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EXECUTIVE SUMMARY 

Real world traffic consists of vehicles ranging from small passenger cars to heavy trucks. 

Vehicle classification information is a crucial input to transportation planning, facility design and 

operations. Many techniques have been proposed in the past to perform vehicle classification. 

The current state-of-the-practice vehicle classification methods however (i) heavily rely on fixed 

location sensing and detection techniques; and (ii) can only collect data at locations determined 

by existing traffic monitoring and data collection systems, which can be very expensive to be 

applied to wide areas.  

In this research, the feasibility of using mobile traffic sensors for binary vehicle classification 

on arterial roads is investigated. Features (e.g. speed related, acceleration/deceleration related, 

etc.) are extracted from vehicle traces (passenger cars, trucks) collected from real world arterial 

roads. Machine learning techniques such as support vector machines (SVM) are developed to 

distinguish passenger cars from trucks using these features. To address privacy concerns, 

classification is conducted using long vehicle traces and short vehicle traces separately. For 

classification using long traces, the proportions of accelerations and decelerations larger than 

1mpss and the standard deviations of accelerations and decelerations are the most effective 

features. By classifying general trucks from passenger cars, the average misclassification rate for 

the best 4-feature SVM model is about 1.6% for the training data, and 4.2% for the testing data. 

For classification using short traces, it is necessary to define multiple types of traces and analyze 

them case-by-case. It was found that particularly for the turning movement traces, features such 

as average speed, standard deviation of speed, maximum acceleration/deceleration and standard 

deviation of acceleration/deceleration are fairly effective to classify vehicles. The 

misclassification rate for the best SVM classifier using short traces is about 14.8% for the stop-

and-go traffic, and 15.6% for the non-stopped traffic. 

Despite many issues and future research questions remaining unsolved in this project, the 

proposed research does show the feasibility and potential of using mobile data for vehicle 

classification. It reveals that acceleration/deceleration related features are the most critical for 

vehicle classification using mobile data. Such acceleration/deceleration based vehicle 

classification methods using advanced machine learning techniques have the potential to help 

build a low-cost, wide-area vehicle classification system.   
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1.  INTRODUCTION AND RESEARCH NEED 

 
Real world traffic consists of vehicles ranging from small passenger cars to heavy trucks. 

Vehicle classification information is a crucial input to transportation planning, facility design and 

operations. For example, roadway usage by large vehicles is one of the fundamental factors 

determining the lifespan of highway infrastructure (Coifman and Kim, 2009). Transportation 

system performance analyses, for instance, Level of Service (LOS) analyses of freeways, 

highways, and intersections, also require the information of vehicle classifications and counts 

(Roess et al., 2004). Vehicle classification data are also important to regional demand modeling 

and emission control. As freight transportation is becoming more and more critical to regional 

and national economies, freight modeling is now an imperative issue for many transportation 

management agencies, to which truck classes and volumes are key inputs.  

Many techniques have been proposed in the past to perform vehicle classification. On the one 

hand, the current state-of-the-practice vehicle classification methods rely on fixed location 

sensors such as pneumatic tubes, inductive loop detectors, piezoelectric sensors, and Weigh-in-

motion (WIM) systems, besides manual observation and classification. These approaches can 

generally be categorized as traffic-intrusive methods since they usually require on-site work that 

imposes interference with traffic. On the other hand, non-intrusive vehicle classification methods 

(e.g. radar sensors, infrared sensors, acoustic sensors and computer vision-based sensors) are 

getting popular due to the avoidance of interference with traffic and the dramatic reduction of 

operation and maintenance costs. Unsurprisingly, as pointed out by Urazghildiiev et al. (2007), 

none of these existing classification methods have been proved to be the best for all possible 

applications. They are either too expensive to be deployed (such as WIM stations) or subject to 

errors/limitations under specific situations (e.g., pneumatic tubes cannot perform well on high-

speed, high-volume road segments; classification using inductive loop detectors does not 

perform well under congestion; video cameras may be impacted by extreme weather conditions 

and vehicle occlusions).  

Due to the fundamental differences of vehicle classifiers, the existing vehicle classification 

techniques can also be categorized as axle-based methods, vehicle length (or other vehicle 

dimensions-based) methods, and methods based on other features (e.g., acoustic signatures, 

magnetic signatures, spectral signatures). For axle-based methods (e.g., pneumatic tubes and 



2 
 

piezoelectric sensors), information of axle configuration (number of axles and axle spacing) 

needs to be collected first. Such information can then be used to determine the class of vehicles, 

usually according to the 13 vehicle classes defined by the Federal Highway Administration 

(FHWA, 1997). For vehicle length or other vehicle dimensions-based classification methods 

(e.g., radar sensors, inductive loop detectors and computer vision-based sensors), classification 

relies on the differentiation of vehicle dimensions (e.g. length, width, height and height profile) 

of different vehicle classes. The third category of methods is similar to the second one, but using 

features such as acoustic signatures, which can be used to infer vehicle dimension information. 

The latter two categories of methods may classify vehicles into fewer classes instead of the 13 

classes defined by FHWA.  

In real traffic applications, however, it is not always necessary to have detailed vehicle 

classification information with respect to the FWHA’s 13-class scheme. As stated in Benekohal 

and Girianna (2003), some state DOTs regroup vehicles into a smaller number of vehicle types. 

Due to either the convenience of modeling or data availability concerns, the classification results 

proposed by some researchers are also for certain regrouped vehicle classes (e.g. Nooralahiyan et 

al., 1997; Harlow and Peng, 2001; Gupte et al., 2002; Hsieh et al., 2006; Urazghildiiev et al., 

2007; Coifman and Kim, 2009).  

In this project, we are particularly interested in developing a low-cost method to 

automatically classify vehicles for large areas using mobile traffic sensors. Mobile sensors (e.g., 

GPS cellphones, GPS loggers, vehicle equipped GPS devices, smartphones) – those can move 

with the traffic flow and continuously collect location and speed information – can be used to 

monitor the movement of individuals or vehicles. Although the collection and sharing of massive 

mobile traffic data need to overcome institutional (e.g., who should collect the data), policy (e.g., 

privacy issues), and technical challenges (e.g., bias of the collected samples), they do provide 

information (e.g. vehicle traces) that promises great advances in many science and engineering 

fields. Data extracted from mobile traffic sensors can be easily processed to further obtain 

speeds, accelerations and decelerations. Since different classes of vehicles tend to have different 

characteristics of speed variations, and acceleration and deceleration rates, this motivates us to 

use mobile traffic sensors for automatic vehicle classification.   

The proposed research represents the first step towards this direction by investigating the 

feasibility of using mobile data for binary vehicle classification on arterials. By “binary”, it 
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means that we distinguish trucks from passenger cars. Via mobile traffic sensors, vehicle trace 

data of passenger cars and trucks are collected separately on arterials. These two datasets are 

then pre-processed in order to be more compatible. Speed and acceleration/deceleration related 

features are extracted from the datasets. Machine learning models are developed for feature 

selection and binary classification.  

