into
complying (i.e. those who follow the pedestrianications), and gap-seeking (i.e. those who
cross the street, regardless of the pedestriamlsiggication, if the gaps in traffic are suffict¢n
This behavior is even acknowledged in the HCM 204Bere effective pedestrian walk time
may be increased to reflect “illegal pedestrianawedr” [73]. Thus, to realistically model pede-
strians in today’s traffic simulation tools thesshhviors must be reflected. Therefore, the objec-
tive of the efforts reported in this paper is foatdi®n an attempt to replicate observed pedestrian
behavior at a crosswalk, accounting for pedestvigmele interaction within a microscopic simu-

lation environment.

7.2 Methodology

Pedestrian data were collected for the south cralgsat the intersection of Spring Street and
Fifth Street in midtown Atlanta, Figure 43. SpriS¢reet is a four lane, one-way, southbound
street with a 35 mph speed limit. Fifth Streea isvo lane, two-way, east-west street, with a 25
mph speed limit. This intersection is located inara known as Technology Square (Tech
Square) and is home to a number retail shops @mguthe campus bookstore), instructional
buildings, and commercial businesses, as well@s#orgia Tech Hotel and Conference Center.
Given the relatively consistent pedestrian dematinils site offers a desirable location observing

pedestrian behavior.
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7.2.1 Data Collection and Processing

The primary means of collecting pedestrian and arélr data is by video recording. Tech

Square is outfitted with VDS cameras that streadewiand traffic data as a part of a NSF real-
time simulation project. Covered zones include ititersection proper as well as upstream on
each approach (Figure 44 and Figure 45). Data wxdracted from the video using both manual

methods and using automated reduction software.

7.2.1.1 Pedestrian Data

Pedestrian data collected includes the number dégigans, walk speed, and individual pede-
strian arrival and departure times. Data collecti@s conducted on July 8, 2010 from 12:00 PM
to 1:00 PM, September 16, 2010 from 12:00 PM t® P&/ and from 5:00 PM to 6:00 PM.
Figure 44 provides the intersection camera view Rigdre 45 contains the upstream approach
view for Spring Street. Approximately 400 pedestsiavere detected over the one-hour period.
The average walk speed was estimated at 4 feetggend. The research team manually record-
ed time stamps from the video for the arrival apgaiture of each pedestrian. A pedestrian was
considered to have arrived when he/she enteredvditeng zone, defined as the sidewalk area
within approximately 15 feet of the crosswalk cumbe and departed when the pedestrian
stepped from this zone into the crosswalk, seerkigd. The difference between the arrival and
departure represents the waiting time experiengethé pedestrian while waiting to use the
crosswalk (minus a waiting zone transition timeafeconds). The average waiting time per pe-

destrian was found to be approximately 21.5 seconds

144



7.2.1.2 Vehicular Data

Traffic counts were collected on the Spring Straed %" Street approaches. In addition, the

timestamp, speed, and lane number were recordeachsvehicle crossed the upstream detectors

on Spring Street, see Figure 45. Signal timing phaere obtained from the City of Atlanta and

field-verified. The intersection operates under isactuated control with loop detectors ofi 5

Street. The cycle length for the signals during tihe period was 110 seconds.
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7.2.2 Simulation Model

VISSIM 5.3 was utilized for this effort. VISSIM, widely used off-the-shelf traffic simulation
program, is a discrete, stochastic, time-step-basietbscopic simulation model [39]. This be-
havior-based multi-purpose traffic simulation pragrwas developed to model a wide range of
traffic conditions including freeway, arterial, apdblic transit operations. In VISSIM, all ve-
hicles are modeled individually, based on a psyghysical driver behavior model developed by
Wiedemann [39]. Recently, to better represent gadasbehavior, VISSIM introduced a new
pedestrian model based on the Social Force Modigl The Social Force Model for pedestrian
dynamics is based on Newtonian physics and pedestrteraction is modeled according to so-
cial, psychological, and physical forces. A pedasts motion is influenced not only by their

route choice but also by other pedestrians andholest.

