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Risk-Neutral Second Best Toll Pricing

Xuegang (Jeff) Ban∗ Michael Ferris† Lisa Tang‡

Abstract

We propose a risk-neutral second best toll pricing scheme to account for the possible nonuniqueness
of user equilibrium solutions. The scheme is designed to optimize for the expected objective value
as the UE solution varies within the solution set. We show that such a risk-neutral scheme can be
formulated as a stochastic program, which complements the traditional risk-prone second best toll
pricing (SBTP) approach and the risk-averse SBTP approach we developed recently. The proposed
model can be solved by a simulation-based optimization algorithm that contains three major steps:
characterization of the UE solution set, random sampling over the solution set, and a two-phase
simulation optimization step. Numerical results illustrate that the proposed risk-neutral design
scheme is less aggressive than the risk-prone scheme and less conservative than the risk-averse
scheme, and may thus be more preferable from a toll designer’s point of view.

1 Introduction

The Second-Best Toll Pricing (SBTP) problem has been extensively studied in the literature. It
aims to determine optimal tolls for a given set of links in a transportation network to achieve certain
system management objectives. For detailed reviews, one can refer to [1, 2, 3, 4] and the references
therein. Many researchers have modeled SBTP as a bilevel problem or an MPEC (mathematical
program with equilibrium constraints). The upper level optimizes a certain objective function from
the transportation system point of view and the lower level is a user equilibrium (UE) problem
to account for the choice behavior of individual motorists. These bilevel SBTP models usually
assume, explicitly or implicitly, that the lower level UE problem has a unique solution. As pointed
out in [5], if the UE solution is not unique, existing bilevel SBTP models usually result in a toll
scheme that optimizes for the “best case” scenario - the smallest objective value is minimized as the
UE solution varies. In this sense, existing SBTP models are “risk-prone.” The UE solution set (in
the case of non-unique solutions) actually represents uncertainty in SBTP design, which cannot be
accounted for by the existing risk-prone approach. Alternatively, a “risk-averse” SBTP approach is
proposed in [5] which optimizes for the “worst-case” scenario, i.e. the largest objective value over
the UE solution set is minimized. Such a risk-averse model is formulated as a “min-max” problem
in [5] by adopting the robust optimization concept introduced in [6]. The min-max formulation is
further solved for affine UEs by a fortified-descent simplex method originally developed in [7] based
on an explicit expression for the solution set of an affine UE. As illustrated in [5], if UE has multiple
solutions, risk-prone and risk-averse SBTP toll schemes may produce very different tolls as well as
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different upper level objective values. In certain cases, risk-averse tolls are superior to traditional
risk-prone tolls in terms of both system performance and robustness. This indicates the necessity
to explicitly consider and address the non-unique UE solutions which are common especially for
urban traffic networks. Notice that in the mathematical programming community, the issue of
nonunique solutions of the lower level problem in a bilevel formulation has been recognized [8].
Most previous research focuses on the risk-prone approach (also called the “optimistic” approach
in [8]). Morgan and her colleagues [9] investigated the “pessimistic” approach (similar to the risk-
averse scheme proposed in this article), which they referred to as weak Stackelberg games. They
mainly studied the solution existence conditions and other theoretical properties of the problem.
No solution method was proposed.

It is well known however that the results obtained by solving a robust optimization model (i.e.
the risk-averse approach) is generally too conservative (or too pessimistic) [10], while the the risk-
prone approach is too aggressive (or too optimistic). This is because both approaches consider only
extreme cases, i.e. a single point in the UE solution set. To address this issue, we propose in this
article a “risk-neutral” approach that explicitly considers the entire UE solution set when designing
SBTP. The approach aims to optimize for the expected objective value as the UE solution changes
within the solution set. In particular, by associating certain probability distribution function to
the realization of the UE solution over its solution set, we formulate the proposed risk neutral
model as a stochastic program, similar to the problem studied in [11, 12]. In this setting, the UE
solution set is the probability space. In [11, 12], the probability space is fixed. Our risk-neutral
problem however has a changing probability space because the UE solution set varies with the toll
vector. Hence, the risk-neutral model we study in this article extends the model and results in
[11, 12].

By assuming certain probability distribution functions as a realization of the UE solution, the
risk-neutral model can be solved by a simulation-based optimization technique for affine UEs. First,
the solution set of an affine UE can be explicitly represented as a convex and compact set [5]. The
realization of the UE solution can be sampled from this set based on the assumed distribution. One
critical step in this process is the ability to sample over the probability space (i.e. the UE solution
set). For this purpose, we extend the hit-and-run random sampling algorithm originally developed
by Smith [13] from a full dimensional subset in Rn to a subset of (the translate of) a subspace in
Rn. The samples are then evaluated for objective values, which are used in a two-phase simulation
optimization algorithm. The algorithm first identifies promising subregions and then performs a
derivative-free optimization on a quadratic approximation of the original problem. This process
repeats itself until certain convergence criterions are met. We test the risk-neutral model and
solution algorithm using an small example in this article to illustrate how the algorithm performs.

The proposed risk-neutral approach provides an alternative way to account for the nonuniqeness
of UE solutions in SBTP design, or in a more general sense the nonuniqueness of the lower level
solution in a bilevel formulation. As shown in Section 4, the risk-neutral approach is less aggressive
than the risk-prone scheme and less conservative than the risk-averse scheme. Therefore it can
provide more insights, and sometimes is more desirable, for toll authorities to design effective
pricing schemes when UE solution is not unique. Notice that although we focus on link-based
UE solutions in this article (also in [5]), the proposed risk-neutral scheme can be applied directly
to path-based solutions. Path-based formulations are necessary for cases when path costs are
nonadditive [14, 15, 16, 17] or path-based tolling is needed (e.g. for the purpose of controlling
emissions). As path-based UE solutions are nonunique in general [18], the proposed risk-taking-
based SBTP schemes are expected to play more significant roles in path-based tolling or other
network design applications.

This article is organized as follows. Section 2 starts with a brief summary of the risk-prone and
risk-averse SBTP approaches, and presents in detail the stochastic program for the risk-neutral
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approach. A small illustrative example is also provided in this section. An algorithm based on
simulation optimization is proposed in Section 3, including the characterization of the UE solution
set, random sampling over the solution set, and a two-phase simulation optimization algorithm. A
numerical example is provided in Section 4. We conclude the article in Section 5.

