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FOREWORD

Designers of major cable supported structures are well aware of the
dangers of wind-induced vibrations. Also fatigue distress due to wind
vibration of individual members could be a problem. This study was
concerned with the individual stay cables of cable-stayed bridges and their
vibration due to wind excitation.

Unlike most structural components. there exists no design specification
for high strength bridge cable as used for suspended bridges. The fatigue
problem caused by vibrations due to wind is not necessarily an axial-
load fatigue problem but is one of cable bending close to the end of the
cable where it is held by an attachment or socket of some type. The
analysis presented in this report should give design engineers some
insight into the problem as it applies to cable-stayed br'dges.
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INTRODUCTION

This report is the outcome of an analytical investigation on the

fatigue behavior of cables used in cable-stayed and suspension type

highway bridges. The investigation deals with the analytical formulation

of the deflection and bending stress caused by the wind-induceu vibration,

as well as the fatigue behavior of bridge cables due to such vibration.

The main results of the present investigation are conveniently

divided into two categories. The first category includes the analysis

of deflection and bending stress and is presented in Chapters 4 and 5

of the report. The analysis is preceeded by necessary background materials

presented in the first three chapters. Mathematical formulations are

kept to a minimum in these chapters and care is exercised to reduce

the results in graphical and tabular forms. This is so done, in our
opinion, to provide useful guidelines to design engineers without
necessarily confusing them by mathematical complexities. For the sake

of completeness, however, the detailed mathematical derivations are

included in Appendix A.

The second category of main results includes the analysis of the

fatigue behavior of bridge cables in terms of the methodologies of

linear elastic fracture mechanics (LEFM). It is not intended in this

report to justify the applicability of LEFM methodologies in describing

the fatigue behavior of bridge cables. It is our understanding that

the existing work on the fatigue behavior of bridge cables is insufficient

to either substantiate or refute the results obtained during the course

of this investigation, and presented systematically in Chapter 6.

We do not wish to suggest that the results in this chapter be used

by design engineers without discretion. It is our opinion, however,

that in the absence of any design guidelines, the present report is

at least able to provide some directions at which further research

should be aimed.
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In line with the above statements, we draw some concluding remarks
in Chapter 7 of the report and recommend future research programs in

this area in Chapter 8. The remarks are mostly concerned with the

applicability of the results herein to a practical design situation.

We note that a design engineer can apply the results in Chapters 4

and 5 directly to a design situation provided all criteria and assumptions

underlying the analysis are properly met. We also note that a design

engineer can use the results in Chapter 6 to obtain an order of magnitude
estimate for the fatigue behavior of bridge cables. However, much

research is needed, as outlined in Chapter 8, to arrive at a stage

whereby all pertinent analytical results can be translated to design

tools for the fatigue design of bridge cables.

2



CHAPTER 1

BACKGROUND

The concept of using stay cables in bridge design dates back to early

seventeenth century, as we find sketches by Faustus Verantius in Italian books

showing several parallel inclined chain cables holding a bridge deck between

two piers (Figure 1). In 1821, the French architect Poyet suggested a bridge

design (Figure 2) which is conceptually identical to modern-day fan-shaped
cable stayed bridges. The other type of stay arrangement with parallel stays,

called harp-shaped (Figure 3), was suggested by Hatley as early as 1840.

In the United States, however, the cable stayed bridge is a relatively

new concept in bridge design and construction. Between the latter part of the

nineteenth and the early part of the twentieth centuries the use of cable

stayed bridge design lost popularity in most parts of the world including

Europe. One reason for its disuse was the collapse of some cable stayed

bridges during the nineteenth century and subsequent comments concerning

these failures by the famous French engineer, Navier. Therefore, the recent resur­
gence of the cable stayed bridge design makes an accounting of previous

experience in design practice essential. This is particularly so because of

the dramatic failure of the first Tacoma Narrows suspension bridge in the

State of Washington almost 40 years ago.

Designers of modern cable stayed bridges have taken into consideration

special design requirements for the stability of structures. One of the most
important is the wind-induced vibration. Existing literature on this subject

suggests that a significant amount of work has been done to estahlish methods
of design to insure aerodynamic stability of bridge structures. In many cases,

wind tunnel tests of prototype models of the proposed designs are involved.

However, the complete analysis of the fatigue behavior of individual cables
caused by wind vibration has not been resolved. When a cable is subjected to
wind forces, the air flow divides and recombines about the nearly circular

cross-section of the cable. While we shall explain this phenomenon in greater

detail in Chapter 2 of this report, it is sufficient to briefly remark at this

point that such a phenomenon gives rise to formation and shedding of vortices. When
the wind speed is such that the vortex shedding frequency is equal to one of

3



Figure 1. Chain Cable Bridge (Leonhardt(l))

Figure 2. Fan-shaped Cable-Stayed Bridge (Leonhardt(l))

Figure 3. Harp-shaped Cable-stayed Bridge {Leonhardt(l))
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the natural frequencies of the cable, a resonant condition can occur. In this
case, if the ·structural damping is low, the wind force can cause large amplitude

vibration of the cable, and hence large bending stress. Moreover, due to the
harmonic nature of wind force, the bending stress becomes cyclic and repeated.

This gives rise to fatigue loading of the cable.

In the case of cable stayed bridge, the problem of cable fatigue is

further aggravated by a large change of stresses at the fixed ends of a cable.

For this reason, special considerations must be given to the design of end

anchorages which are used to join a cable with other fixed structural components.

It is also necessary for cable materials to have a high fatigue strength.

At the present time, there exists no fatigue design specification for high

strength bridge cables used in suspension and cable stayed bridges. The

available aXial-load fatigue data are not sufficient to establish either a

criterion for defining fatigue failure or for establishing general guidelines

for designing cables to withstand high fatigue-load applications.

The lack of design specifications or design guidelines are, by no means,

without reason. The foremost difficulty lies in analytically describing the

fatigue behavior of a cable by using conventional fracture mechanics methodologies.
A second, but related, problem arises in attempts to relate the fatigue life of a

cable to a wire. Yet, a third problem is related to the experimental determina­

tion of fatigue characteristics of cables ·and wires. On the other hand, there

is a growing trend to construct staYed structures in the United States, as well

as elsewhere in the world. In keeping with this trend, and to guarantee the

integrity of these structures, it is essential to look into the above diffi­

culties in some detail.

Evidently, the problem of cable fatigue is fairly involved, and a unique
solution to the problem is not feasible within the scope of the present contract.
With this in mind, we shall attempt to address those particular aspects of the

problem which are responsive to the contract objectives. In short, we shall

analytically determine the range of natural frequencies of bridge cables and

their susceptibility to aeolian vibration. Further, we shall analytically
determine the induced bending stresses and fatigue characteristics of bridge

5



cables. No attempt will be made in this report to develop a new theory of
fatigue characteristics of wires and cables. Nor will an attempt be made in

this report to validate the application of a particular fracture mechanics

methodology in the fatigue design of bridge cables. Such a claim will have

to await an extensive amount of experimental investigation. However, we
intend to develop in this report some guidelines for bridge engineers to
determine frequency ranges that may be crucial to particular cable designs

and configurations. We also intend to provide in this report some guidelines

which will enable bridge engineers to perform an order of magnitude studies

of fatigue life of particular cable designs.



CHAPTER 2

AEOLIAN VIBRATION OF STAY CABLES

2.1 Nature of Aeolian Vibration

The wind-induced vibration of flexible structural members such as wires

and cables ha5 been recognized since antiquity. The fact that a taut wire can

be induced into vibration by a wind stream was experienced by the Greeks as

early as 300 BC. The concept of using wire ropes and cables as structural

members in bridges can be traced back to the early seventeenth century. How­

ever, a systematic study of the wind-induced vibration of the above structural
members did not begin until recently.

As stated before, a long slender elastic structure near resonance conditions

can develop flow-induced oscillations by extracting energy from the flow around

them. The oscillations, coupled with the flow, give rise to a fluid-structure

interaction resulting in a nonlinear response. The fluid-structure interaction

is widely covered by four general classes of phenomena: 1) Vortex-induced
oscillation; 2) Flutter; 3) Galloping; and 4) Buffeting. For a qiven structural

member and a given flow condition, all these phenomena may be equally important.

On the other hand, in dealing with the wind-induced vibration of stay cables, we

shall consider vortex-induced oscillation to be the most important fluid-structure
interaction. A detailed description of the mechanism of vortex shedding and
analysis of the vortex-induced excitation of stay cables will be given in the
next section. For the sake of completeness, a brief description of other classes

of interaction phenomena will also be provided in Section 2.3 of this Chapter.

2.2 Vortex-Induced Excitation of Stay Cables

2.2.1 Mechanism of vortex shedding:
Without any loss of generality, we shall consider a stay cable to be a long

slender elastic structure of circular cross-section. The mechanism of vortex

shedding from a stay cable can then be illustrated in terms of the overall flow

pattern around a circular cylinder with increasing Reynolds numbers as shown in

Figure 4. The Reynolds number (Re), a dimensionless parameter characterizing

the flow regime, is a function of the flow velocity, the diameter ot the

7
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characteristic depth of the body in flow, and the kinematic viscosity of the

fluid. For a given fluid medium and a given depth of body in consideration,

the Reynolds number is directly related to the flow velocity. The higher the

Reynolds number, the higher the flow velocity, and correspondingly, the more

turbulent is the flow.

We will now briefly review the wake formulations in various flow regimes.

At extremely low Reynolds numbers, the flow is similar to a small particle

settling in a colloidal solution. In this range there is no wake formation.

At Reynolds numbers between 5 and 10, the boundary layer over the cylinder

begins to separate in a more or less symmetrical fashion, forming a Foppl

vortex pair downstream. The pattern remains stable up to a Reynolds number of

about 40, beyond which the vortex starts shedding because of wake instability.

At about Reynolds number 90, the detached shear layer starts to fold up after

its separation and forms concentrated vortices. The fluid in the vortices,

however, is still laminar, and the vortex street persists downstream for many

diameters. At Reynolds numbers above 300, the shear layer becomes turbulent.

Its separation point moves further around, and the wake width becomes narrower.

Beyond this, the flow pattern remains essentially unchanged, presumably up to

Reynolds number 2xl05• For Reynolds numbers in the range of 2xl05 and 3xl06 ,

the boundary layer undergoes a transition and the wake is disorganized. At

Reynolds numbers beyond 3xl06 , a boundary layer becomes fully turbulent.

The subcritical and the supercritical flow regimes shown in Figure 4 are

important to bridge designers. In the subcritical flow, the wake consists of

easily recognizable and regularly spaced alternating vortices similar to the

Karman street, although the fluid inside the vortices may be turbulent. In

the supercritical flow, there is no well organized vortex street and the

energy in the wake is diffused into a wide spectrum of frequencies, rather

than in a single dominating frequency.

The vortex shedding phenomenon of stay cables described above is associated
St·V

with a frequency f s (Strouhal frequency) given by f s ~ d where St is

the Strouhal number, V is the wind velocity and d is the diameter of the stay

cable. The Strouhal number St in honor of V. Strouhal(2) is one of the most

significant parameters that accounts for the vortex shedding phenomenon.

9



A considerable amount of research has been done to determine the Strouhal
numbers for various structural shapes and to establish relationships between

Strouhal numbers and Reynolds numbers. For design purposes, the Strouhal

number of a cylinder can be considered constant over a broad range of Reynolds

numbers and this constant is equal to 0.2.

If the Strouhal frequency, f s ' is close to any of the natural frequencies
fn of the structure, a nonlinear phenomenon known as synchronization or lock­
in occurs, and in unfavorable conditions, the structure can undergo large
amplitude vibrations. For a structural member of circular cross-section and
large slenderness ratio, such as stay cable, it has been found (3) that

f < f <1.4 f. The maximum amplitude of excursion occurs presumably at the
n s n '

middle of the range. It should be noted here that the vortex shedding does
not necessarily result in an alternating transverse force. This is created
only when there is a suitable afterbody and hence, an alternating lift force.
Besides, while the lock-in of Strouhal frequency with the natural frequency

of the structure will give rise to sustained oscillations, the transverse force
exerted by the vortex shedding is not strong enough to cause a large amplitude
oscillation (4). Therefore, the magnitude of sustained oscillations depends

strongly upon the lift coefficient of the structure. Structural damping is

another parameter, besides the Strouhal frequency f s (or Strouhal number St)

and the lift coefficient, which is of major importance in determining the
amplitude of oscillations and the range of synchronization.

2.2.2 Analytical models of vortex excitation:

The response of structural members under vortex-induced excitation is con­
veniently formulated in terms of various analytical models (5-7), the most

noteworthy of which is the one proposed by Hartlen and Currie (5). The

latter model employs a Van der Pol-type soft nonlinear oscillator (see Figure 5)

where the fluctuating lift force associated with vortex shedding is coupled to

the body motion. The model is based on the wake-oscillator concept introduced
by Birkhoff and Zarantonello (8), and ohthe experimental results of Bishop
and Hassan (4)

This concept may be applied to a stay cable when the latter is considered
as a circular cylinder vibrating in a direction transverse to the flow. The

10



Figure 5. Hartlen-Currie Model for Vibrating Cylinder
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pair of equations which result from this type of consideration are second

order differential equations of the Van der Pol type. The equations contain
a member of nondimensional parameters including nondimensional damping

coefficient; v, Van der Pol constants, E and ~, interaction constants,

bl and b2, and finally, the ratio, ~o' between Strouhal frequency defined
earlier and the natural frequency.

Of the above parameters, v, bl , and 12
0

can be determined for a given
geometry and for given material properties of a stay cable. The other three

parameters, E, ~, and b must be chosen to provide the best fit for experimental

data. Such experiments have been conducted, among others, by Jones ( 9) for

the elastically mounted circular cylinders forced externally by fluctuating

lift components. When the Hartlen-Currie model for the vibrating circular

cylinder was fitted to experimental data, it was found that the dimensionless

amplitude y(t), and the lift coefficient CL(t) are related to the dimension­

less wind speed and the dimensionless damping as indicated in Figure 6.

In the past various attempts have been made to improve some inherent
discrepancies of the origJnal Hartlen-Currie model. Griffin, et al., (10)

considered additional empirical parameters in the equation for lift coefficient.
Landl (11) introduced a nonlinearity of fifth order in the damping term in the

lift equation. Szechenyi (12) assumed a fictitious symmetric aerofoil )ttached

to the cylinder and examined its oscillation under the action of a periodic
lift force. Iwan and Blevins ( 7) arrived at the Hartlen-Currie model through

considerations based on the vortex street. All these models hasically result

in a relationship between the dimensionless amplitude and the dimensionless
dampi ng factor.

It is not apparent whether these models are readily applicable to flexible

structures such as a stay cable. One serious objection arises because the
measurement of vortex-induced effects in flow past a rigid oscillating
cylinder ( 3) clearly indicates that the cylinder continues to vibrate in

resonance outside the lock-in range. For a flexible cylinder, this effect will

be more pronounced. A fundamental objection is often raised concerning the

validity of the Van der Pol oscillator to describe the fluid-structure inter­

action, regardless of whether the structure is rigid or flexible. To

12
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circumvent these problems and to achieve the main objectives of the present
investigation, we shall consider, for subsequent analysis, a simplified wind

force model whereby the driving force F(t), has the following form:

(1 )

The term w in the above expression is the circular Strouhal frequency and iss
equal to 21l'fs ' Further discussion of this model concerning the dynamic
analysis of stay cables will be presented in Chapter 4.

2.3 Wake and Other Effects

In general, the wake effect is concerned with the vibration of structural

members located in the wake of other members. For example, if the stay cables
are arranged in a square pattern, a situation can occur wherein an individual
cable lies downwind in the wake of another. In this case, the leeward cable

is subjected to unsteady loading resulting from velocity fluctuations in the
downstream flow. In particular, if the leeward cable is in the proximity of

a high shear gradient of the wake, it may experience a large amplitude
oscillation. This is called wake-induced galloping. Buffeting, on the other
hand, is a wake-induced random oscillation produced by turbulent wind or gust.

Flutter is a self-excited oscillation caused by the interaction of struc­
tural, inertial, and aerodynamic forces. It is usually a high speed phenomenon

in which aerodynamic forces augment the oscillatory deflections. Flutter of a

flexible bridge member consists predominantly of a torsional type although in

some cases, the torsional vibration may be coupled with a secondary motion due

to transverse vibration. It is important to note that although a stay cable is
not flutter-prone, it may still be subject to buffeting or galloping oscillations.

As mentioned earlier, the scope of the present investigation does not cover
an analytical formulation of the latter classes of fluid-structure interaction

phenomena. For this reason, the discussion of these phenomena will be limited

only to this section. The readers are, however, referred to Scanlan and
Tomko (13), Davenport, et al., (14), Irwin (15), and Scanlan and Gade (16) for

some excellent expositions on this subject.
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CHAPTER 3

GEOMETRICAL AND STRUCTURAL CHARACTERISTICS OF STAY CABLES

3.1 Geometrical Characteristics

The structural properties of stay cables and their operating characteris­
tlCS depend, to a large extent, on the geometry of cable configurations. It

is, therefore, important to investigate the geometrical characteristics of a

stay cable for further analysis of its structural properties. In this section,

we present the results of CHI ASSOCIATES, INC's investigation to this effect

which includes a study of wire geometry in a cable, the determination of con­

tact points and contact surfaces between wires, and the effect of clearance

between wires on the overall geometrical and structural properties of a cable.

3.1.1 Lay Configurations

The two different cable or lay configurations which have been investigated

under this task are: parallel wire configuration and helically wound configu­

ration. These blO configurations for a tvm-layer cable are shol'm in Figure 7 .

Under the category of helically wound configuration, several constructions

which include single strand operation, and multiple strand operation, are

possible. For the p~rpose of this report, we shall consider a cable to be
made of a number of layers of individual wires either wound helically or bunched

in parallel -by a single strand operation. Each construction procedure produces

a unique contact geometry, and different contact geometries give rise to different

amounts of contact stress between the wires. Foregoing this differentiation
at present, let us consider the transverse cross-section of a cable in general.
The cross-section of individual wires are approximately elliptical (see Figure 7a).

In the case of the parallel wire configuration (Figure 7b), the circular cross­

section may be considered as a limiting ca~e of elliptic cross-section where-

by the semi-major axis is equal to the semi-minor axis. Hence, for the

s'ake Of brevity, we will address ourselves to the general case .of an elliptic

cross-section.

3.1.2 Contact Geometry

If two wires in the same 1ayer are contacting eac'h other, as is shown

in Figure 8 , the line of contact between the~e two wires is a helix with

radius rho The 1atter is a funct i on of the radius, R, of the wire, the

15



I r:·1

I

I
I I I

-I
R/S

1N
Ic

<
1

f
-
'

0"
1

a.
H

el
ic

al
W

ire
C

ab
le

b.
P

ar
al

le
l

W
ire

C
ab

le

F
ig

ur
e

7.
G

eo
m

et
ry

of
P

ar
al

le
l

an
d

H
el

ic
al

W
ire

C
ab

le
s



helix angle or lay angle, a, of the particular layer in question, and the

number of wires, m, in the layer. Also, the angle, 13, between the line

of circumferential contact and that of radial contact as shown in Figure
8, is a function of the above parameters.

ro = a TT mu 1= rho' ao - 2' =

rl, rhl' aI, ml

r2, rh2' a2, m2Layer 2

Noting the following representations of different layers in a cable,

namely,
Layer a (core)

Layer 1

the geometrical characteristics of different cable configurations may be

determined and compared. We have done this for a 3-layered case (both

parallel and helical) for a given wire radius, R, and for given values of

ai, ml, a2, ... etc. The results are shown in Table 1. It is important
to note in this Table that, as the number of layers in a cable increases,

so does the hel ix Y'adius, rho Furthermore, the contact angle, (3, approaches

a limiting value 900 indicating that the contact points of the wires are on

their semi-major axes. This will create clearance between wires in successive

layers of a helically wound cable.

The study of geometrical characteristics of cables reported herein
essentially follows the work of Chi(17), Karamchetty(18), and Phillips and

Costello(19). The detail derivations of comple~ functional relationships

between rh' (3, and other geometrical parameters mentioned earlier are omitted

here since they may be found in the references above as well as in the monthly
Progress Reports on this project submitted by CHI ASSOCIATES, INC. to the
Federal Highway Administration.

The other geometric parameter of importance is the radius of the curvature
of a wire both in the stressed and unstressed state. For elliptic cross­
section, the radius of curvature Pc at the contact point in the unstressed state

is given by:

(2)

17



Figure 8. Corl'la,ct .Geometry of Wires in a Cable
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where r and a have been defined before. In the stressed state, the radius of

curvature is transformed to ~. The determination of Pc' involves the evalua­
tion of elliptic integrals of the type mentioned in Seely and Smith (20)

So far we have confined our discussion to cable geometry and contact

geometry. The knowledge of contact geometry enables us to determine the loca­
tion of contact points or more precisely, contact surfaces across which wires

transmit forces and motion. It is also at these contact surfaces that contact

stresses are generated. For some cable configurations, especially helical,

contact stresses may be significant enough to cause strand nicking which then

acts as a source of fatigue crack initiation. We have, therefore, considered

it relevant to study contact stresses in a cable.

Hruska (21) , Lei ssa (22), Starkey and Cress (23), Stei n and Bert (24) are

some of the early workers who analyzed the stresses in wire ropes. A rope
consists of a number of strands and its stress analysis is fairly complex. How­
ever, the analysis of a strand is relatively simple. Phillips and Costello (19)

analyzed strands by the method of separating the strand into thin wires and
solving the general nonlinear equations. Since a cable is known as strands
among manufacturers, the method used by Phillips and Costello to determine the
contact stresses is applicable. The result of preliminary analysis using the
above method shows that the effect of helix angle on the contact stress

is relatively small. In particular, for parallel wire cables (helix angle of 90

degree) the contact stress approaches a zero value. In view of this and in view

of the fact that in modern cable-stayed bridges, cables consist mostly of parallel

wire configuration, the contact stress will not be considered as a dominant

factor in the dynamic analysis. On the other hand, it should be remembered that
in the case of helical configuration, the contact stress may be responsible for
strand nicking and subsequent initiation of fatigue tra~k. For such cases,

therefore, the contribution of the contact stress in determining the total

fatigue life of a cable must be taken into account.

3.2 Structural Characteristics

The structural characteristics of a cable which influen,,--c its dynclTlic

~esponse are flexural stiffness and damping. The end anchofdge is another

20



important factor that influences the deflections and stresses at the ends of a

cable. We shall discuss this latter factor in detail in Section 3.3 of this
report.

