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Executive Summary 

In snowing conditions, following a snowplow creates an extremely dangerous situation. The 
danger comes from the human visual system’s inability to accurately perceive speed and the 
motion of the snowplow, often resulting in rear-end collisions. The overall objective in our 
research is to use our understanding of how the human visual system processes optical motion, 
under the conditions created by blowing snow, to create a simulation framework that can be used 
to test emergency lighting configurations on snowplows.  We feel that such a simulator has the 
potential to reduce rear-end collisions with snowplows as it could be used to test a variety of 
dangerous driving scenarios.  In our simulation framework, we plan to measure reaction times 
for detecting motion of the snowplow to achieve empirical measurements for a variety of 
warning lighting set-ups on a simulated snowplow that slows down (and speeds up) while 
driving on a virtual, curving hilly road.   This driving simulator snow environment will serve as 
the basis for testing the effects of color and lighting alternatives on snowplows. The results of 
this work will move us closer to determining optimal color and lighting configurations on real 
snowplows. 

During the previous year of work, our efforts have been on developing a simulation framework 
capable of rendering snow in a real-time virtual driving environment.  In particular, we have 
created the base simulation framework that will be used in future years for representing snow in 
a real-time driving simulation. Our current snow rendering system is capable of rendering a few 
million snow particles at interactive rates.  These snow particles are subject to an average wind 
field and reflect off of simple geometric structures in the simulation environment.  This allows us 
to move the snow particles during a simulation to mimic the effects of blowing snow in a road-
based setting. We also developed a 3D model of a snowplow to use in our simulations. The 
snowplow is quite realistic and has been constructed to easily allow interchangeable back ends 
with different lighting configurations.  

Our approach is unique and powerful because we compute the effect of snow falling between an 
observer and the background on a per-snow particle basis.  This is an important feature because 
we achieve critical environmental influences of the snow from this model, such as blurring of 
elements in the background and a lowering of the contrast between background and foreground 
elements.  The latter is important for addressing the perceptual issues associated with driving in 
snowy conditions [1-3].  Equally important is the fact that each particle moves under the 
influence of a physics-based wind dispersion model.  The lighting and motion combine to 
produce more realistic circumstances. Other research has incorporated spectral methods to 
represent the effect of falling snow [4].  However, our proposed approach can result in more 
realistic looking scenes because we explicitly model the falling snow and its effect on the 
environment.  Our approach is also in contrast to methods that treat participating media (fog, 
haze, or air molecules) as an aggregate [5, 6], deriving functions for how light attenuates across 
distance rather than dealing with individual particles.  Aggregate methods, however, may be 
important for simulating the influence of snow at distances far from the observer since our snow 
rendering framework is somewhat limited by the number of snow particles that can be rendered 
at real-time rates. 

In our snow-rendering framework, we compute a lighting equation for each snow particle. This is 



feasible due to the computational power and parallel processing available in modern graphics 
hardware.  Current graphics cards, typically used to accelerate video game computations, contain 
Graphics Processing Units (GPU) that are highly parallel vector processors.  Typically, these 
processors are used strictly for computer graphics rendering equations.  However, the literature 
on graphics hardware programming contains many examples of GPUs being used to accelerate 
scientific, engineering, and graphics applications.  In many of the cases, GPU-based 
implementations greatly outperform their Central Processing Unit (CPU)-counterparts, 
sometimes by several orders of magnitude.  This increase in performance relates to the GPU’s 
SIMD (single-instruction, multiple data) style of processing. 

The lighting calculation applied to each snow particle attempts to characterize the absorption, 
emission, and scattering of incident light on the snow particle.  These components are related to 
the optical properties of snow.  For packed or aggregate snow, researchers have attempted to 
determine the optical properties for the light-snow interaction [7,8].  The optics of falling snow is 
different, but few studies applicable to graphics have been conducted to directly determine the 
optical properties of falling snow [9].  Yonas and Zimmerman [1] have attempted to make some 
preliminary measurements for light propagation in snowy conditions and we intend to integrate 
that information as best we can into our model.  It may be important to attempt new 
measurements at some point over this project. 

Our snow simulation runs at interactive rates performing basic forward scattering from the lights 
defined in the scene.  While we have not yet integrated the snowplow with the snow simulation, 
we are able to show the effects of the forward scattering in our test scenes.  With the work 
conducted over the past year, we are able to begin work on a more integrated simulation 
framework that affords experimental testing of alternative lighting configurations on the back 
snowplows. 
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Chapter 1. Introduction 

Our ability to perceive motion in general and optical expansion in particular is crucial for safe 
driving. Expansion indicates that we are approaching the car ahead of us.  In previous work [1,2], 
two situations were found that interfere directly with our perception of the expansion motion that 
alerts drivers that collision is imminent:  fog and blowing snow combined with the color of the 
vehicle and the color of the surrounding road can create a dangerous equiluminant situation. In 
an equiluminant situation the brightness of the vehicle and the background are equal.  This can 
also be described as a low luminance contrast situation since the contrast between foreground 
and background luminance is minimized.   Luminance can be thought of as the amount of light 
intensity, but not color, that comes from a surface.  When equiluminant, or low luminance 
contrast situations are present, our ability to detect motion is reduced as well as our ability to 
locate objects in space [3].   In particular, these situations present themselves under snowing or 
foggy conditions.  Also of note, flashing lights, such as those used to improve detection of 
snowplows in poor visibility conditions, interfere with our ability to sense approach [2].  Our 
past data indicate that daytime driving behind an amber colored snowplow with amber flashing 
warning lights strongly reduces our ability to sense approach, increasing the potential for rear-
end collisions with snowplows.  

