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1 Abstract 
This exploratory study investigates the potential of developing an Eco-Driving 
application that utilizes an eco-cruise control (ECC) system within state-of-the-art car-
following models. Roadway grade is one of the major variables that affect vehicle fuel 
consumption levels. On upgrade sections, vehicles utilize additional power to overcome 
the grade resistance, thus consuming more fuel than under normal conditions. Typical 
cruise control systems can consume excessive fuel by trying to maintain a preset speed 
when the vehicle encounters hilly terrain. If a vehicle tries to maintain a preset speed on a 
steep uphill section, the vehicle could consume significant amounts of fuel and produce 
significant greenhouse gas emissions. Thus energy-efficient operations on hilly roads 
could produce significant savings in fuel consumption usage. The proposed research 
focuses on integrating predictive cruise control and optimal vehicle acceleration and 
deceleration controllers within car-following models to minimize vehicle fuel 
consumption levels. This developed system makes use of topographic information, 
spacing to lead vehicle, and a desired (or target) vehicle speed and distance headway as 
input variables. The results of the exploratory study show that the proposed system can 
significantly reduce vehicle fuel consumption levels while maintaining reasonable 
vehicle spacing distances. One of the test vehicles, a Toyota Camry, saved 27 percent in 
fuel consumption with an average spacing of 48 m along a study section of Interstate 81. 
The study also demonstrates that vehicle operations at lower power demands enhance 
vehicle fuel economy (up to 49 percent) but not as significantly as the use of the ECC 
system (which improves fuel economy by up to 82 percent). The study also demonstrates 
that ECC-equipped vehicles benefit following vehicles. In particular, following vehicles 
significantly decrease their fuel consumption level just by following the lead ECC-
equipped vehicle.  

  

2 Introduction 
The transportation sector is responsible for nearly two-thirds of the total gasoline 
consumption in the United States, so the potential benefits of such a system are 
significant. Even small fuel consumption reductions could significantly reduce 
greenhouse gas (GHG) emission levels and increase fuel cost savings.  

This study demonstrates the feasibility of an Eco-Driving application that would improve 
vehicle fuel economy and reduce GHG emissions. In support of a proposed full study, 
this exploratory study focused its efforts on developing an eco-cruise control system 
(ECC) within state-of-the-art car-following models. The feasibility of the proposed 
system was evaluated using a computer simulation to compare the proposed system to 
data from real driving. Because CO2 emissions are directly associated with fuel use, the 
results presented in this study are also applicable to vehicle tailpipe CO2 emissions. 

There are several variables that affect vehicle fuel consumption levels. Roadway grade is 
one of the major variables that affect vehicle fuel consumption levels. On upgrade 
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sections, vehicles utilize additional power to overcome the grade resistance, thus 
consuming more fuel than under normal conditions. Typical cruise control systems can 
consume excessive fuel by trying to maintain a preset speed when the vehicle encounters 
hilly terrain. If a vehicle tries to maintain a preset speed on a steep uphill section, this 
segment could consume significant amounts of fuel and produce significant greenhouse 
gas emissions. Thus energy-efficient operations on hilly roads could produce significant 
savings in fuel consumption usage. 

A recent study investigated the potential for developing ECC systems that will allow 
vehicles to travel within a desired speed range instead of driving at a single desired speed 
regardless of the fuel economy implications.(1) The system utilizes the gravitational force 
to allow vehicles to travel at higher speeds (within the upper bound of the desired speed) 
while traveling downhill and travel at lower speeds (within the lower bound of the 
desired speed) while traveling upgrade sections. The study used vehicle powertrain and 
fuel consumption models that it developed to evaluate such an application. The ECC-
equipped vehicle drove a 26-mi section of Interstate 81 between Roanoke and 
Blacksburg, Virginia. The results are very promising and indicate potential savings of up 
to 10 percent in fuel consumption depending on the input speed range.  

Another study also developed an eco-predictive cruise control system that utilizes 
topographical data to develop proactive vehicle control strategies that minimize the 
vehicle’s fuel consumption.(2)  The system incorporates ECC system logic through the use 
of a moving-horizon dynamic programming algorithm with powertrain and fuel 
consumption models to determine the optimal throttle level, speed, and gear shift points 
with the objective of minimizing the vehicle’s fuel consumption. However, to more easily 
interpret the system’s performance, the eco-predictive cruise control system assumed no 
interference by other vehicles. 

The study focuses on developing predictive ECC algorithms within state-of-the-art car-
following models that integrate predictive cruise control that can optimize vehicle 
acceleration and deceleration controllers with car-following models, as illustrated in 
Figure 1. The predictive system solves an optimization problem to minimize vehicle fuel 
consumption levels using road topographical data where the route of a vehicle is known. 
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Figure 1. Overview of an eco-driving application 

 

The objective of this exploratory study is to investigate possible fuel savings associated 
with the proposed Eco-Driving application, which utilizes an ECC system within state-of-
the-art car-following models. The system makes use of topographic information, the 
spacing between the subject and lead vehicle, and a desired (or target) vehicle speed and 
distance headway as input variables.  

3 Previous Studies 

3.1 Environmental Effects of Eco-Driving 

The popular Web site Ecodriving.org defines eco-driving as “a way of driving that 
reduces fuel consumption, greenhouse gas emissions and accident rates” and “about 
driving in a style suited to modern engine technology: smart, smooth and safe driving 
techniques that lead to average fuel savings of 5-10%”.(3) Eco-driving refers to driving 
techniques that maximize fuel economy and correspondingly reduce GHG. Eco-driving is 
considered the most cost-effective method of improving road safety and the quality of the 
environment as well as saving fuel costs. A recent report estimated that teaching 
consumers to eco-drive can improve actual fuel efficiency by an average of 17 percent.(4)  

It is important to understand the factors that affect vehicle fuel consumption and driving 
behavior. El-Shawarby, et al. investigated the impact of vehicle cruise speed and 
acceleration levels on vehicle fuel consumption rates and emission rates using field data 
gathered under real-world driving conditions.(5) The study demonstrated that as the 
aggressiveness of acceleration maneuvers increased, the fuel consumption and emission 
rates significantly increased. Several research efforts have quantified the impact of 
aggressive driving on fuel consumption and emission levels .(6-12) One study from Sierra 
Research found that aggressive driving is responsible for 15 times higher CO emissions 
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and 14 times higher HC emissions on the same trip.(13) A recent study demonstrated that 1 
percent of a highway trip is responsible for 16, 19, 4, and 3 percent of the total HC, CO, 
NOX, and CO2 emissions, respectively, and 4 percent of the fuel consumption.(14) 
Furthermore, the study demonstrated that 25 percent of total CO2 emissions and 28 
percent of fuel consumption levels are caused by 10 percent of the most aggressive 
driving maneuvers of typical trips. The study demonstrated that small portions of a trip 
produce high engine-load conditions and that reducing these events can significantly 
improve air quality and fuel economy levels. The results suggest that educating drivers 
can significantly improve air quality and energy consumption. 