Both the flexural stiffness and the damping depend, among other things,
upon the wire material. Parallel wire cables are made from uncoated stress­
relieved wires which have ASTM Designation A421-77BA. These cables are manu­

factured by the PRESCON Corporation of San Antonio, Texas, INTYCO, Inc.,

Melrose, Illinois, and Bureau BBR, Ltd., Zurich, Switzerland. Helical wire

structural strand with zinc-coated steel wires has ASTM specification A586-68.
Helically wound structural wire ropes are manufactured according to ASTM

specification A603-70. The mechanical properties of these materials are shown

in Table 2.

3.2.1 Flexural Stiffness:

The flexural stiffness of a single wire is easily derived from the knowledge

of its elastic modulus and the moment of inertia. The determination of the
stiffness of a cable, on the other hand, is a little more involved. For example,
the stiffness of a bridge stay cable depends not only upon its elastic modulus
and the moment of inertia, but also upon its length and axial stress.
Ernst(25) showed that the effective elastic modulus, Eeff' of a cable

reduced considerably along its length according to the following formula:

r
2iEo).-l

Eeff = Eo {l + 1203

in which r = specific weight of cable
£ = horizontal length of cable

Eo = elastic modulus of straight cable

o = tensile stress of cable

The above expression indicates that for the given length of a cable, the
reduction in elastic modulus is inversely proportional to the third power of
the tensile stress. In other words, for minimum reduction in elastic modulus,
high stresses and consequently, high-strength steel, must be used for stay-cables.

Since the cable materials under consideration (ASTM A42l-77BA and A586-68) are

indeed high strength steel, we shall assume, without further recourse to the above
formualation, that the effective elastic modulus is equal to that of a straight

21
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cable. This assumption means that the only other source of variation in flexural
stiffness along the length of a cable is its moment of inertia.

Consider, for example, a cable made from a number of single wires placed

in several layers. When this cable is anchored at two ends in a cable-stayed

bridge, and is acted upon by an external force or moment system, its curvature

changes along the length. Moreover, a certain geometrical grouping of wires

in a definite pattern occurs along the length. Inside the end-anchorage,

all wires seem to act monolithically as a single elastic body. However, a

few diameters away from the fixed ends the outer wires start to act separately,
leaving only the core wires which tend to group together. Scanlan and Swart (26)

reported a case in which the effective stiffness value of a Pheasent conductor

cable was only 50 percent of its maximum theoretical value. The latter value

corresponds to the case where all wires in the cable are considered to be

II we 1ded ll together to form one uni t.

Flexural stiffness of a cable can be determined semi-empirically by using

either quasi-static or vibration tests. Specifical;y, the quasi-static test
consists of applying a sinusoidally distributed transverse loading on a suitably
supported cable segment. The vibration test determines the stiffness from

information on loop length, frequency or strain and displacement. Flexural
stress of a cable can also be determined analytically. The methods differ
according to the cable configuration. Within the scope of this report, we

shall briefly outline two methods, one each for the parallel wire configuration

and the helical wire configuration.

The first method is based on the work of Scanlan and Swart (26) and is

applicable to parallel wire configuration. In this method, the flexural stiff­
ness, EI, is estimated from the knowledge of displacement and curvature using

the following equation:

EI =
Ty + ~1(x)

y"
(3)

where T = axi al force

M{x) = bending moment

y = cable displacement in tranverse direction
yll = curvature of the cabl e
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The displacement, y, is normally obtained from quasi-static tests and the
curvature, yll, is determined by numerical integration. In the absence of

any experimental result, however, the alternate approach to determine the

flexural stiffness involves an iteration procedure to solve the equation.

The second method is based on the work of Phillips and Costello (19) and

is applicable to helical wire configuration. In this method, the total axial

force, F, and the total twisting moment, M, on a cable are expressed in terms

of forces and moments acting on individual wires as follows:
F = m (TSin a l + N' Cos al) (4a)

M= m (HSin a l + G' Cos a l + Tr ' Cos a'-N'r'Sina ' ) (4b)

where T is the axial force in a single wire, N is the normal force, G and Hare

bending and twisting moments respectively, and where r·and a are helix radius
and helix angle respectively. The term m in the above expressions denotes the

number of wires in a cable. The terms N' , (;1, r' and a' are the corresponding

values of N, G, r, and a in the deformed configuration. The flexural stiff­
ness ~an now be defined as the partial derivative of the total moment, M, with

respect to the angle of twist, ~, i.e.
aM

EI = 3(j) (5 )

The procedure, therefore, involves computation of partial derivatives of T, N,
G, H, etc. with respect to ¢. The detail computation is shown in reference (27).

We have used the above methods to compute the flexural stiffness of a

sample lx7-wires cable of both parallel and helical configurations. For the

purpose of illustration, we have selected a wire radius of 0.0825 inch (0.21 em).

The cable has been assumed to be subjected to a varying axial force in the range

between 5000 lbf (22.24 kN) and 25,000 lbf (111.20kN). These values are
representa ti ve of the axi a1 cabl e stress normally encountered in desi gn practi ces.

For helical configuration, five different helix angles ranging from 74 degrees

to 78 degrees have been chosen.

The results of our calculation show that the flexural stiffness of a cable

is a function of its configuration or, more precisely, of its helix angle. In

this particular example, we have assumed that the wires in the cable are not
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"we lded" or grouped together. Hence, in both parallel configuration and

helical configuration, the respective minimum values of moment of inertia at

any section of the cable have been considered for computational purpose.

Such consideration has led to a variation of nearly five percent in the effec­
tive flexural stiffness value. It is, therefore, expected that as the cable

diameter becomes larger, and as the wires in the cable tend to group together,

the variation in effective flexural stiffness may increase considerably.

This is in agreement with Scanlan's findings reported earlier. More important

to note at this point, however, is the fact that the wide variation of the

flexural stiffness of a cable has little effect on its natural frequencies.

In the next chapter in dealing with the dynamic analysis of a cable, we shall

present some supporting evidence to this effect.

3.2.2 Damping:

The damping of a stay cable is due to viscous and friction forces which

always oppose the excitation of the cable. The damping is usually expressed

in terms of the logarithmic decrement, 8, defined to be the natural logarithm

of the ratio of two successive peak amplitudes in a free, decreasing oscilla­

tion. If ~ and Bi+l are the ith and (i+l)th amplitudes, respectively, the
damping is given by:

B.
8 = Log 1 (6)

e Bi +1

For cables, in general, the value of 8 is usually-on the order of 0.04 to 0.08.

The above definition of damping is particularly applicable for a single

degree of freedom system. For a continuous structure, such as a cable, it is

often advantageous to consider another definition of damping coefficient,
namely, the viscous damping coefficient. The latter, denoted by c , is propor-

n
tional to mass per unit length, pA, and the natural frequency, w , of the nth

n
mode (n= 1,2, .•• ). The relationship is given by:

c = 2s w pA (7)n n n

where sn is the structural damping factor. This factor is approximately equal
to o/2n. Noting that, for higher modes 8 and hence s decreases as w increases,n n
one can assume for design purposes that the product s w is constant. Thisn n
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effectively means c is constant. Denoting this constant by c, one can write:
n

where wl is the fundamental frequency of the cable. In the dynamic analysis

of a stay cable, we are going to make use of the above approximation for the

viscous damping.

3.3 End Anchorage

When cables are used as structural members, several considerations must
be taken into account to determine their load bearing capacities and performance
characteristics. One of these considerations is the end anchorage which connects
a cable to other supporting structural members. The end anchorages vary widely

in their design and manufacturing techniques depending on the size and properties

of the cable to which they are attached. However, they have one basic function
in common, that is, they transfer load from the cable to other structural members.

Consequently, the dynamic response and the fatigue life of a cable depend much
on the type of end anchorage.

Early versions of end anchorage design for large diameter cables used the
molten zinc type sockets. However, the pouring temperature of zinc alloy was
found (28) to considerably affect the fatigue strength of wires in the socket.

An excellent solution to overcome this problem was"devised in Germany(29, 30).

The so-ca 11 ed IIHi Am-anchorage ll was subsequently developed by the Bureau BBR­
Zurich, and it was reported that the fracture of wires in a cable was almost

equally distributed over the length of the cable so that the anchorage was not
any weaker than the cable itself. The schematic of a typical HiAm-anchor is
shown in Figure 9a. Another end anchorage widely used in the United States
has been developed by Prescon Corporation of Texas. A schematic of this

anchorage is shown in Figure 9b.

The HiAm-anchorage system consists of button heads bearing on a stressing

ring which is threaded both internally and externally. The ring is recessed
in the end of the member before stressing. The Prescon system is similar to
the HiAm system, but rather than using a stressing ring which is recessed before
stressing, the button heads bear directly on a round plate which is threaded
into the socket. An overview of different cable constructions with partirular
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a. The Schematic of a Typical Hi-Am Anchor

b. The Schematic of a Prescon Anchor

Figure 9. Improved High Strength Anchorages for Cable
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note on various end anchorages may be found in reference (31). The reader is

also referred to a recent paper on fatigue resistant tendons for cable-stayed

construction by Birkenmaier(32).

The effect of end anchorage on the dynamic response and the fatigue

behavior of a cable system can be studied analytically by considering proper

boundary conditions in solving the dynamic equation. The choice of boundary
conditions, however, depends on the nature of load transfer between the cable

and the socket. The existing literature on stay cables does not provide suf­
ficient information on the latter subject. We, therefore, consider this to

be an area of possible future research.

Within the scope of this project, we have made an attempt to address this

problem in two different ways. In the first method, the dynamic equation of

a cable is solved for the most general case of arbitrarily specified elas­

tically constrained end conditions. The detailed solution procedure is given
in Appendix I. In the second method, the solution of the dynamic equation of

a cable for the case of fixed end conditions is found. The deflections and
bending stresses at the ends of a cable can also be evaluated by substituting

the elastic constants with proper viscoelastic parameters. Such consideration

is based on the assumption that the end anchorage is viscoelastic rather than

elastic in nature.

In concluding this section, we note that the end anchorages currently used
in cable design reduce the theoretical bending stress at the wire ends of a
cable by as much as 50 percent. Moreover, the use of HiAm and Prescon type
anchorages insure that the bending stress is uniformly distributed over the

entire length of the cable rather than having a large magnitude at the ends.

Based on these facts, it seems that the dynamic response and the fatigue behav­
ior of cable ends under the commonly occurring wind forces are not significantly

different than those pertaining to any other cross sections of the cable. On

the other hand, for gusts, random wind loading and other cases, the fatigue

behavior of cable ends may cause serious concern even in the presence of high
fatigue resistant type anchorages. In these cases, special care should be taken

to design cable ends as well as in attaching them to other structural members.
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CHAPTER 4

DYNAMIC ANALYSES OF STAY CABLES

The governing differential equation of the motion of a stay cable has the
following general form:

where

a 2y Z1 a 2 a 2
pAw +C at +fX2 (EI~-T)=F(x,t)

y = y(x,t) = displacement in transverse direction
p = mass density
A = cross sectional area

(9)

(10)

c = damping coefficient
F(x,t) = external force in transverse direction
EI = flexural stiffness
T = axial force

Assuming that the flexural stiffness is constant along the length of the cable,

the above equation can be rewritten as:
a 2 y ay a 4 y a 2 y

pA W + c at + EI ax'4 - Ta?"" = F(x, t)

The solution of the above equation is given by:
y(x,t) = L.¢ (x)¢ (t)

n n n
(11 )

where ¢ (x) = nth natural mode of the cable
n

¢n(t) = nth time-domain solution of the equation

The detail solution of equation (10) ~an be found in Appendix A. In the
following section of this chapter, the expressions for natural frequencies and
normal modes of a stay cable will be derived.

4.1 Natural Frequency and Normal Modes

The natural frequencies and mode shapes of a cable are obtained from the
governing equation for the small amplitude, free, transverse vibration as
foll ows:

(12 )

This equation can be derived from equation (l~ by a separation of variables
technique and by neglecting the damping and the external forcing terms.

Nondimensionalizing equation (12) by setting

Y = -Y
L

and X - x-L
29
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where L is the length of the cable, and dividing through by [I/L 3 , we
obtai n:

(14 )

in whi ch
TL 2

P = ~ = nondimensional force (15a)

__ nAw2L It
Q fI = nondimensional frequency (15b)

The nondimensional parameter V in the above equation is related to the mode

shape as follows:

\vhere

V(X) = L<Pn(X)
n

<P (X) = nth natural mode of the cable in terms of
n

(16 )

nondimensional parameter X.

Equation (14) has been solved previously by Chi (33) for the most general

case of elastically constrained end conditions. In Appendix A of this report,

the detailed derivation of frequency equation and the solution of equation

(14) are given. For the purpose of computing natural frequencies, we shall,

however, make use of the relationship between the nondimensional force, P, and

another nondimensional quantity denoted by Z2. The latter is actually a

function of P and Q (Z2= 4Q/p 2
) defined earlier; however, it has been found

that the use of nondimensional parameter Z2 instead of Q simplifies the

formulation of deflection and bending stress considerably. For this reason,
in the subsequent nondimensional analysis, we shall consistently use P and Z2
being the two most important nondimensional parameters.

[ft]

[m]
30

The relationship between P and Z2 is obtained from the frequency equation

of small amplitude, free, transverse, vibration of a cable. The analytical

method is outlined in detail in Appendix A. In this section, a granhical

representation of the relationship between P and Z2 is shown in Figures 10
through 14 for certain practical ranges of such parameters as the cable size,

cable length, axial tension, etc. The ranges are given below:

Cable size: 1 layer cable - 7 wires (smallest section)
15 layer cable - 631 wires (largest section)

Wire radius: 0.125 inch (0.318 cm)

Cable length: 50 ~ L ~ 600

15.2 < L < 182.9



Axial tension: 60 < a < 120

413.7 < 0 < 827.4

[ksiJ

[MPa]

It shoulH be noted that Figures 10 throuqh.14 correspond to the cable
configuration with both ends fixed. This particular end condition adequately

represents the dynamics of cable in a cable-stayed bridge. The figures also

correspond to the first 45 natural modes of vibration. The computation of

natural frequencies for this somewhat high mode value is essential since

flexible slender structures are also often known to vibrate i~ resonance at

higher modes.

Substituting the values of P and Q from equations (15a) and (15h) in the
expression for Z2 , it is seen that:

Z2 =~ = 4pw
2

EI (17)
P a2A .

(19 )

(18 )

frequency factor given by:

w = ! 0

2

A

~ 4pEI

defined as a bending

wfb i :;E~
where wfb is

From the knowledge of axial tension, cable length, elastic modulus, and moment

of inertia, one can determine the nondimensional force, P. The nondimensional

parameter, Z2 can then be determined from the graphs in Figures 10 throuqh 14.
It is further seen from the expression for Z2 that the natural frequency, w,

is given by:

For a cable of given length, diameter, and tension, the bending frequency

factor is a constant, and can be easily computed. The natural frequency, w ,
n

of any mode n can therefore be found from equation (18) by substituting proper
values of Z from the graphs. The use of graphs and the computation of natural

frequencies will be illustrated for specific numerical examples in Chapter 5

of thi s report.

The normal modes ¢n (X) are determined from the solution of equation (14)
upon substitution of the relationship shown in equation (16). The general form
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of the solution is given by:

A sina X + B coSa X + C sinhB X+ 0 coshB Xn n n n n n n n (20)

where A , B , C ,Dare constants to be determined from the given boundaryn n n n

conditions and where an' Bn, are the roots of the frequency equation. The

derivation of the expression for normal mode is discussed in detail in

Appendix A.

We mention here that a long slender flexible cable with both ends fixed has

a response which is very similar to that of a string. This is also evident

from the fact that the root, Bn, of the frequency equation in Appendix A is

large (usually> 10) for long cables. Under this circumstance, the mode shape

expression in equation (20) reduces to the following form:
an

~ (X) = sina X - ---- cosanX (21)n n Bn

It is now easy to determine the mode shape from the above equation. As an exam­
ple, we have computed the mode shapes of a Group IV Pasco-Kennewick bridge cable

up to 10 modes for two different values of axial tension. The results are shown
in Figures 15 and 16.

4.2 Wind-Induced Vibration of Stay Cables
Having obtained the natural frequencies and mode shapes of small amplitude,

free, transverse vib~ation of a stay cable, we now proceed to analyze the wind­

induced vibration of the cable as a forced vibration problem. It was earlier

assumed in Section 2~2.2 that wind force is spatially independent and harmonic
in nature. Further, it was assumed in Section 3.2.2 that the structural

damping, c, is proportional to the mass per unit length of the cable. Under

these two assumptions, equation (10) can be solved to determine the response

of the cable to wind loading. The detailed solution is given in Appendix A.

In this section, we shall discuss the physical basis of the analytical

derivation presented in Appendix A, as well as the results obtained therein
in relation to the vortex-induced vibration of stay cables.

In Section 2.2.1 of Chapter 2 dealing with the vortex shedding mechanism
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of circular cylinders, we have given an expression for the Strouhal relation,
namely,

St·Vf = -=-':"-:'---
S d

(22)

where f is the Strouhal frequency. This relationship can be used to deter­s
mine f s if the wind velocity, V, is known. Conversely, if one assumes that f s
is known from the vortex-induced resonance condition (for example, f < f < 1.4 f

n s n
for resonance), one can find the critical wind velocity, Vcr' simply by transposing
the equation (22) in the following form:

(23)

to the natural frequency fn•

w d
= -=-,n-,-=-_

2TTSt
equatedwhere, for simplicity, f s has been

The rationale for the above type argument is based on the consideration that

we are addressing the subject of Hind-induced vibration of stay cables caused
only by the vortex shedding phenomenon. Recalling now the expression for the wind

force model given by equation ( 1), it is seen that:

1
F(t) = Fo coswst = 2p.1V~rCLcoswst (24)

in which the magnitude of wind force, Fo' can be determined from the knowledge of

V and the lift coefficient, CL• The governing differential equation of cablecr

vibration (equation (10)) can now be solved with the above assumptions and the
most general solution is given as:

y(x,t) = F L¢ (x) [Gl sinw t + G2 cosw t] (25)o n n n s n s

where Gln and G2n are the coefficients of a particular temporal solution of

equation (10) and where ¢n(x), as before, denotes the mode shape. The detail
derivation of the solution, as well as the derivation of expressions for Gln
and G2n are given in Appendix A.

4.2.1 Deflections of cables:

The most general expression for the deflection of a cable with fixed ends

is given by equation (25) above. The expression contains a number of variables

all of which are functions of some basic parameters such as the geometrical and
structural properties of a cable, the applied tension, and the wind velocity
Therefore, it is reasonable to perform a parametric study of the deflection.
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On the other hand, the number of parameters is too large to deal with for a
meaningful parametric study. The compromise lies in grouping the parameters

in some nondimensional forms. We have already shown in Section 4.1 of this

chapter how various parameters are grouped together in two nondimensional

quantities, P and Z2, and how the relationship between these two quantities

are used to determine the natural frequencies of a cable. In what follows, we

shall consider such an approach to determine the deflection. In particular,

we shall determine a relationship between the maximum nondimensional deflection

and the nondimensional frequency. It should be noted that this is an alternative

to the analysis cited in Section 2.2.2 in connection with the analytical models

of vortex excitation of circular cylinder.

Equation (25) can be greatly simplified in practical applications, due to

the following considerations. At least in subcritical flow regime, there is

only one dominating driving frequency in the wake. This frequency would

principally excite a single natural mode closest to it, according to the

synchronization theory of nonlinear resonance. Suppose that the frequency
associated with the resonant mode be wn then the deflection expression,
(equation (25)), is simplified to:

y(x,t) = Fo ¢n(x) [Glnsin wnt + G2n cos wntJ (26)

It should be noted that G2n vanishes at resonant conditions. In order

to obtain the maximum deflection, we assume that the mode shape, ¢ (x), is
n

normalized. Hence,

Ymax = F0 Gl n

since the maximum values of ¢n(x) and sin wnt are both one.

( 27)

Ymax
r'a Vd 2L

Y
n

It is seen that the maximum deflection is simply the product of the
magnitude of wind force, F , and the coefficient, Gl ' whose expression is

o n
given in Appendix A. The evaluation of Gln , however, is fairly involved
since the expression contains generalized mass, generalized force vector, lift

coefficient, damping coefficient, and others. While the detailed analysis
is given in Appendix A, we find it convenient at this point to defihe a

nondimensional maximum deflection, Y , as follows:
n

/CJ I() 611,
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where Pa denotes the density of air. All other symbols in the above expression

are defined elsewhere in the text. As shown in Appendix A, the nondimensional
deflection, Y , in the above form can be expressed as a function of the non-

n
dimensional parameter, Z2. This relationship is shown in graphical form in

Figures 17 and 18 for various values of nondimensional force, P.

4.2.2 Bending Stress:
The bending stress at any point in a cable is related to its curvature at

that point. The general expression for the curvature is obtained by differentiat­

ing equation (25) with respect to x and this gives:

Y"(X,t) = Fo L: ¢"(X) [Gl sinw t+G2 coswntJn n n n n . (29)

x of y(x, t) and

similar to the

where y" and ¢" denote the second deri va ti ves wi th rega rd to
n

¢n(x), respectively. Once again, a progressive simplification

one described for deflection analysis will lead to:

i'(x t) = F ¢"(X)G sinw t, 0 n ln n

The maximum curvature at end-fixity is now obtained by evaluating ¢"(X) at x=o
n

and by equating ~nwnt' to 1. This gives:

y II = F G an (a 2 +S2) (31)
max 0 1n s· n n

n
where a and S are, as before, the roots of the frequency equation. The detailed

derivations of the above expression is given in Appendix II.

Defining a nondimensional maximum curvature by

yllmax
(32)

One can compute X in terms of the nondimensional parameter, Z 2 , in a similar
n

manner to that shown in the previous section. The detail derivation of the
above relationship is given in Appendix A. The relationship between Xn andZ 2

is shown graphically in Figures 19 through 21 for the purpose of evaluating

bending stress. The maximum value of the latter can be evaluated by means of .

the following equation:
(a) = Ec y" (33)b max . z max

where Cz is the maximum fiber distance in the cable.
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It should be noted in passing that in the derivation of relationships

between Y and Z2, and between X and Z2, the values of Strouhal number, St,
n n

and lift coefficient, CL, are assumed to be 1.2 and 1.4, respectively. These

two parameters appear explicitly in the expressions for Y and X as shownn n
in Appendix A. We also mention in passing that the dynamic analysis of stay

cables developed in this chapter will be illustrated in detail in Chapter 5

of the report.
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CHAPTER 5

NU~~ERICAL RESULTS Of DYNMlIC ANALYSIS

In Chapter 4, expressions for natural frequencies, maximum nondimensional
deflections, and curvatures have been derived for stay cables in general.

