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FOREWORD

Designers of major cable supported structures are well aware of the

dangers of wind-induced vibrations. Also fatigue distress due to wind
vibration of individual members could be a problem. This study was
concerned with the individual stay cables of cable-stayed bridges and their
vibration due to wind excitation.

Unlike most structural components, there exists no design specification
for high strength bridge cable as used for suspended bridges. The fatigue
problem caused by vibrations due to wind is not necessarily an axial-

Toad fatigue problem but is one of cable bending close to the end of the
cable where it is held by an attachment or socket of some type, The
analysis presented in this report should give design engineers some
insight into the problem as it applies to cable-stayed bridges,
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Director, Office of Research
Federal Highway Administration
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INTRODUCTION

This report is the outcome of an analytical investigation on the
fatigue behavior of cables used in cable-stayed and suspension type
highway bridges. The investigation deals with the analytical formulation
of the deflection and bending stress caused by the wind-induced vibration,
as well as the fatigue behavior of bridge cables due to such vibration.

The main results of the present investigation are conveniently
divided into two categories. The first category includes the analysis
of deflection and bending stress and is presented in Chapters 4 and 5
of the report. The analysis is preceeded by necessary background materials
presented in the first three chapters. Mathematical formulations are
kept to a minimum in these chapters and care is exercised to reduce
the results in graphical and tabular forms. This is so done, in our
opinion, to provide useful guidelines to design engineers without
necessarily confusing them by mathematical complexities. For the sake
of completeness, however, the detailed mathematical derivations are
included in Appendix A.

The second category of main results includes the analysis of the
fatigue behavior of bridge cables in terms of the methodologies of
Tinear elastic fracture mechanics (LEFM). It is not intended in this
report to justify the applicability of LEFM methodologies in describing
the fatique behavior of bridge cables. It is our understanding that
the existing work on the fatigue behavior of bridge cables is insufficient
to either substantiate or refute the results obtained during the course
of this investigation, and presented systematically in Chapter 6.

We do not wish to suggest that the results in this chapter be used
by design engineers without discretion. It is our opinion, however,
that in the absence of any design guidelines, the present report is
at least able to provide some directions at which further research
should be aimed.



In 1ine with the above statements, we draw some concluding remarks
in Chapter /7 of the report and recommend future research programs in
this area in Chapter 8. The remarks are mostly concerned with the
applicability of the results herein to a practical design situation.
We note that a design engineer can apply the results in Chapters 4
and 5 directly to a design situation provided all criteria and assumptions
underlying the analysis are properly met. We also note that a design
engineer can use the results in Chapter 6 to cobtain an order of magnitude
estimate for the fatigue behavior of bridge cables. However, much
research is needed, as outlined in Chapter 8, to arrive at a stage
whereby all pertinent analytical results can be translated to design
tools for the fatigue design of bridge cables.



CHAPTER 1
BACKGROUND

The concept of using stay cables in bridge design dates back to early
seventeenth century, as we find sketches by Faustus Verantius in Italian books
showing several parallel inclined chain cables holding a bridge deck between
two piers (Figure 1)}. 1In 1821, the French architect Poyet suggested a bridge
design (Figure 2) which is conceptually identical to modern-day fan-shaped
cable stayed bridges. The other type of stay arrangement with parallel stays,
called harp-shaped (Figure 3), was suggested by Hatley as early as 1840,

In the United States, however, the cable stayed bridge is a relatively
new concept in bridge design and construction. Between the latter part of the
nineteenth and the early part of the twentieth centuries the use of cable
stayed bridge design lost popularity in most parts of the world including
Furope. One reason for its disuse was the collapse of some cable stayed
bridges during the nineteenth century and subsequent comments concerning
these failures by the famous French engineer, Navier. Therefore, the recent resur-
gence of the cable stayed bridge design makes an accounting of previous
experience in design practice essential. This is particularly so because of
the dramatic failure of the first Tacoma Marrows suspension bridge in the
State of Washington almost 40 years ago.

Designers of modern cable stayed bridges have taken into consideration
special design requirements for the stability of structures. One of the most
important is the wind-induced vibration. Existing Titerature on this subject
suggests that a significant amount of work has been done to establish methods
of design to insure aerodynamic stability of bridge structures. In many cases,
wind tunnel tests of prototype models of the proposed designs are involved.
However, the complete analysis of the fatigue behavior of individual cables
caused by wind vibration has not been resolved. When a cahle is subjected to
wind forces, the air flow divides and recombines ahout the nearly circular
cross-section of the cable. While we shall explain this phenomenon in greater
detail in Chapter 2 of this report, it is sufficient to briefly remark at this
point that such a phenomenon gives rise to formation and shedding of vortices. When
the wind speed is such that the vortex shedding frequency is equal to one of



Figure 1. Chain Cable Bridge (Leonhardt (1))

Figure 2. Fan-shaped Cable-Stayed Bridge (Leonhardt(1l))

Figure 3. Harp-shaped Cable-stayed Bridge {Leonhardt(1l))
4



the natural frequencies of the cable, a resonant condition can occur. In this
case, if the -structural damping is low, the wind force can cause large amplitude
vibration of the cable, and hence large bending stress. Moreover, due to the
harmonic nature of wind force, the bending stress becomes cyclic and repeated.
This gives rise to fatigue loading of the cable.

In the case of cable stayed bridge, the problem of cable fatigue is
further aggravated by a large change of stresses at the fixed ends of a cable.
For this reason, Specia] considerations must be given to the design of end
anchorages which are used to join a cable with other fixed structural components.
It is also necessary for cable materials to have a high fatigue strength.

At the present time, there exists no fatigue design specification for high
strength bridge cables used in suspension and cable stayed bridges. The
available axial-Toad fatigue data are not sufficient to establish either a
criterion for defining fatigue failure or for establishing general guidelines
for designing cables to withstand high fatigue-load applications.

The Tack of design specifications or design guidelines are, by no means,
without reason. The foremost difficulty Ties in analytically describing the
fatigue behavior of a cable by using conventional fracture mechanics methodologies.
A second, but related, problem arises in attempts to relate the fatique life of a
cable to a wire. Yet, a third problem is related to the experimental determina-
tion of fatigue characteristics of cables and wires. On the other hand, there
is a growing trend to construct stayed structures in the United States, as well
as elsewhere in the world. In keeping with this trend, and to guarantee the
integrity of these structures, it is essential to look into the above diffi-
culties in some detail.

Evidently, the problem of cable fatigue is fairly involved, and a unique
solution to the problem is not feasible within the scope of the present contract.
With this in mind, we shall attempt to address those particular aspects of the
problem which are responsive to the contract objectives. In short, we shail
analytically determine the range of natural frequencies of bridge cables and
their susceptibility to aeolian vibration. Further, we shall analvtically
determine the induced bending stresses and fatique characteristics of bridge

5



cables. No attempt will be made in this report to develop a new theory of
fatigue characteristics of wires and cables. Nor will an attempt be made in
this report to validate the application of a particular fracture mechanics
methodology in the fatigue design of bridge cables. Such a claim will have
to await an extensive amount of experimental investigation. However, we
intend to develop in this report some guidelines for bridge engineers to
determine frequency ranges that may be crucial to particular cable designs
and configurations. We also intend to provide in this report some guidelines
which will enable bridge engineers to perform an order of magnitude studies
of fatigue 1ife of particular cable designs.



CHAPTER 2

AEOLTAN VIBRATION OF STAY CABLES

2.1 Nature of Aeolian Vibration

The wind-induced vibration of flexible structural members such as wires
and cables has been recognized since antiquity. The fact that a taut wire can
be induced into vibration by a wind stream was experienced by the Greeks as
early as 300 BC. The concept of using wire ropes and cables as structural
members in bridges can be traced back to the early seventeenth century. How-
ever, a systematic study of the wind-induced vibration of the above structural
members did not begin until recently,

As stated before, a Tong slender elastic structure near resonance conditions
can develop flow-induced oscillations by extracting energy from the flow around
them. The oscillations, coupled with the flow, give rise to a fluid-structure
interaction resulting in a nonlinear response. The fluid-structure interaction
is widely covered by four general classes of phenomena: 1) Vortex-induced
oscillation; 2) Flutter; 3) Galloping; and 4) Buffeting. For a given structural
member and a given flow condition, all these phenomena may be equally important.
On the other hand, in dealing with the wind-induced vibration of stay cables, we
shall consider vortex-induced oscillation to be the most important fluid-structure
interaction. A detailed description of the mechanism of vortex shedding and
analysis of the vortex-induced excitation of stay cables will be given in the
next section., For the sake of completeness, a brief description of other classes
of interaction phenomena will also be provided in Section 2.3 of this Chapter,

2.2 Vortex-Induced Excitation of Stay Cables

2.2.1 Mechanism of vortex shedding:
Without any loss of generality, we shall consider a stay cable to be a long

slender elastic structure of circular cross-section. The mechanism of vortex
shedding from a stay cable can then be illustrated in terms of the overall flow
pattern around a circular cylinder with increasing Reynolds numbers as shown in
Figure 4. The Reynolds number (Re), a dimensionless parameter characterizing

the flow regime, is a function of the flow velocity, the diameter or the

7
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characteristic depth of the body in flow, and the kinematic viscosity of the

fluid. For a given fluid medium and a given depth of body in consideration,

the Reynolds number is directly related to the flow velocity. The higher the
Reynolds number, the higher the flow velocity, and correspondingly, the more

turbulent is the flow,

We will now briefly review the wake formulations in various flow regimes.
At extremely low Reynolds numbers, the flow is similar to a small particle
settling in a colloidal solution. In this range there is no wake formation.
At Reynolds numbers between 5 and 10, the boundary layer over the cylinder
begins to separate in a more or less symmetrical fashion, formihg a Foppl
vortex pair downstream, The pattern remains stable up to a Reynolds number of
about 40, beyond which the vortex starts shedding because of wake instability.
At about Reynolds number 90, the detached shear layer starts to fold up after
its separation and forms concentrated vortices. The fluid in the vortices,
however, is still Taminar, and the vortex street persists downstream for many
diameters., At Reynolds numbers above 300, the shear layer becomes turbulent.
Its separation point moves further around, and the wake width becomes narrower.
Beyond this, the flow pattern remains essentially unchanged, presumably up to
Reynoclids number 2x105. For Reynolds numbers in the range of 2x105 and 3x106,
the boundary layer undergoes a transition and the wake is disorganized. At
Reynolds numbers beyond 3x106, a boundary layer becomes fully turbulent.

The subcritical and the supercritical flow regimes shown in Figure 4 are
important to bridge designers. In the subcritical flow, the wake consists of
easily recognizable and regularly spaced alternating vortices similar to the
Karman street, although the fluid inside the vortices may be turbulent. In
the supercritical flow, there is no well organized vortex street and the
energy in the wake is diffused into a wide spectrum of frequencies, rather
than in a single dominating frequency.

The vortex shedding phenomenon of stay cables described above is associated
with a frequency fs (Strouhal frequency) given by fS =-——§E;g—— where St is
the Strouhal number, V is the wind velocity and d is the diameter of the stay
cable. The Strouhal number St in honor of V., Strouha1(2) is one of the most

significant parameters that accounts for the vortex shedding phenomenon.
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A considerable amount of research has been done to determine the Strouhal
numbers for various structural shapes and to establish relationships between
Strouhal numbers and Reynolds numbers. For design purposes, the Strouhal
number of a cylinder can be considered constant over a broad range of Reynolds
numbers and this constant is equal to 0.2.

If the Strouhal frequency, fs, i3 ¢lo=e to anv of the natural freaguencies
fn of the structure, a nonlinear phenomenon known as synchronization or Tock-
in occurs, and in unfavorable conditions, the structure can undergo Targe
amplitude vibrations. For a structural member of circular cross-section and
large sienderness ratio, such as stay cable, it has been found (3) that
fn < fs <1.4 fn. The maximum amplitude of excursion occurs presumably at the
middle of the range. It should be noted here that the vortex shedding does
not necessarily result in an alternating transverse force. This is created
only when there i1s a suitable afterbody and hence, an alternating 1ift force.
Besides, while the lTock-in of Strouhal frequency with the natural frequency
of the structure will give rise to sustained oscillations, the transverse force
exerted by the vortex shedding is not strong enough to cause a large amplitude
oscillation (4). Therefore, the magnitude of sustained oscillations depends
strongly upon the Tift coefficient of the structure. Structural damping is
another parameter, besides the Strouhal frequency fs (or Strouhal number St)
and the 1ift coefficient, which is of major importance in determining the
amplitude of oscillations and the range of synchronization.

2.2.2 Analytical models of vortex excitation:

The response of structural members under vortex-induced excitation is con-

veniently formulated in terms of various analytical models (5-7)

, the most
noteworthy of which is the one proposed by Hartlen and Currie (5). The

latter model employs a Van der Pol-type soft nonlinear oscillator (see Figure 5)
where the fluctuating 1ift force associated with vortex shedding is coupled to
the body motion. The model is based on the wake-oscillator concept introduced
by Birkhoff and Zarantonello (8), and oh the experimental results of Bishop

and Hassan (4).

This concept may be applied to a stay cable when the latter is considered
as a circular cylinder vibrating in a direction transverse to the flow. The

10
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Figure 5. Hartlen-Currie Model for Vibrating Cylinder
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pair of equations which result from this tvpe of consideration are second
order differential equations of the Van der Pol type. The equations contain
a member of nondimensional parameters including nondimensional damping
coefficient, v, Van der Pol constants, ¢ and L, interaction constants,

b] and b2, and finally, the ratio, QO, between Strouhal frequency defined
earlier and the natural frequency.

Of the above parameters, v, bys and 2 can be determined for a given
geometry and for given material properties of a stay cable. The other three
parameters, e, ¢, and b must be chosen to provide the best fit for experimental

(9) for

data. Such experiments have been conducted, among others, by Jones
the elastically mounted circular cylinders forced externally by fluctuating
1ift components, When the Hartlen-Currie model for the vibrating circular
cylinder was fitted to experimental data, it was found that the dimensionless
amplitude Y(t), and the 1ift coefficient CL(t) are related to the dimension-

less wind speed and the dimensionless damping as indicated in Figure 6.

In the past various attermpts have been made to improve some inherent
discrepancies of the original Hartlen-Currie model. Griffin, et al., (o)
considered additional empirical parameters in the equation for 1ift coefficient.
Landl () introduced a nonlinearity of fifth order in the damping term in the

2)

to the cylinder and examined its oscillation under the action of a periodic

11ft equation. Szechenyi (1 assumed a fictitious symmetric aerofoil 1ttached
1ift force. Iwan and Blevins (7) arrived at the Hartlen-Currie model through
considerations based on the vortex street. All these models hasically result
in a relationship between the dimensionless amplitude and the dimensionless
damping factor.

It is not apparent whether these models are readily applicable to flexible
structures such as a stav cable. One serijous objection arises because the
measurement of vortex-induced effects in flow past a rigid oscillating

(3)

resonance outside the lock-in range, For a flexible cylinder, this effect will

cylinder clearly indicates that the cylinder continues to vibrate in

be more pronounced. A fundamental objection is often raised concerning the
validity of the Van der Pol oscillator to describe the fluid-structure inter-
action, regardless of whether the structure is rigid or flexible. To

12
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circumvent these probiems and to achieve the main objectives of the present
investigation, we shall consider, for subsequent analysis, a simplified wind
force model whereby the driving force F(t), has the following form:

F(t) = -—;- pdVZCLcOSwSt (1)

The term W in the above expression is the circular Strouhal frequency and is
equal to Zﬁfs. Further discussion of this model concerning the dynamic
analysis of stay cables will be presented in Chapter 4.