3.1.1 Eco-Driving within a Network 

Kobayashi, Tsubota, and Kawashima investigated the impacts of eco-driving within a 
traffic network. They performed field measurements of a vehicle's speed and acceleration 
versus normal and eco-driving styles and utilized a microscopic simulation model for 
evaluations. The study found that an eco-driving control system is effective in a traffic 
network and does not impede traffic flow that would promote traffic congestion.(15) 
Similarly, researchers from the University of California examined potential 
environmental benefits of green driving strategies with Next Generation Simulation 
(NGSIM) data on I-80 near Berkeley, California. The study examined GHG emissions 
before and after applying green driving strategies. The study found that green driving 
strategies are most effective for traffic flows with average speeds around 50 km/h and 
that potential savings can be from 20 to 60 percent for different pollutants.(16) 

3.1.2 Eco-Driving Education and Tools 

Empirical studies have shown positive relationships among driving behavior, vehicle fuel 
consumption, and GHG emissions. Several researchers have focused on improved driving 
patterns and evaluating their impact on vehicle fuel consumption and GHG emissions. An 
experimental study investigated the impacts of eco-driving, or “technical driving,” which 
optimizes engine speed and torque, and demonstrated substantial savings in fuel 
consumption and GHG emissions.(17) A Greek eco-driving pilot program found that 
smart, smooth, and safe driving techniques can lead to potential fuel savings of 10 to 15 
percent.(18) The study investigated the effects of modifying urban bus drivers’ behavior 
through training courses on economical and ecological driving. Larsson and Ericsson 
(2009) quantified the impact of an acceleration advisor on vehicle fuel consumption and 
emission levels. They developed an acceleration advisor tool that produces a resistance in 
the accelerator pedal when the driver aggressively accelerates. The study found that 
aggressive acceleration behaviors were significantly reduced when the acceleration 
advisor provided advice to drivers, which indicated that the drivers had complied with the 
advisor.(19) According to a recent pilot study (2010) performed by the University of 
California at Riverside, participants who utilized an on-board eco-driving device 
improved fuel economy by approximately 6 percent on local city trips and 1 percent on 
highway trips.(20) 
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3.1.3 Advanced Eco-Driving Tools 

In addition to strategies that limit maximum acceleration, several in-vehicle technologies, 
such as various eco-driving systems and driver feedback systems, have been developed to 
help drivers further reduce fuel consumption and emission levels.(21-23) Van Der Voort 
developed a prototype fuel-efficiency-supporting tool that advises drivers on essential 
behavioral adjustments.(24) The system back-calculates the minimum fuel consumption 
for previous driving schedules and examines if the actual fuel consumption deviates from 
the minimum fuel consumption. Then the system suggests to the driver ways to change 
driving patterns. Based on driving simulation tests, this eco-driving system was able to 
reduce overall fuel consumption by 16 percent. While the typical eco-driving system 
provides the driver static advice on smooth vehicle acceleration levels that reduce 
excessive vehicle speeds, Barth and Boriboonsomsin studied the possibility of a dynamic 
eco-driving system.(25) The proposed system provides real-time, dynamic advice to 
drivers by using a traffic management system that monitors traffic conditions in the 
vehicle’s vicinity and then communicates advice in real time back to the driver. Based on 
simulation and real-world vehicle experimentation, the dynamic eco-driving system was 
found to reduce vehicle fuel consumption and GHG emissions by 10 to 20 percent 
without drastically affecting overall travel time.  

Researchers from Toyota developed a system to promote eco-driving and safe driving.(26) 
A unit called Behavioral Context Addressable Loggers in the Shell (BCALs) wirelessly 
communicates driving data to a server and eight (five for eco-driving and three for safe 
driving) evaluation indicators are provided to a system manager and drivers to review the 
driving behavior. The study concluded that the users effectively accept the system, which 
functionally changes driver behavior to be greener and safer. Nissan launched “Vehicle 
Carte Service,” an off-board eco-driving support service, on the company’s Web site in 
2007.(27) The eco-driving service offers driving data information, including fuel 
consumption ranking and eco-driving tips. Members compare their eco-driving score 
with other members in a game environment. The study found that the fuel economy of 
participants were improved by 18 percent on average.   

While most of the studies found that an eco-driving tool can help reduce fuel 
consumption and GHG emissions, one study found that an eco-driving system may 
negatively affect drivers. Lee found that the increased cognitive utilization of an eco-
driving system may produce negative effects on gas mileage. The study found that users 
were constantly thinking, deciding, and calculating to improve vehicle fuel efficiency. 
The study recommended that the eco-driving system should unconsciously adjust their 
driving behavior. The study also found that driver age and driving experience are 
important factors when evaluating an eco-drive system.(28) 

3.2 Vehicle Optimal Controls 

As described earlier, driving style can have a significant impact on vehicle fuel 
consumption levels, but it is not clear how drivers should control the car to achieve the 
best possible fuel economy. Several research efforts investigated vehicle optimal speed 
controls to minimize fuel consumption and GHG emission levels. One of the earliest 
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research efforts to compute optimal vehicle control was performed by Schwarzkopf and 
Leipnik (1977). The study developed a highway driving algorithm that can be used to 
accelerate smoothly from a stop and assists in driving in hilly terrain.(29) Pontriagin’s 
maximum principle method was used to solve the mathematically optimal performance. 
Hooker also estimated optimal speed control strategies for fuel economy in several 
typical driving situations: optimal acceleration to cruise speed, optimal driving between 
stop signs, and optimal driving over hills. The author claimed that optimal speeds are 
generally higher for larger cars and higher on downgrades than on upgrades, and that the 
relative fuel penalty for exceeding the speed limit is no worse for small cars than large 
cars.(30-31) 

While the previous research efforts focused on light-duty vehicles, the DaimlerChrysler 
Research Centre developed a predictive cruise control (PCC) system that can reduce fuel 
consumption of heavy-duty trucks.(32) The PCC system utilizes a three-dimensional road 
map and GPS location information to obtain the vehicle’s current location and 
information on the next 4 km ahead of the truck. To reduce fuel consumption, the system 
allows vehicles to travel within a desired speed range instead of driving at a single 
desired speed. The simulation results showed that test trucks were able to reduce fuel 
consumption by 2.61 to 5.16 percent on a 25-km section of I-5 around Portland, Oregon.   

Various studies use a control theory approach, but Chang and Morlok assumed that fuel 
consumption is approximately proportional to the propulsive work and enabled the 
derivation of the optimal speed profile with respect to minimizing propulsive work.(33) 
The method is comparatively more direct than other studies. The study also generalized 
the solution for application to cars and rail.  

Hellstrom and his colleagues developed a PCC system for heavy trucks.(34-37) While the 
system utilizes a similar concept as that used in the DaimlerChrysler Research Center 
study, Hellstrom utilized advanced control methods, including a vehicle powertrain 
module and a fuel consumption model. The PCC system repeatedly solved an 
optimization problem by means of a tailored dynamic programming algorithm. The study 
assumed that roadway topographical data were available and that the vehicle routing was 
known.  

Saboohi and Farzaneh improved the vehicle optimal control by considering the gear 
ratio.(38,39) They introduced an optimal model of vehicle fuel consumption that was 
developed on the basis of microeconomic theories. The model used simulations to 
estimate the optimal fuel consumption of a vehicle in a given real case and was able to 
save 37 percent of potential energy consumption. Similarly, Saerens studied the 
minimization of the fuel consumption of a gasoline engine through dynamic optimization 
using an engine model and a drive-train model.(40) In this study, the throttle valve angle 
was utilized as a control input and Bock’s direct multiple shooting method was used to 
determine optimal trajectories for engine speed and throttle valve angle. The method is a 
numerical technique to solve boundary value problems and is considered as a significant 
improvement in distribution of nonlinearity and numerical stability. 
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While most of the optimal control methods estimate vehicle speed profiles minimizing 
fuel consumption, Kamil et al. developed an eco-driving system using predictive control, 
which considers future road-traffic situations.(41-43) The researchers developed on-board 
eco-driving system control that operated in a varying road-traffic environment. The study 
utilized a combination of Continuation and Generalized Minimum Residual Methods to 
optimize the sequence of vehicle control actions required in the prediction horizon while 
maintaining safe driving. The authors evaluated the proposed system through simulations 
in the AIMSUN NG microscopic simulation program.  

3.3 Adaptive Cruise Control (ACC) Models 

Adaptive cruise control (ACC) systems automatically adjust a vehicle’s preset speed to 
maintain a preset safe following distance using forward-looking radar.(44) Several 
researchers are investigating the environmental performance of these automatic control 
systems. 