2 Risk-Neutral SBTP Model

2.1 Risk-Taking in SBTP Design

Assume a transportation network can be denoted as G(N, A), where N is the set of nodes and A is
the set of links. We use a ∈ A to denote a link, and assume xa and ya are the total flow of and the
toll imposed on link a respectively. Denote two vectors x = (xa)a∈A and y = (ya)a∈A. Usually we
impose lower and upper bounds to the toll vector. Thus we define Ky = {y|yl ≤ y ≤ yu}, where
yl and yu are the lower and upper bounds of y respectively. Further denote ta(x) the travel time
of link a, which is a function of the total link flow vector x, and t = (ta)a∈A. If a toll vector y is
imposed, the resulting user equilibrium (UE) problem is denoted as UE(y), which can be defined
as to find x ∈ K such that the following variational inequality (VI) is satisfied :

cT (y, x)(x′ − x) ≥ 0,∀x′ ∈ K. (1)

Here K is the constraint set of UE(y) which is usually nonempty, convex, and compact. This
guarantees the existence of at least one solution for any continuous c, and the solution set is
compact if multiple solutions exist [19, 2.2.5]. We notice here that the risk-neutral model proposed
in this article only requires solution existence conditions of an UE. The characterization of the
solution set however requires monotonicity which leads to a convex UE solution set.

The generalized link travel time function c is defined as [5]:

c(y, x) = t(x) + y/θ, (2)

where θ is the “value of time.” Denote the solution set of UE(y) as S(y).

We further denote f(y, x) the objective function used by the toll authority to determine tolls.
In practice, f(y, x) may be the total system travel time or similar objectives the toll designer may
have. Most existing SBTP models aim to find an optimal toll by solving the following MPEC:

MPECSBTP min
y,x

f(y, x) (3)

s.t. y ∈ Ky (4)
x solves UE(y). (5)

Since we use S(y) to denote the solution set of UE(y), we may rewrite the constraint that
x solves UE(y) as x ∈ S(y). Here S(y) is a set-valued map [19] of the toll vector y since UE(y)
may have multiple solutions. If we let

G = {(y, x) | x ∈ S(y), y ∈ Ky}
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be the graph of the set-valued map S, we can rewrite MPECSBTP into the following single level
problem:

RPSBTP min
y,x

f(y, x) (6)

s.t. (y, x) ∈ G. (7)

Here the label RPSBTP stands for “risk-prone second-best toll pricing.”

Notice that RPSBTP is equivalent to

min
y∈Ky

min
x∈S(y)

f(y, x). (8)

Model (8) shows that RPSBTP aims to find a toll y ∈ Ky that optimizes the “best-case”
scenario. Here the “best-case” for a given toll y refers to η(y) ≡ minx∈S(y) f(y, x), which is
the smallest objective value of f(y, x) as x varies within S(y). This is why the RPSBTP model
is a ”risk-prone” design approach. Clearly, when S(y) contains multiple elements, the set S(y)
represents uncertainty for SBTP design because for a fixed toll vector y, the objective value of
f(y, x) may change as x varies within S(y). To account for this uncertainty, a ”risk-averse” SBTP
approach is proposed in [5]. In particular, the risk-averse approach adopts the robust optimization
concept and can be formulated as a min-max problem (denoted by RASBTP, which stands for
“risk-averse second best toll pricing”) as follows:

RASBTP min
y∈Ky

max
x∈S(y)

f(y, x) (9)

If we define Ψ(y) ≡ maxx∈S(y) f(y, x), it is easy to see that the risk-averse model RASBTP
aims to design the toll so that it is optimal for the worst case scenarios. Here the “worst case” for
a given toll represents the largest objective value as UE solution varies under the toll, i.e. Ψ(y).

Denote y∗a the optimal solution to RASBTP and x∗a its associated flow pattern. We will have
f(y∗a, x∗a) ≥ f(y∗a, x), ∀x ∈ S(y∗a). This implies that, as the UE solution varies after the optimal
risk-averse toll y∗a is imposed, the objective value will never increase. In other words, we will always
be “better off” as the UE solution changes if we implement the risk-averse toll. On the other hand,
assume y∗p is the optimal solution to RPSBTP and x∗p is its associated flow pattern. We will have
f(y∗p , x∗p) ≤ f(y∗p , x), ∀x ∈ S(y∗p). This means that if the risk-prone toll is implemented, we will
always be “worse off” since the objective value will never decrease as the UE solution varies. This
illustrates, from the toll designer’s perspective, that the risk-averse toll design approach is more
robust.

2.2 A Stochastic Program for Risk-Neutral SBTP

From the above discussion, we can see that in case of the UE solution not being unique, the
risk-prone SBTP approach is too optimistic by focusing on the best-case scenario. On the other
hand, while being able to account for the uncertainty due to S(y), it is well known that robust
optimization and the min-max formulation (9) is a very conservative way to design tolls. Therefore,
a design approach that is in-between, i.e. less aggressive than RPSBTP and less conservative than
RASBTP, seems more desirable.

We propose a “risk-neutral” second best toll pricing approach, which aims to minimize the
expected objective value as the UE solution varies. For this purpose, we assume the realization
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of the UE solution follows certain distribution over the solution set S(y). That is, S(y) is the
probability space and the UE solution is assumed to be a random variable defined on S(y). More
specifically, we define x̃(y) the (random) UE solution that follows the assumed distribution over
S(y) under a toll vector y. Based on this setting, the risk-neutral approach may be modeled as
the following stochastic formulation:

RNSBTP min
y∈Ky

F (y) = Ex̃(y)∼S(y)[f(y, x̃(y))]. (10)

Here E denotes “expected value” and x̃(y) ∼ S(y) means that x̃(y) follows certain distribution
over the set S(y), which is the probability space. In addition, RNSBTP stands for “risk-neutral
second best toll pricing.”