2.3 MWake and Other Effects

In general, the wake effect is concerned with the vibration of structural
members located in the wake of other members., For example, if the stay cables
are arranged in a square pattern, a situation can occur wherein an individual
cable 1ies downwind in the wake of another. In this case, the leeward cable
is subjected to unsteady }oading resulting from velocity fluctuations in the
downstream flow. In particular, if the leeward cable is in the proximity of
a high shear gradient of the wake, it may experience a large amplitude
oscillation. This is called wake-induced galloping., Buffeting, on the other
hand, is a wéke-induced random oscillation produced by turbulent wind or gqust.

Flutter is a self-excited oscilliation caused by the interaction of struc-
tural, inertial, and aerodynamic forces. It is usually a high speed phenomenon
in which aerodynamic forces augment the oscillatory deflections, Flutter of a
fiexible bridge member consists predominantly of a torsional type although in
some cases, the torsional vibration may be coupled with a secondary motion due
to transverse vibration. It is important to note that although a stay cable is
not flutter-prone, it may still be subject to buffeting or galloping oscillations.

As mentioned earlier, the scope of the present investigation does not cover
an analytical formulation of the Tatter classes of fluid-structure interaction
phenomena. For this reason, the discussion of these phenomena will be limited
only to this section. The readers are, however, referred to Scanlan and

Tomko (13 (14) (15)

, Davenport, et al., , Irwin , and Scanian and Gade (16) for

some excellent expositions on this subject.
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CHAPTER 3
GEOMETRICAL AND STRUCTURAL CHARACTERISTICS QOF STAY CABLES

3.1 Geometrical Characteristics

The structural properties of stay cables and their operating characteris-
tics depend, to a large extent, on the geometry of cable configurations. It
is, therefore, important to investigate the geometrical characteristics of a
stay cable for further analysis of its structural properties. In this section,
we present the results of CHI ASSOCIATES, INC's investigation to this effect
which includes a study of wire geometry in a cable, the determination of con-
tact points and contact surfaces between wires, and the effect of clearance
between wires on the overall geometrical and structural properties of a cable.

3.1.1 Lay Configurations
The two different cable or lay configurations which have been investigated
under this task are: parallel wire configuration and he]ica11y'wound configu-

ration. These two configurations for a two-layer cable are shown in Figure 7 .

Under the category of helically wound configuration, several constructions
which inciude single strand operation, and multiple strand operation, are
possible. For the purpose of this report, we shall consider a cable to be
made of a number of layers of individual wires either wound helically or bunched
in parallel by a single strand operation. Each construction procedure produces
a unique contact geometry, and different contact geometries give rise to different

amounts of contact stress between the wires. Foregoing this differentiation

at present, let us consider the transverse cross-section of a cable in general.

The cross-section of individual wires are approximately elliptical (éee Figure 7a).
In the case of the parallel wire configuration (Figure 7b), the circular cross-
section may be considered as a Timiting case of elliptic cross-section where-

by the semi-major axis is equal to the semi-minor axis. Hence, for the

sake of brevity, we will address ourselves to the general case .of an elliptic
cross-section.

3.1.2 Contact Geometry
If two wires in the same layer are contactiﬁg'éaéh other, as is shown .
in Figure 8 , the line of contact between thgse two wires is a helix with
radius rp. The Tatter is a function of thegradius, R, of the wire, the
15
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helix angle or lay angle, o, of the particular layer in question, and the
number of wires, m, in the layer. Also, the angle, B, between the line
of circumferential contact and that of radial contact as shown in Figure
8, is a function of the above parameters.

Noting the following representations of different layers in a cable,

namely,
Layer O (core) ro =0 = rhys 9o =-%, my, = 1
Layer 1 r1, thys @1, M)
Layer 2 r2s Thps 02, M

the geometrical characteristics of different cable configurations may be
determined and compared. We have done this for a 3-layered case (both
parallel and helical) for a given wire radius, R, and for given values of

als M, 02, ... etc. The results are shown in Table 1. . It is important

to note in this Table that, as the number of layers in a cable increases,

so does the helix radius, ry. Furthermore, the contact angle, 8, approaches

a limiting value 90° indicating that the contact points of the wires are on
their semi-major axes. This will create clearance between wires in successive
layers of a helically wound cable.

The study of geometrical characteristics of cables reported herein
essentially follows the work of Chi(q7), Karamchetty(]8), and Phillips and
Coste110(19).
between ry, B, and other geometrical parameters mentioned eariier are omitted

The detail derivations of complex functional relationships

here since they may be found in the references above as well as in the monthly
Progress Reports on this project submitted by CHI ASSOCIATES, INC. to the
Federal Highway Administration.

The other geometric parameter of importance is the radius of the curvature
of a wire both in the stressed and unstressed state. For elliptic cross-
section, the radius of curvature Pe at the contact point in the unstressed state

is given by:

17
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Figure B. -Cohtact Geometry of Wires in a Cable
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where r and a have been defined before. In the stressed state, the radius of
curvature is transformed to Q;. The determination of 9; involves the evalua-

tion of elliptic integrals of the type mentioned in Seely and Smith (20),

So far we have confined our discussion to cable geometry and contact
geometry. The knowledge of contact geometry enables us to determine the loca-
tion of contact points or more precisely, contact surfaces across which wires
transmit forces and motion. It is also at these contact surfaces that contact
stresses are generated. For some cable configurations, especially helical,
contact stresses may be significant enough to cause strand nicking which then
acts as a source of fatigue crack initiation. We have, therefore, considered

it relevant to study contact stresses in a cable.

, Stein and Bert (24) are

(22)

some of the early workers who analyzed the stresses in wire ropes. A rope

(21) (23)

Hruska , Leissa , Starkey and Cress

consists of a number of strands and its stress analysis is fairly complex. How-
ever, the analysis of a strand is relatively simple. Phillips and Costello (19)
analyzed strands by the method of separating the strand into thin wires and
solving the general nonlinear equations. Since a cable is known as strands
among manufacturers, the method used by Phillips and Costello to determine the
contact stresses is applicable. The result of preliminary anatysis using the
above method shows that the effect of helix angle on the contact stress

is relatively small. In particular, for parallel wire cables (helix angle of 90
degree) the contact stress approaches a zero value. In view of this and in view
of the fact that in modern cable-staved bridges, cables consist mostly of parallel
‘wire configuration, the contact stress will not be considered as a dominant
factor in the dynamic analysis. On the other hand, it should be remembered that
in the case of helical configuration, the contact stress may be responsible far
strand nicking and subsequent initiation of fatigue crack. For such cases,
therefore, the contribution of the contact stress in determining the total

fatigue Tife of a cable must be taken into account.

3.2 Structural Characteristics

The structural characteristics of a cable which influernce its dynamic
response are flexural stiffness and damping. The end anchcrage is another

20



important factor that influences the deflections and stresses at the ends of a

cable. We shall discuss this Tatter factor in detail in Section 3.3 of this
report.

Both the flexural stiffness and the damping depend, among other things,
upon the wire material. Parallel wire cables are made from uncoated stress-
relieved wires which have ASTM Designation A421-77BA. These cables are manu-
factured by the PRESCON Corporation of San Antonio, Texas, INTYCO, Inc.,
Melrose, I1linois, and Bureau BBR, Ltd., Zurich, Switzerland. Helical wire
structural strand with zinc-coated steel wires has ASTM Spec{fication A586-68.
Helically wound structural wire ropes are manufactured according to ASTM
specification A603-70. The mechanical properties of these materials are shown
in Table 2.

3.2,1 Flexural Stiffness:

The flexural stiffness of a single wire is easily derived from the knowledge
of its elastic modulus and the moment of inertia. The determination of the
stiffness of a cable, on the other hand, is a Tittle more involved. For example,
the stiffness of a bridge stay cable depend: not only upon its elastic modulus
and the moment of inertia, but also upon its length and axial stress.

Ernst(25) showed that the effective elastic modulus, Egff, of a cable

reduced considerably along its length according to the following formula:

ey
E =E {l + ——s——
eff 0 1203
in which I = specific weight of cable
2 = horizontal Tength of cable
EO = elastic modulus of straight cable
o = tensile stress of cable

The above expression indicates that for the given Tength of a cable, the
reduction in elastic modulus is inversely proportional to the third power of
the tensile stress. In other words, for minimum reduction in elastic modulus,
high stresses and consequently, high-strength steel, must be used for stay-cables.
Since the cable materials under consideration {ASTM A421-77BA and AbB6-68) are
indeed high strength steel, we shall assume, without further recourse to the above
formualation, that the effective elastic modulus is equal to that of a straight

21
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cable. This assumption means that the only other source of variation in flexural
stiffness along the length of a cable is its moment of inertia.

Consider, for example, a cahle made from a number of single wires placed
in several layers. When this cable is anchored at two ends in a cahle-stayved
bridge, and is acted upon by an external force or moment system, its curvature
changes along the length. Moreover, a certain geometrical grouping of wires
in a definite pattern occurs along the length, Inside the end-anchorage,
all wires seem to act monolithically as a singie elastic body. However, a
few diameters away from the fixed ends the outer wires start to act separately,
leaving only the core wires which tend to group together. Scanlan and Swart
reported a case in which the effective stiffness value of a Pheasent conductor
cable was only 50 percent of its maximum theoretical value. The latter value
corresponds to the case where all wires in the cable are considered to be
"welded" together to form one unit.

Flexural stiffness of a cable can be determined semi-empirically by using
either quasi-static or vibration tests, Specifically, the quasi-static test
consists of applying a sinusoidally distributed transverse loading on a suitably
supported cable segment. The vibration test determines the stiffness from
information on loop length, frequency or strain and displacement. Flexural
stress of a cable can also be determined analytically. The methods differ
according to the cable configuration. Within the scope of this report, we
shall briefly outline two methods, one each for the parallel wire configuration
and the helical wire configuration.

(26)

applicable to parallel wire configuration. In this method, the flexural stiff-

The first method is based on the work of Scanlan and SWart and is

ness, EI, is estimated from the knowledge of displacement and curvature using
the following equation:

Ty + M(x)
£l = — (3)
where T = axial force
M{x) = bending moment
y = cable displacement in tranverse direction
y" = curvature of the cable
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The displacement, y, is normally obtained from quasi-static tests and the
curvature, y", is determined by numerical integration. In the absence of
any experimental result, however, the alternate approach to determine the
flexural stiffness involves an iteration procedure to solve the equation.

The second method is based on the work of Phillips and Costello (19) and
is applicable to helical wire configuration. In this method, the total axial
force, F, and the total twisting moment, M, on & cable are expressed in terms
of forces and moments acting on individual wires as follows:

F=m(TSin o' + N' Cos o') {4a)
M=m (HSin o' + G' Cos a' + Tr' Cos a'-N'r'Sina') (4b)

where T is the axial force in a single wire, N is the normal force, G and H are

1l

bending and twisting moments respectively, and where r.-and o are helix radius
and helix angle respectively. The term m in the above expressions denotes the
number of wires in a cable. The terms N', G', r' and o' are the corresponcing
values of N, G, r, and o in the deformed configuration. The flexural stiff-
ness can now be defined as the partial derivative of the total moment, M, with

respect to the angle of thﬁ%’ Py 1.8,

FI = T ” (5)

The procedure, therefore, involves computation of partial derivatives of T, N,
G, H, etc. with respect to ¢. The detail computation is shown in reference (27)

We have used the above methods to compute the flexural stiffness of a
sample i1x7-wires cable of both parailel and helical configurations. For the
purpose of illustration, we have selected a wire radius of 0.0825 inch (0.21 cm).
The cable has been assumed to be subjected to a varying axial force in the range
between 5000 1bf (22.24 kN)} and 25,000 1bf (111.29kN). These values are
“representative of the axial cable stress normally encountered in design practices,
For helical configuration, five different helix angles ranging from 74 degrees
to 78 degrees have been chosen.

The results of our calculation show that the flexural stiffness of a cable
is a function of its configuration or, more precisely, of its helix angle. In
this particular example, we have assumed that the wires in the cable are not
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"welded" ‘or grouped together. Hence, in both parailel configuration and
helical configuration, the respective minimum values of moment of inertia at
any section of the cable have been considered for computational purpose.

Such consideration has led to a variation of nearly five percent in the effec-
tive flexural stiffness value. It is, therefore, expected that as the cable
diameter becomes Targer, and as the wires in the cable tend to group together,
the variation in effective flexural stiffness may increase considerably.

This is in agreement with Scanlan's findings reported earlier. More important
to note at this point, however, is the fact that the wide variation of the
flexural stiffness of a cable has 1ittle effect on its natural frequencies.

In the next chapter in dealing with the dynamic analysis of a cable, we shall
present some supporting evidence to this effect,

3.2.2 Damping:

The damping of a stay cable is due to viscous and friction forces which
always oppose the excitation of the cable. The damping is usually expressed
in terms of the logarithmic decrement, &, defined to be the natural logarithm
of the ratio of two successive peak amplitudes in a free, decreasing oscilla-
tion. 1If % and Bi+1 are the ith and (j+1)th amplitudes, respectively, the

damping is given by:
B.
§ = Log —m—— (6)
e Biy

For cables, in general, the value of & is usually-on the crder of 0.04 to (.08,

The above definition of damping is particularly applicable for a single
degree of freedom system. For a continucus structure, such as a cable, it is
often advantageous to consider another definition of damping coefficient,
namely, the viscous damping coefficient. The Tatter, denoted by o is propor-
tional to mass per unit length, oA, and the natural frequency, W, of the nth
mode (n=1, 2, . . . ). The relationship is given by:

€0 ZannpA (7)

where Zn is the structural damping factor. This factor is approximately equal
to §/2n. Noting that, for higher modes & and hence T decreases as ) increases,
one can assume for design purposes that the product %nn is constant. This
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effectively means S, is constant, Denoting this constant by c, one can write:

S wqypA
¢ = = P .
= (8)

where 0] is the fundamental frequency of the cable. In the dynamic analysis

of a stay cable, we are going to make use of the above approximation for the
viscous damping.

3.3 End Anchorage

When cables are used as structural members, several considerations must
be taken into account to determine their load bearing capacities and performance
characteristics. One of these considerations is the end anchorage which connects
a cable to other supporting structural members. The end anchorages vary widely
in their design and manufacturing techniques depending on the size and properties
of the cable to which they are attached. However, they have one basic function
in common, that is, they transfer load from the cable to other structural members.
Consequentliy, the dynamic response and the fatigue 1ife of a cable depend much
on the type of end anchorage.

Early versions of end anchorage design for large diameter cables used the
molten zinc type sockets. However, the pouring temperature of zinc alloy was

found ( to considerably affect the fatigue strength of wires in the socket.

An excellent solution to overcome this problem was- devised in Germany(zgs 30),

The so-called "HiAm-anchorage" was subsequently developed by the Bureau BBR-
Zurich, and it was reported that the fracture of wires in a cable was almost
equally distributed over the length of the cable so that the anchorage was not
any weaker than the cable itself. The schematic of a typical HiAm-anchor is
shown in Figure 9a. Another end anchorage widely used in the United States
has been developed by Prescon Corporation of Texas. A schematic of this
anchorage is shown in Figure Sb,

The HiAm-anchorage system consists of button heads bearing on a stressing
ring which is threaded both internally and externally. The ring is recessed
in the end of the member before stressing. The Prescon system is similar to
the HiAm system, but rather than using a stressing ring which is recessed before

stressing, the button heads bear directly on a round plate which is threaded
into the socket. An overview of different cable constructions with partirular
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a. The Schematic of a Typical Hi-Am Anchor
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b. The Schematic of a Prescon Anchor
Figure 9. [Improved High Strength Anchorages for Cable
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note on various end anchorages may be found in reference (31). The reader is
3150 referred fo a recent paper on fatigue resistant tendons for cable-stayed

construction by Birkenmaier(32).

