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1.0 INTRODUCTION 

1.1 OVERVIEW 

Gusset plate connections are commonly used in steel truss bridges to connect individual 

members together at a node.  The connection typically consists of a steel plate on each side of the 

connected members, which are then bolted or riveted together.  A large number of steel deck 

truss bridges are currently in service.  The Federal Highway Administration (FHWA) estimates 

that 465 steel deck truss bridges and approximately 11,000 deck truss bridges exist in the 

National Bridge Inventory (NTSB, 2008). According to Barr et al (2011) there were 200,000 

steel bridges in United States in 2008 and 10% of these bridges are further classified as non-load-

path-redundant (fracture critical) bridges, meaning a failure of a single truss member or 

connection could lead to collapse.  This makes periodic inspections and load rating practices 

essential for the safe operation and maintenance of these bridge types. 

Historically, only the truss members were considered for load rating.  The rationale for 

omitting load rating for connections comes from what is thought to be conservative assumptions 

employed during connection design, combined with a small number of connection failures in the 

historical record; namely the 1996 gusset plate failure on the Grand River Bridge in Lake 

County, OH (NTSB, 2008) and the 2007 collapse of the I-35W Bridge in Minneapolis, MN (Holt 

and Hartmann, 2008).  The collapse of the I-35 Bridge in Minneapolis was catastrophic – 

resulting in 13 deaths and 145 injuries – and was the first gusset failure where a design error was 

implicated as the cause of collapse, thus revealing a new vulnerability in steel truss bridges 

which had previously been thought to be both economical and reliable.  After the I-35W Bridge 
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collapse, the FHWA issued a set of guidelines for load rating gusset plate connection (FHWA, 

2009), based on existing practice.   

Inclusion of gusset plate connections in load ratings poses a significant challenge to 

bridge owners due to the large number of connections in the inventory and the complexity of 

analysis required to accurately evaluate each connection.  Load transfer to bridge gusset plates in 

situ is delivered by multiple members – all potentially with axial, shear and moment – through 

the fasteners into bearing on the gusset plate.  However, current gusset plate design philosophy is 

rooted in elementary beam theory analysis and applicable specification rules, combined with the 

experience and judgment of the designer (Bjorhovde and Chakrabarti 1985).  The majority of 

experimental research on gusset plate strength capacity is from small-scale gusset connections 

consisting of a single braced member and relatively few fasteners subject to monotonic axial 

tension or compression, which is hardly representative of bridge gusset connections.  The 

complexity of stress fields and failure states found in bridge gusset plates is addressed in design 

by applying approximate methods to arrive at a rapid, conservative solution, but one that may 

lack accuracy.  Thus, development of more refined techniques for conducting high-fidelity 

capacity evaluations on existing bridge connections is desirable.   

To produce new data on the effectiveness of available analysis techniques and validate 

new methodologies for designing new connections and load rating existing connections subject 

to sway buckling failure modes observed in the I35W bridge, experimental research is needed.  

The effects of multiple variables must be examined on large-scale gusset plates.  These variables 

include: plate thickness, combination versus monotonic member loading, and initial out-of-plane 

imperfection of the gusset plates.  An additional parameter unique to this research is the effect of 

out-of-plane stiffness of the diagonal compression member on the sway buckling strength of 
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gusset plates.  The key input parameters currently incorporated in design and load rating 

guidelines are plate material, geometry and thickness. 

Another technique to assess the effectiveness of the current guidelines is finite element 

analysis (FEA).  FEA is widely used in structural engineering applications, with modern 

commercial software packages capable of modeling systems with non-linear material behavior, 

complex geometry, contact interactions and complex loading conditions.  FEA implementation 

in bridge connection evaluations does present some challenges due to the connection’s large-

scale, high degree of geometric variability and complex load paths.  Large-scale FEA gusset 

connection models have yet to be calibrated with experimental results.  There is no consensus 

among practitioners regarding how complex a FEA model must be to accurately capture a bridge 

gusset connection’s ultimate strength capacity.  Complex FEA modeling involves significant 

development time, specialized training, and can often come at the cost of long computation time.  

This consequently translates into significant cost for bridge owners, and can delay the 

incorporation of revised connection load-rating procedures into bridge inspection programs. 

1.2 OBJECTIVES  

The impetus for this work arises from the need for accurate and rapid assessment of 

bridge gusset connections, a re-evaluation of existing design methods, and a desire to better 

understand the parameters affecting the sway buckling strength of truss bridge gusset plate 

connections. 

The objectives of this research are as follows: 

1. Investigate the contributions of initial out-of-plane imperfection, out-of-plane bending 

stiffness of the compression diagonal member, plate thickness, and combined loading-to-

sway-buckling capacity of gusset plates through large-scale experimental studies. 
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2. Compare the experimental results to existing load-rating techniques including Whitmore, 

Modified-Thornton, and the FHWA Guide to determine their effectiveness at predicting 

capacity. 

3. Develop FEA models capable of evaluating gusset plate stresses and ultimate strength 

limit states and compare with experimental test results.  

4. Evaluate FEA modeling techniques for computational efficiency and ability to predict 

ultimate strength of bridge gusset plate connections subject to sway compression failures.   

In this research, the experimental work was conducted at Oregon State University under the 

direction of Professor Christopher Higgins, and the FEA studies were conducted at Portland 

State University under the direction of Professor Peter Dusika. 

 

1.3 SCOPE 

This work focuses on connection-level experimental tests and analysis of bridge gusset 

plates.  Therefore, the numerical and experimental emphasis will be on the local gusset 

connection, and does not include global truss numerical models or global truss experimental 

testing. However, the local member stiffness interactions on the gusset plate performance are 

included in this study. The experiments focus on sway-buckling behavior of the gusset 

connections and were designed to ensure failure occurs at the connection of interest.  Also, since 

the primary research focus is on stresses and limit states of the gusset plates themselves, 

analytical representations for attached members and fasteners were designed and modeled such 

that failure occurred in the gusset plate.  
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2.0 LITERATURE REVIEW 

2.1 ELASTIC BEHAVIOR OF GUSSET PLATES 

Modern gusset plate design has been most influenced by Whitmore (1952), who studied 

the stress distributions in a ¼-scale model of a bottom-chord, Warren-truss gusset plate 

connection, similar to the one shown in Figure 1.  Prior to Whitmore, gusset plate design 

consisted of sizing the plate to accommodate the required number of fasteners, then selecting a 

plate thickness based on classical beam formula analysis and engineering judgment.  Whitmore 

recognized that the use of beam theory was questionable, since gusset plates act like deep 

members.  He aimed to characterize the stress distribution in a gusset plate subject to load and 

the magnitude and location of maximum stress, and develop a simplified design method for 

determining maximum stresses in a gusset plate.  The experimental loading regime was kept in 

the elastic range of the gusset plate and was applied such that one diagonal member was in 

tension, the other diagonal member was in compression and the bottom chord was in tension.  

Stresses were calculated from an array of strain gages positioned across the plate.  

Whitmore’s findings showed that maximum stresses normal to the diagonals occurred 

near the ends of the compression and tension diagonals.  Maximum shear stress occurred along a 

plane just above the bottom chord and below the diagonal members.  Based on his findings, he 

proposed a simplified method for calculating maximum normal stresses in a gusset plate by using 

what has become known as the Whitmore effective width (Figure 2), which is defined as the 

length of the line perpendicular to the member axis passing through the last bolt row of fasteners, 

intersected by two 30-degree lines drawn from the first outer row of fasteners to the last row.  

Maximum normal stress is calculated by multiplying the material’s yield stress by the Whitmore 
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effective width times the plate thickness.  This technique for calculating maximum normal stress 

in a gusset plate continues to be a fundamental rule in gusset plate design. 

Two studies by Irvan (1957) and Hardin (1958) expanded on Whitmore’s work using a 

scale model of a bottom-chord Pratt truss gusset.  Irvan’s findings supported Whitmore’s in 

regards to the location of maximum tensile, compressive and shear stresses in the gusset plate, 

which occurred at the ends of the compression, tension and plane above the horizontal chord, 

respectively.  However, Irvan proposed an alteration to the Whitmore effective-width concept by 

drawing the two 30-degree lines from the bolt group’s center of gravity to the last bolt row, as 

opposed to the outer gage lines, resulting in a narrower effective width.  Research by Hardin 

corroborated Irvan’s results and recommendations.   

Yamamoto (1986) reported on elastic stress distributions in full-scale Warren truss and 

Pratt truss gusset connections, based on tests conducted for the Honshu-Shikoku Bridge 

Authority in Japan.  Yamamoto found that Whitmore’s methods were adequate for predicting 

maximum stress magnitudes, but the locations of the maximum stresses can shift depending on 

the global loading condition of the connection, specifically whether the bottom chord is loaded in 

tension or compression. 

2.2 GUSSET PLATE LIMIT STATES IN COMPRESSION 

Buckling is the primary failure mode for gusset plates subject to compression.  According 

to Thornton (1984), compressive capacity can be calculated with standard column buckling 

equations by considering the gusset plate as an idealized equivalent column with a width of unity 

along the brace’s line of action and length from the end of the Whitmore section to the plate 

edge, similar to that shown as L2 in Figure 2.  The slenderness ratio kL/r is calculated assuming a 

fixed-fixed boundary condition with an effective length factor of k = 0.65.  Alternatively, one can 



 

7 

use the average of L1, L2 and L3 for the equivalent column length, provided it is not greater than 

L2.  Thornton asserted that this is a conservative design approach since both plate action and the 

gusset’s post-buckling strength is ignored. 

Hu and Cheng (1987) conducted experimental tests on gusset plate buckling capacity in a 

simple braced-frame connection; considering effects of gusset plate thickness, boundary 

conditions, eccentricity and edge stiffening reinforcement.  Thin gusset plates were found to 

buckle at loads significantly lower than those predicted using Whitmore’s effective width 

approach.  Load at bifurcation was also shown to be highly dependent on boundary conditions 

(sway and non-sway conditions were tested), plate thickness and whether edge stiffeners were 

used.  Yam and Cheng (1993) conducted a follow-up investigation testing similar connections in 

compression.  The test matrix included varied plate thicknesses, plate size, brace angle 

orientation, and other variations of the framing members.  Yam and Cheng reported that the 

gusset plate’s compressive capacity was almost directly proportional to plate thickness as well as 

dependent on sway versus non-sway boundary conditions.  They also proposed modifying the 

angle used to the Whitmore effective-width definition from 30 to 45 degrees to more accurately 

account for the high degree of plate yielding and subsequent load re-distribution that occurs pre-

buckling.  This new definition of width in combination with the equivalent associated column 

was termed the Modified-Thornton method.  