In [12, 11], a similar problem as shown below was studied extensively:

min
y∈Ky

F (y) = Ex̃∼X [f(y, x̃)]. (11)

Here X is the probability space, which is a fixed set. We can see that the only difference
between our proposed risk-neutral SBTP model (10) and the stochastic program (11) is that the
probability space is fixed in (11) while in RNSBTP , the probability space S(y) is changing with
the toll vector. In this sense, the proposed risk-neutral model RNSBTP extends some of the
results in [12, 11] to stochastic programs with varying probability space.

Quantifying the actual distribution of x̃(y) for a given toll vector y is crucial to the risk-neutral
model. In this article, we simply assume x̃(y) follows a uniform distribution over S(y), which
implies that all solutions within S(y) have the same probability to be realized in practice. This
simplified assumption may not be valid in practice as the realization of the UE solutions may be
determined by user choice behaviors especially the day-to-day route choice adjustment [20]. Such
issues may be investigated in future research. The model presented in this article however can
capture any distribution form that can be properly identified. Furthermore, the solution algorithm
we present in Section 3 may also be extended to solve the RNSBTP model with distributions other
than the uniform distribution 1.

To illustrate the risk-neutral SBTP scheme and the difference among the three toll design
approaches, we present an example in this section, which was also discussed in [5]. The setting
of the example is described in more detail in Section 4, where discussions of how to solve the
risk-neutral SBTP model is presented. Here we notice that the problem can actually be solved
analytically due to its special structure. As shown in [5], the risk-prone and the risk-averse solutions
for this toll design problem are y∗p = 5 and y∗a = 13.57 respectively. The corresponding objective
values are 125 and 167.86 respectively. This is shown in Figure 1. In this figure, the three axes
represent the link flow on the three links of the small network in Figure 5. As shown in Appendix
A of the article, the solution set under a given toll vector y is S(y) = {x = (x1, x2, x3)T ≥ 0|x1 =
(10 + y)/3, x2 + x3 = (20 − y)/3}, which is a line in the three dimensional space. Appendix
A also presents discussions on how the analytical risk-neutral solution y∗n = 11 can be derived.
The objective value for the risk-neutral approach is 155. The example illustrates that if the UE
solution is not unique (e.g. the lines in Figure 1), the three toll design approaches may generate
different solutions. In general, the risk-neutral solution lies in-between the risk-prone and risk-
averse solutions. The objective value of the risk-neutral approach also lies in-between those of
the risk-prone and risk-averse approaches, indicating that the risk-neutral approach is indeed less

1This requires to construct a particular distribution from the uniform distribution generated by the EHR algo-
rithm in Section 3.3, which is a standard operation
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aggressive than the risk-prone approach and less conservative than the risk-averse approach. In
this sense, it provides another alternative for SBTP design. In addition, while risk-prone and
risk-averse optimal tolls (i.e. y∗p and y∗a) have their associated optimal (predicated) UE solutions
(i.e. x∗p and x∗a respectively), there is no a single UE solution that is“optimal” under the optimal
risk-neutral toll y∗n. Rather, the risk-neutral optimal toll is optimized over the entire solution set
S(y∗n) in terms of the expected objective value. It is this capability of explicitly considering all UE
solutions that makes the risk-neutral SBTP approach more appealing than the other two design
approaches. In Appendix B, a larger example is provided on a grid network, which shows similar
results as the small example above.

x1

x2

x3

10

10

10

10/3

25/3

S(0)

S(15)

minimizer

maximizer

x*a

x*p

S(y*a)

S(y*n)

S(y*p)

Figure 1: Solution Set of SBTP

3 Solution Algorithm

In this section, we present the solution algorithm for the risk-neutral SBTP model. The algorithm
is designed based on the simulation-based optimization technique.

3.1 Outline of the Algorithm

The solution algorithm, called the Simulation Optimization based Risk-Neutral Algorithm (SORNA),
is first given as follows:

SORNA Algorithm

Step 1. Initialization. Select an initial toll vector y0 and set k = 0.

Step 2. Construct solution set S(yk). Solve the UE problem under toll yk, UE(yk). Denote the
solution as x̄k. Then construct the solution set of S(yk) based on x̄k (See Section 3.2).

Step 3. Random Sampling. Perform uniform random sampling over S(yk) (See Section 3.3). Denote
the samples as xk

i , 1 ≤ i ≤ Mk. Here Mk is the number of samples which is set by the
two-phase simulation optimization in Step 4 and may be different for different yk’s.
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Step 4. Two-Phase Simulation Optimization. The first phase is a global exploration step to identify
promising subregions. The second step is to solve a quadratic approximation of the original
problem in each subregion by derivative-free algorithms. This step will call Step 3 to generate
random samples in the solution set. An approximate solution ŷk will be generated in this
step (see Section 3.4).

Step 5. Convergence Test and Move. If ||yk− ŷk|| ≤ ε, stop. Otherwise, set yk+1 = ŷk and k = k+1,
go to Step 2.

In Step 2 of the SORNA algorithm, an NCP (nonlinear complementarity problem)-based UE
can be solved directly (for small to medium size problems) or by applying certain decomposition
schemes (for large size problems). More discussions on this are provided in [21]. The method of
constructing S(y) is discussed in detail in Section 3.2. In Step 3, the sampling method is based on
the Hit-and-Run (HR) approach originally developed in [13] for sampling over a full dimensional
subset in Rn. We extend in Section 3.3 the original approach to sample over a subspace of Rn. The
process of the two-phase simulation optimization in Step 4 is discussed in [12, 11]. Here we directly
use the WISOPT solver developed in [11] to perform the subregion identification and optimization.
In this article, we set Mk a constant for different yk’s. However, we test different Mk values to
see how this may impact the performance of the SORNA algorithm. In Step 5, ε is a user-defined
threshold for convergence tolerance. We use 10−5 in this article.

3.2 Characterizating the Solution Set of An Affine UE

To illustrate SORNA, we focus on affine UEs in this paper due to the ease of characterizing
the solution set of an affine UE [5] which is based on characterization of solution sets of convex
programs [22, 23, 24] and NCPs/VIs [19]. The method presented in this section has also been
discussed in detail in [5], but is presented here for completeness. For an affine UE, the link travel
time t is a linear function of total link flow x, i.e. we can define t as:

t(x) = αx + β. (12)

Here β ∈ R|A| is a vector of link free flow travel times and α ∈ R|A| × R|A| is a matrix
representing the link interactions among different links. In other words, its entry αa,b represents
the contribution of traffic flow of link b to the travel time of link a. Therefore, we would expect all
the elements of matrix α are non-negative. In particular, its diagonal entries should all be positive
since as flow increases on a link, its travel time should always increase monotonically. Further, if
α is a symmetric matrix, so is the resulting UE, i.e., there is no link interaction or the interactions
are symmetric. Otherwise, link interactions are asymmetric and so is the resulting UE [25].