The effect of end anchorage on the dynamic response and the fatique
behavior of a cable system can be studied analytically by considering proper
boundary conditions in solving the dynamic equation. The choice of boundary
conditions, however, depends on the nature of load transfer between the cable
and the socket. The existing literature on stay cables does not provide suf-
ficient information on the Tatter subject. MWe, therefore, consider this to
be an area of possible future research,

Within the scope of this project, we have made an attempt to address this
problem in two different ways. In the first method, the dynamic equation of
a cable is solved for the most general case of arbitrarily specified elas-
‘tica11y constrained end conditions. The detailed solution procedure is given
in Appendix I. In the second method, the solution of the dynamic equation of
a cable for the case of fixed end conditions is found. The deflections and
bending stresses at the ends of a cable can also be evaluated by substituting
the elastic constants with proper viscoelastic parameters. Such consideration
is based on the assumption that the end anchorage is viscoelastic rather than
elastic in nature.

In concluding this sectfon, we note that the end anchorages currently used
in cable design reduce the theoretical bending stress at the wire ends of a
cable by as much as 50 percent. Moreover, the use of HiAm and Prescon type
anchorages insure that the bending stress is uniformly distributed over the
entire length of the cable rather than having a large magnitude at the ends.
Based on these facts, it seems that the dynamic response and the fatigue behav-
jor of cable ends under the commonly occurring wind forces are not significantly
different than those pertaining to any other cross sections of the cable. On
the other hand, for gusts, random wind loading and other cases, the fatigue
behavior of cable ends may cause serious concern even in the presence of high
fatigue resistant type anchorages. In these cases, special care should be taken
to design cabie ends as well as in attaching them to other structural members,
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CHAPTER 4
DYNAMIC ANALYSES OF STAY CABLES

The governing differential equation of the motion of a stay cable has the
fellowing general form:

32 2 ppdl
o 5%%~ + c:%%—+ %;— (FI %;% - T) = F(x,t) (9)

y(x,t) = displacement in transverse direction

It

where

mass density

cross sectional area

i

(o TS - SIS
I

damping coefficient

F(x,t) = external force in transverse direction

EI = flexural stiffness

T = axial force
Assuming that the flexural stiffness is constant along the length of the cable,
the above equation can be rewritten as:

Al e ovEr DX 1l - F() (10)
The solution of the above equation is given by:

y{x,t) = Lo (x)¢n(t) (11)
where ¢n(x) = pth natural mode of the cable

¢,(t) = nth time-domain solution of the equation

The detail solution of equation (10) can be found in Appendix A. In the
following section of this chapter, the expressions for natural frequencies and
normal modes of a stay cable will be derived.

4.1 Natural Frequency and Normal Modes

The natural frequencies and mode shapes of a cable are obtained from the
governing equation for the small amplitude, free, transverse vibration as

follows:
d* d?
1 &Y o1 &Y L opaw?y = 0 (12)
dx*® dx?

This equation can be derived from equation (10) by a separation of variables
technique and by neglecting the damping and the external forcing terms.
Nondimensionalizing equation (12) by setting

Y= L and x = &£ (13)
L L o



where L is the length of the cable, and dividing through by FI/L3 ., we

obtain:
dy d?
e HY;’ S QY =0 (14)
in which p = ILi = nondimensional force
£l (15a)
21 4
Q = E?@ L. - nondimensional freguency (15b}
The nondimensional parameter Y in the above equation is related to the mode
shape as follows:
v(x) = s, (X) (16)
where o (x) = nth natural mode of the cable in terms of

n
nondimensional parameter X.

(33) for the most general

Fquation (14) has been solved previously by Chi
case of elastically constrained end conditions. In Appendix A of this report,
the detailed derivation of frequency equation and the solution of equation
(14) are given. For the purpose of computing natural freguencies, we shall,
however, make use of the relationship between the nondimensional force, P, and
another nondimensional quantity denoted by Z2. The latter is actually a
function of P and Q (7?= 4Q/P?) defined earlier; however, it has been found
that the use of nondimensional parameter 72 instead of 0 simplifies the
formulation of deflection and bending stress considerably. For this reason,
in the subsequent nondimensional analysis, we shall consistently use P and 7%

being the two most important nondimensional parameters.

The relationship between P and 72 is obtained from the frequency equation
of small amplitude, free, transverse, vibration of a cable. The analytical
method is outlined in detail in Appendix A. In this secticn, a graphical
representation of the relationship between P and 7% is shown in Figures 1o
through 14 for certain practical ranges of such parameters as the cable size,
cable length, axial tension, etc. The ranges are given below:

Cable size: 1 layer cable -~ 7 wires (smallest section)
15 layer cable - 631 wires (largest section)
Wire radius: 0.125 inch (0.318 cm) '
Cable length: 50 < L < 600 [ft]
15.2 < L < 182.9 [m]
T 30



Axial tension: 60 <o < 120 [ksi]
413,7 <o < 827.4 [MPa]

It should be noted that Figures 10 throuah.14 correspond to the cable
configuration with both ends fixed. This particular end condition adequately
represents the dynamics of cable in a cable-stayed bridge. The figures also
correspond to the first 45 natural modes of vibration. The computation of
natural frequencies for this somewhat high mode value is essential since
flexible slender structures are also often known to vibrate in resonance at
higher modes,

Substituting the values of P and Q from equations (75a) and (15h) in the
expression for Z2 , it is seen that:

72 = 49 . dow? EI (17)

P oZA

From the knowledge of axial tension, cable length, elastic modulus, and moment
of inertia, one can determine the nondimensional force, P. The nondimensional
parameter, Z? can then be determined from the graphs in Figures 10 through 14.
It is further seen from the expression for Z? that the natural frequency, w,

is given by:

/ ag? A
w= | ———— I 7wl 18
J pE! fb 18
where Wey is defined as a bending frequency factor given by:
g? A
eb = ToET (19)

For a cable of given length, diameter, and tension, the bending frequency
factor is a constant, and can be easily computed. The natural frequency, W,
of any mode n can therefore be found from equation (18) by substituting proper
values of 7 from the graphs. The use of graphs and the computation of natural
frequencies will be illustrated for specific numerical examples in Chapter 5
of this report.

The normal modes I, (X) are determined from the solution of equation (14)
upon substitution of the relationship shown in equation (16). The general form
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of the solution is given by:

@n(X) = A sino X + B coso X+ C sinhg X+ D, coshg, X (20)

where An, B, C., Dn are constants to be determined from the given boundary

n n

conditions and where as Bn’ are the roots of the frequency equation. The

derivation of the expression for normal mode is discussed in detail in
Appendix A,

We mention here that a Tong slender flexible cable with both ends fixed has
a response which is very similar to that of a string. This is also evident
from the fact that the root, By of the frequency equation in Appendix A is
Targe (usually > 10) for long cables. Under this circumstance, the mode shape

expression in equation {20) reduces to the following form:
92
& (X} = sing X - cosa, X (21)

n n Bn n

It is now easy to determine the mode shape from the above equation. As an exam-
ple, we have computed the mode shapes of a Group IV Pasco-Kennewick bridge cable
up to 10 modes for two different values of axial tension. The results are shown
in Figures 15 and lé.

4.2 Wind-Induced Vibration of Stay Cables
Having obtained the natural frequencies and mode shapes of small amplitude,

free, transverse vibration of a stay cable, we now proceed to analyze the wind-
induced vibration of the cable as a forced vibration problem. It was earlier
assumed in Section 2.2.2 that wind force is spatially independent and harmonic
in nature. Further, it was assumed in Section 3.2.2 that the structural
damping, ¢, is proportional to the mass per unit length of the cable. Under
these two assumptions, equation (10) can be solved to determine the response

of the cable to wind loading. The detailed solution is given in Appendix A.

In this section, we shall discuss the physical basis of the analytical
derivation presented in Appendix A, as well as the results obtained therein

in relation to the vortex-induced vibration of stay cables.

In Section 2.2.1 of Chapter 2 dealing with the vortex shedding mechanism
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of circular cylinders, we have given an expression for the Strouhal relation,

namely,
St-V (22)

where fs is the Strouhal frequency. This relationship can be used to deter-

mine fs if the wind velocity, V, is known. Conversely, if one assumes that fS

is known from the vortex-induced resonance condition (for example, fn < fs < 1.4 fn
for resonance), one can find the critical wind velocity, Vcr’ simply by ftransposing
the equation (22) in the following form:

f .d w_d
e (23)

where, for simplicity, fs has been eguated to the natural frequency fn.

The rationale for the above type argument is based on the consideration that
we are addressing the subject of wind-induced vibration of stay cables caused
only by the vortex shedding phenomenon. Recalling now the expression for the wind
force model given by equation ( 1), it is seen that:
F(t) = Fo cosu_t :-%pdVérCLCOSwSt (24)
in which the magnitude of wind force, Fo’ can be determined from the knowledge of
Vcr and the 1ift coefficient, CL. The governing differential equation of cabhle

vibration {equation (10)) can now be solved with the above assumptions and the
most general solution is given as:
y(x,t) = F 2o (x) [6y sino t + G, cosw t] (25)

where G]n and GZn are the coefficients of a particular temporal solution of

equation (10) and where ¢n(x), as before, denotes the mode shape. The detail
derivation of the solution, as well as the derivation of expressions for G]n
and G2n are given in Appendix A,

4,2.1 Deflections of cables:

The most general expression for the deflection of a cable with fixed ends
is given by equation (25) above. The expression contains a number of variables
all of which are functions of some basic parameters such as the geometrical and
structural properties of a cable, the applied tension, and the wind velocity
Therefore, it is reasonable to perform a parametric study of the deflection.
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On the other hand, the number of parameters is too large to deal with for a
meaningfu1 parametric study. The compromise lies in grouping the parameters

in some nondimensional forms. We have already shown in Section 4.1 of this
chapter how various parameters are grouped together in two nondimensional
quantities, P and Z2, and how the relationship between these two quantities

are used to determine the natural frequencies of a cable. In what follows, we
shall consider such an approach to determine the deflection. In particular,

we shall determine a relationship between the maximum nondimensional deflection
and the nondimensional frequency. It should be noted that this is an alternative
to the analysis cited in Section 2.2.2 in connection with the analytical models
of vortex excitation of circular cytinder.

Equation (25) can be greatly simplified in practical applications, due to
the following considerations. At least in subcritical flow regime, there is
only one dominating driving frequency in the wake. This frequency would
principally excite a single natural mode closest to it, according to the
synchronization theory of nonlinear rescnance. Suppose that the frequency
associated with the resonant mode be W, then the deflection expression,

{equation (25)), is simplified to:
y(x,t) = F ¢, (x) [6,,5Tn 0 ¢ + 6y, cos wnt] (2¢)

It should he noted that Gznvanishes at resonant conditions. 1In order
to obtain the maximum deflection, we assume that the mode shape, ¢n(x), is
normalized, Hence,

Ymax Fo G1n (27)

since the maximum values of ¢n(x) and sin mnt are both one.

It is seen that the maximum deflection is simply the product of the
magnitude of wind force, FO, and the coefficient, G]n’ whose expression is
given in Appendix A. The evaluation of G]n’ however, is fairly involved
since the expression contains generalized mass, generalized force vector, 1ift
coefficient, damping coefficient, and others. While the detailed analysis
is given in Appendix A, we find it convenient at this point to défine a
hondimensional maximum deflection, Yn’ as follows:

; Yo Vo SA
. WZ;—VETI_—_ max
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where Pa denotes the density of air. All other symbols in the above expression
are defined elsewhere in the text. As shown in Appendix A, the nondimensional
deflection, Yn, in the above form can be expressed as a function of the non-
dimensional parameter, Z2. This relationship is shown in graphical form in
Figures 17 and 18 for various values of nondimensional force, P.

4.2.2 Bending Stress:

The bending stress at any point in a cable is related to its curvature at
that point. The general expression for the curvature is obtained by differentiat-
ing equation (25) with respect to x and this gives:

y'(x,t) = F_ % ¢"(x) [G1nsinmnt+62ncoswnt] (29)

on 'n

where y" and ¢; denote the second derivatives with regard to x of y(x,t) and
¢n(x), respectively. Once again, a progressive simplification similar to the
one described for defiection analysis will lead to:

y'(x,t) = Fo¢n(x)G1nS1nwnt
The maximum curvature at end-fixity is now obtained by evaluating ¢;(x) at x=0
and by equating sinwpt to 1. This gives:

I R (6% 2 2
Vias * Foln gl (o5 +8) (&)

where o and B are, as before, the roots of the frequency equation. The detailed
derivations of the above expression is given in Appendix II,

Defining a nondimensional maximum curvature by
13
- vp EIS Y ax :
p, Vd3/e L (32)

One can compute Xy, in terms of the nondimensional parameter, Z? , in a similar
manner to that shown in the previous section. The detail derivation of the
above relationship is given in Appendix A, The relationship between X ard- 22
is shown graphically in Figures 19 through 21 for the purpose of evaluating
bending stress. The maximum value of the latter can be evaluated by means of .
the following equation:

() " (33)

= E
max €2 max

where c, is the maximum fiber distance in the cable.
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It should be noted in passing that in the derivation of relationships
be tween Yn and Z2, and between X and Z2, the values of Strouhal number, St,
and 1ift coefficient, CL,
two parameters appear explicitly in the expressions for Yn and Xn as shown
in Appendix A. We also mention in passing that the dynamic analtysis of stay

cables developed in this chapter will be illustrated in detail in Chapter 5

are assumed to be 1.2 and 1.4, respectively. These

of the report,
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CHAPTER 5
NUMERICAL RESULTS OF DYNAMIC ANALYSIS

In Chapter 4, expressions for natural frequencies, maximum nondimensional
defiections, and curvatures have been derived for stay cables in general.
Further, the graphical relationships between these quantities and the non-
dimensional parameters P and ( have been developed in Chapter 4.

In this chapter, we will demonstrate the use of results derived in the previous
two chapters for specific bridge cables. To this end, the following bridge
cables have been chosen for further studies:

1. Pasco-Kennewick Bridge Group I and Group 1V cables;

2. Luling Bridge Group I and Group IV cabies.

Some of the geometrical properties of these cables are shown in Table 3.
The cross-sectional areas of the cables have heen computed on the basis of
information on wire diameter, number of wires, and number of layers. Outer
diameters of cables indicated in the Table correspond to those of polyvethylene
pipes which are jacketed on the cables. The minimum and maximum moment of
inertia of these cables are shown; the minimum value corresponds to the case
in which all wires are considered separately, and the maximum value corresponds
to the case in which all wires are grouped or "welded" together to form one
unit. Table 3 also indicates two different levels of applied tension and
corresponding values of axial force to four different cable diameters.

The exact natural frequencies of these cables have been calculated by using
both beam vibration and string vibration theories. For reference purposes, the
results are shown in Appendix B. For long (Group I) cables, frequencies are given
up to the 30th mode. For short {Group IV) cables frequencies are given up to
the 20th mode. The reason for this is that the nominal wind velocities corres-
ponding to the higher frequencies of short cables are outside the range of design
interest for this study. The freguency values corresponding to the beam theory
have been calculated using a value of E = 29x106 psi (ZOOXTO3 MPa) and using a
maximum value of the moment of inertia, while those corresponding to the string
thecory have been calculated by neglecting the stiffness.
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Example 1
In this example, we are going to compute the natural fregquencies of a

Pasco-Kennewick Group I cable using the graphs and formulas developed in
Chapter 4. The geometrical and mechanical properties of the cable are:
L = 506 ft, (154.23m)

0.D. =6 in. (15.24 cm)
A= 13,89 1n.2 (89.61 cm2)
1= 20.53 in.* (854.52 cn')
E = 20x10%si (200x10° Mpa)
2
~ = 000073 12585 (7,85 gn/cn”)

The cable is subjected to a tensile stress of 108 ksi (744.66 MPa).