7.2.2.1 Vehicle and Pedestrian Interaction Modeling in VISSM

VISSIM can model pedestrians under one of two pgrasl vehicular traffic mode or pedestrian
traffic mode. When modeling a pedestrian area €éi@ample a room or floor of a building) the
pedestrian traffic mode is utilized and the pedmstarea is defined along with the pedestrian
origins and destinations. A pedestrian determiteeswn path through the area according to the
Social Force Model. Multiple pedestrian areas mayrtodeled (for example multiple floors of a
building) and can be connected via ramps or steitsractions between vehicles and pedestrians
cannot, however, be modeled in pedestrian modénkAn vehicle traffic mode must be created

then converted to a “pedestrian link” [39]. The esttian link then utilizes the same mechanisms
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(e.g. priority rules) as vehicles to model the natéion between vehicles and pedestrians.

In contrast to vehicular traffic links, pedestrilanks are multidirectional. As with ve-
hicles, different pedestrian classes may be cremtddifferent attributes assigned to each class.
Signal heads may be placed at the ends of the fpeaelnk to represent pedestrian signals.
Multiple signal heads may be used, each associaittda different pedestrian class. A pede-
strian will consider a signal head if and onlytd pedestrian type is assigned to that signal head.
Two pedestrian classes were created to model camgpbedestrians (i.e., those pedestrians that
do not cross when the signal indication is a stda@W'T WALK), and gap-seeking pedestrians
(i.e., those that do not follow the signal headdations, crossing whenever an appropriate gap
is available in vehicle traffic.)

To facilitate the interaction in the crosswalk beén vehicle and pedestrians, priority
rules are utilized. Similar to the priority rules vehicular traffic modeling, transportation ana-
lysts may set up priority rules between a pedesiiick and each conflicting vehicular lane. In
the study area, the critical interaction is betweehicles traveling southbound on Spring Street
and pedestrians crossing eastbound or westbouristhoStreet. Gap-seeking pedestrians may
attempt to cross during the steady DON'T WALK wttea southbound vehicle traffic is receiv-
ing a GREEN indication. During the steady DON'T WHKLindividual priority rules are applied
for each lane of Spring Street to realistically mlgoedestrian gap selection behavior. For exam-
ple, westbound pedestrians are designed to yiel@hales in Lane 1 and Lane 2 within a time
headway of 4 seconds and 6 seconds of the crossmealbectively. Lane 3 and Lane 4 priority

rules are designed such that vehicles should netithén 6 seconds of the crosswalk at the time
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the pedestrian is expected to reach the lane. &ifdiillustrates the priority rules for pedestrians
crossing westbound, where gap-seeking pedestrihnatidepart from the waiting area curb line
if a vehicle is in the any of the zones indicatgdi® arrows and dotted lines.

The proceeding priority rules are not requireddomplying pedestrians. Crossing beha-
vior for complying pedestrians is governed by pé&tkas signal heads and pedestrians will not
cross when a DON'T WALK indication is displayed. &tcordance with guidance from the
Highway Capacity Manual, “effective walk time” wased in estimating complying pedestrian
time available to start crossing. An additionalrf@econds was added to the seven seconds of
displayed WALK indication in the field, such thaetmodeled effective WALK indication is 11
seconds. Interactions may also occur between pedes{complying and gap-seeking) and ve-
hicles turning southbound fronl"Street onto Spring Street. These interactionsroatien pe-
destrians have the right-of-way, i.e. a WALK indioa is displayed. For this analysis vehicles

are modeled to yield to pedestrians.
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308ftat35mph

[ || Westbound Pedestrian

Figure 46 VISSIM Priority Rule Configuration for Ga p-Seeking Pedestrians

7.2.3 Experiment

Pedestrians were assigned as complying and gapggedestrians in the simulation runs. The
complying pedestrians only entered the crosswalindumodeled WALK indication (i.e. the
effective walk time as discussed above). This beavas achieved by using signal heads at the
end of the pedestrian links. Gap-seeking pedestiech not follow the pedestrian signal during
the modeled steady DON'T WALK, choosing to entex tnosswalk based solely on the availa-
bility of an acceptable gap in the traffic streaburing the modeled WALK indication gap-

seeking pedestrians ignored all priority rules armssed as though they were complying pede-
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strians.