The research issue addressed in this report is on developing a blowing snow visual simulation 
framework that can be used to investigate how blowing snow (and even foggy) conditions can 
affect perception of exocentric vehicle speed, motion, and general detection.  Such a simulator 
must be capable of providing visual information in real-time based on changing conditions.  Our 
efforts over this first year have been on developing the infrastructure to support the rendering of 
falling snow.  The objective of this system is to create equiluminant, or low-luminance contrast 
conditions, in the visual simulation that can be used to better understand our behavior under 
these adverse situations.  Physical measurements were acquired in previous research to gauge 
how falling or blowing snow filters the color components of the light that reflects from the 
painted surfaces of a snowplow [1].  Computer-based psychophysical studies of the effects of 
luminance contrast and flashing displays on our ability to detect approach were also been 
previously conducted [2].  The information obtained from these past measurements have 
prompted and influenced the implementation of our current snow simulation and rendering 
algorithm.  Our objective is to provide a more realistic simulation of blowing or falling snow that 
can be used to advance this prior work, ideally creating safer winter driving conditions by 
applying our knowledge to modification of the snowplow fleet. 

The current snow rendering system can display approximately three million opaque snow 
particles at real-time rates.  The speed and computational power of modern graphics cards is 
increasing regularly so it is expected that the number of snow particles that can be rendered to 
the screen with our system will increase over time.  A turbulent wind dispersion model has been 
incorporated into the snow rendering algorithm to provide an animation of falling or blowing 
snow, effectively increasing the realism of moving particles.  Our particle dispersion system 
performs advection of snow particles according to mean and fluctuating wind quantities using an 
unsteady, random-walk turbulence model [10,11].  Particles are reflected off of the ground and 
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simple, geometric structures.  The resulting motion is characteristic of real fluid flows in empty 
space and also around buildings.  

The overall goal of this research tact is to create safer winter driving conditions by applying 
information about human perception to the design and configuration of snowplow lighting and 
paint color.  To accomplish this, we are building a virtual driving simulation environment in 
which falling or blowing snow is rendered and animated.  Using the simulator system, we can 
experiment with different snowplow lighting configurations and snowplow paint colors.  
Through this virtual prototyping system’s results, we expect to be able to provide reasonable 
input for real-world tests and experiments validating any alternative configurations. 

The key components of the research in this project were to (1) develop an effective visual 
simulation of snow for use in a virtual environment, and (2) begin experimental analysis of how 
human perception under these circumstances is affected. 

The remainder of the report will highlight the information from the first year of this project, 
funded by the NATRSL FY 2008 program.  Chapter 2 provides background information on the 
state of snow rendering and also discusses the mechanism by which snow is moved within our 
simulation framework.  Chapter 3 provides the snow rendering implementation details, including 
the wind turbulence and particle advection, scattering, snow particle sorting, and display.  
Chapter 4 will present the results from the first year, and provide guidance on how the project 
should proceed in future years to provide the most benefit to other researchers in this area. 
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Chapter 2. Background and Related Work 

Very little work has been published on the subject of modeling snow in real-time situations, 
despite the fact that snow is such a common material when rendering natural scenes. Stationary, 
fallen snow has been modeled previously by Chrisman [12] using the optical characteristics of 
ice and snow.  Real-time Cloud rendering by Harris and Lastra [13] presents methods for 
simulating realistic clouds using multiple scattering in the light direction. Clouds are illuminated 
by multiple directional light sources with scattering from each one. Our method uses imposters 
to accelerate cloud rendering by exploiting frame to frame coherence. Using imposters is an 
effective way to render clouds that may contain other objects, such as airplanes or birds. This is 
important for snow rendering since snow clouds and snowing situations often have objects 
within them, such as cars or snowplows. Wang and Wade [14] have modeled a snow domain 
with static textures without using a particle system.   

Our system uses a dynamic particle system to simulate particles in our virtual environment. The 
particles in the system use a wind simulation model to simulate the particle motion within the 
confines of the simulated environment.  The particles move about in the environment similar to 
how wind would cause them to disperse.  We also have a collision detection mechanism in place 
where in the particles can collide against simple structures such as buildings, the ground, or a 
rough approximation to a snowplow, thus changing particle motion.  

We use the QUIC-Plume dispersion model that was reworked to run on the GPU [10, 11, 15]. 
The movement of the particles is decided using the wind field generated by QUIC-URB along 
with turbulent fluctuating winds.  Particles are released into a domain with an initial position 
given by a source. The source can either be a point source, a line source, a sphere source or a 
plane source. Particles once released from the source will travel until they are outside the 
boundary of the domain.  Figure 2.1 shows screen captures from this system. 

 
Figure 2.1: A virtual environment of buildings with the colored particles. The particles collide 

against the buildings and change their direction. 

The particles in our system are modeled using point sprites. Point Sprites enable us to model 3D 
objects as single points on the screen using 2D texture images for mapping them. This reduces 
the load of drawing many 3D objects such as spheres in case of particles. In short, we can draw 
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many points with 2D textures that will look like 3D spheres. Point Sprites make it easier to 
render millions of particles in real time, which we require to make our system interactive. It is 
necessary that we render at fast rates for the interactive environment to work well. For example, 
if a user was driving behind a car, he should immediately be able to brake if the car in front of 
him stops. This will be possible to render if we have enough time between a user braking and 
rendering it on screen. Generally we want to render a frame at a rate which feels real to the user. 
Typically the refresh rate for a computer screen is 1/60 of a second. So ideally we should render 
60 or more frames per second for the effects to be real.  