Step 1
In this step, the nondimensional force, P, is computed using given data

and using equation (15a). Thus,

2 |
_ (oAl _ 108x10°x13.89x(506x12)
El 29x10%x20.53
" 92,895

The nondimensicnal parameter, 22, is determined next using Figure 10. For the
first four modes of vibration, the values of 22 are given below:

Z% = 0.464x10™° for n = 1
zg = 1.680x10™° n =2
25 = 3.920x107 n=3
z; = 7.040x107° =4

Step 2
In this step, the bending frequency factor, Wep s defined in equation (19)
is computed. Thus, ‘
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/ 2
wep = IR
4pEl
2

3
:\//(108x10 ) x13.896 rad/sec.
4x0,000734x29x107x20.53

~ 304.44 rad/sec,.

The circular natural frequencies of the first four modes of vibration are
now computed using equation (18). Thus,

304,44 x /0.464x10°>  rad/sec.

6.5578 rad/sec.

Wy = wept 2y

12

and similarly,

wy = 12.4783 rad/sec.

19.0608 rad/sec.

1

25,5438 rad/sec.

When these values are compared with the exact values (Appendix B) in the
following Table, one can see that the largest error in the computation of
frequencies using graphs is about 4%, and that this error corresponds to the
fundamental mode. For higher modes, the error is often much less (e.q., for
third mode, the ervor is 0.5%).

Table 4, Comparison of Natural Frequencies

Natural Frequency (rad/sec.)

Mode No. Exact Solution From Graph Error %
1 6.3180 6.5578 3.8
2 12.6380 12.4783 1.3
3 18.9621 19,0608 0.5
4 25.2917 25.5438 1.0
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It should be noted that for the number of even modes the error percentage
is usually slightly higher than it is for the odd number of modes. For
all practical purposes, the computation of frequencies by means of graphs
gives fairly accurate estimates.

Example 2
This example will demonstrate the use of nondimensional maximum deflec-

tion and maximum curvature curves as developed in Chapter 4. The cable is the
same as in Example 1. In addition to the parameters provided in Example 1, the
fo?loWing are assumed.

2
o, = 1.123x107 théle— (1.201x10'3gm/cm3)
in
§ = 0,08
St = 0.2
CL= 1.2

Step 1
In this step, we shall compute the critical wind velocities that will put

the cable in resonance in various modes. Thus, using equation (23), we find,
for the first mode:

vo_919  _5.5578x6  ~. 30.17 in./sec.

Cr "3St 2Mx0.2

= 1.71 mph [2.74 km/hr]
Similarly, for the second, third, and fourth modes, the critical wind velocities
for resonance are:

Vcr = 3.38 mph [5.41 km/hr] for n = 2
= 5,17 mph [8.27 km/hr] n=3
= 6.93 mph [11.09 km/hr] n=4

The result indicates that the critical wind velocities corresponding to
the fundamental and lower mode resonance are relatively small. While the pre-
vailing wind velocity at a particular site of "cabled" structure may conceivably
be as low as 7 mph [11.2 km/hr], it is equally probable that higher wind
velocities may prevail. In this case, higher modes will be in resonance. For
this reason, we have decided to compute a few more higher modes,
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For example, consider the 15th, 29th, and 43rd modes. The frequencies of
these modes as computed according to the steps given in Example 1 are:

Wy = 96.2724 rad/sec.
Wog = 190.1227 rad/sec.
Wy = 296.7314 rad/sec.

The corresponding values of critical wind velocity are:

Vcr = 26.12 mph [41.79 km/hr] for n = 15
= 51,58 mph [82.52 km/hr] n =29
= 80.50 mph [128.80 km/hr] n =43

It seems that 26 mph [41.6 km/hr] wind velocity is likely to occur in a
particular site and therefore, the cable in this example is likely to resonate
in 15th mode. For this case, it will be necessary to determine the deflection
and bending stress corresponding to this mode.

Step 2
In this step, we will compute the amplitude of forcing function using

equation (1). Thus,

0dC Ve
a L cr

(1.123x10°

F
0

Nop — PO —

B

2
x6x1.2VCr

2
cr

Hl

4.0428x107"v

This is, of course, the magnitude of forcing function per unit length of the
cable and hence, has the unit of Tb/ft (N/m). Knowing the Vcr for different
modes, it is now possible to find FO which would cause the cable to vibrate

in particular modes. We now compute F0 for the modes shown above.

F0 = 4.0428x]0-7 Vgr

= (0.00037 1b/in, = 0,00442 1b/ft [0.,0648 N/m]
for n =1
and similarly,

F0 = 0.01717 1b/ft [0.2505 N/m] for n = 2
= 0,04017 1b/ft [0.5862 N/m] n=3
= 0.07217 1b/ft [1.0532 N/m] n =
= 1,02526 1b/ft [14,9618 N/m] n=15

54



1]

3.99808 1b/ft [58.3447 N/m] n
9,73824 1b/ft [142.1119 N/m] n

29
43

It
Ll

If the resonance mode of a cable, (for instance, the 15th mode) in a
particular structure and at a particular site is known, the above computation
will give the magnitude of the forcihg function that needs to be used in the
calculation of the maximum deflection and bending stress. Alternatively, if
the nominal wind velocity at a particular site is known, the magnitude of the
forcing function can be computed by substituting for Vcr in the expression for
Fo’ the value of the wind velocity. In a similar manner, using the Strouhal
relation and the value of nominal wind velocity, the resonant frequency, and
hence, the mode number can be determined. This information is then utilized
to evaluate the maximum deflection and bending stress. The methods of computa-
tion are shown in Steps 3 and 4 below.

Step 3

In this step, the maximum nondimensional deflection will be computed by
using graphs in Figures t7 and 18. For example, cbnsider the first mode for
which 22 = 0.464x10'3. We also know that the nondimensional force P is 92,895.
Corresponding to these two values, the maximum nondimensional deflection can
be read from Figure 17, and the value is approximately 0.569. Note that in
Figure 17, there are only twoc graphs which correspond to P = 66,000 and
P = 120,000. For reasons of clarity, the deflection curves for all other
intermediate values of P have not been drawn. In computing the maximum non-

dimensional deflection, Yn’ the interpoTatioh method has been used.

In order to verify the accuracy of the graphical method, the maximum non-
dimensional deflections are caiculated using exact analysis and using a computer
program developed to perform model superposition analysis. The output from the
computer program is shown in Appendix B, One can note that, for the first
mode resonance, Yn is equal to 0.607, and hence the error is less than 7 per-
cent.

Knowing Yn’ the maximum deflection may be calculated by using equation
(27). Thus,
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o, Vd°L

max /o 6k

1.123x107 % (6) “x (506x12) vy

(/T0BXT0°) (/0.000734) (0.08) (13.8917)

2.48x107°vY,
This means for the first mode resonance that:
y 2.48x107°x30.17x0.569 in.
0.0426 in. (0.1082 cm) .
The completion has been repeated for other modes of vibration with results
summarized in the following Table.

max

Table 5. Computation of Deflection

Mode No. Yn Yinax (in. [cm])
1 0.569 0.0426 [0.1082]

2 0.382 0.0563 [0.1431]

3 0.212 0.0478 [0.1215]

4 0.164 0.0496 [0.1260]

15 0.042 0.0479 [0.1216]

29 0.021 0.0478 [0.1215]

Step 4

We are now going to compute the bending stress. For this, we shall
determine first the nondimensional curvature using Figures 19 through 21,

2 - 0.468x1073, Corresponding to

Consider again the first mode for which Z
this value and the value of P = 92,000, the nondimensional curvature Xq»-€an
be obtained from the graphs in Figure 20. The value is approximately equal

to 6.306x10—3.

The value of y“max may now be calculated using equation (32). Thus,
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Q<:
1l
|
=

max o S El “n *n

1.123x107 x(6)% x/A08x10° x (506x12) vy
= n-n
5.000738 x(0.08) x (29x10%)x(20 5329)

12

-6
6.25 x 10 Van

This means for the first mode resonance that
6.25x10"°x30.17x6.306x10"

n 3 . -1 )
J max :
-1

12

1.1892x107% in.7" (3.0206x10 % cn™ 1)

The bending stress is now calculated using the standard strength of materials
formulation, namely:

(0b)max = E czy”max

For a 10-layer cable, there are 19 wires along any diametrical axis. Hence,
the maximum fiber distance, C_s may be considered as 19 times the radius of a
wire, Therefore, in this case, c, becomes equal to 2.375 in. (6.033 cm).

Finally, the maximum bending stress becomes equal to:

b

29x10° x 2.375 x 1.1892 x 1070  psi

(o},)

max

1

81.906 psi (564.742 MPa)

The above computation has been repeated in a manner similar to the previous
steps for the 2nd, 3rd, 4th, 15th, and 29th modes. The. results obhtained are
summarized in the Table 6 below. It should be noted that these results, when
compared with the exact values obtained from computer printout, indicate the
accuracy of the graphical procedure developed in this report.
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Table 6. Computation of Bending Stress

Mode No. Xp- y"max (in.—] [cm']]) (o'b)max (ksi [MPal)
1 6.306x10"3 1.1892x1070[3.0206x10°%7  0.0819 [0.5647]
2 6.34x10™° 2.357x107°[5.987x107°7 0.1624 [1.1194]
3 6.35x107° 3.611x1070[9.172x107°] 0.2487 [1.7149]
4 6.355x10™° 4.844x10"°[12.305x107°7 0.3336 [2.3006]
15 6.5x107° 18.676x10°0[47.437x107%7  1.2863 [8.8690]
29 6.870x107° 38.979x107°199. 0x107%] 2.685 [18.511]
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CHAPTER 6
FATIGUE LIFE ANALYSIS

6.1 An Overview

The general engineering practice for design, specifications and fabrica-
tion of any structure is based on correlations of the latter with service
experience, Normally, service experience leads to identifying weak links in
a structure, and reliability is obtained by improving these weak Tinks. In
the case of a cable-stayed bridge, Tack of the above information at this stage
imposes a severe limitation on a comprehensive fatigue life analysis. However,
within the framework of fracture mechanics methodology, a preliminary approach
to the problem may well be conceived, This preliminary approach will be
described in detail in this chapter.

6.2 Fracture Mechanics Methodology

Fracture mechanics is basically a study of the fracture or discontinuity
in terms of such commonly used engineering parameters as applied stress,
specimen and crack geometry, and material properties. In Tinear elastic fracture
mechanics (LEFM), this is equivalent to describing the stress field in the
vicinity of a crack tip or a surface of discontinuity in terms of the above
parameters, The magnitude of this stress field is higher than one obtained
in the absence of any discontinuity. This relative increase in magnitude is
described by a term KI called the stress-intensity factor. The subject of
LEFM deals with the relationship between KI’ nominal stress o, crack or flaw
size a, and material properties, such as M. In functional form, the relation-
ship can be written as:

Ky = Flo, a, 1) (34)

One of the principles of fracture mechanics is that unstable fracture occurs

when KI reaches a critical value KIC'

that for a given o and a given set of material properties, the change in a 1is

One can note from the above relationship

directly associated with a change in Ky. Thus, if the value of the crack size

corresponding to K,. is denoted by a., one can write:

IC

ac = f1 (o, Kie, M) (35)
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The parameter a. represents the terminal conditions in the life of a structural
component and the parameter KIC represents the inherent ability of a material
to resist progressive tensile crack extension. For this reason KIC is more
commonly calied the fracture toughness of the material.

At the outset, the fatique 1ife analysis of a structural component is
seemingly unrelated to the field of fracture mechanics, since it deals with
the life of the component under repeated cyclic loading in terms of the total
number of load cycles elapsed. Moreover, the component is believed to be free
of any discontinuity or crack, at least macroscopically and, therefore, the
concept of stress concentration seems to lose its meaning. On the other hand,
more often than not, a structural component contains initial defects., This
is largely the result of manufacturing processes. £Even if these defects are
microscopic in nature, at one stage of repeated Toading they give rise to
localized stress concentration which causes fatigue crack initiation. While
these cracks are of subcritical dimensions, they nevertheless act as sources
of discontinuity, thereby raising the values of KI the terminal condition.

a_. is reached. This, then, is the stage of fatigue crack propagation prior

c
to the stage of macroscopic failure associated with the unstable crack growth.

The above description serves as a link between the fatique 1ife analysis

of a structural component and the conventional LEFM methodology. More precisely,
it indicates how the fatigue behavior of a structural component can be described
in terms of fracture mechanics parameters KI,(KIC)’ a.s Os the material properties
M, and the number of load cycles. A complete description of the fatigue 1ife of
a structural component involves three distinct stages. These are:

Fatigue crack initiation

Fatigue crack propagation

Crack instability or final fracture
These stages will be dealt with in more detail in the specific case of bridge
cables.

6.3 Fatigue Crack Initiation

A complete knowledge of fatigue crack initiation in bridge cables requires
the understanding of the basic mechanism of fatigue in high strength materials.
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Very 1ittle work has been done in this area partly because it is extremely
difficult to observe microstructural changes caused by the fatiaue process

in such materials. With this Timitation in mind, we shall attempt to describe
the microscopic aspects of fatigue crack nucleation in bridge cables.

6.3.1 Microstructural Aspects

The chemical composition and mechanical properties of bridge cable materials
presently under investigation indicates that the material is a multi-
phase system and has martensitic structure. During constant strain-amplitude
cycling of such structures, the stress range generally decreases within the
first 20% of its 1life as shown schematically in Figure 22, whereupon it remains
relatively constant until the final fracture of component occurs.

The hystersis 1oop in Figure 22 represents the case of strain-softening,
a phenomenon which takes place only if Gu/Oy < 1.2 where 9 is the ujt?mate
tensile strength and oy, the 0.2% offset yield strength. This is indeed the
case of the cable material presently under investigation. The implication
of strain-softening high strength materials is that they produce dislocation
slips which are very small and highly localized and hence, within the nominal
elastic range. Therefore, Targe stress concentration in these materials
arises from the structural imperfection in the form of inclusions or voids
induced by the manufacturing technclogy.

During the load application and stress reversals, the microvoids tend to
coalesce, thereby forming the site of crack nucleation. In high strength
materials, the void coalescence, rather than cleavage, is the microscopic
phenomenon contributing to crack initiation.

Considering the case of bridge cables, it can be noted that the crack
initiation in a single, polished and unnotched wire is likely to be caused
by the above void coalescence mechanism. A cable, on the other hand, is
composed of several single wires tied together in parallel or in some
helical combination. During external cyclic loading of the cable by wind
or other forces, individual wires undergo different amounts of bending which
cause contact surface and hence, contact stress to be generated between the
wires. If repeated contact due to cyclic loading occurs, it will produce
mechanical notches in an otherwise unnotched wive. It is, therefore, important
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to note the following:

1. Crack initiation in a single, unnotched and polished wire is
brought about by the void coalescence mechanism.

2. Crack initiation in an unnotched and polished wire within a wire
bundle (cable) is brought about by a combination of void coalescence
and mechanical notching due to contacts between the wires.

3. Crack initiates faster in initially notched specimens.

6.3.2 Engineering Analysis

The brief description of microstructural aspects of the fatique crack
nuclieation sheds some 1ight in understanding the basic fatigue mechanism in
bridge cables. It also leads to two important observations, namely:

1. The crack initiation mechanism in bridge cables or wires is
correlated to strain-softening or strain-~hardening parameter
of the cable material, whichever the case may be.

2. The fatigue strength of a wire, which is a measure of its
resistivity to crack growth, depends on the surface texture
of the wire as indicated in the schematic shown in Figure 23.