Eleven ratios of gap-seeking to complying pedessriare modeled, from 100% comply-
ing (thus 0% gap-seeking) to 0% complying (100%-g@pking) in 10% increments. Ten repli-
cates were completed for each selected ratio. Batected from each replicate includes pede-
strian arrival times, pedestrian departure timesnfthe waiting area, and pedestrian waiting
time.

To allow more direct comparison of the field dadétie VISSIM results, the arrival pat-
tern of the southbound traffic on Spring Street aigs replicated. As previously stated, the time
stamp of traffic crossing the upstream detectdhenfield was recorded. These data were used
to generate a VISSIM fkt file. An fkt file allows aser to directly control the entry time of all
vehicles on a link. Thus, the Spring Street arrpattern over the hour was set to match the ac-

tual observed arrival stream.

7.3 Results

The following presents results from the field data simulation experiment.

7.3.1 Field Results

While processing the data from the video, one efrtiore prominent pedestrian behaviors that
was noticed was the number of gap-seeking pedestusing the intersection. A majority of pe-
destrians that arrived during the DON'T WALK indiica appeared to be gap-seeking, crossing

when an acceptable gap was available. For instdhedrigure 44 snapshot was taken during a
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DON'T WALK interval (indication not visible in imag), however a number of pedestrians were
crossing. This behavior was observed throughouttta collection period, over a majority of
the cycles. Figure 47 displays the total crossifygaxis) over the data collection period as a
function of time of cycle (x-axis). Pedestrian data included from approximately 32 cycles.
For example, over the data collection period, 1@eg&ians were observed entering the cross-
walk 86 seconds into the cycle. This figure cleanlgicates that a significant number of pede-
strians enter the crosswalk during the DON'T WALKerval.

To determine whether there is a notable relatignbletween pedestrian arrival and de-
parture patterns, the pedestrian arrivals intonthiéing zone are plotted in Figure 48. It appears
that the departure pattern is generally independktite arrival pattern. However, the departure
pattern does appear correlated with the pedessigamal (Figure 47). At the start of the pede-
strian DON'T WALK interval (t = 21) there is a genady low likelihood of pedestrian crossing.
Approximately 55 seconds into the DON'T WALK intatv(t=75), the number of pedestrians
crossing increases significantly. The likelihoodpeidestrian crossing remains high through the
remainder of the DON'T WALK interval. At the staof the WALK and Flashing DON'T
WALK, the pedestrian departures are similar toatrevals.

This crossing pattern results from gap-seeking gtede behavior. At the start of the
DON'T WALK interval, the southbound vehicle traffieceives a GREEN indication. While the
southbound vehicle queue is clearing, the gap-sgeBedestrians are unable to cross Spring
Street. Once the queue dissipates the likelihood gép-seeking pedestrian finding a gap in-

creases, depending on the southbound vehicle Brivaus, the observed behavior of gap-
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seeking pedestrians using the later portion ofDKEN'T WALK interval is directly related to

the southbound traffic queue clearance time andesyuent traffic flow, not the pedestrian signal

indication.
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7.3.2 Simulation Results

Figure 49, , and Figure 51 shows representativdteeBom a typical replication for complying
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to gap-seeking ratios of: 100% to 0%, 50% to 58f@ 0% to 100%, respectively. As with Fig-
ure 47 and Figure 48, the pedestrian crossingxi§)-eepresent the cumulative crossings over
the full data collection time period (i.e. 1 houfjgure 49, with 100% complying, limits pede-
strians crossing to the effective WALK interval.eTsimulated departure behavior clearly fails to
match field observationgzigure 50, with 50% complying and 50% gap-seeking, demotesra
some of the aspects of the field data (i.e. peid@strcrossing after southbound queue clearance)
however the ratio of pedestrians crossing duriregg WALK indication to the steady DON'T
WALK appears higher than field observations. Fighie with 100% gap-seeking provides the
closest match to the observed field data. Pedastriaval rate was also examined to investigate
potential correlations between the arrival and depa distribution. As with the field data, it was
observed that the arrivals and departures appdapéndent, with the simulated and field arrival
patterns looking very similar, implying that thensilated departed rates are not determined by

the distribution of pedestrian arrivals.
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Table 17 provides a breakdown of the various comglpedestrian to gap seeking pedestrian

ratios and their respective average waiting timeess the ten replications. The average pede-

strian waiting time decreases as the gap-seekamgidn increases, with the ratio of 90% to 95%

gap-seeking to complying pedestrians most closeliching the field waiting time observations

of 21.5 seconds.
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Table 17 Complying-Gap-Seeking Ratios versus Averag/Naiting Time