Ioannou and Stefanovic (2005) pointed out that the smoothing feature of ACC vehicles 
could improve the fuel efficiency of mixed traffic flow. While the smooth response of the 
ACC vehicles has a beneficial effect on the environment, the ACC system may disturb 
the driver when it reacts to high-acceleration maneuvers, lane cut-ins, and lane exits. The 
authors claimed that the environmental benefits would vary with the levels of 
disturbance, the position of the ACC vehicle in the string of manually driven vehicles, 
and the percentage of ACC vehicles on the road.(45) Similarly, Zhang and Ioannou 
developed a nonlinear, filter-based controller for heavy trucks that restricted acceleration 
levels to fulfill fuel saving requirements.(46) The filtering effect of trucks was shown to 
have beneficial effects on fuel economy and pollution. However, it created large inter-
vehicle gaps that invited cut-ins from neighboring lanes, creating additional disturbances.  

The reduction of fuel consumption usually decreases the acceleration performance and 
lowers the proper car following capability.  This leads to two problems: 1) when the 
preceding car accelerates, larger inter-vehicular distances occur due to the deficient 
acceleration performance, resulting in frequent vehicle cut-ins from adjacent lanes, and 2) 
when the preceding vehicle decelerates, inter-vehicular distance shortens quickly and 
rear-end collisions are more likely. 

To ensure safety and good tracking capability, Corona et al. applied a hybrid model 
predictive control (MPC) approach to vehicular-following control.(47) Similarly, Kohut et 
al. designed a predictive control strategy that optimizes the engine torque to trade off 
reduced fuel consumption for trip time while keeping the vehicle within a specified speed 
envelope.(48)  

Bageshwar et al. presented an MPC-based headway control algorithm with acceleration 
limitations incorporated explicitly to meet the requirements of ride comfort and safe 
driving.(49) Li et al. and Luo et al. introduced multiple objectives to achieve the desired 
driver response, minimal fuel consumption, and minimization of car-following error.(50,51) 
They employed MPC theory to develop an ACC algorithm that simultaneously satisfied 
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such control objectives as effective tracking capability, high fuel economy, driver desired 
response, and collision avoidance. 

The literature review has revealed a significant amount of research in predictive eco-
cruise control systems; however, no attempt has been made to integrate such systems 
within car-following controllers. 

4 The Building Blocks of the Eco-Driving System 

4.1 Fuel Consumption Models  

Vehicle fuel consumption levels are typically derived from a relationship between 
instantaneous fuel consumption rates and instantaneous measurements of various 
explanatory variables, including vehicle power, force (or tractive effort), acceleration, 
speed, and roadway grade. Many fuel consumption models incorporate different 
explanatory variables to satisfy their specific objectives. One variable that stands out is 
vehicle power or vehicle specific power, which is the power exerted by a vehicle per unit 
mass. Vehicle power can be computed as the product of the total force exerted by the 
vehicle and the vehicle velocity. The total force includes both the net force and the force 
that is required to overcome the aerodynamic, rolling, and grade resistance forces. 
Assuming that the vehicle fuel consumption rate is proportional to the vehicle power, the 
fuel consumption can be estimated by computing the forces acting on the vehicle.  

Post et al. developed a fuel consumption model based on the instantaneous power 
demand.(52) The model was built from chassis dynamometer experiments of 177 in-use 
vehicles. The instantaneous vehicle fuel consumption rate was then computed using the 
vehicle power as a single independent variable as  

1 1

1

( ) ( ) 0
( )

( ) 0
P t P t

F t
P t

a b
a

ì + ³ïï= íï <ïî  

Figure 2. Instantaneous vehicle fuel rate 

where F(t) is the instantaneous fuel consumption rate in liters per second (l/s), α1 is the 
vehicle idling fuel consumption rate (l/s), β1 is the vehicle fuel consumption rate per unit 
of power (l/s/kW), and P(t) is the instantaneous total power in kilowatts (kW). Vehicle 
parameters α1 and β1 were found to vary with time as the vehicle's condition and state of 
tune altered. The on-road instantaneous total power (P(t)) was computed as the sum of 
drag, inertial, and gradient power. Consequently, the instantaneous total power demand is 
a function of the vehicle speed, speed squared, speed cubed, and the product of speed and 
acceleration. 

The Australian Road Research Board (ARRB) fuel consumption model was developed 
using the Post model.(53,54) The major difference between the ARRB and Post models is a 
detailed examination of the β parameter. According to the ARRB study, an average β 
value does not provide accurate results because the β value varies as a function of the 
vehicle’s instantaneous speed and acceleration level. To improve the accuracy of the Post 
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model in predicting fuel consumption rates during constant-speed driving as well as 
acceleration, the authors adopted two efficiency parameters, βa and βb, and allowed for an 
engine/internal drag component to be part of the total drag power. The equation in Figure 
3 demonstrates the general form of the ARRB model, where Pc(t) is the total drag power 
exerted while traveling at a constant speed (kW), Pa(t) is the total engine/inertia drag 
power (kW), α2 is the vehicle’s idling fuel consumption rate (l/s), and βa and βb are 
vehicle-specific power parameters (l/s/kW). 

2( ) ( ) ( )a a b cF t P t P ta b b= + +  

Figure 3. General form of the ARRB model 

The Comprehensive Modal Emissions Model (CMEM) is another model that estimates 
the instantaneous fuel consumption rate based on power, engine friction, engine speed, 
and vehicle engine size (or displacement).(55,56) The model predicts second-by-second 
tailpipe emissions and fuel consumption rates for a wide range of vehicle and technology 
categories. Vehicle operational variables (such as speed, acceleration, and road grade) 
and model-calibrated parameters (engine friction factor) are utilized as input to estimate 
vehicle tractive power. The model uses the stoichiometric air/fuel ratio and the in-use 
air/fuel ratio of the moment to estimate the vehicle fuel consumption rate.  

Currently, researchers frequently use vehicle specific power (VSP) to estimate 
instantaneous vehicle fuel consumption and emission rates.(57,58) VSP is a measure of the 
engine load and is defined as the power exerted per unit mass to overcome the road 
grade, rolling, and aerodynamic resistance forces, in addition to the inertial acceleration, 
and is a function of the vehicle speed, speed cubed, and interaction of speed and 
acceleration as 

3( ) ( , , )V SP t f v v va=  

Figure 4. Vehicle specific power 

Another fuel consumption model that makes use of topographic and gear shifting 
information was developed by researchers from Linkőpings University.(37,59-61) The model 
estimates real-time fuel consumption rates using control signals, such as a pedal, brake, 
and gear signal, with engine speed, as summarized in the equation shown in Figure 5, 
where N is the number of engine cylinders, nr is the number of crankshaft revolutions per 
stroke, ωe(t) is the engine speed at any instant t, fp(t) is the pedal control input [0,1] at any 
instant t, G is the gear signal, and Fidle is the idling fuel consumption rate. 
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60000( )
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Figure 5. Linkőpings University fuel consumption model 
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While the majority of fuel consumption models were developed as power-demand 
models, the VT-Micro model was developed as a statistical model from experimentation 
with numerous polynomial combinations of speed and acceleration levels to construct a 
dual-regime model as described in the equation in Figure 6, where Li,j are model 
regression coefficients at speed exponent i and acceleration exponent j, Mi,j  are model 
regression coefficients at speed exponent i and acceleration exponent j, v is the 
instantaneous vehicle speed in kilometers per hour (km/h), and a is the instantaneous 
vehicle acceleration (km/h/s). The model was developed utilizing a number of data 
sources, including data collected at the Oak Ridge National Laboratory (ORNL) (9 
vehicles) and the Environmental Protection Agency (EPA, 101 vehicles). These data 
included fuel consumption and emission rate measurements (CO, HC, and NOx) as a 
function of the vehicle’s instantaneous speed and acceleration levels. The VT-Micro fuel 
consumption and emission rates were found to be highly accurate compared to the ORNL 
data, with coefficients of determination ranging from 0.92 to 0.99. A more detailed 
description of the model derivation is provided in the literature.(62)  
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Figure 6. VT-Micro model 

Typical power-based fuel consumption models result in a bang-bang type of control 
system. In other words, the optimal fuel consumption level is achieved by either 
accelerating at full throttle or decelerating at maximum braking. Such a type of model 
results in a sub-optimal control system. Bang-bang control occurs when the partial 
derivative of the fuel consumption rate with respect to the engine torque is not a function 
of torque, or when 

( )( )F t f T
T

¶ ¹
¶  

Figure 7. Bang-bang control 

Furthermore, all models described require the collection of field data to calibrate the 
model parameters. This exercise is time consuming and requires that some form of 
vehicle instrumentation be implemented to gather field data and develop the models.  