Based on these observations, we will now develop a framework for the
analytical study of fatigue crack initiation in bridge cables. Thus con<ider
a single wire subjected to cyclic loading. The conventional procedure
for describing the fatigue behavior of the wire is to generate a design
fatigue curve (S-N curve) based on the experimental data on nominal stress or
stress range and the number of cycles elapsed before failure. The schematic
of a S-N curve is shown in Figure 24. HNote that the total S-N curve indicated
by a solid Tine is an assymptotic combination of the crack initiation curve
and crack propagation curve both indicated by broken lines. The shape of the
crack initiation curve suggests that an empirical relationship of the following
form exists between the number of cycles to crack initiation, Ni’ and the nominal
stress range, Ac.

N, = (:](Ac;)'Y (36)

where C,and vy are two constants which depend, in general, on the material
properties M stated earlier and on the strain hardening exponent, n. Yokobori(37)
has found a similar relationship for the crack initiation in aluminum. When
the crack initiation data (See Figure 25) of Barsom and McMicol ) for Hv-130

steel were curved-fitted to the above expression, we obtained:
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C]= 3.06 x 107, v = 3.3

It should be recalled that the objective of the empirical formalism is
to obtain expressions for the constants C] and Y in terms of measurable
mechanical properties such as ultimate tensile strength, yield strength, etc.,
as well as in terms of a strain hardening exponent. However, this requires
a large set of statistical data from identical experiments with specimens
having the same geometry but a varying degree of mechanical properties. This
is not available in current literature and should, therefore, constitute the
forefront of further research.

The above analysis of crack initiation does not reflect directly the effect
of notches. From an engineering standpoint, it is of considerable interest to
study this Tatter case. This is conventionally done by establishing a relation-
ship between the number of cycles to crack initiation and the quantity AKI/JE'
where the term KI is explained before and p is the notch radius. The usual
experiment involves testing specimen with different notch radius. In the case
of a wire of .25 in, (6 mm) diameter, such experiment is not Tikely to produce
reliable results. However, it is analytically possible to obtain a threshold
value of AKI//B'denoted by (AKI//E7th below which crack will not initiate. For

this, the following relationship is used. (See also Figure 26,)

vo [th

where o, is the yield strength. Thus, for the wire material (ov = 204 ksi

(AKI =10 /3, (37)

.4

{1407 MPa]), the threshold value becomes 142.83 ksi (949 MPa). On the other hand, the

threshold value of AKI/Jﬁdis related to the maximum applied stress. The exact
functional relationship between these two quantities depends on the nature of
crack, i.e., whether the crack is circumferential, axial, single-edged, double-
edged, elliptical or otherwise. This requires extensive analytical investigation.
At present, we assume that the maximum elastic stress at the root of the notch,

Ornax? is the one due to an elliptical crack (49) and is given by:
2KI
Oax = (38)
virp
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This means that the maximum stress fluctuation corresponding to the threshold
value of AKI/VE'is 161.17 ksi (1111 MPa). 1t represents the case of p +

or in other words, an unnotched specimen. There is no data to substantiate
the value; however, two results of Barsom and McNicol (37) are worth noting

in this regard. First, the value of (AKI//E)th (142.83 ksi) [949 MPal) is
close to the one obtained for ASTM 4340 steel (ov = 212 ksi [1462 MPa]) shown
in Figure 27. Second, the value of O {161.17 ksi [1111 MPa]) is consistent
with the one experimentally obtained for HY-130 steel.

The above analysis gives us some information on the fatique crack initia-
tion life of the wire. More specifically, the analysis determines the fatigue
limit or the endurance 1imit of the wire material. The number cof cycles corres-
ponding to this endurance limit is primarily the fatigue initiation life. For
higher values of applied stress range, the number of cycles to crack initiation
rapidly decreases. Figure 28 shows schematically the fatiuge 1imit of polished,
notched and degreased single wires of the type that is frequently used in
cable-stayed bridge construction. Assuming a stress threshold value of 160
ksi (1103 MPa) for the wire material under investigation, and assuming a value
of v = 3.3, an empirical fatigue crack initiation curve may be obtained
in a manner similar to the ones shown in Figure 27.

6.2.3 General Discussion

The analysis presented in the preceding section demcnstrates that the fatigue
initiation life of a wire is correlated to its yield strength and strain
hardering exponent. In addition, the initiation life of a notched wire depends
on the notch geometry. Therefore, a complete understanding of crack initiation
in a wire remains an unresolved issue. Limited experimental efforts have

(42) who

previously been directed in this area, most notably by Reemsnyder
tested single wires for fatigue 1ife in a rotating strut machine. The results
of his experiments are shown in Figures 29 and 30. Since the yield strengths
of the wire materials in his experiments are of the same order of magnitude,
the results serve to verify the analytical framework discussed in previou
sections. More recently, Fisher and Viest (43 have performed experiments
with single wires (as well as strands made from such wires) which have
different yield strengths and tensile properties. However, their results

{See Figure 31) are too scattered to form any homogeneous statistical groups.
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(38)

. . . 44
In yet another direction, Barsom and McNicol Clark ( ), and
Clausing (45), and others have attempted to correlate various mechanical

properties with the crack initiation 1ife. A detailed account of this may

be found in Rolfe and Barsom (36).

In summary, it may be pointed out that the analytical framework of the
crack injtiation in a wire is by no means complete. Furthermore, preliminary
conclusions reached at this stage still require substantiation by experimental
work. It can be safely assumed, however, that the fatigue 1imit of a single
unnotched and.polished wire is fairly high and therefore, the crack initiation,
under commonly occurring wind loading during a reasonable span of service life,
should not be a grave concern. This statement, of course, requires some
qualification when one considers the taut ends of a cable or a wire. It may
be evident from the dynamic analysis presented in previous chapters that
bending stresses are usually much higher at the ends. As previously discussed,
higher stresses considerably reduce the initiation 1ife.

6.4 Fatigue Crack Propagation

Crack initiation life dominates the total fatigue life in the high strength
material of which bridge cables and wires are made, Hence, from the service
. viewpoint, the fatigue problem is practically eliminated if the cables are so
designed that commonly occurring wind loading will not produce high bending
stresses. However, there is still some probability, small as it may be, that
some wires in the cable will contain preexisting cracks, surface discontinuity
or voids,. In this case it is important to determine the crack propagation 1ife.

It is a conventional practice to divide the fatigue crack propagation
behavior into three regions (see Figure 32). Region I in the
figure corresponds to non-propagating fatigue cracks. Rolfe and
Barsom's (3 experimental results on non-propagating fatigue cracks show that
the threshold stress-intensity factor below which a crack will not propagate is
given by: '

AK,, = 6.4 (1-0.85 R) for R > +0.1

th
5.5 ksivin. for R < +0.1 (39)

fl
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Log Scale

Crack Growth Rate Per Cycle, da/dN,

Region I:]:Region II_:[ Region III

_L AL

Stress Intensity Factor Range
AK1, Log Scale

Figure 32. Schematic of Fatigue Crack Growth

Regions in Steel (Rolfe and Barsom(36))
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For the present case, the value of R is always greater or equal to 0.1 for ail
possible design stresses and all possible wind loadings. In fact for large
value of applied tension, such as 110 ksi {758 MPa), and for low bending
stress, such as 10 ksi (52 MPa), the value of R will be as high as 0.8 and

consequently, the value of AK_, will be very low. Hence, for all practical

th
purposes, once a crack is initiated in a wire it will propagate.

Let us now consider Region III which corresponds tc accelerating fatigue
crack or the unstable crack growth. The usual LEFM description of such
phenomenon is given in terms of crack tip opening displacement (CTQD), GC.
The latter is related to a threshold value of stress intensity factor K

th
and the elastic properties in the following manner:

KZ
6C: Eoth (40)
Yy

In fact, it is observed that the accelerating fatigue crack propagates at a
constant value of 5C equal to 1.6 x 10_3 in. (0.04 mm). For the bridge wire
(E = 29 x 10° ksi, [200 GPa], 5, = 204 ksi [140.7 NPa]) this gives K, = 97.29
ksi vin. [107 MPavin] approximately. It will be assumed that the fracture
toughness of wire, K;. or K, falls in the range of 80 ksi Vin. (88 MPa/m).
Therefore, we assume that for most cases of interest with the fatigue design
of bridge cables, Kth >KIC' This means we nead not be concerned about the
evaluation of accelerating fatique crack propagation life which will indeed

be very small,

The above analysis indicates that the fatique crack propagation Tife of a
wire, while relatively small in comparison to the initiation 1ife, is limited
mainly to steady-state crack propagation Region II. We will describe the
latter in terms of some rate equations discussed next.

6.4.1 Steady-State Crack Propagation

In its formulation, a general law of fatique crack propagation should

include, as a minimum, the following factors:

7€



1. Geometry of specimen and crack.
2. Nature of cyclic loading (constant and variable amplitude).
3. Material properties.

4, Growth rate.

In addition, environmental factors such as temperature, humidity, environmental
corrosion, etc. may affect the propagation rate. Therefore, ideally, they
should be considered in a general propagation law. The existing laws of crack
propagation are basically two types:
1. Laws derived from theoretical analysis of strain hardening,
fatigue damage, CTOD, interference and other models.

2. Semi-empirical laws based on statistical analysis of experimental
data.

From a practical engineering standpoint, the second type seems to be more
promising. Therefore, our discussion will concentrate only on this type.
The semi-empirical laws can generally be written as:
da o opppgye (41)
dN 2

where a is the crack size, and C,and u are two parameters which depend, among

2 _
other things, on material properties. Determination of the crack propagation
life of a wire by the above formula involves knowledge of the following
quantities:

1. Values of C and y
2. Values of critical crack length a. and fracture toughness KIC or KID

3. Value of initial crack Tength

Barsom 46 ) has tested various high-yield-strength (oy > 80 ksi) [55 MPa]
martensitic steels for fatigue crack promagation. The results of these experiments
show that (see also Figure 33):

8 8

u=2.25and 0.27 x 10 < C < 0.66 x 10~
Since C and anre)assumed to depend only on the material properties, and since
it has been established by Bucci et al. (a1) , Barsom (46), Imhof and Barsom (48),

and Parry et al. (49) that the growth equation:
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42 - o.66 x 1078 (ak)?-25 (42)

is valid for steels having yield strength ranging from 80 to 300 ksi, (552 to

8

2068 MPa), we shall consider the above form as representative for fatigue crack
propagation in cold-drawn wires.

The determination of fracture toughness, KIC or K 0? and hence the

I
critical crack size, 2. requires, at this point, some detailed anatysis of

the stress intensity factor.

6.4.2 Fracture Toughness and Critical Crack Size

It is stated earlier that the fracture toughness of a material represents
its inherent ability to resist progressive crack extension. In the case of
tensile cracking, the parameter is denoted by KIC and in the case of bending,
by Kw. In either case:

ac = f(Kic or K1p, Opax» 9) (43)

where g is a function of crack geometry. The above formula determines the

critical crack length, a_, if KIF or Kips Opaxe and g are known,

C Fax

Fracture toughness KIC or KID may be theoretically calculated using
their relationships with the mechanical properties of the structural component.

One such relationship due to Sailor (50) is as follows:
2 —
K £
_Ic | p 48
E = oyCﬁ?oe (48)
where C = constant factor = 1.3
FE= strain hardening correction term; typically between 1.2 and 1.5

Q)= mean free ferrite path

€ = plastic strain at the crack tip (= 0.8 for plane-strain fracture
strain) ‘
Although the above equation is strictly valid for ferrite structure, it provides
a reasonable estimate of KIC for martensitic steel of which the cable is made.
Sailor's theoretical calculation shows that fracture toughness of SAE 4340 steel
(steel having a comparable strength value to that of ASTM A586-68 material) is in the
range of 70 ksi /in. (77 MPa vAm) to 85 ksi /in. (93 MPa /). On the other hand,

the measured value of KIC( 51 (sec Figure 34) falls within a much wider ranqge
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between 60 ksi vin. {66 MPavm) to 80 ksi vin. (88 MPAVm). For the present
analysis, we shall assume a set of values of KIC’ namely, 60 ksi Vin.

(66 MPavim), 80 ksi vin. (88 MPav/), and 100 ksi +/in. (110 MPavin), We
consider that, in the absence of further experimental and analytical
evidence, this will provide sufficient useful information about the range
of crack propagation Tife in bridge cables.

Fracture toughness can also be determined experimentally. At present,
the standard ASTM method for measuring KIC’ called the KIC test method,
requires a certain specification of the test specimen dimensions. These
specifications are not satisfied by a 0.250 in. (6 mm) diameter wire having
yield strength of 204 ksi (1407 MPa). Consequently, this is another area which

needs further exploration. In any event, we conclude at present that from
the assumed or computed values of Kig, the critical c¢rack size can be determined
using the functional relation in equation (43).

In fracture mechanics methodology, several explicit relationships between
the stress intensity factor and crack length are derived by various methods.
We recall that a knowledge of the stress intensity factor is required to deter-
mine the crack propagation life of a wire analytically.  Accordingly, we shall
consider here some of these relationships which seem to closely represent
the situation of crack propagation in a wire.

Let us examine the case of a circumferential crack in a cylindrical shell
(see Figure 35), Folias (52) has obtained an approximate analytical expres-
sion for the stress intensity factor KI as follows:

~ o 2
KI=0/E{]+E——2—}+% [ (0t ) A ‘/‘—T}

V3 (3 + V)
{(;2Z1vz S mmiiE L SIRCERTIE o) R ICAREIRVINCEY
where A 1s given by
A= 12 (1 -8) % (a/R)(R/R)E (50)

For a solid cylinder approximation, h/R = 1 and substituting v = 0.3 for steel,
we get:

A= 1.82 (%J (51)

The stress intensity factor in this case may be approximated by the following
expression:
kp = o1 +0.163 %) /& (52)

a1
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provided the contribution of the term containing the bending stress is
negligible. Folias found that this type of approximation results in
about a 6% error in KI for all values of A, If, in the above case, the
crack is axial, {see Figure 36a) the stress intensity factor may be
approximated by:

K, = o(1 +0.815 2%) V& (53)

Finally, for a circumferential crack with arbitrary orientation (see Figure

36b), the approximate stress intensity factor is:

K = o(1 +0.163 22)(5 cos? @ + sin’ o) VA~ (54)

I

Hilton and Sih(53) have calculated the stress intensity factor for a
circumferential crack in a solid cylinder by the finite element method and
found the following expression:

Ny

_ 2R
where K is the normalized stress intensity factor. They found that for

2R/a = 1,25, K = 0,250,

TV (55)

We have developed an approximate expression for the stress intensity
factor using the result of single-edge notch in a plate, i.e.

Ky = ovia f(Ac/B) (56)

where the ratio A/B in our case corresponds to that of the area of cracking
to that of the semi-circle, From Figure 37the area of cracking is given by:

2 .
A = T% - {R - a) v2aR - a2 - R2 tan -1 (R-'a ) {(57)

2aR - a
*The values of f(AC/B).for different AC/B are assumed to be those for the
single-edge vwotched specimen, and are given in Table 7.

Using the above expression‘for the stress intensity factors, the critical
crack size in a 0.250 in. (6 mm) diameter wire has been computed for different
values of nominal stress and fracture toughness. The relationship between
maximum nominal stress and critical crack size is shown in Figure 38.
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Figure 37. Approximate Representation of
Cracking in a Wire




Table 7. Correction Factors for a Single-Edge-Notched Plate

a/b f(a/b)
0.10 1.15
0.20 1.20
0.30 1.29
0.40 1.37
0.50 1.51
0.60 1.68
0.70 1.89
0.80 2.14
0.90 2.46
1.00 2.86
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cp X 10%, in.