Percent Percent Gap-  Average Waiting  Maximum of 10 Minimum of 10

Complying Seeking Time Replicate Runs Replicate Runs
100% 0% 46.9 50.6 44.0
90% 10% 43.0 44.9 41.1
80% 20% 40.9 43.9 37.4
70% 30% 38.5 40.9 35.5
60% 40% 36.1 39.4 32.7
50% 50% 328 35.7 30.5
40% 60% 29.9 31.9 29.0
30% 70% 27.2 29.1 24.9
20% 80% 24.4 27.9 22.8
10% 90% 222 23.7 20.4
0% 100% 20.3 22.5 18.7

7.4 Discussion

It is readily seen when comparing the curb deparhahaviors over a cycle observed in Figure
47 (field data) and Figure 49 (100% complying pé&ums) that the simulation model fails to

capture the real world. The field data clearly destmates a high willingness of pedestrians to
cross during the DON'T WALK interval. Modeling 100é6mplying pedestrians does not allow

this behavior to be reflected, yielding signifidguttigher pedestrian waiting values (which could
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lead to errors if applied in multi-modal transptida policy analyses Figure 50 displays the
crossing behavior for a mix of pedestrian typeo5fap-seeking and 50% crossing. In this si-
mulation, the pedestrian behavior begins to maveety resemble the field data. However there
are still notably lower percentages of pedestrienossing during DON'T WALK than are ob-
served in the field (and the simulated pedestriartimg time values are still significantly higher
than observed in the field).

The patterns of curb departures shown in Figuramti’Figure 51 (100% gap-seeking pe-
destrians) are very similar. However, a notabléediince between these two figures is that more
pedestrians in the field observation data crosbeeaturing the DON'T WALK interval. One
potential reason for this observation is that pedes in the real-world have more varied gap
acceptance criteria than pedestrians in VISSIMluthog pedestrians that force a crossing and
cause approaching vehicles with the right-of-wagltav down. This supposition is supported by
a few noted field observations where pedestriaesaen running across the crosswalk or cross-
ing the street in stages, waiting in the streatoadlicting vehicles pass by in an adjacent lane.

These observations regarding the similarity betwéenfield data and simulation model
are support by the waiting time data. As the paage of complying pedestrians deceases and
percentage gap-seeking pedestrians increases (T@plthe average pedestrian wait time de-
creases. This decline is expected as increasegribportion of gap-seeking pedestrians lowers
the average waiting time due to their willingnesslisregard the traffic signal and depart from
the curb sooner than complying pedestrians. WitG%d Gomplying pedestrians, the average

waiting time per pedestrian is 46.9 seconds, coaetpty a field measured waiting time of 21.5
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seconds, a 118% higher simulated waiting time fredd measured waiting time. For 100% gap-
seeking pedestrians, the simulated waiting time 2@&827 seconds, around 6% lower than the
field data.While additional effort is needed (séaltenges below) it is reasonable to infer from
these results that the percentage of complyinggiedes is high and failure to account for this
behavior will result in an inaccurate reflectionreél world behavior.

In light of the strong similarity between the ohst and simulated pedestrian behavior,
it is important to recall that in this modeling @ff that the simulated vehicle arrival stream was
set to match the field arrivals. Thus, the gaps $8ethe simulated pedestrians were very similar
to those noted in the field observations. If theévat stream was modeled using VISSIM vehicle
generation (for the same flow rate) the modeledepetin behavior is likely to change. For in-
stance, ten replications of the simulation were wgimg VISSIM vehicle generation for 100%
gap-seeking pedestrians. The average simulatedstpiahe waiting time increased to 24.2
seconds/pedestrian (from 21.5 seconds/pedestrigmtiae arrivals matched). While practically
this is a small change in waiting time it does destiate that the vehicle arrival pattern influ-

ences the model performance, representing an &faaice needed research.