Yamamoto (1988) published testing results on the buckling strength of full-scale gusset 

plate bridge connections similar to those from his previous study on elastic stress distributions 

(Yamamoto, 1985).  A loading truss was used along with a representative test specimen, as 

shown in Figure 3.  Experimental results were compared to the calculated design buckling 

strength per guidelines by the Japan Society of Civil Engineers (JSCE 1976).  All the 
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connections failed because of highly localized buckling surrounding the compression diagonal at 

loads approximately 2.5 to 3.7 times their design compression capacity.  Of note, Yamamoto’s 

paper makes no discussion about the boundary conditions imposed on the connection, although 

photographs of the failed samples suggest a high degree of out-of-plane constraint was present 

due to the short length of the members and the presence of large-end plates and stiffeners at the 

member ends.   

Gross (1990) conducted experiments on gusset plate connections for a typical building 

lateral bracing system.  The test specimens included a top and bottom gusset plate on either side 

of a beam framed into a column subassembly (Figure 4).  Parameters of interest were bracing 

member eccentricity relative to the beam–to-column working-point intersect, and whether a 

strong or weak axis-column alignment was included in the subassembly.  The subassembly was 

loaded laterally across the two top pins, inducing tension in the top diagonal member and 

compression in the bottom diagonal member.  Two of the three samples tested failed by buckling 

of the bottom gusset plate, with the third sample failing in block shear in the top gusset plate.  

Gross found that calculating the gusset plate buckling capacity per AISC Engineering for Steel 

Construction (1984) yielded values close to the experimental, provided that an effective length 

factor of k = 0.5 was used instead of Thornton’s k  = 0.65.  By decreasing the effective length 

factor, the calculated compressive capacity is increased, hence accounting for additional strength 

from post-buckling and plate action in the gusset plate. 

2.3 GUSSET PLATE LOAD RATING METHODS ACCORDING TO 
FHWA 

 After the I-35W bridge collapse in Minneapolis, FHWA released a guidance report 

detailing the minimum requirements for load rating riveted and bolted gusset plates on bridges 



 

9 

(FHWA, 2009),  Hereinafter referred to as the FHWA Guide, it is based on the latest editions of 

AASHTO LRFD, LRFR and LFR, where the following strength limit states are addressed:  

resistance of fasteners, gross-section plate yielding, net-section plate fracture, and both tensile 

and compressive resistance.  In this report, only compression failure states of the gusset plate are 

of interest and therefore are summarized.  A gusset plate’s buckling capacity is complex and is 

influenced by the plate’s state of stress, boundary conditions and system geometry.  The FHWA 

Guide allows the ultimate factored compressive capacity (Pr) to be calculated as follows per 

AASHTO LRFD Articles 6.9.2.1 and 6.9.4 in lieu of more rigorous analysis.   

 Given, 

ߣ ൌ ቀ௞௅
௥ೞగ
ቁ
ଶ ி೤
ா

      (2-1) 

For λ ≤ 2.25, then 
 ௥ܲ ൌ ߶௖0.66ఒܨ௬ܣ௦ ൌ ߶௖0.66ఒܨ௬ݓ௟(2-2)    ݐ 

Otherwise:  

௥ܲ ൌ ߶௖
଴.଼଼ி೤஺ೞ

ఒ
ൌ ߶௖

଴.଼଼ி೤௪೗௧

ఒ
    (2-3) 

where: 
k = effective length factor 
L = Whitmore effective length (see Figure 2) 
rs = Radius of gyration = ඥܫ௚ ⁄௚ܣ  
wl = Whitmore effective width 
ϕc = resistance factor for members in compression = 0.9 

 

It is left to the engineer’s judgment to select an appropriate effective length factor k, based on the 

anticipated boundary conditions of the gusset plate (i.e., whether sway or non-sway conditions 

exist).  In non-sway conditions the K values range from 0.65 to 1.0 and for sway conditions they 

range from 1.2 to 2.0.  AASHTO LRFD also places an upper limit of the length-to-thickness 

ratio of 2.06ඥܧ ⁄௬ܨ  for the design of unsupported edges of gusset plates to prevent gusset plate 

buckling, but is not required by the FHWA Guide when evaluating existing connections.   
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2.4  PREVIOUS GUSSET PLATE NUMERICAL MODELS 

Many of the aforementioned studies developed analytical models based on the finite 

element method in conjunction with their experimental work.  The following is a summary of 

previous methods used in the literature to model gusset plate stress distributions and failures. 

Davis (1967) was among the early users of numerical methods to investigate gusset plate 

stresses in the elastic range, where he replicated Whitmore’s findings analytically in his thesis 

research.  Vasarhelyi (1971) also employed finite element analysis on stress distributions across 

critical planes of the gusset plates he tested experimentally.  Vasarhelyi reported close agreement 

between analytical and experimental results that corroborated findings by Whitmore, but 

Vasarhelyi did not provide specific details to the analytical approach.   

More recent numerical models have been developed using Abaqus finite element 

software to model tensile and compressive failure states.  Walbridge et al. (2005) presented a 

model to investigate gusset plate failure states under monotonic tension, compression and cyclic 

loading.  The model was based upon previous analytical models developed by Yam and Cheng 

(1993), which were used to model gusset plate buckling capacity.  Abaqus S4R shell elements 

were used to model the gusset plate.  Both a perfect elasto-plastic and isotropic strain-hardening 

material model were examined.  Load was delivered through two splicing members on each side 

of the gusset plate; with the bolt connections modeled as either rigid beam elements, or as one-

dimensional spring elements to incorporate load displacement behavior of the fasteners.  Bolt 

holes were not explicitly modeled in the gusset plate.  The model was calibrated with 

experimental data from Rabinovitch and Cheng (1993) and Yam and Cheng (1993).    

Walbridge found that the perfect elasto-plastic material model produced better 

predictions of ultimate tensile strength, whereas the isotropic strain-hardening model tended to 
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over-predict ultimate tensile strength.  Walbridge hypothesized this may be due to the exclusion 

of bolt holes in the model, and that the excess material along the block shear failure planes 

contributed to the model’s overstrength.  Buckling capacity was significantly affected by the 

magnitude of initial out-of-plane distortion introduced in the gusset plate prior to loading, as well 

as the state-of-boundary conditions imposed on the splicing members.  It was also found that 

incorporating load-displacement behavior of the fasteners had little effect on the predicted global 

load-displacement behavior of the plate, or the predicted ultimate strength in tension and 

compression.   

Sheng et al. (2002) used a model analogous to Walbridge’s model to conduct a 

parametric study on gusset plate buckling strength.  Among the parameters considered included 

the effects of unsupported edge length, degree of rotational restraint imposed on the brace 

member, and the stiffness and length of the brace member.  Sheng’s model showed that 

increased unsupported edge length, increased rotational restraint, decreased brace member 

flexural stiffness and increased brace member length, all decreased the gusset plate’s buckling 

capacity.   

Following the I-35W Bridge collapse in Minneapolis, a detailed finite-element model was 

constructed to elucidate on the hypothesis that collapse was initiated at an under-designed gusset 

plate, and is described by Liao et al. (2011).  A global model of the entire bridge was developed 

using the software SAP 2000 to determine the load demands on the U10 connection through the 

bridge’s service life.  A connection-level model of the U10 connection was developed using 

Abaqus.  The gusset plate was modeled using C3D8 (linear brick element) elements from the 

Abaqus element library. Member stubs were included in the connection model.  Rivets and their 

corresponding holes were explicitly modeled at the L9/U10 diagonal, represented by rigid 
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cylindrical shells that transferred load through contact interaction to the rivet holes in the gusset 

plate.  Rivets on the remaining sections were modeled with rigid beam elements through the hole 

centers.  The contact interaction definition between the rivets and bolt holes neglected tangential 

friction.  The model represents the highest degree of complexity in a gusset plate connection 

reported in the literature, containing approximately 120,000 elements per gusset and was run on 

an IBM Power4 supercomputer at the University of Minnesota Supercomputing Institute. 

Conclusions from the FEA study corroborated the forensic and design review 

investigations by the NTSB (2008), namely that a significant portion of the U10 gusset plates 

may have already been yielded at the time of collapse.  The added construction weight, 

combined with insufficient strength at the U10 node, were the main contributors to the bridge’s 

collapse.  Liao also suggested that the interaction between compression and shear may have 

played an important role in the failure and recommended further study.   

2.5 SUMMARY 

 The gusset plate tensile capacity is generally governed by block shear.  Although 

equations for calculating block shear differ slightly between Hardish and Bjorhovde (1985), 

AISC Specifications, and AASHTO, they all are capable of adequately predicting gusset plate 

tensile capacity with varying levels of conservatism.  The various methods for the evaluation of 

gusset plate buckling capacity have the same general approach, namely that the gusset plate is 

reduced to an equivalent column based on rule-of-thumb guidelines such as the Whitmore 

section and an assumed effective-length factor.  However, appropriate definitions for Whitmore 

section, effective length and effective-length factor are still subject to debate, as seen from the 

numerous formulations presented, in order to align calculated buckling capacity with 

experimental results.  Also, the magnitude of out-of-plane imperfection in the gusset plates are 
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not incorporated into design or load-rating procedures per the FHWA Guide, which may have a 

significant impact on buckling capacity.  
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3.0 GUSSET CONNECTION EXPERIMENTAL PROGRAM 
(OREGON STATE UNIVERSITY) 

 Six large-scale gusset plate connection tests were conducted at Oregon State University 

in the Structural Engineering Research Laboratory.  All six specimens failed due to sway 

buckling at the base of the diagonal compression member.  Details of the specimen design, test 

setup, instrumentation, experimental methods, results, and discussions are described in the 

following sections. 

3.1 EXPERIMENTAL DESIGN AND SETUP 

The overall geometry for the experimental setup was inspired by connection U10 from 

the I-35W Bridge in Minnesota. This is the connection reported to have failed and which 

prompted the professional community’s interest in gusset plate performance and this research 

program.  The experimental program focused on the response of an isolated double-sided gusset 

plate connection typical of truss bridges.  While the experimental setup is similar to the U10 

connection, it is not a replica of the actual connection and was modified to meet certain 

laboratory testing limitations.  An overall elevation view of the setup is shown in Figure 5.  The 

connection is composed of two gusset plates which have five members framing into them, 

representing the geometry of a typical truss. The member designations are M1, M2, M3, M4 and 

M5, as seen in Fig. 5.  The setup utilizes a strong-wall and strong-floor on which a reaction 

frame was erected to allow reaction forces of over 1 million pounds to be generated in the setup.  

To model lateral resistance typical from floor beams and wind bracing, a lateral brace was 

positioned on one side of the connection in line with the work point of the joint. 