Further, the graphical relationships between these quantities and the non­
dimensional parameters P and Q have been developed in Chapter 4.

In this chapter, we will demonstrate the use of results derived in the previous

two chapters for specific bridge cables. To this end, the following bridge

cables have been chosen for further studies:

1. Pasco-Kennewick Bridge Group I and Group IV cables;

2. Luling Bridge Group I and Group IV cables.

Some of the geometrical properties of these cables are shown in Table 3.

The cross-sectional areas of the cables have been computed on the basis of

information on wire diameter, number of wires, and number of layers. Outer

diameters of cables indicated in the Table correspond to those of polyethylene
pipes which are jacketed on the cables. The minimum and maximum moment of

inertia of these cables are shown; the minimum value corresponds to the case

in which all wires are considered separately, and the maximum value corresponds

to the case in whi ch all wi res are grouped or "welded" together to form one

unit. Table 3 also indicates two different levels of applied tension and

corresponding values of axial force to four different cable diameters.

The exact natural frequencies of these cables have been calculated by using

both beam vibration and string vibration theories. For reference purposes, the
results are shown in Appendix B. For long (Group I) cables, frequencies are given

up to the 30th mode. For short (Group IV) cables frequencies are given UP to

the 20th mode. The reason for this is that the nominal wind velocities corres­
ponding to the higher frequencies of short cables are outside the range of design

interest for this study. The frequency values corresponding to the beam theory

have been calculated using a value of E = 29xl06 psi (200xl03 MPa) and using a
maximum value of the moment of inertia, while those corresponding to the string
theory have been calculated by neglecting the stiffness.
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Example 1

In this example, we are going to compute the natural frequencies of a

Pasco-Kennewick Group I cable using the graphs and formulas developed in

Chapter 4. The geometrical and mechanical properties of the cable are:

L = 506 ft. (154. 23m)
O. f). = 6 in. (1 5. 24 cm)

A = 13.89 in. 2 (89.61 cm2)

I a = 20.53 in. 4 (854.52 cm4)
mx 6 3

E = 29xlO psi (200x10 MPa)
2

~ = 0.000734 l~-~~c (7.85 gm/cm3)
1 n.

The cable is subjected to a tensile stress of 108 ksi (744.66 MPa).

3 2_ 108xlO x13.89x(506x12)
- 29xl06x20.53

the nondimensional force, P, is computed using given data

(15a). Thus,

(0xA) L2

P = -----:::"'EI~-

Step 1

In thi s step,
and using equation

next using Figure 10. For the
are given below:

for n =

n = 2

n = 3

n = 4

Z2 -3= 1.680xlO
2

Z2 -3= 3.920xlO3

Z2 -3= 7.040xlO4

";, 92,895

The nondimensional parameter, z2, is determined

first four modes of vibration, the values of Z2

2 -3Zl = 0.464xlO

Step 2
In this step, the bending frequency factor, wfb ' defined in equation (19)

is computed. Thus,
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I a 2A

=fffr
= (108xl03) x13.89

4xO.000734x29xl06x20.53

304.44 rad/sec.

rad/sec.

The circular natural frequencies of the first four modes of vibration are

now computed using equation (18). Thus,

Zl
I -3 rad/sec.wl =wfb · =304.44 x 0.464xlO

~ 6.5578 rad/sec.

and simi 1ar1y,

w2 =12.4783 rad/sec.

w3 =19.0608 rad/sec.

w4 =25.5438 rad/sec.

When these values are compared with the exact values (Appendix B) in the
following Table, one can see that the largest error in the computation of

frequencies using graphs ;s about 4%, and that this error corresponds to the
fundamental mode. For higher modes, the error is often much less (e.g., for

third mode, the error is 0.5%).

Table 4. Comparison of Natural Frequencies

Natural Frequency (rad/sec.)

Mode No.

1

2

3

4

Exact Solution

6.3180

12.6380
18.9621
25.2917

52

From Graph

6.5578

12.4783
19.0608

25.5438

Error %

3.8

1.3
0.5

1.0



It should be noted that for the number of even modes the error percentage

is usually slightly higher than it is for the odd number of modes. For

all practical purposes, the computation of frequencies by means of graphs
gives fairly accurate estimates.

Example 2
This example will demonstrate the use of nondimensional

tion and maximum curvature curves as developed in Chapter 4.
same as in Example 1. In addition to the parameters provided

following are assumed.

maximum deflec­

The cable is the
in Example 1, the

-7Pa = 1. 123xl 0

o = 0.08

St = 0.2
C

L
= 1. 2

21b-sec
. 4ln

( -3 31.201xlO gm/cm)

Step 1
In this step, we shall compute the critical wind velocities that will put

the cable in resonance in various modes. Thus, using equation (23), we find,

for the first mode:

Vcr =wld =6.5578x6
2'!TSt 2rrxO.2

-~ 30.17 in./sec.

for n = 2
n = 3
n = 4

= 1.71 mph [2.74 km/hr]
Similarly, for the second, third, and fourth modes, the critical wind velocities

for resonance are:

Vcr = 3.38 mph [5.41 km/hr]
= 5.17 mph [8.27 km/hr]
= 6.93 mph [11.09 km/hr]

The result indicates that the critical wind velocities corresponding to

the fundamental and lower mode resonance are relatively small. While the pre­
vailing wind velocity at a particular site of II ca bled" structure may conceivably

be as low as 7 mph [11.2 km/hr], it is equally probable that higher wind

velocities may prevail. In this case, higher modes will be in resonance. For

this reason, we have decided to compute a few more higher modes.
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For example, consider the 15th, 29th, and 43rd modes. The frequencies of

these modes as computed according to the steps given in Example 1 are:

w15 = 96.2724 rad/sec.

w29 = 190.1227 rad/sec.

w43 = 296.7314 rad/sec.

The corresponding values of critical wind velocity are:

Vcr = 26.12 mph [41.79 km/hr] for n = 15
= 51.58 mph [82.52 km/hr] n = 29

= 80.50 mph [128.80 km/hr] n = 43

It seems that 26 mph [41.6 km/hr] wind velocity is likely to occur in a

particular site and therefore, the cable in this example is likely to resonate
in 15th mode. For this case, it will be necessary to determine the deflection

and bending stress corresponding to this mode.

Step 2
In this step, we will compute the amplitude of forcing function using

equation ( 1 ). Thus,

F = 1. P de v 2
o 2 a L cr

1 ( -7 2
= 2 1.123xlO )x6xl.2Vcr

= 4.0428X10-7V~r

This is, of course, the magnitude of forcing function per unit length of the

cable and hence, has the unit of lb/ft (N/m). Knowing the Vcr for different
modes, it is now possible to find F which would cause the cable to vibrate

o
in particular modes. We now compute Fo for the modes shown above.

Fo = 4.0428xlO-7 V~r

= 0.00037 lb/in. = 0.00442 lb/ft [0.0648 N/m]

for n = 1

and similarly,
F 0.01717 lb/ft [0.2505 N/m] for n 2

0
= 0.04017 lb/ft [0.5862 N/m] n = 3
= 0.07217 lb/ft [1.0532 N/m] n = 4
= 1.02526 lb/ft [14.9618 N/m] n = 15
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= 3.99808 lb/ft [58.3447 N/m]

= 9.73824 lb/ft [142.1119 N/m]
n = 29
n = 43

If the resonance mode of a cable, (for instance, the 15th mode) in a
particular structure and at a particular site is known, the above computation
will give the magnitude of the forcing function that needs to be used in the

calculation of the maximum deflection and bending stress. Alternatively, if
the nominal wind velocity at a particular site is known, the magnitude of the
forci ng functi on can be computed by substituti ng for V in the expressi on forcr
Fo' the value of the wind velocity. In a similar manner, using the Strouhal

relation and the value of nominal wind velocity, the resonant frequency, and

hence, the mode number can be determined. This information is then utilized

to evaluate the maximum deflection and bending stress. The methods of computa­

tion are shown in Steps 3 and 4 below.

Step 3
In this step, the maximum nondimensional deflection will be computed by

using graphs in Figures 17 and 18. For example, consider the first mode for
2 -3which Z = 0.464xlO . We also know that the nondimensional force P is 92,895.

Corresponding to these two values, the maximum nondimensional deflection can

be. read from Figure 17, and the value is approximately 0.569. Note that in
Figure 17, there are only two graphs which correspond to P = 66,000 and

P = 120,000. For reasons of clarity, the deflection curves for all other

intermediate values of P have not been drawn. In computing the maximum non­
dimensional deflection, Y , the interpolation method has been used.

n

In order to verify the accuracy of the graphi ca1 method, the maximum non­
dimensional deflections are calculated using exact analysis and using a computer

program developed to perform model superposition analysis. The output from the

computer program is shown in Appendix B. One can note that, for the first
mode resonance, Y is equal to 0.607, and hence the error is less than 7 per-

n
cent.

Knowing Y , the maximum deflection may be calculated by using equation
n

(27). Thus,
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= 1.123xlO-7x(6)2x(506x12) VYn
(1108xl03)(!0.000734)(0.08)(13.8917)

-3
= 2.48xlO VYn

This means for the first mode resonance that:
-3Ymax = 2.48xlO x30.17xO.569 in.

= 0.0426 in. (0.1082 cm)
The completion has been repeated for other modes of vibration with results

summarized in the following Table.

Table 5. Computation of Defl ecti on

r10de No. Y Ymax (in. [cmJ)n
1 0.569 0.0426 [0.1082J
2 0.382 0.0563 [0.1431]
3 0.212 0.0478 [0.1215J
4 0.164 0.0496 [0.1260J

15 0.042 0.0479 [0.1216J
29 0.021 0.0478 [0.1215J

Step 4
We are now going to compute the bending stress. For this, we shall

determine first the nondimensional curvature using Figures r9 through 21.
Consider again the first mode for which Z2 = 0.464xlO-3. Corresponding to

this value and the value of P = 92,000, the nondimensional curvature Xl' can
be obtained from the graphs in Figure 20. The value is approximately equal

. -3to 6.306xlO .

The value of yll

max may no\'I be calculated using equation (32). Thus,
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-1
( in. )

2
Pa d F L

IP 0 EI

1.123X10-7x(6)2 x~08xl03 x (506x12)

/0.000734 x(0.08) x (29xl06)x(20.5329)

~ 6.25 x 10-6 V X
n n

This means for the first mode resonance that
-6 -3II = 6.25xlO x30.17x6.306xlOmax

~ 1.1892xlO-6 in.- l (3.0206xlO-6cm-l)

The bending stress is

formulation, namely:

(ob)max

now calculated using the standard strength of materials

= E C y"z max
For a 10-layer cable, there are 19 wires along any diametrical axis. Hence,

the maximum fiber distance, cz ' may be considered as 19 times the radius of a
wire. Therefore, in this case, c becomes equal to 2.375 in. (6.033 cm).z
Finally, the maximum bending stress becomes equal to:

max
6 -6= 29xlO x 2.375 x 1.1892 x 10

~ 81.906 psi (564.742 MPa)

psi

The above computation has been repeated in a manner similar to the previous
steps for the 2nd, 3rd, 4th, 15th, and 29th modes. The results obtained are

summarized in the Table 6 below. It should be noted that these results, when
compared with the exact values obtained from computer printout, indicate the

accuracy of the graphical procedure developed in this report.
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Table 6. Computation of Bending Stress

~1ode No. ( -1 -l J) (0b) (ksi [MPaJ)Xn· y ll

max in. [em max
6.306xl0-3 1.1892xl0-6[3.0206xl0-6J 0.0819 [0.5647]

2 -3 2.357xl0-6[5.987xl0-6J 0.1624 [1.1194J6.34xl0

3 -3 -6 -6 0.2487 [1.7149J6.35xl0 3.611xl0 [9.172xl0 J

4 -3 4.844xl0-6[12.305xl0-6] 0.3336 [2.3006J6.355xlO

15 -3 18.676xl0-6[47.437xl0-6J 1.2863 [8.8690J6.5xl0

29 -3 . -6 -6 2.685 [18.511J6.870xl0 38.979xl0 [99.0xl0 ]
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CHAPTER 6

FATIGUE LIFE ANALYSIS

6.1 An Overvi ew

The general engineering practice for design, specifications and fabrica­

tion of any structure is based on correlations of the latter with service

experience. Normally, service experience leads to identifying weak links in

a structure, and reliability is obtained by improving these weak links. In

the case of a cable-stayed bridge, lack of the above information at this stage
imposes a severe limitation on a comprehensive fatigue life analysis. However,

within the framework of fracture mechanics methodology, a preliminary approach

to the problem may well be conceived. This preliminary approach will be

described in detail in this chapter.

6.2 Fracture Mechanics Methodology

Fracture mechanics is basically a study of the fracture or discontinuity
in terms of such commonly used engineering parameters as applied stress,
specimen and crack geometry, and material prooerties. In linear elastic fracture
mechanics (LEFM), this is equivalent to describing the stress field in the

vicinity of a crack tip or a surface of discontinuity in terms of the above

parameters. The magnitude of this stress field is higher than one obtained
in the absence of any discontinuity. This relative increase in magnitude is

described by a term KI called the stress-intensity factor. The subject of

LEFM rleals with the relationship between KI , nominal stress 0, crack or flaw
size a, and material properties, such as M. In functional form, the relation­

ship can be written as:
KI = f(0, a, M) (34)

One of the principles of fracture mechanics is that unstable fracture occurs

when KI reaches a critical value KIC . One can note from the above relationship

that for a given ° and a given set of material properties, the change in a is

directly associated with a change in KI. Thus, if the value of the crack size

corresponding to KIC is denoted by ac ' one can write:

ac = f 1 (0, KIC, M)
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The parameter ac represents the terminal conditions in the life of a structural
component and the parameter Krc represents the inherent ability of a material
to resist progressive tensile crack extension. For this reason Krc is more

commonly called the fracture toughness of the material.

At the outset, the fatigue life analysis of a structural component is

seemingly unrelated to the field of fracture mechanics, since it deals with
the life of the component under repeated cyclic loading in terms of the total

number of load cycles elapsed. Moreover, the component is believed to be free

of any discontinuity or crack, at least macroscopically and, therefore, the
concept of stress concentration seems to lose its meaning. On the other hand,

more often than not, a structural component contains initial defects, This

is largely the result of manufacturing processes. Even if these defects are
microscopic in nature, at one stage of repeated loading they give rise to
localized stress concentration which causes fatigue crack initiation. While

these cracks are of subcritical dimensions, they nevertheless act as sources

of discontinuity, thereby raising the values of Krthe terminal condition
ac is reached. This, then, is the stage of fatigue crack propagation prior

to the stage of macroscopic failure associated with the unstable crack growth.

The above description serves as a link between the fatigue life analysis
of a structural component and the conventional LEFM methodology. More precisely,

it indicates how the fatigue behavior of a structural component can be described

in terms of fracture mechanics parameters KI (K IC)' ac ' 0, the material properties
M, and the number of load cycles. A complete description of the fatigue life of

a structural component involves three distinct stages. These are:

Fatigue crack initiation

Fatigue crack propagation

Crack i nstabil ity or fi na 1 fracture

These stages will be dealt with in more detail in the specific case of bridge

cables.

6.3 Fatigue Crack Initiation

A complete knowledge of fatigue crack initiation in bridge cables requires

the understanding of the basic mechanism of fatigue in high strength materials.
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Very little work has been done in this area partly because it is extremely

difficult to observe microstructural changes caused by the fatigue process
in such materials. With this limitation in mind, we shall attempt to describe

the microscopic aspects of fatigue crack nucleation in bridge cables.

6.3.1 Microstructural Aspects
The chemical composition and mechanical

presently under investigation indicates that
phase system and has mar~ensitic structure.

cycling of such structures, the stress range

first 20% of its life as shown schematically

relatively constant until the final fracture

propertips of bridge cable materials

the material is a multi-
During constant strain-amplitude

generally decreases within the
in Figure 2?, whereuron it remains

of component occurs.

The hystersis loop in Figure 22 represents the case of strain-softening,
a phenomenon which takes place only if 0 /0 < 1.2 where 0 is the ultimate

u y - u
tensile strength and 0 , the 0.2% offset yield strength. This is indeed the

y
case of the cable material presently under investigation. The implication

of strain-softening high strength materials is that they produce dislocation

slips which are very small and highly localized and hence, within the nominal

elastic range. Therefore, ~arge stress concentration in these materials

arises from the structural imperfection in the form of inclusions or voids

induced by the manufacturing technology.

During the load application and stress reversals, the microvoids tend to

coalesce, thereby forming the site of crack nucleation •. In high strength

materials, the void coalescence, rather than cleavage, is the microscopic

phenomenon contributing to crack initiation.

Considering the case of bridge cables, it can be noted that the crack

initiation in a single, polished and unnotched wire is likely to be caused

by the above void coalescence mechanism. A cable, on the other hand, is

composed of several single wires tied together in parallel or in some
helical combination. During external cyclic loading of the cable by wind
or other forces, individual wires undergo different amounts of bending which
cause contact surface and hence, contact stress to be generated between the

wires. If repeated contact due to cyclic loading occurs, it will produce
mechanical notches in an otherwise unnotched wire. It is, therefore, important
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to note the following:

1. Crack initiation in a single, unnotched and polished wire is
brought about by the void coalescence mechanism.

2. Crack initiation in an unnotched and polished wire within a wire
bundle (cable) is brought about by a combination of void coalescence
and mechanical notching due to contacts between the wires.

3. Crack initiates faster in initially notched specimens.

6.3.2 Engineering Analysis

The brief description of microstructural aspects of the fatigue crack

nucleation sheds some light in understanding the basic fatigue mechanism in
bridge cables. It also leads to two important observations, namely:

1. The crack initiation mechanism in bridge cables or wires is
correlated to strain-softening or strain-hardening parameter
of the cable material, whichever the case may be.

2. The fatigue strength of a wire, which is a measure of its
resistivity to crack growth, depends on the surface texture
of the wire as indicated in the schematic shown in Figure 23.

Based on these observations, we will now develop a framework for the

analytical study of fatigue crack initiation in bridge cables. Thus consider

a single wire subjected to cyclic loading. The conventional procedurE
for describing the fatigue behavior of the wire is to generate a design
fatigue curve (S-N curve) based on the experimental data on nominal stress or

stress range and the -number of cycles elapsed before failure. The schematic

of a S-N curve is shown in Figure 24. Note that the total S-N curve indicated
by a solid line is an assymptotic combination of the crack initiation curve
and crack propagation curve both indicated by broken lines. The shape of the
crack initiation curve suggests that an empirical relationship of the following
form exists between the number of cycles to crack initiation, N., and the nominal

1

stress range, 60.

Ni = Cl60)-Y (36)

where C1 and yare two constants which depend, in general, on the material
properties M stated earlier and on the strain hardening exponent, n. Yokobori (3 7)

has found a similar relationship for the crack initiation in aluminum. When
the crack initiation data (See Figure ~5) of Barsom and McNicol (38) for HY-130

steel were curved-fitted to the above expression, we obtained:
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(38)

c
1

= 3.06 x 107, y = 3.3

It should be recalled that the objective of the empirical formalism is
to obtain expressions for the constants C1 and Y in terms of measurable

mechanical properties such as ultimate tensile strength, yield strength, etc.,
as well as in terms of a strain hardening exponent. However, this requires
a large set of statistical data from identical experiments with specimens
having the same geometry but a varying degree of mechanical properties. This
is not available in current literature and should, therefore, constitute the
forefront of further research.

The above analysis of crack initiation does not reflect directly the effect
of notches. From an engineering standpoint, it is of considerable interest to
study this latter case. This is conventionally done by establishing a relation­
ship between the number of cycles to crack initiation and the quantity ~KI/;P­

where the term KI is explained before and p is the notch radius. The usual
experiment involves testing specimen with different notch radius. In the case

of a wire of .1.5 in. (6 mm)diameter, such experiment is not likely to oroduce
~ :

reliable results. However, it is analytically possible to obtain a threshold
value of ~KI/;P denoted by (~KI/lPJth below which crack will not initiate. For
this, the following relationship is used. (See also Figure 26~)

(6KI~ = 10 lOy (37)
IP th

where 0y is the yield strength. Thus, for the wire material (o = 204 ksi
y

[1407 MPa]), the threshold val~e becomes 142.83 ksi (949 MPa). On the other hand, the

threshold value of ~KI/;P-is related to the maximum applied stress. The exact
functional relationship between these two quantities depends on the nature of
crack, i.e., whether the crack is circumferential, axial, single-edged, 'double-
edged, elliptical or otherwise. This requires extensive analytical investigation.
At present, we assume that the maxim~m elastic stress at the root of the notch,
0 max ' is the one due to an elliptical crack (40) and is given by:

2K I

~
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This means that the maximum stress fluctuation corresponding to the threshold
value of 6KI//Pis 161.17 ksi (llll r,1Pa). It represents the case of p -+ 00

or in other words, an unnotched specimen. There is no data to substantiate
the value; however, two results of Barsom and McNicol (37) are worth noting

in this regard. First, the value of {6Kr//P)th (142.83 ksi) [949 MPaJ) is

close to the one obtained for ASTM 4340 steel (o = 212 ksi [1462 MPaJ) shown
y

in Figure 27. Second, the value of 0 (161.17 ksi [1111 MPaJ) is consistentmax
with the one experimentally obtained for HY-130 steel.

The above analysis gives us some information on the fatigue crack initia­

tion life of the wire. More specifically, the analysis determines the fatigue

limit or the endurance limit of the wire material. The number of cycles corres­

ponding to this endurance limit is primarily the fatigue initiation life. For

higher values of applied stress range, the number of cycles to crack initiation

rapidly decreases. Figure 28 shows schematically the fatiuqe limit of polished,
notched and degreased single wires of the type that is frequently used in
cable-stayed bridge construction. Assuming a stress threshold value of 160
ksi (1103 MPa) for the wire material under investigation, and assuming a value

of y = 3.3, an empirical fatigue crack initiation curve may be obtained

in a manner similar to the ones shown in Figure 27.