10.0
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1 1 | ! 10
90 100 110 120 130
Trax * ksi

Figure 38, Relationship Between Maximum Nominatl
Stress and Critical Crack Size for Different
Toughness Values.
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6.4.3 Propagation Life

It was stated previously that the crack propagation in a wire can be
approximated by the growth equation (42). The propagation life is obtained
by direct integration of the growth equation, Thus, if Np denoted the
propagation 1ife:

N = Sac da s (58)
P 3, 0.66 x 107 (aK) +25

The term AK is a function of Aomax and a and, therefore, for a given value of

Agmax’ the above integral can be numerically evaluated., Figures 39 to 44

show the crack propagation 1ife:as a function of stress fiuctuation Ac for
different values ot initial and critical crack sizes. In the absenee of

more specific information, the initial crack size, a has been arbitrarily

03
selected from a-range of 0.01 in. (0.25 mm) to 0.05 in. (1.25 mm).

6.5 Total Fatigue Life of Wire and Cable

As mentioned earlier, the total fatigue 1ife of a structural component
is composed of two quantities-namely, the fatigue crack initiation life and
the fatigue crack propagation life. In the particular case of bridge
cables, it was also stated that the initiation governs most of the total
fatigue 1ife. From the knowledge of crack initiation and crack propagation
in a wire, as discussed in the preceding sections, an empirical SQN curve
may be drawn. A set of such curves for different propagation lives (Figures 39
to 44) is shown in Figure 45. It can be seen that‘the S-N curves are very
close to each other indiacting that the difference in propagation Tives has
little significance on the total fatigue life of a wire.

It is now important to comment on the analytical basis for fatigue life
predictions. We have noted that the calculation of fatigue 1ife by semi-empirical
methods involves some form of curve-fitting through statistical data. Because
of our limited knowledge of the parameters which affect fatigue life such as
the fracture toughness, exponent of fatique equation, load spectrum, etc.,
the statistical data may be widely scattered. In this case the prediction of
fatigue life by an empirical law may produce unrealistic results. What is
needed, therefore, is a statistical theory of fatigue behavior. According to
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this theory, the fatigue life of a wire is described in terms of a probability
distirbution involving the ultimate strength of the wire material and the
applied nominal stress. This type of analysis has its beginning in the
poineering work of Weibul1(54), Much of the later development on the
statistical aspects of brittle fracture was carried out along this line

by Freudenthal(55) and on the statistical aspects of fatigue by Freudenthal
and Gumbe1(56) . More recently, Andra and Sau1(57) proposed a statistical
theory of fatigue of parallel wire cables based on the assumption that the
wire failure is distributed binomially.

Following the statistical thecry, the ultimate strength of a wire is
considered to be distributed normally according to the following formula:

2
-(0 -<0>)
Po,) = 1 exp‘sz “2 | (59)
1/Z_T-FSO’U SO'Ll

where <o, > is the mean ultimte strength and scu_is the standard deviation
of the ultimate strength, Similariy, annlied stress is distrinuted as follows:
)2

Plo) = L exp -(g_;?sgz_ (60)
5 25
o

where <o> and 54 bear the similar meaning, The probability of a crack
to be initiated in a wire is then given by:

2
Plo >0 ) = -{g - <&>)
- U s e _g——?ﬂé;ﬁ_- (61)

; i
where the new variable £ is defined by
£E=o0 -0, (62)
so that <G> = <o> - <o (63)
2 2 2
and SC =St S, (64)

Thus, the probability of crack initiation can be described in terms of the
interference between two distributions P(ou) and P(c) as shown in Figure 46.
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The shaded area in Figure 46 represents the probability that the
crack will initiate in a wire. For practical engineering application of the
above concept, it is useful to think in terms of a Taboratory test with
several jdentical wire specimens., If such a test is conducted for the
determination of crack initiation in a wire and if the two distributions,
P{o) and P(ou), are known, then the shaded area in the figure will indicate
the percentage or fraction of the total number of wires in which cracks are
initiated.

It should be noted that the above probabilistic description of the
fatigue 1ife of a wire inherently takes into account the effect of a spectrum
of Toad range rather than a single load range. The consideration of a
spectrum of load range is important in the study of the fatigue of bridge
wires and cables from the standpoint of wind loading. The tatter varies within
a wide range corresponding to the diurnal and seasonal variations of wind
speed, Consequently, it is more appropriate to consider several lcad ranges
or a load spectrum and its effect on the fatigue 1ife. A more versatile
method of doing this from the standpoint of simplicity and engineering
practicality is the use of Miner'S'Ru1e(58). This rule allows the determina-
tion of the cumulative fatigue damage of a component if the fatigue damage
due to individual loadings are known (see Figure 47). According to this
rule, if Ny is the fatigue life of the wire due to a Toad U],-N2 due to Ty

and so on, then the total fatigue life N is given by:

To.N.
N o= (65)

5o,
J
It is interesting to note that the above derivation can be obtained as a
special case of the more general probabilistic formulation described earlier.

The fatigue life of a wire under a load spectrum ranging from 2 ksi (14 MPa)

to 40 ksi (276 MPa) is shown in Figure 48.

While the fatigue behavior and fatique 1ife of a wire is of fundamental
jmportance: to engineers responsible for designing suspension cable and cable-
stayed bridges, from a maintenance standpoint it is equally important to know
the fatigue life of a cable. We note again that a cable is comprised of a
large number of individual wires tied together in some fashion. It, therefore,
appears that the fatigue 1ife of a cable is several times larger than the life
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of a single wire. However, Figure 49 makes it evident that the contrary is
true, at least for helical cables. This striking phenomenon raises some
interesting questions. For example, is the fatigue 1ife of a cable related
to that of a single wire? If so, how is the fatigue life of a cable
determined?

(42}

and single wire fatigue tests (see Figure 49). However, his data from the

Reemsnyder concluded that there is Tittle correlation between rope
axial fatique tests are too few to provide a good statistical fit and the
error estimate appears to be too high. Therefore, any correlation, whether
good or bad, loses its meaning., On the other hand, it is natural to consider
that if an individual wire of a cable failed by fatigue, the load in the cable
will be redistributed. If a sufficient number of individual wires havé failed,
the redistributed load will be Targe enough to exceed the ultimate strength,
thereby rendering the cable to be structurally ineffective. This reasoning,
when applied to a 0.250 in. {6 mm) diameter 283-wires cable {Prescon parallel-wire
Group I cable for Pasco-Kennewick bridge}, means that approximately 20% or
about 56 wires may be allowed to fail by fatique before cable replacement
becomes necessary. However, this must be interpreted in terms of the number
of lToading cycles. To illustrate this, we consider two examples.

Figure 50a shows the section of a helically wound cable under the action
of an external load. If the load is cyclic, repeated, and of sufficient
magnitude, it will produce high degrees of stress concentration at the
contact region giving rise to "strand nicking” as shown in Figure 50b. The
nicks act as mechanical notches which considerably reduce the initiation 1ife
of a wire. This conjecture had been verified experimentally by Reemsnyder(42)
(see Figure 49). In the case of parallel wire cables, there is practically

no contact between the wires. However, if one Tooks at a parallel wire cable

ctable in bending, it will be apparent that the adjacent surface of two

neighboring wires in a cable will have an opposite Toading situation.

If the external Tload is sufficiently large, this will create occasional

contacts between the wires which again gives rise to stress concentration

and mechanical notches. In either case, the life of a wire is greatly

reduced. A rigorous estimate of the fatigue life of a cable reguires

detailed analysis which is beyond the scope of the present effort. Neverthe-

less, this study offers a rational explanation for Reemsnyder‘s(42) experimental
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results and attempts to find a correlation between the wire fatique and cable
fatique Tlife.

In concluding this section, we would like to touch upon the subject of
fatigue failure of wires and cables at the socket end. 1In the past. this was
a growing concern among the design engineers and users of cables who found
that the socket failure in cables is more predominant. It is our understanding
that. since the invention of swaged fittings, epoxy groutings, etc., this is
no longer a case of grave concern. Qur analysis shows that bending stress
remains largest at the socket ends. However, due to swaged sockets and epoxy
fillers, there is a gradual load transfer mechanism at the socket ends. OQur
preliminary studies of this mechanism in terms of viscoelastic modeling show
that the magnitude of bending stresses in the latter case is about half as
much as that in the case of rigid sockets.

6.6 Testing Data of Wires and Cables

The analysis of the fatigue behavior of bridge cables and wires presented
above is very much intertwined with the experimental work on the subject.
For example, the determination of fatigue crack propagation life requires the
knowledge of fracture toughness Kic which is experimentally obtained from
fracture testing. Second, the results of fatigue experiments are used to
construct S-N curves which, in turn, are used to verify the experimental results.
For the sake of completeness of fatigue analysis, it is important to discuss
the experimental work on fatigue testing of wires and cables.

(42)

Reemsnyder has made a series of tests on wires, strands and ropes.

In one of these experiments, the strand specimen was 0.75 in. (19 mm) diameter

1"x 37 wires of ultimate tensile strength 250 ksi (1724 MPa). The results cf the
experiment (axial fatiqgue load test) showed that at. 50 ksi {345 MPa) stress range,
the first wire breakage occurred at 2 x 105 cycles, At a stress range of 75 ksi
(517 MPa}, however, the first wire breakage occurred at 1.5 x 10° cycles. Other
tests that Reemsnyder performed with different structural strands (1 x 19,

1 x37, 1 x 55, 1x 59 wires) indicated that for the same stress range, 1 x 19
strand had the Towest fatigue life. Some experiments also showed that bright

strands had a higher fatigue life than did galvanized ones.
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Fisher and Viest{ 43 tested prestressing wires and strands for fatigue
life. Wires were 0.192 in. ( 5 mm) diameter made of steel consisting of
mean ultimate strength 257.5 ksi (1775 MPa) (range between 250 and 264
kei {1724 to 1820 MPal)and strands which were made of 0.375 in. (9.5 mm)
diameter 7 wires with mean ultimate strength 270.4 ksi (1864 MPa) (range
between 248 and 293 ksi [1710 to 2020 MPa]). The strands were tested at
different stress levels with stress fluctuation ranging between 38.4 ksi
{265 MPa) to 75.7 ksi {522 MPa) and with maximum stress between 197.3 ksi
{1360 MPa) to 210.9 ksi (1454 MPa). The results showed that some strands
did not fail after as much as 2.5 x 100 cycles at a stress fulctuation
of 28.4 ksi (196 MPa). However, at the stress fJuctuation of 75.7 ksi
(522 MPa),the fatigue 1ife of the same strand was reduced to as low as
3.8 x 104 cycles. The wires were also tested at different stress ranges.
The results showed that some wires did not fail even after 7.5 x 100 cycles
at a stress fluctuation of 33.5 ksi (231 MPa). At a higher fluctuation
of about 97.8 ksi (674 MPa), the fatigue life was sharply reduced to 10.4 x
104 cycles. In either case, the experimental results conclusively showed
that the sinale wire fétigue life is longer than the fatigue life of strands.

Jevtic(59) tested fatigue behavior of 0.1 in (2.5 mm) and 0.2 in. (5 mm)
diameter cold-dfawn wires at elevated temperatures and found that the rupture
strength of wires drops sharply beyond a temperature of 392° F (200O c).

The testing was done at zero-to-tension loading and Jevtic derived from the
experimental results the 1imits of fatigue behavior of the cold-drawn wires.

Bennett and Boga(ﬁo) tested cold-drawn wires used for prestressed concrete
and found that crimped and indented wires have a much Tower fatigue limit
than the smooth wires. The specimens used by Bennett and Boga consisted of
0.276 in. (7 mm) diameter cold-drawn wires. The specimens were tested between
an applied minimum tensile stress level (Spin) to a maximum tensile stress
level (Spax) chosen to be very close to the ultimate strength of the wire
(208 ksi [1434 MPa]). The minimum stress level was kept constant during a
series of tests but varied between 102.8 ksi (709 MPa) to 142 ksi (979 MPa)
during different series of tests. Bennett and Boga found out that fatigue
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life of a wire increased for larger values of minimum stress levels. The
reason for this is attributed to a smaller value of the range of fluctuating
stress.

Culimore(6l) tested the fatigue strength of high tensile steel wire
cable subjected to stress fluctuations of small amplitude and found that in
all tests, failure occurred in one of the outer helical wires. An explanation
of this phenomenon may be found in our analysis of the bending stress (Section
4.2.2) whereby we have concluded that outer wires have a wider range of stress
variations than the core wire. Cullmore also noted fretting to be a dominant
phenomenon causing the failure of a helical wire cable. His fatigue data
on the fatigue 1ife. of a wire indicated an endurance Timit of 38 ksi (262
MPa) at a mean stress level of 80 ksi {552 MPa) which is double that of the
value for a cable (18.8 ksi [130 MPa]). The most important conclusion Cullmore
had drawn from his work was that there was no minimum value of the stress
fluctuation below which failure of a cable would not occur in less than ten
million cycles.

Edwards and Picard(62) garried out fatigue tests on 0.5 in. (12.7 mm)
diamater seven-wire prestressing strands. These tests were in connection
with the analysis of the fatigue behavior of prestressing strands in both
concrete and free air environments. The effect of lateral pressure simulating
the environments as well as the effect of test length on the fatigue life
were reported by the authors. In arriving at their conclusion, Edward and
Picard made a statistical regression analysis of the test data in a manner
very similar to that employed by Fisher and Viest(43),

F]eming(63) performed fatigue testing on specimens of one inch (25.4
mm} diameter, 19 wire helically wound galvanized steel strand to establish
the effect of the load variables such as load range, mean load and maximum
load upon the fatigue 1ife. The results from the test showed that the maximum
load and mean load had very little effect upon the fatigue 1ife. During the
experiment, it was observed that the wire breakage occurred randomly through-
out the length of the specimens and were not concentrated at any specific

location.
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Castetiaw, Frank, and Campbe11(64) tested Pasco-Kennewick bridge cables
for fatigﬁe failure under axial Toading. The specimen was made of 83 - 0.25
in. {6 mm) diameter of 240 ksi (1655 MPa) ultimate strength and the cable
had an outer diameter of approximately 4 in. (10 cm). The maximum stress
level was 108 ksi (745 MPa) with a fluctuation of 24 ksi (165 MPa) and
the specimen was cycltically loaded for 2 x 106 cycles. No fatique failure
of wires was observed. The limited experimental results briefly described
here, and an extensive literature search by CHI engineers during the course
of the project revealed that few experimental works on the fatique of bridge
cables exists. This is partly due to the fact that suifable fatigue experi-
ments are difficult to conceive and design in the case of a 0.250 in. (6 mm)
diameter wire. We shall discuss this issue in more detail in the section
dealing with recommendations for future research.
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CHAPTER 7
DISCUSSION AND CONCLUSION

7.1 Discussion of Results

In the preceding chapters, we developed analytical formulations for the
dynamic response and fatique behavior of stay cables in bridges. Based on
them, we determined the deflection and bending stresses in typical cables
in the Pasco-Kennewick bridge. The fatigue analysis was presented in
Chapter 6, and with that we have also estimated the approximate fatigue Tife
of wires and cables in a wind-induced vibration environment. In this section
we will review the results obtained therein.

From the numerical results of deflections and bending stresses (see
Example 2 in Chapter 5), one can notice that the deflection is nearly constant
for all wind speeds. This is in apparent contradiction to the intuitive notion
that the higher the wind velocity, the higher the excursion should be. To
provide an explanation we recall the following observations made elsewhere in
the text.

1. The resonance mode contributes primarily to the amplitude of
excursion of deflection while the net contribution of all
other modes is insignificant. This is so even though modal
superposition is considered in the numerical computation of
the deflection.

2. The analytical model of vortex excitation considered in this report
assumes that the wind force be harmonic and that its magnitude
varies quadratically with the wind velocity.

The second item indicates that the deflection is linearly dependent on
the critical wind velocity which increases with the mode number. The first
item indicates that the nondimensional deflection decreases with the mode
number. For this reason, the maximum deflection, being a function of non-
dimensional deflection and wind velocity, yields a nearly constant value for
all modes.