We first explore the feasibility of classification using long vehicle traces. Since long traces 

(15-20 minutes) contain more information than short traces, patterns recognized from such 

datasets should also be more significant. It is found that features related to the variations of 

accelerations and decelerations (e.g., the proportions of accelerations and decelerations larger 

than 1 meter per second square (mpss), and the standard deviations of accelerations and 

decelerations) are the most effective in terms of classification using long traces. In this sense, the 

proposed method can be categorized as the acceleration/deceleration based vehicle classification 

method. The results show that by classifying trucks from passenger cars, the average 

misclassification rate for the best 4-feature learning model is about 1.6% for the training data, 

and 4.2% for the testing data.  

Due to the privacy concerns and data availability issues, long traces may not be always 

available. Therefore experiments using short vehicle traces are also conducted. Since short traces 

are more likely to be impacted by specific traffic situation, it is necessary to define multiple 

types of traces and analyze them case-by-case. It was found that particularly for the turning 

movement traces, features such as average speed, standard deviation of speed, maximum 

acceleration/deceleration and standard deviation of acceleration/deceleration are effective to 

classify vehicles. The misclassification rate for the best SVM classifier is about 14.8% for the 

stop-and-go traffic, and 15.6% for the non-stopped traffic. 

The report is comprised of 6 chapters. Chapter 2 reviews existing literature on vehicle 

classification.  Chapter 3 proposes our research methodology, experiments and classification 

results in terms of long traces are also presented. Chapter 4 presents the experiment and 

numerical results using short vehicle traces. Discussions of related issues to the proposed 

methods are presented in Chapter 5, followed by the concluding remarks and future research 

directions in Chapter 6.  
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2. LITERATURE REVIEW 

Vehicle classification using data from existing traffic monitoring and data collection system 

is an extensively studied area. Reviews on this topic were provided by many researchers (e.g., 

Sun, 2000; Mimbela et al., 2000; Benekohal and Girianna, 2003). Categorizations of these 

vehicle classification methods could be based on the characteristics during installation (traffic 

intrusive and non-intrusive) and types of vehicle classifiers (axle configuration, vehicle 

dimensions, and other features). In general, traffic intrusive vehicle classification methods are 

inappropriate for freeways, mainly due to the interference with traffic during installation and 

maintenance; however they may work reasonably well on arterials. Non-intrusive methods, on 

the other hand, are more appropriate for freeway application; however, they may not be suitable 

for wide deployment on arterials, due to their incapability in dealing with stop-and-go traffic and 

their high initial capital costs.  

2.1 Intrusive Vehicle Classification Methods 
Intrusive vehicle classification methods can be done using tubes, loop detectors, magnetic 

sensors, and piezoelectric sensors. Originated in 1920s and still being widely used today for short 

term data collection, pneumatic tubes (Benekohal and Girianna, 2003; Beagan et al., 2007) can 

detect the number of axles of a vehicle. Although portable and easy to deploy, such sensors are 

subject to classification errors if multiple vehicles pass by the tube simultaneously. This is 

particularly a problem for high-volume, high-speed roadway segments.  

Inductive loop detectors and magnetic sensors can be used for vehicle classification by 

detecting vehicle lengths. The classification can be done mainly due to the following equation of 

traffic flow (Coifman and Kim, 2009): 

  ݈ ൌ ݒ ∙  (1)          ݋

Here ݈ is the effective vehicle length, i.e., the summation of the actual vehicle length and the 

detector length, ݒ is the vehicle speed, and ݋ is the on-time of the vehicle, i.e., the time that the 

vehicle is on the detector. As the on-time ݋ can be directly measured from the detectors (i.e., 

from the occupancy), vehicle length can be calculated if the speed is known. Since speeds can be 

measured directly by dual-loops, equation (1) can be applied straightforwardly for dual-loops. 

For single-loops however, accurate estimation of vehicle speeds is the key. Estimating average 

vehicle speeds and volumes of different vehicle classes has been studied in Mikhalkin et al. 

(1972), Pushkar et al. (1994), Dailey (1999), Wang and Nihan (2000), Sun and Ritchie (2000), 
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Coifman (2001), Wang and Nihan (2003 and 2004), and Kown (2003). Coifman and Ergueta 

(2003) suggested the use of the median vehicle on-time instead of the mean and found that the 

results are less sensitive to outliers. More recently, Coifman and Kim (2009) proposed to use the 

vehicle actuation data to estimate the lengths of individual vehicles, with improved classification 

performances. However, as Coifman and Kim (2009) reported, the classification performance 

“degrades during congestion” due to the difficulty of estimating vehicle speeds under congestion. 

More recently, Cheung et al. (2005) proposed vehicle classification methods using single 

magnetic wireless sensors. By classifying vehicles to 7 types (passenger car, SUV, Van, Bus, 

mini-truck, truck, and others), the classification accuracy was shown to be more than 60%. 

Piezoelectric sensors (Mimbela et al., 2000; Benekohal and Girianna, 2003) can be used to 

detect the axle configuration and the weight of a vehicle. Although most frequently used as part 

of a WIM system, piezoelectric sensors can be deployed alone for vehicle classification 

purposes. Similar to pneumatic tubes and inductive loop detectors, the major drawback of 

piezoelectric sensors is the interference with traffic during installation and maintenance. 

Moreover, such sensors are also known to be sensitive to pavement temperatures and vehicle 

speeds.  

It is also possible to classify vehicles at a WIM station according to the 13 vehicle classes 

defined by FHWA. The full installation of WIM however requires multiple detection techniques 

and systems, such as piezoelectric sensors, video cameras, loops, license plate matching, among 

others (FHWA, 2007). As a result, vehicle classification via WIM is currently limited to 

dedicated (and sparse) WIM stations. 

2.2 Non-Intrusive Vehicle Classification Methods 
In recent years, non-intrusive vehicle classification methods (e.g., using radar sensors, 

infrared sensors, acoustic sensors, and computer vision-based sensors) are getting more and more 

popular due to the avoidance of interference with traffic and the dramatic reduction of operation 

and maintenance costs. Microwave radar sensors (Roe and Hobson, 1992; Park et al., 2003; 

Urazghildiiev et al., 2002) are primarily intended to extract vehicle dimensions (e.g. vehicle 

length, general vehicle size, height profile, etc.). Urazghildiiev el al. (2007) proposed a 

classification technique based on down-looking spread-spectrum microwave radar. And the 

classification accuracy is about 85% for five vehicle classes. Compared with other non-intrusive 
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methods, microwave radar sensors are generally insensitive to inclement weather conditions. 

However, such technique is not suitable for stop-and-go traffic.  

Da Costa Filho et al. (2009) propose vehicle classification methods based on infrared 

sensors. Vehicle profiles can be measured by the output signals of the infrared light reflected by 

vehicles. Vehicle classification results can then be obtained by choosing a vehicle template from 

the databank that best matches the measured vehicle profile. Infrared sensors are however 

sensitive to environmental conditions, e.g., atmospheric turbulence and inclement weather. 

Nooralahiyan et al. (1997) use speed-independent acoustic signature of travelling vehicles for 

classification, and the classification result is about 82.4% for four regrouped vehicle classes. 