To derive an explicit expression for S(y), we adopt the NCP formulation for UE as in [5]. For
this purpose, denote Q the set of destinations of the network and q ∈ Q as a given destination.
Denote vq

a the flow on link a with respect to the destination q, and vq = (vq
a)∀a∈A. This implies

x =
∑

q∈Q

vq. (13)

Equation (12) can then be rewritten as:

t(
∑

q∈Q

vq) = α(
∑

q∈Q

vq) + β, (14)
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Assume dq
i the demand from node i ∈ N to destination q (we conventionally set dq

q = 0),
πq

i the minimum travel time from node i ∈ N to destination q (we conventionally set πq
q = 0),

and dq = (dq
i )∀i∈N,i 6=q, π

q = (πq
i )∀i∈N,i 6=q. Further denote Λ the node-link incidence matrix of

the network and Λq the matrix with the row corresponding to destination q removed from Λ. As
shown in [5], UE(y) can be formulated as the following NCP as trying to find a pair (v, π) for
v = (vq)∀q∈Q, π = (πq)∀q∈Q such that

NCPUE(y) 0 ≤ (Λqv
q − dq) ⊥ πq ≥ 0, ∀q ∈ Q, (15)

0 ≤ (−ΛT
q πq + t(

∑
q∈Q vq) + y/θ) ⊥ vq ≥ 0, ∀q ∈ Q. (16)

Here “⊥” reads as “perpendicular”, i.e. x ⊥ y ↔ xT y = 0. The above model is denoted as
NCPUE(y) to represent the NCP based UE model under toll vector y. Equation (15) represents
the flow conservation at nodes of the network for a specific destination q, while equation (16) is
for the route choice condition at nodes of the network. Detailed discussions of the model can be
found in [26]. Assume ū = (π̄T v̄T )T is a known solution to NCPUE(y), i.e., ū ∈ S(y). Then the
solution set S(y) can be represented as follows [5]:

S(y) =
{

x =
∑

q∈Q

vq| ∃(πT vT )T ≥ 0 (17)

Λqv
q − dq = 0, ∀q ∈ Q, (18)

− ΛT
q πq + α(

∑

q∈Q

vq) + β + y/θ ≥ 0,∀q ∈ Q, (19)

(α + αT )(
∑

q∈Q

vq −
∑

q∈Q

v̄q) = 0, (20)

−
∑

q∈Q

(dq)T (πq − π̄q) + (β + y/θ)
∑

q∈Q

(vq − v̄q) = 0
}

. (21)

The solution set S(y), as represented by (17) - (21), is a nonempty polyhedron, defined on
disaggregated variables (v, π). If α is a diagonal matrix (i.e., no link interaction exists), since all
its entries are positive, α is positive definite. This implies that NCPUE(y) has a unique solution
in terms of total link flow. In this case, the three SBTP design approaches are the same and will
produce the same solution since the upper level objective function is defined on total link flows.
However, if α is not a diagonal matrix (i.e., link interaction does exist), multiple solutions may
exist when α is not positive-definite.

3.3 Random Sampling from the UE Solution Set S(y)

Sampling over a convex set in Rn to follow a certain distribution is a classical problem in operations
research. In [13], Smith proposed the ”hit-and-run” algorithm, a Monte-Carlo process to uniformly
sample points from a full dimensional convex set of Rn. Denote such a set as W ∈ Rn. The hit-
and-run (HR) algorithm for generating M uniformly distributed sample points can be summarized
as follows [13]:

HR Algorithm
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Step 1. Choose a starting point w0 ∈ W and set m = 0.

Step 2. Generate a random direction p uniformly distributed over a direction set P ∈ Rn.

Step 3. Find the line set L = W ∩ {w|w = wm + λp} and generate a random point wm+1 uniformly
distributed over L.

Step 4. If m = M , stop. Otherwise, set m = m + 1 and go to Step 2.

In the above algorithm, since W is full-dimensional, the direction set P in Step 2 can be
straightforwardly generated, e.g. chosen as a random point on the unit sphere P = {p| ‖ p ‖=
1}. However, the UE solution set S(y) is more complicated as it is a composite set defined on
disaggregated variables v, π. We denote u = (vT , πT )T , and uv and uπ the v- and π-component of
u respectively. Then we have vq = uq

v and we can rewrite the representation of S(y) in (17) - (21)
as the following for a fixed vector y:

S(y) = {x =
∑

q∈Q

uq
v|Bu = b, Cu ≤ c}. (22)

Here B, C are matrices and b, c are vectors, all with appropriate dimensions. In particular,
Bu = b is used to compactly represent (18), (20), and (21), whereas Cu ≤ c is used to represent
(17) and (19). Due to the special structure of S(y), we sample over the disaggregated variable
space u in this article instead of the total link flow space x. In particular, we uniformly sample u
over U(y) defined as:

U(y) = {u|Bu = b, Cu ≤ c}. (23)

The summation of x =
∑

q∈Q uq
v will then follow a uniform distribution over S(y). Next we

show how we can uniformly sample over U(y).

First, U(y) is a subset of the following set

U1 = {u|Bu = b}, (24)

which is a translate of the following subspace in Rn:

U0 = {u|Bu = 0}. (25)

Since U(y) is a subset of the translate of a subspace in Rn, the original HR algorithm cannot
be used directly. The reason is that the direction p generated in Step 2 of the HR algorithm is
uniformly distributed over the full dimension of Rn and therefore the chance that p lies in U1 as
defined in (24) is very small. As a result, there is no guarantee that the generated samples in Step
3 of the HR algorithm are within U(y).