6.3.3 General Discussion

The analysis presented in the preceding section demonstrates that the fatigue

initiation life of a wire is correlated to its yield strength and strain

hardening exponent. In addition, the initiation life of a notched wire depends

on the notch geometry. Therefore, a complete understanding of crack initiation

in a wire remains an unresolved issue. Limited experimental efforts have
previously been directed in this area, most notably by Reemsnyder (42) who

tested single wires for fatigue life in a rotating strut machine. The results

of his experiments are shown in Figures 29 and 30. Since the yield strengths
of the wire materials in his experiments are of the same order of magnitude,
the results serve to verify the analytical framework discussed in previous
sections. More recently, Fisher and Viest (43~ have performed experiments
with single wires (as well as strands made from such wires) which have
different yield strengths and tensile properties. However, their results

{See Figure 31) are too scattered to form any homogeneous statistical groups.
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In yet another direction, Barsom and McNicol (38), Clark (44), and
Clausing (45), and others have attempted to correlate various mechanical
properties with the crack initiation life. A detailed account of this may
be found in Rolfe and Barsom (36).

In summary, it may be pointed out that the analytical framework of the

crack initiation in a wire is by no means complete. Furthermore, preliminary
conclusions reached at this stage still require substantiation by experimental
work. It can be safely assumed, however, that the fatigue limit of a single
unnotched and polished wire is fairly high and therefore, the crack initiation,
under commonly occurring wind loading during a reasonable span of service life,
should not be a grave concern. This statement, of course, requires some
qualification when one considers the taut ends of a cable or a wire. It may
be evident from the dynamic analysis presented in previous chapters that
bending stresses are usually much higher at the ends. As previously discussed,
higher stresses considerably reduce the initiation life.

6.4 Fatigue Crack Propagation

Crack initiation life dominates the total fatigue life in the high strength
material of which bridge cables and wires are made. Hence, from the service
viewpoint, the fatigue problem is practically eliminated if the cables are so
designed that commonly occurring wind loading will not produce high bending

stresses. However, there is still some probability, small as it may be, that
some wires in the cable will contain preexisting cracks, surface discontinuity
or voids., In this case it is important to determine the crack propagation life.

It is a conventional practice to divide the fatigue crack propagation
behavior into three regions (see Figure 32). Region I in the
figure corresponds to non-propagating fatigue cracks. Rolfe and

Barsom's (3~ experimental results on non-propagating fatigue cracks show that
the threshold stress-intensity factor below which a crack will not propagate is
given by:

~Kth = 6.4 (1-0.85 R) for R > +0.1

= 5.5 ksiii nIt

74

for R < +0.1 (39)
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For the present case, the value of R is always greater or equal to 0.1 for all
possible design stresses and all possible wind loadings. In fact for large

value of applied tension, such as 110 ksi (758 MPa), and for low bending

stress, such as 10 ksi (59 MPa), the value of R will be as high as 0.8 and

consequently, the value of 6Kth will be very low. Hence, for all practical

purposes, once a crack is initiated in a wire it will propa9ate.

Let us now consider Region III which corresponds to accelerating fatigue
crack or the unstable crack growth. The usual LEFM description of such

phenomenon is given in terms of crack tip opening displacement (CTOD), 0e.

The latter is related to a threshold value of stress intensity factor Kth
and the elastic properties in the following manner:

(40)

In fact, it is observed that the accelerating fatigue crack propagates at a

constant value of 0c equal to 1.6 x 10-3 in. (0.04 mm). For the bridge wire

(E = 29 x 103 ksi, [200 GPa], 0 y = 204 ksi [140.7 MPaJ) this gives Kth = 97.29

ksi lin. [107 MPalimJ approximately. It will be assumed that the fracture

toughness of wire, KIC or KID' falls in the range of 80 ksi /111. (88 MPa/iTI).
Therefore, we assume that for most cases of interest with the fatigue design

of bridge cables, Kth >K IC . This means we need not be concerned about the
evaluation of accelerating fatigue crack propagation life which will indeed
be very small.

The above analysis indicates that the fatigue crack propagation life of a
wire, while relatively small in comparison to the initiation life, is limited

mainly to steady-state crack propagation Region II. We will describe the

latter in terms of some rate equations discussed next.

6.4.1 Steady-State Crack Propagation

In its formulation, a general law of fatigue crack propagation should
include, as a minimum, the following factors:
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1. Geometry of specimen and crack.

2. Nature of cyclic loading (constant and variable amplitude).

3. Material properties.

4. Growth ra te.

In addition, environmental factors such as temperature, humidity, environmental
corrosion, etc. may affect the propagation rate. Therefore, ideally, they
should be considered in a general propagation law. The existing laws of crack
propagation are basically two types:

1. Laws derived from theoretical analysis of strain hardening,
fatigue damage, CTOD, interference and other models.

2. Semi-empirical laws based on statistical analysis of experimental
data.

From a practical engineering standpoint, the second type seems to be more

promlslng. Therefore, our discussion will concentrate only on this type.

The semi-empirical laws can generally be written as:

da
dN = C~L'1K)11

2
(41)

where a is the crack size,and C
2

and 11 are two parameters which depend, among
other things, on material properties. Determination of the crack propagation
life of a wire by the above formula involves knowledge of the following
quantities:

1. Values of C and 11

2. Values of critical crack length ac and fracture toughness KIC or KID

3. Value of initial crack length

Barsom ~6 ) has tested various high-yield-strength (cry> 80 ksi) [55 ~1PaJ

martensitfc steels for fatigue crack propagation. The results of these experiments
show that (see also Figure 33):

8 -811 = 2.25 and 0.27 x 10 ~ C ~ 0.66 x 10

Since C and 11 are assumed to depend only on the material properties, and since
it has been established by Bucci et al. (41), Barsom (46), Imhof and Barsom (48)

and Parry et al. (49) that the growth equation:
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(43)

~~ = 0.66 x 10-8 (6K)2.25 (42)

is valid for steels having yield strength ranging from 80 to 300 ksi, (552 to

20G8 MPa), we shall consider the above form as representative for fatigue crack

propagation in cold-drawn wires.

The determination of fracture toughness, KIC or KID' and hence the
critical crack size, ac ' requires, at this point, some detailed analysis of
the stress intensity factor.

6.4.2 Fracture Toughness and Critical Crack Size
It is stated earlier that the fracture toughness of a material represents

its inherent ability to resist progressive crack extension. In the case of
tensile cracking, the parameter is denoted by KIC and in the case of bending,

by Kte. In either case:

ac = f(KIC or KID, 0max, g)

where g is a function of crack geometry. The above formula determines the
critical crack length, ac ' if K1C or KID' 0nax ' and 9 are known.

Fracture toughness KIC or KID may be theoretically calculated using
their relationships with the mechanical properties of the structural component.
One such relationship due to Sailor (50) is as follows:

strain hardening correction term; typically between 1.2 and 1.5

mean free ferrite path

where C =
H =s
8 =
o

2KIC
-E- =

constant factor

E

° CH8 e Py SO

= 1.3

(48)

E = plastic strain at the crack tip (= 0.8 for plane-strain fracture
P strain)

Although the above equation is strictly valid for ferrite structure, it provides
a reasonable estimate of KIC for martensitic steel of which the cable is made.
Sailor's theoretical calculation shows that fracture toughness of SAE 4340 steel
(steel having a comparable strength value to that of ASTM A586-68 material) is in the

range of 70 ksi lin. (77 r1Pa /ril) to 85 ksi lin. (93 MPa /rYi). On the other hand,

the measured value of KIC ( 5D (see Figure 34) falls within a much wider ranqe
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between 60 ksi lin. (66 MPa/m) to 80 ksi lin. (88 MPA/m). For the present

analysis, we shall assume u set of values of K1C ' namely, 60 ksi lin.
(66 MPalril), 80 ksi m. (88 ~1Palti1), and 100 ksi m. (110 MPalm) , L'Je

consider that, in the absence of further experimental and analytical

evidence, this will provide sufficient useful information about the range

of crack propagation life in bridge cables.

Fracture toughness can also be determined experimentally. At present,

the standard ASTM method for measuring K1C ' called the Krc test method,

requires a certain specification of the test specimen dimensions. These

specifications are not satisfied by a 0.250 in. (6 mm) diameter wire having

yield strength of 204 ksi (1407 MPa). Consequently, this is another area which

needs further exploration. In any event, we conclude at present that from

the assumed or computed values of KIC, the critical crack size can be determined

using the functional relation in equation (43).

In fracture mechanics methodology, several explicit relationships between

the stress intensity factor and crack length are derived by various methods.

We recall that a knowledge of the stress intensity factor is required to deter­

mine the crack propagation life of a wire analytically. Accordingly, we shall

consider here some of these relationships which seem to closely represent

the situation of crack propagation in a wire.

Let us examine the case of a circumferential crack in a cylindrical shell
(see Figure 35)~ Folias (52) has obtained an approximate analytical expres­

sion for the stress intensity factor Kr as follows:

= a ;a {l TTA
2

} t (1 h 2 }
KI

+ v 2) 2 A ;a
+ 64 + °b \13 (3 + v)

{ (1 + v) + (1 + v ) A} 4 A) (49)32(1 - v) 16(1 - v) (A + ln 8) + O(A ln

where A is given by
12 (1 - }) ~

1

A = (aiR) (R/h)~ (50)

For a solid cylinder approximation, h/R = 1 and substituting v = 0.3 for steel,
we get:

A = 1.82 (~)

The stress intensity factor in this case may be approximated by the following
express i on:

Kr = 0(1 + 0.163 A2) va

81

(51 )
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provided the contribution of the term containing the bending stress is
negligible. Folias found that th.is type of approximation results in

about a 6% error in KI for all values of A. If, in the above case, the
crack is axial, (see Figure 300) the stress intensity factor may be
approxi rna ted by:

2KI = 0(1 + 0.815 A) ;a- (53)

Finally, for a circumferential crack with arbitrary orientation (see Figure

36b), the approximate stress intensity factor is:

KI = 0(1 + 0.163 A
2)(5 cos2 e +sin2 e) ;a (54)

Hilton and Sih(53) have calculated the stress intensity factor for a

circumferential crack in a solid cylinder by the finite element method and

found the following expression:

K = 0(2R)Y,K ;a (55)
I a

where Kis the normalized stress intensity factor. They found that for
2R/a = 1.25, K = 0.250.

We have developed an approximate expression for the stress intensity
factor using the result of single-edge notch in a plate, i.e.

(56)

where the ratio A/B in our case corresponds to that of the area of cracking
to that of the semi-circle. From Figure 37the area of cracking is given by:

A = rrR
2

_ (R- a) haR - a2 - R2 tan -l(Aa 2) (57)
2 2aR- a

TThe values of f(Ac/B) for different A/B are assumed to be those for the
single-edge 10tched specimen, and are given in Table 7.

Using the above expression for the stress intensity factors, the critical

crack si ze in a 0.250 in. (6 mm) diameter wire has been computed for. different
values of nominal stress and fracture toughness. The relationship between
maximum nominal stress and critical crack size is shown in Figure 38.
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Table 7. Correction Factors for a Sing1e-Edge-Notched Plate

alb f (al b)

0.10 1.15

0.20 1.20

0.30 1. 29

0.40 1.37

0.50 1. 51

0.60 1. 68

0.70 1.89

0.80 2.14

0.90 2.46

1.00 2.86
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6.4.3 Propagation Life
It was stated previously that the crack propagation in a wire can be

approximated by the growth equation (4V. The propagation life is obtained
by direct integration of the growth equation. Thus, if Np denoted the
propagation life:

da (58 )

~cr , the abovemax
show the crack propagation life: as a function of stress fluctuation ~cr for
different values ot Illltial and critical crack sizes. In the absen~p. of
more specific information, the initial crack size, ao' has been arbitrarily

~elected from a ra~ge of 0.01 in. (0.25 mm) to 0.05 in. (1.25 mm).

The term ~K is a function of ~cr and a and, therefore, for a given value ofmax
integral can be numerically evaluated. Figures 39 to 44

6.5 Total Fatigue Life of Wire and Cable

As mentioned earlier, the total fatigue life of a structural component
is composed of two quantities namely, the fatigue crack initiation life and
the fatigue crack propagation life. In the particular case of bridge
cables, it was also stated that the initiation governs most of the total
fatigue life. From the knowledge of crack initiation and crack propagation
in a wire, as discussed in the preceding sections, an empirical S-N curve
may be drawn. A set of such curves for different propagation lives (Figures 39
to 44) is shown in Figure 45. It can be seen that the S-N curves are very
close to each other indiacting that the difference in propagation lives has
little significance on the total fatigue life of a wire.

It is now important to comment on the analytical basis for fatigue life
predictions. We have noted that the calculation of fatigue life by semi-empirical
methods involves some form of curve-fitting through statistical data. Because
of our limited knowledge of the parameters which affect fatigue life such as
the fracture toughness, exponent of fatigue equation~ load spectrum, etc.,
the statistical data may be widely scattered. In this case the prediction of
fatigue life by an empirical law may produce unrealistic results. What is
needed, therefore, is a statistical theory of fatigue behavior. According to
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this theory, the fatigue life of a wire is described in terms of a probability

distirbution involving the ultimate strength of the wire material and the
applied nominal stress. This type of analysis has its beginning in the
poineering work of Weibull(54). Much of the later development on the

statistical aspects of brittle fracture was carried out along this line
by FreUdenthal (55) and on the statistical aspects of fatigue by Freudenthal
and Gumbel(56). More recently, Andra and Saul(57) proposed a statistical

theory of fatigue of parallel wire cables based on the assumption that the
wire failure is distributed binomially.

Following the statistical theory, the ultimate strength of a wire is
considered to be distributed normally according to the following formula:

P(o' ) =__1_
u /2iTs

O'u

-(0' _<0'»2
exp u~ _

2s; Z
o'u

(59)

where <o'u > is the mean ultimte strength and s . is the standard deviation
o-u

of the ultimate strength. Sinilarly, aPlIlien stress is distr;;1uted as follovls:

1P(o') =---
/2iTs O'

exp - (0' - <0'> )2

25 2
0'

(60)

where <0'> and sO' bear the similar meaning. The probability of a crack
to be initiated in a wire is then gtven by:

= _1_ 2
P(cr > 0' ) exp -(5 - <t;»

- u 12rrs5 2s 2
5

where the new va ri ab1e 5 is defined by

5 = 0' -0'
U

so that <1:::- = <0'> <O'u>

and s 2 = s 2+ s 2
I: O'u 0'

(61)

(62)

(63)

(64)

Thus, the probability of crack initiation can be described in terms of the
interference between two distributions P(O'u) and P(O') as shown in Figure 46.
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The shaded area in Figure 46 represents the probability that the
crack will initiate in a wire. For practical engineering application of the

above concept, it is useful to think in terms of a laboratory test with
seyeral identical wire specimens. If such a test is conducted for the

determination of crack initiation in a wire and if the two distributions,

P(a) and P(au)' are known, then the shaded area in the figure will indicate
the percentage or fraction of the total number of wires in which cracks are
initiated.

It should be noted that the above probabilistic description of the

fatigue life of a wire inherently takes into account the effect of a spectrum

of load range rather than a single load range. The consideration of a

spectrum of load range is important in the study of the fatigue of bridge

wires and cables from the standpoint of wind loading. The 'latter varies within

a wide range corresponding to the diurnal and seasonal variations of wind

speed. Consequently, it is more appropriate to consider several load ranges

or a load spectrum and its effect on the fatigue life. A more versatile
method of doing this from the standpoint of simplicity and engineering
practicality is the use of Miner ' sRule(58). This rule allows the determina­

tion of the cumulative fatigue damage of a component if the fatigue damage

due to individual loadings are known (see Figure 47). According to this
rule, if Nl is the fatigue life of the wire due to a load al , N2 due to a2,

and so on, then the total fatigue life N is given by:

Ea.N.
N = J J

Ea.
J

(65)

It is interesting to note that the above derivation can be obtained as a
special case of the more general probabilistic formulation described earlier.
The fatigue life of a wire under a load spectrum ranging from 2 ksi (14 MPa)

to 40 ksi (276 MPa) is shown in Figure 48.

~'Jhile the fatigue behavior and fatigue life of a wire is of fundamental
importance: to engineers responsible for designing suspension cable and cable­
stayed bridges, from a maintenance standpoint it is equally important to know

the fatigue life of a cable. We note again that a cable is comprised of a
large number of individual wires tied together in some fashion. It, therefore,

appears that the fatigue life of a cable is several times larger than the life
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of a single wire. However. Figure 49 makes it evident that the contrary is
true. at least for helical cables. This striking phenomenon raises some
interesting questions. For example. is the fatigue life of a cable related

to that of a single wire? If so. how is the fatigue life of a cable

determi ned?

Reemsnyder(42) concluded that there is little correlation between rope

and single wire fatigue tests (see Figure 49,). However. his data from the
axial fatigue tests are too few to provide a good statistical fit and the

error estimate appears to be too high. Therefore. any correlation. whether

good or bad. loses its meaning. On the other hand. it is natural to consider

that if an individual wire of a cable failed by fatigue. the load in the cable

will be redistributed. If a sufficient number of individual wires have failed.

the redistributed load will be large enough to exceed the ultimate strength.

thereby rendering the cable to be structurally ineffective. This reasoning.

when applied to a 0.250 in. (6 mm) diameter 283-wires cable (Prescon parallel-wire
Group I cable for Pasco-Kennewick bridge). means that approximately 20% or

about 56 wires may be allowed to fail by fatigue before cable replacement
becomes necessary. However. thi s must be interpreted in terms of the number

of loading cycles. To illustrate this. we consider two examples.

Figure 50a shows the section of a helically wound cable under the action

of an external load. If the load is cyclic. repeated. and of sufficient

magnitude. it will produce high degrees of stress concentration at the

contact region giving r,ise to "strand nicking" as shown in Figure 50b. The
nicks act as mechanical notches which considerably reduce the initiation life
of a wire. This conjecture had been verified experimentally by Reemsnyder(4Z)

(see Figure 49). In the case of parallel wire cables. there is practically

no contact between the wires. However. if one looks at a parallel wire cable

cable in bending. it will be apparent that the adjacent surface of two

neighboring wires in a cable will have an opposite loading situation.
If the external load is sufficiently large. this will create occasional

contacts between the wires which again gives rise to stress concentration

and mechanical notches. In either case. the life of a wire is greatly

reduced. A rigorous estimate of the fatigue life of a cable requires
detailed analysis which is beyond the scope of the present effort. Neverthe­

less. this study offers a rational explanation for Reemsnyder ' s(42) experimental
100
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results and attempts to find a correlation between the wire fatigue and cable
fatigue life.

In concluding this section, we would like to touch upon the subject of
fatigue failure of wires and cables at the socket end. In the past. this was
a growing concern among the design engineers and users of cables who found

that the socket failure in cables is more predominant. It is our understanding

that. since the invention of swaged fittings, epoxy groutings, etc., this is

no longer a case of grave concern. Our analysis shows that bending stress

remains largest at the socket ends. However, due to swaged sockets and epoxy

fillers, there is a gradual load transfer mechanism at the socket ends. Our

preliminary studies of this mechanism in terms of viscoelastic modeling show

that the magnitude of bending stresses in the latter case is about half as
much as that in the case of rigid sockets.

6.6 Testing Data of Wires and Cables

The analysis of the fatigue behavior of bridge cables and wires presented

above is very much intertwined with the experimental work on the subject.

For example, the determination of fatigue crack propagation life requires the

knowledge of fracture toughness KIC which is experimentally obtained from

fracture testing. Second, the results of fatigue experiments are used to
construct S-N curves which, in turn, are used to verify the experimental results.

For the sake of completeness of fatigue analysis, it is important to discuss

the experimental work on fatigue testing of wires and cables.

Reemsnyder(42) has made a series of tests on wires, strands and ropes.
In one of these experiments, the strand specimen was 0:75 in. (19 mm) diameter

l'x 37 wires of ultimate tensile strength 250 ksi (1724 MPa). The result~ of the

experiment (axial fatigue load test) showed that at 50 ksi (345 MPa) stress range,
the first wire breakage occurred at 2 x 105 cycles. At a stress range of 75 ksi

(517 MPa), however, the first wire breakage occurred at 1.5 x 105 cycles. Other

tests that Reemsnyder performed with different structural strands (1 x 19,

1 x 37, 1 x 55, 1 x 59 wires) indicated that for the same stress range, 1 x 19

strand had the lowest fatigue life. Some experiments also showed that bright

strands had a higher fatigue life than did galvanized ones.
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Fisher and Viest( 4~ tested prestressing wires and strands for fatigue

life. Wires were 0.192 in. ( 5 mm) diameter made of steel consisting of

mean ultimate strength 257.5 ksi (1775 MPa) (range between 250 and 264

ksi [1724 to 1820 MPa])and strands which were made of 0.375 in. (9.5 mm)

diameter 7 wires with mean ultimate strength 270.4 ksi (1864 MPa) (range

between 248 and 293 ksi [1710 to 2020 MPa]). The strands were tested at

different stress levels with stress fluctuation ranging between 38.4 ksi

(265 MPa) to 75.7 ksi (522 MPa) and with maximum stress between 197.3 ksi

(1360 MPa) to 210.9 ksi (1454 MPa). The results showed that some strands

did not fail after as much as 2.5 x 106 cycles at a stress fulctuation

of 28.4 ksi (196 MPa). However, at the stress fJuctuation of 75.7 ksi

(522 MPa),the fatigue life of the same strand was reduced to as low as

3.8 x 104 cycles. The wires were also tested at different stress ranges.

The results showed that some wires did not fail even after 7.5 x 106 cycles

at a stress fluctuation of 33.5 ksi (231 MPa). At a higher fluctuation

of about 97.8 ksi (674 MPa), the fatigue life was sharply reduced to 10.4 x

104 cycles. In either case, the experimental results conclusively showed

that the single wire fatigue life is longer than the fatigue life of strands.

Jevtic(59) tested fatigue behavior of 0.1 in (2.5 mm) and 0.2 in. (5 mm)

diameter cold-drawn wires at elevated temperatures and found that the rupture

strength of wires drops sharply beyond a temperature of 3920 F (2000 C).

The testing was done at zero-to-tension loading and Jevtic derived from the

experimental results the limits of fatigue behavior of the cold-drawn wires.

