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SUMMARY 
 
 
Seaports are a critical transportation component that supports the nation’s economy. 

Many U.S. ports are now experiencing significant truck congestion at the gate, which decreases 
the productivity of ports and truck fleets (e.g. truck wait times) and increases vehicle exhaust 
emissions, which contributes to air pollution. Actual truck traffic data at the gate, including 
arrival time, service/processing time, and wait/queue time, is essential for studying truck 
congestion, but such data has been difficult to obtain with existing manual data collection 
methods. This research proposes a service time extraction algorithm using video log images 
taken by surveillance cameras at the gate to effectively acquire this much-needed data.  

A service time extraction algorithm consisting of three unique components, 1) a design of 
two lane-based regions of interest (ROIs) to represent truck trajectories, 2) a frame-differencing 
change detection algorithm addressing low frame-rate and cast shadow issues, and 3) a unique 
transition model with a set of decision rules that considers perspective occlusion and other 
potential sources of false positive detections, was developed to reliably detect truck departures. 
The performance of the proposed algorithm was evaluated using 6,567 actual images captured 
via internet at a low frame-rate from a live video feed from a gate surveillance camera in the U.S. 
Preliminary results demonstrate the robustness of the proposed algorithm by successfully 
detecting truck departures under various challenging conditions, including day-and-night lighting 
conditions, perspective occlusion, cast shadows, multi-lane departures, and non-truck 
movements. The algorithm achieved a correct detection rate of 98.1% for all the images, which 
can sufficiently represent truck service times at a gate. To further extend the use of this vision-
based technology, a vision-based, multi-view gate data acquisition module is proposed to collect 
the images at the Port of Savannah for wait time extraction validation. In addition, the Georgia 
Institute of Technology, the Center of Innovation for Logistics, and private sector corporations 
have initiated a project to extend the proposed algorithm for monitoring and optimizing the flow 
of truck traffic in the roadway network near the Port of Savannah. 
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CHAPTER 1: 
INTRODUCTION 

 
 
 

Seaports serve as a critical transportation component that support the nation’s economy. 
The ports carry 95% of U.S. foreign trade and contribute 700 billion dollars annually to the U.S. 
gross domestic product (1). With continuous growth in international trade, many U.S. ports are 
now experiencing significant truck congestion at the gate. Truck congestion is a great concern to 
port authorities, trucking companies, and the public because it decreases the productivity of ports 
and truck fleets (e.g. truck wait/queue times) (2) and increases truck exhaust emissions and local 
traffic congestion (3, 4). Truck wait times were estimated to be more than 3.7 million hours 
annually at the Los Angeles and Long Beach ports (5), and truck wait costs were estimated at 
more than two million dollars annually at the Maersk terminal at the Port of New York and New 
Jersey (6). Because of the magnitude and negative impacts of truck congestion, studies on truck 
traffic at the gate are needed for exploring different solutions to mitigate truck congestion. For 
example, a terminal gate appointment system was adopted at the Los Angeles and Long Beach 
ports as a means of reducing truck queues at gates (7, 8). 

Actual truck traffic data at the gate, including arrival time, service/processing time, and 
wait/queue time, is essential for better understanding truck behavior at the gate, identifying 
bottlenecks, and quantitatively evaluating different solutions. Unfortunately, there is limited data 
available due to the existing data collection methods. Previous studies of truck congestion at the 
gate were often based on limited data collected through field observation (8). In recent years, 
several studies have reviewed video log images taken by the gate surveillance cameras (9, 10, 11, 
12) to gather truck traffic data at the gate. However, the data collected has been limited to short 
periods of time (e.g. hours) because existing manual review methods are tedious and time-
consuming. The difficulties in obtaining the data have limited the study of truck congestion at the 
gate.  

This research proposes a service time extraction algorithm to automatically extract 
service times from video log images taken by the gate surveillance cameras. The unique 
challenges, such as low frame-rate, day-and-night lighting conditions, and perspective occlusion, 
in developing a robust service time extraction were first identified, and a literature review of 
classical image processing techniques for traffic monitoring applications was conducted. A 
service time extraction algorithm integrating three unique components: 1) a design of two lane-
based regions of interest (ROIs) to represent truck trajectories, 2) a frame-differencing change-
detection algorithm addressing the low frame-rate and cast shadow issues, and 3) a unique 
transition model comprising of a set of decision rules for determining truck movement, was 
developed to automatically extract service time data under various challenging conditions. An 
experimental test was conducted using actual images captured via the internet from a live video 
from a single gate surveillance camera to evaluate the performance of the proposed algorithm. 
To extend the application of the vision-based technology, a vision-based, multi-view gate data 
acquisition module is proposed to collect the images at the Port of Savannah for automatic truck 
wait time extraction validation. 

The remainder of this report is organized into the following chapters. Chapter 2 
summarizes the literature regarding traffic monitoring using image processing techniques. 
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Chapter 3 presents the development and validation of the service time extraction algorithm. This 
chapter presents the flow charts and detailed designs for the three important components in the 
proposed algorithm and the algorithm's test. Chapter 4 proposes a vision-based, multi-view gate 
data acquisition module to collect the images at the Port of Savannah for validating automatically 
extracted wait time.  This chapter also reviews the business and logistic processes at the Port of 
Savannah. Chapter 5 concludes the findings of this study and discusses future research. 
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CHAPTER 2: 
LITERATURE REVIEW 

 
 
 

This chapter reviews the image processing techniques for traffic monitoring and vehicle 
detection, focusing on the challenges of developing a robust service time extraction algorithm. 
The challenges, including low frame-rate, perspective occlusion, and cast shadows, are first 
reviewed. A literature review was conducted and shows that current vehicle tracking techniques 
are not suitable for the low frame-rate sequences. A unique approach that integrates the 
knowledge of the geometry of the scene and expected truck trajectories is proposed to detect 
truck departures in this study. In addition, the approaches for addressing perspective occlusion 
and cast shadows are presented. 
 
2.1  Unique Challenges in Extracting Service Time 

 
The images used in this study were captured via the internet from a live video feed from a 

gate surveillance camera in the U.S. Due to the limitation on the refresh rate, the images were 
captured at a low frame-rate (e.g. 0.2 frames per second (fps), which equates to one full frame 
for every five seconds). The use of low frame-rate images poses challenges to the proposed 
algorithm because the change in illumination between consecutive images can be large. In 
addition, the unique characteristics posed by the gate layout and operation, including day-and-
night lighting conditions, multi-lane departures, perspective occlusions, non-truck movements 
(e.g. operations crews and vehicles), cast shadows, and weather conditions, can also affect the 
detection of  truck departures. Because the image covers multiple lanes, there might be several 
trucks departing at the same time in different lanes, which is called multi-lane departures. In 
addition, there are different degrees of perspective occlusion associated with each lane. This 
issue is further complicated by multi-lane departures. Some trucks may be occluded and cannot 
be seen in the images. Non-truck movements by operations crews and/or vehicles can also 
trigger false detections. Figure 2.1 shows an example of perspective occlusion, multi-lane 
departures in occluded adjacent lanes, and non-truck movement (e.g. an operations crew) that 
can trigger false detections.  
 