To speed up the process of rendering a million particles per frame, we can parallelize the 
computations using the graphics processor. A graphics processor is a highly parallel processing 
unit dedicated for rendering graphics onto the screen, which is also known as a GPU (Graphics 
Processing Unit). A GPU is a vector processor that contains highly parallel stream processors 
used to display real-time 3D graphics. Previously, the CPU used to do all the calculations 
necessary for rendering an image onto the screen. In particular, the CPU had to calculate the 
color of each pixel per frame. As the scenes in graphics became more and more complex over 
time, we needed a dedicated processor for graphics calculations. A GPU is meant for rendering 
high end graphics, which works on the Single Instruction Multiple Data (SIMD) architecture and 
it is capable of doing many floating point calculations simultaneously. 

Before we go any further with the graphics processor, we need to understand the basic idea of 
graphics and the graphics processing pipeline. We can draw complex objects on the screen by 
using 3D geometry. We can either apply color to these objects or apply textures to them. For 
example, we can apply a tile texture to a floor to enhance its appearance. These 3D objects are 
projected onto the 2D screen after being processed through the graphics pipeline. An object 
undergoes various transformations before it gets rendered on the screen. A 3D object is first 
converted from local coordinates to viewing/eye coordinates which are the coordinates of the 
object relative to the camera. This is the Viewing or Modeling transformation. Then we define 
the viewable volume in the Projection Transformation which will clip the parts of objects which 
are not visible to the camera, and then the Viewport Transformation converts the 3D coordinates 
to 2D coordinates on the screen. As we render objects to the screen, every object is broken down 
into individual fragments or pixels and sent to Fragment Processing. Here we compute the color 
of every pixel before rendering it to the frame buffer. These per vertex and per fragment 
calculations can be parallelized using the stream processors on the GPU for fast rendering. 

The fixed functionality of a graphics pipeline can be overwritten with the use of vertex and 
fragment processing units called shaders. Shaders are low level programs written using 
specialized C-like languages such as OpenGL Shading Language and Cg. By using shaders, 
programmers have more control over their applications to create better graphics and increase 
performance. The vertex shader overwrites the per vertex stage in the pipeline while the 
fragment shader overwrites the per fragment stage of the pipeline, giving us control on every 
fragment or pixel on the screen. By overwriting parts of the fixed functionality of graphics 
pipeline we get a low level access to the graphics card. 

Even though we have moved a large chunk of the data and operations to the GPU, there still 
remains some necessary communication between the CPU and the GPU. The data representation 
of graphics is done on the CPU and then sent to the GPU for processing. Also, many times the 
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CPU needs to send small bits of information over to the GPU for use in the shaders. So the 
challenge is to minimize the use of CPU memory and reduce the CPU-GPU communication.  

To sum up, the GPU’s have enabled programmers to come up with complex and realistic looking 
scenes in 3D games and high end 3D rendering. GPU’s are very flexible for a wide variety of 
computations, and in many circumstances execute the operations faster than on a CPU. 

The use of textures forms the main technique to manipulate GPU memory through programs. 
Textures can be considered as a form of the main memory in the GPU. A texture is an array of 
vectors where each vector, called a texel, is a color defined by red, green, blue and alpha values. 
Normally these values are read in the fragment shader and the color retrieved from the texture is 
applied to the corresponding pixel/pixels on the screen depending on the texel-pixel mapping. 
Generally, textures can be one, two or three dimensional. We can also use these textures to store 
other information, such as position of particles, normals of the particles, or any other information 
that we want to manipulate using the shaders.  

We use textures extensively to store and manipulate the particle data. For example, in the 
following figure we can see a 2D texture of size 4X4 which will hold positions for 16 particles. 
Each particle position is a vector of 4 floating point values that store the x, y, z, w values. Each 
cell in the texture holds a position vector for a particular particle. 

 12 13 14 15 

8 9 10 11 

4 5 6 7 

0 1 2 3 

Figure 2.2: 2-D texture of size 4 X 4 holding 16 particle positions with each position being a 
vector (x, y, z, w). 

Figure 2.2 shows how a 2D texture is represented on the GPU.  Each colored square is an 
individual texel, which is a vector of four values.  The size and dimension of the textures will 
change for different number of particles. For example, we will need a 2D texture of size 
1000X1000 to store 1 million particles. The order of the numbering shown in the figure is the 
way in which the data is stored in the texture. For example, before texture creation data is stored 
on the CPU as a 1D array.  For figure 2.2, the 1D array used to create a texture is of size 64, (4 X 
4 = 16 texels and 16 X 4 values per texel = 64) with the values for every texel placed in the array 
according to the numbering shown. The first four values for texel 0 are placed one after another 
in the array, the next four values for texel 1 are placed one after another following the four 
values of texel 0, and this process continues for each texel.  We can access a texture in a 
vertex/fragment shader using the texture coordinates. The texture coordinates give the location 
for a specific texel in a texture. For example, the texel 9 can be accessed using the texture 
coordinates s = 1 and t = 2, where s is the column and t is the row number, as the indexing of 
rows and columns starts at 0. 
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Chapter 3. Snow Rendering Implementation 

Our snow particles are implemented on the GPU at real-time rates making it possible to render 
effects such as light scattering, particle depth sorting, and blending for more effective display. 
This chapter gives a detailed explanation of how our snow model works. First, an overall view of 
the system is outlined. Then the modeling of individual snow particles is described. Following 
that is the description of how we used sorting and blending on the GPU. Then, the process of 
creating aggregate snow is explained. Finally, there is a detailed explanation of how high 
dynamic range is used in rendering. 