7.4.1 Simulation Challenges

As seen in the previous section, the simulatedrenmient is capable of providing a reasonable
reflection of the observed pedestrian behavior. i@y, there are a number of caveats that

should be highlighted which will play an integrale when duplicating this methodology.
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Firstly, the VISSIM model’'s output appeared to hghly sensitive to the pedestrian re-
lated parameters. For instance, pedestrian gapt@cwe criterion, priority rule configurations,
and effective crosswalk width all had the potentoakignificantly influenced model results. In
this effort the value(s) of each of these paramseteere established by examining previous
works, seeking professional input, conducting coised field studies, and performing limited
sensitivity analyzes. However, ultimately final gareter values are selected based on the mod-
eler's judgment in an attempt to reflect realistiossing behaviors. Future efforts should explore
methods to field measure these parameters, detertimenmodel sensitivity to these parameters,
and develop guidance to model developers on tleets@h and calibration of parameter values.
For example, to account for the potential effectpetiestrians walking outside of the painted
crosswalk limits, areffective crosswalk widtshould be used. This width will typically result in
the modeled crosswalk having a greater width tham painted in the street. When choosing an
effective crosswalk width, it is important that thealyst be careful when estimating this value.
An improper estimate may produce inaccurate resastshis width affects pedestritimoughput
rate across the street, and subsequently pedestriag.del

Secondly, the variability in pedestrian and veh@taval and discharge process, pede-
strian gap selection, pedestrian to turning-vehiteraction, etc. all result in field data thae ar
more erratic than are simulated by VISSIM. For epkeneven under the 100% gap-seeking case
there are no pedestrian crossings between 20 arsgd&ihd. In the field data there are a few
crossings during this time period. This is likellya result of VISSIM not reflecting the high

short term vehicle gap variability that exists,tmadarly in the urban environment.
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Finally, it is noted that providing a field meastiggercentage of gap-seeking pedestrians
for use in a simulation model is a challenging envde. If a pedestrian chooses to cross during a
DON'T WALK indication that pedestrian may be clagaitientified as gap-seeking. However, if
a pedestrian arrives during a DON'T WALK indicatiand does not cross, the pedestrian’s deci-
sion to gap-seek or not can’t be readily field noeed (except in obvious cases) as that pede-
strian may have been gap-seeking but simply unabfand a sufficient gap. Additionally, it is
not possible to make any definitive gap-seekinganplying statements about pedestrians that
arrive and cross during the WALK interval. An adafuture research will be methods to field

measure the variability in gap-acceptance critesipart of the pedestrian attributes.

7.4.2 Experiment Replication

Finally, in an effort to build confidence in thesdussed approach to pedestrian simulation mod-
eling the study was repeated for the same intesseatver the same time period, on September
9th, 2010. With a 100% pedestrian gap-seekingaatkVISSIM generated vehicles the simu-

lated pedestrian waiting time was 21.0 secondsusessfield measured waiting time of 18.6

seconds per pedestrian. Plotted pedestrian depanere also similar between the field and si-
mulated data. While a single successful replicapimmsented pedestrian simulation methodology
does not fully validate the approach, it continteesupport the method and need for accurately

reflecting pedestrian behavior.
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7.5 Concluding Remarks

Pedestrian movements are inherently more compkax ¥iehicular movements, and it is because
of this complexity that pedestrian behavior has alatays been appropriately accounted for in
traffic simulation packages. Accounting for suctmdéor will lead to a greater understanding of
pedestrian-vehicle interactions and will help imgranulti-modal transportation planning and
simulation. As a result, more informed decisiorsyrbe made regarding pedestrian and vehicle
activity in the urban environment.

In looking to bring about a greater understandimgpédestrian-vehicle interactions, the
presented research attempted to represent regeliestrian behavior in VISSIM, a microscopic
traffic simulation program. The modeling yieldedhgmarable observed and simulated distribu-
tions of when pedestrians choose to use the crdssivaing the signal cycle and estimates of
average pedestrian waiting time. When these satdarmation were compared for the observed
behavior and simulated behavior it was seen tleapédestrian behavior is strongly related to the
cross street traffic queue clearance time and suiese traffic flow, not the pedestrian signal
indication. Capturing this interaction significanttnhances the models’ ability to reflect ob-
served field performance.