Similar to radar sensors, acoustic sensors are not suitable for stop-and-go traffic. As mentioned 

in Mimbela et al. (2000), the accuracy acoustic sensor data can be also impacted by cold 

temperatures.  

Compared with other non-intrusive vehicle classification methods, computer vision-based 

methods (Harlow and Peng, 2000; Gupte et al., 2002; Avery et al., 2004; Hsieh et al., 2006), 

have generally more accurate classification results. Such classification methods have high initial 

capital cost and are generally computational expensive. The accuracy of classification is subject 

to errors due to vehicle occlusion, and extreme weather conditions. Moreover, such methods may 

not be applied for large-area data collection due to privacy concerns.  

Table 1 presents a summary of existing vehicle classification techniques, including the types 

of vehicle classifiers, and their corresponding advantages and disadvantages.  

Table 1: Existing vehicle classification techniques 

Technology 

Types of vehicle classifiers Pros & Cons 

Axle 
configuration 

Vehicle length or 
other vehicle 
dimensions 

Other 
features 

Advantages Disadvantages 

Manual 
Observation / 
videography 

x x  
Can obtain detailed classification 

results 
Time & resource consuming; can only be applied 

for short term data collection and limited area 

Pneumatic tubes x 
 

 

Relatively inexpensive; 
automatic classification and 
short term data collection; 

portable 

Interference with traffic; vulnerable to human 
errors during installation; durability problem; 
large errors for high-volume, high speed road 

segments 

Inductive loop 
detectors 

 x  
Relatively inexpensive; 
automatic classification;  

Interference with traffic; high maintenance cost; 
over-estimation of truck volumes; Installation is 

labor intensive and has high failure rate; 
Performance degrades under congestion 



7 
 

Piezoelectric 
treadles 

x   
Relatively inexpensive; 
automatic classification 

Interference with traffic; high maintenance cost; 
sensitive to temperature and vehicle speed; 

vulnerable to human errors during installation 

Radar sensors  x x1 

Non-intrusive; somehow 
inexpensive; automatic 
classification; generally 

insensitive to inclement weather 

Not suitable for stop-and-go traffic 

Infrared sensors x   
Non-intrusive; automatic vehicle 

classification 
Somehow expensive; sensitive to environmental 

conditions;  

Acoustic sensors   x2 
Non-intrusive; automatic vehicle 

classification 
Somehow expensive; sensitive to temperatures; 

not suitable for stop-and-go traffic 

Video camera 
(computer vision-

based) 
 x  

Non-intrusive; automatic 
classification; relatively low 

operation and maintenance costs;  

Sensitive to environmental conditions; high initial 
capital cost; privacy concerns; computational 

expensive;  

WIM x x  
Continuous data collection; 

automatic classification 
Full installation is expensive; limited locations 

1: magnitude and spectrum pattern;  2: Acoustic signature 
 

2.3 Current vehicle classification practice in New York State 
The team were planning to conduct a review of current practice and challenging issues in 

New York State for vehicle classification. By communicating with Expert and Engineers at the 

New York State Department of Transportation (NYSDOT), the team was informed that “all 

classification is done with axle sensors to satisfy the FHWA Scheme F classes of vehicles per 

HPMS (Highway Performance Monitoring System).” The team then concludes that there is no 

need to conduct further review on this matter. 

2.4 Summary 
In summary, existing vehicle classification methods (i) heavily rely on fixed location sensing 

and detection techniques; and (ii) can only collect data at locations determined by existing traffic 

monitoring and data collection systems, which can be very expensive to be applied to wide areas 

(Avery et al., 2005). 

Vehicle classification using mobile sensors may overcome some of the drawbacks of existing 

classification methods, which however will need to face its own challenges. On the one hand, 

Mobile sensors are flexible with respect to where data collection needs to be done since they do 

not require the deployment of additional physical monitoring systems or infrastructure (In this 



8 
 

sense, the proposed mobile data based classification method in this research is non-intrusive). 

Mobile traffic data, e.g., 15-20 minutes long vehicle traces as proposed in this research, also 

contain rich information, such as vehicle speeds and locations, which can be further processed to 

obtain accelerations/decelerations. This permits sophisticated exploration of such information to 

derive accurate and robust vehicle classifiers. On the other hand, mobile data usually represent a 

sample of traffic flow. Although it is shown later in this report it is possible to distinguish 

passenger cars from trucks based on their distinct mobile data features, it will be challenging to 

estimate the volume of each vehicle class. Collection of vehicle trace data may also pose privacy 

concerns which need to be properly addressed. In this research, the feasibility of using short 

vehicle traces for vehicle classification is also studied.  More discussions about the limitations 

and potential future research directions of the proposed methods are provided in Chapter 5 and 

Chapter 6. 

3. CLASSFICATION USING LONG VEHICLE TRACES 

In this chapter, the mobile traffic datasets used in this study are first described. In order to 

perform vehicle classification, features are extracted from the datasets to characterize different 

vehicle classes. The classification algorithms are then developed based on the Support Vector 

Machine (SVM) with quadratic kernel functions. 

3.1 Data Description 
One of the major challenges for vehicle classification using mobile sensors is the lack of 

good quality, comparable and large sample size mobile sensor datasets for different classes of 

vehicles, especially for large trucks.  On the one hand, from the experience of other arterial 

traffic applications, for example real time queue length estimation (Ban et al., 2011) and signal 

timing estimation (Hao et al., 2011), vehicle traces can be extracted from microscopic traffic 

simulations. However, this is not an appropriate approach for vehicle classification, due to the 

fact that vehicle speeds and accelerations/decelerations strictly follow certain pre-defined 

distributions in micro-simulations, which may not reflect the complexity and randomness of real 

driving behavior for different vehicle classes.  As a result, features extracted from micro-

simulation data may lead to erroneous classifications. On the other hand, real world vehicle trace 

datasets for multi-class vehicles are hard to obtain. Ideally, vehicle traces of different classes of 

vehicles need to be collected in a perfectly controlled experiment, that is, from different classes 
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of vehicles driving at the same road and during the same time period.  Such experiment is 

difficult to conduct at the current stage.  

In this research, vehicle traces of delivery trucks and passenger cars are used for binary 

classification. Traces of passenger cars were collected from two field experiments (Ban et al., 

2011) conducted in the Albany, NY area, which are originally dedicated for performance 

measures (e.g. queue length estimation, delay estimation) of signalized intersections. The truck 

trace data were provided by some anonymous logistic companies. We are particularly interested 

in the vehicle traces on arterials. There are some issues with the truck data: (i) the sampling 

frequency for truck data is 3 seconds, while the data for passenger cars were collected every 

second; (ii) information regarding detailed truck classes (e.g., with respect to the FHWA’s 13 

class scheme) is not available due to privacy agreement, which makes it impossible to classify 

multiple truck classes; (iii) speed data are biased: when trucks travel at a speed lower than 2 

meters per second, the vehicle-equipped mobile sensors tend to be automatically turned off; and 

(iv) the level of congestion cannot be inferred from the datasets, due to the low penetration rate 

of mobile data.  