Despite the fact that deflections remain nearly constant, the bending
stresses are higher for higher modes. However, hecause of inherently Tow
moment of inertia of the cable far enough away from the end-anchorages, the

maximum value of bending stress is relatively Tow., For instance, in Example 2
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of Chapter 5, we find that the bending stress in a 506 ft (154.23 m} long,
4.75 in. (12.07 cm) diameter cable is less than 2,685 psi (18.511 MPa).

Near the end-anchorages, one can expect a much higher flexural stress,
The magnitude of the. stress depenhds on the cable anchorage system and the end
support conditions, among others. The exact value of moment of inertia at
the end anchorage is hard to ascertain but, due to the constraint of wires
from relative movement with reépect to one another, is probably many times higher
than that in the middle. Therefore, it is reasonable to expect high bending
stress at the ends of a cable. This seems to explain the intuitive notion of:
earlier design engineers that the end-anchorage is the weak point of a cable.

In regards to determining natural frequencies and critical wind velocities,
results from the present analysis indicate that long flexible stay cables are
prone to resonant vibration at some wind velocities at a particular site. This
is so because, at higher modes, the natural frequencies are densely populated
and hence, increment in critical wind velocities corresponding to two consecutive
resonance modes is quite small. At many sites the wind data show that the
velocity increment may be easily exceeded by the usual fluctuation of wind speeds.
This means that, if a particular cable is designed out of resonance with respect
to a specific mode, it does not necessarily guarantee that the cable will not
vibrate in the next higher or lower mode. Fortunately, at higher modes, the
deflection is also small, and the wind-induced bendfnq stress can be easilyv kept
to a reasonably low value by proper selection of cable construction and end
anchorages. It should be noted here that it is the fatigue phenomenon caused
by reversib1é or cyclic bending stresses that are damaging, not the high stresses,

per se.

In the analytical formulation of the fatigue behavior of wire ropes and
cables, we have made use of fracture mechanics methodologies, In other words, we
have attempted to describe the fatigue crack initiation and propaagation in a
wire in terms of such parameters as the threshold stress value, the stress
intensity factors, and others. Certain simplifying assumptions are inherently
involved in this approach, and it is quite likely that some of these assumptions
may not be justifiable on the grounds that the fracture mechanism in a high
strength steel wire of small diameter (0.25 in. [6 mm]) is far more complex

than that in a plate, beam, or shell of reasonably large dimensions. Moreover,
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the validity of the fracture mechanics approach cannot be guaranteed when one
tries to explain the fatigue behavior of a whole cable in terms of its con-
stituent wires. Nevertheless, the present approach provides some guidelines
in understanding the fatigue behavior of wires and cables.

From the analysis of fatigue initiation in a wire, we have determined the
endurance 1imit and the fatigue initiation 1ife which is consistent with the
fracture mechanics methodology. The value of endurance 1imit for the tvpe
of steel wire used in Pasco-Kennewick and Luling bridge construction has been
found to be approximately equal to 160 ksi (1103 MPa). The wire- used in the
cables to construct these bridges has an ultimate tensile strength of 240
ksi {1655 MPa) and maximum working stress (excluding cyclic bending stress)
of 108 ksi {745 MPa). This means an unnotched, dislocation-free single wire
can sustain a bending stress up to 52 ksi (358 MPa) without exceeding its
endurance 1imit. In the examples provided in Chapter 5, we found that the
maximum bending stress in a cable corresponding to a wind velocity as high
as 52 mph (83 km/hr) is about 2.6 ksi (17.9 MPa). Even if we assume that the
ends of the particular cable in question is 20 times less stiff, no fatigue
crack will be initiated in an otherwise fault-free wire. Thus, according to
classical fracture mechanics, the fatigue crack in a wire, does not initiate
below 107 cycles of load applications.

It is an accepted fact that the fatigue life of a high strength steel
specimen is largely dominated by its initiation 1ife, as may be evidenced by
the order of magnitude comparisons between fatigue initiation 1ife and
fatigue propagation 1ife. The fatigue crack propagation curves obtained in
Chapter 6 demonstrate that, even at lower ranges of stress fluctuations, the
crack-inftiation life is at least ten times larger than the crack-propagation
life. This indicates that crack-initiation 1ife constitutes more than 90
percent of the total fatigue life.

The computation of the fatigue propagation life of a single wire has been
based on empirical crack propagation lTaw for high strength martensitic steel.
In a strict sense, the law has not been verified for steels having ultimate
tensile strength higher than 212 ksi (1462 MPa), nor for material which was
cold-drawn extensively. Fortunately, for high-strength wires we have just
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indicated that the propagation 1ife is only a small fraction of the total life.
It is hoped that approximation of the fatigue propagation life will not
materially affect the total Tife of a wire.

Finally, in this report we have attempted to correlate the fatigue 1ife
of a wire to a cable in terms of a simplistic approach. In this approach,
the cable failure is imminent when the effective stress in the unbroken wires
in the cable exceeds ultimate tensile strength. For Pasco-Kennewick Group I
cable (283 wires of 0.25 in. [6 mm] diameter), this means dpproximately’
20 percent of the wires can suffer fatigue failure before cable replacement
becomes necessary. This should in no way be construed to mean that the fatigue
1ife of Pasco-Kennewick Group I cable is 20 times that of the fatigue life of a
constituent wire. It has already been stated that the fatique 1ife of a cable
should be Tower than that of a wire. We have offered in Chapter 6 a substantive
explanation for this apparent paradox. Within the scope of this contract, it
has not been possible to derive a rational relationship between fatigue 1ife of
wires and cables by simple extension of analytical formalism.

Summarizing pertinent results, we note that the CHI ASSOCIATES, INC.'s
investigation on the analytical formulation of the fatigue behavior of highway
bridge cables under wind induced vibration, as well as the content of the report,
may be used by the designers of cable-stayed and suspension bridges in the
following manner:

1. Formulations presented in the analysis of the dynamic response
of bridge cables offer a method to compute natural frequency,
critical wind velocity, deflection and bending stress,

2. Formulations presented in the fatigue analysis of bridge wires
and cables offer some estimate of the initiation, propagation,
and total fatique life of a wire, and provide some guidelines
for the determination of the fatigue life of a cable.

7.2 Concluding Remarks

In the foregoing chapters of this report, we have presented a simplified
analytical formulation of the fatigue behavior of bridge wires and cables under
wind-induced vibration. It is our understanding, as derived from various
discussions with the researchers and experts in the field of structural mechanics,
that such a study is the first of its kind. While the results from the study
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are not in every respect complete, it is our opinion that the study provides
some guidelines and motivation for further research on this subject. We
shall outline in Chapter 8 a few recommended research programs designed to
bring about a more complete understanding of the fatigue behavior of cables
and wires.

We note here that the scope of the present investigation, as well as the
content of the report, is basically analytical in nature. We have simplified
the analysis to the extent that, we believe, is useful to design engineers.
For example, within the framework of the assumptions made in the analysis,
our results provide bridge designers with a method by which they can- compute
deflections and stresses in cables. Further, it provides bridge engineers
with an estimate of the fatigue 1ife of wires and cables. This knowledge is
important from the standpoint of reliability and maintainability. However,
we do not wish to suggest that figures, charts and tables derived in this
report should be used without discretion. In fact, the bridge designer must
first determine if, in a particular cable design, all assumptions and criteria
used in the present analytical development can be justifiably incorporated.

In conclusion, we state that much work, both analytical and experimental,
is still needed for a complete understanding of the subject. Only then it will
be possible to provide bridge designers with rigorous tools to carry out
fatigue designs of stay cables.
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CHAPTER 8
RECOMMENDED FUTURE RESEARCH

A more complete understanding of the fatigue behavior of bridge cables
and wires requires an extensive amount of additional research in several
areas, MWe shall first enumerate these research areas and then outline some
recommended research programs in each of these areas.

1. Fatigue initiation in a single wire.

2. Fatigue behavior of wire under variable amplitude and random
loading.

3. Correlation between wire fatigue and cable fatigue.
4. Fracture toughness of wire materials.
5. Environmental effects on fatigue 1ife of wires.

6. Fatigue testing of wires and cables.

Fatigue Initiation in a Single Wire

Wires used in bridge cables are made of high strength steel having
martensitic structure. During constant amplitude cyclic loading, a wire will
undergo strain-softening, thereby producing dislocation slips. The resulting
dislocation pile-ups will form microvoid. It is believed that microvoid
coalescence is the mechanism which initiates a fatigue crack. However, from the
standpoint of design engineering and application, the above metallurgical
explanation of a possible fatigue crack initiation mechanism in a single wire
is far from being sufficient for understanding the fatigue behavior.

To the best knowledge of the authors of this report, there is no quantita-
tive figure at this point to indicate what should be termed crack initiation
in a 0.25 in. (6.35 mm) diameter single wire. This lack of knowledge is
largely due to the extreme difficulty of observing microstructural changes
due to the fatigue process in a high-strength martensitic steel. In this
context, it should be noted that some efforts in the past have been undertaken
by Southwest Research Institute to develop an acoustic device for detecting
fatique crack. The adoption of such a device for the detection of fatigue
crack initiation in a thin wire deserves careful investigation.
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A problem associated with practical engineering interests is concerned
with determining the fatigue initiation life of a thin wire. Once again,
there is at this point no quantitative figure to indicate exactly what
fraction of the total life is due to initiation. However, it can be ascer-
tained that once a crack is sizeable in a wire specimen, hardly any time
will elapse before the wire breaks. Therefore, for all practical purposes,
a visible crack in a thin wire means the termination of wire life. At the

-same time, the long service life of a wire under commonly occurring service
conditions is indicative of its high resistance to fatique.

The above remarks are sufficient to establish the importance of further
research into the accurate prediction of fatigue initiation Tife. In this
report, we have outlined two possible methods to determine initiation 1ife,
The first of these methods relates the fatigue initiation life in a single
wire to the applied load or Toad fluctuation, material properties and strain-
hardening exponent. The relationship can be derived semi-empirically using
experimental results. We, therefore, recommend that some fatique crack
initiation tests, similar to the one carried out by Barsom for HY-130 steel,
be performed.

The second method to determine initiation 1ife is also semi-empirical and
is based on experimental results relating the initiation 1life to the notch
radius and notch toughness factor. In the case of a thin wire, it is, however,
difficult to conceive an experiment with notched specimen, particularly since
a notched wire is likely to exhibit a rapid fatigue failure which is not
indicative of its initiation 1ife. We, therefore, consider that some research

effort be expended to develop a meaningful experiment along this line.

Fatigue Behavior of Wire Under Variable Amplitude and Random Loading

Bridge cables are subjected to two major loading conditions: (1) impact
or dynamic effects due to Tive load; and (2) wind Toads. The Tive load has
variable amplitude and is often random in nature while wind loads are almost
always random. It is, therefore, reasonable that the fatigue behavior of wire
be studied under the conditions of variable amplitude and random loading.
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Within the scope of the present contract, we have studied the fatique
behavior of wires and cables under wind loads considering the latter as
having variable amplitude, We have also presented some rudimentary ideas
in the report which accounts for the random nature of the wind load. Unlike
the conventional root mean square analysis, our approach considered a reli-
ability type analysis in which the fatigue damage of a wire was expressed in
terms of the interference of two probability distributions, namely, those of
strength and applied stress. This latter approach is more rational, since
it not only incorporates the random nature of wind loads, but also considers
random response of material. The approach is certainly more promising, and
it is strongly recommended that further analytical work be pursued in this
area to obtain a better understanding of the fatigue behavior.

Correlation Between Wire Fatique and Cable Fatigue

Reemsnyder has done some experimental work on both wire and cable (strand)
fatigue and has concluded that there is no apparent correlation between the
two corresponding fatigue lives. Fisher and Viest have also done some experi-
ments on the fatigue lives of wires and strands, but have not made any attempt
to correlate results. Reemsnyder's experimental data were far too sparse and
showed a wide scatter. Besides, it is not clear just what methods of fatigue
testing were used for wires and ropes and whether the experiments were con-
sistently reproducible. Therefore, the conclusion reached by Reemsnyder is
not definitive and this area of research requires further consideration.

We recommend an analytical approach for the correlation study between wire
fatigue and cable fatigue. The approach is based on the consideration that when
a single wire in a cable fails by fatique, a gradual Toad transfer mechanism
takes place. The physical model is, therefore, one which reflects the connec-
tion between the applied stress distribution in a single wire to that in the
cable. Taking into account that the strength distribution in each wire is
identical, the approach leads to the relationship between the fatigue 1ife of
a cable and that of a wire.

As discussed earlier, the fatigue process in a single wire due to wind
loads is random in nature. The same is true for any wire in a cable. In
general, one can assume that the fatigue behavior of each wire is statistically
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independent. However, it is conceivable that when the wires form a cable,
the gradual Toad transfer mechanism imposes a conditionality on subsequent
wire failures based on how and when the first wire fails. This type of
rationalization of the fatigue process in a cable gives rise to a stochastic
model which can be readily incorporated in the above analytical approach.

Parallel to the analytical study of correlation between wire fatigue
and cable fatigue, it is highly recommended that extensive, but carefully
designed experiments be performed to generate sufficiently large sets of
fatigue data for single wires and cables. In addition to providing a reli-
able data base for design engineers, such an effort will be useful in
verifying the analytical models for cable fatigue.

Fracture Toughness of Wire Materials

The conventional fracture mechanics approach to determine the fracture
toughness under static loading is to follow the KIC-test method {ASTM E399-74)

developed by the American Society for the Testing of Materials (ref. ASTM STP-463).
The test method has stringent requirements on specimen sizes to insure the

accurate reproducibility of test results. For this reason, the application of

the method to structures like thin wires and cables has not been successful.

On the other hand, for fracture and fatigue analysis, it is essential to know

the value of KIC either experimentally or analytically. Therefore, this area
constitutes another forefront of research.

The analytical method of determining K;o entails the derivation of an
expression for the stress intensity factor KI. In the present report, KI
for a single wire was approximated by several expressions. One expression
is a direct extension of the original analytical work by Folias for circum-
ferential cracks on a hollow cylinder to the case of a solid cylinder. The
analytical basis of such extension was not investigated within the scope of
the present contract. It is, therefore, recommended to pursue this
investigation.

Another approximate expression for }& considered in this report is involved
with the finite element analysis of circumferential crack in a solid cylinder.
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The original work was due to Hilton and Sih and a numerical solution of axi-
symmetric crack problems in a sclid cylinder with a circumferential edge
crack was given for a crack length to specimen radius ratio of 0.4 and 0.5,
It is recommended that this type of finite element analysis for different
crack sizes and geometries be pursued.

The analytical expression for stress intensity factor will directly Tead
to the determination of fracture toughness once the maximum design load is

~ known and the critical crack length is found experimentally or otherwise.

Environmental Effects on Fatigue Life of Wires

In general, fracture toughness of high yield strength (above 140 ksi
[965 MPa]) steels is not very sensitive to a change in temperature. However,
if a particular bridge site experiences a severe seasonal temperature fluctua-
tion, cables and wires will undergo a thermal stress reversal in addition to
stress reversals due to mechanical and wind Toading. The magnitude of thermal
stress fluctuation may be significant to cause a reduction in the fatique 1ife.