Obviously, to sample over U(y) using the HR algorithm, we need to generate the random
direction p so that it is always in U1. Notice that for u ∈ U1, u0 ∈ U0, we always have u+u0 ∈ U1.
In other words, if we can generate a uniformly distributed random direction in U0, the random
direction in U1 can be readily constructed. Therefore, the question now is how to generate a
uniformly distributed direction in the subspace U0. This can be done by generating the random
direction only based on the basis of the subspace U0.
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It is easy to see that U0 = Null(B), where Null(B) denotes the null space of matrix B.
Constructing the null space of a matrix is a standard operation (e.g. in Matlab, null(B) produces
the basis of the null space of matrix B). The random direction can then be generated randomly
from the basis.

In Step 3 of the algorithm, the line set can be generated by calculating the intersecting points of
line um + λp with the boundaries of U(y) represented by Cu ≤ c [27]. In other words, the equality
constraints of U(y) determine the random direction of the HR algorithm, while the inequality
constrains determine the random step size. We summarize the above modifications to the original
HR algorithm in [13] as the following Extended Hit-and-Run (EHR) algorithm:

EHR Algorithm

Step 1. Construct matrices B, C, and vectors b, c from the representation of U(y) in (17) - (21).
Denote u0 = (v0, π0) ∈ U(y) as the disaggregated solution of the NCP-based UE formulation
(15) - (16). set m = 0.

Step 2. Construct the basis of the null space of B. Assume its rank is k and the basis is h0
1, h

0
2, . . . , h

0
k.

Step 3. Generate k random numbers from the standard normal distribution N(0, 1): γ1, γ2, . . . , γk.
The random direction can then be constructed as

pm =
∑k

i=1 γih
0
i√∑k

i=1 γ2
i

+ u0. (26)

Step 4. Compute the following two scalars [27]:

λmin = max
{ci −

∑n
j=1 Cijx

j
m∑n

j=1 Cijp
j
m

,∀i such that
n∑

j=1

Cijp
j
m < 0

}
. (27)

λmax = min
{ci −

∑n
j=1 Cijx

j
m∑n

j=1 Cijp
j
m

,∀i such that
n∑

j=1

Cijp
j
m > 0

}
. (28)

Generate a random scalar λm that follows the uniform distribution defined on the range
[λmin, λmax].

The new sample can then be constructed as um+1 = um + λmpm.

Step 5. If m = M , stop. Otherwise, set m = m + 1 and go to Step 3.

In Step 3 of the EHR algorithm, the random direction is generated as a linear combination of
the basis of U0. The weights follow standard normal distribution. As shown in [28], the direction
generated this way does follow uniform distribution in the subspace. Therefore pm as expressed
in (26) is a uniformly distribution direction in U1. Furthermore, as shown in [27], λmin and λmax

represent the intersecting points of the line um + λpm with the boundaries of U(y), which are
calculated using the inequality constraints of U(y), i.e. Cu ≤ c. This implies L is the line segment
between um + λminpm and um + λmaxpm, which indicates that um+1 = um + λmpm is a uniformly
distributed point along line set L as long as λm is uniformly distributed over [λmin, λmax]. The
EHR algorithm generates random samples in the space of disaggregated variables, i.e. U(y). From
the samples, the total link flow x can be computed using x =

∑
q∈Q uq

v.
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3.4 Two-Phase Simulation Optimization

We use the optimization package WISOPT (WIsconsin Simulation OPTimization) that is based
on a two-phase framework incorporating different optimization methodologies. See Figure 2 for a
flow chart.

Figure 2: The two-phase WISOPT structure.

Phase I is a global exploration step over the entire domain. Algorithms in Phase I call Step
2 of the SORNA algorithm to generate (and evaluate) densely distributed samples in promising
subregions and sparsely distributed samples in inferior subregions. The entire set of samples is
then passed to a phase transition procedure, which implements a non-parametric statistical method
to determine starting points and surrounding subregions for the multistart Phase II optimization
techniques.

One of the Phase I methods employs classification tools to facilitate the global search process.
By learning a surrogate from existing data the approach identifies promising subregions and gen-
erates dense samples in these regions. Another Phase I method is the Noisy DIRECT (DIviding
RECTangles) algorithm, which is an extension of the DIRECT optimization algorithm.

Phase II performs local derivative-free optimization based on the UOBYQA (Unconstrained
Optimization BY Quadratic Approximation) algorithm, in each of the identified subregions. If we
can implement common random numbers (CRN) in the simulator, the VNSP-UOBYQA (Variable-
Number Sample-Path UOBYQA) algorithm is used, while the Noisy UOBYQA algorithm is carried
out in the white noise case. Both algorithms apply Bayesian techniques to guide appropriate
sampling strategies while simultaneously enhancing algorithmic efficiency to obtain solutions of a
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desired accuracy.

Classification-based global optimization A good surrogate model for the entire space may
require a large amount of simulations and can be very expensive to compute. Since Phase I only
attempts to determine promising subregions of the search space, we employ a simple indicator
function:

I(x) =
{

1, for x in a promising subregion
0, otherwise, (29)

where promising subregions in the method correspond to appropriately chosen level sets of F .
Approximating the indicator function I is simpler than approximating the underlying function F ,
especially in high dimensional cases.

We generate a boosting classifier [29] to approximate I. This classifier is used to predict whether
new samples (potential evaluation points) are within promising regions or not, facilitating further
evaluations of the underlying F . Figure 3 illustrates the promising local regions of a (multimodal)
test function due to Griewank (the dotted circles and the level sets) and the generated samples of
the algorithm (the ‘+’s). The method is relatively insensitive to noise, because the simplification
step (29) smooths out the occurrence of noise. Therefore, we normally do not use replicated
samples in training the classifiers.
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Figure 3: Predicted local subregions of the Griewank function. The function has local optimums
in each subregion (circles) and the global optimum at [0, 0].

The Noisy DIRECT algorithm The DIRECT optimization method [30, 31, 32, 33] is a de-
terministic global optimization algorithm for bound-constrained problems. The algorithm centers
around a space-partitioning scheme in which promising hyperrectangles are subject to further di-
vision. Figure 4 provides an illustration of the algorithm on a test function due to Goldstein Price.
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The algorithm therefore proceeds to gradually explore promising subregions. In other words, more
function evaluations will be performed near a (local) optimal solution.

Figure 4: The DIRECT optimization algorithm on the Goldstein Price function.

