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PREFACE

In 1973, Congress passed the Regional Railroad Reorganization Act which
became law on January 2, 1974. This complex piece of legislation dealing
with passenger as well as freight operations called for the Department of
Transportation (DOT) to implement improved passenger rail service in the
Northeast Corridor (NEC) as recommended in the 1971 Northeast Corridor
Report. Planning for the improved service included engineering studies,
demand projections, and financial analysis. This study uses the demand
projections to compute fleet requirements for the Corridor. The results
contained in the base runs do not represent official or final estimates
of fleet size, train schedules, and fleet management but are illustrative
examples based upon assumptions stated in the text.

The work described herein was performed for the Transportation Systems
Center under contract no. DOT-TSC-1179 with the National Bureau of Economic
Research. The contract was carried out by Robert Fourer at NBER's Computer
Research Center for Economics and Management Science. Judith Gertler and
Howard Simkowitz of TSC developed the demand-projection procedures and
provided general guidance for the project. The PL/I routines for simulating
annual patronage were written by John Prokopy and Diane Ruina of Peat, Marwick,
Mitchell, and Co.

The author wishes to thank William Northup and Michael Harrison of NBER
for their occasional technical assistance, and Karen Glennon for her patience
in typing the manuscript.

Prospective users of the programs documented in Volume IT should contact

the author, care of NBER, or Howard Simkowitz at the Transportation Systems

Center.
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PART A

A GENERAL NETWORK MODEL
FOR RATLROAD PASSENGER-CAR ALLOCATION

The study described in this report began as an attempt to determine the
minimun number of passenger cars required to serve the Northeast Corridor.
The desired analyses of rail service require a mathematical model of
passenger-car movements, and techniques for applying that model to produce
usable data. This study employs an optimization model that has a network
form, and that is amenable to linear-programming methods. A description
and analysis of this model constitutes the first part of this report.
An initial statement of the problem constraints is given in §1.
These constraints are subsequently modeled in network and linear-programming
forms, and are augmented to represent several extensions of the problem.
Objective functions for the model are the topic of §2. Several linear
objectives proportional to costs are proposed, and techniques for optimiz-
ing more than one objective are developed.
The contents of §1 and 82, though general and theoretical, are the
basis for the Northeast Corridor analyses in Part B of this report.
Readers interested primarily in the applications should find it sufficient

to skim Part A.
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§1 FORMULATION OF THE MODEL

§1.1

Fundamentally, the aim of this study is to allocate passenger cars in a
railroad system. This section specifies the nature of such a system and
the requirements that must be met by any feasible allocation of cars.

An informal statement of the problem occupies §1.1. The constraints
are then formulated more precisely, first as a transshipment network
(§51.2-1.3), then as a linear program (§1.4) to which the simplex method
may be applied.

The remainder of the section is concerned with extensions of the
original problem, to model corridor service with turnaround delays (§1.5),

upper limits on train sizes (§1.6), and locomotive requirements (§1.7).

Statement of the constraints

A uniform fleet of passenger cars provides railroad service to a set of

cities. Service is offered by means of a set of scheduled "trains",

each comprising one or more cars and running between a given pair of

cities. At any given time, each car in the fleet is either part of some

currently running train, or is sitting in storage at one of the cities.
Two requirements constrain the size and depolyment of the fleet:

a fixed schedule, and known demands for scheduled trains.

Fixed schedule. The schedule lists all trains that depart in a

chosen schedule-period (a day, for example). During the schedule-period,
every scheduled train must be run, carrying one or more cars.

Tt is assumed that each schedule-period is followed immediately by
another identical schedule-period. The same service is to be provided
in every schedule-period: that is, the same schedule must be run, with

the same allocation of cars to cities and trains.



Figure 1-1. Schedule and demands for a simple
2~c1ty instance of the car-allocation
problem. The schedule-period is a day.
Note that the last train from B leaves
at 23:00 each day and arrives at 2:00
the next day.

CITY A to CITY B

Cars required

Leave A Arrive B Demand (75 pass./car)
10:00 13:00 398 6
12:00 15:00 177 3
16:00 19:00 259 4
18:00 21:00 557 7
21:00 24:00 121 2

CITY B to CITY A

Cars required

Leave B Arrive A Demand (75 pass./car)
9:00 12:00 209 3
11:00 14:00 280 4
15:00 18:00 373 5
19:00 22:00 421 6
23:00 2:00 90 2



§1.2

Each entry in the schedule specifies a city of departure and a city
of arrival, and corresponding departure and arrival times. In general,

a train may arrive during the schedule-period (e.g., day) of departure,
or during any subsequent period. For simplicity, however, we assume

here that every train arrives either in the same period, or at an earlier
time in the next period. (If the schedule-period is a day, this just
says that a train arrives either the same day that it leaves, or the next
day; and that every trip lasts less than 24 hours.)

A car that arrives at city ¢ at time t is free to leave ¢ in any
scheduled train that departs at t or later. Stopover delays at the
arrival city -- to discharge and board passengers, for example -- are
considered part of a train's trip and are reflected by adjusting the

arrival time in the schedule accordingly.

Demands. For each scheduled train there is a known demand which
must be met; hence there is a minimum number of cars required in each
train. A train may be larger than its minimum size, however, if circum-
stances require that extra (deadhead) cars be shifted from one city to

another.

Figure 1-1 shows a schedule and demands for a simple 2-city instance
of this problem. Total demand from A to B requires 22 cars, while only
20 cars are required fram B to A; consequently, in any feasible solution
at least 2 extra cars will have to be deadheaded from B to A so that

the stock of cars at A does not run out.

Formulation as a transshipment network

The train schedule is conveniently represented as a directed network whose
unit of flow is one car. Nodes of the network correspond to the potential
arrival or departure times at each city. Arcs represent the movement
or storage of cars over time.

More specifically, partition the schedule-period into T uniform inter-
vals beginning at times 0, 1, ..., t-1. (If the schedule-period is a day,
time t could be the beginning of the tth minute of the day.) Describe



each train in the schedule by a departure city ¢, a departure time
t e {0, ..., T-1}, an arrival city ¢', and an arrival time t' € {0, ..., T-1}.
Clearly the schedule may be made as precise as desired by choosing T
sufficiently large.

Define one node in the network for each time in each city. If there
are U4 cities and 1440 partitioning times, for example, the network has
4 « 1440 nodes.

Connect the nodes by arcs of two types, representing cars in storage

and cars in trains, respectively:

Storage arcs. For each city, run an arc from the node for each time
t to the node for the next time, (¢+1) mod T. The flow along such an arc
represents cars held in storage at the city during the interval that
begins at time t. (The last time, 7-1, is connected to the first time,
0, since the last interval of the present schedule-period is followed

immediately by the first interval of the next period.)

Train arcs. For each scheduled train, run an arc from the node
representing the city and time of departure to the node for the city and
time of arrival. Flow along this arc represents cars moving from one city

to another in the scheduled train.

Flow around the network is constrained by the nature of the problem,

in the following ways:

Conservation of flow. Since the fleet size is fixed, the number of

cars in storage during interval ¢ at a given city must equal the number
in storage in the interval immediately before, plus the number that
arrived at time t, less the number that departed at t. Equivalently,
the net flow at every node must be zero: the network is built entirely
of transshipment nodes.

Nonnegativity. All flows must be nonnegative. This amounts to
requiring that trains cannot move backwards in time.

Integrality. Since cars are indivisible units, all flows must be
integral.



Figure 1-2. A network equivalent of the sample
problem. The day is divided into
T = 24 intervale, so that there is
a node at each eity at each hour.

24:00

cITY A ~---—> < CITY §

6:00 18:00

12:00



§1.3

Satisfaction of demand. The flow on each train arc must be greater
than or equal to the number of cars needed to meet demand for the train.

Demand thus places a lower limit on each arc. These lower limits are
what force a positive flow around the network; they play the role of
sources and sinks in more conventional transshipment-network formulations.
(Indeed, an equivalent transshipment network without positive lower limits
is easily constructed. One adds an appropriate sink for each departure

at a node, and a source for each arrival.)

The network equivalent of Figure 1-1's example is shown in Figure 1-2.

Reducing the network

If no trains arrive at or depart city ¢ at time ¢, the node for ¢ at ¢

is connected to the rest of the network by only two storage arcs: an
incoming arc from the previocus time, and an outgoing arc to the follow-

ing time. The flows on these two arcs must be the same in order to satisfy
the conservation constraint. Consequently, one may remove the node and
replace the two arcs with one. Other flows in the network are as before,
and remain feasible if they were previously so; hence this transformation
leaves the set of feasible solutions essentially unchanged.

When all such "inactive" nodes are removed, there remains a net-
work of minimum size for the problem. Figure 1-3 shows a reduced network
of this sort, for the problem of Figures 1-1 and 1-2. When the number of
intervals T is quite large (the number of minutes in a day, for instance),
reducing the network to active nodes is imperative if the network is
to be kept to a manageable size. All cases run in the studies discussed
later in this report employed reduced networks.

It is possible to formulate the problem directly in terms of finite
sets of active nodes, one set for each city chosen from an interval of
time [0,7). To promote simplicity of notation, however, the results of

the following sections are expressed in terms of unreduced networks.



Figure 1-3. The reduced equivalent of the
network .

CITY A -—-—> 18:00

12:00



§1.4 Formulation as linear constraints

Any network of the sort we have outlined may be described by an equivalent
linear-programming model. To each arc of the network there corresponds a
structural variable, whose activity equals the arc's flow. Conservation
constraints on flows became linear equalities in the variables, while common
LP techniques implicitly guarantee nonnegativity, integrality, and satis-
faction of demand at every feasible basic solution.