Despite the success of this modeling effort a nunotbehallenges were identified. For
instance, the VISSIM model’s output appeared tdighly sensitive to the pedestrian related
parameters, such as pedestrian gap acceptana@gcipigority rule configurations, and effective
crosswalk width. Also, the field variability in pestrian and vehicle arrival and discharge

process, pedestrian gap selection, pedestriarrmgdvehicle interaction, etc. result in field be-

162



havior that is more erratic that the simulated bedra Ultimately, the modeler’s judgment and
fine tuning of the model played a strong role ie #bility of the simulation to realistically refkec
crossing behaviors. Many of the issues raise@li;dffort merit additional exploration to allow
modelers to make more informed choices.

From this research effort, it can be concluded shatcessful representation of realistic
pedestrian behavior is feasible in microscopicfitagimulation. This result is promising as it
seeks to be a part of the foundation of effortgg@&o capturing pedestrian-vehicle interaction.
In capturing this interaction, the ability for tisenulated environment to accurately reflect the
performance measure has increased. The next stbe irest will be a comparative analysis of
the vehicle behavior in the simulation and fieldtegi that pedestrian behavior is now appro-
priately reflected. This step is necessary to alfowthe incorporation of pedestrians into the
real-time platform. However, a final critical isstiat will need to be addressed in the implemen-
tation of a real-time simulation that incorporapesiestrians will be the ability to implement pe-

destrian detection in the field.
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8 VISUALIZATION OF ARTERIAL PERFORMANCE

One of the final components of this research effotb present the information, which has been
modeled by VISSIM, to the consumers of arteriafgr@nance measures. The research team has
developed a web-based tool that the consumers m#yosevaluate the current performance of
the arterial under study. The following chaptelt piovide some of the more pertinent details of
the web-based tool.

The visualization mechanism has three componentthelrepresentation of individual
vehicles, 2) the depiction of changes in traffioditions as a function of time and space, and 3)
the historical presentation of key arterial perfanoe measures. Details of these components are
presented below with reference to the NGSIM corrgtady discussed earlier.

The first component presents traffic on a microgcagrale. Individual vehicle are
represented as they travel through the corridors Bnimated graphic provides users will an
immediate sense of the traffic conditions alongdbgidor. The animation is powered by (X,y)
coordinate data of individual vehicles which areduced by VISSIM. The animated movement
of vehicles is layered on top of a Google map imalgihe study area. This form of representa-
tion allows the user to easily relate observeditraionditions to actual locations at which it is
occurring, Figure 52. In Figure 52 the cyan cisadlepresent vehicles traversing the network and

the dynamic colored arrows reflect the currentéaton of each signal head along the corridor.
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Figure 52 Real-Time Vehicle Representation along thPeachtree Study Corridor

The second component delivers time-space diagra®b)(to users. These diagrams are com-
prised of individual vehicle trajectories along ttw@ridor. Each point on a trajectory represents a

vehicle’s place in time, distance traveled alorgy¢brridor and instantaneous speed. Time space
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diagrams provide a comprehensive view of corrideffggmance. They present information re-
garding platoon movement and the effectiveness adrador’'s current signal timing plan. In

addition they provide immediate approximations floe number of vehicles on the corridor,
gueue lengths, and travel speed and travel timegdiee corridor. Figure 53 is a sample time-

space diagram.

Tine Space plot {sliding scale)

]
\U

[l

1800

tance frem Southeen Terminus of Routatft)

Di
E

W
b

600

N

Figure 53 Sample Time-Space Diagram for Northboundravels
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The third component of the visualization mechanmesent users with additional performance
measure estimates. For each link of the corrid@plgs of historical and current values of flow
(number of vehicles), queue length, and averagedspee provided. In addition average travel
times for the entire length of the corridor, boiredtions, is illustrated. Figure 54 illustrates a

composite of the speed, queue length and flow gecaph

167



Spoed plot {sliding scalel

EaLDO apom BAL{D BEO00

o0

Flow plot {sliding scale)

BESOO Haooo A&hH0D 85000

thsmee Length plot deliding scalal

sacan B350 Banoo H5%00

Bs0oD

A5500 BE0O0 HES G

Figure 54 Composite Graphic of Speed, Queue Lengtdnd Flow Plot
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The above graphics provide travelers and facilignagers with comprehensive knowledge re-
garding the operation of the study corridor. Ihggped that with this information at hand, such
consumers will be better equipped to make decistonaid in increasing the efficiency with
which the facility is being used and managed.