When the objective function is subjected to uncertainty, some crucial operational steps of the
DIRECT algorithm are affected. For example, the choice of potentially optimal hyperrectangles
becomes incorrect because of the noisy function values, possibly misleading the algorithm to search
in inferior regions. We modify the original DIRECT algorithm using a simple approach - multi-
ple replications are sampled to reduce output uncertainty. Since the objective function is often
computationally expensive to evaluate, we must be very cautious in using function evaluations. In
our modification, we apply Bayesian techniques to derive a posterior distribution for the function
output at each point, and incorporate the distribution information into the algorithm to determine
an appropriate number of replications to be used.

The phase transition Using the evaluated samples in Phase I, the phase transition procedure
consists of a non-parametric local quadratic regression method to determine the appropriate sub-
region size. Unlike regular regression methods which use the entire set of samples in the domain
to construct one model, local regression makes a prediction (at a point) using a local model based
on samples within a ‘window size’, thus the approach values the local behavior of a function more.
‘Non-parametric’ means the regression model is not from a single parametric family. It is presumed
that the samples outside the local region have a slight relevance to the current prediction. In our
procedure, we treat the resulting ‘window size’ as our subregion radius.

A sequence of good starting points is generated, satisfying the criteria: (a) each starting point
is the center of a subregion, (b) the subregions are mutually separated. The sequence of starting
points and the subregion sizes are passed to Phase II for local processing, possibly in a parallel
setting.

13



Extended UOBYQA algorithms In Phase II, the deterministic UOBYQA algorithm is ap-
plied as the base local search method and is extended for noisy function optimization. The method
is an iterative algorithm in a trust region framework [34], but it differs from a classical trust re-
gion method in that it creates a chain of local quadratic models by interpolating a set of sample
points instead of using the gradient and Hessian values of the objective function (thus making it a
derivative-free tool).

We developed variants of the original UOBYQA, called the VNSP-UOBYQA and the Noisy
UOBYQA, that have been adapted for noisy optimization problems. The extension idea is similar
to that of the Noisy DIRECT algorithm. We sample multiple replications per point to reduce
variance and apply Bayesian techniques to guide appropriate sampling strategies to estimate the
objective function. The two algorithms employ different mechanisms in the sampling process. The
VNSP-UOBYQA determines appropriate replication numbers by whether sufficient reduction is
identified in the trust-region subproblem, while the Noisy UOBYQA determines the number by
whether the quadratic models can be shown to be stable or not. Generally speaking, when CRN
is implemented, the noise is relatively easy to handle because it is correlated among sites.

4 Numerical Example

To illustrate the risk-neutral SBTP scheme and the SORNA solution algorithm, we apply the
algorithm to a small test example in this section. It turns out that, as shown in Section 2, the
problem can be solved analytically and exactly, which can be used to analyze the effectiveness of
the solution approach.

Figure 5 depicts a hypothetical network with one origin-destination (OD) pair (from node r
to node s) and three routes. A toll booth is located at the very beginning of route 2 and 3. The
distance between node r and i is very small so that the travel time can be ignored (assume toll is
automatically collected and therefore the delay at the toll booth can be ignored as well). Further
assume the total demand d = 10 and the route (also link) flows are x1, x2, and x3. The travel
times of the links are assumed to have the following form:

t1 = 2x1 + x2 + x3

t2 = 2x2 + 2x3

t3 = 2x2 + 2x3.

r i
s

1

2

3toll

Figure 5: The Test Network

In other words, link interactions do exist among the three links. For simplicity, we assume the
“value of time” θ = 1. Then the link generalized travel times, with toll imposed, are:
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c1 = t1

c2 = t2 + y

c3 = t3 + y.

Here y is the toll and y ∈ Ky = {y|0 ≤ y ≤ 15}. Denote c = (c1, c2, c3)T and x = (x1, x2, x3)T .
To determine the “optimal” toll, we assume the objective function for the upper level as follows:

f(y, x) = t1x1 + 3t2x2 + t3x3. (30)

We first apply SORNA to solve the risk-neutral model RNSBTP for the test example. We set
the number of samples for each given toll (Step 3 of SORNA) as Mk = M = 300. The algorithm
converges after 8 iterations with an obtained solution 11.12 and the corresponding objective value
is 154.37. The results are very close to the optimal solution (11) and the optimal objective value
(155) as shown in Appendix A. The deviations are only 1.1% and 0.4% respectively. Figure 6
depicts the convergence of the SORNA algorithm.

Figure 6: Convergence of the SORNA Algorithm

We now check whether the random sampling algorithm EHR works properly. We need to
answer two questions: 1) are the generated samples within the solution set S(y)? and 2) do the
samples follow a uniform distribution within S(y)? Here we use y = 11, i.e. the optimal toll, as
a test case. First, based on (32) in Appendix A, we know that the solution set when y = 11, i.e.
S(11), can be expressed as:

S(11) = {x = (x1, x2, x3)T |x1 = 7, x2 + x3 = 3}. (31)

The x1 component of all M = 300 samples generated by the EHR algorithm is 7. Figure 7
further depicts the (x2, x3) component of the samples using plus signs. The solid line represents
the “theoretical” line of x2 + x3 = 3, which (x2, x3) should follow. It is clear that all samples lie
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on the theoretical line, indicating that the random samples are within S(11) as defined in (31).
To answer the second question, we notice that if x2 follows the uniform distribution within [0, 3],
the generated samples will indeed follow the uniform distribution within S(11). We plot in Figure
8 the histogram of the x2 component of the 300 randomly generated samples. We particularly
arrange the samples into 10 bins. The bold solid line in the figure is the “theoretical” (uniform)
distribution that x2 should follow. The thin solid line with plus signs is the histogram calculated
by the generated samples. We can see that although there are significant variations, the histogram
does follow and fluctuate over the theoretical line. This means that the generated samples do
follow, approximately, a uniform distribution.

Figure 7: Random Samples Generated by the EHR Algorithm

To show how the sampled objective values compare with the true objective values for a given
toll, we show in Figure 9 the sampled objective values vs. toll y. In this figure, the dotted line and
the solid line with triangle represent respectively the average objective value of all the samples for
M = 3 and M = 50. The bold solid line is the true objective value, i.e. calculated via equation (34)
in Appendix A. We can see that the average objective value can approximate the true objective
curve very well, in spite the fact that the average value has variations at different y’s. We can also
observe that as toll y becomes larger, the variation becomes smaller. This is because, as can be
seen from the solution set S(y) in (32), the range of the solution set becomes smaller as y increases,
leading to smaller variation of the objective value.