In order to ensure that the gusset plates failed due to instability at the compression 

diagonal, it was necessary to design the members and reaction frame to preclude alternative 
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failure mechanisms.  Members were designed according to the LRFD design provisions 

prescribed in the AISC Steel Construction Manual, 13th Edition.  With the exception of M1, all 

members were HSS shapes, though not all the same size.  Members M2, M4 and M5 were HSS 

20x12x5/8, with the strong-axis bending oriented in the plane of the truss, while member M3 

was HSS 12x12x3/8.  All tube sections were made of A500 steel.  Member M1 was a built-up 

box member composed of A36 steel plates (Figure 7) with the strong-axis bending oriented in 

the plane of the truss.  The lateral brace consisted of a pair of back-to-back angles, which acted 

as links as shown in Figure 9. The lateral brace was connected using slotted connections at the 

gusset plate and pinned at the reaction frame. The braces allowed vertical translations but 

restricted out-of-plane deformation at the work point. Members M1 and M2 were connected to 

the reaction frame.  Member M1 was connected using four (4) 1-inch-diameter bolts connected 

to the reaction frame.  Member M2 was connected using two (2) ½-inch-thick plates (one on 

each side), which were each fastened to the reaction frame with six (6) 1-inch-diameter bolts.  

Each plate was connected to the member with 36 ¾-inch-diameter bolts.   Member M4 was 

connected to the reaction frame using a high-strength spherical bearing that provided a true pin 

connection with no rotational restraint. 

Two different members were used for the compression diagonal member, M4. The first 

member M4 and HSS section, as described above, were relatively stiff. The second M4 section 

was designed so that the out-of-plane flexural stiffness was reduced by an order of magnitude 

from the “stiff” HSS section.  The “soft” member M4 consisted of back-to-back MC18x58 

channel sections (Figure 8), which provided approximately the same cross-sectional area (same 

axial stiffness) and strong-axis second moment of area, I, while providing just 7% of the weak-

axis second moment of area of the HSS member M4.  By orienting the member so that weak-axis 
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bending occurred in and out of the plane of the truss, the effects of out-of-plane compression 

diagonal stiffness on sway buckling capacity could be evaluated. 

The gusset plates used in each test were identical in size and shape, with the exception of 

thickness, and are detailed in Figure 6.  Specimens 1, 2 and 4 were ¼-inch-thick, Grade A36 

steel plates, and specimens 3, 5 and 6 were ⅜-inch-thick, Grade A36 steel plates.  The 

connections to the truss members were all bolted with ¾-inch-diameter A325 bolts.  All bolts 

were tightened using a pneumatic impact wrench, with the exception of those at the M4 

connection.  The bolts in the M4 connection were tightened to a relatively low 100 ft-lbs to 

enable bearing behavior instead of slip critical behavior.  This is more representative of older 

plates with riveted connections, whereby forces are transferred between the member and plate 

through bearing. The gusset plates were fabricated using CNC equipment and all bolt holes in the 

plates were drilled.  

Three actuators were used in the setup and included two 500-kip actuators and one 220-

kip actuator.  The actuator sizes were chosen based on the design forces in the I-35W bridge for 

which each member was sized.  The 220-kip actuator was positioned over the vertical member 

(M3).  The first 500-kip actuator was positioned vertically over member M4.  The second 500-

kip actuator was positioned horizontally in line with member M5.  This large actuator was used 

to induce compressive force in the chord.  Henceforth, the actuators will be referred to by their 

associated member when referenced (i.e., the actuator positioned over member M4 will be 

referred to as the “M4 actuator”). 
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3.1.1 Instrumentation 

Four different sensor types were used to capture the behavior of the gusset plates and 

members as well as the reaction frame.  Uniaxial strain gages were placed on all members except 

M3 (not enough length available to instrument) to capture axial forces and bending moments in 

the members.  Uniaxial strain gages were also applied to the gusset plate to capture bending and 

membrane stresses at the free edges of the gusset plate by positioning gages on each side of the 

plate at the same location.  On the gusset plate surface, 45° strain rosettes were used to determine 

stress magnitudes and orientations along critical paths identified as A-A, B-B and C-C (shown in 

Figure 26).  Relative displacement between the edge of the gusset at each connection and the 

work point was measured with displacement sensors attached to the work point and each 

member.  Local slip between the members and gusset plate was measured with displacement 

sensors placed at the edges of the gusset at each member connection.  Out-of-plane displacement 

was measured using displacement sensors attached to the free edge of the gusset between 

members M4 and M5 and also at the work point.  Global system displacement in the downward 

direction was measured with displacement sensors attached between the work point and 

laboratory strong floor.  For each test, data were collected and archived using a commercially 

available data acquisition system. After testing, the data were reduced and are reported 

subsequently.  As the test program evolved, some sensors were deemed inconsequential and 

were not used in later tests.  The instrumentation plans for all tests is shown in Figure 10-Figure 

15. 

In addition to the discrete displacement sensors described above, a digital image 

correlation (DIC) system was used to monitor global movements of the critical plate area where 

M4 framed into the joint on one the west side of the connection.  The use of DIC also allowed 
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measurement of the initial imperfections in the gusset plates prior to loading.  These initial 

imperfections are shown for each specimen in Figure 16.  An example of the progressive motion 

of the west plate of specimen 2 during loading of the gusset is shown in Figure 17. In this figure, 

the final buckled shape at failure is not scaled the same as the other images and is shown to 

illustrate the progression of out-of-plane deformation. 

 

3.1.2 Loading Protocols 

Two separate loading protocols were used in the test series. Protocol 1 was used for 

specimen 1 and specimen 3 and deployed all three actuators in the setup.  The loading was 

broken down into cycles, and each cycle used progressively larger loads proportioned between 

M3, M4 and M5, based on the I-35W design load proportions for the truss members.  Each cycle 

followed these steps: 

1. All actuators at zero 

2. Load M4 actuator 

3. Hold M4 + Load M3 

4. Hold M4 + Unload M3 

5. Hold M4 + Load M5 

6. Hold M4 + Unload M5 

7. Hold M4 + LoadM3 + Load M5 

8. Unload all actuators in reverse order from Step 6 

For specimen 1, the load cycles followed the values shown in Table 1, and for specimen 3 the 

load cycles followed the values shown in Table 2.  The rate at which the loads were applied 
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varied throughout the duration of each test.  At low loads in the elastic range a rate of 1 kip/sec 

was used, and when load magnitudes became large the rate was increased to 2 kip/sec. 

 The other loading protocol, protocol 2, was used in the other tests and was a monotonic 

loading using the M4 actuator only.  The actuator was loaded at a constant rate of 1 kip/sec until 

failure of the gusset plates.  This protocol was used for specimens 2, 4, 5 and 6. 

 

3.1.3 Development of M4 Brace Stiffness for Test Program 

In order to assess the role of the compression diagonal member out-of-plane stiffness on 

the sway behavior and strength, the member stiffness was changed for different specimens. To 

rationally establish the compression diagonal proportions, existing steel truss bridges across the 

country were examined to determine common diagonal compression member stiffnesses 

observed in practice.  The stiffness of the compression diagonals was determined by calculating 

the weak-axis moment of inertia, I, from drawings of the built-up cross sections.  Member 

length, l, was also taken from the drawings.  Modulus of elasticity, E, was assumed to be 29,000 

ksi.  The translational stiffness, kt, and rotational stiffness kr were computed assuming the same 

boundary conditions for each member considered as: 
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where: 
kt = translational stiffness (kip/in) 
kr = rotational stiffness (kip-in) 
E = modulus of elasticity (ksi) 
I = moment of inertia (in4) 
l = length of member (in.) 
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 To ensure no regional design bias in the selection of the diagonal stiffness, six different 

bridges were evaluated from different parts of the country.  The bridges and results of the 

comparison are shown in Table 4.  The average member translational stiffness in the steel truss 

bridges evaluated was 0.55 kip/in.  For the back-to-back channel section used for M4, the 

stiffness was 1.31 kip/in. and is higher than that observed in the bridge database considered. The 

closest in situ value was 1.29 kip/in. for member M15-L16 on the I-275 Bridge over the Ohio 

River in Kentucky.  The average member rotational stiffness in the set of steel truss bridges 

evaluated was 271,000 kip/in.  This is much closer to the HSS brace stiffness used in the 

experimental program, which had a rotational stiffness of 224,000 kip/in.  This shows that for 

laboratory tests that must deploy artificial member cross sections and lengths (often necessary 

for cost and facility constraints), the resulting specimens have out-of-plane stiffness properties 

that are unrealistically large. The effects of this high member stiffness on sway buckling are 

uncertain and have not previously been considered experimentally. In the present set of tests, the 

two M4 configurations considered were able to model the translational stiffness or the rotational 

stiffness of in situ bridges, but not both simultaneously. This explicit consideration of member 

stiffness on connection behavior and strength is a unique feature of the test program. 

  

3.1.4 Calibration of Strain Gages on Member M4 for Axial Force Calculation  

To accurately represent the axial force data gathered from strain gages located on 

member M4, it was necessary to calibrate the gages on both the soft and stiff cross sections.  The 

stiff brace was calibrated using a separate actuator that was not subject to the system losses of 

the test setup caused by the reaction frame.  The brace was placed vertically below the actuator 

and centered in all directions so that bending would not be induced.  The strain gage readings 
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were averaged across all the gages to obtain force.  A linear fit was used to calibrate the strain 

gages with the load cell readings.  Calibration of the soft brace was done using the M4 actuator 

in the test setup.  The diagonal member was placed vertically under the crossbeam.  A load cell 

was placed at the bottom of the diagonal member so that the member load could be measured 

directly.  Like that for the stiff section, a linear fit was applied to the strain data and correlated 

with the direct applied load cell measurements.  Both calibrations are shown in Appendix B. All 

axial force data presented in this report are the member forces calibrated in this way. 

   

3.2 EXPERIMENTAL RESULTS 

All six gusset plate specimens exhibited sway buckling failure modes at the M4 location.  

Specimen 1 buckled away from the out-of-plane brace and all other specimens buckled towards 

the out-of-plane brace (two specimens were forced to buckle toward the brace). This showed 

some limited bias in the test setup.  The buckled shapes of each specimen after failure are shown 

in Figure 23 along with the predicted FEA buckled shape.  The experimental results are 

described by buckling capacity, compressive force in the compression diagonal versus out-of-

plane displacement of the gusset plate, plate stress distributions, and bending strains in the M4 

compression diagonal cross section.  The experimental findings are compared with the predicted 

strength using the FHWA Guide. The measured stress in the plate is compared with the 

Whitmore effective width and Modified-Thornton methods.  Table 5 shows the experimental test 

matrix with salient specimen characteristics as well as key results including: plate thickness, 

loading protocol, maximum initial out-of-plane imperfection, out-of-plane displacement at 

failure, axial load in member M4 at failure, average Whitmore stress at failure, and the ratio of 
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observed stress in the M4 direction to the Whitmore stress and Modified-Thornton stress at 

corresponding loads. 