To express the LP formally, define the following sets:

c the set of cities

7 ={0, .o., T-1} the set of intervals into which the
schedule-period is divided

Sc{le,tye'st) e CxTxCxT|ec#e'l

the schedule: each element represents
a train that leaves city ¢ at time ¢
and arrives at city o' at t'
Represent the demands by
d ,[t,t'l >0 the smallest (integral) number of cars
= required to meet demand for train
(e,t,e'st') e S
Express the nodes of the network as:
Ac[t] forallceC, teT
The directed arcs representing storage of unused cars are then
Uc[t]: Ac[t] > Ac[(t+l) md 1] foralleecC, tel
The arcs representing movement of cars in trains are
xec,[t,t']: Ac[t] > Ac,[t'] for all (c,t,e',t') € S
Define an LP structural variable corresponding to each arc, and
representing the flow over the arc:

uc[t] flow over Uc[t], foralleeC,tel

xcc,[t,t'] flow over ch,[t,t'], for all (e,t.,e',t') € S

10



The constraints on network flow are expressed as follows:

Conservation of flow:

- ) x, [ti,t]
uc[(t 1) mod t] + (cl’tl’c’t) c g ee 1

=u [¢] + L xGGQEt,t2] foralleeC, t el
(c,t,cz,tz) €S

Satisfaction of demand:

xcc'[t,t'] 3dcc.[t,t'] for all (c,t,e',t') € §
Nonnegativity:

uc[t]go foralleeC, teT
Integrality:

uc[t] integral foralleeC, t €T

xcc,[t,t'] integral for all (e,t,c',t') € S

Nonnegativity of the x variables is insured by satisfaction of demand..

Given that all dcc.[t,t'] are integral, a fundamental property of trans-
shipment problems guarantees that every basic solution to the above LP is
an integral solution. Consequently, a feasible solution to the above
problem -- and hence a feasible allocation of cars to trains -- may be
determined directly by application of the (phase 1) simplex method. Given
any linear objective function, the simplex method will also find an optimal
feasible allocation.

Both satisfaction of demand and nonnegativity express simple lower
bounds on the variables. Constraints of this sort are easily handled
implicitly by the simplex method. Hence only the conservation-of-flow
equations need appear explicitly as rows in the LP.

11



§1.5 Corridor service and turnarcund delays

A "corridor" is a set of cities related by a directional ordering that is
complete, transitive, and irreflexive. In other words, the cities of a
corridor may be indexed C1s Cos a5 Cps such that ¢, is in the given
direction from s if and only if © > j. The Northeast Corridor is a
corridor in this sense, ordered by the relation "north of".

Every train in a corridor must run in the ordering direction, or in
the opposite direction. TFor convenience, these directions are here
called north and south; they could just as well be east and west, or clock-
wise and counterclockwise. Trains are thus labeled northbound or south-
bound, accordingly.

In our initial formulation, stopover delay at the arrival city is
implicit in the schedule and, therefore, it is the same for every car in
a train. Within a corridor, however, it is reasonable to specify that
the stopover delay for a car that changes direction is some number of
intervals greater than the delay for a car that continues in the same
direction along the corridor. Thus cars in a train from, say, Philadelphia
to New York may continue to move north, after a minimal stop, in a train
from New York to Boston; but cars in the Philadelphia-New York train
that are to be taken off and sent back to Philadelphia are delayed in
New York for a somewhat longer time. A similar "turnaround delay" is
encountered in resuming service after one end of the corridor (say, Boston)
is reached.

Turnaround delays cannot be modeled by simply adjusting the schedule
because, in general, some cars in a train may continue in the same direction,
while others are detached and turned around. A simple and feasible approach,
however, is to duplicate the original network, creating two separate but
similar parts: one for northbound trains, and one for southbound trains.
Ares connecting the two parts are added to represent cars being turned around.

Specifically, partition the schedule into two sets s and 5° of north-
bound and southbound trains, respectively. For the northbound trains,
construct a full network as before:

Ag[t] foralleeC, teT

(nodes representing potential arrival and
departure times of northbound trains)

12



Ug[t]: Ag[t] > Ag[(t+l) mod T] foralleeC, teT

(arcs representing unused northbound cars
in storage at each city and time)

ch.[t,t']: Ag[t] - Ag,[t'] for all (é,t,c',t') e 5N

(arcs representing cars moving in northbound trains)

In the same way, define a separate network for southbound trains:

Ai[t] forallee(C, tel
S S S
Uc[t]: Aé[t] -+ AG[(t+l) mod 1] foralleeC, tel
X [t,6']: AS[e] » AS,[¢1] for all (e,t,e',t') € 55
cc' bl . (6] c' IV 3

Represent the number of intervals required to change a car's direction by
§. Connect the northbound and southbound networks by two sets of arcs that
represent unused cars in storage that are being turned around:

WSr61: AlLeT > AL(+6) mod 1] foralleeC, tel

(arcs representing formerly northbound cars, in
storage at time ¢, that will be switched to run
south § intervals later)

UEN[t]: Az[t] - AS[(t+6) mod T] forallee¢C, tel

(arcs representing formerly southbound cars, in

storage at time ¢, that will be switched to run

north & intervals later)
The construction of these connecting arcs guarantees that northbound cars
reaching city ¢ at time t must wait at least § intervals before they can
be incorporated in a southbound train.

The constraints on this expanded network are analogous in every
respect to those on the original one: flow must be conserved at all
nodes, all flows must be nonnegative and integral, and demand must be
satisfied along the XN and S arcs. As before, the network has a trans-
shipment structure, and can be modeled by a linear program all of whose

basic solutions are integral.

13



§1.6

For practical purposes, one can apply the methods of this section
to the reduced network of §1.3, to produce separate reduced northbound
and southbound networks having a reduced set of comnecting arcs. (The
full network cannot, in general, be reduced directly without the loss
of some feasible solutions. However, under reasonable assumptions
about the objective function, one may be able to show that the eliminated
feasible solutions perform unneeded or uneconomical changes of direction,
and cannot be optimal. Some direct reduction of the network would then
be valid.)

The methods of this section are not fundamentally limited to the case
of a single, fixed turnaround delay. One could easily incorporate a
set of delays that vary with time, city, or direction, by making appro-
priate changes to the definitions of the NS ang USN arcs. Extensions
of these methods might also be applied to sets of cities that are not
corridors.

Upper limits on train sizes

The model developed so far insures only that each train is allocated
enough cars. One may also wish to specify that it is not allocated too
many. For example, the number of cars in a train could be limited to
twice the number needed to meet demand, to keep load factors at reasonable
levels. Stations' platform lengths might also dictate some absolute
bound on train sizes.

Upper limits are easily incorporated in the linear programs of §1.4 op
§1.5. Define

hcc,[t,t'] > dac.[t,t']
as the maximum feasible size of the train (e,t,e',t') € §. Then the
constraints on the x variables in the linear program are augmented to
dcc,[t,t'] s_xcc,[t,t'] 5hcc,[t,t']
for all (c,t,e',t') € S.

Upper limits of this sort do not destroy the model's transshipment
structure. Hence all basic solutions are still integral, and the simplex
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§1.7

method may be applied as before. Moreover, the augmented constraints
on the x variables are still simple bounds that can be handled implicitly
by the simplex method; the number of explicit rows in the LP is unchanged.

Modeling locomotive requirements

In general, the number of locomotives regquired to haul a scheduled train
depends on the number of cars assigned to the train. Since the number of
cars may vary between feasible solutions, so may the number of locomotives.

By judicious choice of upper limits hcc.[t,t'] (§1.6), however, one
may be able to restrict the size of each train (e,t,e',t') € § so that
its requirement for locomotives, e N c,[t,t'}, is fixed. Then the flow of
locomotives may be modeled in exactly the same way as the flow of cars.
One simply replaces car demands dcc,[t,t'] in §§1.1-1.5 by the locomotive
demands e,,:[¢,t']. Upper limits on the number of locomotives pulling
each train may also be imposed, in the manner of §1.6.

Any of the optimization techniques described in §2 may be applied
to the locomotive-demand case. Many of the results expressed in terms of
cars are also meaningful in terms of locomotives.

Application of these ideas to locomotive requirements in the Northeast
Corridor is described in §4.7.
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§2

§2.1

OBJECTIVE FUNCTIONS

A feasible set of car allocations for the problem formulated in §1 --

if such a set exists -- may be determined by application of the simplex
algorithm, phase 1. Given that a feasible allocation exists, the next

step is to seek an allocation that optimizes some functional in the x and u
variables. For purposes of this report we are concerned with functionals
of one particularly useful and tractable sort: linear objective functions
related to costs.

Minimizing cost is a natural objective for any planning model. Since
our network model, in particular, fixes the level of service and requires
that all demands be met, cost is the principal criterion of difference
between feasible allocations. In addition, certain classes of minimum-
cost solutions may be characterized in particularly revealing ways.

Linear functionals have a purely practical justification: they may
be minimized by straightforward application of the simplex method.
Fortunately, several reasonable measures of cost are proportional to linear
functionals, as shown in §2.1.

Approaches to minimizing more than one linear cost objective are
discussed in §2.2. The case of two objectives is developed in §§2.3-2.4,
and the results are applied in §2.5 to two objectives of particular interest.