Bennett and Boga(60) tested cold-drawn wires used for prestressed concrete

and found that crimped and indented wires have a much lower fatigue limit
than the smooth wires. The specimens used by Bennett and Boga consisted of

0.276 in. (7 mm) diameter cold-drawn wires. The specimens were tested between

an applied minimum tensile stress level (Smin) to a maximum tensile stress

level (Smax) chosen to be very close to the ultimate strength of the wire

(208 ksi [1434 MPa]). The minimum stress level was kept constant during a

series of tests but varied between 102.8 ksi (709 MPa) to 142 ksi (979 MPa)

duri~g different series of tests. Bennett and Boga found out that fatigue
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life of a wire increased for larger values of minimum stress levels. The
reason for this is attributed to a smaller value of the range of fluctuating
stress.

Cullmore(61) tested the fatigue strength of high tensile steel wire
cable subjected to stress fluctuations of small amplitude and found that in
all tests, failure occurred in one of the outer helical wires. An explanation
of this phenomenon may be found in our analysis of the bending stress (Section
4.2.2) whereby we have concluded that outer wires have a wider range of stress
variations than the core wire. Cullmore also noted fretting to be a dominant
phenomenon causing the failure of a helical wire cable. His fatigue data
on the fatigue life of a wire indicated an endurance limit of 38 ksi (262
MPa) at a mean stress level of 80 ksi (552 MPa) which is double that of the
value for a cable (18.8 ksi [130 MPaJ). The most important conclusion Cullmore
had drawn from his work was that there was no minimum value of the stress
fluctuation below which failure of a cable would not occur in less than ten
million cycles.

Edwards and Picard(62) carfied out fatigue tests on 0.5 in. (12.7 mm)
diamater seven-wire prestressing strands. These tests were in connection
with the analysis of the fatigue behavior of prestressing strands in both
concrete and free air environments. The effect of lateral pressure simulating
the environments as well as the effect of test length on the fatigue life
were reported by the authors. In arriving at their conclusion, Edward and
Picard made a statistical regression analysis of the test data in a manner
very similar to that employed by Fisher and Viest(43).

Fleming(63) performed fatigue testing on specimens of one inch (25.4
mm) diameter, 19 wire helically wound galvanized steel strand to establish
the effect of the load variables such as load range, mean load and maximum
load upon the fatigue life. The results from the test showed that the maximum
load and mean load had very little effect upon the fatigue life. During the
experiment, it was observed that the wire breakage occurred randomly through­
out the length of the specimens and were not concentrated at any specific
location.
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Castellaw, Frank, and Campbell(64) tested Pasco-Kennewick bridge cables

for fatigue failure under axial loading. The specimen was made of 83 - 0.25

in. (6 mm) diameter of 240 ksi (1655 MPa) ultimate strength and the cable

had an outer diameter of approximately 4 in. (10 cm). The maximum stress

level was 108 ksi (745 MPa) with a fluctuation of 24 ksi (165 MPa) and

the specimen was cyclically loaded for 2 x 106 cycles. No fatigue failure

of wires was observed. The limited experimental results briefly described

here, and an extensive literature search by CHI engineers during the course

of the project revealed that few experimental works on the fatigue of bridge
cables exists. This is partly due to the fact that soitable fatigue experi­
ments are difficult to conceive and design in the case of a 0.250 in. (6 mm)

diameter wire. We shall discuss this issue in more detail in the section

dealing with recommendations for future research.
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion of Results

In the preceding chapters, we developed analytical formulations for the

dynamic response and fatigue behavior of stay cables in bridges. Based on

them, we determined the deflection and bending stresses in typical cables

in the Pasco-Kennewick bridgE. The fatigue analysis was presented in
Chapter 6, and with that we have also estimated the approximate fatigue life

of wires and cables in a wind-induced vibration environment. In this section

we will review the results obtained therein.

From the numerical results of deflections and bending stresses (see

Example 2 in Chapter 5), one can notice that the deflection is nearly constant

for all wind speeds. This is in apparent contradiction to the intuitive notion

that the higher the wind velocity, the higher the excursion should be. To

provide an explanation we recall the following observations made elsewhere in
the text.

1. The resonance mode contributes primarily to the amplitude of
excursion of deflection while the net contribution of all
other modes is insignificant. This is so even though modal
superposition is considered in the numerical computation of
the deflection.

2. The analytical model of vortex excitation considered in this report
assumes that the wind force be harmonic and that its magnitude
varies quadratically with the wind velocity.

The second item indicates that the deflection is linearly dependent on
the critical wind velocity which increases with the mode number. The first

item indicates that the nondimensional deflection decreases with the mode

number. For this reason, the maximum deflection, being a function of non­
dimensional deflection and wind velocity, yields a nearly constant value for

all modes.

Despite the fact that deflections remain nearly constant, the bending

stresses are higher for higher modes. However, because of inherently low
moment of inertia of the cable far enough away from the end-anchorages, the

maximum value of bending stress is relatively low. For instance, in Example 2
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of Chapter 5, we find that the bending stress in a 506 ft (154.23 m) long,
4.75 in. (12.07 cm) diameter cable is less than 2,685 psi (18.511 MPa).

Near the end-anchorages, one can expect a much highe~ flexural stress.
The magnitude oJ the stress depends on the cable ?nch9rage system an.d the end

suoport conditions, among others. The exact value of moment of inertia at

the end anchorage lS hard to ascertain but, due to the constraint of wires
from relative movement with respect to one another, is probably many times higher

than that in the middle. Therefore, it is reasonable to expect high bending

stress at the ends of a cable. This seems to explain the intuitive notion of

earlier design engineers that the end-anchorage is the weak point of a cable.

In regards to determining natural frequencies and critical wind velocities,
results from the present analysis indicate that long flexible stay cables are
prone to resonant vibration at some wind velocities at a particular site. This

is so because, at higher modes, the natural frequencies are densely populated
and hence, increment in critical wind velocities corresponding to two consecutive
resonance modes is quite small. At many sites the wind data show that the
velocity increment may be easily exceeded by the usual fluctuation of wind speeds.

This means that, if a particular cable is designed out of resonance with respect
to a specific mode, it does not necessarily guarantee that the cable will not
vibrate in the next higher or lower mode. Fortunately, at higher modes, the

deflection is also small, and the wind-induced bending stress can be easily kept
to a reasonably low value by proper selection of cable construction and end
anchorages. It should be noted here that it is the fatigue phenomenon caused
by reversible or cyclic bending stresses that are damaging, not the high stresses,

per see

In the analytical formulation of the fatigue behavior of wire ropes and
cables, we have made use of fracture mechanics methodologies. In other words, we
have attempted to describe the fatigue crack initiation and propagation in a

wire in terms of such parameters as the threshold stress value, the stress
intensity factors, and others. Certain simplifying assumptions are inherently
involved in this approach, and it is quite likely that some of these assumptions
may not be justifiable on the grounds that the fracture mechanism in a high

strength steel wire of small diameter (0.25 in. [6 min]) is far more comolex.
than that in a plate, beam, or shell of reasonably large dimensions. Moreover,

J08



the validity of the fracture mechanics approach cannot be guaranteed when one
tries to explain the fatigue behavior of a whole cable in terms of its con­
stituent wires. Nevertheless, the present approach provides some guidelines
in understanding the fatigue behavior of wires and cables.

From the analysis of fatigue initiation in a wire, we have determined the
endurance limit and the fatigue initiation life which is consistent with the
fracture mechanics methodology. The value of endurance limit for the type
of steel wire used in Pasco-Kennewick and Luling bridge construction has been
found to be approximately equal to 160 ksi (1103 MPa). The wire: used in the

cables to construct these bridges has an ultimate tensile strength of 240

ksi (1655 MPa) and maximum working stress (excluding cyclic bending stress)

of 108 ksi (745 MPa). This means an unnotched, dislocation-free single wire

can sustain a bending stress up to 52 ksi (358 MPa) without exceeding its

endurance limit. In the examples provided in Chapter 5, we found that the
maximum bending stress in a cable corresponding to a wind velocity as high

as 52 mph (83 km/hr) is about 2.6 ksi (17.9 MPa). Even if we assume that the
ends of the particular cable in question is 20 times less stiff, no fatigue
crack will be initiated in an otherwise fault-free wire. Thus, according to
classical fracture mechanics, the fatigue crack in a wire, does not initiate

below 107 cycles of load applications.

It is an accepted fact that the fatigue life of a high strength steel
specimen is largely dominated by its initiation life, as may be evidenced by
the order of magnitude comparisons between fatigue initiation life and
fatigue propagation life. The fatigue crack propagation curves obtained in
Chapter 6 demonstrate that, even at lower ranges of stress fluctuations, the
crack-initiation life is at least ten times larger than the crack-propagation
life. This indicates that crack-initiation life constitutes more than 90

percent of the total fatigue life.

The computation of the fatigue propagation life of a single wire has been
based on empirical crack propagation law for high strength martensitic steel.

In a strict sense, the law has not been verified for steels having ultimate
tensile strength higher than 212 ksi (1462 MPa), nor for material which was
cold-drawn extensively. Fortunately, for high-strength wires we have just

109



indicated that the propagation life is only a small fraction of the total life.
It is hoped that approximation of the fatigue propagation life will not
materially affect the total life of a wire.

Finally, in this report we have attempted to correlate the fatigue life
of a wire to a cable in terms of a simplistic approach. In this approach,
the cable failure is imminent when the effective stress in the unbroken wires

in the cable exceeds ultimate tensile strength. For Pasco-Kennewick Group I

cable (283 wires of 0.25 in. [6 mm] diameter), this means approximately'
20 percent of the wires can suffer fatigue failure before cable replacement
becomes necessary. This should in no way be construed to mean that the fatigue
life of Pasco-Kennewick Group I cable is 20 times that of the fatigue life of a
constituent wire. It has already been stated that the fatigue life of a cable
should be lower than ~at of a wire. We have offered in Chapter 6 a substantive
explanation for this apparent paradox. Within the scope of this contract, it
has not been possible to derive a rational relationship between fatigue life of
wires and cables by simple extension of analytical formalism.

Summarizing pertinent .results, we note that the CHI ASSOCIATES, INC.ls
investigation on the analytical formulation of the fatigue behavior of highway
bridge cables under wind induced vibration, as well as the content of the report,
may be used by the designers of cable-stayed and suspension bridges in the
following manner:

1. Formulations presented in the analysis of the dynamic response
of bridge cables offer a method to compute natural frequency,
critical wind velocity, deflection and bending stress.

2. Formulations presented in the fatigue analysis of bridge wires
and cables offer some estimate of the initiation, propagation,
and total fatigue life of a wire, and provide some guidelines
for the determination of the fatigue life of a cable.

7.2 Concluding Remarks

In the foregoing chapters of this report, we have presented a simplified
analytical formulation of the fatigue behavior of bridge wires and cables under
wind-induced vibration. It is our understanding, as derived from various
discussions with the researchers and experts in the field of structural mechanics,
that such a study is the first of its kind. While the results from the study

110



are not in every respect complete, it is our 0plnlon that the study provides
some guidelines and motivation for further research on this subject. We
shall outline in Chapter 8 a few recommended research programs designed to
bring about a more complete understanding of the fatigue behavior of cables
and wires.

We note here that the scope of the present investigation, as well as the
content of the report, is basically analytical in nature. We have simplified
the analysis to the extent that, we believe, is useful to design engineers.
For example, within the framework of the assumptions made in the analysis,
our results provide bridge designers with a method by which they can compute
deflections and stresses in cables. Further, it provides bridge engineers
with an estimate of the fatigue life of wires and cables. This knowledge is
important from the standpoint of reliability and maintainability. However,
we do not wish to suggest that figures, charts and tables derived in this
report should be used without discretion. In fact, the bridge designer must
first determine if, in a particular cable design, all assumptions and criteria
used in the present analytical development can be justifiably incorporated.

In conclusion, WP state that much work, both analytical and experimental,
is still needed for a complete understanding of the subject. Only then it will
be possible to provide bridge designers with rigorous tools to carry out
fatigue designs of stay cables.
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CHAPTER 8
RECOMMENDED FUTURE RESEARCH

A more complete understanding of the fatigue behavior of bridge cables

and wires requires an extensive amount of additional research in several
areas. We shall first enumerate these research areas and then outline some

recommended research programs in each of these areas.

1. Fatigue initiation in a single wire.

2. Fatigue behavior of wire under variable amplitude and random
loading.

3. Correlation between wire fatigue and cable fatigue.

4~ Fracture toughness of wire materials.

5. Environmental effects on fatigue life of wires.

6. Fatigue testing of wires and cables.

Fatigue Initiation in a Single Wire

Wires used in bridge cables are made of high strength steel having
martensitic structure. During constant amplitude cyclic loading, a wire will
undergo strain-softening, thereby producing dislocation slips. The resulting
dislocation pile-ups will form microvoid. It is believed that microvoid

coalescence is the mechanism which initiates ri fatigue crack. However, from the
standpoint of design engineering and application, the above metallurgical
explanation of a possible fatigue crack initiation mechanism in a single wire
is far from being sufficient for understanding the fatigue behavior.

To the best knowledge of the authors of this report, there is no quantita­
tive figure at this point to indicate what should be termed crack initiation
in a 0.25 in. (6.35 mm) diameter single wire. This lack of knowledge is
largely due to the extreme difficulty of observing microstructural changes
due to the fatigwe process in a high-strength martensitic steel. In this

context, it should be noted that some efforts in the past have been undertaken
by Southwest Research Institute to develop an acoustic device for detecting
fatigue crack. The adoption of such a device for the detection of fatigue
crack initiation in a thin wire deserves careful investigation.
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A problem associated with practical engineering interests is concerned
with determining the fatigue initiation life of a thin wire. Once again,
there is at this point no quantitative figure to indicate exactly what
fraction of the total life is due to initiation. However, it can be ascer­
tained that once a crack is sizeable in a wire specimen. hardly any time
will elapse before the wire breaks. Therefore, for all practical purposes,
a visible crack in a thin wire means the termination of wire life. At the

. same time, the long service life of a wire under commonly occurring service
conditions is indicative of its high resistance to fatigue.

The above remarks are sufficient to establish the importance of further
research into the accurate prediction of fatigue initiation life. In this

report, we have outlined two possible methods to determine initiation life.

The first of these methods relates the fatigue initiation life in a single
wire to the applied load or load fluctuation, material properties and strain­
hardening exponent. The relationship can be derived semi-empirically using
experimental results. We, therefore, recommend that some fatigue crack
initiation tests, similar to the one carried out by Barsom for HY-130 steel,
be performed.

The second method to determine initiation life is also semi-empirical and
is based on experimental results relating the initiation life to the notch
radius and notch toughness factor. In the case of a thin wire, it is, however,
difficult to conceive an experiment with notched specimen, particularly since
a notched wire is likely to exhibit a rapid fatigue failure which is not
indicative of its initiation life. We, therefore, consider that some research

effort be expended to develop a meaningful experiQent along this line.

Fatigue Behavior of Wire Under Variable Amplitude and Random Loading

Bridge cables are subjected to two major loading conditions: (1) impact
or dynamic effects due to live load; and (2) wind loads. The live load has
variable amplitude and is often random in nature while wind loads are almost
always random. It is, therefore, reasonable that the fatigue behavior of wire
be studied under the conditions of variable amplitude and random loading.
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Within the scope of the present contract, we have studied the fatigue
behavior of wires and cables under wind loads considering the latter as
having variable amplitude. We have also presented some rudimentary ideas
in the report which accounts for the random nature of the wind load. Unlike
the conventional root mean square analysis, our approach considered a reli­
ability type analysis in which the fatigue damage of a wire was expressed in
terms of the interference of two probability distributions, namely, those of
strength and applied stress. This latter approach is more rational, since
it not only incorporates the random nature of wind loads, but also considers
random response of material. The approach is certainly more promising, and
it is strongly recommended that further analytical work be pursued in this
area to obtain a better understanding of the fatigue behavior.

Correlation Between Wire Fatigue and Cable Fatigue

Reemsnyder has done some experimental work on both wire and cable (strand)
fatigue and has concluded that there is no apparent correlation between the
two corresponding fatigue lives. Fisher and Viest have also done some experi­
ments on the fatigue lives of wires and strands, but have not made any attempt
to correlate results. Reemsnyder's experimental data were far too sparse and
showed a wide scatter. Besides, it is not clear just what methods of fatigue
testing were used for wires and ropes and whether the experiments were con­
sistently reproducible. Therefore, the conclusion reached by Reemsnyder is
not definitive and this area of research requires further consideration.

We recommend an analytical approach for the correlation study between wire
fatigue and cable fatigue. The approach is based on the consideration that when
a single wire in a cable fails by fatigue, a gradual load transfer mechanism
takes place. The physical model is, therefore, one which reflects the connec­
tion between the applied stress distribution in a single wire to that in the
cable. Taking into account that the strength distribution in each wire is
identical, the approach leads to the relationship between the fatigue life of
a cable and that of a wire.

As discussed earlier, the fatigue process in a single wire due to wind
loads is random in nature. The same is true for any wire in a cable. In
general, one can assume that the fatigue behavior of each wire is statistically
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independent. However, it is conceivable that when the wires form a cable,
the gradual load transfer mechanism imposes a conditionality on subsequent
wire failures based on how and when the first wire fails. This type of
rationalization of the fatigue process in a cable gives rise to a stochastic

model which can be readily incorporated in the above analytical approach.

Parallel to the analytical study of correlation between wire fatigue
and cable fatigue, it is highly recommended that extensive, but carefully
designed experiments be performed to generate sufficiently large sets of
fatigue data for single wires and cables. In addition to providing a reli­
able data base for design engineers, such an effort will be useful in
verifying the analytical models for cable fatigue.

Fracture Toughness of Wire Materials

The conventional fracture mechanics approach to determine the fracture

toughness under static loading is to follow the KIC-test method (ASTM E399-74)

developed by the American Society for the Testing of Materials (ref. ASTM STP-463).
The test method has stringent requirements on specimen sizes to insure the
accurate reproducibility of test results. For this reason, the application of
the method to structures like thin wires and cables has not been successful.
On the other hand, for fracture and fatigue analysis, it is essential to know
the value of KIC either experimentally or analytically. Therefore, this area
constitutes another forefront of research.

The analytical method of determining KIC entails the derivation of an
expression for the stress intensity factor KI . In the present report, Kr
for a single wire was approximated by several expressions. One expression
is a direct extension of the original analytical work by Folias for circum­
ferential cracks on a hollow cylinder to the case of a solid cylinder. The
analytical basis of such extension was not investigated within the scope of
the present contract. It is, therefore, recommended to pursue this

i nvesti gati on.

Another approximate expressi on for ') consi dered in thi s report is i nvol ved
with the finite element analysis of circumferential crack in a solid cylinder.
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The original work was due to Hilton and Sih and a numerical solution of axi­
symmetric crack problems in a solid cylinder with a circumferential edge
crack was given for a crack length to specimen radius ratio of 0.4 and 0.5.

It is recommended that this type of finite element analysis for different

crack sizes and geometries be pursued.

The analytical expression for stress intensity factor will directly lead

to the determination of fracture toughness once the maximum design load is

known and the critical crack length is found experimentally or otherwise.

Environmental Effects on Fatigue Life of Wires

In general, fracture toughness of high yield strength (above 140 ksi

[965 t1PaJ) steels is not very sensitive to a change in temperature. However,

if a particular bridge site experiences a severe seasonal temperature fluctua­

tion, cables and wires will undergo a thermal stress reversal in addition to

stress reversals due to mechanical and wind loading. The magnitude of thermal

stress fluctuation may be significant to cause a reduction in the fatigue life.

Corrosion fatigue is another area which requires some attention. Corro­

sion may not be a severe problem for cable-stayed bridges in the United States
primarily because stayed cables are jacketed with PVC cylinders. On the other

hand, several suspension type cable bridges have bare cables and some have

zinc-coated and galvanized cables. During the lifetime of these cables, cor­
rosive environments affect their fatigue behavior considerably. We, therefore,

recommend to look into the problem of environmental effects on fatigue life of

wires.

Fatigue Testing of Wires and Cables

An examination of a specimen failed by fatigue generally reveals some

qualitative information. For example, if the fracture surface of a specimen

is flat, it indicates the absence of an appreciable amount of gross plastic
deformation during service life. The flatness of the fracture surface can be

ascertained by naked eyes, optical microscopy or electron microscopy depend­
ing on specimen and crack size and scale of measurements. In some cases, it
may even be possible to obtain a quantitative estimate of the fatigue life
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based on an analysis of the characteristic markings on the fracture surface

called the "striation lines." However, this does not give a complete under­
standing of the quantitative aspects of fatigue behavior of a structure.

It is still essential to carry out some form of fatigue testing in conjunc­

tion with empirical or analytical work described above.

Over the years, a number of fatigue testing has been developed in the
laboratory scale. Those tests can be classified broadly in three categories:

constant stress-amplitude testing, constant strain-amplitude testing, and
constant stress intensity factor testing. At present, most of the testing
methods are of the first type.

We have already noted that fracture and fatigue experiments with single

wires are too few for the purpose of any meaningful analysis. The lack of

extensive experimentation is understandable. The first and foremost difficulty

in performing a single wire fatigue test is to design a test rig with allowable

load range while insuring the constant stress-amplitude be maintained.
Secondly, for a tension-compression type axial fatigue test, it is difficult
to design a test rig so that the grips at wire ends do not produce undesirable
mechanical notches. The experiments of Fisher and Viest with single wires
indicate a significant number of wire failure at the grouts and it is suspected

this, in part, is due to mechanical notches.

Even when a proper test set-up is designed, it is not an easy task to

devi se an effici ent method of crack measurements. Consi deri ng all these, it
is strongly recommended to expend some research effort into an extensive but
careful experimental investigation of wire fatigue life. Some experiments in

this area are suggested below.

1. Crack Growth Measurement in a Single Wire
This testing program will allow the measurement of crack growth in a

single wire notched specimen under the action of repeated tensile loading.

The major equipment for this testing is an MTS machine with specially

designed stress rig similar to the one shown in Figure 51. Tne specimen is
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fixed between fixtures E and 0 by means of sockets. Fixture 0 is fixed, and

fixture E moves up and down along \'Jith block G due to the reciprocal motion

produced by the rotation of cam K. The reciprocal motion induces zero-to­

tension loading in the specimen. The specimen must be sufficiently long to

insure that the premature failure Goes not occur due to severe stress concen-

tration induced by mechanical notches at the grip or by imperfections along

the length.

changes

cycles.

For the measurement of crack growth under fatigue loading, the

specimen may be connected to a potentiometer circuit as shown in Figure 52.