 
Figure 2.1 Unique challenges in developing a robust service time extraction algorithm. 
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2.2     Literature Review of Traffic Monitoring Applications 
 

A large amount of research has been conducted for traffic monitoring applications with 
fixed cameras (13, 14, 15). The most frequently used approach integrates two algorithms referred 
to as “core technologies,” which were used in a recent survey on behavior analysis (16): a 
motion detection algorithm that aims at detecting moving objects in the images and a tracking 
algorithm that establishes object temporal correspondences between successive frames.  

 Motion detection in the context of a static camera is a hot topic in computer vision, and 
many different solutions have been proposed using algorithms that can be categorized into three 
main types: frame differencing, optical flow, and background subtraction. The first category, 
frame differencing, is the simplest method, which consists of subtracting a previous frame from 
the current frame and thresholding the difference between the pixels in two images (17, 18). 
Textured objects are needed to obtain precise foreground masks (18). Two challenges are 
associated with this method. First, there are some artifacts in the foreground masks. In particular, 
“ghost objects” can be observed if the current frame does not contain the moving objects of the 
previous frame. This challenge can be partially addressed by combining results from different 
frame differences or by using the gradient information (a ghost is not associated with any edge). 
For example, a double-difference operator (also called three-frame differences) could be 
combined with an edge-detection step (19, 20). Second, temporarily stopped objects are not 
detected. However, the main advantages of this method lie in its simplicity and its ability to take 
into account illumination variations without any update process. The second category consists of 
estimating the motion vector field between two frames (i.e. the optical flow) (21). It is based on 
the assumption of color/intensity consistency between frames. The algorithm works with a 
moving camera, which is a real advantage for some applications. However, it is an iterative 
method, which minimizes an energy function and, therefore, is computationally expensive. The 
second category, optical flow, requires special hardware for the real-time implementation; 
therefore, it is not included in our review. The third category is the background subtraction 
method that is often preferred to frame differencing and optical flow (13, 14, 15, 22). This 
method obtains good detection results while limiting the computational cost. The principle of the 
method is to model the background. Then, the current frame can be compared with the 
background model in order to extract the moving objects. The background model is to grasp the 
statistics of each background pixel. Adaptive models have been proposed in order to deal with 
changes in illumination. Recursive techniques, which update the background model based on the 
information contained in the last frame, are often employed for their simplicity (13). In 
particular, one popular solution that addresses the multi-modal background is the Gaussian 
Mixture Model proposed by Stauffer and Grimson (23). This model has been used in several 
transportation applications (14, 24, 25). 

Tracking consists of establishing temporal correspondence between successive frames. In 
other words, a tracker associates a consistent ID with the objects of interest present in different 
frames. Therefore, it is a crucial step for deriving the vehicle trajectories. The main challenges of 
tracking are occlusion, unpredictable and abrupt motion patterns, changes in appearance, and 
deformed objects. Occlusion is still an open problem (26). Occlusion situations are caused by the 
perspective effect: two objects (for example, two vehicles in adjacent lanes or one vehicle in a 
part of the scene) are overlapping in the image plane due to the camera position. A bird’s-eye 
view (i.e. aerial images), theoretically, prevents such a situation. Unpredictable movements are 
related to maneuvering targets, pedestrians (a person can suddenly turn direction), and other 
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situations. In particular, camera panning makes the tracking more challenging (27). A low frame-
rate makes the prediction of the movement difficult, too, since observations are far away in time 
(abrupt variations).  The tracked object can also change in appearance between frames and make 
the tracking more challenging. This issue occurs particularly in approaching vehicles, 
maneuvering/turning vehicles, and camera zooming. The perspective effect is related to the 
camera position and is responsible for the changes in appearance (aerial images are not subject to 
changes in appearance). The tracking algorithms can be divided into several groups: region-
based methods, model-based methods, feature-based trackers (28), and contour-based trackers. 
Recent reviews on tracking algorithms can be found in several articles (29, 30).  

A large majority of the proposed algorithms make use of images taken from a static 
camera at a normal frame rate (10 - 30 fps). However, in this application, the images are taken 
from the web at a frame rate of 0.2 fps. Only a few studies have been conducted to address the 
challenges of the low frame-rate sequences of images (31, 32, 33, 34).  The first two studies deal 
with frame-rates of 1-2 fps, which is much larger than the frame-rate used in our study. Santini 
uses low-resolution images at a frame rate between 10 sec/image and 30 min/image to analyze 
the traffic flow in urban areas. However, the work aims at providing a global, rough 
measurement of the traffic flow, whereas, in our study, local and precise information must be 
derived (for each lane). The main challenges associated with the very low frame-rate camera are 
well highlighted in Santini’s papers; due to the low frame-rate, the assumption that the 
background is smoothly changing cannot be made. Significant changes in image appearance can 
be observed because of illumination changes, camera adaptive gain control, and poor color 
consistency. In addition, as the frequency of observation is very low, it is difficult to build a 
representative model of the background and to maintain it. Consequently, an algorithm based on 
the update of a background model does not seem adaptable to this problem. An algorithm based 
on frame differencing has been chosen because it is highly adaptive to changes in illumination 
and does not require the update process. In addition, the proposed algorithm is based on changes 
detected inside manually designed ROIs (as explained in next paragraph). A precise foreground 
mask is not required, and the “ghost” detection associated with the frame differencing technique 
is not problematic.  

The low frame-rate in this study also makes finding object correspondences between 
consecutive images (i.e. the tracking) very difficult due to poor motion continuity, increased 
search space, and larger appearance variations. Even if some solution has been proposed to 
address this challenge (32, 35), the frame-rate considered is still larger than in this application. 
Furthermore, the camera position at the port gate introduces large perspective occlusion between 
lanes. For all of these reasons, two ROIs for each lane are defined based on the knowledge of the 
geometry of the scene and expected truck trajectories to detect truck departures. This injection of 
prior knowledge allows replacing the tracking by a trajectory validation process: a truck 
departure is validated by checking the motion information in pre-defined areas matching the 
known trajectory. There are two advantages of employing this strategy. First, the algorithm is 
simplified. Second, false positive/false negative detections caused by tracking error can be 
eliminated. 