The research team for the proposed system has developed two new power-based 
microscopic fuel consumption models, Virginia Tech Comprehensive Power-based Fuel 
consumption Models (VT-CPFM-1 and VT-CPFM-2). The models can estimate 
instantaneous fuel consumption and CO2 emission levels as required for the proposed 
eco-driving system. The detailed description of the fuel consumption models is found in 
Rakha et al.(63) 

The developed fuel consumption models utilize instantaneous power as an input variable 
and can be calibrated using publicly available fuel economy data (city and highway fuel 
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consumption rates). The models are demonstrated to estimate vehicle fuel consumption 
rates consistent with in-field measurements (coefficient of determination above 0.75). 
Finally, the research team developed a procedure for estimating CO2 emissions that are 
highly correlated with field measurements (greater than 95 percent). The new fuel 
consumption models overcome two main deficiencies of current state-of-the-art models: 
the inability to produce a control system that (1) does not result in bang-bang control and 
(2) is easily calibrated using publicly available data without the need to gather detailed 
engine and fuel consumption data. 

The two models (VT-CPFM-1 and VT-CPFM-2) are formulated as in Figure 8 and 
Figure 9: 
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Figure 8. VT-CPFM-1 
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Figure 9. VT-CPFM-2 

where α0, α1, α2 and β0, β1, and β2 are model constants that require calibration, P(t) is the 
instantaneous total power, ω(t) is the engine speed at any instant t, and ωidle is the idling 
engine speed. 

The major difference of two models is the usage of engine speed data. The first model 
(VT-CPFM-1) does not require any engine data while the second model (VT-CPFM-2) 
requires additional engine speed data as illustrated in Figure 9. This exploratory study 
used only VT-CPFM-1 model in order to reduce the complexity of the simulation 
procedure. It should be noted that the power exerted by a vehicle is a function of the 
vehicle speed and acceleration, which can be measured directly using a GPS. 

The instantaneous measured and estimated fuel consumption rates were compared by 
running the test vehicles on the Arterial LOS (Level of Service) A cycle, as illustrated in 
Figure 10. Superimposed on the figure are the VT-CPFM-1 model estimates, which were 
computed using each of the vehicle-specific parameters. As illustrated in Figure 10, the 
predicted fuel consumption rates generally follow the peaks and valleys of the measured 
data and demonstrate a good agreement with field measurements. Specifically, the test 
vehicle consumed 0.67 liters of fuel while the model estimated 0.78 liters of fuel, which 
is an error of 16 percent. While it appears that the proposed model overestimates fuel 
consumption rates for the cycle, the model predictions follow the field-collected fuel 
measurements with high correlation coefficients (98%). 
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Figure 10. Validation of fuel consumption model 

 

4.2 Vehicle Powertrain Model 

There have been many studies on the modeling of vehicle engines and controls 
specifically for engine design, analysis, and control. While these models are sufficient for 
their intended purposes, they are not adequate for use in microscopic traffic simulation 
software for two reasons. Typical engine models are computationally intensive and 
cannot be integrated within car-following, lane-changing, and gap acceptance algorithms, 
which are critical for traffic simulation models. Second, these models require proprietary 
parameters that are difficult to obtain and in some instances require gathering field data 
for a vehicle’s entire envelope of operation. The development of a vehicle powertrain 
model that can be utilized for traffic simulation modeling is a new challenge for traffic 
engineers.  

The research team has developed a powertrain model that is used within the context of 
this approach. The powertrain model uses driver throttle input to compute the engine 
speed and power and finally compute the vehicle acceleration, speed, and position. The 
model can also be calibrated using vehicle parameters that are publicly available without 
the need for field data collection. Figure 11 illustrates the basic concepts of the 
powertrain model. Using the driver’s throttle input (fp), the engine speed (w) is computed 
using a simple regression model that was developed in an earlier publication using field 
observations of engine speed and throttle level.(64) The engine power and torque is then 
computed considering an upper bound parabolic function that was developed by Ni and 
Henclewood (Pmax(w)).(65) The actual power available is estimated as the proportion of 
the maximum power considering a linear transformation from throttle position to the 
proportion of maximum power available (i.e., P(w) = fp × Pmax(w)). In the case of a 
manual transmission system, the gear selection is made directly using the engine speed. 
Alternatively, in the case of an automatic transmission system, the torque converter is 
modeled to compute an engine speed and torque generated by the torque converter.(66) 
The vehicle acceleration is then computed considering a point mass vehicle dynamics 
model as was presented earlier. The vehicle speed and position are estimated by solving 
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the second-order differential equation. The specifics of each of the components of the 
vehicle powertrain models are described in Rakha et al.(64)  

 

 

Figure 11. Proposed powertrain model structure 

Figure 12 illustrates the measured instantaneous vehicle power rate of a vehicle in the 
southbound study section of I-81 and the estimated power from the powertrain model. 
The vehicle driving-related data were collected using an OBD II data logger. Cruise 
control operation data were utilized for this validation section. The target speed was set to 
104 km/h (65 mi/h). The results clearly demonstrate a good agreement between the 
instantaneous power estimates and field measurements. As illustrated in the figures, the 
predicted power generally follows the peaks and valleys of the measured data except for a 
few high power points. Specifically, the 2007 Chevy Malibu generated 13,297 kW of 
power along the southbound section of I-81, while the proposed model estimated 13,871 
kW of power using the same speed and road topographic profile, which is an error of 
approximately 4.3 percent. The figure also illustrates the instantaneous measured and 
estimated fuel consumption rates, which were compared by simulating the test vehicle 
(2007 Chevy Malibu) on the southbound section of I-81. Superimposed on the figures are 
the fuel consumption model (VT-CPFM-1 model) estimates, which were computed using 
the vehicle-specific parameters.  The figure indicates a close match between predicted 
and measured fuel consumption levels and demonstrates a good agreement with field 
measurements. While it appears that the proposed model overestimates some fuel 
consumption rates and underestimates others, in general the model predictions follow the 
field-collected fuel measurements. Specifically, in the case of the southbound trip, the 
test vehicle consumed 1.33 liters of fuel while the model estimated 1.40 liters of fuel, 
which is an error of 5.5 percent. 
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(a) Instantaneous Power (I-81) 

 
(b) Instantaneous Fuel (I-81) 

 
Figure 12. Instantaneous powertrain and fuel model validation (2007 Chevy Malibu) 
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4.3 Predictive Eco-Cruise Control Algorithm Logic 

The research team developed a predictive ECC system that generates optimal vehicle 
controls using topographic data. The study employs the operational concept of this 
predictive ECC system to build the proposed system. The system optimizes the vehicle 
controls in advance using a widely used dynamic programming (DP) implementation of 
Dijkstra’s shortest path algorithm.   

There are three system parameters used, namely: the stage length (ds), the look-ahead 
distance (do), and the optimization implementation distance (df), as illustrated in Figure 
13. The stage length (df), the first parameter, is the unit of discretization for solving the 
problem. In other words, the estimated vehicle optimal speed remains constant for the 
duration of a stage. The look-ahead distance (do), the second parameter, is the distance 
for which the optimization is performed. Finally, the optimization implementation 
distance (df), the last parameter, is the distance for which the optimized plan is 
implemented.  