A demonstration website has been created to prese&mial performance measures. This
website is being driven in real-time by a simulatrnodel. Data to the simulation model is be-
ing provided from the NGSIM data utilized in Expeent #4, discussed in Chapter 5. The site is
stil  in the alpha testing stage. The website maye baccessed through

http://realtime.ce.gatech.edu
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9 FUTURE RESEARCH AND IMPLEMENTATION PLAN

The preceding chapters demonstrate the feasibititpnline, data-driven, simulation tool to es-
timate arterial performance measures in real-tinkowever, five primary opportunities have
been identified as needing further effort: 1) imm@d accuracy of vehicular volumes entering the
study network, 2) real-time estimations of turnmgvement distributions, 3) synchronize field
and model traffic signal control, 4) calibratiomdab) reflecting congestion resulting from fac-
tors outside the simulated area. The team antesphat effort in these areas will lead to more

accurate and reliable performance measure estimates

9.1 Vehicular-Volume Accuracy

Errors associated with vehicular volumes at theyszone boundary were prevalent in the third
field experiment. When observing vehicles enterangamera’s detection zone the two most
comment error types were: 1) a single vehicle (Iisw@alarger vehicle) triggered detections in

adjacent lanes or 2) a vehicle failed to triggdetection zone.

9.2 Turning Movement Distribution

In the current effort turning movement proporti@re based on historical data and the path of a
vehicle through an intersection is randomly asgignesed on these proportions. As noted in the

chapter 5 experiments this inability to determinming movements in real-time is a potential
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source of error. Estimating turning movement prapos has aspects in common with the de-
velopment of models that estimate dynamic origHaléstination flows in a small network [35].

Liu et al. [35] and Chang and Tao [75] present mrsary of some the more notable works in
turning movement proportion estimation. Futuree# will attempt to build on these and other

resources in the development of a real-time turmiegement estimation procedure.

9.3 Field and Simulated Signal Synchronization

In the third field experiment it was noted that gimulated signal indications could differ from
field. Given the strong correlation between sigma¢rations and arterial performance measures,
it is critical that the field and simulated sigms#hte is synchronous. To establish synchronization
between traffic signals in the two environmentg, tilam will again seek to understand prior ef-
forts and possibly employ or build up their conttibns. One of the works that will be closely
examined is presented in Ban et al.[76]. The astbbthis article estimated signal timing plans
using piecewise linear intersection delay curvesatwo-step least square estimation algorithm.
Although this method may not be suited for the entreal-time approach, the details of this me-
thod will provide insights as to how to achieve autiomate signal synchronization. To develop
a robust signal synchronization plan the team &lfb investigate means to stream signal states

into the simulation.
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9.4 Calibration

In this effort extensive effort was expended onlimig calibration of simulation models. Future
efforts should explore expansion of this calibnatio an online calibration, continually adjusting
the model parameters in real time. In addition, pleeestrian modeling efforts should be ex-
panded to allow for incorporating the influencepefiestrians on simulated traffic, particularly in

urban areas with high pedestrians demands.

9.5 Boundary Conditions

A final issues that was noted as part of this ¢fforelated specifically to the capabilities oéth

simulation model. The challenge of real-time simiolais to mirror dynamic traffic conditions

in real time. As part of these efforts it was obserthat the simulation model was capable of
reflecting congested conditions when the caus@éetbngestion (i.e. bottleneck) resided within
the simulation boundaries. However, if the souréecangestion was outside the simulation
boundaries and spilled back into the simulationamghis was not captured. For example, if an
intersection outside of simulated region resultedqueues blocking an upstream intersection
within the simulation boundary this would not béeeted. The underlying challenge is the de-
velopment of an ability to restrict flow on simuat exit links such that the blockage due to
downstream congestion is reflected. Future effaitsbe aimed at dynamically controlling the

flow rate at nominally unrestricted exit pointsreéal time.
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9.6 Next Steps

This effort has utilized detectorization and equgpmspecifically installed for this project. This
installation allowed for highly detailed informatidao be streamed real time. The next test should
seek to implement a real-time simulation on anri@tteorridor utilizing data streams with a po-
tentially lower fidelity. For instance, the curregest bed streams per vehicle detections from the
VDS. Where this data accuracy is not availablel¢hel and impact of data aggregation should
be determined. For instance, a field test coulddeeloped on a TACTICS based system, deter-
mining what data is available, how it could be atned, what are the aggregation levels, etc.