Cast shadows are also an issue. The areas corresponding to the shadows of moving 
vehicles are associated with large changes in illumination and can lead to false positive truck 
departures. In classical traffic monitoring algorithms, researchers add a shadow detection step 
inside the motion detection module to separate different vehicles and improve the accuracy of the 
foreground mask. The color information allows detection of foreground pixels corresponding to 



6 
 

a darkening background. The HSV color space can be used to detect pixels having the same hue 
as the background but with a lower saturation and value (14, 25, 36, 37). Some studies consider 
the brightness and color distortion derived from the RGB components (38, 39). Other researchers 
make use of texture information, since the shadow regions are quite uniform (15, 40, 41). 
Algorithms working with grayscale images are also proposed (26, 42). A review of shadow 
suppression algorithms has been published (43). In this application, precise foreground 
segmentation is not needed. The system aims at analyzing global statistics inside the ROIs in 
each lane to discriminate cast shadows from a truck inside the ROI. Therefore, the brightness 
distortion has been selected for its simplicity. 
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CHAPTER 3: 
PROPOSED SERVICE TME EXTRATION ALGORITHM 

 
 
 

To effectively extract the service time data from the video log images taken by the 
surveillance cameras at the gate, a service time extraction algorithm using image processing 
techniques was developed. This chapter presents the development and validation of the proposed 
algorithm. The procedure for measuring the service time using the image was first defined. The 
flow chart and detailed design of the proposed algorithm are presented. The proposed algorithm 
integrates three components: 1) a design of two lane-based ROIs to represent truck trajectories, 
2) a frame-differencing change-detection algorithm addressing the low frame-rate and cast 
shadow issues, and 3) a unique transition model comprised of a set of decision rules for 
determining truck movements and providing reliable truck departure detection. The performance 
of the proposed algorithm was then evaluated using the actual video log images captured via the 
internet from a live video from a gate surveillance camera. Finally, analyses at a detailed level 
were performed to explore the value of utilizing the service time data extracted.  
 
3.1 Service Time Measurement 

 
To measure service time, the truck movement at the gate was first identified through a 

review of a series of images/actions. A truck arrives at the port and joins the end of the waiting 
line in a particular lane that the driver chooses. The truck stays in the same lane and gradually 
moves to the waiting line. The truck stops at the waiting line and proceeds to a station when 
available, as shown in Figure 3.1. A truck often stays in the same lane after reaching the waiting 
line, rarely changing lanes. As service time is the time a truck is being processed or served at the 
terminal gate, it can be measured as the difference in time between two consecutive truck 
departures at the waiting line in the same lane, assuming the travel time between the waiting line 
and the station is short. A truck departure is referred to as the earliest movement that a truck 
makes when leaving from the waiting line and moving toward the station. A truck stopping at the 
waiting line or continuing to move toward the station after leaving the waiting line is not 
considered as a truck departure. Note that with this measurement method, the service time will 
include the idle time (i.e. no truck at the waiting line) when there is no queue. 

 

 
Figure 3.1 Example of the truck movement at the waiting line. 
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3.2 Development of a Service Time Extraction Algorithm 

 
The service time is the difference in time between two consecutive truck departures at the 

waiting line in the same lane; therefore, detecting a truck's departure movement is essential for 
deriving service time data. This section presents a service time extraction algorithm that aims at 
reliably detecting a truck's departure movement in each lane under various challenging 
conditions (e.g. low frame-rate, day-and-night lighting conditions, perspective occlusion, cast 
shadows, multi-lane departures, and non-truck movements). To address the challenges of low 
frame-rate sequences, a trajectory validation process is proposed for detecting a truck departure. 
The validation process checks a truck proceeding through expected locations within a sequence of 
images (times). This design incorporates prior-knowledge about a truck's trajectory and enhances the 
robustness of false positive detections while simplifying the algorithm. The flow chart of the 
proposed algorithm is shown in Figure 3.2. First, ROIs were pre-defined to capture two critical 
movements in the expected truck’s trajectory to correctly detect truck departure movements. Ft, 
Ft-1 and Ft-k are the current frame, the previous frame, and the kth previous frame, respectively. 
The color frame difference is computed from Ft and Ft-1 to be robust to changes in illumination. 
The brightness distortion is calculated using Ft and a further-delayed frame, Ft-k, in order to have 
access to a reference frame without any cast shadow. The change detection conditions that 
describe the motion and the truck texture make use of the aforementioned features: color frame 
difference and brightness distortion.  Finally, a unique state transition model that includes a set 
of complex rules enables the reliable detection of the truck departures while considering 
perspective occlusion and other sources of potential false positive detections. The three major 
steps, including the ROI design, a change detection using the color frame difference and the 
brightness distortion, and a state transition model, are presented below. 
 

 
Figure 3.2 Flow chart of the proposed algorithm. 

 
3.2.1  ROI Determination 
 

Two ROIs per lane were designed to match a truck’s trajectory by capturing two critical 
movements along the expected trajectory (departing from the waiting line and moving toward the 
station). Validating a truck departure requires a truck proceeding through two ROIs in order 
within a sequence of images (times); the detailed rules are to be further discussed in the state 
transition model.  Figure 3.3 shows the two ROIs in each lane. The first ROI, located before the 
waiting line (BWL ROI), was designed to detect a truck departing/crossing the waiting line and 
was carefully sized to avoid a perspective occlusion effect. As the ROIs were designed to capture 
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the expected lane geometries inside the image, the ROIs' size varies. The second ROI, located 
after the waiting line (AWL ROI) was designed to verify a truck is moving to the station. The 
texture of the trucks was considered when determining the position of the ROIs. These designed 
ROIs partially address perspective occlusion and eliminate the requirement for a tracking module 
(challenging for low frame-rate sequences) by incorporating prior knowledge of the truck 
trajectory within the scene geometry. 
 
 

 
Figure 3.3 Two ROIs (BWL ROI and AWL ROI) for each lane. 

 
3.2.2  Change Detection using Frame Differencing & Brightness Distortion 
 

A change detection algorithm based on color frame difference and brightness distortion 
was developed to detect the presence of a truck in the ROIs. The low frame-rate makes the use of 
an adaptive background model very difficult. Therefore, a model based on frame difference, 
which does not require the background update process, is employed. The drawbacks associated 
with this technique, such as poor foreground mask and “ghost” detections, can be resolved 
because of the use of ROIs for change detection. The color frame difference and the brightness 
distortion used to describe a textured moving object in the ROIs are described below, and the 
conditions for detecting a truck in the ROIs are presented.   
 
Computation of Color Frame Difference and Brightness Distortion 

The color frame difference value is computed by summing the absolute difference 
between the current and the previous frame's intensity for each channel in color space (Equation 
1).  