For convenience of exposition, the schedule-period is hereafter taken
to be a day. A set of solution activities of the # and u variables is
written (x,u), and the value of a functional Z at the solution is Z(x,u).

Linear functionals representing costs

There is more than one sort of cost associated with railroad service, and
consequently one may devise a number of linear forms that are proportional

17



to cost of some sort. Three functionals of particular interest - associated
with capital, operating, and switching costs, respectively -- are formulated
as follows:

Capital cost. The daily cost of amortizing the passenger-car fleet,
here referred to as the "capital cost", may be considered proportional to
the number of cars in the fleet. Hence minimizing fleet size serves to
minimize capital cost.

The number of cars in the system is easily represented by a linear
form. Pick any time t¥%, 0 < ¢* < 1-1, and sum (a) the number of cars in
storage at each city in interval t*, and (b) the number of cars in each
train that is in transit during interval t*. This sum is the total rumber
of cars in the system at t*. For a feasible solution, this sum must be the

% - .
same at any t"* since cars may not enter or leave the system. For convenience,

take t" = T-1; then the capital-cost objective is a linear combination
= [r-1]1 + z & '[t’t']
2cAR céc Yo (e,t,c',t")es ¢

t' <t

The first sum covers all cars in storage during interval t-1. The latter
counts cars in only those trains which depart during one day and arrive
the next: these are exactly the trains that are in transit during the last
interval, t-1, of the day.

Operating cost. Costs proportional to the number of car-miles run

in a day, here called "operating costs", are another logical condidate for
minimization. Letting the distance from ¢ to e' be m,,vs total car-miles
per day is equal to the linear form

Z = ) m_ ,x [t,t']
i (c,t,e',t')es o @0

Note that at any feasible solution ZMTIE is also a sum of integral multiples
of the distances m, ,. Moreover, when the cities form a corridor (§1.5),

ZyTLE is a sum of integral multiples of the round-trip distances:

18



since conservation of the flow of cars requires that the number of cars
run north from e, to c; during a day is the same as the number run south

from e¢. to c..
J 7

ZyTiE is also closely related to load factor. Given fixed demands,
it is reasonable to try to maximize system load factor in order to minimize

the cost of providing service. By definition, system load factor is

7 = passenger-miles / day
LF seat-miles / day

_ (passenger-miles / day) / (seats / car)
N car-miles / day

Since both passenger-miles/day and seats/car are fixed by the problem, ZLI‘
is inversely proportional to car-miles/day = ZTLE Hence minimizing operat-

ing cost is equivalent to maximizing the system load factor.

Switching cost. For the corridor model of §1.5, one may postulate an

extra fixed "switching" cost incurred each time a car's direction is reversed.

The number of car-reversals in a day is counted by the following linear form:

NS SN
Z = yoow [el+ ] u [¢]
TURN e, ter © ceC, tel ©

The first term sums all northbound cars turned south, and the second all

southbound cars turned north.

§2.2 Combining measures of cost

T+ was shown in §2.1 that there are several reasonable "costs" that are
proportional to linear functionals in the u and x variables. As a consequence,
no solution that merely minimizes one of these functionals is entirely satis-
factory. For example, an allocation that minimizes the number of cars (capital
cost) may nonetheless employ them inefficiently, running them more than the
minimum car-miles/day (operating cost).

Some means is needed, therefore, of optimizing with respect to more than
one cost objective. Two methods suggest themselves: combining objectives so
that they are minimized simultaneously, and ordering objectives so that they

may be minimized successively.
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Combining objectives. Any # objective functions Zl’ Zz, cees Zn can be

combined by choosing factors py, pys «+e5 P, > 0, and minimizing the linear
combination
Z2=pyp2rpp iyt tp, 2,

Minimizing Z tends to minimize each of the Zi‘ The value of Zi at min Z is,
however, generally greater than min Zi; the extent of the discrepancy depends

on the size of p; with respect to the other factors.

7 has a natural interpretation when there is some cost proportional to
each 7. let p, be the constant of proportionality, so that p; Z; is the
cost (in dollars, say) corresponding to any given level of Z; (If Zy is
car-miles/day, for example, p; could be operating expense in dollars/car-mile.)
7 is thus a "total variable cost" for the system, and minimizing Z can be
seen as minimizing total cost.

The difficulty with this approach lies in determining true values for
the constants p,. Even small changes to the p; can produce significant
differences in the solution to min Z; yet, especially when a hypothetical
system is being modeled, costs are often poorly known and the p, can be
determined only to within a wide tolerance. Hence it is necessary to treat
the p, as somewhat variable, and to find solutions for ranges of their values.
(An efficient and exhaustive way of doing this when total cost is the sum

of two costs is described in the following section.)

Ordering objectives. Another approach is to rank the objectives, minimizing

Z; subject t0 215 +vvs Z; g being fixed at their previously attained values.
One first computes min Zl’ the absolute minimum value of Zl; then min Z2|Z1,
the minimm value of Z, given Z; = min Z,; then min 2,412,z , the minimm
value of Z3 given 22 = min Z2|Zl and.Z1 = min Zlg and so forth. In general,
min zilzi_ll...lzl is greater than the absolute min Z,, and the discrepancy
tends to become greater as i does.

A solution to min Z2|Z1 is found, in effect, by adding a new equality
constraint (Zl = min Zl)' The original problem's pure transshipment structure
is thus violated. Nevertheless, and optimal integral solution is guaranteed

by the following Proposition.
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§2.

Proposition 1. TFor any linear forms Zl(x,u) and Zz(x,u) there is an

integral basic solution to min Z,[Z;.

Proof: The transshipment structure of the original problem guarantees
that there is a finite set of integral basic solutions to min 2,:

ofs
"

& FR
(xl,ul), . (xn,un)

A standard result of linear programming asserts that any solution (x*,u®) at which

Zl = min Zl is a convex combination of these basic solutions:

(z®,u®) =} A (), } V!

Hence min 22|21 is necessarily the minimum of z, over all solutions (x*,u*)

having this form. However, the linearity of Z, insures that for any (™ ,u™)
% o) = %o, % FIRYES
2y (atu®) =] A, B (@ ul) 2 2, (e ,uf)

for some k. Thus min Z2|Zl must occur at some basic solution to the original

problem, and this is the integral solution desired.

This proof is easily extended to show that min znlzn_ll...|zl has an
integral basic solution for any #.

Sequential optimization has the advantage of requiring only a preferential
ordering of costs, rather than a full determination of their relative sizes.
Tt is disadvantagecus primarily in being less general than the "total cost"
approach above. (The two approaches are closely related, however, as shown in
§2.4.)

The case of two objective functions

When attention is restricted to two cost objectives, the set of all possible
optimal allocations can be described in a simple way. Moreover, the repre-
sentative optima are easily found by use of an algorithm for parametric
programming on the objective.

Denote the two objectives by Y and Z, and their respective expenses per
unit by py and p,. A total cost determined by Y. and Z is thus py ¥ *p, Z.

The minimun total cost is:

min [p, ¥ + p, Z] Py min [Y + (pZ/pY) z]

py min [Y + p2Z]
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where p = pz/pY is the ratio of expenses per unit. Hence the minimum total
cost is determined entirely by the choice of p.
The set of all solutions that can minimize total cost, given some

choice of p, is characterized in the following Propositions:
Proposition 2. If (2%,u*) minimizes Y + pZ, p > 0, then
rR={k > o] (2*,u*) minimizes ¥ + kZ} satisfies one of

(i) R = {p}
(i1) R

[r,e] for some r < p <8, 0 <P<g<w
Proof: Suppose that (x*,u®) minimizes both Y + plz and Y + pQZ,
Py < Pye Then, for any p satisfying Py £ P S Py (x*,u®) also minimizes

the convex corbination

Py =P P -0
2 (Y+plZ)+ a

N —= (Y +p,2) =Y + pZ
Py = Py Py= Py 2

Hence if R # {p}, it must be an interval from some » < Py to some s 2 Pos

r # 8. Continuity of the problem guarantees that the interval is closed.

Proposition 3. Let

B

R

{k > 0 | (23,u]) minimizes ¥ + k2} # ¢

{k >0 | (x2u) minimizes ¥ + kz2} # ¢

2 2

Then exactly one of the following is true:

&D) Rln R2 = ¢

(ii) Rl N R,

{p}s p 20

(1ii) Ry = Ry = [r,s], 0 <r <sg <o

Proof: Suppose neither (i) nor (ii) holds. Ry N R, thus contains more
than one point, and consequently both Ry and R, contain more than cne point.

Hence by Proposition 2

R [r

1 1874 Lrycsg s
R, = [r2,32] 0<r, <e, <
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Let Py and 05 be distinct points in BlfW R2.
minimize both ¥ + plZ and ¥ + p2Z; that is:

Then both (x ,u *) and (x;,ué)

%

Y(xl,u ) + plZ(xl,ul) = 7(x? ,u2) + oy Z(m2,u2)
%% — E S FO
Y(xl,u ') + QQZ(xl,ul) = Y(x2,u2) + Py Z(x2,u2)

Subtracting the second equation from the first yields:

(py - py) 2y ud) = oy = 0,) Z(whup)
Since Py = Py £ 0, Z(xl,ui) = Z(x ,u ), and consequently also Y(xl,u V] = Y(x u?).
Hence any objective of the form Y + kZ minimized by (xl,u ) is also mlnlmlzed
by (x2,u Yy, and vice versaj; that is Ry = R, = [r,8] as required by (iii).