The real time research effort should also contitauexplore the issues discussed in sec-
tions 9.1 through 9.5, i.e. entering vehicle voluaveuracy, determination of real time turning
movements, synchronization of field and simulateghas, online calibration, and downstream
congestion influencing boundary conditions. Improeats in each of these areas will improve
the performance of overall real time simulationtegs However, the next phase of the project
could eliminate several of these issues (pedesim@acts and downstream congestion influen-
cing boundary conditions) through targeted selectb the next site, allowing for a more fo-
cused effort.

In addition a broader field test would also neeéxplore potential communication chal-
lenges. The current test bed had the benefit bzation of the campus fiber network. To be suc-
cessful the next implementation should investight®e communications between the detectors
and the data processing center and communicatioveba the processed data node and the si-

mulation in a location without this benefit.
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Finally, with the rich data streams being leveragegart of the real time simulation ef-
fort the next implementation should incorporateaaalytical model based directly on the availa-
ble detector and signal data to compliment and aughe simulated results. A combined simu-

lated and analytic approach has the potential themd the challenges unique to both approach-

es.
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10 CONCLUSION

As seen a wide variety of advanced technologicalstthave been implemented throughout
Georgia’s transportation network to increase ifgciehcy. This research project explored the
feasibility of integrating real-time data streams$hwan arterial simulation to support an arterial
performance monitoring system. Such informatioh facilitate increased efficiency in facility
utilization by enabling more informed decisionstire use and management of Georgia’s trans-
portation facilities.

In the initial stage of this effort a federatiore(iintegration) of two simulation instances
to be used as a conceptual test bed was devellbpeas seen using this test bed that the under-
lying real time approach could be successful imnaukted environment. Next a “hardware-in-
the-loop” framework was developed that directlyutgpdetector data into a simulation model
during runtime. Successful integration of the dataam with VISSIM enabled a field evaluation
of the framework on an arterial using streamingipeensor data. A key attribute of the federa-
tion is the ability for the simulation to receivd’®R (per vehicle record) detector data stream in
a real-time, allowing for the use of multiple detedechnologies.

Using this ability to stream real time detectiomoirthe simulation an in-field test bed
with detectors that are capable of streaming traffata in real time to a central server was
created. Utilizing this test bed several real tsimaulation experiments were undertaken. These

experiments demonstrated the ability of the remaktsimulation, for the given system, to provide
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reasonable estimates of travel time. However, weise instances difference were noted. These
difference where attributed to several causes:ctiateerrors at simulation boundary detectors
resulting in volume discrepancies between the stian and field, differences between individ-
ual vehicle turning movements in the field and dated environment, challenges in the syn-
chronization of field and simulated signal indicats, model calibration, and downstream con-
gestion influencing simulations boundary conditioRature efforts will seek to continue to im-
prove the real time environment in each of thesasar

To test the proposed real time approach in an enwient that allowed for eliminating or
significantly reducing the errors resulting frone throceeding issues a “pseudo” real time field
test was undertaking using the FHWA Next Generalonulation (NGSIM) program. Utilizing
this data set to create a pseudo real time daarstit is seen that the real time approach is capa-
ble of providing accurate performance measuresnghigh quality data inputs. Future efforts
will seek to explore the relationship between ddgt@ans in data accuracy and performance
measure estimates.

In addition, a web-based interface was developesdegmting the arterial performance
measures in real time. The data generated by thelaion is polled in real-time to generate
time space diagrams and summary charts and statedtthe various performance measures. An
animated representation of traffic moving throuigé $tudy corridor is also provided

In summary, it has been seen through this resesffoht that real time simulation pro-
vides a potential opportunity to determine highehty arterial performance metrics in real time.

As stated challenges still exist to a wide spreaplémentation however this initial effort devel-
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oped techniques for addressing many of the chadeid real time simulation, identified future
challenges that remain to be addressed, and cradtadtdation upon which future implementa-

tions of real time arterial simulation may be based
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