In order to make the two datasets comparable, we (i) truncated truck and passenger car traces 

into samples with similar lengths (15-20 minutes); (ii) reduced the sampling frequency of 

passenger cars to 3 seconds; (iii) use the mobile data for binary classification only (thus detailed 

truck classes are not needed); and (iv) speed information is not used at all in this case. In terms of 

the sample size, there are 52 samples for passenger cars, and 84 samples of trucks. These two 

datasets were further divided into the training dataset and the testing dataset. In particular, about 

50% of passenger cars and 50% of trucks are used for training, and the other 50% of data are 

used for testing.  

These two datasets (for delivery trucks and passenger cars), albeit collected from imperfectly 

controlled experiments (e.g., the level of congestion and experiment sites are not the same), can 

still reflect the underlying behavioral characteristics of trucks and passenger cars on arterials, as 

will be shown later in this report.  

3.2 Feature Extraction 
Speed related features (e.g., the maximum speed, the average and variance of speeds, etc.) 

are the most intuitive features that can be obtained from mobile traffic sensors. However, 

although trucks tend to travel at a lower speed compared with passenger cars, for a relatively 
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long vehicle trace (e.g., 15-20 minutes long, uncongested traffic condition), both passenger car 

and truck may travel at a speed which is close to the design speed. Thus the maximum speed 

may not be a salient feature. Moreover, speed related features are very sensitive to the level of 

congestion: if traffic is very congested, the average and variance of speed tend to be small. 

Different speed related features are showed in Figure 1 and Figure 2.  

In Figure 1 and Figure 2, scatter plots are shown to explore speed related features for 

passenger cars and trucks. Although it seems that speed related features of the two types of 

vehicles can be generally separable, it is noticed that the difference of speed related features of 

passenger cars and trucks contradicts the common sense. For example, Figure 1 shows that 

trucks have higher maximum or average speeds than passenger cars; Figure 2 shows that trucks 

have higher standard deviations of speed than passenger cars. The reason for this is that these 

two datasets were collected at different traffic conditions. As indicated in Ban et al. (2011), 

traces of passenger cars were collected during peak hours; however, most of the truck data were 

collected during off-peak hours. Also truck drivers usually choose to use major arterials, which 

often have higher priority than minor roads. As a result, trucks are less likely to stop due to 

traffic signals. In addition, such contradictions may be due to the aforementioned bias of the 

truck speeds: since truck speeds lower than 2 meter per second cannot be collected, the 

calculated average truck speed will be higher than what it should be. Therefore, speeds are not 

used for classification in this research. Nonetheless, speed related features may still be useful for 

classification if data are collected from more controlled experiments (i.e., passenger car and 

truck data are collected at the same location and during the same time period).  

 
Figure 1: Average speed and standard deviation of speed  



11 
 

 
Figure 2: Maximum speed and coefficient of variance for speed  

Different from speed related features, acceleration and deceleration characteristics are not 

very sensitive to the level of congestions. Figure 3 is a scatter plot of the maximum acceleration 

and deceleration rates for trucks and passenger cars. It is found that passenger cars generally 

have larger maximum acceleration and deceleration; however, trucks may occasionally have 

large accelerations and decelerations as well. This is particularly true for a long trace: the longer 

the trace is, the more likely the largest acceleration and/or deceleration rates may occur.  

Since the maximum acceleration and deceleration are not very salient features, we explore 

the distributions of accelerations and decelerations. The cumulative histograms of accelerations 

and decelerations of a sample passenger car are depicted in Figure 4, while the counterparts for a 

sample truck are shown in Figure 5. By comparing Figure 4 with Figure 5, it can be found that 

passenger cars have a higher probability to exhibit higher acceleration/deceleration rates than 

trucks. As shown in the two figures, for passenger cars, 35% of accelerations and decelerations 

are larger than 1 mpss; however, for trucks, these numbers are less than 10%. In this research, 

four features are extracted to capture the variations of accelerations and decelerations: the 

proportion of accelerations larger than 1 mpss, the proportion of decelerations larger than 1 

mpss, the standard deviation of accelerations, and the standard deviation of decelerations. Scatter 

plots for these four features are showed in Figure 6 and Figure 7. Notice that the proportion 

features in Figure 6 are considered to be the most salient features. 
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Figure 3: Maximum acceleration and deceleration 

 
Figure 4: Cumulative histogram of accelerations and decelerations (passenger cars) 

 
Figure 5: Cumulative histogram of accelerations and decelerations (trucks) 
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Figure 6: Proportion of accelerations and decelerations larger than 1mpss 

 
Figure 7: Standard deviation of accelerations and decelerations 

3.3 Kernel SVM for Vehicle Classification 
With all the features being proposed in Section 3.2, the next step is to find the best 

combination of the features that can provide the most robust classification results. Here we use 

SVM with quadratic kernel for binary classification. SVM is a widely used supervised learning 

technique which can be applied for binary and multi-class classification (Vapnik, 1995). 

Comprehensive surveys of SVM can be found in Burge (1998) and Cristianini and Shawe-Taylor 

(2000). Traditional SVM is a linear and binary classifier, which aims to find the model 

parameters by maximizing the margin, and therefore creating the largest distance between the 

separating hyperplane and the instances on either side of it.  

Considering a training datasets of N samples: ሺݔଵ, ,ଵሻݐ … , ሺݔ௜, ,௜ሻݐ … , ሺݔே,  ௜ܴ߳ௗ isݔ ேሻ. Hereݐ

the input (i.e., the vector of extracted features in Section 3.2) of the ݅th training sample, with 
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,௜߳ሼ1ݐ െ1ሽ as the corresponding label, depending on its class. To make things clear, hereafter in 

this report, we use 1 for trucks and -1 for passenger cars. In a linear form, the decision function 

can be defined as, where ݔ ൌ ሺݔ௜ሻ௜ୀଵ,⋯,ே: 

ሻݔሺݕ ൌ ܵ݅݃݊ሺ்߮ݓሺݔሻ ൅ ܾሻ 

The function	determines on which side of the separating hyperplane (்߮ݓሺݔሻ ൅ ܾ ൌ 0), the 

sample x will reside. That is, a vehicle is classified as a truck if ݕሺݔሻ ൌ ሻݔሺ்߮ݓ ൅ ܾ ൒ 0 and a 

passenger car otherwise. Here  ܴ߳ݓ௠ and ܾܴ߳ are parameters of the decision function, and  

߮ሺݔሻ denotes a fixed feature space transformation, which transforms a vector ܴ߳ݔௗ in the 

original feature space to the transformed feature space in ܴ௠. The reason for this transformation 

is to deal with classification problems that are not linearly separable (Lauer and Bloch, 2008). In 

this case, data need to be mapped into a higher dimensional feature space in which the 

transformed data are linearly separable in the feature space. In SVM, the optimal solution 

ሺݓ∗, ܾ∗ሻ is chosen to be the one that maximizes the margin. For a separable case, a margin is 

defined as the minimum distance between the points of the two classes, which is measured 

perpendicularly to the separating hyperplane. And this can be written as a Quadratic 

Programming (QP) problem (Burge, 1998): 

௪,௕݊݅ܯ
ݓ்ݓ
2

																																																																																				ሺ2 െ 1ሻ 

.ݏ .ݐ ௜ሻݔሺ்߮ݓ௜ሺݐ								 ൅ ܾሻ ൒ 1, ݅ ൌ 1,⋯ ,ܰ																												ሺ2 െ 2ሻ 

Here ݓ்ݓ is the reciprocal of the margin between the two classes, and the constraints make 

sure that each training sample ݔ௜ is labeled correctly as ݐ௜. To deal with non-separable data, the 

above problem can be extended by introducing the concept of soft margin that accepts some 

misclassification of the training samples. To accomplish this, a set of slack variable ߦ௜ and a 

control variable C (see equations below) are incorporated to penalize the misclassified data 

points. Notice that parameter C is used to control the trade-off between the penalization of the 

errors and the maximization of the margin, which is normally determined using cross validation.  