3.1 System Overview 
We model the snow particles using transparency and scattering effects and do the calculations for 
these effects using dynamic lights on the snowplow model. The shapes of the snow particles are 
modeled using a Gaussian transformation for translucency. 

We use point sprites as representations for particles [15] for modeling our snow system. The 
particles are first sorted or alternatively blended, and then modeled as snow. We model each 
snow particle as a transparent surface using a Gaussian transformation and then apply scattering, 
which is a result of potentially many dynamic lights in the scene and their interaction with each 
snow particle. The following is a generic display function, which shows how our system code is 
organized to get the final image with our snow model. 
DisplaySnow 
{ 

1. Sort the particles based on distance from eye [Section 3.3]  
      OR use additive blend [Section 3.4] 

 2. Model snow particle 
  Get the number of lights in the scene 
  Calculate color for each particle [Section 3.2] 
  Calculate effect of every light on the particle [Section 3.2.4] 
   Apply Gaussian Transformation [Section 3.2.2] 
   Apply Scattering Function [Section 3.2.5] 
 3. Render final image 

} 

3.2 Modeling of Snow 
3.2.1 Point Sprites 
As we have discussed in the background section, we use point sprites for our snow particles. We 
draw these points in space and map them with 2D textures. These are also called imposters as 
they always face the user and they are made to look like 3D points using 2D textures witin the 
graphics subsystem. For imposters to work, we store the normal vector at each point and 
calculate the color at that point using its orientation to the light source so that they look like 
spheres. 
 



8 

 

Figure 3.1: Particles rendered as a single points with a 2D texture to give the impression of a 3D 

sphere. 

 

In Figure 3.1, we can see particles that look like spheres, but are actually point sprites mapped 

with a 2D texture to look like spheres. 

3.2.2 Transparency 

The snow particles that we see in reality are translucent white particles. These semi-transparent 

particles interact with light hitting them, often resulting in a scattering of the light at the point 

where it impacts the particle. We model our snow particles transparently to allow blending of 

different snow particles. We model the transparency of snow based on the Gaussian function 

which is of the form: 

 

 
 

The graph of a Gaussian is a symmetric bell-curve (see Figure 3.2) which peaks at the center and 

gradually falls off as we move away from the center. We use this function to give the snow 

opacity at the center with increasing transparency as a function of distance from the center of the 

snow particle. 
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Figure 3.2: Gaussian Function Curves different values of a, b and c. 

 

 

Figure 3.3: Transparency using the Gaussian Function. 

 

The above figure shows transparent snow particles with the Gaussian function applied to them. 

They are opaque at the center and become transparent as you go away from the center. We use 

the two dimensional Gaussian function which is given by, 

 

 
 

Here the coefficient A is the amplitude, xo,yo is the center and cx, cy are the x and y spreads of the 

Gaussian. 

 

The color of a particle is given in the RGBA format where R specifies the red component, G 

decides the green component, B indicates the blue component, and A is the alpha value which 
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defines the transparency. Hence, as explained earlier, we are calculating the alpha values for 
each particle using the Gaussian function. 

3.2.3 Dynamic Lights 
We use dynamic lights in our environment.  These lights represent the lights on the back of the 
snowplow and can be turned on or off during the simulation.  To facilitate use with our snow 
system, the light state is stored in a texture. We can have many lights active in the environment, 
each light is defined by the following parameters: 
 

1. Data – It is a vector of 4 floating point values. 
  Light Exists – Specifies whether a light source exists 
  Is Light On – Specifies whether the light source is on or off 
  Type – Point, Spot, or Directional Light 
  Flashing – Specifies whether the light is flashing or not flashing 
  For Example:  Flashing lights on a snowplow 
2. Position – Position of the light source (4 valued vector)  
3. Intensity – Color of the light source (RGBA format) 
4. Direction – Direction of light source which is a vector of 4 values is required for light 

calculations 
5. Spot Light Parameters – Specifies the spotlight parameters if the light source is of type, 

spotlight. It is a vector of 4 floating point values. 
 
An example of a texture with light sources can be seen in the following figure. In Figure 3.4, we 
have a texture of size 4 X 5, with each cell representing a vector of 4 floating point values. We 
have 4 rows representing 4 light sources, and for each row (light source) we have 5 columns 
specifying the light source parameters. 
 

Data1 Position1 Intensity1 Direction1 Spotlight 
Parameters1 

Data2 Position2 Intensity2 Direction2 Spotlight 
Parameters2 

Data3 Position3 Intensity3 Direction3 Spotlight 
Parameters3 

Data4 Position4 Intensity4 Direction4 Spotlight 
Parameters4 

Figure 3.4: A texture of size 4 X 5 where each row represents a light source and individual 
columns represent the light source parameters. 

 
The texture is loaded into memory and is accessible by our snow rendering shader programs. The 
lights get updated every time there is a change in the light state. For example, the texture gets 
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updated for flashing lights (on/off status) and for brake lights (brake applied / not applied). Every 

time we want to calculate the color of a particle, we read the light source texture and get all the 

active light sources and then do the required calculations for determining the color. 
 