 

3.2.1 Compression Diagonal force-Plate Out-of-plane Displacement  

The compression diagonal (M4) force versus out-of-plane displacement at the free edge 

of the gusset plate is most descriptive of the overall behavior of the connection.  For each 

specimen, the out-of-plane displacement data were collected at the midpoint of the vertical free 

edge of the gusset plates as well as at the work point of the gusset plates.  The rigid body motion 

of the overall connection assembly as captured at the work point of the gusset was projected to 

the free edge of the gusset by assuming a linear projection from the base of the reaction frame 

through the work point and out to the free edge of the gusset.  This rigid body motion was 

removed from the displacements observed at the midpoint of the free edge of the gussets to 

obtain the out-of-plane displacement of the free edge relative to the truss members.  The curves 

exhibited load stiffening at the beginning of each test, which was removed using a linear fit of 

the elastic portion of the curve (once it became linear), and then projecting the linear elastic 

portion to the x-axis.  The entire curve was then shifted so that the line crossed the origin.  Figure 

19 shows the compression diagonal (M4) force versus out-of-plane displacement at the free edge 

behavior during failure cycles for each specimen.  Specimen 1 is shown as a backbone curve 

because it failed during unloading of the M5 actuator (this is described in more detail 

subsequently). 

Three parameters were seen to influence the compression diagonal (M4) force versus out-

of-plane displacement at the free edge behavior most significantly: combination loading, initial 

out-of-plane imperfection, and compression diagonal flexural stiffness.  Specimen 1 provided the 
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most insight into the effects of member combination loading on connection capacity.  Two 

figures help explain the observed behavior of specimen 1: Figure 20 shows the M4 load versus 

free edge displacement behavior for all load cycles, and Figure 21 shows the final load cycle 

with the different load steps detailed.  For each load cycle, additional out-of-plane displacement 

was introduced to the system (as observed at the work point) by the application of loads from the 

M3 and M5 actuators. As the M3 and M4 forces were increased, the compression stresses in the 

plate reduced, even while the axial force in member M4 was maintained.  In the final load cycle, 

M4 was loaded to the target value without failure and then M3and M5 loads were applied. The 

M3 and M5 loads created slightly more additional out-of-plane displacement of the system while 

decreasing the compression stress in the plate.  Then, when both M3 and M5 loads were removed 

and the axial force in M4 remained unchanged, the compressive stress in the gusset increased 

and with the slightly increased out-of-plane deformation of the system (induced by application of 

the M3 and M5 loads), the gusset plates buckled.  When compared with specimen 2, which had 

all the same parameters but was loaded monotonically using only the M4 actuator, the buckling 

load increased by 10% from 291 kips for specimen 1 to 325 kips for specimen 2.  

The effects of initial imperfections were most evident in specimens 3, 5 and 6.  In 

specimen 3, the capacity of the actuators was not sufficient to buckle the plates when the 

specimen contained only as-built initial imperfections on the order of about 100% of the plate 

thickness seen in Table 5.  In order to buckle the specimen, additional imperfections were 

required. To increase the plate imperfections, a hydraulic ram was used to push the plates 

laterally out-of-plane at the center of the free edge as shown in Figure 18.  This simulated the 

lowest buckling mode for the connection (as described in the numerical modeling chapter). 

Using this approach, an additional imperfection of 102% of the plate thickness was imposed, 
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which was sufficient to produce failure given the force capacity of the available hydraulic 

loading system.  Figure 22 shows the results during tests with the as-built initial imperfection. 

Here the first results was for the as-built imperfections where the specimen did not fail, while the 

second curve shows the final loading cycle which produced sway buckling failure (after an 

additional out-of-plane imperfection of 102% of the plate thickness).  The same behavior was 

observed for specimens 5 and 6 (soft brace M4).  Both of these specimens had ⅜-inch-thick 

plates with the flexurally soft M4 cross section and used the monotonic loading protocol. 

However, specimen 6 had an additional initial out-of-plane imperfection of 98% imposed on the 

free edge to compare with the findings of specimen 3.  A reduction in capacity of 14% was 

observed for specimen 6 (498 kips) compared with specimen 5 (579 kips). This shows that the 

strength reduction was not as significant for the flexurally soft M4 cross section as compared to 

that of the stiff M4 cross section.  

Finally the effect of the M4 compression diagonal stiffness was observed in the load 

versus out-of-plane displacement behavior at the free edge.  In both the ¼-inch and ⅜-inch-thick 

plates, the sway buckling capacity was significantly reduced when the soft-brace section was 

used instead of the stiff-brace section.  Specimens 2 and 4 show a 21% reduction in capacity for 

the ¼-inch plates while specimens 3 and 6 show a 9% reduction in capacity for the ⅜-inch plates 

(these specimens had approximately 100% plate-thickness imperfections imposed prior to 

testing).  While specimen 5 showed a higher buckling capacity than specimen 3, the effects of 

initial imperfection were more dominant than the effects of brace stiffness for the thicker plates.  

This difference in behavior can be explained through member-plate interactions in the numerical 

studies described later. 
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3.2.2 Bending strains in member M4 

Compression diagonal-gusset plate interactions were observed in the bending behavior of 

member M4.  Bending strains were extracted from the uniaxial strain gages that were placed at 

cross sections of the member to measure the member axial, shear and bending. The measured 

strain distributions for member M4 are shown in figures 25 and25 for the flexurally stiff and soft 

diagonals, respectively.  The strain profiles show both axial and bending strains. The axial strain 

was removed as the average of the strains at the instrumented cross sections. The resulting strains 

are from bending. The observed strain profiles at the midpoint of the member were obtained 

directly from strain gage data gathered during testing. The expected strain at the plate-member 

interface was projected based on a linearly extrapolated moment profile along the length of the 

member with the spherical pinned bearing connection having zero bending strain.  The difference 

in the two different stiffness compression diagonals is clearly evident in the aforementioned 

figures.  In specimens 1, 2 and 3, where the stiff brace was used, there is very little bending 

observed.  Specimen 3 shows some bending due to the much higher loads needed to buckle the 

⅜-inch-thick plates. However, this bending strain was very small when compared with that 

observed for specimens 4, 5 and 6.  In the specimens where the soft M4 was used, bending 

strains at the midpoint of the member was clearly evident, and the projected profiles at the plate-

member interface actually indicate some tensile stress in the member.  The strains show bending 

of the diagonal that provides less restraint to the plate, thereby reducing the effective stiffness of 

the system and lead to lower buckling load. 
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3.2.3 Stress distribution 

The experimental tests allowed characterization of the stress distribution in the gusset 

plates and comparison with previously reported archival findings.  Three different paths were 

used to describe the stress distribution throughout the plate and are shown in Figure 26.  Each 

path corresponds to a path typically used to assess plate strength.  Plane A-A corresponds to the 

shear plane located just above the bottom chord of the connection, path B-B corresponds to the 

Whitmore effective width, w, and path C-C corresponds to the effective column length, L2, as 

described by Thornton (Yam and Cheng 1993). 

In order to fairly represent the axial stress in the plate from strains measured using the 

strain rosettes, it was necessary to determine when the effects of bending began to contaminate 

the strain-gage measurements.  A strain-gaged location was used to determine this threshold. The 

sensor was identified as gage R2 as seen in the instrumentation plans of figures 10-Figure 15. 

This sensor was offset slightly from the midpoint of the Whitmore width along path C-C and was 

chosen due to the high stresses and bending that occurred at this location.  The strain-gage values 

were reduced to provide stress values oriented in the direction of member M4 so that they could 

be compared with the Whitmore stress.  Two different normalizations were performed to 

establish the threshold where bending in the plate begins to become significant and the strain-

gage readings are not representative of the axial plate stresses. The gusset plate stress oriented in 

the M4 direction, σ4, were normalized with respect to the maximum Whitmore stress (computed 

as the maximum member force divided by the Whitmore section) and plotted against normalized 

M4 axial compressive force values, F/Fmax and are shown in Figure 27. The gusset plate stress in 

the M4 direction is shown in Figure 28 normalized with respect to the corresponding Whitmore 

stress for each member force value and plotted against the normalized M4 axial compressive 
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force values.  In these figures, specimen 4 showed significantly higher stresses relative to the 

Whitmore stress and exhibited bending early in the test.  From the observed results it was 

determined that the plate membrane stress distributions were maintained between 0.3Fmax to 

0.6Fmax. The lower stresses are not characteristic because they are sensitive to noise, 

imperfections and nonuniform bearing/contact between the fasteners and plates.  

For all specimens, stresses were determined in the global x, global y, global xy (shear) 

and principal directions, as well as von Mises stresses.  For paths B-B and C-C, they were further 

determined in the direction of member M4 to correspond with the Whitmore stress direction and 

Thornton’s effective column direction.  Results between the range of 0.3Fmax and 0.6Fmax for 

specimens 1, 2 and 4 (¼-inch plates) are shown in figures 29-Figure 35.  Results between the 

range of 0.3Fmax and 0.6Fmax for specimens 3, 5 and 6 (⅜-inch plates) are shown in figures 36-

Figure 35. For the ¼-inch-thick plates, specimens 1 and 2 are similar for all stress directions. 

This is expected since both tests were identical, with the exception of the loading protocol.  

When compared with specimen 4 however, differences were observed. In general, specimen 4 

exhibited similar trends to those of specimens 1 and 2, with differences observed in the stress 

magnitudes.  For plane A-A and path C-C, the stresses tended to be smaller for specimen 4 in all 

directions.  Further, the stress in the global-x direction on plane A-A did not follow the same 

pattern as that observed for specimens 1 and 2.  For path B-B, the magnitudes tended to be larger 

than specimens 1 and 2, especially at the center of the path, which corresponds to the midpoint of 

the Whitmore width.  As described earlier, specimen 4 exhibited higher bending stresses than the 

other specimens.  Bending is likely the cause of this difference in stress distribution, and the 

early bending (out-of-plane distortion) resulted in a relatively low failure load.   
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For the ⅜-inch-thick plates, specimens 3 and 6 were similar.  Although the two tests used 

different M4 brace sections, the effects seen in the ¼-inch-thick plates with different brace 

stiffness were not as evident.  The same trend of the soft brace having slightly smaller 

magnitudes than the stiff brace was observed, but the differences were smaller, generally below 3 

ksi. The reason for the smaller differences was the externally applied initial imperfection.  By 

inducing greater initial imperfection the influence of the bracing member stiffness is reduced, 

resulting in similar stress magnitudes and distributions. This also explains the difference in 

stresses reported from specimen 5 in relation to specimens 3 and 6.  Specimen 5 had only as-built 

imperfections and exhibited lower variations in plate stresses across all the stress paths and 

directions.  