Proposition 4. Let Y and % be objectives for which min Y and min Z are

finite. For any (x¥*,u®), define:
Rax == 1{k>0| («*,u®) minimizes ¥ + kz}
BE” g =
Then:
(a) There is a unique sequence

0= pgs Pys cves Py_95 0 = n> 130, 0 <P TI L, eeey

and there is a corresponding set of distinct basic solutions

(xj,uz) =1, oy
such that

R, ‘,.:[ N -] 7::1 PR n

-xi,uz Pr-1°P% ’ ’

(b) For any solution (z®,u*), exactly one of the following holds:

(1) Rxa': ,u=’: = ¢
(ii) Rx*,u* = {pi}, for some 7 € {0, ..., n-1}
(iii) Rx*,u* N [pi—l’pi]’ for some 7 € {1, ..., n}
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(¢) Forevery 2 = 1, ..., n-1,

o %
f )

FI ]
Y(xi,ui) < Y<xi+l’ui+l

)

K s, Y \
7™, u™) > 2(x .t
7 1) ( 1+1°7" 742

Proof: (a) Consider the set of all basic solutions to Y + kZ, for any

B = {basic (x*,u*) | (x*,u*) minimizes ¥ + kZ for at least one k > 0}

B is finite, since there is a finite number of bases. Moreover, since min ¥
and min Z have finite solutions, min Y + kZ has a finite solution for any k > 0,
and hence min Y + kZ has a basic solution for any k% > 0. Equivalently

R . .u=[0°°:|
(*,*)ep LM i

By Propositions 2 and 3, this is a union of single points and closed intervals
having disjoint interiors. Hence, since B is finite, there is a minimal subset
{(xz,uj), 27=1, ..., n} = B*¥ € B such that
U R u = [0,2]
(x* ,u*)eB i
is a union of distinct closed intervals having disjoint interiors. B* is

thus the desired set of distinct basic solutions.

The uniqueness of the sequence Pys wres Py_q is guaranteed by Proposition
3.
(b) Consider any solution (x*,u*). By Proposition 2, there are three
possibilities:
R % % = ¢. This satisfies case (i).
" u
Rx*,u* = [r,8], 0 < r <& <o, Proposition 3 requires that [r,s] =
[pi—l’pi] for some choice of 2 = 1, ...., n, satisfying case (iii).
Ry g% = {p}. For some ¢ <m, p, ; <p <p;. Assume that the

inequalities are strict; then (x;'.‘ ,uj) minimizes both Y + pi_lz and Y + piZ,

while (x%*,u®) minimizes neither, implying that
Y % fouf) + EOPE
Y(xi,ui) t o1 Z(xi,ui) < Y(x¥,u®) Pia1 Z (x* ,u’)

fe ) K o
Yla® u®) + o,  2(x®.u®) < y@®.u®) + o,  Z(xfu®)
( 2 'L) p’b Yale s P Pl ’
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Multiplying the first inequality by (pi- p) / (pi - pi-l)’ and the second
by (p - p; 1) / (p;~ p;_1), and adding, yields:

Y(m%,u*) +p Z(xzauz) < Y(@®,u™) + p 2wk uk)

contradicting Rx“ o » ={p}. Hence p = Pz OC P = D5 demonstrating (ii).
(¢) Both (x u ) and (x1+l’uz+l) minimize Y + ; 73 therefore
Y(x;;‘,u;:‘) t o Z(xi,u;:‘) Y(xﬁl’ u’ ) * 0 Z(xv,+1’uij+l)
But for any p such that O; <P Py (z* +l’uz+l) minimizes ¥ + pZ and
(x ,u %) does not, 1mply1ng
V() + 0 2Galug) > Yok, uk ) +op Bk, )

Subtracting the equation from the inequality and dividing by p - p; > 0
yields

Z(x“,u ) > 2(x¥ )

u'
1+1°72+1

and Y(x ,u”) < Y(x"+1,u ) follows by substituting back into the equation.

What do the values o, signify? They are the eritical ratios pZ/pY
at which the allocation of trains must change to maintain optimal total cost.
So long as pz/py stays between some Py 1 and 05 however, a single alloca-

tion (x?,uz) is guaranteed optimal.

Another way of looking at things is to note that, at critical point
p,/py = 05

% %%y -
Y(x Uy ) + e; Z(x Sty ) Y(x l,u ) te; Z(xz+l’uz+l)
which may be rewritten
= ® L% - Ny & &
[Y(x T 7l+1) Y(xi,ui)] pZ[Z(xi,ui) Z(xi+1’ui+1)]

Proposition 4(c) says that moving from (x ,u“ ) to (x$+l,u +1) involves

a tradeoff: 7 decreases while Y increases. At the critical point, the
added cost from the increase in Y (left side of above equation) equals the
cost saved by decreasing Z (right side). At p < p;> the saved cost does
not make up the added cost, and so (x ,u ) is preferable; at p"p , the
saved cost more than makes up the added cost, and hence (xz+l’u¢+l) is
better.
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§2.4

The critical ratios p; and solutions (x ,u“) are easily found by
applying a standard parametric algorithm to the objective. In conventional
terms, Y is the "base objective" and Z the "change objective". The
algorithm starts with a solution for min Y, and "parameter" p at O.
Successive pivots either leave p unchanged, or step it to a new critical
value that is generally one of the critical ratios FH the basis just before
the step to P; is (x ,u“) The algorithm terminates when it finds a solution
that is optlmal for all parameter values greater than same cirtical value;

this solution is (xz,u:), and the critical value is Py

In some instances, the algorithm identifies a supposed critical ratio
) such that

N %y = % %
Y(xi,ui) Y(x t+l’u@+1)
Z(xi,ui) = Z(x%+l’ui+l)

This cannot be a critical ratio, however, since the above equalities violate
Proposition 4(c). 1Indeed, these equalities imply that both (x ,u *) and
p$+1, so that
P is actually not critical at all. Spurious ratios of this sort are a

(x* 41 +1) minimize Y + pZ for all p such that pjop £P L
side effect of degeneracy in the linear program.

Conditional optima for the case of two objectives

The solutions (x*,u*) derived in Proposition 4 also have an interpretation in
7
terms of min Z[Y, min Y|Z, and other conditional optima. This is shown in

the following Proposition:

Proposition 5. The solutions (x?;uz) defined in Proposition 4 have the

following properties:
(a) (xl,u *) minimizes Y

(x¥,u®) minimizes z|Y

1
(b (xn,uﬁ) minimizes 2

(x*,u™) minimizes Y|z
n’n

KX
v

(o) (afud) minimizes Z|(¥+ p2), p; j <P <p; fori=1,...,n
(2},u7) minimizes YT+ p2), 05 3 <P S0 ford =1, ..., n
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Proof: (a) By Proposition 4, (mi

hence it minimizes Y. Given any other (x*,u*) that minimizes Y, and any

,ui) minimizes ¥ + pZ when p = 0,

positive p < 01>

i) < Y(x®,u®) + p Z(x®,u®)

Y(xi,ui) = ¥(x™u™

P B
Y(xl,ul) +p Z(xl,u

(the former from the fact that (xi,ui) minimizes ¥ + p Z, the latter since

both solutions minimize Y). Subtracting and dividing by o > 0 yields

This is true for any (x®,u*) minimizing Y; hence (xi,ui) minimizes %|7Y.

(b) let (x,u) be any feasible solution. For every p 2 p,_ i (xz,uz)

minimizes ¥ + pZ; hence
Y(x;,uZ) +p Z(xzdu;) < Y(x,u) + p Z(x,u) for all p 2 0, _;

Rearranging, this implies

ofe
w

p[z(x;; ,u;'p - 2(xw)] < Ymu) - Yl

,uﬁ) for all p 20, 1
This can be so only if the gquantity in brackets is negative; that is, if:
Z(x;,uz) < 7(x,u)

Since this is true for any feasible (x,u), (xz,u;) minimizes Z.

Now let (x#®,u®) be any other solution that minimizes Z. It must be
true that

Y(xn,uﬁ) +p

% %
n=-1 Z(xn’un)

| A

Y(x*,u*) + pn-l Z(x*,u;*)

7(x 1) IACTRID!
n>n

(the former since (xz,uz) minimizes Y + Py 7, the latter because both solu-
tions minimize 2). Multiplying the equation by e, _; and subtracting from

the inequality yields
Y(a® u¥) < v ™
n’n

This is true for any (x%,u*) minimizing Z; hence (xz,uZ) minimizes Y|Z.
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2.

(c) The proofs are straightforward, using the methods of (a) and
(b).

Proposition 5(a) says that minimizing Y|Z yields the best solution
when o = pz/py is small enough. In other words, when Py is sufficiently
large relative to Py ¥ dominates the total cost: the best solution is
one that minimizes Y outright, then Z as much as possible. Proposition
5(b) makes the equivalent statement for the case where p = pZ/pY is
sufficiently large that Z dominates total cost.