For example, assume that a driver plans a 5-km long trip and defines the stage length (ds), 
the look-ahead distance, and the optimization implementation distance (df) as 100 m, 1 
km, and 500 m, respectively. First, the system calculates the optimal vehicle speed for a 
look-ahead distance, 1 km section, from 0 m to 1000 m. Since the stage length (ds) is 100 
m, the optimal speed is estimated for every 100 m section. The estimated vehicle optimal 
speed remains constant for 100 m. Since the optimization implementation distance (df) is 
500 m, when vehicle arrives at 500m the system repeats the optimization looking ahead 
from 500 m to 1500 m. Then the optimization is carried out every 500 m using the road 
profile over the next 1 km section.   
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Figure 13. Proposed optimization methods 

An optimization can be divided into three steps. The search space is defined in the first 
step using the powertrain module, which defines the space of speed and gears that the 
vehicle is physically able to achieve under the given topographical information and 
vehicle performance. For the optimization in the second step, the defined continuous 
search space is discretized for the speed and gear levels. Each of the discretized points 
represents a state that consists of a speed and a gear combination. Transition from a state 
at the beginning of stage i to a state at the end of stage i represents changes in the vehicle 
speed and gear over the stage i. In this step, all the transitions are evaluated using a cost 
function, as shown in the equation in Figure 14, that computes the fuel consumption rates 
and other penalties: 

0 11 ( , ) 2 1 ( ) 3 1 0 ( )| | | |
ref refv v ref v vCost w FC w v v FC w g g FC= + - + -

 

Figure 14. Cost function 
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where w1 is the weight factor for fuel consumption, w2 is the weight factor for the 
deviation from the target speed, w3 is the weight factor for gear change, v0 is the initial 
speed, v1 is the final speed, vref  is the target speed, g0 is the initial gear, g1 is the final 
gear, FC(v0,v1) is the fuel consumption to travel from v0 to v1 over a stage length, and FC(vref) 
is the fuel consumption at vref  over a stage length. Finally, the module finds an optimal 
control plan using either Dijkstra’s shortest path or a heuristic algorithm that was 
developed by the research team to enhance the computational efficiency of the algorithm. 

4.4 Proposed Car-Following Algorithm 

Car-following models assume that there is a relationship between the spacing between the 
subject and lead vehicle and the speed of the following vehicle in a range of inter-vehicle 
spacings. The process of car-following is modeled as equations of motion under steady-
state conditions plus a number of constraints that govern the behavior of vehicles while 
moving from one steady state to another (decelerating and accelerating). The exploratory 
study used the Rakha-Pasumarthy-Adjerid (RPA) car-following model. 

4.4.1 Steady-State Modeling  

This study would consider the use of the Van Aerde steady-state car-following model, 
which is a nonlinear, single-regime functional form. The original model, shown in the 
equation in Figure 15, was proposed in Van Aerde(67) and in Van Aerde and Rakha(68,69): 
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Figure 15. Van Aerde steady-state car-following model 

where sn(t) is vehicle spacing at time t, un(t) is speed of vehicle n at time t (km/h), uf is 
free-flow speed (km/h), t is length of time interval, c1 is fixed distance headway 
constant (km), c2 is the first variable headway constant (km2/h), and c3 is the second 
variable distance headway constant (h). 

Rakha demonstrated that the c1, c2, and c3 parameters can be computed as shown in the 
equation in Figure 16.(70) To ensure that the speed estimates are realistic, the square root 
term should be positive. This is achieved if the model parameters satisfy the condition of 
the equation in Figure 17.(70) 
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Figure 16. c1, c2, and c3 parameters 
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Figure 17. Speed estimate parameters 

 

where uc is speed-at-capacity (km/h), kj is jam density (veh/km), and qc is the capacity 
(veh/h). 

Typically the vehicle speed or the acceleration level is considered as the control variable.  
Consequently, the vehicle speed is estimated as shown in the equation in :Figure 18 

2
1 3 1 3 3 1 2

3

( ) [ ( )] 4 [ ( ) ]
( )

2
f n f n n f f

n

c c u s t t c c u s t t c s t t u c u c
u t t

c

- + + + D - - - + D - + D - -
+ D =

% % %

 

Figure 18. Vehicle speed estimate 

where ( )ns t%  is the predicted vehicle spacing at time t considering that vehicle n continues 
at its current speed, where 2

1 1( ) ( ) [ ( ) ( )] 0.5 ( )n n n n ns t t s t u t u t t a t t- -+ = + - +% V V V , and where 
an(t) is the acceleration of vehicle n at time t. 

4.4.2 Collision Avoidance Modeling 
 
In the case that the following vehicle is traveling at a higher speed than the lead vehicle 
(non-steady state conditions) the vehicle spacing should be sufficient to allow the 
following vehicle (vehicle n) to avoid a collision with the lead vehicle (vehicle n − 1). 
This deceleration level of the following vehicle is assumed to be equal to μfbηbg, where μ 
is the coefficient of roadway friction, fb is the driver brake pedal input [0,1], ηb is the 
brake efficiency [0,1], and g is the gravitational acceleration (9.8067 m/s2). The resulting 
minimum vehicle spacing and the vehicle speed can be computed using the equations in 
Figure 19 and Figure 20, respectively. 
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Figure 19. Minimum vehicle spacing 
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Figure 20. Vehicle speed 
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4.4.3 Vehicle Acceleration Modeling 

Vehicle acceleration can be modeled in two different ways: using a vehicle dynamics 
model or a vehicle powertrain model. The vehicle dynamics approach approximates the 
vehicle as a point mass and ignores any gear-shifting effects on vehicle modeling. A 
vehicle powertrain approach requires more computations because it models the vehicle 
gearbox. This study uses the vehicle dynamics model.  

Vehicle acceleration may be modeled considering the vehicle as a point mass and only 
considering the various forces acting on the vehicle. Vehicle dynamics models compute 
the maximum vehicle acceleration levels from the resultant forces acting on a vehicle 
(mainly vehicle tractive forces, which are a function of the driver throttle input and 
resistance forces).  

The vehicle tractive effort can be computed using Equation (16). Rakha and Lucic 
introduced the β factor into the equation in Figure 21 to account for the effects of gear 
shifts at low traveling speeds when trucks are accelerating.(71) This factor is set to 1.0 for 
light-duty vehicles.(72) The fp(t) factor models the driver throttle input level and ranges 
from 0.0 to 1.0. The vehicle resistance force is calculated as the sum of the aerodynamic, 
rolling, and grade resistance forces acting on the vehicle,(71,73) as demonstrated in the 
equation in Figure 22. 
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Figure 21. Vehicle tractive effort 
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Figure 22. Vehicle resistance force 

where fp(t) is the driver throttle input at time t [0,1] (unitless); β is the gear reduction 
factor (unitless); ηd is the driveline efficiency (unitless); P is the vehicle power (kW); m’n 
is the mass of vehicle n on its tractive axle (kg); g is the gravitational acceleration 
(9.8067 m/s2); μ is the coefficient of road adhesion or the coefficient of friction (unitless); 
ρ is the air density at sea level and a temperature of 15ºC (1.2256 kg/m3); Cd is the 
vehicle drag coefficient (unitless), typically 0.30; Ch is the altitude correction factor 
(unitless), which is computed as Ch=1-0.085H where H is the altitude (km); Af is the 
vehicle frontal area (m2); cr0 is the rolling resistance constant (unitless); cr1 is the rolling 
resistance constant (h/km); cr2 is the rolling resistance constant (unitless); mn is the total 
vehicle mass (kg); and G(t) is the roadway grade at instant t (unitless). The rolling 
resistance parameters vary as a function of the road surface type, road condition, and 
vehicle tires.(73) Generally, radial tires provide a resistance that is 25 percent less than that 
of bias ply tires. Typical values of vehicle frontal areas for different vehicle types and 
typical drag coefficients are provided in the Rakha et al.(73) Typical values for the 
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coefficient of roadway adhesion and the rolling resistance coefficients are provided in in 
Rakha and Lucic(71) and Rakha et al.(73) 

The vehicle acceleration is calculated as a ratio of the difference between the tractive and 
resistance forces divided by the vehicle mass (i.e., a=(F-R)/m). The vehicle speed and 
position at t + Δt is then computed using a first-order Euler approximation, as 
demonstrated in the equations in Figure 23 and Figure 24. 
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Figure 23. Vehicle speed 

( ) ( ) ( )n n nx t t x t u t t+ D = + D  

Figure 24. Vehicle position 

 

5 Proposed Algorithm 
The research proposes an Eco-Driving application to reduce fuel consumption and GHG 
emissions, as illustrated in Figure 25. The model starts with driver input of a target speed 
range and following headway. Alternatively, the system can locate the vehicle on a high-
resolution digital map to identify the desired speed based on the roadway speed limit. The 
driver can then set a range for the desired speed. Using the road’s topographic 
information, the system estimates the optimal speed profile that minimizes the vehicle 
fuel consumption within the target speed range. The optimal control estimates the throttle 
position and brake level that generates the desired speed profile while maintaining a safe 
following headway and spacing between the subject vehicle and a vehicle ahead of it. 
The model utilizes the vehicle powertrain model that was described earlier to compute 
the feasible gear and speed range for use in the optimization algorithm. 