A plotter is provided in parallel to the variable resistance R to plot theo
of voltage across Ro as a function of the number of fatigue loading

Ro may be calibrated by an ammeter.

When the specimen is cracked or when the crack length is increased, the

net cross-section area of the specimen will decrease and hence, Rs will

increase. Any change in Rs will change the value of current~ I in the circuit.
Therefore, the potential difference across R will change. If a is theo .
crack length and ER is the potential difference across Ro' then it is

o
evident that:

da
dE = f (R , R h' R , r )

R s s 0 0
o

(66)

the function f
can be found.

also possible,

between crack length and the number

schematically in Figure 54.

the one in Figure 52,

measurement of ER ' a
o

to a is shown in Figure 53. It'isA typical curve relating ERo
at this stage, to determine a relationship
of cycles of load application, N, as shown

For a simple potentiometer circuit such as

can be easily determined. Hence, from the

For better accuracy of experimental results, the basic test program can

be modified in various ways. An air cylinder can be used with calibrated

gauge to replace the cam-roller mechanical combination. This will not only
add accuracy to the tensile stress measurement but also provide the system

with a variable loading mechanism. The latter is achieved by changing the

air flow to the air cylinder. Similarly, a fiber optic can be used to replace

the potentiometer circuit. The optical signals from fiber optic can be
translated through photo cells to electrical signals which can then be

displayed in a CRT. Finally, acoustic transducer (ultrasonic) can be used

to replace the potentiometer circuit. During the crack propagation, the
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ultrasonic transducer will attenuate resulting in acoustic emission. The

two latter modifications will give better accuracy in crack growth

measurements.

2. Three-Points Bend Test of a Single Wire

Wires used for manufacturing cables and strands are usually 0.25-0.375 in.

(6-10 mm) diameter and cold drawn. The 1 conventiona1 ASTM three-points bend

test is not suitable for these wires. Fisher and Viest suggested elsewhere
another form of three-points bend test which is only applicable for reinforcing

wires embedded in PCC slabs. To determine the bending fatigue characteristics

of a single wire, it is necessary to subject the wire alone to reverse bending.

Reemsnyder designed a test rig with a rotating buckled strut fitted to it to
allow completely reverse bending with very small axial load. However, this

test rig seems to give torsional rotation in addition to reverse bending.

In order to avoid torsional rotation, the reverse bending test of Reemsnyder
can be modified in the following manner.

First, the specimen will be fixed between two fixtures similar to 0 and E

of Figure 51. A small tension will be applied at both ends of the specimen to

make it straight. It is understood that the specimen for bend test is long

enough and is notched at mid1ength. A small segment of the specimen covering
both sides of the notch is embedded in an epoxy mat as shown in Figure 55. A
sinusoidal load can be applied across the epoxy resin mat through the use of
a cam-roller mechanical combination operated by step motors. Once again, this

can be achieved by a specially designed stress rig.

3. Fatigue Testing of a Cable

The experimental set-up for fatigue testing of a cable can be fairly

involved depending on the test program. For instance, the bending fatigue test

of a cable by a method similar to the one for single wires will require the
provlslon of an equipment to. create sinusoidal motion in a cable of diameter

4 in. (10 cm) or more. A simple tensile fatigue testing of cable is, however,

feasible using a universal testing machine and an acoustic emission console
including audio frequency spectrometer and tape recorder.
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APPENDIX A

DYNAMICS OF STAY CABLES

I. Free Vibration Analysis of Stay Cables

The governing dHferential equation of the motion of a stay cable has

the following general form (see equation (9 ) also):

a2
~ a 2 a2

pA W- + Cat + axz (EI~ - T) '<;: F(x,t) (A-l)

where all terms in the above equation have been explained previously in
Chapter 4.

The natural frequencies and mode shapes of a stay cable are obtained from

the complementary solution of equation (A-l). The following assumptions are
made in solving the complementary part of equation (A-l).

a) The natural frequencies of a stay cable are widely separated
from one another;

b) The damping is small and hence, can be neglected;
c) The stay cable has fixed ends; and finally,

d) The stiffness of the cable is constant along its axis and the axial
force, T, is independent of time.

Under the above assumptions, the equation of free vibration of a stay cable
is gi ven by:

EI H - T~ + pA ~t2~ = aax ax a
(A-2)

By a separation of variable technique, and considering a solution of equation
(A-2) of the form,

y(x,t) = y(x)e iwt (A-3)

the small amplitude, free, transverse vibration of a cable can be written as

foll ows:
dlty d2yEI T - pAw 2y = 0CfX'l - crxz

Equation (A-4) is nondimensionalized by setting:
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thus yielding:

y - y- L
_ x

, X - [ (A-5)

- QY = 0 (A-6)

where
_ TL 2 _

P - II - nondimensional force

_ pAw 2
Q -~ = nondimensional frequency

(A-7)

The most general solution of equation (A-6) is given by:

Y(x) =; ~rT (X) =
n=l

00

2:
n=l

A sino, X+B coso. X+C sinhB X+D cos.hB Xn n n n n n n n
(A-8)

where A , B , C , and 0 are coefficients to be determined from the boundaryn n n n
conditions, and where a and B are given by the following expressions:

. n n

an 2 = +(-1 + Jl + ~~- ) (A-g)

Sn'=+(l+Jl +~)
The boundary conditions are those corresponding to the fixed ends and these are:

, diP
iP = 0 _n = 0 at X = 0n dX

diP (A - 10)
iP = 0

n _
0 at X = 1n , <IX -

By applying the four boundary conditions in equation (A-10) to the expres­
sion for iPn(X) (equation A-B), one obtains a set of four homogeneous equations
in A , B , C , and D. For nontrivial solution, the determinant of the coefficientn n n n
matrix must be zero and this yields:

cQshB cOSo,
n n

(A-ll )

Equation (A-ll) is the most general frequency equation for small amplitude

transverse vibration of a stay cable. The solution of this equation satisfying
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expressions in (A-g) gives
more convenient to express
Z2 where Z2 = 4Q/P 2 as has

the natural frequency, w. In practice, it is
n

the relationship between P and Q, or between P and
been shown in Figures 10 through 14.

The solution of the transcendental equation (A-ll) can be substituted
back into expression (A-B), and the coefficients A , B , C , and D can ben n n n
determined by usual eigenvalue analysis procedure. In particular, choosing
A = 1 arbitrarily and assuming B = -D , one finds that:

n n n

An =
a sinhS - Sn sina

Bn = n n n
Sn (cosan - cosh Sn)

Cn = a (A-12)_. n

~

Dn =
Sn si nan - an$inhBn

Sn (Cosan - coshB )n

The term, ~n' more commonly called the nth mode shape, can now be given

s,i nhS X
n

by:
~ = sina X +

n n

S sina - CI. sinhS
n n n n

Sn (cosCl.n - coshSn)

an
Bn

(coshS X-cosa X)
n n

(A-l3)

II. Response of Cables to Harmonic Loading

Consider again the governing differential equation of motion given by
equation (A-l). The solution of (A-l) is sought in the following form:

y(x,t) = K ¢n(x)wn(t) (A-14)

where ¢n(x) is the nth natural mode of the cable, and ~n(t) is the generalized

coordinate of the cable. Substituting (A-14) into (A-l), one obtains:

pA E ¢~x)~n(t) + EIE¢~V(X)~ (t)
n n n

•
-T E¢~(X)Wn(t) + c E¢n(X)~n(t) = F(t)

n .: n
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where it is assumed that F(x,t) is simply a harmonic function, F(t), of time.

(A-16)

An important property of the normal modes, ¢n(x), is their orthogonality
with respect to mass density. This gives:

L
f pA¢ (x)¢ (x)dx = 0mno m n .

where 0 is Kronecker delta. The latter is equal to 1 when m=n, and is equalmn
to zero when m ; n.

It is also known that ¢ (x) is the complementary solution of (A-l) and
n

hence,

EIL:¢IIJ(x) - T~¢II (x) - pAEw 2 ¢ (x) = 0
n n n n n n n

(A-l7)

The above two equations, (A-16) and (A-17), can be utilized to reduce equation
(A-15) to a set of second order uncoupled differential equations of the form:

T (t)
¢n(t) + __c_ ¢n(t) + w 2 ¢ (t) = n (A-18)

vA n n ~~n

n = 1, 2, 3,

where
T (t) = fL F(t)¢ (x)dx
non

(A-19)

is the generalized force vector, and

M = fL pA¢2(X) dx
non

is the generalized mass.

(A-20)

(A-2l)

(A-22)

sinhS Ln

o
+_n_

Sn

Considering that the harmonic function, F(t), has the form:
1

F(t) = Focoswst = -2- PadV~rCLcoswst

where all terms in the expression have been explained in Chapter 4 of the text,
the expression for Tn(t) and Mn are given by:

l-cosa L 0
T (t) = F ( n __n_ sinanL
n 0 an an

C
+ +coshS L -1) Cosw t

~n n s

= T casw ton s
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\
L 2Dn

Mn := pA -2 (1+2Dn2 -Cn
2

) + -,'- (a +C S )
a 2+0 2 n n n

n IJn
1: ,2Cn On 2_1

+ D (- --- + ---- + ( Sin2a L
h 2~ 4Sn 4an n

Dn (Drf + G~ )+ -2 cos2a L +--4 sinh2R Lan 11 Bn 'il

2DnCn
+ 4S

Il
c.osh2SnL

(2D S -2DC a ). sinO L sina L+ n n n n n, IJn n
a 2 + S 2

I'l n

(-2D a -2D C S )
+ ~ n n n lL.Q...~, coshS L COSa Ln n

a 2 + S 2
n n

+ (-2D 2

n 8n-2Cncxn)

a 2 +8 2
n n

(A-23)

Returning to equation (A-18), we assume that the damping coefficient is
proportional to mass density, and is given by:

C := 2s w pA (A-24)
n n

Equation (A-18) can then be rewritten as:

T
lJJ (t) + 2s w lJJn(t) + w~ (t) := t~n(t) (A-25)

n n n n n n

The steady state solution of equation (A-25) is obtained as follows:

lJJn(t) := Gln sinwt + G2n coswt

where the coefficients Gln and G2n are given by:

2s w w T'_ n n s on
Gln - ~(w 2_ W 2)2 + (2s w w )2 J--

nn s n n s
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The general solution of the governing differential equation can now be
written as:

y(x,t) = Ly (x,t) = F L¢ (x) [G l sinw t + G2 cosw t]
n nOn n n s n s

The solution can be nondimensionalized by setting
= Yn(x,t) ,X

n
= LYn"(x,t)

Yn L

The expressions for Y and X obtained in this manner are given in terms ofn n
nondimensional force, P, and nondimensional frequency, Q, or more
appropriately, in terms of Z2 as follows:

(A-28)

(A-29)

Yn =
CL f(P,Z) (A-30)2nSt
C

=
..L g(p,Z) (A-31)Xn 2nSt

1T+/1+Z2 [1- 1+/T+Z2 COSa _Z sinanJ
( ) 2/1 +Z 2 n 2 rr:t'Z 2f P, Z = --__--=:.:.-:--=-- ~y~lorL=--

!=T+IT+"[Z" [/P (1+~) +1 3 1+fi+'Z"2"
2 ~

and

(A-32)

2(1 +Z 2) - [1 +Z 2+IT+Z2]Cosa -zll +Z 2Sina
g(P ,Z) = ---'-'-n ..:..;,.n_

-3-1T+Z2+2/1+Z21P(1+~)
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APPENDIX B

NATURAL FREQUENCIES OF PASCO-KENNEWICK AND

LULING BRIDGE CABLES
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Figure B-1. Model of Intercity Bridge on Columbia River
in Pasco-Kennewick, Washington.

Description
Overall length - 2503 ft. (763 m)
Main span - 981 ft. (299 m)
Cable-stayed girder length - 1794 ft. (547 m)
Total number of cables - 144

Special Features of Stay-Cables
Number of wires in a cable - 73 (Group IV) to 283 (Group I)
Wire diameter - 0.25 in. (6 mm) BBR type
Cable length - 180 ft. (55 m) to 506 ft. (154 m)
Outer diameter of cable - 6 in. (15 cm)
Wire stress range - 59 ksi (407 MPa) to 108 ksi (745 MPa)
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Pasco-Kennewick Group I Cables

_____ NORMAL FORCE= 800 (kIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 .736171 . 7'21~4:=:6

t'lODE= 2 1·47279 1.45:=:'=.t7
t'lODE= :::: ,-, 21 02:=: .::' 1:::::=:460::.. L...

t'lODE= 4 2.'34'31 2. 91794
t'lODE= c:- .":. 6:::: 136:::: .:. 64743'-' ,_I • ,_I •

t'lODE= E, 4. 4324E, 4. :~:76'31

t10DE= 7 c:- 177::::6 c:- 1 064,_I. ,_I.

t10DE= :::: C' '32':.:3:::: C' :::::35:3 :=:'-' . ,_I.

MODE= ':,::. 6. E,{::::2:3 6. 565:;:7
t'10DE= 1 0 7 ·43416 7. 2'344:=:6
t'lODE= 1 1 ::: .19437 .:. 024:~:4,_, .
t'lODE= 12 ':1 95934 I::, 75::::::::::::'_I. '-' .
MODE= 1':' lj 72'=-'47 I~. 4:=:::::::::1'-' ·
t'lODE= 14 1 o. 5052 1 o. 212:3
t'lODE= 15 11. 2::::E,'3 1 o. 9423
t'lODE= 16 12. 0749 11·671::-;
MODE= 17 12. ::::'::.'37 12. 4013
t10DE= 1':' 1:;:.6717 13. 1307'-'
t'lODE= 19 14. 4:312 1 :::: _.::::6 02
t10DE= 20 15. 2 1386 14. 5::::97
t10DE= 21 16. 1242 15. 3192
MODE= 22 16. '~5:35 16. 04:37
t'lODE= .:":. 1 7 • :3017 16. '771~'='1-,_, f f '_'i.-

t'lODE= 24 1::::. 6543 17.5077
MODE= .-.1: 1'3. 51'S5 1:::: • 2:371'::"_,

t'lODE= 26 20. ::::::::::::7 1::::. '3E.':I'::,
t10DE= .-.-:, 21 2712 1 '4 6961c. .. .
NODE= 2:::: : ..:' 1643 20. 4256L..L...

t10DE= 2'3 2:::: • OE.:::::3 21 · 1551
t'lODE= :~:o .::.':' '3:3:=:E. 21 :::::346L.,.._'. ·
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_____ NORMAL FORCE= 900 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S)

t10DE= 1
t-1DDE= 2
t'1DIIE= :~:

t-1DDE= 4
t'10DE= 5
t'1DDE= 6
NODE= 7
t-1DDE= :3
NODE= 9
t-1DDE= 10
t-1DDE= 11
t'1DDE= 12
t-1DDE= 1:3
t'1DDE= 14
t'1DDE= 15
t-1DDE= 16
t-1DIIE= 17
t'1DDE= 1::::
t-1DDE= 19
t10DE= 20
t'1DDE= 21
t'1DDE= 22
t-1DDE= 2:3
t'1DDE= 24
t-1DDE= 25
t'1DDE= 26
t10DE= 27
t'1DDE= 2B
t'1DDE= 29
t10DE= :3 0

.7:30419

2.:34291

:::. 91 0::::::::
4.69702
5.4::::614

?07:;:45
7. :::7244
:::. E,755::::
9.4::::::311
10.2956
11.11:3:3
11.9::::67
12. lE.E,!
13.6019
14.4445
15.2942
16.1514
17.0164

1::::.7714
I

19.662

21. 4711
22. :~:'~02

23.::::194
24. 251~1
25. 2 o'::a 5

~-""-I-:"-I~. ," .. .::.,. ..:' ..
1.54747
2.32121
3.09495

4.64242
5.41616

6.96:364

B.51111

10. 05:::::6
1 I). ::::::::2::::
11.6061

13.15:35

14.701
15.4747
16.24:::5
17.0222
17. 7 1

::-':;:.

1:::. 5t:,'37
19.3434
20.1172
20. :::::909
21.6646

2~:::. 2121
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_____ NORMAL FORCE= 1000 n::: IPS> _

FREQ.DF BEAM (CYCLE.P.S) FREQ.DF STRING (CYCLE.P.S)

t-1ODE= 1 .::::22262 . :3155::::9
t-1ODE= 2 1.64492 1.631 1:3
t-1ODE= .:. .=. 4E,:::::3E. ,-, 44677'-' ..... c. •

t-1ODE= 4 ::. 2'321?'~
.:. 2 r::,2:;:t·'-' . ,_I •

t-1ODE= t:' 4. 11919 4. 077';'5'-'
t'1ODE= 6 4. 94735 4. f:'3:~:5:3

t-1ODE= ~ t:' ~"''''''1-\~ t:' 70912,. ,_I. I' ,. I' c· ,. '-' .
t'1ODE= :::: 6. 61 1 1,-. t.:.• 52471c.

t-1ODE= '::- ? 44751 '7 340:~:. I •

t-1ODE= 1 0 •:1
2:=~74 -=. 155:=:'~'-' . '-' .

r'1ODE= 1 1 9. 131 1-::- -:. 9714:::::'-' '-' .
t'1ODE= 1'-- 9. '~7'9'22 '3 7::::707c. .
t-1ODE= 1'::- 1 o. :::::;: 1'3 1 O. E.027'-'
t-1ODE= 14 1 1.-::,::::'36 1 1.41 :32
t-1ODE= 15 12. 5527 12. 2:~::~::::

t-1ODE= 16 L:: • 4215 1:::: • 04-~4
t-1ODE= 17 14. 21~E,:::: 1:::: • :::tS5
t-1ODE= 1 ,=, 15. 1777 14. 6:::::06'--
t-1ODE= 1'3 16. OE,5:::: 15. 4'362
t-1ODE= 20 16. 961 1 16. 31 1--'-;:.

t10DE= 21 17. ::::6:;::::: 17. 1274
t-1ODE= 22 1::::. 7744 17. '343
t10DE= .: ..:' 19 • 69:~:1 1:=:. 75::::5L,._,

t10DE= 24 20. 6202 19. 5741
t'1ODE= '-IE:' ,21 5562 20. :3:::'317c.,_' ---- .
t-1ODE= 2':. .:":. 5012 21 2053......... .
t10DE= 27 -:.':' 4556 .:..:' 0209L..-'_' • .........
t10DE= 2::: 24. 4197 .:,.:. :::::365.........
t10DE= 2'3 ,-,C" :;:'3:::::::: .:.',,:. 6521c.._' • L..-'_' •

t'1ODE= 30 2f.• :~:7:=:1 24. 4677
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_____ NORMAL FORCE= 1100 (I{ IPS> _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S)

~lODE= 1 .:=:E.20t,5 .:::55::::':;'7
t10DE= 2 1.72451 1.71 079
t10DE= :::: .:. C"-I~""':' 2.5E.61'jL-. "-,.:,,"( ,.
~lODE= 4 -:' 45202 ,-, 42159"_I • .:,..
MODE= <= 4. :~:17:=::::: 4. 2769'=.t'-'
MODE= 6 <= 1:=:552 <= 1::::2::::'30_1. "_I.

t10DE=
...,.

E.• 05545 <= '::-:377:::,. 0_1.

t'lODE= :3 t .. '~2E: E.• ::::431:3
t'lODE= 9 "7 :::: O:~:5:3 ? tS '=-':=: 5:3I • .
t'lODE= 1 0 .=. ';:1:=:24 ::::.55:~:'371_, •

t'lODE= 11 I~. 5649':;' '3. 40'3:~:7

NODE= 12 1 o. 4516 1 o. 264::::
t10DE= 1'-:;' 11 :;:427 11 1202'-' . ·HODE= 14 12. 2:3:=:E. 11· ':;'756
t10DE= 15 13. 1 :~:'=--E, 12. ::::31
t'lODE= 16 14. 0461 13. 6:364
t'lODE= 17 14. 95::::4 14. 541::::
t'lODE= 1-=- 15. :=:7E.:=: 15. :31~72'-'
MODE= 19 16. :=:01 c: 16.2526
t10DE= 20 17. 7:::::;:6 17. 1 079
t10DE= 21 1:::. E.726 17. '3&E.:::::3
t'lODE= '-,.-, 1'4 619 1::::. :31 :=:7c.c. -' .
t10DE= 2:~: 20. c""",,:,.-.o-. 19.6741---- "_II ·':'C

t'lODE= 24 21 .5:;:5E. 20. 52'35
t10DE= '-.C'" .:..:' 5064 21 :3::::49C,._I L-L-. ·t10DE= 26 .':"":- 4:=:5:=: .:,.:. 2403---- L-."_' • L-L-.

~lODE= 27 24. 4744 .:..:. 0957L.."_'.

t'lODE= 2:=: '-Ie:" 4722 .:.':. ':;'51 1C·_I. L-"_' •

MODE= 2'3 2tS. 47'36 24. 80E.5
MODE= ::::0 '-I~ 4969 .-,C" 6619c ... c,_'.