 
( Equation 1) 
 

CFD stands for the color frame difference; Ic
t refers to the intensity of the channel c (red, 

blue, or green) of the color image at time t; x is the pixel position. The mean color frame 
difference allows computing a global statistic inside the ROI. However, the mean can be affected 
by the outliers and noisy values. Therefore, a confidence measure is associated with the color 
frame difference values through a fuzzy membership function (Figure 3.4). This function 
introduces the use of saturation in order to reduce the impact of the outlier values. The influence 
of noisy values is also reduced by using a minimum threshold. This membership function has been 
designed by analyzing the CFD in calibration images with different weather conditions; it can be 

Before-Waiting-Line 
ROI (BWL ROI) 

After-Waiting-Line 
ROI (AWL ROI) 

Waiting line 
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modified by statically analyzing the values of the CFD obtained from reference frames when 
applying it to different sites. 

 
Figure 3.4 Fuzzy membership function for the color frame difference. 

 
The color frame difference alone cannot differentiate between a textured moving object 

and cast shadows. Indeed, the cast shadows may be associated with large changes in color 
intensity and result in a false detection of a truck departure if the lane has been pre-detected (e.g. 
large changes in illumination). To address this issue, the global color distortion is separated into 
the brightness distortion and the chromaticity distortion (38, 39). This separation enables 
differentiation of the changes in color from the changes in illumination. Figure 3.5 shows the 
brightness distortion (αi) and the chromaticity distortion (CDi) between the current RGB values Ii 
and the reference value Ei in the RGB color space. In these notations, the index i refers to the 
pixel position. 
 

 
Figure 3.5 RGB color space with the brightness and chromaticity distortion. 
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The brightness distortion (BDi) is defined as the scalar value such that BDiEi is the 
projection of OIi on OEi. It is obtained by minimizing the function Φ (Equation 2). 

 
(Equation 2) 

BDi is 1 if the brightness of the pixel in the current image is the same as in the reference 
image. It is less than 1 if it is darker and greater than 1 if it is brighter. Cameras may have 
unequal sensitivity among color bands. Therefore, the pixel values are normalized by the 
standard deviations of each band. It leads to the following formula (Equation 3) for the 
brightness and the chromaticity distortion (38):  

 

 
(Equation 3) 

 

 
The index i refers to the pixel position. The standard deviations are noted σ. The cast 

shadows are discarded by considering the brightness distortion information. Indeed, cast 
shadows correspond to a global darkening of the ROIs (i.e. BDi <1). On the contrary, trucks are 
textured objects containing both lightened and darkened pixels. Shadow in the reference image 
forces some pixels in the areas to be considered as darkened (those which are shadowed in the 
current frame) and some others brightened (those which were shadowed in the reference frame), as 
shown in Figure 3.6. In order to reduce the probability of having shadow in the reference frame, this 
one is not the direct previous frame but the kth previous frame. Thus, we avoid the shadow created by 
the truck itself. The value of k is set to 3 in this study, corresponding to 15s, because it is sufficient to 
avoid the shadow of the truck and limit the effects of condition changes between the reference frame 
and the current frame. The Color Frame Difference is calculated using the direct previous frame to be 
less sensitive to changes in illumination and “ghost” trucks. 

 

   
Figure 3.6 Darkened and lightened pixels due to moving shadow. 

 
Conditions for ROI Detection 

The conditions that describe the textured moving object (e.g. truck) in the BWL ROI and the 
AWL ROI are presented below: 
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• C1: mean1(CFD, CFDmax) > CFD1  AND 
 [(min1(BD) < BDm1 AND max1(BD) >BDM1) OR (min1(BD) < BDm2 AND max1(BD) > BDM2)] 

C1 represents the condition for the BWL ROI. CFD and BD refer to Color Frame 
Difference and Brightness Distortion, respectively. Mean, min, max stand, respectively, for 
average, minimum value, and maximum value inside the ROI. μ is the membership function. 
μmin, CFDmax, CFD1, BDm1, BDM1, BDm2, BDM2 are several thresholds. This condition (C1) 
ensures that intensity changes are present in the whole ROI and that the changes are not uniform. 
The non-uniformity is translated in terms of brightness distortion. A shadow produces a uniform 
darkening (i.e. BD < 1). The brightness distortion term of the criterion ensures that a detected 
region includes both dark (min1(BD) < BDm1, BDm2) and light (max1(BD) > BDM1, BDM2) 
changes. In other words, the condition C1 corresponds to a textured object passing through the 
whole ROI. 
 
• C2: [mean2(μ(CFD)) > μmin  AND  
[(min2(BD) < BDm3 AND max2(BD) > BDM1) OR (min2(BD) < BDm4 AND max2(BD) > BDM4)]  

C2 represents the condition for the AWL ROI. The notations are the same as the ones 
introduced in C1. The criterion of the BD minimum and maximum value is more restrictive. The use 
of more restraining BD thresholds is possible, since the validation ROIs are wider and include more 
truck texture. The purpose of a validation ROI is to validate true truck departure and to remove false 
positives using truck trajectory; large BD thresholds allow for eliminating more false positive 
detections due to cast shadows. 

The aforementioned conditions are complex and require many parameters. A calibration 
of these parameters is necessary to take into account the statistical variability due to the changes 
in lighting conditions, image contrast, and truck appearance in order to achieve a robust 
detection.  Thresholds, μmin, BDm1, BDM1, BDm2, BDM2, BDm3, BDM3, BDm4, BDM4, are obtained by 
statistical analysis of values taken by the CFD and the BD for positive and negative frames from 
several sets of one day's data (7000 frames per day) with a comprehensive range of conditions. Table 
3.1 summaries these values.  