The two-phase simulation optimization algorithm usually generate more samples in promising
subregions and fewer samples in inferior subregions. This means that when a toll close to the
optimal solution is evaluated, more function evaluations will be generated and evaluated. To see if
this is the case for the test example, Figure 10 depicts the number of function evaluations vs. toll
y. The plot confirms that as the toll is closer to the optimal solution (y = 11), denser samples are
generated and more function evaluations are performed by the two-phase optimization algorithm.

The value of M is an important factor to the solution algorithm. Intuitively, a larger M will
generate more samples for a given toll which may produce more accurate approximation to the
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Figure 8: Histogram of Generated Random Samples

Figure 9: Sampled and True Objective Values

underlying true distribution. On the other hand, however, larger M ’s will also require more com-
putational time to perform the sampling, which may not be appropriate for large scale problems.
Therefore, a proper M will be most likely problem-specific, which will reflect the user’s tradeoff
between the solution quality and the available computational resources. To see how different M ’s
may impact the solution quality, we show in Table 1 how the solution and objective value may
change as the value of M varies. Notice that for this small example, the computational efforts is
less interesting, which can be reasonably represented by the actual values of M (i.e. M = 100
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Figure 10: Function Evaluation of Two-Phase Simulation Optimization

roughly requires twice of the computational time used by M = 50).

Value of M
30 50 100 300

Obtained sol 10.53 10.71 10.59 11.12
Optimal sol. 11.00 11.00 11.00 11.00

Diff. with opt. sol. (%) 4.32 2.64 3.76 1.10
Obtained obj 148.53 151.91 153.30 154.37
Optimal obj. 155.00 155.00 155.00 155.00

Diff. with opt. obj. (%) 4.18 1.99 1.09 0.40

Table 1: Impact of the Number of Samples (M) on Solution Quality

We can see from the table that as M increases, both the obtained solution (toll) and the
objective value become closer to the optimal solution and the optimal objective value. In particular,
the deviation for the obtained toll decreases from 4.32% to 1.1%, while the deviation for the the
obtained objective value decreases from 4.18% to 0.4%. This indicates that increasing the number of
samples at each iteration does produce more accurate approximation to the underlying distribution,
and as a result, a better solution.

Finally, to compare the results of the three SBTP design approaches, we depict in Figure
11 the changes of the objective value as a function of the imposed toll, for the risk-prone, risk-
neutral, and risk-averse approaches. The curves are based on the analytical results of the three
SBTP approaches (see [5] and Appendix A of this article). The figure confirms that the risk-
neutral solution and objective value are in-between those of the risk-prone and risk-averse design
approaches. This indicates that the risk-neutral approach is less aggressive than the risk-prone
scheme and less conservative than the risk-averse scheme.
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Figure 11: Comparison of Three SBTP Design Approaches

5 Conclusion

We proposed a risk-neutral scheme for the SBTP design to account for the possible nonuniqeness
of the UE solution. The scheme aims to minimize the expected objective value as the UE solution
varies over the solution set. The scheme provides an alternative way, from the toll designer’s
perspective, for addressing the uncertainty due to nonunique UE solutions. Therefore, the proposed
risk-neutral scheme complements the traditionally used risk-prone SBTP scheme and the risk-averse
scheme we recently developed [5].

We showed that the risk-neutral scheme can be formulated as a stochastic program, which
extends recent simulation-based optimization methods studied in [11, 12]. The stochastic program
can be solved iteratively via three major steps: characterization of the UE solution set, uniform
sampling over the UE solution set, and a two-phase simulation optimization algorithm using the
random samples. To sample uniformly over the UE solution set, we extended the Hit-and-Run
(HR) sampling algorithm in [13] from a full dimensional subset in Rn to a subset of a subspace in
Rn. We tested the model and solution algorithm on a small example. The results showed that 1)
the extended sampling algorithm works well as it only generates samples within the UE solution
set and the generated samples follow an approximate uniform distribution (Figures 7 and 8); 2)
the solution algorithm can produce an approximate model that matches well the general shape
and trend of the true objective function (Figure 9), and the algorithm works properly for the
test example (Figure 6); 3) the number of samples generated for each iteration (i.e. M) plays an
important role in the quality of the obtained optimal toll (Table 1); and 4) when the UE solution
is not unique, the three design schemes could indeed produce quite different optimal toll solutions
and objective values. In general, the risk-neutral toll is in-between the risk-prone and risk-averse
toll; so is the risk-neutral objective value (Figure 11).

By introducing the concept of toll designer’s risk-taking, one has alternative ways (i.e. the
risk-averse and risk-neutral schemes) to address the uncertainty due to nonunique UE solutions.
There are several questions in this direction however that still remain unresolved. Some of them
are summarized as follows:
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(a) The efficiency of the random sampling algorithm needs to be further improved. As shown in
Figure 8, there are still significant variations in the histogram even with 300 random samples.
Investigations on sampling methods that can converge faster should be conducted in future
research.

(b) In this article, we assumed that the realization of the UE solutions follows a uniform distribu-
tion over the solution set. In practice, some UE solutions may be unstable [35], implying that
the probability of these solutions being realized is small. As a result, constructing specific
distributions accounting for the UE solution stability is an interesting topic.

(c) The solution algorithm for the risk-neutral model requires an explicit expression of the so-
lution set of the lower level UE. Although such an expression can be readily constructed for
affine UEs, extending the results to general UEs requires further research.

(d) We focus on link-based UE solutions in this article. Under situations when path costs are
nonadditive or path-based tolling is needed (e.g. for the purpose of controlling emissions),
Path-based formulations are necessary. As path-based UE solutions are nonunique in gen-
eral even when the link travel time functions are separable and strictly monotone [18], the
proposed risk-neutrl SBTP schemes are expected to play more significant roles in path-based
tolling or other path-based network design applications. Research in this direction will be
pursued in the future.
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Appendices

A Analytical Solution of the Test Example

As shown in [5], the solution set S(y) of the test example in Figure 5 can be expressed as:

S(y) = {x = (x1, x2, x3)T ≥ 0|x1 = (10 + y)/3, x2 + x3 = (20− y)/3}. (32)

Clearly, for any given y ∈ Ky, S(y) is a straight line (i.e., a nonempty polyhedral set) in the
three dimension space x1 − x2 − x3 (see Figure 1).