  
 

U.S. Department of Transportation, Research and Innovative Technology Administration  
Intelligent Transportation Systems Joint Program Office       25 

 

  
Figure 25. Proposed Eco-Driving logics 

 

5.1 Model Algorithm 
 
The proposed logic can be summarized as follows: 

1. If the spacing between the subject and lead vehicle is beyond the car-following 
threshold, proceed to step 3. Otherwise, proceed to step 2. 

2. Estimate the maximum vehicle acceleration at instant t based on the steady-state car-
following model and collision avoidance constraints. Considering the Van Aerde 
functional form, the first step entails computing the maximum speed at t+Δt using the 
equation in Figure 26. The maximum acceleration is then computed using the 
equation in Figure 27, and the maximum speed at the end of the first stage (position 
xt+ds) can then be computed using the equation in Figure 28. Proceed to step 4. 
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Figure 26. Van Aerde functional form 
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Figure 27. Maximum acceleration 
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Figure 28. Maximum speed at the end of the first stage 
 
3. Using the DP algorithm described earlier, the optimal vehicle speed trajectory over 

the look-ahead distance (do) is estimated considering a spatial discretization of ds 
(stage length). The maximum car-following speed constraint that was computed in 
step 2 is considered in identifying the search space of stage 1. 

4. Move the vehicle and then go back to step 1 at the conclusion of time step Δt. 
Otherwise, end the simulation at t=T. 

5.2 Model Calibration Issues 

The calibration of the proposed model entails calibrating the four steady-state traffic 
stream parameters, the maximum comfortable braking level, the various vehicle and 
powertrain parameters, and the optimization parameters.  

The steady-state car-following model requires the calibration of four parameters: free-
flow speed, speed-at-capacity, capacity, and jam density. The speed-at-capacity can be 
set to equal the free-flow speed. This results in a linear car-following model, also known 
as the Pipes model. The free-flow speed, as was mentioned earlier, can be derived if the 
vehicle location is identified on a digital map. The user can then set a free-flow speed 
range to control the vehicle instead of setting a preset, single free-flow speed. The 
capacity is computed as the inverse of the adaptive cruise control headway setting (hc) of 
the ACC system (qc = 3,600/hc). The jam density can be estimated using the vehicle 
length (Lv) and the spacing between the front and rear bumpers of vehicles in a queue (bj) 
(kj = 1000/(Lv + bj)). Typically, bj ranges from 0.5 to 1.5 m. 

The maximum comfortable deceleration level is a function of the roadway surface 
condition, the type of vehicle tires, the type of vehicle braking system (ABS or no ABS), 
and the driver input. Typical values are in the range of 0.6 g. 

Table 1 summarizes some sample vehicle powertrain parameters. Below is a description 
of each of the parameters listed in the table and how the values can be obtained:  

• Vehicle Engine Power (P, in kW): The engine power can be obtained from the 
vehicle specifications on automotive manufacturer Web sites. 

• Engine Efficiency: Power losses in the engine due to internal friction and other 
factors generally account for between 5 and 10 percent of the engine losses for light-
duty vehicles.(66)  
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• Vehicle Mass (kg): Vehicle mass is an important parameter in the model because it 
determines the force required to accelerate a vehicle. Vehicle weights can be obtained 
from automotive manufacturer Web sites. 

• Percentage of Vehicle Mass on the Tractive Axle (mta/m): This can be obtained 
from manufacturer Web sites, measured in the field, or assumed. In the case of light-
duty vehicles, typical values for front-wheel-drive vehicles are in the range of 50 to 
65 percent, reflective of the high weight of the engine sitting on top of the axle. For 
rear-wheel-drive vehicles, the mass on the tractive axle typically ranges between 35 
and 50 percent of the total mass.  

• Frontal Area (Af, in m2): The frontal area of the vehicle can be approximated as the 
product of 85 percent of the height and the width of the vehicle. Vehicle height and 
width are available from automotive manufacturers. 

• Air Drag Coefficient (Cd): The air drag coefficient is typically available on 
automotive Web sites. If not, these values may be assumed. Typical values for light-
duty vehicles range from 0.30 to 0.35, depending on the aerodynamic features of the 
vehicle.  

Table 1. Summary of light-duty test vehicle characteristics 
Vehicle EPA Class P  

(kW) 
Mass  
(kg) 

mta/m  
(%) 

Af  
(m2) Cd 

1996 Geo Metro Hatchback Subcompact 41.0 1130 0.380 1.88 0.34 
1995 Acura Integra SE 105.9 1670 0.515 1.94 0.32 
1995 Saturn SL 

Compact 
92.5 1240 0.560 1.95 0.33 

2001 Mazda Protégé LX 2.0 97.0 1610 0.525 2.04 0.34 
2001 Plymouth Neon 98.5 1650 0.495 2.07 0.36 
1998 Ford Taurus 

Midsize 
108.2 1970 0.575 2.26 0.30 

1998 Honda Accord 111.9 1770 0.610 2.12 0.34 
1995 BMW 740I 210.4 2370 0.515 2.27 0.32 
1995 Dodge Intrepid Large 120.1 2040 0.535 2.30 0.31 
1999 Ford Crown Victoria 149.2 2300 0.590 2.44 0.34 
1998 Ford Windstar LX Minivan 149.2 2270 0.550 2.73 0.40 
1995 Chevy S-10 Pickup 145.47 1930 0.605 2.31 0.45 
1995 Chevy Blazer SUV 145.47 2310 0.560 2.49 0.45 

 

6 Simulation Results 
This section describes the simulation results of the proposed Eco-Driving system. The 
computer simulation software, MATLAB, was utilized to develop and evaluate the 
performance of the proposed models. Key input variables for the proposed system 
include the car-following spacing threshold; the car-following model parameters such as 
the free-flow speed, jam density, speed-at-capacity, and capacity parameters; vehicle data 
including powertrain-related data and fuel economy data; roadway topography data; real-
time location data; and lead vehicle location data (or spacing data). In the simulated Eco-
Driving system, the subject vehicle alternatively operated in either the predictive eco-
cruise control mode or, if the spacing between the subject and lead vehicle was within the 
car-following threshold, in the car-following mode. The following sections describe the 
various sensitivity tests performed to study the impact of the proposed Eco-Driving 
system. 
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6.1 Different Car-Following Thresholds 

ECC systems optimize vehicle speed to minimize fuel consumption and GHG emissions. 
However, the typical ECC system assumes that the ECC vehicle does not interact with 
other vehicles, requiring drivers to operate ECC vehicles with caution to avoid collisions. 
The proposed ECC system integrates a car-following logic that includes a collision 
avoidance algorithm to improve safety while at the same time minimize the vehicle fuel 
consumption level. 

This section describes the impacts of using different car-following thresholds and 
parameters on the proposed system performance. As described earlier, the proposed 
system operates either in the ECC or car-following mode. The user-defined car-following 
threshold significantly affects the performance of the system. The research investigates 
three car-following thresholds: 100 m, 50 m, and 30 m.  

Figure 29 illustrates the speed profile of a lead vehicle and altitude data along the study 
section. The research used a 22-km section of I-81in southwestern Virginia, between 
mileposts 132 (Roanoke, Virginia) and 118 (Christiansburg, Virginia), which ranges from 
an elevation of 350 to 629 m above mean sea level. The maximum grade along the study 
section is 4 percent, and the maximum downhill grade is -5 percent, with an average 
grade of 0.6 percent.  