 
Table 3.1 Threshold values used in the proposed algorithm 

μ(CFD)  0,5  BDm2 0,85  BDM3  0,8  

BDm1  0,6  BDM2  1,4  BDm4 1,25  

BDM1  1,15  BDm3 0,4  BDM4  1,3  

 
3.2.3 State Transition Model 

 
A unique state transition model, including a set of complex rules, was developed to 

reliably detect truck departures. It is one of the major components that constitute the uniqueness 
of this algorithm, since it allows addressing the perspective occlusion and other potential sources 
of false positive detections. Each lane is associated with one of five states (“No departure,” 
“Validating departure,” “Checking occlusion,” “Departure detected,” and “Detection disabled”) 
and initialized as “No departure.” Figure 3.7 shows a state transition model. When the BWL ROI 
is triggered (C1), the lane’s state is changed into “Validating departure.” If the lane is not 
affected by the perspective effect (C5), a truck departure is validated if the AWL ROI is detected 
(C2) within a few frames. The lane state in this case is defined as “Departure detected.” In the 
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contrary case (affected by the perfective effect), the state of the adjacent lane (which may 
produce the perspective occlusion) is considered. If this state is “Departure detected,” 
“Validating departure,” or “Detection disabled,” a check for perspective occlusion is required to 
validate a detection. The perspective occlusion is checked using the color frame difference inside 
the AWL ROI of the adjacent lane (C5 and C6). If the considered lane can be affected by 
perspective occlusion, its departure will also affect the following lane (Domino effect). If this 
checking is not validated, the lane state is changed into “Checking occlusion.” This state allows 
certain flexibility: the perspective validation can be done in a few frames. If this check is not 
satisfied, the detection is not validated. After a validated detection, the state is directly (no 
condition) modified to “Detection disabled” in the next frame. This “Detection disabled” state 
corresponds to a transitional state in which the lane cannot be detected again during a certain 
number of frames (C4). In a way, a minimum duration between two truck departures in the same 
lane (i.e., a minimum processing time) is ensured. The “Detection disabled” state also prevents 
the departure caused by the truck arriving in the few frames following a detection. The 
conditions for the state transitions are noted as Ci in Figure 3.7 and explicitly defined in the 
following: 
 

 
Figure 3.7 State transition model. 

 
• C1: Motion detected in the BWL ROI 
• C2: Motion detected in the AWL ROI 
• C3: Not C2 but there are validation frames remaining  

A maximum number of frames for the validation is fixed at 4 (20 seconds). This number 
is justified by the fact that it covers cases in which the departure of the truck is too slow when it 
leaves the waiting line. If no frame remains for the validation, the condition C1 is checked again. 
This last criterion increases the “Validating departure” period for a truck with very slow motion 
or stop-and-go behavior.  
• C4: Detection of remaining disabled blocking frames 
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The lane stays in the Disabled Detection state until 6 frames (30 seconds) are used to 
have the time needed for a slow truck to leave the AWL ROI and less than the service time.  
• C5: No recent activity in the lane OR the truck in the lane is moving and occludes the adjacent 

lane or mathematically [NOT Active (Occlusion lane) OR (Active (Occlusion lane) AND 
mean2(μ(CFD(Occluded lane))) > μmin)] 

This condition is introduced to eliminate the false detections caused by perspective 
occlusion. A “Considered lane” is a lane being detected. A lane could occlude an adjacent lane 
on one side and be occluded by another adjacent lane on the other side. An “Occlusion lane” 
refers to the lane occluding the considered lane, and an “Occluded lane” is the lane being 
occluded by the considered lane. These three terms can be illustrated in Figure 3.8. If lane 2 is 
the “Considered lane,” lane 1 is the “Occluded lane” and lane 3 is the “Occlusion lane.” An 
AWL ROI can only be validated if the occluded lane satisfies the motion change condition (i.e. if 
parts of the truck pass through this zone). Otherwise, the changes in the considered lane must be 
caused by a truck in the “Occlusion lane.” Active (Occlusion lane) means that occlusion lane is 
associated with a state “Validating departure,” “Departure detected,” or “Detection disabled” in 
the previous frame. The remaining condition checks if the AWL ROI confidence in the 
“Occluded lane” is large enough. It corresponds to an occlusion of the occluded lane by a truck 
in the considered lane. In Figure 3.8, the truck in lane 3 can’t validate lane 2 since lane 1 is not 
triggered. 

 

 
Figure 3.8 Perspective occlusion effect. 

 
• C6: The adjacent lane is occluded [mean2(μ(CFD(Occluded lane))) > μmin)] 

C6 corresponds to the perspective validation using the “Occluded lane” confidence 
statistic. The same notations as C5 are used. 

• C7: Not C6 AND Perspective validation frames remaining 
Two frames of validation are set to confirm the perspective occlusion because it represents 

the maximum number of frames for the occlusion to occur in the “Occluded lane.” 
Figures 3.9, 3.10, and 3.11 give three examples of paths taken in the following cases: a 

simple detection (Figure 3.9), the avoidance of a false positive with a departure not validated 
(Figure 3.10), and a multi-lane departure with a perspective occlusion (Figure 3.11). 
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Figure 3.9 Example of the states for lane 4 truck departure. 
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Figure 3.10 Example of using states in lane 6 to successfully handle the case when the subsequent 

truck is late to the waiting line (a false positive is avoided). 
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Figure 3.11 Example of the states for a multiple lane departure in lanes 4, 5, and 6 with an occlusion 

of lane 5 on lane 4. 
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3.3 Experimental Test 
 

This section presents the experimental test that was conducted using the low frame-rate 
images taken by a gate surveillance camera in the U.S. to evaluate the performance of the 
proposed algorithm. The algorithm was validated using one day's images that were screen-
captured via the public web site and the images were taken from a gate surveillance camera at 
0.2 fps during the hours of 6:00 am to 4:40 pm. Although the gate operates until 5:00 pm, there 
was no truck after 4:40 pm. A total of 138 blank images caused by internet delay or the image 
server's slow refresh rate were removed. Note that these blank images were collected at a rate 
lower than 0.2 fps. The remaining 6,567 images were used to evaluate the performance of the 
proposed algorithm. It is noted that the removal of the blank images would result in some 
discontinuous images in which truck movement is not captured completely. The blank image 
issue could potentially be resolved by accessing the image directly from the camera's IP address. 
The 6,567 images cover different lighting conditions, perspective occlusion, multi-lane 
departures, non-truck movements, etc. Each image has a resolution of 640*480 pixels. The 
proposed algorithm was evaluated by comparing the truck departure time detected using the 
proposed algorithm and the manual image review, which is considered as the ground truth. There 
were 1,133 truck departures observed by manually reviewing 6,567 images. The same images 
were processed by the algorithm written in Matlab at a speed of 0.24 second per image on a 
machine with dual core processors (Intel core i5 M520 2.40 GHz) and 4G RAM. The speed can 
be improved after converting the Matlab code into C++.  