Here we want to minimize the objective function (30) over all x ∈ S(y) that follows uniform
distribution. This is equivalent to say, by (32), that x2 follows uniform distribution in the range
[0, (20− y)/3]. Subsequently, the expected value of the objective for a given y will be:

F (y) = Ex is uniform distributed over S(y)[f(y, x)] =
∫ (20−y)/3

0

f(y, x)dx2. (33)

Substituting x1 = (10 + y)/3 and x3 = (20− y)/3− x2 into (33), we can obtain

F (y) =
∫ (20−y)/3

0

((y2 − 10y + 400)/3 + (40− 2y)x2/3) ∗ 3/(20− y)d(x2).

Note that in (33), 3/(20 − y) is the probability density function of x2 over its possible range
[0, (20− y)/3]. The above equation can be simplified as:

F (y) = 5(y − 11)2/9 + 155. (34)

Therefore, the risk neutral solution is obtained at y∗n = 11, with objective value z∗n = 155.

B A Larger Example

In this section, we show a larger example for which nonunique UE solutions exist such that
RPSBTP and RASBTP produce different results. The example is based on the 3 by 3 grid
network in Figure 12. The network has 9 nodes and 12 links with only one OD pair from node 1 to
node 9. The total demand is assumed to be d = 1. For illustration purposes, we assume that the
travel time for link (1, 2) is t1,2 = 1+x1,2 and travel times for all other links are 2, i.e. a constant.
Assuming link (2,5) passes by an environmentally sensitive region so that the toll designer would
like to impose a weight 3 for its travel time; all other links have their travel time weights as 1. We
install a toll booth on link (1, 2) and the toll has to be within 0 and 2, i.e. 0 ≤ y ≤ 2. We further
assume the “value of time” θ = 1. Now the question is: what are the risk-prone and risk-neutral
SBTP solutions?

We first notice that there are 6 paths from the origin 1 to destination 9: denote the path
(1, 2, 3, 6, 9) as P1, and paths (1, 2, 5, 6, 9), (1, 2, 5, 8, 9) as P2 and P3 respectively. These three
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Figure 12: A Grid Network

paths traverse link (1, 2). Similarly, define paths (1, 4, 5, 6, 9), (1, 4, 5, 8, 9), and (1, 4, 7, 8, 9) as P4,
P5, P6 respectively, which all traverse link (1, 4). Since the travel cost on link (1, 2) is 1+x1,2 +y,
we have to consider two cases to solve the SBTP problems: 0 ≤ y ≤ 1 and 1 < y ≤ 2.

If 0 ≤ y ≤ 1, the equilibrium flow on link (1, 2) will be x1,2 = 1− y and the flow on link (1, 4)
is x1,4 = y. Then the risk-prone solution is obtained by assuming all flow x1,2 will take P1 and
flow x1,4 could take any of the three paths P4 - P6 or any combinations of them. The resulting
objective function for RPSBTP is:

η(y) = y2 − y + 8 = (y − 0.5)2 + 7.75. (35)

The risk-averse design on the other hand assumes that x1,2 will take either P2 or P3 or both,
leading to the following equation for the RASBTP objective function:

Φ(y) = (y − 2.5)2 + 5.75 (36)

To obtain the risk-neutral solution, we first notice that the upper level objective function
can be expressed as: f(y, x) =

∑
a wataxa =

∑
a taxa + 2t2,5x2,5 = g(y, x) + 2t2,5x2,5. Here

g(y, x) =
∑

a taxa is the total system travel time, which is deterministic. To see this, notice
that when 0 ≤ y ≤ 1, paths P1, P2, P3 have the total path flow x1,2 = 1 − y; they also have
the same travel time: 1 + x1,2 + 3 ∗ 2 = 8 − y. On the other hand, paths P4, P5, P6 have the
total path flow y and the same travel time 4 ∗ 2 = 8. As a result, the total system travel time is:
g(y, x) = (1−y)∗(8−y)+y∗8 = y2−y+8. As we assume the link flow follows uniform distribution,
x2,5 will follow a uniform distribution from 0 to 1−y. Therefore, F (y) can be expressed as follows:

F (y) = y2 − y + 8 +
∫ 1−y

0

2
1

1− y
wdw = y2 − 3y + 10 = (y − 1.5)2 + 7.75 (37)

If 1 < y ≤ 2, all OD flow will take paths P4 - P6. In this case, the three SBTP solutions
coincide and the objective is a constant (8) over all 1 < y ≤ 2.
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Considering the problems over the entire feasible region of y, i.e. 0 ≤ y ≤ 2, we see that the
three objective functions η(y), Φ(y), and F (y) are continuous (i.e. they have values 8 at y = 1),
but not smooth at y = 1. This can be seen more clearly from Figure 13, which depicts how the
three objective values change with toll y. The risk-prone solution for this particular example is
y = 0.5 with the objective value 7.75; the risk averse solution is for any 1 ≤ y ≤ 2 and the optimal
objective value is 8; and the risk-neutral solution coincides with the risk-averse solution for any
1 ≤ y ≤ 2 with the objective value 8. Figure 13 also depicts that the risk-neutral objective value
is usually in-between the risk-prone and risk-averse objective values.

Figure 13: Comparison of Risk-Prone and Risk-Averse Solutions on the Grid Network

Urban networks have similar structures to the grid network shown in Figure 12. More impor-
tantly, due to possible link interactions that commonly exist in the urban environment (such as
the interactions between left and through movements at a signalized intersection), the separable
assumption on link travel times may not hold, implying that link travel times may not be strictly
monotone with respect to link flows. Therefore, the above example, although much simplified for
illustration purposes (e.g. link travel times are flow-independent except for link (1, 2) and most
links have an equal length), indicates that the same situation (i.e. nonunique UE solutions) may
exist in some urban networks. This will result in different SBTP tolls and associated system
objective values under different SBTP design approaches.
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