In addition to the stresses reported in the range of 0.3Fmax and 0.6Fmax of the member 

force, the effects of combination loading (loading protocol 1) were observed by comparing 

specimens 1 and 3.  For specimen 3, results are reported before additional imperfection was 

applied for better comparison to specimen 1.  The load cycle chosen for reporting stresses 

corresponds to the load cycle that most closely matched 0.6Fmax.  For specimen 1, the load cycle 

chosen was 175 kips – 42 kips – 164.5 kips (actuator loads M4 – M3 – M5, respectively), and for 

specimen 3 the load cycle was 300 kips – 72 kips – 282 kips.  Stresses are shown for the load 

cases of M4 only, M4 and M5, and M4, M3 and M5.  In general, the stresses in each specimen 

followed the same trends with larger magnitudes in specimen 3.  The plots show that different 

member load combinations definitely affect the stress distribution in the plate, especially the 

addition of M5.  The addition of M5 to M4 caused plate stresses to increase in nearly every 

direction, with the exception of shear stresses.  The addition of M3 did not have the same effect 

on magnitudes as the addition of M5; however, it did reduce the stress in the M4 direction at the 
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midpoint of the Whitmore section back to levels corresponding to M4-only loads.  This also 

helps to explain why specimen 1 failed in unloading as the M3 load was removed. 

 

3.2.4 Comparison of stresses to Whitmore and Modified-Thornton methods 

The most common formulation used to describe the stress magnitude in a gusset plate is 

the Whitmore method.  The method assumes the maximum stress can be estimated as the 

member force divided by an effective plate area having a width determined based on an assumed 

dispersion angle of 30°. This was illustrated previously in Figure 2.  The experimentally 

measured gusset plate stress magnitudes were compared with the Whitmore method. The 

theoretical Whitmore stress was calculated as the applied compression member (M4) force 

divided by the cross-sectional area of the gusset plate. The effective area was computed as the 

Whitmore effective width x gusset plate thickness. The M4 force level was set equal to 60% of 

the collapse load (0.6Fmax) to minimize the influence of significant plate bending in the measured 

results. This value was compared with the measured maximum principle stress in the plate, 

measured at strain-gage location R2 (see Fig. 14 for example). This strain gage was centered at 

the end of the compressive diagonal member. The theoretical and measured maximum 

compressive stresses are shown in Table 5. As seen in this table, the mean ratio of the maximum 

compressive stress (from the plate strain gages) to theoretical stress (member load/theoretical 

Whitmore area) was 1.26. Data from specimens 3 and 6 were not used for this assessment due to 

bending stresses produced by the large imposed out-of-plane deformations for these tests. This 

indicates that, on average, the actual maximum compressive gusset plate stresses were larger 

than those predicted by the Whitmore method. However, the stress distributions across the 

Whitmore section were not uniform as discussed below. 
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Most engineers apply the Whitmore section in design and analysis by considering it to be 

the cross section of an equivalent column. To consider this, the experimentally measured gusset 

plate strains (from rosettes R1, R2 and R3) were transformed to show the plate stresses oriented 

in the member M4 direction along the Whitmore width. The stress distribution in the direction of 

member M4 across path B-B was non-uniform for all specimens, as shown in figures 35-42. 

Because the stress distribution was non-uniform, comparisons were made considering average 

plate stress in the direction of member M4 and maximum plate stress in the direction of member 

M4 along the Whitmore width (path B-B).  Average gusset plate stresses along path B-B were 

determined by averaging the measured stresses in the gusset plate oriented in the M4 direction 

when the M4 force was equal to 60% of the collapse load (0.6Fmax). The gusset plate stress 

values along path B-B were normalized with respect to theoretical Whitmore stresses and are 

also shown in Table 5.  The mean ratio of average stress (from plate strains) to theoretical stress 

(member load/theoretical Whitmore area) was 0.65. The mean ratio of maximum stress (from R2 

measured in the direction of member M4) to theoretical Whitmore stress was 1.14. Data from 

specimens 3 and 6 were not used in these assessments because the bending stresses produced by 

the large imposed out-of-plane deformations affected the strain measurements. These results 

showed that the average gusset plate stresses across the Whitmore section were approximately 

57% of the maximum stress. This may help explain the conservative outcomes when using the 

Whitmore method to predict gusset plate connection buckling strengths. 

Another method that uses a different assumed stress distribution in the gusset plate is the 

Modified-Thornton method (Yam and Cheng, 1993). This method assumes a larger dispersion 

angle of 45o as compared to the 30o angle used by Whitmore. The original formulation by Yam 

and Cheng considered only the overall strength rather than the local plate stresses. However, to 



 

32 

compare with the application of Whitmore as described in the previous paragraph, the plate 

stresses in the member M4 direction were evaluated considering the 45o dispersion angle.  Both 

average and maximum gusset plate stresses along path B-B were determined when the M4 force 

was equal to 60% of the collapse load (0.6Fmax). The gusset plate stress values in the member M4 

direction along path B-B were normalized with respect to theoretical Modified-Thornton stresses 

(taken as the M4 load/(Modified-Thornton width*gusset plate thickness)) and are shown in Table 

5.  The mean ratio of average stress (from plate strains) to theoretical stress (member 

load/theoretical Modified-Thornton area) was 0.54. It should be noted that strain gages R1 and 

R3 are at the end of the Whitmore section and to estimate the stresses at the ends of the 

Modified-Thornton section the plate stresses were linearly extrapolated. Due to the non-uniform 

stress distribution in the plate, the results showed that as the plate stresses were considered over a 

larger area, the average stress decreased. The average plate stresses were lower for the Modified-

Thornton approach than that observed for the Whitmore approach. The mean ratio of maximum 

stress (from R2 measured in the direction of member M4) to the theoretical Modified-Thornton 

stress was 1.40. These results showed that the Modified-Thornton method predicted a lower 

maximum stress than the Whitmore method. Whitmore more closely predicted the value of the 

maximum stress with the actual plate stress being higher than that predicted. Whitmore also 

better predicted the average stress on the effective area with the actual average plate stress being 

lower than that predicted. Data from specimens 3 and 6 were not used in the above assessments 

because the bending stresses produced by the large imposed out-of-plane deformations 

influenced the strain measurements. 
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3.2.5 Comparison of Experimental Results to FHWA Guide 

Currently, the FHWA Guide is the protocol used by transportation agencies to evaluate 

gusset plates. Of interest to this work is the effectiveness of the FHWA Guide in predicting 

buckling strength of gusset plates. Buckling strength is computed as described previously using 

Eqns. 2-1 through 2-3.  A key parameter in these calculations is the effective length factor, K.  

The FHWA Guide describes appropriate values of K for sway buckling as 1.2 to 2.0 depending 

on boundary conditions.  Using the experimental results produced in this research, K values were 

back-calculated from the measured buckling loads using the following series of equations: 

1ߣ  ൌ log0.66 ቆ
ܲ݊

݃ܣݕܨ2
ቇ  (3-3.1)

2ߣ  ൌ
2ሺ0.88ሻ݃ܣݕܨ
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  (3-3.2)

If 1ߣ ൏ ߣ 2.25 ൌ ଵߣ (3-4.1)
If 1ߣ ൒ ߣ 2.25 ൌ ଶߣ (3-4.2)

ܭ  ൌ
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݈
ඨ
ܧߣ
௬ܨ

  (3-5)

 

Using Eqns. 3-3 to 3-5, the experimentally predicted K values were computed and are shown in 

Table 6. As seen in Table 6, the experimentally determined K values were well below those 

thought to be applicable to sway-buckling of gusset plates. In addition to the experimental K 

values, the critical buckling loads were estimated using the FHWA Guide and compared with the 

experimental results.  Results of these comparisons are also shown in Table 6 and show that the 

FHWA Guide underestimated the capacity of the connections in this experimental program. 

Based on these results, the FHWA Guide is quite conservative and the equivalent column 

analogy for plate bucking does not adequately account for the plate buckling behavior of the 

connection.  The capacity of the specimens was four times greater for the ¼-inch-thick plates 

(very slender plates) and 2.5 times greater for the 3/8-inch-thick plates when compared with the 
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predicted values.  The experimental K values were 0.54 to 0.61 for the ¼-inch-thick plates and 

0.73 to 0.80 for the 3/8-inch-thick plates.  These values are all less than 1.0, which is the 

theoretical value for sway-buckling conditions considering the plate as an equivalent column.  

The effects of the compression diagonal flexural stiffness were also evident in the back-

calculated experimental K values.  In the ¼-inch-thick plates, the effective length factor 

increased 0.06 from specimen 2 to specimen 4 and in the 3/8-inch-thick plates, the effective 

length factor increased 0.04 from specimen 3 to specimen 6 when only the M4 stiffness was 

varied.   

 

3.2.6 Modeling of member-connection interaction 

In order to account for plate behavior in evaluation of the sway-buckling capacity, it is 

necessary to consider member-connection interaction.  Considering an equivalent column 

approach, a stepped column model is used to demonstrate the member-connection interaction as 

shown in Figure 50.  In this figure, the member is represented by the long think line and the 

gusset plate is represented by the short thick line.  The figure also illustrates the extreme bounds 

of the compression member stiffness with an intermediate point between them.  The effective 

stiffness of the plate is then determined based on the stiffness of the member, where 2.0 

represents a very soft member and values less than 1.0 represents a very stiff member.  Based on 

the eigenvalue buckling load for the stepped column (considering the relative stiffness of the 

connection and member as well as the length of the connection relative to the member ), the 

plate equivalent length factor K was determined as shown in Fig. 51.  The interaction 

relationship is still subject to the limitations of the column analogy for the problem space, but it 
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demonstrates how relative member and plate stiffnesses affect “plate” buckling capacity and 

shows the need to consider the system behavior. 

 

3.3 CONCLUSIONS FROM EXPERIMENTAL TESTS 

Six large-scale gusset plate tests were conducted at Oregon State University to produce 

new data on the behavior and capacity of gusset plates with sway-buckling response.  The 

parameters considered in the experimental program were plate thickness, initial out-of-plane 

imperfection, compression member out-of-plane stiffness, and member-load combinations.  

Variation of the diagonal compression member out-of-plane flexural stiffness was unique to the 

testing program.  The effectiveness of the Whitmore section, Modified-Thornton approach and 

FHWA Guide to accurately predict behavior and capacity of gusset plates in sway-buckling 

failure modes was evaluated.  All six specimens failed due to sway buckling of the diagonal 

compression member connection.  The key findings are summarized below: 

 The out-of-plane flexural stiffness of the diagonal compression member influenced the 

buckling capacity of the gusset plates and demonstrated that as the member stiffness 

reduced, gusset plate buckling strength decreased. 