A truck departure is correctly detected and labeled as “True positive (TP)” if the truck 
departure time output by the algorithm and the manual review can be matched within a 10-
second buffer in the same lane. The false detections are further divided into false positive (FP) 
and false negative (FN) detections, as usual. The proposed algorithm achieved correct truck 
departure detection (TP) in 1,093 out of 1,133 trucks, which corresponds to a 96.5% correct 
detection rate. There are 11 FP detections and 29 FN detections, which correspond to a 1% FP 
rate and a 2.6% FN rate. The respective results are summarized in Table 3.1. Further analysis 
shows that among the 29 FN detections, 19 can be attributed to discontinuous images in which 
the complete truck movement was not captured.  As these 19 false negative detections are not 
related to the algorithm itself, the associated truck departures can be removed in order to present 
another set of results only characterizing the algorithm (Table 3.2). The proposed algorithm can 
achieve a 98.1% correct truck departure detection rate with only a 1% FP rate and a 0.9% FN 
rate. The remaining false detections are caused by trucks stopped for a while between the waiting 
line and the gate, very poorly contrasted trucks, trucks changing lanes, and operations vehicles 
and/or crews. Figure 3.12(a) shows an example of false negatives, and Figure 3.12(b) shows an 
example of false positives. 
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Table 3.1 Truck departure validation results (with blank images) 

Lane 1 2 3 4 5 6 7 8 9 10 Total % 

Truck Departures 99 89 119 103 106 109 108 113 138 149 1133  

True Positive 95 83 113 98 104 106 107 109 135 143 1093 96.5% 

False Positive 3 3 2 1 0 0 0 1 0 1 11 1.0% 

False Negative 1 3 4 4 2 3 1 3 3 5 29 0.6% 

False Negative 

(blank image) 

0 0 2 4 1 3 1 2 3 3 19  

 
Table 3.2 Truck departure validation results (without blank images) 

Lane 1 2 3 4 5 6 7 8 9 10 Total % 

Truck Departures 99 89 117 99 105 106 107 111 135 146 1114  

True Positive 95 83 113 98 104 106 107 109 135 143 1093 98.1% 

False Positive 3 3 2 1 0 0 0 1 0 1 11 0.0% 

False Negative 1 3 2 0 1 0 0 1 0 2 10 0.9% 
 

        
(a) FN caused by a truck change 

 in lane 

       (b) FP associated with regulation car  

traffic while the truck is arriving 

Figure 3.12 Examples of FN/FP detections. 
 
The experimental test results have demonstrated the proposed algorithm is a promising 

method to detect truck departures using images taken by surveillance cameras at the gate. With a 
98.1% correct truck departure detection rate, sufficient service times can be extracted using the 
proposed algorithm to represent the overall truck service time at the gate, and the variability and 
distribution of the service time can be identified.  
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3.4 Analyses of the Service Time Data 
 
The service time data extracted from the actual images is at a detailed level (for each 

truck) with full coverage (all lanes), and covering a long period of time. In this section, a few 
analyses are presented to demonstrate the value of utilizing the service time data with a high 
granularity. Figure 3.13 shows the service time distribution by lane on one day. The service 
times for each lane are plotted in blue bars, and the red line represents the average service time 
(5.4 minutes) for all lanes. The lower services times can be observed on Lanes 9 and 10, which 
processed the most of the transactions, 139 and 144, respectively. The higher service times can 
be observed on Lanes 1 to 4, with the services time ranging from 5.9 minutes to 6.3 minutes.  
This information can help the mangers identify the operation issues (e.g. trouble transactions in 
particular lanes) and explore the potential improvements.  

 

 
Figure 3.13 Service time by lane. 

 
The abnormal service times can also be identified using this data set. The detailed 

information, including the time, lane, service time, as well as images, can be provided for 
investigating the causal factors that will be extremely valuable for exploring potential 
improvement. Cases of abnormal service times are presented in Figure 3.14. Figure 3.14(a) 
shows a dashboard indicating abnormal service time along with the time it occurred and the lane 
information. The slot (12:00-13:00 on Lane 1) highlighted in red have three trucks with a service 
time greater than 10 minutes, while most of the lane-hours have zero or one truck with a high 
service time. The highlighted slot can be linked with detailed information, as shown in Figure 
3.14(b). The information, including the time the truck arrived and departed at the waiting line, 
and the images, can be provided for further investigation. This information would be of value to 
the gate managers who wish to identify the issues and explore the opportunities for 
improvements. 
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(a) Slot with high number of abnormal service times             (b) Detailed information 

Figure 3.14 Cases of abnormal service times. 
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CHAPTER 4: 
PROPOSED VISION-BASED, GATE DATA ACQUISITION MODULE 

 
 
 

To extend the use of the service time extraction algorithm to extract truck wait times, a 
vision-based multi-view gate data acquisition module is proposed to collect the images at one 
terminal gate, Gate 4, at the Port of Savannah, for extracting and validating wait times. This 
chapter presents a review of the operation at Gate 4 and the proposed vision-based multi-view 
gate data acquisition module. The review focuses on the layout and the business and logistic 
processes at the gate to thoroughly understand the operation and truck movement at the gate. 
Based on the review, multiple cameras on a mobile tower were designed to capture truck queues 
at various critical locations at Gate 4. The camera configurations, including location, resolution, 
angle, and focal length, are presented. 
 
4.1  Review of the Port of Savannah 
 

The Port of Savannah is located approximately 18 miles from the Atlantic Ocean on both 
sides of the Savannah River. Operated by the Georgia Ports Authority (GPA), the Port of 
Savannah featured 2.4 million TEUs in 2009, and it is the fourth largest seaport in the U.S (44). 
On average, approximately 92,000 tons of cargo moved through the port daily in 2010, with the 
top five export commodities being wood pulp, paper and paperboard, food, clay, and chemicals. 
The port has experienced 17 years of consecutive container throughput increase,  an average 
increase rate of 15% (44); it is expected to reach 6.5 million in 2020 (45). Two major terminals, 
the Garden City Terminal and the Ocean Terminal, serve the Port of Savannah. Gate 4 at the 
Garden City Terminal is a containerized-transactions-only gate and processes more than 60% of 
the transactions at the Port of Savannah. An interview with the GPA also shows the operation at 
Gate 4 reflects the typical GPA gate business processes. Thus, Gate 4 is proposed as the test site 
for the vision-based gate data acquisition module. The layout and the business and logistic 
processes at Gate 4 are reviewed in this section to thoroughly understand the operation and truck 
movement at the gate.  

Figure 4.1 shows the physical layout of Gate 4. The main entrance is located at the 
intersection of Bourne Avenue and South Costal Highway (US 25). According to GPA Process 
Mapping Documents (46), a truck arrives at the gate from the local network and sequentially 
enters the portal, pedestal, and inspection canopy for security check, pre-gate information 
validation, and container inspection, respectively. After these processes, the truck can proceed to 
the yard to drop off or pick up the desired containers. Occasionally, if a truck does not pass the 
pre-gate validation, a trouble ticket will be issued and the truck has to enter the Trouble Kiosk to 
solve the issue, which is described in the trouble ticket resolution process. Detailed business and 
logistic processes, including pre-advise, portal, pedestal, gate inspection, and trouble ticket 
resolution, at Gate 4 are presented in the following paragraphs.   
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Figure 4.1 Layout of Gate 4. 