௪,௕,క݊݅ܯ
ݓ்ݓ
2

൅ 										௜ߦ෍ܥ

ே

௜ୀଵ

																																														ሺ3 െ 1ሻ 

.ݏ ௜ሻݔሺ்߮ݓ௜ሺݐ																.ݐ ൅ ܾሻ ൒ 1 െ ,௜ߦ ݅ ൌ 1,⋯ ,ܰ				ሺ3 െ 2ሻ 

௜ߦ																							 ൒ 0																																																															ሺ3 െ 3ሻ 
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This problem can be equivalently solved by maximizing the dual lagrangian with respects to 

the lagrangian multipliers ߙ௜ (Burge, 1998): 

ሺܽሻܮ	ݔܽܯ ൌ෍ߙ௜

ே

௜ୀଵ

െ
1
2
෍෍ߙ௜ߙ௝ݐ௜ݐ௝

ே

௝ୀଵ

ே

௜ୀଵ

݇൫ݔ௜, ሺ4											௝൯ݔ െ 1ሻ 

.ݏ ௜ݐ௜ߙ෍.ݐ ൌ 0	

ே

௜ୀଵ

																																																																		ሺ4 െ 2ሻ	 

ܥ ൒ ௜ߙ ൒ 0																																																																											ሺ4 െ 3ሻ 

Here ݇൫ݔ௜, ௝൯ݔ ൌ ߮ሺݔ௜ሻ ∙ ߮൫ݔ௝൯ is the so-called the kernel function. The use of kernel 

functions to avoid carrying out ߮ሺ. ሻ explicitly is known as the “kernel trick” (Cristianini and 

Shawe-Taylor, 2000). Quadratic kernels are used in this research, namely, ݇൫ݔ௜, ௝൯ݔ ൌ

ሺݔ௜
௝ݔ் ൅ 1ሻଶ. After solving the above problem, the resulting decision function can then be given 

as: 

ሻݔሺݕ ൌ ܵ݅݃݊ሺ෍ ,ݔ௜݇ሺݐ௜ߙ
ఈ೔வ଴

௜ሻݔ ൅ ܾሻ 

Here ݔ௜ corresponds to the support vectors (SVs) - those training data points with non-zero 

lagrangian multipliers (ߙ௜ ൐ 0), and x is a testing data point. It can be noticed that only a small 

proportion of training data (i.e., SVs) are retained in the classifier, thus the classification task has 

been greatly simplified. We also applied other machine learning techniques (K-means, Linear 

Discriminant Analysis, among others) to our vehicle classification problem, and it was found that 

SVM out-performs other methods.  

3.4 Experiment and Numerical Results 
In this chapter, SVMs with quadratic kernels are used for binary classification. Based on the 

classification results, different combinations of features are evaluated. Firstly, the classifier is 

trained using the proportions of acceleration and deceleration larger than 1mpss. These two 

features are considered as the most salient for vehicle classification. Figure 8 to Figure 10 

indicate the classification results for both training and testing datasets (circles for training and 

asterisks for testing), including misclassification rate, false positive and false negative. Notice 

that the misclassification rate is defined as the ratio of the number of misclassified samples and 

the total number of samples, false positive is defined as the number of passenger cars being 

misclassified as trucks, and false negative is defined as the number of trucks being misclassified 
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as passenger cars. As previously mentioned, the control variable C for soft margin SVM needs to 

be decided using cross validation. Therefore the classification results are shown for different 

values of C. It turns out that C does not impact the classification performance significantly. In 

this report, the values of C that produces the best results for different cases are selected, which 

are shown in Table 2. Moreover, in order to alleviate the impacts of the sampling scheme of 

training and testing data, 20 times of random sampling are performed on the original datasets. 

Since the testing results are more important to us, Figure 8 to Figure 10 show the 20 randomly 

sampling results for the testing dataset using asterisks. The random plots for training datasets are 

not showed in this figure, and the average results are depicted using solid curves with circles. It 

can be observed from the figures that: (i) the average misclassification rate for testing dataset is 

about 11.4%, which is considered to be relatively high, especially for binary classification; and 

(ii) the false positive rate is found to be larger than the false negative rate, meaning that 

passenger cars are more likely to be misclassified as trucks. For a purpose of illustration, the 

SVM classification results using the proportions of accelerations and decelerations (2 features) 

are depicted in Figure 11. It is clear that the separating line is nonlinear, which is the optimal 

solution of the SVM model (3) defined previously.  

 
Figure 8: Misclassification rate (proportion of acceleration and deceleration) 
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Figure 9: False positive (proportion of acceleration and deceleration) 

 
Figure 10: False negative (proportion of acceleration and deceleration) 

 
Figure 11: Classification results (proportion of acceleration and deceleration) 

More features are then incorporated into the classifier. Figure 12 to Figure 14 depict the 

classification results for a 4-feature classifier, namely, the proportions of accelerations and 

decelerations larger than 1mpss, plus the standard deviations for accelerations and decelerations. 

Similarly, the results for a 6-feature classifier (the 4-feature classifier plus the maximum 

accelerations and decelerations) are showed in Figure 15 to Figure 17.  
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Figure 12: Misclassification rate (proportions and standard deviations) 

 
Figure 13: False positive (proportions and standard deviations) 

 
Figure 14: False negative (proportions and standard deviations) 
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Figure 15: Misclassification rate (6-feature classifier) 

 
Figure 16: False positive (6-feature classifier) 

 
Figure 17: False negative rate (6-feature classifier) 
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Table 2: Feature selection and classification results (long vehicle traces) 

No. Features 
Number 

of 
features 

Value 
of 

C(C+) 

Symmetric penalty cost  Asymmetric penalty cost  

Misclassification rate 
(training) 

Misclassification 
rate (testing) 

False 
positive 
(testing) 

False 
negative 
(testing) 

Misclassification 
rate (training) 

Misclassification 
rate (testing) 

False 
positive 
(testing) 

False 
negative 
(testing) 