For every snow particle do 

{ 

 Read the light source texture 

 Get the active light sources 

 For every active light source 

 { 

Compute the intensity of the light source 

Calculate scattering by Henyey-Greenstein phase function 

  color = color + (phase * intensity + ambient color) 

} 

Calculate the alpha value of color by the Gaussian function 

}   

3.2.4 Scattering 

For scattering of light through the snow particles we could require tracing the path of light 

through every snow particle using ray tracing. As explained earlier, ray tracing is 

computationally expensive and cannot be used in interactive environments. Hence we use an 

approximation to scattering given by the Henyey-Greenstein Phase function. The Henyey-

Greenstein phase function is used to characterize the angular distribution of scattered light and is 

characterized by the average cosine of the scattering angle, g. In this phase function, a single 

parameter g, which is also called the asymmetry parameter, controls the distribution of scattered 

light. 

 

 
 

The values of g must be in the range (1, -1) with negative values corresponding to back 

scattering and positive values corresponding to forward scattering.  In back scattering, light is 

scattered back in the direction of incident light. For example, the light scattered by the headlights 

of your car would be back scattering and the light scattered by the tail lights of the vehicle in 

front of you would be forward scattering. 
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Figure 3.5: Plot of Henyey-Greenstein phase function for g =- 0.67. 

 

 
Figure 3.6: Plot of Henyey-Greenstein phase function for g = 0.67. 

 
In the plots for the Henyey-Greenstein phase function, the curve in Figure 3.5 denotes back 
scattering (g = -0.67) and curve in Figure 3.6 denotes forward scattering (g = 0.67).  
 
Hence for every snow particle, we do the following: 
 
{ 
 Calculate the vector from the eye to the snow particle 
 For every active light source do  

{ 
Calculate the vector from light source to the particle 

  Calculate cosine of the angle between the two vectors (dot 
           Set g for back or forward scattering 
  Calculate the phase by Henyey-Greenstein function 
  Calculate the color as: 
   color = color + (phase * intensity + ambient color) 
  Sum the colors calculated for each light source 
 }  
} 



13 

  
Figure 3.7: Color screen captures from the current snow rendering system.  One million particles 
were released into each scene.  The right image shows direct use of the phase function in which a 

streetlight illuminates particles as they pass by the viewer. 

We are using the Henyey-Greenstein phase function to compute the scattering for each light 
source on the particles in the scene.  That is, we can calculate scattering of light for the snow 
particles between the viewer and the snowplow.  These include the lights from the following 
vehicle’s headlights, the lights on the rear of the snowplow, and more importantly, the 
stroboscopic lights mounted on the top of the snowplow.  Mimicking the stroboscopic lights is 
somewhat possible because our approach is dynamic and the lighting calculation is computed on 
a per-particle basis.  The stroboscopic lights will be implemented as light sources of varying 
intensity over very small time intervals.   While we may be able to roughly approximate the 
stroboscopic effect of a rapidly changing on/off sequence for the light, it is non-trivial to convey 
the brightness of the lights to a viewer on a LCD screen. Future efforts will investigate ways in 
which we can more effectively transmit the brightness of the snowplows lights to a viewer.  We 
expect that techniques like High-Dynamic Rendering (HDR) may be useful. 

The phase function is used in combination with an ambient light term and hardware-assisted 
transparency blending to simulate the accumulative effect of snow particles over distance on the 
rendered scene.  Sorting of snow particles from the back of the scene to the viewer is required to 
make the transparency consistent.  To achieve this, we have implemented GPU-based sorting 
techniques [16,17] to afford sorting of large numbers of particle positions and speed up particle 
rendering.   This is described in detail in Chapter 3. 

Figure 3.7 shows two images captured directly from our current software implementation.  Note 
that these images are still considered preliminary work as we are constantly modifying and 
improving the snow rendering system.  In these simulations, one million particles were released 
into the wind dispersion model. Snow particles were transported via the wind model between the 
buildings.  The right image shows a yellowish orange streetlight (the white cube) illuminating 
snow particles as they pass between the light and the viewer.  This is an example of the phase 
function described above.  In general, note the low luminance contrast that develops as a result of 
the snow particle interaction with the background elements (e.g. buildings and ground). 
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3.3 Sorting 
 
The snow particle positions are stored in 2D textures. A 2D texture is specified by its width and 
height. A 2D texture of size width X height can store width X height number of particle 
positions. Each particle position is a vector with 4 floating point values stored in a single cell of a 
texture. Each cell in the texture corresponds to a particle position.  
 

P1 

10 -4 2 1 
 

P2 

12 14 22 1 
 

P3 

1 -4 2 1 
 

P4 

10 14 -2 1 
 

P5 

0 -4 -2 1 
 

P6 

1 -4 2 1 
 

P7 

1 -4 22 1 
 

P8 

10 -4 32 1 
 

P9 

10 4 2 1 
 

P10 

10 24 2 1 
 

P11 

10 -4 12 1 
 

P12 

10 -4 -8 1 
 

P13 

-1 4 2 1 
 

P14 

1 -4 -3 1 
 

P15 

0 -4 -6 1 
 

P16 

10 -4 -9 1 
 

Figure 3.8: Texture of size 4 X 4 storing positions of 16 particles. 
 