Corrosion fatique is another area which requires some attention. Corro-
sion may not be a severe problem for cable-staved bridges in the United States
primarily because stayed cables are jacketed with PVC cylinders. On the other
hand, several suspension type cable bridges have bare cables and some have
zinc-coated and galvanized cables. During the lifetime of these cables, cor-
rosive environments affect their fatigue behavior cons%derab]y. We, therefore,
recormmend to look into the problem of environmental effects on fatigue 1ife of

wires,

Fatigue Testing of Wires and Cables

An examination of a specimen failed by fatigue generally reveals some
qualitative information. For example, if the fracture surface of a specimen
is flat, it indicates the absence of an appreciable amount of gross plastic
deformation during service life. The flatness of the fracture surface can be
ascertained by naked eyes, optical microscopy or electron microscopy depend-
ing on specimen and crack size and scale of measurements. In some cases, it
may even be possible to obtain a quantitative estimate of the fatique life
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based on an analysis of the characteristic markings on the fracture surface

called the "striation lines.” However, this does not give a complete under-
standing of the quantitative aspects of fatigue behavior of a structure,
It is still essential to carry out some form of fatique testing in conjunc-

tion with empirical or analytical work described above.

Over the years, a number of fatigue testing has heen developed in the
laboratory scale. Those tests can be classified broadly in three categories:
constant stress-amplitude testing, constant strain-amplitude testing, and
constant stress intensity factor testing. At present, most of the testing
methods are of the first type.

We have already noted that fracture and fatigue experiments with single
wires are too few for the purpose of any meaningful analysis. The lack of
extensive experimentation is understandable., The first and foremost difficulty
in performing a single wire fatigue test is to design a test rig with allowable
load range while insuring the constant stress-amplitude be maintained.

Secondly, for a tension-compression type axial fatigue test, it is difficult

to design a test rig so that the grips at wire ends do not produce undesirable
mechanical notches. The experiments of Fisher and Viest with Sing]e wires
indicate a significant number of wire failure at the grouts and it is suspected
this, in part, is due to mechanical notches.

Even when a proper test set-up is designed, it is not an easy task to
devise an efficient method of crack measurements. Considering all these, it
is strongly recommended to expend some research effort into an extensive but
careful experimental investigation of wire fatigue 1ife. Some experiments in
this area are suggested below.

1. Crack Growth Measurement in a Single Wire
This testing program will allow the measurement of crack growth in a

single wire notched specimen under the action of repeated tensile loading.

The major equipment for this testing is an MIS machine with specially
designed stress rig similar to the one shown in Figure 571. The speciren is
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fixed between fixtures E and D by means of sockets., Fixture D is fixed, and
fixture E moves up and down along with block G due to the reciprocal motion
produced by the rotation of cam K. The reciprocal motion induces zero-to-
tension loading in the specimen. The specimen must be sufficiently long to

insure that the premature failure coes not occur due to severe stress concen-

tration induced by mechanical notches at the grip or by imperfections along
the length.

For the measurement of crack growth under fatique loading, the
specimen may be connected to a potentiometer circuit as shown in Figure 52.
A plotter is provided in parallel to the variable resistance RO to plot the
changes of vcltage across RO as a function of the number of fatique loading
cycles. RO may be calibrated by an ammeter.

When the specimen is cracked or when the crack length is increased, the
net cross-section area of the specimen will decrease and hence, RS will
increase. Any change in RS will change the value of current, T in the circuit.
Therefore, the potential difference across RO will change. If a is the

crack length and ER is the potential difference across RO, then it is
0
evident that:

da
dE
RO

= f (Rs’ Rsh’ Ro’ ro) (66)
For a simple potentiometer circuit such as the one in Figure 52, the function f
can be easily determined. Hence, from the measurement of ER , a can be found.

- , )
A typical curve relating ER toc a is shown in Figure 53. It is also possible,

0
at this stage, to determine a relationship between crack Tength and the number

of cycles of load application, N, as shown schematically in Figure 54.

For better accuracy of experimental results, the basic test program can
be modified in various ways. An air cylinder can be used with calibrated
gauge to replace the cam-roller mechanical combination. This will not only
add accuracy to the tensile stress measurement but also provide the system
with a variable loading mechanism. The latter is achieved by changing the
air flow to the air cylinder. Similarly, a fiber optic can be used to replace
the potentiometer circuit. The optical signals from fiber optic can be
translated through photo cells to electrical signals which can then be
displayed in a CRT. Finally, acoustic transducer {ultrasonic) can be used
to replace the potentiometer circuit. During the crack propagation, the
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ultrasonic transducer will attenuate resulting in acoustic emission. The
two latter modifications will give better accuracy in crack growth
measurements.

2. Three-Points Bend Test of a Single Wire

Wires used for manufacturing cables and strands are usually 0.25-0.375 in.
(6-10 mm) diameter and cold drawn. The 'conventional ASTM three-points bend
test is not suitable for these wires. Fisher and Viest suggested elsewhere
another form of three-points bend test which is only applicable for reinforcing
wires embedded in PCC slabs. To determine the bending fatigue characteristics
of a single wire, jt is necessary to subject the wire alone to reverse bending.
Reemsnyder designed a test rig with a rotating buckled strut fitted to it to
allow completely reverse bending with very small axial Tead. However, this
test rig seems to give torsional rotation in addition to reverse bending.
In order to avoid torsional rotation, the reverse bending test of Reemsnyder
can be modified in the following manner.

First, the specimen will be fixed between two fixtures similar to D and E
of Figure 51, A small tension will be applied at both ends of the specimen to
make it straight. It is understood that the specimen for bend test is long
enough and is notched at midlength., A small segment of the specimen covering
both sides of the notch is embedded in an epoxy mat as shown in Figure 55. A
sinusoidal load can be applied across the epoxy resin mat through the use of
a cam-roller mechanical combination operated by step motors. Once again, this
can be achieved by a specially designed stress rig.

3., Fatigue Testing of a Cable

The experimental set-up for fatique testing of a cable can be fairly
involved depending on the test program, For instance, the bending fatigue test
of a cable by a method similar to the one for single wires will require the
provision of an equipment to. create sinusoidal motion in a cable of diameter
4 in. (10 cm) or more, A simple tensile fatigue testing of cable is, however,
feasible using a universal testing machine and an acoustic emission console
including audio frequency spectrometer and tape recorder.
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APPENDIX A
DYNAMICS OF STAY CABLES

1. Free Vibration Analysis of Stay Cables

The governing differential equation of the motion of a stay cable has
the following general form (see equation (9 ) also):

oA 5{¥~ +c -1- 5—-2 (EI %;%}- - T) = F(x,t) (A-1)

X

where all terms in the above equation have been explained previously in
Chapter 4.

The natural frequencies and mode shapes of a stay cable are obtained from
the complementary solution of equation (A-1). The following assumptions are
made in solving the complementary part of equation (A-1).

a) The natural frequencies of a stay cable are widely separated

from one another;

b) The damping is small and hence, can be neglected;

¢) The stay cable has fixed ends; and finally,

d) The stiffness of the cable is constant along its axis and the axial

force, T, is independent of time.

Under the above assumptions, the equation of free vibration of a stay cable
is given by:

E -—% T -%— + oA %{% =0 (A-2)

By a separation of variable technique, and considering a solution of equation
(A-2) of the form,

y(x,t) = y(x)e'®t , ' (A-3)
the small amplitude, free, transverse vibration of a cable can be written as
follows:

[ 2
3 gi%‘ - T %~%~ - phw?y = 0 (A-4)

Equation (A-4) is nondimensionalized by setting:
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thus yielding:

N d?y
%Yl' - P oz T QY =0 (A-6)
where p = ILZ = nondimensional force
El (A-7)
_ phw? _ : :
Q= T nondimensional frequency

The most general solution of equation (A-6) is given by:

0 [ee] . A

Y(x) = %=]¢n (X) = §i1 Asino X+B_coso, X+C sinhg X+D, coshe X
(A-8)

where An, Bn, Cn, and Dn are coefficients to be determined from the boundary

conditions, and where o, and B, are given by the following expressions:

O‘nz ‘%;_<_ Q ) (A-9)

The boundary conditions are those corresponding to the fixed ends and these are:

1}

, do
(I)n:O a“)‘(—“xo at X =0
@ =0 , gy =0 atXx=1

By applying the four boundary conditions in equation (A-10) to the expres-
sion for @n(x) (equation A-8) , one obtains a set of four homogeneocus equations
in An’ Bn’ Cn’ and Dn' For nontrivial solution, the determinant of the coefficient

matrix must be zerc and this yields:

n? - an
o) \ 4 ——
I sthcosoan o B

sinh 8 sin@n =1 (A-11)
nn

Equation (A-11) is the most general frequency equation for small amplitude
transverse vibration of a stay cable. The solution of this equation satisfying
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expressions in (A-9) gives the natural frequency, W In practice, it is
more convenient to express the relationship between P and Q, or between P and
72 where 72 = 4Q/P ? as has been shown in Figures 10 through 14,

The solution of the transcendental equation {A-11) can be substituted
back into expression (A-8), and the coefficients An, Bn’ Cn, and Dn can be
determined by usual eigenvalue analysis procedure. In particular, choosing
An = 1 arbitrarily and assuming Bn = —Dn, one finds that:

A =1

o sinh - ing
n Bn Bn S i

B = -
n B, (cosa, - cosh 8 )
C, = -n (A-12)
n —B—
n
0 - BnS1nun - ans1nh6n
n B, (Coso - coshg )

The term, @n’ more commoniy called the nth mode shape, can now be given

by: g, sino - @ sinhg

- &4 N -
®n s1nanX + 2 (cosa = cosha ) (costhX c03anX)
n n n
%n
- sinhp X (A-13)
Bn n

[I. Response of Cables to Harmonic Loading

Consider again the governing differential equation of motion given by
equation (A-1}. The solution of (A-1) is sought in the following form:
y(x,t) = 3 ¢ (x}y (t) : (A-14)

where ¢n(x) is the nth natural mode of the cable, and wn(t) is the generalized
coordinate of the cable. Substituting (A-14) into (A-1), one obtains:

o T gfx)b,(t) + EIZg (x)u (1)
n n

=T B (0w () + € 39 (i () = Ft) (A-15)
n . n
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where it is assumed that F(x,t) is simply a harmonic function, F(t), of time.

An important property of the normal modes, ¢n(x), is their orthogonality
with respect to mass density. This gives:
L.

f pA¢m(x)¢n(x)dx San (A-16)
0

where 6mn is Kronecker delta. The latter is equal to 1 when m=n, and is equal
to zero when m # n.

It is also known that ¢n(x) is the complementary solution of {A-1) and
hence,
IV " , -
EIz¢n (x) -~ Tz¢n§x) - oAZm;¢n(x) =0 (A=17)
n n n
The above two equations, (A-16) and (A-17), can be utilized to reduce equation

(A-15) to a set of second order uncoupied differential equations of the form:

o : 5 Tn(t)
bnlt) + G U(0) o () = (A-18)
n=1, 2, 3,
where
T (t) = X F(t) s (x)dx (A-19)
n o n
is the generalized force vector, and
M= SfoAe(x) dx (A-20)
n o N

is the generalized mass.

Considering that the harmonic function, F(t), has the form:
- - 1 2 ’ -
F(t) = Fcosu t = —— p dV? C cosu t (A-21)

where all terms in the expression have been explained in Chapter 4 of the text,
the expression for Tn(t) and M, are given by:

. .1-cOsunL Dn Dn
T(t) = F_( - Sing L + sinhg L
n 0 o o n Bn n
Cn
+ 5 COSthL -1) Coswst (A-22)
=T gosw t
on 5
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L 2 2 _h
;ﬂ\{z (1+2Dn -Cn) + »e (o +Cn6n)
o B2
n
2C B oo
} . °Un n--1i .
+ D (- + + ( ) sin2a L
h 2% 4Bn @n
Dn Dn2 + Cﬁ .
+ ?'"" COSZOC L +( 4-'8—”-—*—- ) $1nh26hL
20,Cy,
+ 4Bn coshZB L
2D B -2DC oy . .
L " n) sing L sina L
Otnz + an
-2D o -2D C B
n ( “nn"npn) costhL cos@hL
anZ + BnZ
+ (ZCan'ZCnan ) sinthL c05anL]
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2
o 200 %) sinng 1L cosoan} (A-23)
un2 +Bn 2

Returning to equation (A-18), we assume that the damping coefficient is

proportional to mass density, and is given by:

= 2gnwnpA (A-24)
Equation (A-18) can then be rewritten as:
() + 2e0 b (8) + o (t) = L) (A-25)
wn Cnmnwn ®n¥y Mn
The steady state solution of equation (A-25) is obtained as follows:
wn(t) = G1n sinwt + GZn coswt (A-26)
where the coefficients G] and 62 are given by:
G, = ZC ‘“n“’ T nz i )
in M [(w w 7t (2g 0 0)? ]
, (A-27)
’ 2
G ) T(\)n (wn - UJS
2n 2 2y 2 2
Mpllw, ?= w ) + (20 wow )?]
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The general solutien of the governing differential equation can now be
written as:

y(x,t) = Eyn(x,t) = F E¢n(x) [Gy,simw t + G, cosw t] (A-28)

The solution can be nondimensionalized by setting

v - yn(x,t) s X T Ly;(x,t) (A-29)

n L n

The expressions for Yn and Xn obtained in this manner are given in terms of
nondimensional force, P, and nondimensional frequency, Q, or more
appropriately, in terms of 7% as follows:

4
Y, = —e— f(P.2) (A-30)
‘L (P,7)
Xn © Tmst O (A-31)
. T+7 2 ’
VI+/T+22 [1- T/I+2 7 coso - —z--——Asina ]
#(P,z) = a1zt iz
VTHRTE [P (+/TF7) 41 - 3 107 (A-32)
? V¥ 2
and
2 2 ) T17 243
A7) - 2(1+22)-[1+7 +¢1+22]c05an-2/1+z sino (A-33)

=3-VTHZ2+2/THL 3P (1+/TH2)
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APPENDIX B
NATURAL FREQUENCIES OF PASCO-KENNEWICK AND
LULING BRIDGE CABLES
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Figure B-1. Model of Intercity Bridge on Columbia River
in Pasco-Kennewick, Washington.

Description

Overall length - 2503 ft. {763 m)

Main span - 981 ft. (299 m)

Cable-stayed girder length - 1794 ft. (547 m)
Total number of cables - 144

Special Features of Stay-Cables

Number of wires in a cable - 73 (Group IV) to 283 (Group I)
Wire diameter - 0.25 in. (6 mm) BBR type

Cable length - 180 ft. (55 m) to 506 ft. (154 m)

Quter diameter of cable - 6 in. (15 cm)

Wire stress range - 59 ksi (407 MPa) to 108 ksi (745 MPa)
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Pasco-Kennewick Group I Cables
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Pasco-Kennewick Group I Cables
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LULING MISSISSIPPI DESTREHAN=—
RIVER

LAJ? WEVEE

\ 2212'(674m)

. EL 403(I23m)
© TE =
>(252'(77m) >
a al
4% il -4y,

£ 9g'(30 rn)}_F

m

EL-IsI (49m)]‘\7 Et.-185'(56m / / \EL I50(46m)
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' HORIZ CL ||97 (362 m) H 460" (140m)
D O ® @®
260 |78 - 185'-165 3AT|76.5° _|I6% 3 AT (765’ 3AT 88| 260
(?9m) 508'{I55m)_ 1222' (372m) 495 (I5im)|(79m)
2745(837m)

Figure B-2. Cable Stayed Span of Luling Bridge on
Mississippi River, Louisiana

Description

Overall Tlength - 11080 ft. (3377 m)

Main span - 1222 ft. (372 m)

Cable-stayed girder length - 2212 ft. (674 m)
Total number of cables - Not available.

Special Features of Stay-Cables*

Number of wires in a cable - 108 (Group IV) to 307 (Group I)
Wire diameter - 0.25 in. (6 mm) ASTMA4Z1 type

Cable Length - 200 ft. (61 m) to 580 ft. (177 m)

Outer diameter of cable - 6 in. (15 cm)

Wire stress range - 108 ksi (745 MPa)

* Information obtained in consultation with Prescon. Corp. The figures are
approximate.
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