1 
Max 

ACC/DECEL 
2 

60 
31.31% 43.28% 17.50 13.50 33.57 46.97 16.50 17.00 

2 

Proportion of 
ACC/DECEL 

larger then 
1mpss 

2 

10 

11.44% 10.90% 5.55 1.80 11.35% 11.67% 5.20 2.65 

3 
Standard 

deviation of 
ACC/DECEL 

2 
300 

33.34% 37.52% 16.40 8.70 35.13% 37.90% 15.55 9.70 

4 
Max ACC/ 
DECEL + 

proportions 
4 

10 
8.58% 13.06% 5.20 3.60 8.73% 13.42% 5.15 3.90 

5 

Max 
ACC/DECEL+ 

standard 
deviations 

4 

60 

29.57% 41.06% 16.25 11.20 29.63% 44.32% 14.90 14.70 

6 
Proportions + 

standard 
deviations 

4 
70 

1.62% 4.21% 2.00 0.90 1.43% 4.59% 2.10 1.05 

7 All six features 6 20 0.65% 4.49% 2.00 1.10 0.66% 4.86% 2.20 1.15 

 

By incorporating more knowledge into the classifier, the 4-feature and 6-feature SVM 

models have overall better classification results. The results of all different combinations of 

features are summarized in Table 2 (for symmetric penalty cost; the asymmetric penalty cost is 

explained in Chapter 5). Among all different combinations, the 4-feature (case 6) and 6-feature 

(case 7) classifiers have the best performance. The average misclassification rate of case 6 is 

about 1.6% for training dataset, and 4.2% for testing dataset.  Compared with the results of case 

6, the misclassification rate of the 6-feature classifier (case 7) are 0.7% for the training data, and 

4.5% for the testing data. This marginal improvement (or even degradation) implies that 

maximum accelerations and decelerations are not salient features for vehicle classification.  

4. CLASSIFICATION USING SHORT VEHICLE TRACES 

In real world situation, due to privacy and data availability issues, long vehicle traces may 

not be always available. In this chapter, we explore the possiblity of using short vehicle traces to 

characterize vehicle classes. SVM-based models are still applied in this Chapter. However, since 

short traces contain less information and are subject to specific traffic situations, different data 

mining strategies should be applied, and therefore different features should be considered.    

4.1 Data Description 
In terms of classification using short vehicle traces, a major part of the raw data are the same 

as the datasets described in the previous chapter. However, these datasets are processed to obtain 

short vehicle traces around intersections. According to Sun et al., (2011; 2012), collecting 

discrete short vehicle traces within Virtual Trip Line (VTL) zones can help protect privacy, 
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while intersection modeling needs can be simultaneously satisfied. In this chapter, vehicle long 

traces are truncated to obtain discrete short traces, corresponding to the VTL zone concept. 

Furthermore, since the two passenger car datasets used in the previous chapter involves mainly 

turning movements, we take another dataset collected at Wolf Rd., Albany NY to model the 

through movement traces.  

Compared with using long traces, it is relatively hard to perform vehicle classification using 

short traces. This is because first short traces contain less information. For instance, consider a 3 

seconds sampling frequency, a 100-foot long trace may only include several data points. 

Therefore some aggregated statistics (e.g. proportions of acceleration/deceleration larger than 

1mpss) are no longer stable. Secondly, short traces are subject to specific traffic conditions. For 

example, different traffic states (stop-and-go behavior, level of congestion) and different 

movement types (turning vs. through movement) may result in significant different patterns. In 

this regard, it is necessary to define multiple types of traces and analyze them case-by-case. 

Table 3 summarizes a list of the scenarios that are analyzed. In Table 3, the “stop-and-go” 

scenario refers to the cases that vehicles stop at the intersection and proceed again. The reason 

why we categorize the scenarios as stop-and-go traffic and non-stopped traffic is because we 

want to capture the stop-and-go behavior of the vehicles. A Vehicle trace with stop-and-go 

behavior is more likely to have lower speed and include major acceleration and deceleration 

processes. Here one sample corresponds to one short vehicle trace (20-60 seconds long, 

depending on the specific traffic condition).  

Table 3: Types of short vehicle traces 

Scenario Sample size (passenger car/ truck) 

A. Stop-and-go, turning movement 104/132 

B. Stop-and-go, through movement 143/167 

C. Non-stopped, turning movement 57/142 

D. Non-stopped, through movement 5/253 

 

As aforementioned, the passenger car datasets and truck datasets are collected from different 

traffic conditions. To make them more comparable, we (i) truncated truck and passenger car 

traces into samples with similar lengths (20-60 seconds, corresponds to the VTL zone concept); 

(ii) reduced the sampling frequency of passengers cars to 3 seconds; (iii) kept speed information 
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but only used the data points within 5m/s-15m/s for feature extraction. This is to rule out the 

impacts of different control speeds among different datasets and biased truck speed data (as 

described in Chapter 3). Different from the approach taken in chapter 3, here all the samples are 

used as the training data, and the target of the SVM-model is to find a classifier that can best 

explain the training samples. This is partially because the datasets are limited. More datasets 

need to be collected in the future to construct independent training and testing samples in this 

regard. 

4.2 Feature Extraction 
Due to the difference between short and long vehicle traces, the features extracted from short 

vehicle traces are also different. Below we describe the features we used for vehicle 

classification using short traces.  

(1) Stopped (or not) 
(2) Average speed  
(3) Standard deviation of speed 
(4) Coefficient of variance of speed 
(5) Maximum acceleration 
(6) Maximum deceleration 
(7) Standard deviation of acceleration 
(8) Standard deviation of deceleration 

Most features are self-explanatory, note that the first feature is mainly used to categorize 

different types of traces (stop-and-go or non-stopped), which is not an input to the classification 

model. For passenger cars, the data points with low speed are recorded. Therefore we know 

exactly if a passenger car stopped or not. For trucks, since the mobile sensor devices will be 

automatically turned off when the speed is low (less than 2 m/s), we have to infer if the truck 

stopped or not. First, the data points with low speed (2m/s to 5m/s) were sorted and the data 

point which have minimum speed can be detected. We then looked at the (time) gaps between 

this data point and its neighboring data. If any of the gaps are larger than 5 seconds, we define 

this vehicle as a stopped one. Combinations of features (2) to (8) are the inputs to the SVM 

model. Here features (2) – (8) were calculated for data points with speeds ranging from 5m/s to 

15m/s. 

 For scenario A (turning movement, stop-and-go), the scatter plots of the features are shown 

in Figure 18 to Figure 21. It can be observed from these figures that passenger cars tend to have 

larger average speeds, larger maximum accelerations/decelerations, and larger standard 
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deviations in terms of speeds and accelerations/decelerations. The observations are consistent 

with our real life experience. Note that compared with the extracted average speed information 

using long traces (see Figure 1), the speed patterns in Figure 18 are exactly the opposite. One of 

the reasons is because short vehicle traces only contain the data points around an intersection. 

The data points at the link segments (usually with higher speed, depends on the actual traffic 

condition) are not considered. The other reason is that the average speed is calculated for the data 

points with speeds ranging from 5m/s to 15m/s. Data points with higher speed (caused by larger 

control speed or less congested traffic condition for the truck dataset) do not contribute to the 

extracted feature. Although the two vehicle classes cannot be strictly separated using any 

individual feature, a combination of the features would work as a fairly effective classifier. 

Classification results regarding this scenario will be provided in chapter 4.3.  