142



_____ NORMAL FORCE= 1200

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 .900096 .:=:'j34:~:4

~lODE=
.:. 1 ::::0055 1 7:3E,:=:?L- · .

t'lODE= .-, .-, 7017:=: .-, 6::::03..;, e.. e. •
t'lODE= 4 .:. E,O:~:r::t::: .:. 57:374,_I • '-' .
t'lODE= 0= 4. 50767 4. 46717'-'
~lODE= E, 0=

41:~:15
0=

:~:6 061,_1. '-' .
t'lODE= '7 E.• :~:20?7 6. 25404I

t'lODE= :=: 7 2:3091 .., 14747· .. .
t'1DDE= '~ .=. 143::::9 ,-, 04091I_I • .=..
t'lODE= 1 0 '3. 0600:3 c' 934:~:4,_, .
t'lODE= 11 13 · '~?';.t:=:2 '3. ::::277::::
t'lODE= 12 1o. 1:;'0::::.5 1 o. 7212
t'lODE= 1'-::' 11 ::::314 11 .6146'-' .
t'lODE= 14 12. 76::=:::::· 12. 5 Ot: 1
t'lODE= 15 13. 7012 13. 4015
t10DE= 16 14. tS4:~:':'" 14. 2949
NODE= 17 15. 5921 15. 1:3:34
t10DE= 1 ,=, 16. 5463 16. 0:31::::'-'

t'lODE= 19 17. 50tS7 1t .. '375:~:

t'lODE= 21) 1:=:. 47:~:E, 17. ::::E.:=:7
t'lODE= 21 1<::1 4475 1:=:. 7E.21-' .
t'lODE= 22 20. 42::::5 19. .- ~c:-.-t;:•._,._,t;)
t'lODE= .-,,-. 21 417 20. 549c·.:· .
t10DE= 24 .-.,-. 4134 21 4424.::.c.. .
t'lODE= '-Ie' .=..-:' 4178 22. :3::::5':"C,._1 L-,_' •

NODE= 2E. 24. 4306 2::::.22'3::::
t10DE= 27 '-,1::" 4521 24. 1,-,,-,..,

C,.._I. c.c. I"

t'lODE= 2:::: 2E'a 4::::26 .-,e' 0162c.._
'
•

t'lODE= 21~ 27.5224 '-.E:" 9096c.._' •
t'lODE= 30 2::::.5717 2E'a :::0:3
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_____ NORMAL FORCE= 1300 (~:: I PS:> _~ _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S>

t'1DDE= 1
t'1DDE= 2
NODE= .:::
t'1DDE= 4
t10DE= 5
t'1DDE= 6
t10DE= 7
t'1DDE= :3
t10DE= 9
t'1DDE= 10
NODE= 11
t'1DDE= 12
t'1DDE= 13
t'1DDE= 14
t'1DDE= 15
t'10DE= 16
t'1DDE= 17
t'1DDE= 1::::
t'1DDE= 19
t'1DDE= 20
t10DE= 21
t'1DDE= 22
t'1DDE= 23
MODE= 24
t1D[IE= 25
t'1DDE= 26
t'1DDE= 27
t10DE= 2::::
NODE= 29
t10DE= 30

---,.-

2.8111
::::.74'::-75
4. E.::::'::-77
5.63151
E.a 575::::2
? .. 5215:3
:3.47049
'::-.4225::::
10. ::::7:3
11 .. ::::::::72
12. :~:005

14.2406
15.21::::1
16.2009

U::.1::::41
19.185
20.1925
21.207
22. 228E.
2::::.2579
24.2949
25. ::::4
2f... :3';'::::5
27.4557
2:=:. 52E.'3
21~. ':.072
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2. ?:31~7'5

::::.719E.6

6.50941

10.2291
11. 159
12 .. 0:=::=:':;'
1:::: .. I) 1 :::::=:
1:3 .. '~4:37
14 II :::;:7::::6
15 .. ::: 0:::':.
16. 7:::::35

1:::;: .. 51~:=::3

20.45::::1
21 .. :::::3:31
22.::::1:::
2::::.247'::-
24.1778
25.1077
26.0376
2tS. '3t,75
27 .. :::'375
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_____ NUHMHL ~UH~~= l~UU

FREQ.OF BEAM (CYCLE.P.S) FREQ.DF STRING (CYCLE.P.S)

t'1DDE= 1 1· 00554 .'3 13::::::::89
t1DDE= 2 .:. 01 14 1 '3 '3778L-. ·
t'1DDE=

,-, ::' 01 791 .:.
'~'3'S67.:;.- '-' - L-.

t1DDE= 4 4. 025::::7 -
'~'355t,-''-' .

t'1DDE= I:" I:" 03412 4. 99445'-' "_I.

t'lODE= t, E•• 0444:::: I:"
99:~::~:4"_I •

t'lODE=
..,. 7 05-=,75 6 • '31'?22:~:.. , ·

t'lODE= 8 ':- 07126 7 991 11I_I. , ·
t'1DDE= '3 9 0:::::::::::3 .:' ':=t'3· '-' .
t1DDE= 1 0 1 o. 1 0:33 9 · '3:::::::::'::-
t'1DDE= 11 11·1314 1o. '3:37:::
t'lODE= 12 12. 15::: 11. '3:::E,7
t'lODE= 1'::' 13. 1:3::::4 12. 13:::5':.'-'
t'lODE= 14 14. .:' .:•.:. '4 1::;;. 9::::45~&-L. ..<

t'lODE= 15 15. 2619 14. '3::::;:::::
t'lODE= 16 16. ::::05'::- 15. '3:::22
t'1DDE= 17 17. ::::54:::: 16. 9:=:1 1
t'1DDE= 1c' 1:=:. 40:::::~: 17 '::-:::'-' I •

t'lODE= 19 lq 4679 1::::. '37:::'3
t1DDE= 20 20. 5334 19. '3778
t'lODE= 21 21 ·6052 20. '37t.7
t'1DDE= 22 .:,.:'

Ef:=::~;4 21 '375';:1L-L-. .
t1DDE= .:,.:' 2:::: • 7E.::::4 ':1':' 97451.-'_' L-L-.

~lODE= 24 .24. :=:604 .:.':' '=-'7::::::::---- L.-"_I.

t'lODE= '-It::" 25. ':'-5'~::: 24. '3722c,_,

t'1DDE= 26 .:'''';' Or=,E.::: '-It::" 971 1L-' · C,_I.

t1DDE= -:-/ 2:::. 1:::: 16 2':._ '37L-I

t1DDE= 2:::: 2 131. 3046 .-,-=, '3':,:::'3c ...
t1DDE= 2'3 30. 4:~:6 .:..:' '3~,7:=:L..'_I.

t'1DDE= ::::(1 :::: 1·5761 2'3. 9667
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_____ NORMAL FORCE= 1600 (K I P:5:) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

MODE= 1 1· O:3~3:3 1· 0316~,
t'1DDE= 2 .-, 0769 .:.

OE,:~:213c. ~.

t'1DDE= :~: ':1 11614 :' 09494,_I • '-' .
t'1DDE= 4 4. 15E,2':;' 4. 12659
t'1DDE= E:" E:" 1':;'77 E:" 15:::24'-' ,_I. ,_1.

t'1DDE= 6 EI. 24065 El. 1::::'=='::::::
t'1DDE= "7 "7 2:::547 "7 2215:~:I I · I ·
t'1DDE= ::: .=. :~:::::245 -:. 25:~: 1:::'-' . ,_, .
t10DE= '~ 9 · :::::::1 131 '3' ·2:::4:::2
t'1DDE= 1 0 1 O. 4::::41 1 O. 3165
t'1DDE= 1 1 1 1·4~::95 1 1.34:31
t10DE= 1.-, 12. 54:::2 12. ::::7 13::::c
t'1DDE= 1.:' 13. 61 05 13. 41 14'-'
t'1DDE= 14 14. E,lE.'3 14. 4431
t'1DDE= 15 15. 747t. 15. 4747
t'1DDE= 16 16. :::22:3 16. 5064
t'lODE= 17 17. '302'3 17. 5.:::::::
t'1DDE= 1,-, 1:3. '~~:::=:2 1:::: • 5E,'36c'
t10DE= 1'3 20. 07:3'3 1'=t 6013
t'1DDE= 20 21 · 175:::: 20. 1:='::::2'3
t10DE= 21· .:.'::- 2777 21 6646~~. .
t'1DDE= 22 .:.',,:. :3:365 .:":. 6962L...._, • ~~.

t'1DDE= .:.':. 24 • 501:3 .:":. 727'3L.,.._,
---~

L...._, •

t'1DDE= 24 '-It::'" 624 24. 75'315c. ,_'.

t'1DDE= '-IIC:' 26. 75:~:2
'-,e:' ('3' 12C'_' C·_I.

t'lODE= 2t. ':-7 ::: ::: '3'31 2E.• :::22:::~I ·
t10DE= .-.""":' 2'3. 0342 .-.-, :::545c. .. c:. ...

t'lODE= 2:::: :~: I). 1:::1'.::.4 ·:·c· ::::::61L-'_I.

t'lODE= 2'~ :~: 1·346:::: 2'3' • '::-17:3
t'1DDE= :30 -:.':. 5156 30. '3494'_'L. •
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Pasco-Kennewick Group I Cables

_____ NORMAL FORCE= 600 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t10DE= 1 .-::' 06447 .::' 03341,_I • ,_I •

t'lDDE= 2 E.w 13124 6. Ot,E.::::2
NODE= .-,

J~ • 20255 I~ • 1 0023..:-
t'lDDE= 4 F' 2:=:07 12. 1:3:~:E,. L...

t'lDDE= c:- 15. :~:t:I:=: 15. 167-I

t'lDDE= 6 1 :=:. 4665 1:=:. 2005
t'lDDE= 7 21 .57:=:7 21 .2:=:31~

t'lDDE= :::: 24. 7067 24. 2E,7:~:

NODE= 9 .-,-, ,-.C"'-'-:' .-.-, 3007Co I' • Cr,_'e. r" Co f" •

t10DE= 1 0 31 . 01::::9 :::: O. 3341
t'lDDE= 11 34. 2074 .-:"-:- :3675,_1._, •

t'lDDE= 1'-' .-,-, 4204 :~:E,. 4009c. ..=' ...

t10DE= 1'-:' 40. E.tS 39. 4::::43'-'
t'lDDE= 14 43. '~2:=:2 4'=' 4677L...

NODE= 15 47. .-.,-.""':- 45. 501 1cc,'

t'lDDE= 16 50. 1::'1::',-,1:" 4'=' 5::::45,_1._11:•._1 I_I •

t'lDDE= 17 c,-. 9247 51 5E.7'j._1.:'- • .
MODE= 18 c:--, 3274 54. 6013._1" •
t10DE= 19 60. 7':.:=:5 c:--, 634::::,_I" •
t10DE= 20 64. 24':;"3 60. 66:=:2
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_____ NORMAL FORCE= 500 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'1OIIE= 1 =, ::::0024 .-, 7691 1L-. c..

t'1OIIE= 2 <:" E.02'31':" <:" 5 :~: :=: 2 :~:,_I. '-' .
t'1O IIE= ::: .:. 41 074 CI 307::::4- I_I • I_I •

t'1ODE= 4 11.22E. 1 1· 07E,5
t'1ODE= <:" 14. 0512 13. ::::456._'
t'1ODE= 6 16. :3:3:=::::: 16. 6147
t'1ODE= ~ 1'~ 7414 19. :3 f: ::: ::::,. ...
NODE= :::: -1'-1 61 12 .:":. 1<:".=,qL:.c. L-L-. ._'L... _'
t'1ODE= '3 '-It:" 5007 24. '322'::"-'.
t'1ODE= 1 0 -:11:) 412:;: '-I~ 691 1LI_'. c.,. ·
t10DE= 11 31 .34:::::;: 3 O. 4603
t'1ODE= 1·-' 34. :=: 1 09 .:.':' 2294c. ,_',_1.

t'1ODE= 1·:' .-.-, 3026 '-,II::" ':;":;&::::5._' ..:' ... ..:' ,-' .
t'1OIIE= 14 40. 3254 .::,.:' 7~,7E,'-"-' .
t'1ODE= 15 4:;: • 3::::16 41 ·5:3t:,7
t'1ODE= 16 46. 47:~:2 44. :~:O5:=:

t10DE= 17 49. 6025 47. 0749
t10DE= 1c' t=".-. 7714 4 q ::::44'-' "-''::' . -" .
t10DE= 19 <:"<:" 9::::19 52. 6132"_'._1.
MODE= 20 5'3' • 2:~:5'=-,

<:"<:"
:~::=:2:~:._"-'.
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_____ NORMAL FORCE= 400 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'1DDE= 1
t'1DDE= 2
t'1DIIE= :~:

t'1DDE= 4
t'lDIIE= 5
t10DE= 6
t'1DDE= 7
t'1DDE= ::::
t'1DDE= '3
t'1DDE= 10
NODE= 11
t'1DDE= 12
t'1DDE= 1 :~:

t'1DDE= 14
t'1DDE= 15
t10DE= 16
t'1DDE= 17
t10DE= 1::::
t10DE= 1 '3
t'1DDE= 20

2.50:::
5. I) 1::::7 13'
7. 5:~:511~

10. 06

15.1457
17.7122
20.2979
22.':'-057

:3 (I. ::::::::E.6
:3:~:. E.07::::

3'3.1564
41 • '3::::::::3
44. ::::617
47.77:::7
50.7415
5:;:. 752
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2.47E.77
4.'35354
7. 430:~:1

'3.9070::::

14.::::606
17.3374
1'3.::::142
22.2'::-0'3'
24.7E.??
27.2445
2':;'.7212

:.::4.674::::
::::7.1515
:;:'31.62:=::3
42.1051
44.5::::1::::
47.05:::6
4'3.5354



_____ NORMAL FORCE= 300 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 .:' 1763 .:. 14495L.. L..

t'lODE= .=. 4. .-,C"'II::',:"C' 4. 2 :::: '3' :=: '31L. .;••_, "_11_' ,_I

MODE= .:. E, • 541 :::7 6. 434::::4'-'
t10DE= 4 .:. 7::::75'3 .:. 57 137:::,_, . '-' .
t'lODE= 5 1 o. 9462 1 o. 7247
t'lODE= t. 13. 170:::: 12. :::6'::-7
t'lODE= ~ 15 • 4147 15. 0146..
t10DE= ::: 17. E.::: 07 17. 1596
t'lODE= 9 19. '::'7':- 19. ::::045_' I Lo-

t'lODE= 1 0 .:..:. 2915 21 4495L.L.. .
t'lODE= 1 1 24. 6421 .:..:. 59441-'_' •

t10DE= 1'-' .-.-, 0266 '-,C'" 7394c. c. .. · ':',_1.

t'lODE= 1'-:' 29. 4477 '-,"""':I ::::::::43'-' c. ...
t'lODE= 14 31 ·90::::1 30. 0292
t'lODE= 15 34. 41 05 .:,.:' 1742'_'L- •

t'lODE= 16 ::::6. '3572 34. 3191
t10DE= 17 ::::9. 5507 36. 4641
t10DE= 1':' 42. 1933 ':11:. 609'-' ._'1_' •

t'lODE= 19 44. ::::::73 40. 754
t'lODE= 20 47. '::.::::4::: 4'::- :::'3:3'::-L..

t'lODE= 21 50. 4379 45. 0439
t'lODE= 22 1::".-. 2'3::::5 47. 1:::::::::,_I.::" •

t10DE= .-.,-. <:' ,- 21:::':, 4 q :~::3:::::::c·.:· ._11::•• -' .
t'lODE= 24 5'3. 1999 51 .47:::7
~lODE=

'-Ie" E.2. 2442 C"-' -=.2::::7C,._, _1.... __ ._1.':, •

t'lODE= 2E. ,- <:' :35:::: <:'<:' 76:::E.1;:•._,. ,_1,_1.

t'lODE= .-,""":1 E.::: • 52:31 <:'~ 9135c. .. '_'I' •

t'lODE= 2:::: 71 ·770::: 60. 05:::5
t'lODE= 2 13 75. 0:327 E,2. 20::::4
t10DE= 30 ",",,:,.-, 4649 64 • 34::::4.. CI_
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_____ NORMAL FORCE= 200 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1
t'lODE= 2
t-lODE= 3
t'lODE= 4
r'10I'E= 5
t'lODE= 6
t'lODE= 7
t'lODE= ::;:
t-lODE= 9
t'lODE= 10
t'lODE= 11
t'lODE= 12
t-lODE= 13
t-lODE= 14
t'lODE= 15
t-lODE= 16
t-lODE= 17
t-lODE= 1::::
t'lODE= 19
t-lODE= 20
t'lODE= 21
t'1DDE= 22
t'lODE= 23
t10DE= 24
t'1DIIE= 25
t'lODE= 26
t-lODE= 27
t'lODE= 2:=:
t10DE= 29
t10DE= 30

1 • 7::::2'312
:~: • 5 E, I~ :::: :~:

5. :~:647

7.17145

10. ::::362
12.7017
14.5943
16.5175
1:=:.474:::
20.4695
22.5049
24.5::::4

31.11:::1
:~::~:. :~:':;'57

:~:5. 7::::56

40.5966
43.1219
45.7131
4:::.3719
51.1002

5t.. 7714
5'3'.7172

69.0117
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1.75134
:~:. 502':.:::
5. 2540:~:

7.005:37

10.50:31
12.2594
14.0107
15.7621
17.5134
19.264:::
21.0161
22. ?E,74
24.51 :::::::
26.2701
2:::.0215
2'3'. 772:::
31.5242
:~:::::. 2755
:35. 02'::.:::

::;:::::.52'35
40.2:309
42.0322

45.5349
47.2:362
4':;'. 0::::76
5 I). 7::::::::';::'
52.540:3
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Figure B-2. Cable Stayed Span of Luling Bridge on

Mississippi River, Louisiana

Description
Overall length - 11080 ft. (3377 m)

Main span - 1222 ft. (372 m)

Cable-stayed girder length - 2212 ft. (674 m)

Total number of cables - Not available.

Special Features of Stay-Cables*

Number of wires in a cable - 108 (Group IV) to 307 (Group I)

Wire diameter - 0.25 in. (6 mm) ASTMA421 type
Cable Length - 200 ft. (61 m) to 580 ft. (177 m)

Outer diameter of cable - 6 in. (15 cm)

Wire stress range - 108 ksi (745 MPa)

* Information obtained in consultation with Prescon. Corp. The figures are

approximate.
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Luling Bridge Group I Cables

_____ NORMAL FORCE= 1700 no:: IPS) _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S>

t'1DDE= 1
t'1DDE= 2
t1DDE= 3
t'1DDE= 4
t'10IIE= 5
t'1DDE= 6
t'1DDE= 7
t'1DDE= :3
!'1DDE= 9
t'1DDE= 10
MODE= 11
t'1DDE= 12
t'1DDE= 1~:

t10DE= 14
t'1DDE= 15
t'1DDE= 16
t10DE= 17
t'1DDE= 1:3
t10DE= 19
t10DE= 20
t10DE= 21
t10DE= 22
t1DDE= 2:3
t10DE= 24
t10r1E= 25
MODE= 26
t10DE= 27
!'1DDE= 2::::
t10DE= 29
t10DE= ::::0

___ oJ

• ::::':;'5'::-131
1. 7'3&221

4.4::::45

::::.09109

10.8165
11. 7301
12.6466

14.4::::92
15.4157
16. ::::46
17.2:303

19.1617
20.1092
21. 0615

23.9494

25. '3025
2Et. :=::=:7':=t
27. :=:7'3E,

• ::::'3072::::
1. 7:::: 145

4.45::::61
5.34434
E,.23506
7.12578
::::.0165

13.7 137'35
1 I). t,::::::7
11.5794
12.4701
1::::. ::::60::::
14.2516
15.142::::
16.033

17. ::: 145
1:=:.7052
1';&. 5 '35 ';&
20.4::::66
21. :;:77:;:
22. 2 E.:::: 1

24.0495
24.9402

26.7217
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_____ NU~MHL ~U~L~= IbUU '.. ~:.. l t-..:::.... _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'1ODE= 1
t'1ODE= 2
~1ODE= 3
t'1ODE= 4
t'1ODE= 5
t'1ODE= 6
t'1ODE= 7
t'1ODE= ::::
t'1ODE= 9
t'1ODE= 10
t'1ODE= 11
t'1ODE= 12
t'1ODE= 13
t'1ODE= 14
t'1ODE= 15
t'1ODE= 16
t'1ODE= 17
t'1ODE= 1::::
t'1ODE= 19
t'1ODE= 20
t'1ODE= 2'1
t'1ODE= 22
t'1ODE= 23
t'1ODE= 24
MOrIE= 25
t'1ODE= 26
t'1ODE= 27
t'1ODE= 2::::
t'1ODE= 29
t'1ODE= 30

1.73903
2.60914
3.47994
4.35167
5.2245:::
t::,. (I'~ ::: ::: ::::

6.974:31

9.6146::::
10.4994
11 • :~:::::69

1·-, ·-1-,....,11::"c. C,. 1,_1

13.1712
14. 06::::4
14.9693
15. ::::74

17.696
1::::.6137
19. 5~:62
20.4636
21. ::::962
22.3341

) '-I .-. '-I -:'1-;'1-'
c·.:-_ .::.,. ....