 The interaction between the member stiffness and relative plate stiffness on sway 

buckling was also shown analytically with the stepped column analogy.  These 

interactions may need to be considered in future design and load-rating guidelines to 

accurately predict sway-buckling capacity of the system (member-connection 

interaction). 

 Member-load combinations that increased the compression stress in the plates and 

increased out-of-plane deformations reduced the capacity of the gusset plate connections. 
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The incremental out-of-plane displacements were not fully recoverable upon unloading of 

the truss members in the experimental setup. 

 Initial imperfection equivalent to plate thickness decreased the buckling capacity of the 

gusset plates and reduced the influence of the diagonal compression member flexural 

stiffness on plate buckling.  

 The Whitmore section predicted the principle compressive stress in the gusset plate 

within 14%. The average measured principle compressive stresses were larger than those 

predicted by the Whitmore method. 

 The distribution of stresses across the Whitmore effective width were non-uniform and 

the experimentally measured average stress magnitudes showed that both Whitmore and 

Modified-Thornton methods overestimated the magnitude of average stress in the gusset 

plate. 

 Using the methodology in the FHWA Guide, the experimentally computed K values were 

less than 1.0 and showed that values below unity can be used to analyze gusset plates 

dominated by sway buckling.  While this appears theoretically erroneous, it is a result of 

the flawed column analogy used to model the plate buckling behavior. 

 Using the FHWA Guide example K value of 1.2, the capacity of the experimental 

specimens was underestimated by factors of 2 to 4.   
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4.0 NUMERICAL MODELING (PORTLAND STATE 
UNIVERSITY)  

4.1 OBJECTIVES 

The primary goal of this effort is to develop a calibrated FEA model capable of 

evaluating gusset plate stresses and ultimate strength limit states.  Experimental data from 

ongoing research at Oregon State University was provided to validate the connection model.  A 

secondary objective was to develop a gusset connection model such that at a future date could be 

readily adapted to analyze multiple connection geometries while minimizing the development 

process.  This was realized by utilizing the Abaqus scripting environment to automate a 

significant portion of the model development, thereby aiding in existing parametric studies and 

building in the capability for rapid analysis across multiple connection in future studies.   

4.2 GUSSET CONNECTION MODEL DESCRIPTION 

The connection-level gusset plate model was developed using Abaqus Version 6.9.  The 

experimental test setup and FEA model are shown in Figure 52.  The connection consists of a 

bottom chord (M1 and M5), a vertical chord (M3), and two diagonal chords (M2 and M4).  M1 

and M2 are fixed on the experimental load frame and actuators are attached to M3, M4 and M5, 

each capable of delivering compressive loads.  Global boundary conditions were imposed at the 

ends of each member such that they reflected the conditions found in the experimental tests.   

Bolts were modeled as a one-dimensional rigid beam element that ties all degrees of 

freedom between the two connected nodes, where the nodes correspond to the bolt hole centers 

on adjoining plate surfaces.  In Abaqus, this is achieved by using a rigid multi-point constraint 

(MPC) element positioned at the bolt-hole centers between two connected surfaces.  The 
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decision to model bolts using MPC elements, along with a detailed discussion of various 

methods for modeling bolt-load transfer in shear, can be found in work by Kay (2011).   

Members were modeled with a combination of wire and extruded shell features, with the 

transition occurring where the members overlapped the gusset plates (Figure 53).  The beam-to-

shell junction for each member was rigidly tied to form a continuous member.  Partitions were 

created on the shell portion of the member to define vertices corresponding to bolt-hole centers.  

The actuator load capacities, along with the boundary conditions, are illustrated in Figure 54.  

Note that the ends of M3 and M5 were also restrained out-of-plane in the FEA model although it 

is not shown in Figure 54.   

 An isotropic hardening material model was used for the gusset plates, which requires true 

stress-strain data derived from coupon tests (Table 3).  Inspection of the gusset plate mill certs 

from all tests reported Fy and Fu values within 10% of the coupon data.  Material for the 

members was modeled as perfectly elastic, with a Young’s modulus of 29,000 ksi.  This was 

justified since the members from the experimental specimens were designed to remain elastic 

under all foreseen loading conditions.  Modeling the members as perfectly elastic increased 

computational efficiency and ensured that failure always occurred in the gusset plate.  

The gusset plates were modeled as shells in order to avoid the additional development 

time and computational requirements associated with three-dimensional modeling.  S4 and S3 

elements were selected from the Abaqus element library for the shell portions of the model.  The 

S4 shell element is a rectangular element and the S3 element is a triangular element; both are 

fully integrated, finite-membrane-strain shell elements suitable for large-strain analysis (Simulia 

2010).  The B31 element was selected for the beam portions of the model, which uses a 
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Timoshenko beam formulation with a linear interpolation function and is suitable for both stout 

and slender beams (Simulia 2010).   

A stress convergence trial was conducted to determine the gusset plate mesh necessary to 

converge on stresses under elastic loads.  Von Mises stress, sxx, syy and sxy were monitored at 

nodes spaced along planes A and B, with each node corresponding to positions of strain gages 

from experimental tests.  The subscripts refer to stress in the global x, global y and shear stress in 

the xy plane, respectively.  Convergence was defined as the point where stress change due to 

increased number elements was less than 5%.  Convergence plots for von Mises, sxx, syy, and sxy 

stresses from sample points on planes A and B are available in Appendix C.  Both von Mises and 

sxy stresses converged rapidly and satisfied the convergence criteria with gusset plate meshes of 

2892 elements and 6082 elements, respectively.  Convergence was more problematic at sampling 

points A3 and B2 for sxx, and sampling point A3 for syy due to their locations in high-stress zones 

on the gusset plate.  However, the majority of sampling points converged rapidly.  It was 

ultimately determined that a mesh of approximately 6,000 elements per gusset plate was 

sufficient for monitoring stresses at the most of sampling points in the elastic range, which is 

roughly equivalent to elements with one-inch sides.   

4.3 NUMERICAL ANALYSIS METHODS 

The three primary metrics chosen to evaluate the gusset connection were elastic stresses 

and gusset plate buckling capacity at the M4 diagonal member.   

4.3.1 Elastic Stress Analysis  

Gusset plate stresses due to member loading were analyzed with the specific goals of mapping 

gusset plate stress contours and identifying changes in the stress profile due to different loading 

patterns.  The Abaqus Static-General step module was used to run the analysis.  No initial out-of-
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plane distortions were introduced into the model for the elastic stress analysis.  Loading of the 

gusset plate was delivered by members M3, M4 and M5 such that gusset plate stresses were kept 

in the elastic range.  Three load sets were selected for analysis and are shown in  

Table 7.  Global trends were tracked quantitatively across critical stress planes to make 

comparisons between analytical and experimental values. 

4.3.2 Buckling Capacity Analysis 

Buckling capacity at compression diagonal M4 was considered, per the experimental 

program at Oregon State University.  The Abaqus Static-Riks step module was used to run the 

buckling capacity analysis, which applies an implicit-based direct stiffness approach and is 

capable of analyzing systems with high geometric and material non-linearity, coupled with a 

modified Riks algorithm to track the load-displacement path of the system through successive 

increments (Simulia 2010).  The modified Riks method works well for analyzing unstable 

systems, such as buckling, where negative stiffness conditions may occur as the solution 

progresses, and is a valid approach assuming loading is smooth and can be scaled with a single 

parameter (Simulia 2010).  A detailed discussion on the analysis selection method can be found 

in Kay (2011).     

Load was induced in the connection by applying a vertical displacement of 0.5 inches in 

the global y direction until failure, in order to simulate the testing conditions used at Oregon 

State University.  Preliminary numerical tests showed that the axial load and global behavior of 

the model were extremely close to when the displacement was applied axially along the member.  

Initial out-of-plane distortion was introduced as a scaled first-mode buckling shape in order to 

initiate buckling behavior in the model.  For the Static-Riks method, a displacement criterion of 
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two inches out-of-plane displacement at the gusset vertical free edge was used to halt the 

analysis.   

The effect of gusset plate mesh refinement on global behavior was also checked for 

convergence by looking at the elastic buckling load from an eigenvalue buckling analysis and 

load-displacement behavior.  Refer to Appendix C for global behavior convergence plots.  It was 

determined by inspection that a mesh of approximately 6,000 elements was adequate for 

capturing global connection behavior, roughly equivalent to elements with one-inch sides. 

4.4 ANALYTICAL RESULTS AND EXPERIMENTAL VALIDATION 

 Analytical results from the gusset connection elastic stress, buckling capacity and tensile 

capacity analyses are summarized below, followed by a comparison with experimental findings. 

4.4.1 Elastic Stresses  

A qualitative examination of the analytical stress contours is presented in Figure 57, 

showing stresses induced by a 100 kip compressive load at M4.  The numerical results show that 

shear stress is the dominant stress along plane A, whereas compressive sxx and syy stresses were 

dominant along plane B.  A tension stress zone can also be seen along the M2 diagonal.  

Direct comparisons between analytical and experimental stresses were made along Planes 

A and B (figures 59-63) due to preloading at M3 and M5, and revealed numerous differences 

between the analytical and experimental values.  One major distinction lies between analytical 

and experimental stress.  Analytical stress from the model output is in the form of membrane 

stresses and represents an averaged stress across the plate thickness, whereas the experimental 

stress is derived from strain gages that recorded the outer plate surface.  Also, out-of-plane 

distortions can potentially color the experimental data due to bending stresses induced in the 

plate.     
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Von Mises and sxy stresses provided the closest correlation between analytical and 

experimental values, with peak values occurring approximately midway along planes A and B.  

The trend that von Mises stress increases on the left side of plane A and decreases on the right 

side of plane A due to preloading from M5 and M3 was also observed for analytical and 

experimental values.  Von Mises stresses on plane B shared a common profile between analytical 

and experimental results, although the experimental data was more sensitive to change due to 

preloading than the analytical data did. 

The strongest correlation between the analytical and experimental results was seen in 

Figure 63, which plots von Mises profile changes to increased compressive load at M4 along 

planes A and B, respectively.  An increase in load caused linear increases in the von Mises stress 

profiles for both the analytical and experimental along plane A.  A similar trend occured along 

plane B, although not as close as with Plane A.  This result is expected since loading of the 

gusset plate was kept within the elastic range.   

 

4.4.2 Buckling Capacity  

 Load-displacement data was used to assess buckling predictions between the numerical 

and experimental, where the load is the axial force in M4, and out-of-plane displacement is 

measured at the midpoint of the gusset free edge between M4 and M5, as illustrated in Figure 55.  