 
Figure 18: Average speed (turning movement, stop-and-go)  

 
 
Figure 19: Standard deviation and coefficient of variance of speed (turning movement, stop-and-go) 
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Figure 20: Maximum acceleration/deceleration (turning movement, stop-and-go) 

 
 

Figure 21: Standard deviation of acceleration/deceleration (turning movement, stop-and-go) 

For scenario B (through movement, stop-and-go), the scatter plots of the features are shown 

in Figure 22 to Figure 25. In this scenario, the extracted features seem to contradict the common 

sense. For example, the average speed, maximum acceleration/deceleration, deviations of speed 

for passenger cars are smaller than the counterparts of trucks. This is mainly because the through 

movement (passenger car) dataset is very congested, the vehicles tend to proceed at a relatively 

low speed and the driving behavior of passenger cars tend to be homogeneous. Major 

acceleration/deceleration processes can hardly be revealed in this case. Thus, it can be concluded 

that it is hard to perform vehicle classification using short traces collected during very congested 

regime. Since the extracted features do not make much sense, classification techniques are not 

applied for this scenario. More experiments are needed in the future to justify the feasibility of 

vehicle classification under this specific scenario.  
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Figure 22: Average speed (through movement, stop-and-go) 

 
 

Figure 23: Standard deviation and coefficient of variance of speed (through movement, stop-and-

go) 

 

Figure 24: Maximum acceleration/deceleration (through movement, stop-and-go) 
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Figure 25: Standard deviation of acceleration/deceleration (through movement, stop-and-go) 

The scatter plots of features extracted for scenario C (turning movement, non-stopped) are 

similar to those of scenario A. As illustrated in Figure 26 to Figure 29, all the features are in 

general salient. The classification results regarding this scenario are provided in chapter 4.3. 

 

Figure 26: Average speed (turning movement, non-stopped) 
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Figure 27: Standard deviation and coefficient of variance of speed (turning movement, non-

stopped) 

 

Figure 28: Maximum acceleration/deceleration (turning movement, non-stopped) 

 

Figure 29: Standard deviation of acceleration/deceleration (turning movement, non-stopped) 
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For scenario D (through movement, non-stopped), there are not many samples particularly 

for passenger cars. This is because the through movement dataset of passenger cars are very 

congested. Most vehicles tend to stop at the intersection due to the traffic signal. It is therefore 

very hard to perform classification based on such imbalanced and biased datasets. More 

experiments are needed in the future to justify the feasibility of vehicle classification under this 

specific scenario. 

4.3 Classification Results 
SVM with quadratic kernels are applied for binary classification, using short vehicle traces. 

With respects to different combinations of the features, the classification results for Scenario A 

and Scenario C are shown in Table 4. Due to the aforementioned issues with the through 

movement dataset of passenger cars, classification techniques are not applied for Scenario B and 

Scenario D. Further experiments are needed when appropriate datasets are available.  

Table 4: Classification results (short vehicle traces) 

Scenario Features Value of C Misclassification Rate
A. Turning, stop-and-go  5:8 40 20.8% 

2, 5:8 500 19.5% 
2:8 50 15.3% 
2:3,5:8 10 14.8% 

C. Turning, non-stopped 5:8 20 26.1% 
2, 5:8 500 21.6% 
2:8 200 15.6% 
2:3, 5:8 500 15.6% 

 

For both Scenario A and Scenario C, using only acceleration/deceleration related features 

(feature 5 to feature 8) provides reasonable classification results. The misclassification rate is 

20.76% for stop-and-go traffic and 26.13% for non-stopped traffic, respectively. The reason 

stop-and-go traffic has a better classification result is because major acceleration/deceleration 

process are more likely to be revealed in stop-and-go traffic. For non-stopped traffic, passenger 

cars and trucks may decelerate/accelerate mildly, which cannot fully reflect their corresponding 

vehicle characteristics. The same conclusion can be reached by comparing the classification 

results of the two scenarios using other features.  

On top of the acceleration/deceleration related features, speed related features (i.e., average 

speed, standard deviation of speed and coefficient of variance of speed) are incorporated into the 

classification model. The results indicate that incorporating the average speed and standard 
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deviation of speed can improve the classification results. However, further improvement is not 

observed by adding the coefficient of variance of speed as another feature.  

The classification result for the best combination of the features is 15.25% for Scenario A, 

and 15.58% for Scenario C. The overall classification results using short vehicle traces are not as 

good as those obtained using long traces. Classification using (short) through movement traces 

need to be carefully studied as well in the future. Since trucks need to be maneuvered carefully 

(e.g. much slower during the course of turning), the research group conjectures that the patterns 

of through movement traces will be less significant. However, the conjecture is currently hard to 

be justified due to the lack of appropriate datasets. 

5. DISCUSSIONS 

In this chapter, some important issues particularly regarding the imbalanced dataset and the 

privacy concerns related to vehicle classification using mobile sensor are discussed.  

5.1 Imbalanced dataset 
It should be noticed that in the experiment (e.g. using long vehicle traces), the number of 

truck samples is larger than the number of passenger car samples. As a result, in Table 2, false 

positive is usually much larger than false negative, indicating that all these classifiers provide 

better estimation for trucks than passenger cars (because there are more truck samples for 

training). This is the so-called class imbalance problem, which has been extensively studied in 

the machine learning field (e.g., Veropoulos et al., 1999; Wu and Chang, 2003; Akbani et al., 

2004; Lauer and Bloch, 2008; Wang and Japkowicz, 2010). Considering a very imbalanced 

dataset (e.g., for the binary vehicle classification problem, the number of samples for one class 

can be much larger than the other class), most standard classification method will tend to provide 

better estimation for the majority class. For classic SVM models, as pointed out by Wu and 

Chang (2003), the majority class will lie further away from the “ideal” boundary than the 

minority class.  If the misclassification costs are symmetric (i.e., the performance of the classifier 

is only evaluated using the overall misclassification rate), the imbalanced dataset will not cause 

any problem. This is because the objective of a classic SVM model (e.g., equation (3)) is simply 

to optimize for the overall misclassification rate by maximizing the margin of the two classes. 

However, if the misclassification costs are asymmetric, user may prefer to lower one type of 

error (such as false positive) over the other type (such as false negative). In this case, a good 

overall performance, as most classic SVM models would provide, does not necessarily mean the 
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preferred performance (such as to minimize the false positive error) can be satisfactorily 

achieved.  

In real world applications, the collected datasets for different vehicle classes could be very 

imbalanced (usually there are more passenger cars than trucks, although our collected samples do 

not reflect this fact) and the costs of misclassification could be asymmetric (e.g., for the revenue 

generating purpose at a toll booth, it is probably more preferable to lower the error of trucks 

misclassified as passenger cars than passenger cars misclassified as trucks). Therefore, the class 

imbalance problem needs to be carefully addressed. As summarized in Akbani et al. (2004), 

there are two general approaches to deal with this problem. One is to pre-process the training 

data by either under-sampling the majority class or over-sampling the minority class. The 

drawbacks for such approach are: (i) data after over-sampling or under-sampling cannot be 

considered as randomly sampled, therefore cannot represent the true composition of the traffic 

flow; and (ii) for SVM in particular, removing redundant points (non-support vectors) has no 

effect to the learned separating hyperplane and removing informational points (support vectors) 

may impact the accuracy of the model. In this research, therefore, we consider the second 

approach to address the imbalanced dataset issue by introducing different penalty costs for the 

two classes of instances (called positive and negative instances depending on their signs), as 

shown below. Two weighing parameters ܥା and ିܥ are assigned for positive (trucks) and 

negative (cars) instances respectively. By assigning a larger value to ିܥ  than ܥା, the boundary 

will be pushed closer towards the positive instances, leading to a smaller false positive error. 