24.227

26. 14:~:::::

27. 1116

• ::::6412'3
1. 72:::2':.
2. 5132:~:13

3. 456':; 1
4.32064
5.1::::477
6. 04::::'3
6.91303
7. 7771-::,
::::.64129
9.50542
10.3695
11.2337
12.097::::
12.9619
13. ::::261
14.6'302
15.5543
16.41 :34
1? 2::::26
1::::. 146?
19. 01 0::::
1'3. :375
20. 7:~:91

21.6032
22. 4,:,7:~:

24.1956
25. 05 137
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_____ NORMAL FORCE= 1500 (K I P:S:) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 .:341962
t'lODE=

,-, 1 .6::::417c.
t'1ODE= '-, 2.52E,:::6.:;.

t'lODE= 4 .3. :3702E,
t'lODE= 0= 4.21464._'
t'lODE= 6 0= 06022,_I.

t'lODE= 7 5.':;'0725
t'lODE= ::: E.• 755'35
t'lODE= '3 7. t,OE,5':;'
t'lODE= 1 0 :::. 45'=-,:~:7

t'lODE= 11 9.31455
t'lODE= 1'-' 10. 1724c.
t'lODE= 1'-:' 11- 03::::'-'
t'lODE= 14 11 • :::96:::
t'lODE= 15 12. 7E,::::'~

t'lODE= 16 13.6346
t'lODE= 1~ 14.509..
t'lODE= 1,=, 15. :3::::74'-'
t'lODE= 19 16. 2701
t'lODE= 20 17. 1573
t'lODE= 21 1 :=: • 0491
t10DE= '-"-1 1:3. '::-45:3.::.c

t'lODE= .=,.:. 19.:::476f.-"_' -_.. _-
t'lODE= 24 20. 754::::
t'lODE= ·-,e I 21.6674C,_I

t'lODE= 2E, 22.5:35'3
t'lODE=

.-,-, 23.5103Cf

t'lODE= 2::: 24.440::::
t'lODE= 2 '3' .-, co .-. -, -, ...,

C. ._1 ••; ... I" ..

t'lODE= 30 26.:3211.._- .. _. --- .--

• ::::3';:. t. :=: :3
1 • E.7::;::::::::
2.51006

4. 1:::344
5.02013

t .. -::,'3::;:51
7.5::;:01'3'

'3.20:35?
10. 040::::
1 I). :=:7E,'~

11.7136
12. 55 CL~:

1:;:. :::::=:7
14.22::::7
15.0604
15. :::971
1E,. 7:3::::::::
17.5705
1::::.4071
19.243:::
20.0:::05
20.9172

24.264
25.1006

156



_____ NORMAL FORCE= 1400 (KIPs:.:o _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)
----------~------------------------------------------'
t'lODE= 1 . :::1 :35'37 .::: O;=::~: 17
t10DE= 2 1.62744 1·61663
t'lODE= .:. ,-, 44179 .:. 42495'-' c. L...

t-lODE= 4 .-:. 25E,:::::: .:' 2:~::~:270_' • ,_I •

t'lODE= 5 4. 0721~7 4. 0415:3
t-lODE= 6 4. :3-30:~:1 4. :=:41311~

t'lODE=
-, r= 70915 r= 65:::22I' ,_I • ,-' .

t-lODE= ::: t:.• 52'37:3 E,. 46654
t'lODE= ,~ 7 .:~:52213 7 274::::5-' ·
t'lODE= 1 0 ':' 1770'3 .:. O:=::~: 17'-' . '-' .
t'lODE= 11 ':;. . 00437 .:' :::9149'-' .
t'lODE= 12 '~ .:=: ::::4 ::~ 7 '3 ·E,'313:=~

t'lODE= 1':- 1 O• .- .~ ~,-, 1 O. 50::::1'-' t',b ....:.

t'10DE= 14 11.50:~:5 11·3164
t10DE= 15 12. 3431 1'-' 124::::c.
t'lODE= 16 1:3. 1:364 12. '3331
t10DE= 1"'" 14. 03:~:6 13 • 7414..
t-lODE= 1'=' 14. ::::::4':;' 14. 54'?7'-'
t'lODE= 19 15. 7406 15. :~:5:=:

!'lODE= 20 16. 6009 16. 1663
t'lODE= 21 17. 4661 16. '31747
t10DE= 22 1 ~3. :336:~: 17. 7:=::~:

t'lODE= 2:~: 19. 21 1° 1:3. 5'313'-'
t'lODE= 24 20. (1'92::;: 1'=t :3':=t'3E,-' .
t'lODE= 25 20. '~71:;'5 20. 207'3
t-lODE= 2tS 21 .::::721 21 · 0162
t10DE= 27 ___ J... 22. 770:::: 21 ·::::246
t'lODE= 2::: ':.'':1 675'? .=..:. E.:~:2'~L... '_'. L..L...

t'lODE= 2'3 24. 5:::76 .:":' 4412&-0_' •

t10DE= :~: 0 .-.It:" 506 24. 24'35c. '_'.----. ------_. -_._--
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_____ NORMAL FORCE= 1300 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S)

t'1ODE= 1
t'1ODE= 2
t'1ODE= ::::
t'1ODE= 4
t'10rIE= 5
t'1ODE= 6
t'1ODE= 7
t'1ODE= :=:
t'1ODE= 9
t10DE= 10
t10DE= 11
t'1ODE= 12
t'1ODE= 13
t'1ODE= 14
t'1ODE= 15
t'1ODE= 16
t'1ODE= 17
t'1ODE= 1::;:
t'1ODE= 19
t'1ODE= 20
t'1ODE= 21
t'1ODE= 22
t'1ODE= 23
t'1ODE= 24
t'10IIE= 25
t10DE= 26
t'1ODE= 27
t10DE= 2::::
t'1ODE= 29
t'1ODE= 30

----,

.7::::419::::
1.5E,::::65
2. :~:5:3E,2

:3. 1 :~:':;'::::7

4.71424

7. O::::::::=:2

:::. ':1::::304
9.4::::425

11.0961
11.9073
12. 722~~;

1::::.5413
14.3647
15.1'325
lEI. 0252

17.7'057
1::::.554
19.40::::1

21 . 1::::4
22.0064
22. :::::::54
2:3.7712
24.6639

• 77:::: 1:'-14
1.557:::::::
2. :~:::::E,74

3.11566
:=:. :=:'~45?
4. E, 7':~:4:3
5.4524
6.23131
7. 0102::::
7'.7::: 1:;'14
::::.5':1:::: 05
'3. ::::4697
10.1259
10.904::::

12.4626
1::::.2415
14. 0205
14.7994
15. 57:=::~:

1'::1. :3572
17.1361
17.915
1:=:.6939
19.4729
20.251:::
21.0::::07
21.:::096
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_____ NORMAL FORCE= 1200 O( IPS) _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S)

t'1DDE= 1 .75::::E.42 .74::::357
t10DE= .:' 1 50755 1 49671L · .
t10DE= ,-, .:. 2E.2 .:. 24507..:- L. L.

t10DE= 4 :. 01726 :' 99343'-' . L.

t'1DDE= 0:::' --:' 77:3';:. - 7417::::.-''-' '-' . '-' .
t'1DDE= 6 4. 5::::12'3 4. 49014
t'1DDE=

..., 0:::' 29059 0:::' .-,,"':",,-.1::'".. ._1 • ._' . C·':II:)._'

t'1DDE= :::: t .. 0517:3 0:::' '31 ::: ~, :::6,_I.

t'1DDE= 9 6. ::::151 1 f,. 7::::521
t'1DDE= 1 0 ..., 5::: 0::::5 "7 4:::::::57.. · I .
t10DE= 1 1 ,-, 34927 c· 2:~:193.=.. 1_' •

~1DDE= 12 9 12062 .:. 131 ::: 02 ::::· '-' .
t'1DDE= 1:' 9 :::'3517' 9. 72:::64'-' ·
t'1DDE= 14 1o. El(::::2 1o. 477
t'1DDE= 15 1 1.4549 1 1·2254
t'1DDE= If. 12. 2405 11·137::::7
t'1DDE= 17 13. 0304 12. 7221
t'1DDE= 1c' 13. ::::24:::: 13. 4704
t'1DDE= 19 14. ':=,2::::::: 14. 21 ::;::3
t'1DDE= 20 15. 427:=: 14. 9671
t'1DDE= 21 1f,. '-I'-I~ 15. 7155C,..:', "

t'1DDE= 22 17. 0517 16. 4639
t'1DDE= .:.':. 17. :::72 17. 2122L-'_'

t'1DDE= 24 ----) 1::::. 69::::1 17. 9606
t'1DDE= '-11::'" 1 .~ 5::::05 U::. 70:::'3':',_1

t'1DDE= 2 t::a 20. 36'jl 1 .~ 457:3-' .
t'1DDE= .-.-,. 21 2144 20. 2056c.w- .
t'1DDE= ':.1:. .: ..:. 0664 20. 954'--'-' LL.

t'1DDE= 2'31 22. '3255 21 ·7024
t'1DDE= 30 - - 7'31:3 .:,.:. 4507'-"-'1.-'-' • LL.
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_____ NORMAL FORCE= 1100 (~:: IPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'1DDE= 1 .7217:=:5 .716497
~1DDE=

.=. 1 443::::5 1 4::::2'~'3... · ·
t10DE= .:. ,-, 1664:::: .=. 14949'-' c.. ....
t'1DDE= 4 .=. :=::=:'~'3E, =, :=:E,5':;"~.... ....
t'1DDE= c- '':' 61456 ':1 5:::24':;-'-' '-' . ,_I •

t10DE= 6 4. :~:405:::: 4. 2 '3& :::: l~ ::::

t'1DDE= 7 C' 0':,::::27 C' 0154::::,_I. ,_I.

t10DE= C' C'
7':;t71~4

C' 7:::1';':3'-' ,_I. ._1.

t'1DDE= '::- E,. 52':;'::::5 .:.. 44848
t'1DDE= 10 7' 2'::.427' "? 16497· , ·t10DE= 1 1 ,-, 00149 ~ :::::=: 147.=.. ,- ·
t'1DDE= 1,-, c· 74177 - 1:"'::'7':'7C- '-''_I. '-' . ,_I ... J .." f

t'1DDE= 1'-:' '3 4 :::5 :::: :=: '3. 31447'-' ·
t'1DDE= 14 1o. 2::::2E. 1 o. 031
t'1DDE= 15 1o. '::-::::37 1 o. 7475
~1DDE= 16 11.7:3~31:;' 11.464
t'1DDE= 17 12. 49::::5 12. 1:305
NODE= 1c· 13. 2E.2:=: 12. :=:':--7'-'
MODE= 19 14. 0319 13. 6135
t'1DDE= 20 14. 8062 14. ::::2'31 13
t10DE= 21 15. 5:::6 15. 0464
t10DE= 22 1E,. :~:71~: 15. 762'3
t'1DDE= .:.'-:' 17. 1626 16. 4794L-'_' ---...,
t10DE= 24 17. '::aE. 17. 1959
t'1DDE= '-Ie" 1::::. 7'E~:::::=: 17. 9124'::'._1

NODE= 2t. 19.5742 1:::. E,2::::'3
~1DDE= 27 20. 3914 19. 3454
t1DDE= 2:::: 21 .2157 2 O. 0619
t'1DDE= 2':;t .=.'=, 0472 20 • 77::::4.......
t'1DDE= :~:o .-.,-. ::::::E.2 21 4949ce. .

.' ,- - - .
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_____ NORMAL FORCE= 1000 (K I P:5:) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t10DE= 1 .6::::::::446 . EI:=~:315::::

t'lDDE= 2 1.:3771'3 1·36631
t10DE= :::: .:. 06652 :. 04946L-.. L-..

t'lDDE= 4 .:. 75-::.74 - 7:32E.l'-'L-.. L-..

t'lDDE= c- ,-, 44::::14 .:. 4157'7''-' ..:' . ,_I •

t'lDDE= 6 4. 141 02 4. O'~:=:'32

t'lDDE=
-.,. 4 • :=::~:5t,7 4. 7:3207..

t'lDDE= :::: c- 5::::2:::::::: c- 4':;·52:3,_I. ,_I.

t'lDDE= .~ E.• 23144 E, • 14::::3::::
t'lDDE= 1 0 6. '3:~::~:15 E.• :::::;: 15 ::::
t'lDDE= 1 1 "7 t.::::777 -.,. 5146::::, . .. ·
~1DDE= 12 - 34561 c· 197'84'-''-' . '-' .
t'lDDE= 1':' 9. 05694 .=, :::: :=: (I '3'~'-' '-' .
t'lDDE= 14 '3. 77205 9 ·56414
t'lDDE= 15 1 O. 4912 1o. 24 7':~:

t'lDDE= 16 1 1·2147' 1 O. 9305
t'lDDE= 17' 1 1·9427' 1 1.6136
t'lDDE= 1e, 12. 675? 12. 2'3.::.t:'-'

t'lDDE= 19 13. 4137' 12. '37':;&'3
t'lDDE=. 20 14. 1c--.,..-, 13. 66:~:1._1,' Co

t'1DDE= 21 14. 906:~: 14. 3462
t'lDDE= 22 15. 6613 15. 0294
t'1DDE= ':,-:.. 16. 4'-"-'c- 15. 7125~._I c.c..._1

t'lDDE= 24 17. 19 16. :3'357
t10DE= '-Ie:::'

I

17'. 9642 17'. 07::::::::C,_I

t10DE= 2':, 1::::. 745:::: 17'. 7E,2
t10DE= .-.;'1 19. 1::"'-,'-'1::'" 1::::. 4451Cf ,_1.':"':•._'

t10DE= ':,.";) 20. 3291 19. 1.-,,-,,-.
1--'_' C. I:) ..:.

t'lDDE= 2'3 21 · 1322 1,:, 81 14
t10DE= 30 21 ·94:~:2 20. 4946

]61
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_____ NORMAL FORCE= 900 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S> FREQ.OF STRING (CYCLE.P.S>

t'1DDE= 1 . E,5::::::::'~:::: .64:30'37
t'1DDE= .=. 1 ::::071 1 2'3E.l'3~ · ·
t10DE= :-=: 1·9614:~: 1·94429-
t'1DDE= 4 .=. 61669 .=. 5 ':=t2:3'31~. ~.

NODE= <= -::' 27~321 :3.2404:=:-' '-- .
t'1DDE= 6 .:.

J3:~:127
.:. :=: ::: :3 5 :::'-' . '-' .

t'1DDE=
,. 4. 59121 4. 5:=:':.':.:::I

t10DE= :::: <= 25:;::;:1 <= 1::::477,_1. ,_I.

t'1DDE= '3 C" 9179 c::- ::: :;: 2 :::7,_1. ,_1.

t'1DDE= 1 (I E, • 5:::526 6. 4::: 097
t'1DDE= 1 1 ...,.

25571 7 12':;11)6,. · ·
t'1DDE= 12 7 · '~2'~5:3 (' ·77716
t'1DDE= 1'-::' .=, 60704 .:. 42526'-' '-' . I_I •

t10DE= 14 'j. 2:=::::51 '==' • 07:~::35

t'1DDE= 15 9. 97424 9. 72145
t'1DDE= 16 1 O. 6645 1 O. :~:E,'::-5

t'lODE= 17 11. ::;:5'3E. 11. 0176
t'1DDE= 1'=' 12. 0599 11 .- .- C'-

'-' . t:·b·_1 ..-

t10DE= 19 12 • ..., .- II::'" C' 12. :31 :~::=:I' t.,_f._1

t'1DDE= 20 1:;: • 47E.7 12. 9619
t'1DDE= 21 14. 1'3:3':'- 1:;:. 61
t'lODE= 2E' ---, 14. '317:3 14. 25:::1
t10DE= 2:3 15. 6471 14. '30tS2
t'lODE= 24 16. :::::::::::7 15. 5543
t'lODE=

,-,11::'" 17. 1272 16. 2024C,._I

t'lODE= 2E. 17. :::77'3 16. ::::505
t10DE= .-.""":' 1:::. E,::::E. 17. 4'~:36C(

t10DE= 2::: l q 401:::: 1 :=:. 14670' •

t'lODE= 2'~ 20. 1756 1E: • 7'348
t10DE= 30 20. '~575 1'~ 4429.' .
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_____ NORMAL FORCE= 800 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

MODE= 1 .616:~:34 .61 1 031
t'lODE= 2 1·2:::::3 1·2220':.
t'lODE= :~: 1·:::50:~:2 1· :=:::::::::O'~

t10DE= 4 .=. 4E,:::E,5 --, 44412~. c.
t'lODE= r:::: .:. 0::::::2'::- .:. 05516--' '-' . '-' .
MODE= t. .:. 70959 .:. 66619'-' . '-' .
t'lODE= 7 4. :~:::::2:=:6 4. 27722
t10DE= :3 4. '35:::4:::: 4. ::: ::: ::: 2 5
t1DDE= '3 5.5:::E,64 r:::: 41~132:=:._1.

t'lODE= 10 6. 2177 13 E, • 11 031
t'lODE= 11 E.• :::522 6. 72134
t10DE= 1--' 7' 4902 7 :~:::::2:37c · ·
t'lODE= 1--:- .=. 1:~:209 7 94341--' '-' . ·
t'lODE= 14 '=1 77::: 1 ::: .=. 55444'-' . '-' .
t'lODE= 15 '~.42:::7::: '3. 16547
t'lODE= 16 1 o. 0:342 '3 ·7765
t10DE= 17 1 O. 7447 1 O. .-,.-.?r:'"·,:.c, f ,_I

t10DE= 1'-' 11 41 06 1 o. ':;":;':::tS0::' .
t-lODE= 19 12. 0:::22 11.6096
~lODE= 20 12. 75'37 12. 2206
t-lODE= 21 13. 4435 12;:::317
t-lODE= 22 14. 1:3:39 1:3. 4427
t'lODE= .:,.:. 14. ::::::: 1 14. 05::::7&-"'-'

t'lODE= 24 15. 5:352 14. 6647
t'lODE= 25 ---- •16. 24E.7 15 . 275:::
t'lODE= 2E. 16. '3';:·5::: 15. ::::::.;:.::::
t'lODE=

.-,-, 17. E,'~27 16. 4'37:=:Cf

t'lODE= 2::: 18. 4277 17. 1 0:=:13
t10DE= 2'3 19. 171 17. 7199
t10DE= 30 1-~ '322::: 1:::. ::::::;:(1'3.- .
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Luling Bridge Group IV Cable

_____ NORMAL FORCE= 600 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'1DDE= 1
t'1DDE= 2
t'1DDE= 3
t'1DDE= 4
t'1DIIE= 5
t'1DDE= 6
t'1DDE= 7
t'1DDE= ::::
t'1DDE= 9
t'1DDE= 10
t10DE= 11
t'1DDE= 12
t10DE= 13
t'1DDE= 14
t'1DDE= 15
t10DE= 16
t'1DDE= 17
t'1DDE= 1f:
t'1DDE= 19
t'1DDE= 20

2.':,14

7.::::4991
10.475::::
13.1095
15. 75:~:

1::::. 40::::2
21. 0772

26. 46:~:7

2'::-.1:::4'::­
31. '3'274
:~:4. E,'~2:=:

40.2996
4:.::. 1445
46.0193

51.::::654

164

5.17465

10. :~:493

12. '3:~:6E,

15. 52:~:'::-

1f:.1113

2:3.2:::5'::­
25. :::7::::2
2:3.4606
31.0479
:~::~:. '::.:352
::::t.• 2225

49.1591
51. 7465



_____ NORMAL FORCE= 500 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 .=. :3::::::E,4 ,-,
:~: E. 1::: I~L... c:..

t10DE= 2 4. 77944 4. "7 .=..::. -, I:J
f L...._, r '_I

t'lODE= :;: "'7 17456 7 0:=:5E.::::I • .
t'lODE= 4 '~ • 57E.1E. 9 .44757
t10DE= 5 1 1·9::::EA 1 1 • ::: 0'35
t'lODE= Eo 14. 4074 14. 1714
t'lODE= 7 16. ::::4,12 16. 5:3::::2
t10DE= :=: l q 2'3 1:::. :::':;'51-' .
t'lODE= 9 21 ·755 13 21 .257
t'lODE= 1 0 24. 240:::: .=.,,:. 61::::'3~._I •

t'lODE= 1 1 2t:'. 746:::: .-,1::' 9::::0::::C·_I.

t'lODE= 1'-' 2':;' • 275':=t 2::: • 3427c:.
t'lODE= 1'-::' 31 ::::::: :~: O. 7046'-' ·
t'lODE= 14 34. 41 11 -:.'::. 0665"-"-' .
t'lODE= 15 .::.-::, 021 '-It:::" 42::::4,_I I · .':.._1.
t'lODE= 16 39. 6616 ::::7. 7903
t'lODE= 17 42. :~::~:47 40. 1c,-,,-,

,_ICC

t'lODE= 1';:' 45. 042 42.5141'-'
t'lODE= 19 , 47. 7:::53 44. :=:751~

t'lODE= 20 50. C"'- .- .-. 47.2:37:::._It;:·bc:.
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NORMAL FORCE= 400 (K IF'S) _

FREQ.DF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

25. :;:505
27.46:;:

12. ':.752

:~::~:. :::: (I (IE.

16.9003
19.012:3
21. 1254

::::5. '31 :32
:;::::. 0257

2.11254
4.2250::::

40. 13:::2
42.250:3

::::.45016
10.5627

12. '=.t207

26. :35E11
2:=:.67 13'3

10.7452

E.• 4277:=:
::::. 5::: 1 t,5

33.419
:31. 0:3:35

40.7::::66
4-:3. :~: 1':'-

24.0601

4.2:=:115

15.1107
____ . 17. 31 7:~:

19.5429

-,...--

t'1ODE= 1
t'1ODE= 2
t'1ODE= :3
t'1ODE= 4
t10DE= c-

'-'
t'1ODE= Eo
t10DE= 7
t10DE= c''-'
t'1ODE= 9
t'1ODE= 10
t'1ODE= 11
t'1ODE= 1'-'Co

t'1ODE= 1":'"-'
t'1ODE= 14
t10DE= 15
t10DE= 16
t10DE= 17
~1ODE= 1:=:
t10DE= 19
t10DE= 20
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_____ NORMAL FORCE= 300 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE= 1 1. :=:5645 1·:=:2'~51
t'lODE= - .:. 7157 .:. E,5'3f 0::::C ,_I. '-' .
t'lODE= 3 <:" 5:=: 057 <:" 4::::854._1. '-' .
t'lODE= 4 "7 45:::::::: "7 ::::1806, . , ·
t'lODE= <:" 9 :;: :;: ::: 1 '~ 'St 14757'-' . ·
t'lODE= 6 1 1·2::::';:.5 1 O. '~771
t'lODE= "7 13. 1513 12. :3066,
t'lODE= .=. 15. 0::::54 14 • 6361'-'
t'lODE= ':" 17'. 0412 16. 4656
t'lODE= 1 0 19. 0215 1::::. 2951
t10DE= 1 1 21 ·02:::7 20. 1247
t'lODE= 12 .=,':' 0651 21 9542L.-'_'. .
t10DE= 1':' '-It:" 1::::::::2 .:,.:. 7:::::::7'-' C·_I. L- '_'.

t'lODE= 14 .-.-:- 2::::5:::: '-,t:" 6132c. ... '::'._1.

t'lODE= 15 2'3. ::::7::::'::. .-,-=, 4427.:. ...
t10DE= 16 :::: 1 ·550:3 2'3. 2722
t'lODE= 1""' .-:,.-:. 7E,?:::: 31 1 017

"
,_1._, • .

t'lODE= 1-=- ::::t.• 026:::: :32. 931::::'-'
t'lODE= 19 .: ..:. ::::::::OE. 34 • 760::::,_1'_' •

t,mn~= ;='f1 4J1J.Ru? :::: t::, • 5':;'0::::
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_____ NORMAL FORCE= 200 (KIPS) _

FREQ.OF BEAM (CYCLE.P.S) FREQ.OF STRING (CYCLE.P.S)

t'lODE== 1
t'lODE== 2
t'lODE== 3
t'lODE== 4
t'1DIIE= 5
t'lODE== 6
t-lODE= 7
t'lODE= :3
t10DE= 9
t-lODE= 10
t'lODE= 11
t'lODE= 12
t'lODE== 13
t'lODE= 14
t-lODE= 15
t10DE= 16
t-lODE= 17
t'lODE= 18
t'lODE= 19
t-lODE= 20

1.52092
3.04529
4. 57t.55
6.11:=:09

9.24545
10. ::;::~:7:::

12.4536
14. 095::;:
15.7E,75
17.4715
19.2107
2 (I. f::-:=~ 7':.
22. :::05
24.6652
2E.. 5705

:~:2. 57:=:1:;­
::::4. E.:=:5 t:=t

1.4937'3'

4. 4::: 13:::
5. '37517

10.4565
11.9503
13.4441
14.9379
16.4317
17. '3255
19.419.;:
20.9131
22.4069
23.9007
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