The speed data were collected from the lead vehicle, a 2007 Chevy Malibu, using an 
OBD II data logger that also collected GPS signals. The drivers were instructed to 
maintain the target speed of 104 km/h (65 mi/h) without using cruise control. However, 
the figure shows that manual driving causes significant speed variations due to various 
roadway conditions.  

 
Figure 29. Lead vehicle speed profile  
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Figure 30 illustrates the proposed car-following operation on the study section of I-81. 
The test vehicle was a 2011 Toyota Camry, which has a 2.4-L engine and 21 and 31 
miles per gallon (mpg) for city and highway fuel economy, respectively. As illustrated in 
the figure, the test vehicle followed the lead vehicle almost exactly, with an average 
vehicle spacing of 50 m. When the lead vehicle slowed, the proposed car-following 
algorithm reduced the spacing. The test vehicle generated a fuel economy of 13.5 mpg on 
the study section, which is significantly lower than the posted fuel economy data due to 
the multiple major roadway upgrade sections.  

 
 

 
 

Figure 30. Car-following-only operation speed and spacing profiles 

Figure 31 illustrates the speed profile of ECC operation on the study section of I-81. A 
vehicle trip using the test vehicle and roadway grade profiles was simulated with the 
predictive ECC system at a target speed of 104 km/h (65 mi/h). For the predictive system, 
the vehicle was allowed to vary its speed by ± 8 km/h (± 5 mi/h) from the target speed. 
As shown in the figure, the predictive ECC system varied the vehicle speed using the 
topographical information. The results clearly illustrate that the test vehicle was 
controlled to maintain the lowest speed within the speed window on the uphill sections 
when the predictive control system was engaged. Furthermore, the speed was highest on 
the downhill sections because the predictive system attempted to maximize the use of 
gravitational energy. The test vehicle generated a fuel economy of 24.6 mpg on the study 
section, which is significantly greater than in the car-following-only operation. 
Specifically, the ECC operation increased the fuel economy of the test vehicle, a 2011 
Toyota Camry, by up to 82 percent compared to the car-following-only mode of 
operation.  
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Figure 31. Eco-cruise control operation, Toyota Camry 

Figure 32 illustrates the simulated speed profiles of different car-following thresholds. 
The 2011 Toyota Camry was utilized for this simulation. As shown, the car-following 
threshold setting significantly affects the vehicle speed profiles. For the 100-m car-
following threshold, the test vehicle is mostly engaged in the car-following mode (98.7 
percent of the trip) and the speed profile is almost identical to that of the lead vehicle. 
During the trip, the test vehicle consumed 3.7 L of fuel, with a fuel economy of 13.5 mpg 
over the trip. The figure also illustrates the speed profile of the 50-m car-following 
threshold simulation run. The vehicle speed profile is notably different from that of the 
100-m car-following threshold. When the test vehicle adopts the 50-m car-following 
threshold, the speed profile of the test vehicle differs from that of the lead vehicle but 
finds an optimal speed profile. The simulation results demonstrate that the test vehicle 
operates in the ECC mode for 85 percent of the trip and engages in the car-following 
mode of operation for only 15 percent of the trip. Also, when using the 50-m car-
following threshold, the test vehicle improves its fuel economy to 16.0 mpg, which is an 
18 percent improvement from both the car-following-only mode and the 100-m car-
following threshold mode. The figure also illustrates the speed profile of the 30-m car-
following threshold. The simulation results show that the test vehicle undergoes two 
significant speed reductions at times 75 s and 485 s. These were caused by the spacing 
between the lead and subject vehicle falling below the collision avoidance distance. For 
the 30-m car-following threshold case, the test vehicle utilizes the ECC mode for most of 
the trip (97 percent) and improves its fuel economy to 20.5 mpg.  
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Figure 32. Different car-following thresholds, Toyota Camry 

Figure 33 and Figure 34 illustrate simulation results of using different car-following 
thresholds for a 2008 Chevy Tahoe and a 2008 Chevy Malibu Hybrid. The figures 
demonstrate that the speed profiles of test vehicles show similar patterns for each car-
following threshold. For instance, when the 100-m car-following threshold is used, all 
test vehicles operate mostly in the car-following mode, up to 99 percent of the trip. 
However, for the 50-m and 30-m car-following thresholds, the test vehicles generally 
operate in the ECC mode. In addition, for the 30-m car-following threshold, the test 
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vehicles maintain constant speeds for longer periods of time than for the 50-m car-
following threshold.  
 
 
 

 
 
 

Figure 33. Different car-following thresholds, Chevy Tahoe 
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Figure 34. Different car-following thresholds, Malibu Hybrid 

Table 2 summarizes the simulation results, which demonstrate that ECC-only operation 
can significantly improve fuel efficiency compared to car-following mode of operation. 
Furthermore, as described earlier, the test vehicles attained the best fuel economy while 
interacting with the lead vehicles on the test road for the 30-m car-following threshold. 
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Based on the simulation runs, the proposed system improves the fuel efficiency of the 
Toyota Camry, Chevy Tahoe, and Malibu Hybrid by up to 51, 21, and 31 percent, 
respectively. In conclusion, the results demonstrate that the proposed Eco-Driving system 
can significantly improve vehicle fuel economy on the tested roadway section.  

Table 2. Summary of results 
2011 Camry 2008 Tahoe 2008 Malibu Hybrid

Car-following only 13.5 mpg 8.9 mpg 16.2 mpg 
Eco-cruise only 24.6 mpg (82%) 14.3 mpg (60%) 25.4 mpg (57%) 
100-m Following Threshold 13.5 mpg (-0.6%) 8.7 mpg (-2%) 16.1 mpg (-0.1%) 
50-m Following Threshold 16.0 mpg (18%) 9.6 mpg (8%) 19.2 mpg (19%) 
30-m Following Threshold 20.5 mpg (51%) 10.8 mpg (21%) 21.2 mpg (31%) 

Figure 35 illustrates how different car-following threshold settings affect the spacing 
between the lead vehicle and the test vehicle. The shorter car-following threshold 
typically increases the inter-vehicle spacing while considerably improving fuel 
efficiency. The results demonstrate that when the Toyota Camry operates with the 30-m 
car-following threshold, the maximum spacing between the test vehicle and the lead 
vehicle increases to a maximum spacing of 450 m with an average spacing of 196 m for 
the entire trip. However, the 100-m and 50-m car-following thresholds reduce the average 
spacing to 50 m and 78 m, respectively, for the Toyota Camry. The figure also illustrates 
the spacing profiles of the Chevy Tahoe. While the maximum and average spacing values 
of the Chevy Tahoe are smaller than those of the Toyota Camry, the results demonstrate 
that the maximum spacing value (230 m) for the 30-m car-following threshold is 
relatively higher than is typically found in normal highway driving conditions. It should 
be noted that longer spacing between vehicles reduces the capacity of the road and also 
causes frequent lane changing and cut-in maneuvers. The next section investigates the 
potential for dynamic car-following scenarios to lessen the spacing between the lead and 
subject vehicles. 
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(a) Toyota Camry 
 

 
 

(b) Chevy Tahoe 
 

Figure 35. Spacing of different car-following thresholds 
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6.2 Dynamic Car-Following Thresholds 

This section investigates two dynamic car-following methods: dynamic threshold and 
dynamic threshold with maximum spacing limit. The dynamic threshold method 
increases the car-following threshold based on the vehicle spacing in order to minimize 
the vehicle spacing. As the vehicle spacing increases, the car-following threshold also 
increases, reverting the ECC operational mode to the car-following mode and reduce the 
vehicle spacing. Alternatively, if the spacing is reduced below the initial car-following 
threshold, the dynamic car-following threshold is set to the initial car-following 
threshold. Table 3 demonstrates the simulation results of using the dynamic car-following 
threshold. The results show that the dynamic car-following threshold method 
significantly reduces the average vehicle spacing without notably reducing the vehicle 
fuel economy. Specifically, the average vehicle spacing is reduced from 78 m to 54 m for 
the 50-m initial car-following threshold and from 196 m to 80 m with the 30-m initial 
car-following threshold. The results show that the dynamic car-following method slightly 
reduces fuel economy. In particular, the dynamic car-following threshold mode of 
operation decreases the vehicle fuel economy to 15.8 mpg and 18.3 mpg from 16 mpg 
and 20.5 mpg for the 50-m and 30-m fixed car-following thresholds, respectively.    
 