Pre-Advise 
Pre-advise is the process of submitting gate transaction information before a truck arrives 

at the gate. This process increases security and helps speed up the gate process. Transaction 
information, such as truck license number, trucking company, container number, and chassis 
number, is entered to the WebAccess system prior to a truck's arrival at the gate. The truck and 
driver are validated before being allowed entry to the port. The user (e.g. trucking company) logs 
into the WebAccess before the truck physically arrives at the gate. According to the system 
instruction, the user is instructed to fill in all the necessary transaction information. After the 
submission of the input information, the system will confirm it and generate a personal 
identification number (PIN) for each transaction. The truck driver will use the PIN to uniquely 
indicate the transaction when the truck arrives at the gate. The PIN is valid for 72 hours, and 
there is no lead time for obtaining a PIN. This means the earliest time the user can obtain a PIN 
for the transaction is 72 hours before truck arrival.   

 
Portal 

Portal is a process established after the implementation of the automated terminal asset 
management system (ATAMS) in the GPA. The portal process includes two steps: manual GPA 
credential check and automatic truck and container identification.  At the first step, a security 
officer will check the truck’s GPA credentials (a badge issued by GPA that allows the drivers to 
enter the GPA facility) and match the face with the photo on the credentials.  This check takes 
approximately 5 to 10 seconds. At the second step, the truck will proceed at a slow speed 
(typically 5 mile per hour) to the ATAMS lanes. There are six ATAMS lanes at the portal, and 
the number of open lanes is determined by the arrival truck volume observed by the gate officers. 
Each lane is equipped with OCR-smart cameras and RFID-reading equipment to capture the 
container number, chassis number, and truck ID. Three cameras at different heights and angles 
are used to capture the container number and chassis number on the truck, and the OCR is used 

Trouble  
Ticket Kiosk 
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to automatically recognize the numbers.  A typical RFID is mounted under the truck. About 95% 
of trucks are equipped with this type of RFID, storing the basic truck information. 
Approximately 80-90% of the trucks equipped with an RFID tag can be identified automatically 
at the portal. 

 
Pedestal  

Pedestal is a check-in process before a truck is allowed entry to the port. The pedestal is 
equipped with a telecommunication system that allows the truck drivers to communicate with the 
terminal, to validate the pre-advised transaction information, and to acquire the necessary tickets 
for the designation of container pick-up and drop-off locations. There is no security inspection 
required at this stage. The operation process at the pedestal consists of the following steps: 
• Driver drives on to the scales at the pedestal after waiting in line in the queue and the weight 

of the truck is acquired. 
• Driver then scans an ID card (i.e. GPA credentials). If the ID card is recognized by the 

system as being valid, the truck will continue to the gate process. If an invalid card or no card 
is presented, the gate clerk at the remote office will generate a trouble ticket and the driver 
will be sent to the Trouble Kiosk.  

• Driver continues to press the call button to communicate with the gate clerk over the phone 
by providing his truck's tag (state license) number and the PIN number generated during the 
pre-advise process. Meanwhile, at the gate clerk's office, the information is collected and 
identified at the portal, including container and chassis number, will be displayed.  

• The gate clerk will compare the information provided by the driver through the phone with 
the information collected at the portal. If the information matches, the gate clerk will commit 
the transaction, and the system will print a ticket for the driver. With the printed ticket, the 
truck will proceed to the gate for inspection. If the information does not match, the gate clerk 
will make necessary corrections to the container number, size, and type. If the truck has 
multiple transactions, both drop-off and pick-up, a separate ticket for each transaction will be 
printed following the aforementioned procedures.  

• Trouble tickets are issued at the pedestal from time to time due to a driver's lack of an ID 
card, lack of PIN, etc. Approximately 5% of the tickets printed at the pedestal are trouble 
tickets. The processing time at the pedestal varies depending on the communication between 
drivers and the gate clerks. Based on observation, the average processing time for a truck at 
the pedestal (including non-trouble tickets and trouble tickets) is 2 to 3 minutes.  

 
Gate Inspection  

The gate inspection process is to inspect incoming equipment (chassis and container) to 
note any damage or broken seals. GPA liability is reduced when damage that occurred before the 
truck entered the port is discovered and noted. The inspection is performed by an International 
Longshoremen's Association (ILA) clerk. For the bobtails, the inspection is not required. The 
operation procedures for the gate inspection process are described below: 
• Driver arrives at the inspection canopy and gives the drop off ticket to the clerk (for Gate 4 

without bobtail entrance).  
• The clerk enters the truck information, including ID number and transaction number, from 

the drop off ticket into a remote, handheld device, the radio data terminal (RDT). 
• The clerk then physically inspects the chassis and container and enters any damage found 

into the RDT.  
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• The clerk commits the transaction, and the interchange receipt (EIR) is printed for both 
damaged and undamaged containers and/or chassis and for a truck requiring special handling.  

• The truck proceeds to the location designated on the EIR.  
 
Trouble Ticket Resolution  

The driver is sent to the Trouble Kiosk to resolve the matter if a trouble ticket is issued at 
the pedestal. The gate operation officers will work with the driver to resolve the issue and correct 
the information in the system. The location of the Trouble Kiosk is shown in Figure 3.2. The 
operation procedures at the Trouble Kiosk are described below: 
• Driver arrives at the Trouble Kiosk and uses a specific phone to make calls to resolve the 

trouble ticket. If the trouble ticket is due to an invalid ID card, the security phone is first used 
to obtain a visitor's pass before the trouble ticket can be solved. In other cases, the driver 
needs to call the gate operation office using the house phone and let the office contact the 
shipping line for additional information. The driver might need to phone his dispatcher to 
correct or receive numbers or other information to present to the gate operation office.  

• After the data is collected, the gate operations office performs research and determines 
whether the trouble ticket can be resolved. If not, the driver must exit the port.  

• The clerk accesses records using the transaction number and corrects the information in the 
database following instructions from the Gate Operations Office. A valid drop-off or pickup 
ticket or both are printed. 

• Driver receives the newly printed tickets and proceeds to the inspection lanes.  
 

Rapid Dispatch Service 
GPA provides rapid dispatch services for the local retailers, such as Home Depot, Wal-

Mart, and Dollar Tree, which have special arrangements with the port. Their containers are all 
stored on chassis in the rapid dispatch yard in slots designated for these particular retailers. All 
the trucks will have to go through the regular gate processes to enter the port. The difference 
between the regular truck and the rapid dispatch truck is rapid dispatch trucks do not need to 
exchange chassis, but directly pick up the containers on the chassis and leave the terminal. This 
rapid dispatch service helps retailers improve their truck operation speed. Currently, rapid 
dispatch is operated by Gateway Terminals, Inc., a consortium of the four stevedoring companies 
doing business at the GPA facilities. The rapid dispatch facility at the Garden City Terminal 
handles 200 to 300 containers per day, about 4% of the total containerized transactions. 