In the above figure (Figure 3.8), we can see a 4 X 4 2D texture containing 16 particles with each 
cell storing the position of the corresponding particle. The particles are rendered to the screen as 
they are read from the texture. Ideally the objects farthest from the eye should be rendered first 
and then the next nearer ones. This is important in our case as we are rendering translucent snow 
particles in our environment.  For example, when you draw a transparent object, all the objects 
behind it should be rendered first so that you can see the objects behind through the transparent 
object.  But in OpenGL, the objects are drawn in a sequence which is provided by the user in his 
code. If the user does not take care of sorting the transparent objects from the viewer position 
(eye) we will have artifacts in the scene in which a transparent object covers another object 
behind it. Hence we require a sorting mechanism which will sort the particles before rendering 
them to the screen. In this section, we will go through the sorting mechanisms used, quick sort 
and the GPU sort. 

3.3.1 Quick Sort 
We use the quick sort algorithm to sort particles every time, before rendering them to the screen. 
The sorting is done on the CPU using the Quick Sort API. When we want to draw the particles 
on the screen, their positions are stored in the vertex buffer on the GPU. Hence, we first map the 
particle positions from the vertex buffer to CPU memory, sort them and then unmap the vertex 
buffer for rendering. This is a very slow process, since for every frame, we have to map the GPU 
memory to the CPU memory for sorting.  Hence, we use quick sort only for purpose of 
comparison with GPU sort. 
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Quick Sort 
{ 

Map vertex buffer of particle positions to CPU memory 
Sort the particles based on particle’s distance from the eye 
Unmap the vertex buffer from CPU memory 

} 

3.3.2 GPU Sort 
The purpose of using the GPU parallelism for rendering the particles gets defeated if we use the 
CPU to sort the particles every frame. The GPU has to sit idle every time we send the particles to 
the CPU to sort. Instead, if we sort the particles on the GPU itself, we can use the inherent 
parallelism that comes with a GPU and also get rid of the CPU-GPU communication. Sorting on 
the GPU has been proven to be much faster than using the best sorting algorithms on the CPU. 
But most sorting algorithms such as quick sort cannot be implemented on the GPU, as it cannot 
write to arbitrary memory locations. The GPU does not support this functionality to avoid write 
after read operations by different stream processors when accessing the same memory location. 
A GPU sort algorithm has been implemented [17], which uses texture mapping to implement a 
bitonic sort algorithm. I have modified their algorithm to suit the requirements of our system. 

3.3.2.1 Bitonic Sort 
The bitonic sort takes a bitonic sequence as its input which is a sequence which has at most one 
local minimum or maximum.  
 

Examples: 1,2,3,4,5,6,7,8       2,5,8,10,7,4,3,1  9,8,5,3,6,10,11,12 
 
When you break a bitonic sequence at the minimum or maximum you get two sorted sequences, 
one ascending and the other descending. In the second set above, the maximum is 10 and 
splitting the sequence at 10 gives us 2,5,8,10 and 7,4,3,1 which are sequences in ascending and 
descending order respectively. In the third example, the minimum is 3 and splitting the sequence 
at 3 gives us 9, 8, 5, 3 and 6, 10, 11, 12 which are sequences in descending and ascending order 
respectively. 
 
Bitonic sort operates by splitting the bitonic sequence into 2 equal halves (binary split), and then 
compares the two halves and switches the necessary elements. This process is repeated 
recursively until it will have just a single element in a sequence. In the end all the elements are 
combined to give a sorted sequence. 
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Figure 3.9: Process of bitonic sort. 

Figure 3.9 illustrates a bitonic sort network on 8 data values. Each arrow between two elements 
indicates comparison between the two values. The maximum of the two is stored in the location 
pointed by the arrow head and the minimum is stored in the other location.  We use textures to 
store the distances which need to be sorted. In every pass we apply a shader to the texture, which 
does the operations on the data in the texture for the given pass. We first get a bitonic sequence 
as shown in the above figure and then we apply bitonic sort to the texture to get the sorted 
values. 
 
For example, consider the following unsorted sequence shown in Figure 3.10. In purple shaded 
cells, we compare whether first < second and in brown shaded cells we compare first > second. 
We get a bitonic sequence after the first three passes after which we are ready to apply bitonic 
sort to the sequence. We split the bitonic sequence into 2 halves and compare the elements in the 
two halves. After the bitonic sequence is generated we always compare for first < second. In 
every pass we divide the bitonic sequence further into two halves and compare the values and 
swap if necessary till we get 1 value sequences or until the bitonic sequence cannot be further 
subdivided. 
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  Unsorted Sequence 12 8 14 6 15 10 9 13   

             

  Pass 1 12 8 14 6 15 10 9 13   

             

  Result 8 12 14 6 10 15 13 9   

             

  Pass 2 8 12 14 6 10 15 13 9   

             

  Result 8 6 14 12 13 15 10 9   

             

  Pass 3 8 6 14 12 13 15 10 9   

             

  Bitonic Sequence 6 8 12 14 15 13 10 9   

             

  Pass 4 6 8 12 14 15 13 10 9   

             

  Result 6 8 10 9 15 13 12 14   

             

  Pass 5 6 8 10 9 15 13 12 14   

             

  Result 6 8 10 9 12 13 15 14   

             

  Pass 6 6 8 10 9 12 13 15 14   

             

  Sorted Sequence 6 8 9 10 12 13 14 15   

                      

Figure 3.10: Example of bitonic sort. 
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3.3.2.2 Sorting Snow Particles 

We pass a texture with the values to be sorted to the GPU sort and it returns a texture with sorted 

values. Internally, the sort uses two textures to perform the comparison and swapping operations. 