Table 8 summarizes the experimental specimens 1 through 6, along with analytical/experimental 

(A/E) ratios and back-calculated values for K per the FHWA Guide.  A/E ratios are to show 

analytical deviations from the experimental values, where A/E values less than 1.0 indicate a 

conservative prediction and A/E values greater than one indicate a non-conservative prediction.  

The numerical post-buckling shape was the same for each model case, and is shown along with 
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the experimental buckled shapes from specimens 1 through 6 in Figure 23.  The load versus out-

of-plane displacement behavior is shown in comparison to the model prediction at varied initial 

out-of-plane imperfections in figures 64-69. 

4.5 CONCLUSIONS AND MODELING RECOMMENDATIONS 

 Connection-level FEA analysis was shown to be an effective method for evaluating the 

strength of steel bridge gusset plate connections, including member interactions.  The model 

presented here has been validated with experimental tests conducted at Oregon State University.  

From a load-rating perspective, connection-level FEA models are appealing due to their 

relatively rapid development time compared to developing a global bridge model.  For the 

connection considered here, the FEA model using MPC bolts proved to be the most efficient in 

assessing compressive capacity of the experimental tests, with reasonable accuracy.  Although 

this study only examined one M4 portion of the gusset plate for strength limit states, the FEA 

development methods can be easily generalized to the evaluation of failure states at different 

portions of the gusset plate, as well as different connections.   

   

Recommendations for further study are as follows: 

1) The work presented in this report focused on gusset plate buckling capacity due to loading a 

single diagonal chord (M4) with minimal loadings from the horizontal (M5) and vertical 

(M3) chords, which is not representative of in situ loading conditions for an in-service gusset 

connection.  Investigating the effects of M4 buckling capacity due to various pre-loadings 

from M3 and M5 would help quantify this relationship. 

2) Fasteners in the analytical model were idealized as rigid members in this study in order to 

focus on failure states of the gusset plate itself.  However, fastener behavior may contribute 
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to gusset plate behavior.  Implementation of fastener load-displacement behavior into the bolt 

model would extend the model’s capabilities of detecting fastener-related failure states. 

3) Connection-level models are well-suited to evaluate capacity for individual member 

connections.  However, a means of delivering loads that are more representative in situ 

conditions to the connection-level model have not been considered.  Analyzing the 

connection-level model as part of a more complex truss could provide additional insight into 

connection behavior, and reveal more complex failure states beyond those outlined in the 

FHWA Guide.  
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5.0 FIGURES 

 

Figure 1:  Warren truss gusset plate connection tested by Whitmore (1957) 

 
Figure 2:  Whitmore effective width and length definitions for member region of gusset plates (NTSB, 2008) 
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Figure 3:  Test frame and gusset plate connection (Yamamoto, 1988) 

 
Figure 4:  Gusset plate test specimen assembly (Gross, 1990) 
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Figure 5: OSU Gusset plate test specimen assembly 
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Figure 7:  M1 cross section 

 

 
Figure 8:  M4 cross sections for stiff and soft braces 
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Figure 10:  Instrumentation plan - Test 1 
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Figure 11:  Instrumentation plan continued - Test 1 
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Figure 12: Instrumentation plan - Test 2 & 3 
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Figure 13: Instrumentation plan continued - Test 2 & 3  
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Figure 14:  Instrumentation plan - Test 4, 5, & 6 
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Figure 15:  Instrumentation plan continued - Test 4, 5, & 6 
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Figure 16: DIC measured initial out-of-plane imperfections (prior to imposed deformations on specimens 3 
and 6) 
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Figure 17: DIC measured out-of-plane displacement of specimen 2 at incremental load steps throughout test 
(Failue image is not scaled and has limits of -18 to 122 mm) 
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Figure 18: Hydraulic ram setup for imposing initial imperfections and DIC measured imposed imperfections 
across plate for specimen 6 

 

 
Figure 19:  Load v Out-of-Plane displacement for all tests 
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Figure 20:  Test 1 Load v out- of plane displacement for all cycles 

 
Figure 21:  Test 1 Load v displacement for final cycle.  (#) shows step in load cycle. 
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Figure 22:  Test 3 load v displacement with initial and final out-of-plane imperfections 
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Figure 23:  Post-buckling shapes 
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Figure 24:  Strain Profiles for M4 Stiff brace showing out-of-plane bending of the member              
(+ = Compression, - = Tension) 
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Figure 25:  Strain Profiles for M4 Soft brace showing out-of-plane bending of the member              
(+ = Compression, - = Tension) 
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Figure 26: Plane A-A, Path B-B, & Path C-C used to interpret plate stresses 

 
Figure 27: Average stress across Whitmore width in M4 direction normalized to maximum theoretical 
Whitmore stress 
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Figure 28: Average stress across Whitmore width in M4 direction normalized to theoretical Whitmore stress 
at corresponding M4 axial load 
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Figure 29: 1/4-inch plates, stress in global x direction (+ = Tension, - = Compression) 

4, avg/w

F
/F

m
ax

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5
0

0.25

0.5

0.75

1

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6



 

66 

Distance Along Plane A-A (in)

S
tr

es
s 

(k
si

)

0 10 20 30 40 50 60 70 80 90
-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines
0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines

Test 1
Test 2
Test 4

Distance Along Path B-B (in)

Stre
ss

 (k
si)

0

5

10

15

20

25

30

35

40

-9
-6

-3
0

3
6

9

12

15

18

Dist
an

ce
 A

lon
g P

at
h C

-C
 (i

n)

Stre
ss 

(k
si)

-5

0

5

10

15

20

25

30

35

-8
-6

-4
-2

0

2

4

W
or

k P
oin

t

W
hit

mor
e

 
Figure 30: 1/4-inch plates, stress in global y direction (+ = Tension, - = Compression) 
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Figure 31: 1/4-inch plates, shear stress in global xy direction 
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Figure 32: 1/4-inch plates, von Mises stress 
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Figure 33: 1/4" plates, 1st principle stress (+ = Tension, - = Compression) 
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Figure 34: 1/4-inch plates, 2nd principle stress (+ = Tension, - = Compression) 
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Figure 35: 1/4-inch plates, stress in M4 direction, path B-B and C-C only (+ = Tension, - = Compression) 
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Figure 36: 3/8-inch plates, stress in global x direction (+ = Tension, - = Compression) 



 

70 

0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines

Test 3
Test 5
Test 6

Distance Along Path B-B (in)

Stre
ss

 (k
si)

0

5

10

15

20

25

30

35

40

-6
-4

-2
0

2
4

6
8

10

12

Distance Along Plane A-A (in)

S
tr

es
s 

(k
si

)

0 10 20 30 40 50 60 70 80 90
-3
-2
-1
0
1
2
3
4
5
6
7

Dist
an

ce
 A

lon
g P

at
h C

-C
 (i

n)

Stre
ss 

(k
si)

-5

0

5

10

15

20

25

30

35

-5
-2

.5

0
2.5

5
7.5

10

W
or

k P
oin

t

W
hit

mor
e

 
Figure 37: 3/8-inch plates, stress in global y direction (+ = Tension, - = Compression) 

0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines
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Figure 38: 3/8-inch plates, shear stress in global xy direction 
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Figure 39: 3/8-inch plates, von Mises stress 

0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines
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Figure 40: 3/8" plates, 1st principle stress (+ = Tension, - = Compression) 
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0.3Fmax = Continuous Lines
0.6Fmax = Dashed Lines
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Figure 41: 3/8-inch plates, 2nd principle stress (+ = Tension, - = Compression) 
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Figure 42: 3/8-inch plates, stress in M4 direction, paths B-B and C-C only (+ = Tension, - = Compression) 
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Figure 43: Combination loading, stress in global x direction (+ = Tension, - = Compression) 
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Figure 44: Combination loading, stress in global y direction (+ = Tension, - = Compression) 
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Figure 45: Combination loading, shear stress in global xy direction 

Test 1 = Continuous Lines
Test 3 = Dashed Lines

Load Step in 0.6Fmax Cycle
M4 only
M4 & M5
M4 & M5 &M3

Distance Along Plane A-A (in)

S
tr

es
s 

(k
si

)

0 10 20 30 40 50 60 70 80 90
0

2.5
5

7.5
10

12.5
15

17.5
20

22.5
25

Distance Along Path B-B (in)

Stre
ss 

(k
si)

0

5

10

15

20

25

30

35

40

4
6

8

10

12

14

16

18

Dist
an

ce
 A

lo
ng P

at
h C

-C
 (i

n)

Stre
ss 

(k
si)

-5

0

5

10

15

20

25

30

35

0

5

10

15

20

25

W
or

k P
oi

nt

W
hit

mor
e

 
Figure 46: Combination loading, von Mises stress 
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Figure 47: Combination loading, 1st principle stress (+ = Tension, - = Compression) 
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Figure 48: Combination loading, 2nd principle stress (+ = Tension, - = Compression) 
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Test 1 = Continuous Lines
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Figure 49: Combination loading, stress in M4 direction, paths B-B and C-C only (+ = Tension, - = 
Compression) 
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Figure 50: Stepped column analogy for member-plate interaction system 
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Figure 51: System interactions for buckling of a stepped column showing member interaction on connection 
equivalent length factor, α = Lconnection /Lmember 
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Figure 52:  (a) experimental setup and (b) FEA model assembly 



 

79 

 
Figure 53:  Gusset plate connection member modeling 

 
Figure 54:  Boundary conditions and locations of applied loads for gusset plate connection model 
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Figure 55:  Measurements used to construct gusset connection model load-displacement plots 

 

 
Figure 56:  Experimental and numerical buckled shape - Test 1 
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Figure 57:  Stress contours from 100 kip axial load along M4, (a) von Mises stress, (b) sxx stress, (c) syy stress 
and (d) sxy stress 

 
Figure 58:  Stress planes and sample points used for elastic stress analysis 
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Figure 59: Specimen 1 vs FEA Model, von Mises stress 
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Figure 60: Specimen 1 vs FEA Model, stress in global x direction 
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Lines represent FEA Model.
Symbols represent Experimental Data.
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Figure 61: Specimen 1 vs FEA Model, stress in global y direction 
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Figure 62: Specimen 1 vs FEA Model, shear stress in global xy direction 
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Figure 63: Specimen 1 vs FEA Model, von Mises stress for M4 loaded to different magnitudes 

 
Figure 64:  Test 1 Experimental results vs. Analytical results at different levels of initial imperfection 
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Figure 65:  Test 2 Experimental results vs. Analytical results at different levels of initial imperfection 

 
Figure 66:  Test 3 Experimental results vs. Analytical results with different initial imperfections 
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Figure 67:  Test 4 Experimental results vs. Analytical results with different initial imperfections 

 
Figure 68:  Test 5 Experimental results vs. Analytical results with different initial imperfections 

Relative Out-of-Plane Displacement of Gusset Free Edge (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