Note that if n > 2 there is at least one middle region of p where
the best solution minimizes neither Y nor Z absolutely. When n = 2, the
optimal solutions for total cost minimize either Y|Z (for p 5_91) or
z|Y (for p >
both ¥ and Z absolutely, and hence minimizes any Y + pZ.

pl). When n = 1 there is a single solution that minimizes

Tradeoffs between capital and operating costs

Of special interest is application of the preceding section's results to

functionals ZCAR and ZMILE’

capital cost and operating cost, respectively. Total variable cost with

defined in §2.1 as proportional to notions of

respect to these two objectives is

Pear Zcar T Pvrie ZMILE

where
Peap = capital cost / car / day
ZCAR = number of cars
PvriE operating cost / car-mile
Ivrig = car-miles / day

The choice of a solution that minimizes total cost depends upon pCAR/pMILE’
the ratio of capital cost/day to operating cost/mile.
The critical ratios for this problem have a special form related to

the inter—city distances, as demonstrated by the following Proposition:

Proposition 6. (a) For objectives of the form 7 ) 2

+ (Poar’P
MILE CAR “MILE
(as defined in Proposition 4) have

CAR’

the critical ratios of p = Pear
the form

PurE
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A=

m
Z %ac!
c,c'eC

cée’

ce'

where a, , are integers, and Kk is a positive interger satisfying:

EC 5 % s
K S‘ZCAR(xi’ui) - ZCAR(xi+1’ui+l)

(b) If the cities constitute a corridor (§1.5) ordered Cls wnes O
then under the assumptions in (a) the critical ratios have the form

p. =

: o (m +m )

c,c. “e,c, c.cC.
ci,cjec 4 1 J Jt

i
K
i<j
where o, , are integers, and k is a positive integer satisfying the inequality
g
in (a).

Proof: (a) By Proposition 4, both (x ,u *) and (x" +l’u$+l) minimize
ZMILE + P; ZCAR; that is,

)

L ey % % + 9. % %
InpiE(®goHg) + Py ZCAR(x ) = iy By o) YRy Zopr a1 Mian)

or, by rearranging,

&
Zrr ey i) -

i (x%,u%) - 2
177

M:[I_;E(x ”)
car'E; 1’“ a’

CAR
At any feasible solution,
(i) ZyTIE is a sum of integral multiples of inter-city
distances (§2.1). Hence the numerator of the above

fraction is also such a sum.

(i1) Zoar is integral. The fraction's denominator is thus
. . . % % &
a positive integer, since ZCAR(xi+l’ui+l) < ZCAR(xz’ui)
by Proposition 4.

Ratio p; thus has the desired form with k = ZCAR(x ,u %) - “CAR(xz+l’uz+1)
To express ) in terms of the smallest possible k, divide numerator and

dencminator by the greatest common divisor of k and all the o ..
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(b) For a corridor, ZMILE at any feasible soluticn is a sum of
integral multiples of round-trip distances (§2.1). The expression for
p; follows from this and the arguments set forth in (a).

Proposition 6 offers a characterization of the critical ratios for
ZMELE and ZCAR' At ratios p = pCAR/pMILE sugh that p; < p < Pi412 adding

K cars to the system makes possible a net saving on(x , car-miles/day.

m
ce'! ce
So long as pCAR/pMILE > pss however, the Proposition implies that

K Pear > (Z %oct mcc') PM11E
The cost of adding k cars (left-hand side) is greater than the cost saved
by the reduction in car-miles (right-hand side), and hence adding the cars
is uneconcmical. For pCAR/pMILE <Py the inequality is reversed, so that

total cost is less when the cars are added. When pCAR/pMILE = pi, however,

K Pear T 9 Gect mcc') PM11E

Hence o, is the ratio of capital to operating expense at which the capital
cost of adding cars is exactly balanced by a resultant saving in operating
cost.

For the Northeast Corridor data described later in this report, all
critical ratios had the especially simple form k = 1, O, 5. = 0Oorl. At

Jd J

these ratios the capital cost of one added car equalled the operating cost
over one round trip that was saved by adding the car: see further in
§§4.4, 4.6, (It may be that under certain assumptions about the network
and schedule, critical ratios must have simple forms like this; but this

has not been shown formally.)
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PART B

APPLICATIONS TO THE NORTHEAST CORRIDOR

The remainder of this report describes how an instance of the model of §1
and §2 can be used to investigate rail service in the Northeast Corridor.

For purposes of demonstration, a hypothetical case representing service
on a busy day in 1982 was chosen as a basis for analysis. Base data for
this case were estimated by the means described in §3. These data were
incorporated in an appropriate network model, which was solved and analyzed
by use of the SESAME interactive linear programming system [3,6,7] and
supporting computer routines. Details of this base run, and the numerical
results, are given in 8u.

The base run is not intended as a thorough analysis of 1982 Corridor
service, but as a test case that prepares the way for further analyses.
Compilation of the base data, for example, has led to development of tech-
niques that are now available for more extensive studies. Output from
the base run, moreover, has revealed some special properties of the Corridor
network, which in turn might be exploited in subsequent models (see, for
instance, §4.5).

In addition, application of the model requires an integrated set of
interactive computer routines. These were developed and tested for the
base run and are now available to other users via a time-sharing network.
Instructions for use of the computer routines are provided in Volume IT of

this report [4].
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§3

§3.1

THE BASE DATA

This section describes how an instance of the network model was formulated
for the Northeast Corridor (§§3.1-3.2), and how base data were derived for
the model (§§3.3-3.8).

The primary reference for data-gathering techniques is a pair of
Corridor studies prepared by Peat, Marwick, Mitchell and Company [1,5].
These are referred to in the sequel as the "PMM studies".

The techniques for computing demands described in §§3.4-3.7 were
developed by Judith Gertler and Howard Simkowitz of the Transportation
Systems Center, U.S. Department of Transportation.

Characteristics of the Northeast Corridor

The base-run Northeast Corridor comprises four terminals: Boston, New York,
Philadelphia, and Washington. Scheduled trains connect these terminals on

three north-south segments as follows:

Segment Length (miles)
Boston - New York 232
New York - Philadelphia 90
Philadelphia -~ Washington 135

Cars arriving at a terminal may move on immediately in the same direction,
or may be stored for use in later trains in either direction. A fixed
minimum amount of time (in addition to the normal stopover time) is required
to change the direction of a car.

Also in the Corridor are seven intermediate stations, as shown in
Figure 3-1. Trains are scheduled to stop at these stations, but cars may
not be stored or switched there. Including both terminals and intermediate
stations, the corridor comprises 11 cities, connected by 10 north-south
links.
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Figure 3-]. Terminale and intermediate stations
in the Northeast Corridor as modeled
by the base run.
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For purposes of the 1982 base run, cars in Corridor service are
assumed to have a uniform capacity of 75 passengers. Station size is
taken to be 14 cars; trains requiring more than 14 cars are to be run
in multiple sections of 14 cars or less each. Each section is assumed

to require one locomotive.

§3.2 Modeling Northeast Corridor service

The Northeast Corridor is modeled as a corridor network with turnaround

delay, as defined in §1.5.

The set ¢ of cities in the model comprises the four Corridor terminals:
¢ = {Boston, New York, Philadelphia, Washington}

Intermediate stations can be omitted from this set, since they are not points
at which cars may be stored or switched. (Demands to and from intermediate
stations are used to determine the minimum size of each train, however. See
§§3.4-3.6).

The model's schedule-pericd is one day, partitioned into a set of inter-
vals T representing minutes of the day. Hence the number of partition inter-
vals, T, is 1440.

The schedule, S, lists the arrival and departure terminal of each train
and the corresponding arrival and departure times to the nearest minute.

Its construction is described in §3.3.

The demand for each train is calculated from annual patronage forecasts
by the methods described in §§3.4-3.6. A lower limit dcc,[t,t] and upper
limit %,,,[%,2'] on each train's size is then derived from its demand, as
explained by §3.7.

The turnaround delay & is fixed at 20 minutes, for reasons set forth

in §3.8.

§3.3 The schedule

The 1ll-city base schedule (Figure 3-2) is an updated version of that employed
in the PMM studies [1,5]. It assumes generally half-hourly gservice to the

terminals and major intermediate stations (Providence, New Haven, Baltimore),

and hourly service at minor stations (New London, Stamford, Trenton, Wilmington).
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Figure 3-2(a).

Line WASH BALT

2

4 2:45 3:21
6 3:45 4:21
8

10 4345 5:21
12

14 5:45 6:21
16 6:15 6:51
18 6:45 7;:21
20 7:15 7:51
22 7:45 8:21
24 8:15 8:51
26 8:45 9:21
28 9:15 9:51
30 9:45 10:21
32 10:15 10:51
34 10:45 11:21
36 11:15 11:51
38 11:45 12:21
40 12:15 12:51
42 12:45 13:21
44 13:15 13:51
46 13:45 14:21
48 14:15 14:51
50 14:45 15:21
52 15:15 15:51
54 15:45 16:21
56 16:15 16:51
58 16:45 17:21
60 17:15 17:51
62 17:45 18:21
64 18:15 18:51
66 18:45 19:21
68 19:15 19:51
70 19:45 20:21
72 20:15  20:51
74 20:45 21:21
76 21:45 22:21
78 22:45 23:21
80 24:45 1:21

PHIL

Schedule of northbound trains
employed in the base run.

TREN

NYC

36

STAM NEW H NEW L PROV
e 5:53 e 7:30
6:35 6:53 7:45 8:30
7:35 7:53 8:45 9:30
—-— 8:23 ——— 10:00
8:35 8:53 9:45 10:30
—— 9:23 — 11:00
9:35 9:53 10:45 11:30
—— 10:23 i 12:00

10:35 10:53 11:45 12:30
— 11:23 —— 13:00

11:35 11:53 12:45 13:30
—— 12:23 — 14:00

12:35 12:53 13:45 14:30
—— 13:23 —— 15:00

13:35 13:53 14:45 15:30
—— 14:23 —— 16:00

14:35 14:53 15:45 16:30
—— 15:23 — 17:00

15:35 15:53 16:45 17:30
——— 16:23 — 18:00

16:35 16:53 17:45 18:30
— 17:23 - 19:00

17:35 17:53 18:45 19:30
—-— 18:23 —— 20:00

18:35 18:53 19:45  20:30
_— 19:23 econee 21:00

19:35 19:53  20:45 21:30
—— 20:23 e 22:00

20:35 20:53 21:45  22:30
—— 21:23 — 23:00

21:35 21:53 22:45 23:30
o 22:23 — 24:00

22:35 22:53 23:45 24:30
— 23:23 —— 1:00

23:35 23:53  24:45 1:30

24:35 24:53 1:45 2:30



Figure 3-2(b).

employed in the base run.