Now let us see how we need to modify this sort to suit our particle system.  

 

The particles are stored in a 2-D texture which hold the position of every particle as a 4-D vector 

containing values <x,y,z,w> . We specify the number of particles in the system by the width and 

height of a texture. For example, a texture of width 1024 and height 1024 will contain 

1024*1024 = 1 million particle positions. The actual size of the texture is width*height*4 as 

each particle is a vector with 4 values. 

 

We then calculate the distance of each particle from the eye using the Euclidean distance which 

is given by, 

 

 
 

where  D(x,y) is the Euclidean distance between 2 points and d is the  number of dimensions. 

These distance values are stored in another texture which is of the same size as the positions’ 

texture. For example, when we calculate distance d of particle p from the eye then the value in 

texture for particle p would be <d,d,d,d>. This is because the fragment processor requires the 

memory to be of the same size to read from and to write to. Hence the position and distance 

textures have to be of the same size. Once we have the texture for distances ready, we must 

reduce the size of the texture from width*height*4 to width*height so that we have only one 

distance value corresponding to each particle.  After reduction, we have a new texture of size 

width*height corresponding to the number of particles. 

 

Now, what we have are the distances of the particles from the viewer and we need to index these 

distances so that we can keep track of the corresponding particles. So we create a new texture of 

size width*height which will hold the indices of the particles. Then we send these two textures 

(distance & indices) to GPU sort, which is modified to sort the distance texture and 

simultaneously change the values in the indices texture. After sorting, we get the sorted indices 

which are used to render the particles to the screen. 
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 Indices    Distances  
GPU 
Sort  

Sorted 
Indices 

1 2 3 4  25 38 33 28  1 14 9 4 

5 6 7 8 + 40 32 27 36 = 16 8 3 12 

9 10 11 12  37 34 26 31  13 10 2 7 

13 14 15 16  29 35 39 30  5 11 15 6 

Figure 3.11: We pass the two textures, indices and distances, for sorting and get the sorted 
indices of the particles. 

 
The original GPU sort code uses fragment programs written in assembly which communicate 
with the GPU at a very low level. We use fragment shaders written in GLSL (OpenGL Shading 
Language) instead, which are translations of the assembly code. 
 
For example: Assembly to shader conversion 
 
TEX R1, fragment.texcoord [0], texture [2], RECT;         
-> R1 = vec4(texture2DRect(tex2,gl_TexCoord[0])); 
ADD R4, R0, -R1;               
 ->             R4   =                  R0 - R1; 
 
Even after sorting the particles on the GPU, the simulation is much faster than quick sort but is 
still slow for a real environment. The GPU sort is very fast for a small number of particles but 
becomes slow as the number of particles increases. For example, the time taken to render a frame 
with one million particles is more than the 0.01 seconds that is necessary for an interactive 
environment.   However, as graphics card speeds increase over time, this somewhat interactively 
slow time will be feasible for real-time environments.  Moreover, we can decrease the number of 
snow particles in the system and achieve real-time rates with this method. 
 
In addition to GPUSort, we also investigated another technique in which we sort the particles 
over a number of passes. But this approach is restricted as the particles are moving and hence we 
cannot have a large number of passes to sort the particles in a particular position. On the other 
hand, using a few passes gives us artifacts, which are easily noticeable to the human eye. To 
alleviate these concerns, we have also investigated the use of additive blending which is 
explained in the next section. Additive blending is an alternative approach to sorting, but in 
future we will require sorting of particles for effects like shadowing for example. 

3.4 Blending 
As mentioned in the earlier section, we use additive blending as an alternative to sorting. 
Blending is a technique in which the alpha value is used to combine the color value of a fragment 
with the color of a pixel already stored in the framebuffer. Without blending, a new fragment 
will overwrite any existing color values in the framebuffer. This is a technique used for 
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transparent/translucent objects which allow us to see the objects behind them. We use additive 
blending for our snow particles, which gives us the desired effect with the snow particles. It 
gives a good mixture of the translucent snow particles without any artifacts. 

 
Figure 3.12: Snow particles blended using additive blending. 

In the Figure 3.12, we can see a uniform cloud of snow which is developed by additive blend. 
The transparent particles nicely mix with the other particles giving a nice snowing effect.  

3.5 Snow Plow Model 
A 3-D snowplow model has been created for use in experiments to validate the snow rendering 
system and further explore the perceptual effects that result from driving in foggy or snowing 
conditions.  The snowplow model has been created with Autodesk’s 3DS Max modeling 
software.  Rick Shomion supplied photographs of MN/DOT snowplows and Craig Shankwitz 
provided information relating to snowplow scale.  We continue to improve the snowplow model 
by (1) optimizing the polygons from which it is constructed, (2) applying suitable material 
properties for proper illumination, (3) designing a modular back-end so that the rear-end lighting 
configuration and paint color can be swappable, and (4) outfitting the model so that tires rotate 
and turn based on the vehicle’s motion.   It may be necessary to take additional pictures of 
MN/DOT snowplows to refine the images used to texture the model. Two images of the 3D 
snowplow model are shown in Figure 3.13. 
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Figure 3.13: 3D Snowplow model.  The left panel shows a rendered view of our 3D snowplow 

model.  The wireframe view (right panel) shows the polygons that make up the snowplow model.  
The current model is a low-polygon model for use in real-time environments. 