Table 3. Dynamic car-following threshold fuel economy and average and maximum 
spacing, Toyota Camry 

 
Fixed Car- Following 

Threshold  
Dynamic Car- Following 

Threshold  
Dynamic Car-Following 
with Max Spacing Limit 

Car-Following only 13.5 mpg   100 m Following Threshold 13.5 mpg (50 m, 60 m)   50 m Following Threshold 16.0 mpg (78 m, 161 m) 15.8 mpg (54 m, 179 m) 15.9 mpg (52 m, 183 m) 
30 m Following Threshold 20.5 mpg (196 m, 457 m) 18.3 mpg (80 m, 289 m) 17.2 mpg (48 m, 133 m) 

While the dynamic car-following threshold method significantly reduces the average 
spacing compared to the fixed car-following threshold method, the spacing values are 
relatively high for the 30-m initial car-following threshold, with 80 m and 289 m for 
average and maximum spacing values, respectively. To further reduce the spacing, the 
dynamic car-following method enforces a maximum spacing limit. If the spacing is 
greater than a pre-set maximum spacing limit, the ECC mode automatically switches to 
the car-following mode to reduce the vehicle spacing. Figure 36 compares the speed 
profiles of the fixed 30-m car-following threshold and dynamic 30-m car-following 
threshold with a maximum spacing limit of 100 m. The test vehicle using the dynamic 
method with maximum spacing limit generally follows the lead vehicle without 
experiencing the sudden speed drops observed in the fixed car-following method. The 
new method also considerably reduces the average spacing from 196 m to 48 m for the 
30-m initial car-following threshold. Furthermore, the maximum vehicle spacing is 
reduced from 457 m to 133 m. It is interesting to note that with the 50-m initial car-
following threshold, the maximum spacing increases from 161 m to 183 m while the 
average spacing decreases from 78 m to 52 m.  
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(a) Speed Profiles 
 

 
(b) Spacing 

 
Figure 36. Dynamic car-following threshold results 

Figure 36 illustrates the feasibility of using dynamic car-following thresholds instead of 
using a fixed car-following threshold. The study demonstrates that while the proposed 
Eco-Driving system significantly improves fuel economy, it also increases the spacing 
between a lead and the subject vehicles, particularly using the 30-m car-following 
threshold.  

6.3 Impact of Throttle Levels on System Performance 

Because power levels significantly affect fuel consumption rates, reducing the maximum 
throttle level can dramatically improve the overall fuel efficiency of the proposed system. 
This study investigated the impact of constraining the maximum throttle level to 60 and 
40 percent to quantify the fuel saving benefits compared to 100 percent throttle level 
(Table 4).   
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Table 4. Summary of results for different throttle levels, Toyota Camry 
100% Throttle 60% Throttle 40% Throttle 

Car-following only 13.5 mpg 15.8 mpg (16%) 20.2 mpg (49%) 
Eco-cruise only 24.6 mpg (82%) 
100-m following threshold 13.5 mpg (-0.6%) 15.8 mpg (16%) 20.2 mpg (49%) 
50-m following threshold 16.0 mpg (18%) 18.6 mpg (38%) 20.3 mpg (50%) 
30-m following threshold 20.5 mpg (51%) 20.9 mpg (55%) 20.8 mpg (53%) 

The simulation used the 2011 Toyota Camry as the test vehicle. The results show that 
even if the test vehicle utilizes the car-following-only mode on the I-81 study section, it 
can improve its fuel economy by 16 percent and 49 percent at 60 percent and 40 percent 
throttle levels, respectively. Using a 40 percent throttle level, the fuel economy of the test 
vehicle improves from 16 mpg to 20.3 mpg for the 50-m car-following threshold and 
from 20.5 mpg to 20.8 mpg for 30-m car-following threshold. Using a 40 percent throttle 
level improves the overall fuel efficiency, but it also produces longer vehicle spacings, as 
illustrated in Figure 37. When 40 percent throttle levels are employed in the proposed 
Eco-Driving system with a 50-m car-following threshold, the average spacing increases 
from 78 m to 99 m and the maximum spacing increases from 162 m to 277 m.    
 

 
Figure 37. Spacing comparison of different power levels, Toyota Camry with 50-m 

threshold 
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The ECC vehicle generates an optimal vehicle control significant fuel saving benefits. 
This section investigates the benefits of following an ECC vehicle by putting the ECC 
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that the ECC vehicle reduces its own fuel consumption by using the optimal vehicle 
control and that the test vehicle, a Toyota Camry, increases its fuel economy to 23.7 mpg 
just by following the lead ECC vehicle. It should be noted when the test vehicle is 
operated with the ECC-only mode, the test vehicle achieves a fuel economy of 24.6 mpg.   

The simulation studies of the Chevy Tahoe and Malibu Hybrid reveal similar results. The 
Chevy Tahoe and Malibu Hybrid achieve fuel efficiencies of 14.3 mpg and 24.3 mpg, 
respectively, just by following a lead ECC vehicle on the study road section. The fuel 
efficiencies of the Chevy Tahoe and Malibu Hybrid under ECC operation are 14.3 mpg 
and 25.4 mpg. The results confirm that the fuel-saving benefit of following an ECC 
vehicle is as great as using the ECC system.  
 

 
 

Figure 38. Following an ECC-equipped vehicle results 

6.5 Lead Vehicle Lane Changing and Cut-in Scenario  

The study investigates a lead vehicle lane change and cut-in scenario. The simulation 
uses the Toyota Camry as a test vehicle. As illustrated in Figure 28, a vehicle cut in at 
time 225 s and maintained a speed of 104 km/h for 5 min, then changed to another lane. 
A test vehicle using the proposed Eco-Driving system was simulated with a 30-m car-
following threshold. When a vehicle cut in at time 225 s, the test vehicle reduced its 
speed to prevent a collision using the car-following mode and then a few seconds later 
the test vehicle was operated using the ECC mode. Also, at time 525 s when the lead 
vehicle left the lane, the test vehicle sped up to maintain a proper spacing and returned to 
the Eco-Driving system. The figure demonstrates that the proposed Eco-Driving system 
can effectively manage the lane changing and cut-in scenarios. The test vehicle achieved 
18.4 mpg for the trip and maintained the average spacing of 50 m in this scenario.  
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Figure 39. Lead car lane changing and cut-in scenario, Toyota Camry with 30-m 

threshold 

 

7 Conclusions  
The exploratory research investigated the potential of developing an Eco-Driving system 
that utilizes an ECC system within state-of-the-art car-following models. The system 
makes use of topographic information, the spacing data of lead vehicles, and a desired (or 
target) vehicle speed and distance headway as input variables. The proposed study 
focused on integrating predictive cruise control and optimal vehicle acceleration and 
deceleration controllers within car-following models. The exploratory study 
demonstrated that the proposed system can significantly improve fuel efficiency while 
maintaining reasonable vehicle spacing. One of the test vehicles, a 2011 Toyota Camry, 
saved 27 percent in fuel consumption with an average spacing of 48 m along the I-81 
study section. The study also found that vehicle operations at lower power demands 
significantly enhance vehicle fuel economy (up to 49 percent), but not as significantly as 
the use of the ECC system (which improved fuel economy up to 82 percent). The study 
also demonstrated that non-ECC-equipped vehicles can significantly reduce their own 
fuel consumption just by following a lead ECC-equipped vehicle. Future research should 
quantify the potential benefits of using the proposed system at a network-wide level. 
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