௪,௕,క݊݅ܯ
ݓ்ݓ
2

൅ ାܥ ෍ 	௜ߦ

ேశ

ሼ௜|௧೔ୀାଵሽ

൅ ିܥ ෍ ௜ߦ

ேష

ሼ௜|௧೔ୀିଵሽ

												ሺ	5 െ 1ሻ 

.ݏ ௜ሻݔሺ்߮ݓ௜ሺݐ								.ݐ ൅ ܾሻ ൒ 1 െ ,௜ߦ ݅ ൌ 1,⋯ ,ܰ											ሺ5 െ 2ሻ 

௜ߦ														 ൒ 0																																																																									ሺ5 െ 3ሻ 

We implement the above approach (asymmetric penalty cost) in this research to illustrate 

how the imbalance of false positive and false negative results may be addressed. As shown in 

Table 2, for the original experiments (symmetric penalty cost), false positive is found to be larger 

than false negative. If we want to make them more balanced, we can use the original cost as 

shown in the table for the penalty cost of trucks (i.e., ܥା for positive instances) and pick a larger 

penalty cost for ିܥ for passenger cars. In this experiment, we select ܥ2=ିܥା. The results are 

shown in the “asymmetric penalty cost” columns in the table. We can see that by selecting 
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different penalty costs for the two classes, the overall performance is sacrificed a bit, i.e., the 

overall misclassification rates increase a little for all cases. However, the false positive errors are 

reduced while the false negative errors are increased, indicating that the false positive and false 

negative errors become more balanced. In practice, how to select the best combinations of 

 ା is not a trivial task. However, as shown here, the model (5) is able to address theܥ	and	ିܥ

issue of imbalanced datasets if ିܥ	and	ܥା can be properly selected. 

5.2 Privacy concerns 
The use of mobile traffic data may pose privacy concerns (Dotzer et al., 2005; Hoh and 

Gruteser, 2007). Consider a second-by-second 15-20 minute long trace on an arterial road, the 

adversary can easily use the vehicle trace for vehicle re-identification, therefore violating 

location privacy. Different approaches have been proposed to protect privacy using GPS traces 

(Rass et al., 2003; Tang et al., 2006; Kargupta et al., 2003; Hoh et al., 2008; Zan et al., 2011; Sun 

et al., 2011, 2012). Particularly for the data collection process of vehicle classification 

applications, reduction of sampling frequency (e.g., using 3-second rather than second by second 

mobile data) and the use of short traces (hundreds-feet-long vehicle traces) can help protect 

privacy. However, since there is always a trade-off between privacy protection and the data 

needs for transportation modeling (Ban and Gruteser, 2012; Sun et al., 2012), the performance of 

the classifiers that are trained using reduced sampling frequency and short traces (as indicated in 

the classification result session in chapter 4) may also be degraded. This is because major 

acceleration and deceleration processes are less likely to occur in short traces and accelerations 

and decelerations tend to be averaged for mobile data with reduced sampling frequency.  

The results obtained using long traces in this report provide the “best” case in terms of how 

one can expect from classifying vehicles using mobile data. The results obtained using short 

traces on the other hand provide a “second best” case with respects to a privacy-aware vehicle 

classification method. Further research is needed to investigate “how short” and “how sparse” 

the vehicle traces should be collected so that a proper trade off can be reached for privacy 

protection and satisfactory performance of vehicle classification.  

6. CONCLUSIONS AND FUTURE RESEARCH 

In this research, the feasibility of using mobile traffic sensors for binary vehicle classification 

on arterial roads is studied. Features (e.g. speed related, acceleration/deceleration related, etc.) 

were extracted from vehicle traces (passenger cars, trucks) collected from real world arterial 
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roads. These features were then applied for binary classification using the SVM with quadratic 

kernel functions. For classification using long traces the proportions of accelerations and 

decelerations larger than 1mpss and the standard deviations of accelerations and decelerations 

are the most effective features. By classifying general trucks from passenger cars, the average 

misclassification rate for the best 4-feature SVM model is about 1.6% for the training data, and 

4.2% for the testing data. For classification using short traces, it is necessary to define multiple 

types of traces and analyze them case-by-case. It was found that particularly for the turning 

movement traces, features such as average speed, standard deviation of speed, maximum 

acceleration/deceleration and standard deviation of acceleration/deceleration are fairly effective 

to classify vehicles. The misclassification rate for the best SVM classifier using short traces is 

about 14.8% for the stop-and-go traffic, and 15.6% for the non-stopped traffic. Issues for the 

imbalanced datasets and privacy concerns were also discussed. 

The proposed research only shows the feasibility of using mobile sensor data for binary 

vehicle classification. In addition to the issues discussed in Chapter 5, we summarize the possible 

future research directions as follows: 

 The models developed in this research are only tested using limited mobile datasets 

on arterial streets. More mobile datasets for wide areas need to be collected to further 

test and validate the models. As long as the traffic is not very congested, we suspect 

that the proposed methods will not be very sensitive to the traffic volume. Collecting 

more mobile data will also help us to further verify whether this is true.  

 Due to limitations of the collected data, we only showed that it is possible to classify 

two vehicle classes: passenger cars and trucks. Future research is needed to explore 

the feasibility of using mobile data for multi-class vehicle classification (e.g., 

according to the FHWA’s 13 classes). Based on our current experience, it does not 

seem likely that mobile data can be used to distinguish all 13 vehicle classes. 

Therefore it is interesting to see how many and what groups of vehicle classes can be 

identified by using mobile data only. The proposed SVM-based classification 

methods have the potential to be extended for this purpose since they are capable of 

classifying data into multiple groups (instead of only two). 

 The next un-answered question is how to estimate the volume of each vehicle class 

together with their classification information. A straightforward way to do this, if the 
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penetration rate for each vehicle class is available, is to infer the total volume for each 

vehicle class based on its observed volume and the penetration rate. This however can 

be expected to be coarse, especially when the penetration of mobile data is small and 

varies significantly over time or location (which is the case today). More 

sophisticated methods need to be developed to provide better estimation of vehicle 

volumes for each class. 

 As discussed in Section 4, due to data limitations, classification using short through 

movement traces cannot be conducted in this research. Further research is 

recommended to collect specific short through movement traces under various traffic 

conditions and develop classification methods to see if vehicle classes can be 

distinguished using such short traces. 

 Due to privacy concerns, the performance of the vehicle classifiers needs to be tested 

using different sampling frequency and trace length. The use of “short traces” sounds 

particularly interesting as this will greatly enhance the privacy of individual vehicles 

(Sun et al., 2011; Zan et al., 2011). However, this needs to be further justified using 

other datasets (especially regarding the through movement traces) collected in 

controlled field experiments.  
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