Line BOST PROV NEW L NEW H STAM

1

3

5

7 3:15 3:56 4:42 5:33 5:51

9

11 4:15 4:56 5:42 6:33 6:51
13

15 5:15 5:56 6:42 7:33 7:51
17 5:45 6:26 = 8:03 —
19 6:15 6:56 7:42 8:33 8:51
21 6:45 7:26 — 9:03 ———
23 7:15 7:56 8:42 9:33 9:51
25 7145 8:26 _— 10:03 —
27 8:15 8:56 9:42 10:33 10:51
29 8:45 9:26 — 11:03 ——
31 9:15 9:56 10:42 11:33 11:51
33 9:45 10:26 —— 12:03 —
35 10:15 10:56 11:42 12:33 12:51
37 10:45 11:26 — 13:03 ———
39 11:15 11:56 12:42 13:33 13:51
41 11:45 12:26 — 14:03 —
43 12:15 12:56 13:42 14:33 14:51
45 12:45 13:26 _— 15:03 ———
47 13:15 13:56 14:42 15:33 15:51
49 13:45 14:26 — 16:03 —
51 14:15 14:56 15:42 16:33 16:51
53 14:45 15:26 — 17:03 ——
55 15:15 15:56 16:42 17:33 17:51
57 15:45 16:26 — 18:03 ———
59 16:15 16:56 17:42 18:33 18:51
61 16:45 17:26 — 19:03 ——
63 17:15 17:56 18:42 19:33 19:51
65 17:45 18:26 —— 20:03 —
67 18:15 18:56 19:42  20:33 20:51
69 18:45 19:26 — 21:03 e
71 19:15 19:56 20:42  21:33 21:51
73 19:45 20:26 — 22:03 —
75 20:15 20:56 21:42  22:33 22:51
77 21:15 21:56  22:42 23:33 23:51
79 22:15 22:56  23:42  24:33 24:51
81 23:15 23:56  24:42 1:33 1:51

NYC

5:30

6:00

6:30

7:00

7:30

8:00

8:30

9:00

9:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30
24:00

1:00

2:00

3:00

37

Schedule of southbound trains

TREN PHIL WILM
— 6:33 —
6:39 7:03 7:22
—— 7:33 ———
7:39 8:03 8:22
-— 8:33 ———
8:39 9:03 9:22
—— 9:33 i
9:39 10:03  10:22
— 10:33 ——

10:39 11:03 11:22
—— 11:33 —

11:39 12:03 12:22
—— 12:33 —

12:39 13:03 13:22
— 13:33 ———

13:39 14:03 14:22
-—- 14:33 =

14:39  15:03  15:22
——— 15:33 -—

15:39 16:03  16:22
- 16:33 —_—

16:39 17:03 17:22
— 17:33 o
17:39 18:03 18:22
— 18:33 ——

18:39 19:03 19:22
— 19:33 ——

19:39  20:03  20:22
— 20:33 ———

20:39 21:03 21:22
- 21:33 —

21:39 22:03  22:22
——— 22:33 —

22:39  23:03  23:22
—— 23:33

23:39  24:03 24:22

24:39 1:03

BALT

7:35

8:05

8:35

9:05

9:35
10:05
10:35
11:05
11:35
12:05
12:35
13:05
13:35
14:05
14:35
15:05
15:35
16:05
16:35
17:05
17:35
18:05
18:35
19:05
19:35
20:05
20:35
21:05
21:35
22:05
22:35
23:05
23:35
24:05

WASH

8:10
8:40
9:10
9:40
10:10
10:40
11:10



§3.4

Appropriate reductions are made late at night and early in the morning,
when demands are very low.

Segment trip times for 1982 are assumed to be approximately as
follows:

Segment Trip time

Boston - New York 3 hours 40 minutes
New York - Philadelphia 1 hour 1 minute
Philadelphia - Washington 1 hour 38 minutes

Trip times for individual links are calculated accordingly. Allowance is
made in addition for stopover times of about 5 minutes at New York, and 1.25
minutes at other stations. It is assumed, however, that trains do not save
any time when they skip stops at minor stations.

The schedule is centercd around New York, where arrivals and departures
occur on the half-hour. The patterns of activity at other terminals vary,
depending on the trip times from New York.

A four-city schedule, incorporating just the terminals, is abstracted
from the base schedule for use by the model. Fach trip over a segment is
modeled as an independent train: line 19 of the schedule, for example, is
treated as a Boston-New York train, followed by a New York-Philadelphia
train, followed by a Philadelphia-Washington train. These three trains
most likely employ the same locomotive, however, and many of the same cars,
so that from the passenger's point of view there would be through service
from Boston all the way to Washington. The same is true for other south-
bound trains, and the reverse for northbound trains, with a few exceptions

at extreme hours.

Design-day patronage

Annual patronage for 1982 was calculated by use of a computer-based model
developed in one of the PMM studies [6]. The input data were those derived
from PMM's "base assumptions" with the exception of trip times, which were
increased to reflect the base schedule (§3.3).

The PMM model estimates annual two-way patronage for individual
station-pairs in the Northeast Corridor, as shown in Figure 3-3. Annual

one-way patronage is computed by halving the two-way figures. A few
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§3.

5

possible station-pairs are omitted, either because they could not be

separated from other pairs, or because competitive commuter service is

available for their travelers. All of these excluded pairs are short

distance, and are deemed to be relatively insignificant to Corridor service.
The base run models patronage for a desigrn day, calculated as 1/270

of the anmual amount. This concept of design day, representing approximately

the 10th busiest day of the year, has been employed in engineering studies

of the Northeast Corridor [2, pp. 3-35] and in fleet-sizing experiments

[1, Appendix CJ.

Demand distributions

The base run employs a set of cumulative demand functions to derive the
patterns of demand between station-pairs over a day. Following a method of
the PMM studies [1, pp. C.7-C.14], demand for service from a larger station

to a smaller one is taken to be departure-based (that is, dependent upon the
time of departure), while demand for service from a smaller to a larger station
is arrival-based (dependent upon time of arrival). Demand between cities

of comparable size is determined by averaging arrival-based and departure-based
distribution functions.

The demand distributions employed in the base run are derived from bi-
modal gaussian-like probability distributions® fit to actual arrival and
departure counts for Tuesday, May 21, 1974. This date was chosen because it
afforded actual ticketing data, and was uninfluenced by special weekend or
holiday patterns. Counts could be made, however, for only a small number of
station-pairs, especially as no information was available for trips passing
through New York. In consequence, actual distributions were fit for the

following pairs only:

Station-pair Based on:
Washington - New York arrival
New York - Washington departure
Philadelphia - New York arrival
New York - Philadelphia departure
Washington - Philadelphia arrival

E3

These distributions were derived and estimated by Walter Messcher and Alan
Wellington at the Transportation Systems Center, U.S. Department of Transporta-
tion. See further in the Appendix to this volume.
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Figure 3-4.

FROM:
BOSTON

PROVIDENCE

NEW LONDON

NEW HAVEN

STAMFORD

NEW YORK

TRENTON

PHILADELPHIA

WILMINGTON

BALTIMORE

WASHINGTON

The entry in each box indicates a distribution (fit to
actual data) used to estimate demand for all trains from
the assoctated departure city (left margin) to the associated
arrival eity (top margin). "Arrival" indicates an arrival-
based distribution, "departure' a departure-based distribution,
and "arr + dep" an average of an arrival-based distribution
and a departure-based one.

Cumulative distributions employed in calculating demands.

TO:
BOSTON PROVIDENCE NEW LONDON NEW 1IAVEN STAMFORD NEW YORK TRENTON PH11ADELPHIA WILMINGTON BALTIMORE WASHINGTON
New York New York New York New York Wash. New York Wash. Wash. Wash. Wash.
- Phila, ~ Phila, - Wash. - Wash. - New York - Wash, - Thila. - Phila. - Wilm. - Wilm.
lep ] er re |der dey arrival departure | arr + dep arrival arrival arrimml
Phila. Wash. Wash. Hash. Wash, Rash, Wash. Wash. Wash, Wash.
- New Yorl4 - Wilm, - Wilm. = Wilm, - New York = Wilm.| - New York - Wilm. - Wilm. = Wilm.
arrival arr + dep |arr + dep avr » dop arprival ary & dep arrival arrival arvival arpival
Phila, Wagh. Wash. Wash. Phila. Wash. Hash. HWash, Wash, Wash .
- New Yorl - Wilm, - Wilm. - Wilm. - New York - Wilm.| - New York - Wilm. - Wilm, - Wilm.
arrival arn + dep arr + dep |arr + dep arrival ary + dep areival arr + lop arrival arrival
Wabh. Wash. Wagh. Phila. Wash. Wash. Wash, Hash, Wash.
- New Yot - Wilm. - Wilm, - New York - Wilm - New York = Wilm. - Wilm, - Wilm.
arrival arr + dep |arr + dep arrival ary + dep arrival arr ¢ dep arrival arrival
Wash, Hash. Wash. Wash. Wash. Rash, Wash, Wasgh.
- New York - Wlm, - Wilm. - Wilm.| - New York - Wilm, - Wilm, - Wilm.
arpival arr + dep |arr + dep arr + dep arrival arr + dep | arr + dep arrival
New York New York New York New York New York New York New York New York New York
- Wash. - HWash. - Phila. - Phila. - Phila. - Phila. - Phila. - Wash - Wash.
departure |departure |departure |departure departure | departure | departure | departure | departure
Wash. Hagh. Hash. Wash. Wash. Phila. Hash. Hash. Wash.
- New York| - Wilm. ~ Wilm. - Hilm, - ¥Wilm. | - New York - Wilm. - Wilm. - Wilm.
arrival arr + dep |arr + dep |arr + dey |arr + dep arrival arr + dep | arr + dep | arr + dep
Phila. New Yotk New York New York New York Phila, New York Phila. Phila.