50

100

150

200

250

300

Initial Out-of-Plane Imperfection (% Plate Thickness)
25%
50%
75%
100%
Test 4 (43%)

Relative Out-of-Plane Displacement of Gusset Free Edge (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

-0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

100

200

300

400

500

600

Initial Out-of-Plane Imperfection (% Plate Thickness)
25%
50%
75%
100%
Test 5 (40%)



 

87 

 
Figure 69: Test 6 Experimental results vs. Analytical results with different initial imperfections 
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6.0 TABLES  

 

Table 1:  Load sets used in Oregon State Gusset Connection Test 1  

Compressive Load 
(kip) 

Load Set Label M4 M3 M5

1:1:1 1 1 1 
25:1:1 25 1 1 
25:6:1 25 6 1 

25:1:23.5 25 1 23.5 
25:6:23.5 25 6 23.5 

50:1:1 50 1 1 
50:12:1 50 12 1 
50:1:47 50 1 47 

50:12:47 50 12 47 
75:1:1 75 1 1 

75:18:1 75 18 1 
75:1:70.5 75 1 70.5 

75:18:70.5 75 18 70.5 
100:1:1 100 1 1 

100:24:1 100 24 1 
100:1:94 100 1 94 

100:24:94 100 24 94 
125:1:1 125 1 1 

125:30:1 125 30 1 
125:1:117.5 125 1 117.5

125:30:117.5 125 30 117.5
:  :  :  :

:  :  :  :

:  :  :  :
Pattern 
followed 

until 
failure 
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Table 2:  Load sets used in Oregon State Gusset Connection Test 3 

Compressive Load 
(kip) 

Load Set Label M4 M3 M5

1:1:1 1 1 1 
50:1:1 50 1 1 

50:12:1 50 12 1 
50:1:47 50 1 47 

50:12:47 50 12 47 
100:1:1 100 1 1 

100:24:1 100 24 1 
100:1:94 100 1 94 

100:24:94 100 24 94 
150:1:1 150 1 1 

150:36:1 150 36 1 
150:1:141 150 1 141 

150:36:141 150 36 141 
200:1:1 200 1 1 

200:48:1 200 48 1 
200:1:188 200 1 188 

200:48:188 200 48 188 
250:1:1 250 1 1 

250:60:1 250 60 1 
250:1:235 250 1 235 

250:60:235 250 60 235 
:  :  :  :

:  :  :  :

:  :  :  :
Pattern 
followed 

until 
failure 
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Table 3: Summary of coupon test results per ASTM A370 

Plate # 

Average 
Fy Standard 

Deviation 

Average 
Fu Standard 

Deviation(ksi) (ksi) 

1 47.02 1.73 72.74 0.90 
2 45.12 1.95 68.59 0.46 
3 45.93 0.34 67.76 0.31 
4 45.10 1.55 69.96 0.31 
5 46.13 0.66 67.83 0.34 
6 46.27 0.19 67.90 0.16 

 
 
 
Table 4:  Comparison of existing bridge member stiffness 

  
Bridge Name 

  
Member 
Number 

  
Member 
Shape 

Moment of
Inertia, I 

(in4) 

  
Length, L

(ft) 

  
Translational 
Stiffness, kt 

(kip/in) 

Rotational 
Stiffness, kr 

(kip-in) 

OSU experiment 
M4 (Stiff) Box 851 9.2 18.38 224,000 

M4 (Soft) I-shape 60.6 9.2 1.31 16,000 

I-94 over Little 
Calumet, IL 

L2-U3 Box 8367 69.5 0.42 291,000 

L0-U1 Box 9737 69.5 0.49 339,000 

I-275 over Ohio R., 
KT 

L2-U3 Box 8700 78.2 0.30 269,000 

M15-L16 Box 12779 55.0 1.29 562,000 

Clarion R. Bridge, 
PA 

U6-L5 Box 9079 61.3 0.66 358,000 

U12-L13 Box 11341 58.0 0.98 472,000 

St. Highway 57, 
Watooga R., TN 

U11-L12 Box 3413 61.6 0.25 224,000 

Booth Ranch Bridge, 
#7841A, OR 

U1-L0 Box 1386 38.2 0.42 88,000 

U3-L2 I-shape 1116 38.2 0.34 71,000 

Caney Fork River, 
HWY #56, TN 

L1-U2 I-shape 1697 42.7 0.37 96,000 

L15-U16 I-shape 4850 54.3 0.51 216,000 
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Table 5: Experimental test matrix with results 

  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 
Plate Thickness (in) 0.25 0.25 0.375 0.25 0.375 0.375 
Loading Protocol a 1 2 1 2 2 2 
M4 Brace Section Stiff Stiff Stiff Soft Soft Soft 

Initial Imperfection    
[ % thickness (in)] 

50% 
(0.12) 

19% 
(0.05) 

102% b 
(0.38) 

43% 
(0.11)

40% 
(0.15) 

98%b 
(0.37) 

Gusset Free Edge 
Out-of-Plane 
Displacement at 
Failure (in) 

0.57 0.16 0.50 0.85 0.60 0.64 

M4 Axial Load at 
Failure (kip) 

291 325 545 256 579 498 

σw at Failure (ksi) 16.73 18.69 20.89 14.72 22.20 19.09 

σ4, avg/σw at 0.6*Fmax 0.75 0.59 0.99 0.69 0.57 0.33 

σ4, avg/σT at 0.6*Fmax 0.55 0.60 1.19 0.41 0.59 0.17 

σ4, max/σw at 0.6*Fmax 0.99 0.94 1.04 1.79 0.85 0.91 

σ4, max/σT at 0.6*Fmax 1.21 1.15 1.27 2.20 1.05 1.12 

σp/σw at 0.6*Fmax 1.15 1.03 1.81 1.89 0.98 1.66 
a) 1 = Combination Loading (M4+M3+M5), 2 = Monotonic Loading (M4 only) 
b) Artificially applied initial imperfection 
c) σw=average stress in Whitmore section, σT=average stress in Modified-Thornton section, σ4=stress in direction of 
M4 axial force, σp = principle compressive stress at midpoint of Whitmore section 
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Table 6: Comparison of Experiment to FHWA Guide 

  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 
t (in) 0.25 0.25 0.375 0.25 0.375 0.375 
L (in) 15.53 15.53 15.53 15.53 15.53 15.53 
w (in) 34.78 34.78 34.78 34.78 34.78 34.78 

rs (in) 0.072 0.072 0.108 0.072 0.108 0.108 

Actual Fy (ksi) 47.02 45.12 45.93 45.10 46.13 46.27 
E (ksi) 29,000 29,000 29,000 29,000 29,000 29,000 

KFHWA  1.2 1.2 1.2 1.2 1.2 1.2 

λFHWA 10.96 10.52 4.76 10.51 4.78 4.79 

PFHWA (kip) 66 66 222 66 222 222 

Pexperiment (kip) 291 325 545 256 579 498 

λexperiment 2.47 2.12 1.90 2.70 1.76 2.13 

Kexperiment 0.57 0.54 0.76 0.61 0.73 0.80 

Pexp /PFHWA 4.43 4.95 2.46 3.90 2.61 2.25 

% Difference 343% 395% 146% 290% 161% 125% 
 

Table 7:  Loads used for elastic analysis of gusset connection FEA model 

Compressive Load (kip)

Load Set Label M4 M3 M5

100:1:1 100 1 1

100:1:94 100 1 94
100:24:94 100 24 94

175:1:1 175 1 1
175:1:164.5 175 1 164.5

175:42:164.5 175 42 164.5
250:1:1 250 1 1

250:1:235 250 1 235
250:60:235 250 60 235

 
 
 
 
 
 
 
 
 
 



 

94 

Table 8:  Summary of experimental buckling loads and analytical predictions 

  tgusset   M4 Axial Buckling Load     

  (in) M4 Section Experimental (kip) FEA (kip) A/E k 

Test 1  1/4 Standard 291 304.9 1.05 0.57 

Test 2  1/4 Standard 325 304.9 0.94 0.54 
Test 3  3/8a Standard 545 552.5 1.01 0.76 
Test 4  1/4 Reduced 256 241.4 0.94 0.61 
Test 5 3/8 Reduced 579 522.1 0.90 0.73 
Test 6 3/8a Reduced 498 482.6 0.96 0.80 

a) 100% plate thickness initial imperfection artificially applied prior to loading 
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8.0 APPENDIX A – CONVERGENCE PLOTS 

 
Mises stress convergence plots – Planes A and B 
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sxx stress convergence plots – Planes A and B 
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syy stress convergence plots – Planes A and B 
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sxy stress convergence plots – Planes A and B 
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Out-of-plane displacement and bifurcation load convergence plots 

 
Load-displacement convergence plot 
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9.0 APPENDIX B – ADDITIONAL EXPERIMENT DATA 

9.1 CALIBRATION OF STRAIN GAGES ON M4 
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9.2 TEST 1 DATA 

9.2.1 Relative Member-to-Gusset Displacement (bolt slip & work point)  

 
 

 

 

Displacement (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

-0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

(+) = Tension
(-) = Compression

Member: M1

Gage Name
SP1E
LVDT1E
LVDT1W

Displacement (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

(+) = Tension
(-) = Compression

Member: M2Gage Name
SP2E
LVDT2E
LVDT2W



 

105 

 

 

 

Displacement (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

(+) = Tension
(-) = Compression

Member: M3Gage Name
SP3E
LVDT3E
LVDT3W

Displacement (in)

M
4 

A
xi

al
 L

oa
d

 (
k

ip
)

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

(+) = Tension
(-) = Compression

Member: M4

Gage Name
SP4E
LVDT4E
LVDT4W



 

106 

 

 

9.2.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.2.3 Strain in M4 Connection Versus Load 
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9.3 TEST 2 DATA 

9.3.1 Relative Member-to-Gusset Displacement (bolt slip & work point) 
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9.3.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.4 TEST 3 DATA 

 
9.4.1 Relative Member-to-Gusset Displacement (bolt slip & work point) 
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9.4.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.4.3 Strain in M4 Connection Versus Load 
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9.5 TEST 4 DATA 

9.5.1 Relative Member-to-Gusset Displacement (bolt slip & work point) 
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9.5.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.5.3 Strain in M4 Connection Versus Load 
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9.6 TEST 5 DATA 

 
9.6.1 Relative Member-to-Gusset Displacement (bolt slip & work point) 
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9.6.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.6.3 Strain in M4 Connection Versus Load 
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9.7 TEST 6 DATA 

9.7.1 Relative Member-to-Gusset Displacement (bolt slip & work point) 
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9.7.2 Gusset Free Edge Strain Versus Load and Displacement 
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9.7.3 Strain in M4 Connection Versus Load 
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