Our methodology for simulating snow in a real-time environment is based on rendering large 
numbers of dynamic snow particles. The motion of the snow particles is generated by utilizing a 
particle dispersion model to move the particles with regard to a mean and fluctuating wind 
component. However, in the current system, only the wind surround the plow vehicle is 
simulated.  No other structures, such as roadside trees or other leading or following vehicles is 
incorporated. Those effects could be considered for future works. Alternative wind fields can be 
created (such as cross-winds) and loaded into this system.  We also model how particles reflect 
off of rigid, urban structures, such as buildings or a rough approximation to the snowplow.   

The lighting, and hence color, of each snow particle is calculated individually. This affords more 
precise lighting calculations that interact with the dynamic lights in the scene (such as from the 
snowplow).  The result is particles that are lit by temporal and spatial components of the 
environment.  While we have not focused on either specific daytime or nighttime conditions in 
FY 2008, it is likely that our system could handle both situations, at least from a particle lighting 
computation.  For both daytime and nighttime rendering, we will need to consider the effects of 
snow particles at greater distances to achieve the correct dampening/reduction of light across 
distances. 



22 

 



23 

Chapter 4. Results, Conclusions, and Recommendations 

We have used a 2.4 GHz Intel Core 2 Duo Processor with an NVIDIA GeForce 8800 GTS 
graphics card for testing our system. In the next section we will compare how the sorting with 
the GPU is better than sorting on the CPU and show results of how our scene look with the new 
improved snow model. 

4.1 Quick Sort vs. GPU Sort 

The following results show the benefit of sorting the snow particles on the GPU. By sorting on 
the GPU we get a huge performance gain which allows us to do other complex computations 
such as scattering and HDR rendering. Our aim was to render a frame in 0.01 seconds which is 
not possible using CPU sort. 

Table 4.1: Experimental values for sorting on a CPU and a GPU done on a 2.4 GHz Intel Core 2 
Duo Processor with an NVIDIA GeForce 8800 GTS graphics card. 

No of Particles Quick Sort (CPU) 
 in seconds 

GPU Sort  
in seconds 
(with passes) 

GPU Sort  
in seconds 
(without passes) 

15K 0.017 0.000168 0.002295 
65K 0.072 0.000237 0.003283 
250K 0.335 0.000296 0.004891 
500K 0.741 0.000562 0.008573 
1M 1.533 0.000745 0.012487 
2M 3.35 0.000968 0.017319 

 

There is a huge difference in the timings for CPU sort and GPU sort as we are sorting the 
particles in parallel on the GPU. The following two graphs show the comparison between the 
two sorts. 
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Figure 4.1: Comparison between quick sort (CPU) and GPU sort (GPU). 

 

 
Figure 4.2: Graph showing curve for GPU sort (with passes vs w/o passes). 

Figure 4.1 shows the graphical comparison between the two sorts. Figure 4.2 shows the 
comparison between GPU sort with passes and GPU sort without passes. As we can see, GPU 
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sort without passes takes more than 0.01 seconds for 1 million particles which is slow. Hence we 
needed a different approach such as sorting over multiple passes to reduce the times. 

The following are three snapshots taken from our system which show the sorted, unsorted and 
blended (additive blend) particles. 

 

 
Figure 4.3: Unsorted snow particles with artifacts. 

 

 
Figure 4.4: Sorted particles using GPU sort. 
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Figure 4.5: Snow particles using additive blend. 

 
As we can see from the above figures, there is not much difference between the images for 
sorting and additive blend. Hence we are currently using additive blend in our snow system for 
development.  However, we can switch on the GPU sort for complete sorting of particles in the 
environment as needed. 

4.2 Conclusions 
The bulk of our efforts over the last year have been to develop a software architecture for 
rendering blowing snow in a real-time virtual environment.  Our system utilizes commodity 
graphics hardware (video game cards) and performs a simplified wind simulation on the graphics 
hardware as well.  Snow particles move with respect to a mean wind field and interact with 
buildings and other structures (like snowplows).  Snow particles are illuminated using a per-
snow-particle rendering so that the effect of the snowplow truck’s rear lighting configuration can 
influence each particle.  Our system runs at real-time, interactive rates (60Hz screen refreshes) 
with around one million snow particles.  We expect to increase this number and be able to 
consistently render our snow field in a driving simulation framework using 60Hz screen refresh 
rates. 

We are currently setting up pilot experiments that use the snowplow model and a simple 3D 
driving simulation environment [18,19] to replicate studies by Yonas et al. [1,2] as well as 
Snowden et al. [3].  The results from these studies will be used to design our experiments 
planned for future work on this project.  We will investigate how lighting configuration and 
snowplow color affect perception when following a snowplow.  Work-study students in Dr. 
Yonas’ lab are being hired to acquire Institutional Review Board (IRB) approval for the 
experiments, prototype experimental design, and help with running the upcoming experiments. 
We are currently beginning to conduct the first round of experiments. 
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As such, we are unable to make any recommendations for alternative snowplow lighting 
configurations.  However, the snow rendering system is showing great potential and we fully 
expect to integrate it with our driving simulation environment.  Our efforts over the next year 
will improve the snow rendering system and begin to provide information on alternative lighting 
configurations that may help reduce collisions with the back ends of snowplows. 
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