- Wash. - Wash. . - Wash, - Wash. - Wash. - New York - Phila. ~ Wash. - Rash.
arr + dep |departure |depx dap: iepartu arrival departure | departure | departure
Wash. Wagh. Wash, Hash. Wash. Phila. Wash. Phila. Wash. Wash.

- Wilm. - Wilm, - Hilm. - Wilm. - Wilm. | - New York - Wilm.| - New Yotk - Wilm, - Wilm.
arrival arrtval ary + dep |arr + dep |arr + dep arrival arr + dep arrival arr + dep | arr + dep
Wash. Wash. Wash. Wash. Wash. {Wash. Wash. Hash. Wash. Phila.

- Wilm, - Wilm. - Wilm. - Wilm, - Wilm. - New York = Wilm. - Phila. - Wiim. - New York
arrival arrival arrival arrival arr + Jdep arrival arr + dep arrival arr + dep arrival
Wash . Wash. Wash. Wash. Wash, [Wash. Wash. Wash. Wash. New York

- Wilm. - Wilm. - Wile. - Wilm, - Wilam. ~ New York - Wilm. - Phila. = Wilm, - Phila,
arrival arrival arrival arrival arrival arrival arr + dep arrival arr + dep | departure
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Station-pair Based on:

Washington - Philadelphia departure
Philadelphia - Washington arrival
Philadelphia - Washington departure
Washington - Wilmington arrival
Washington - Wilmington departure

For other station-pairs, the actual distribution is approximated by an appro-

priate distribution chosen from this list: see Figure 3-4.

§3.6 Effective demands over segments

For every scheduled train over a segment, there is an effective demand:
the number of passengers that the train must accommodate to guarantee every-
one a seat at all points on the route. Effective demands are determined

for the base run in the following steps:

Station-pair demands. Given one-way patronage data (§3.4) and cumula-

tive demand functions (§3.5), a design-day demand is calculated for every
scheduled trip between a pair of stations in the 1l-city schedule (excluding
certain station-pairs as explained in §3.3).

ILink demands. The total demand for a train over a given link is computed.
It equals the sum of demands for all station-pair trips that employ the train
over that link.

For example, total demand for a typical scheduled train over the
Wilmington-Philadelphia link does not include just passengers who get on at
Wilmington and disembark at Philadelphia. Some passengers who get off at
Philadelphia began their trip in Washington or Baltimore; some who start at
Wilmington will stay on to Trenton, New York, or a station further north; and
some passengers both start south of Wilmington and terminate north of
Philadelphia. Demand for the train for all such station-pair trips must be
added to determine total demand for the train over the Wilmington-Philadelphia
link.

Maximal-link demands. For every train over a particular segment, there

emerges from the link demands a maximal link over which demand is highest. A
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train accommodates all passengers over a segment only if it meets demand
over the maximal link, since cars cannot be added within the segment.
Hence the effective demand for each train is equal to the train's maximal
link demand.

For instance, say demand for a Washington-Philadelphia train is 197
passengers over the Washington-Baltimore link, 237 over the Baltimore-
Wilmington link, and 225 over the Wilmington-Philadelphia link. The maximal
link for that train is then Baltimore-Wilmington, and effective demand for the
train is 237.

§3.7 Minimum and maximum train sizes

For the base run, cars are assumed to hold 75 passengers. Hence if d is

the effective demand for a train, its minimum size is:
<d/75>

(Here angle brackets denote the least integer greater than the enclosed value.)
The maximum size of a train for the base run is the lesser of two limits,
one related to load factor, the other to station length:

load-factor limit. Due to imbalances in demand throughout the day,
some trains will have to be run with more than the absolute minimum number

of cars. It is reasonable, however, to limit the number of these deadhead
cars to some proportion of the train. Specifically, in the base run no
train is allowed to have more cars than required to meet twice its effective
demand, with the proviso that every train may have at least 2 cars. In

terms of d, this limit is:
max (<2d/75>, 2)
Its effect is to require load factor over the maximal link to be at least

reasonably near 50%, the requirement becoming stricter at larger demands.

Station-length limit. Plans for 1982 assume that stations will hold

at most li-car trains (§3.1). When more than 14 cars are assigned to a

train, one or more extra sections must be put on, employing an equal number
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Figure 3-5. Train-gsize limits for the base run
as a function of effective demand.
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§3.8

of extra locomotives. To prevent unnecessary extra sections, the base run
requires that the number of sections actually run be no greater than <(d/75)/14>,
the number of sections required to meet effective demand. This translates to

an upper limit on cars of:
14 <(d/75)/14>

If d/75 is 12.6, for instance, this upper limit is 14; but if d/75 is 15.2,

two sections are needed in any event, and the limit is 28.

Figure 3-5 graphs train-size limits as a function of effective demand.
The load-factor upper limit is the lesser one for demands under 525 passengers
(7 cars). At larger demands, the station-length limit predominates.

For the base run, only 5 trains require as many as two sections: three
from Philadelphia to New York in the morning, and two from New York to
Philadelphia in the afternoon. Most other trains of 7 or more cars are also
on the New York-Philadelphia segment.

Turnaround delay

For the base run a delay of 20 minutes (in addition to the regular stopping
time built into the schedule) is postulated whenever the direction of a car
is changed. This time is deemed sufficient to cover switching under 1982
conditions plus any lags in the arrival of extra sections.

A look at the schedule shows that any turnaround delay from 9 to 20
minutes has the same effect, while a delay of more than 20 minutes requires

additional cars at Philadelphia.
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§4

gu.1

THE BASE RUNS

Computer processing and its results for the base run are discussed in this
section.

Generation of the base data (§4.1) and the LP model (§4.2) were necessarily
performed first. Optimal solutions were then found for a variety of objectives:
minimum cars and car-miles, and maximum load factor (§4.3); minimum total
operating and capital cost (§4.4); and minimum turnaround switching (84.5).
Further analyses included sensitivity to demands (84.6) and requirements for
locomotives (§4.7).

The principal computing tool was the SESAME linear programming system
developed at the National Bureau of Economic Research [3,6,7]). SESAME, and
the other computer routines employed in this study, have been made available
for use through a national time-sharing network. Prospective users should

consult Volume 2 of this report [u4].

Computing the base data

Estimates of 1982 rail patronage (§3.4) were produced by running a computer
simulation program adapted specially for the PMM demand study [5]. This
program projects business and non-business use of four modes of travel: rail,
bus, air, and car. A subroutine was added to file total rail patronage only,
in a format suitable for subsequent processing.

The patronage data file, plus a file representing the full schedule,
then served as input to a demand program written by Judith Gertler and
Howard Simkowitz of the Transportation Systems Center. This program employs
cunulative demand functions for station-pairs to compute effective demands,
and consequent upper and lower limits, for each train (as described in §8§3.5-
)l
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Principal output from the demand program is a set of tables, representing
the schedule and other information, that can be read by an LP matrix generator
(64.2). In addition, sets of alternative train-size limits are filed in a form

that allows any one set to be read into the matrix.

§4.2 Generating the model

An IP equivalent of the network model was generated in a form suitable for
computer processing by DATAMAT, a subsystem of SESAME [3]. A program in the
DATAMAT macro language was written for this purpose. Its inputs include the
schedule and other tables produced from the base data (§4.1), and the turn-
around delay in minutes. Output is an arrangement of LP rows and columns in
an internal form suitable for processing by SESAME.

Upper and lower limits on train-size variables are not generated as
explicit constraint rows; they are incorporated in a "bound set" that is
enforced implicitly by SESAME's simplex algorithm. Actual limit values
are also absent at this stage: they are read in from a separate file just
before the model is solved or analyzed. This arrangement facilitates working
with several sets of limits, as was done, for example, in the sensitivity
analysis described in §4.6.

The LP generated by the DATAMAT program represents a reduced network,
duplicated to distinguish northbound and southbound cars in the corridor
(§§1.3, 1.5). For the base schedule, the LP representation required 1275

structural variables and 528 constraint rows.

§4.3 Minimizing cars and car-miles

The base-run LP was solved by use of SESAME's standard primal simplex algorithm.
A feasible solution was obtained (starting from an all-slack basis) in 665

iterations, and an optimal solution for the minimum-cars objective, ZCAR’ in an
additional 28 iterations. An optimal solution for the minimum-car-miles objec-
tive, ZMILE’ was also found. A maximum system load factor, ZLF’ was determined

from ZMILE’ as these two objectives are inversely proportional (§2.1).