 
4.2      Design of the Vision-Based Multi-view Gate Data Acquisition Module  
 

Based on the review of the gate operation, a vision-based data acquisition module is 
proposed to collect the images in support of extracting wait times at Gate 4. A multi-camera 
mobile system, as shown in Figure 4.2, is chosen to cover the four critical locations, including 
the entrance, portal, pedestal, and gate inspection; it does not interrupt or distract the gate 
operation. Through field visits, a spot at the corner of the rapid dispatch yard with an open view 
to the four observation locations and their respective queues is proposed to set up the mobile 
tower, shown as a red dot in Figure 4.3. The proposed location, 750 feet from the center of the 
inspection canopy, is the closest available location; the distance to the intersection is about 700 
feet. The proposed location is within the paved rapid dispatch yard and can provide a stable base 
for the mobile tower. 
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Figure 4.2 Proposed vision-based, multi-view gate data acquisition module. 

 

 
Figure 4.3 Location and camera configurations for the proposed vision-based, multi-view gate data 

acquisition module. 
 

A total of five cameras are proposed to capture the truck movements in 1,200 feet, as 
shown in Figure 4.3. Based on a camera height of 30 feet and the cameras with 2/3 inches sensor, 
the camera system configuration can cover the area and capture an individual truck at different 
locations. The camera configurations, including orientation, lens, and resolution, are presented in 
Table 4.1 The inspection canopy, which is the most distant location from the camera location, is 
considered when determining the camera resolution. A truck at the inspection canopy occupies 
fewer pixels compared to a truck at other observation locations. Therefore, the requirement for 
camera resolution at the inspection canopy is higher than the requirements at other observation 
locations. A thirty-pixel resolution is considered a typical value for detecting a truck using the 
image processing algorithm. Table 4.2 shows the minimum resolution requirements for each of 
the five cameras to satisfy a 30-pixel truck occupation in the images with expected queue 
lengths. A 1024*768 resolution for all the five cameras in the multi-camera system is proposed.   
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Table 4.1 Camera horizontal angle and focal length 

Height: 36 ft. Sensor Size: 2/3" Object Percentage: 3% 

Location Distance Vertical Angle Horizontal 
angle (α) 

Focal 
length 

Downward 
angle 

 Camera 1 (t2) 700 ft. 14.98° 19.97° 25mm 9.78° 

Camera 2 (t3 & t4) 130 ft.  71.51° 95.35° 4.8mm 48.28° 

Camera 3 (t5 & t6) 350 ft.  24.1° 32.13° 15mm 16.45° 

Camera 4 (t7 & t8) 750 ft. 11.67° 15.56° 30mm 7.74° 

Camera 5 (t5) ~350 ft. 24.1° 32.13° 15mm 16.45° 
 

Table 4.2 Requirements for camera resolution 

Location 
Queue Length 

(foot) 

Truck Length  

(pixel)  
Minimum Resolution 

(4:3) 

 Camera 1 (t2) 90 ft. 30 pix. 320x240 

Camera 2 (t3 & t4) 140 ft. 30 pix. 480x360 

Camera 3 (t5 & t6) 210 ft. 30 pix. 640x480 

Camera 4 (t7 & t8) 350 ft. 30 pix. 1024x768 

Camera 5 (t5) ~210 ft. 30 pix. 640x480 
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CHAPTER 5: 
CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

Truck congestion at port gates is of great concern to different stakeholders, including port 
authorities, motor carriers, and the public because it decreases the productivity of the port and 
truck fleets and increases the exhaust emissions. Actual truck traffic data at the gate, including 
arrival time, service time, and wait time, are essential for studying truck congestion at the gate. 
However, there is limited data available because data is currently manually collected. In this 
study, a service time extraction algorithm was developed to effectively acquire service time data 
from the video log images taken by the surveillance cameras at the gate, and validated with 
actual images. 

While there are studies for traffic monitoring using image processing techniques, the 
layout and operation at the gate pose unique challenges in developing a robust service time 
extraction algorithm. These challenges include the image's low frame-rate, day-and-night 
lighting conditions, perspective occlusion caused by adjacent trucks, cast shadows, multi-lane 
departures, and non-truck movements made by operations vehicles and crews. The service time 
extraction algorithm integrates prior knowledge of the scene geometry and truck trajectory into 
three unique components to address the challenges. The proposed algorithm consists of three 
components: (1) a lane-based ROIs design, (2) a frame-differencing change-detection algorithm, 
and (3) a unique state transition model with a set of decision rules, considering perspective 
occlusion and other potential sources of false positive detections, to reliably detect a truck 
departure. The performance of the proposed algorithm was evaluated using 6,576 images 
captured at low frame-rate via internet from a live video feed from a gate surveillance camera. 
The proposed algorithm achieves a 98.1% correct truck departure detection rate, with only a 1% 
false positive detection rate and a 0.9% false negative detection rate. Preliminary results have 
demonstrated the robustness of the proposed algorithm by successfully detecting truck departures 
under various conditions, including day-and-night lighting conditions, multi-lane departures, 
perspective occlusion, and cast shadows. Also, the non-truck movements by operations vehicles 
and crews were successfully excluded from the truck departures.  

Built upon the outcomes of the service time extraction algorithm, a vision-based, multi-
view gate data acquisition module is proposed to collect the images at Gate 4 at the Port of 
Savannah to support the extraction and validation of wait times. Based on the review of the 
operation at the Port of Savannah, multiple cameras on a mobile tower were proposed to capture 
truck queues at Gate 4. The location, position, resolution, angle, and focal length for the cameras 
are proposed. 

The following are the identified future research topics that could extend the application of 
the proposed vision technology: 
• A comprehensive validation using a larger set of images with various congested conditions 

and weather conditions is needed for the full-scale implementation.  
• An experimental test is needed to validate the proposed vision-based gate data acquisition 

module. The research team is in a discussion with the Georgia Ports Authority to conduct a 
test at Gate 4 in the Port of Savannah. The images to be collected at the Port of Savannah will 
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support the extraction and validation of the wait time data using the service time extraction 
algorithm.     

• Built upon the outcomes of the service time extraction algorithm developed in this study, the 
research team will extend the proposed vision-based gate data gathering system to cover 
critical entry points to the port for monitoring and optimizing the truck traffic on the local 
road network near the port. A research project that involves the Georgia Institute of 
Technology, Centers for Logistics, and private sector, will be initiated in the near future to 
monitor and optimize the truck traffic on the local road network near Savannah Port.   
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