The values of the objectives at their optima for the base data are:

min ZCAR = 164 cars
131388 car-miles
74.15%

min ZMELE
max ZLF
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§4.4 Minimizing operating plus capital cost

Following the analysis set forth in §§2.3-2.5, the next step was to minimize
total "operating" and "capital" cost of the base model, expressed as:

Pear Zear t Pmrte AMILE

where:

PoaAR capital cost / car / day

ZCAR . number of cars in the system

pMILE = operating cost / car-mile
2

MILE car-miles / day

SESAME's algorithm for parametric analysis of the objective function was
employed for this purpose. Part of the process was autcmated by use of small
programs written in the SESAME command language.

The properties of an optimal solution depend on the value of pCAR/pMILE’
the ratio of capital cost/day to operating cost/mile. For the base data, there
are three significantly different regions into which this ratio may fall:

(1) Capital cost/day > 450 * operating cost/mile. Here capital cost

dominates; in any optimal solution the number of cars is at its absolute
minimum, 164. The minimum number of car-miles per day, given 164 cars, is
135978; and the system load factor (which is inversely proportional to total

car-miles) is 71.65%.

(2) 450 - operating cost/mile > capital cost/day > 180 : operating cost/mile.
At this level the influence of capital cost declines somewhat. The number of
cars in an optimal solution increases to 167; car-miles per day decline to 134628
(system load factor 72.37%).

(3) Capital cost/day < 180 * operating cost/mile. Here operating cost

dominates. In an optimal solution car-miles/day is at its absolute minimum,
131388 (system load factor 74.15%), while the number of cars in the system

increases to 185.
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Figure 4-2. The three solution regions for the base run, plotted
as a function of capital cost/day and operating cost/
mile. Alternative projections of the actual ratio of
these amounts in 1982 are indicated by X's.
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The results are shown graphically in Figure 4-1. Clearly the biggest
jump is at critical ratio pCAR/pMILE = 180, the round-trip distance between
New York and Philadelphia. At ratios below this point, buying an extra car
is economical even if it saves just one New York-Philadelphia run. At higher
ratios it pays to buy a smaller fleet, running each car (on the average)
more miles every day. The size of the jump -- about a 10% difference in
fleet size -- is not surprising. Demand is heaviest along the New York-
Philadelphia segment, and is highly unbalanced: northbound travel peaks in
the morning, while southbound demand is highest in the afternoon. Conse-
quently, a fair amount of deadheading can be avoided if a larger fleet is
available,

The other jump, at pCAR/pMII_E = 450, represents a point at which the
cost of a car equals the cost of ruming it from New York to Washington and
back. This is a fairly insignificant critical ratio, however, as the optimum
at ratios below 450 requires only three cars more than the optimum above 450.

Several estimates of the actual pCAR/pMILE were derived from a PMM
financial analysis [1] by Judith Gertler and Howard Simkowitz of the Transporta-
tion Systems Center. These are plotted against the critical ratios in Figure
4-2, The estimates suggest that pCAR/pI"E[LE probably falls into region (1),
and hence that capital cost is probably predominant. (Moreover, if the ratio
is not in region (1) it appears very likely to be in region (2), where the

optimal solution is much different.)

§4.5 Minimizing turnaround

We next looked at a third objective, ZTURN’ the number of times per day that
the direction of a car is changed (§2.1). Since capital cost seemed likely
to predominate, we found a solution to:

min Zoeyl A Zoar
That 1s, ZCAR was minimized first (164 cars); then ZMII_E was minimized subject

to ZCAR
and ZCAR

= 164 (135978 car-miles); then ZTURN was minimized subject to Zy  p = 164
= 135978,
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§4.6

The optimal value of ZTURN is not particularly revealing; but the
flow of cars being turned around at New York and Philadelphia is of
interest. No northbound car is ever turned around at Philadelphia, and
no southbound car is ever turned at New York. Cars running north fram

Philadelphia are held in storage at New York mostly in the morning, when

northbound travel on the Philadelphia-New York segment predominates. Cars
running south fraom New York are held at Philadelphia mostly in the
afternoon, when southbound traffic is dominant on the segment.

In effect, many cars are needed only for the Philadelphia-New York
segment, to satisfy peak demand northbound in the morning and southbound in
the aftermoon. This suggests a revised schedule in which New York-Philadelphia
shuttle trains are run at peak hours, in addition to the usual through trains.

Sensitivity to demand

Demand projections are inherently uncertain. They are based on approximate
data, and their postulations are open to question. A PMM study of Northeast
Corridor demands [5], for example, estimates 1982 patronage at anywhere from
11 to 23 million passengers, depending upon assumptions about costs and
travel times.

Tt is thus essential that the model be solved for a range of demands.

 Fortunately, this can be done by SESAME in an especially efficient way, by

taking advantage of two characteristics of the model.

First, a change in demands does not change the model's row and column
structure: demands affect only the lower and upper limits on the train-size
variables. Consequently, the LP matrlx need be generated only once for each
combination of schedule and turnaround delay. Sets of 1limit values are filed
separately; just before the model is to be solved or analyzed, SESAME is
instructed which set of limits to use with the previously-created matrix.

Any different set of 1imits is easily substituted whenever desired.

Second, different sets of demand limits for the same model tend to
be similar, and hence their optimal solutions are generally close together.

As a result, it is not necessary to solve from scratch for each set of demands.
An optimal basis for one demand set is a very good starting basis for iterating
to an optimum for any similar set. SESAME's dual simplex algorithm is
especially useful for this purpose, since changing upper and lower limits

does not violate dual feasibility.
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Figure 4-~3. Min Zpp (vight scale) and min Zyrrg|Zcar
(left scale) as a function of annua% patronage.
The small graph shows the general forms of these
functions as patronage approaches zero and infinity.
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For the base run, alternative estimates of effective demands were first
derived through scaling the base patronage estimates by a constant factor;
then upper and lower limits were determined as before. Nine factors, ranging
from .7 to 1.3, were chosen. For each, a separate set of upper and lower
limits was filed by the demand program (§4.1).

An analysis of total capital and operating cost was performed, in
the manner of §4.4, for each set of scaled demands. The overall pattern
is the same as that for the base demands: the only large jump is at
pCAR/pMILE = 180, where the capital cost of a car equals its operating
cost from New York to Philadelphia and back. There is some variation
in the minor jumps, the one at 450 (New York-Washington) scmetimes
anitted, and one at 462 (New York-Boston) occasionally appearing; but
none of these jumps is associated with a signifiéant change in the solution.

Figure 4-3 shows cars and car-miles plotted against total annual patronage
for the case in which capital cost predominates. These slightly convex curves
are fairly close to lines through the origin, especially within a limited
range (say, 20% around the base data). Hence as a rule of thumb one may say
that both the minimum fleet size, and the minimum number of car-miles that
must be run with minimal fleet, are roughly proportional to total patronage:

min Zoag ¥ ,0000103 - (total annual patronage)

min ZMILEIZCAR ¥ .0086 * (total annual patronage)

(In fact, both cars and car-miles do approach proporticnality to patronage as
the latter goes to infinity. This is because at very high demands the problem
is virtually continuous, so that any increase in total demand can be met by
just increasing the size of each train in the same proportion, with rounding
in negligible amounts. At fairly small demand, on the other hand, the
integrality of the problem comes into play. A relatively large amount of
excess capacity is run simply because demands are rounded up to the next
integer, and hence the actual curve for cars or car-miles runs somewhat above
the line of proportionality - See small graph in Figure 4-3.

Many more sophisticated sensitivity analyses are conceivable if one
allows patronage between different station-pairs to vary at different rates.
For example, one might use annual patronages computed under different assumptions;
or one might apply different cumulative probability distributions to one set of

annual patronages.
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Figure 4-4. Minimum locomotives (right scale) and
locomotive-miles (left scale) as a
function of annual patronage. In all
cases, both objectives can be minimized
by a single solution.
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§4.7 Locomotive requirements

The upper-limits rules for the base run (§3.7) insure that the number of
14~car sections that must be run to meet each train's demand is fixed:

if demand is 14 cars or less, one section is run; if demand is greater than
14 but not more than 28, two sections are runj; and so forth. Hence, assuming
one locomotive per section, one can tell exactly how many locomotives will
be required for each train in the schedule, in any feasible solution. The
analysis of §1.7 is thus applicable: locomotive demands can be substituted
for car demands to determine the number of locomotives required and how far
they must travel.

Only 5 trains in the base run required two sections (and hence two
locomotives); the remainder all required one. One-section trains were
given an upper limit of two locamotives, and two-section trains an upper
limit of three (for up to 21 cars) or four (for 22-28 cars). Sets of limits
were computed and filed by the same demand program used for modeling cars
(§4.1).

Solving the model with the techniques applied previously to car demands,
it was determined that a single solution minimized both the number of loccmo-
tives required (31) and the number of locomotive-miles run (34074). Only
4 sections, all southbound, had to be run with an extra locomotive.

Sensitivity analyses analogous to those run for car demands (§4.6) were
also applied to locomotives. Results are plotted in Figure 4-4. The case
at 70% of base demand requires only one locomotive for every scheduled train;

hence 29 locomotives is an absolute minimum for the base schedule.

§4.8 Printing solution data

A set of DATAMAT programs was written to print data of interest derived from

the solution at any basis. Information available from these programs includes:

load factors
Train sizes
Distribution of train sizes

Total cars in storage at each city and time

Further information is provided in Volume 2 of this report [ul.
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