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ABSTRACT 

Two major earthquakes in Alaska, namely the 1964 Great Alaska Earthquake and the 2002 

Denali earthquake, occurred in winter season when the ground crust was frozen. None of the 

then-existing foundation types was able to withstand the force from the frozen crust overlying 

liquefied soils. This project aims to study how a frozen ground crust affects the performance of 

bridge pile foundations and how to estimate the loads imposed by a laterally spreading frozen 

ground crust during earthquake-induced liquefaction. A shake table experiment was conducted to 

gain an in-depth understanding of the mechanism of frozen ground crust-pile foundation 

interaction, and to collect data to validate a solid-fluid coupled finite element (FE) model and a 

simplified analysis method, that is, the beam-on-nonlinear-Winkler-foundation (BNWF) or p-y 

approach. Loads imposed on pile foundations by a frozen crust were studied through solid-fluid 

coupled FE analyses of a typical bridge foundation in Alaska under two soil conditions—one 

with an unfrozen crust and the other with a frozen crust—and by comparison of results obtained 

from these two cases. The effectiveness of the p-y approach in predicting the response of piles 

subjected to frozen ground lateral spreading resting on liquefied soils was evaluated by 

comparing the results obtained from the p-y approach with results from FE model. Finally, 

guidelines are proposed for design practitioners for performance analysis of pile foundations 

embedded in liquefiable soils subjected to frozen ground crust lateral spreading with the p-y 

approach. 
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EXECUTIVE SUMMARY 

This study investigates the effect of frozen ground crust on the seismic response of pile 

foundations in liquefiable soils. A shake table experiment was conducted to gain an in-depth 

understanding of the impact of frozen ground crust on a model pile. The results were used to 

validate two numerical approaches: solid-fluid coupled finite element (FE) modeling and the p-y 

approach. Loads imposed on pile foundations by the frozen crust were studied through 

solid-fluid coupled FE analyses of a typical Alaska bridge foundation. The effectiveness of the 

p-y approach in predicting the response of piles embedded in liquefiable soils subjected to 

laterally spreading frozen ground was evaluated. The main findings from this project are 

summarized below: 

1. The shake table experiment shows that laterally spreading frozen ground crust forms two 

plastic hinges on the model pile: one near the frozen crust-loose sand interface and the 

other within the medium dense sand layer. The plastic hinge at the frozen crust-loose 

sand interface is formed because of the large distributed load (soil resistance) induced 

by the frozen ground crust; the plastic hinge in the medium dense sand layer is the 

direct result of lateral spreading of the ground crust.  

2. Two approaches—the solid-fluid coupled FE modeling and the p-y approach—were 

confirmed as being quite effective in predicting the response of piles subjected to frozen 

ground crust lateral spreading, particularly the formation of plastic hinges.  

3. Laterally spreading ground crust forms two plastic hinges on the pile for both frozen 

(with a frozen active layer) and unfrozen (with an unfrozen active layer) cases: one 

located near the frozen ground crust-loose sand interface (referred to as the upper plastic 

hinge) and the other within the medium dense sand layer (referred to as the lower plastic 

hinge).  

4. The plastic deformation and hinge rotation demand are much higher in the frozen case 

than in the unfrozen case under similar seismic loading conditions.  

5. The p-y approach is effective in predicting the location and plastic deformation demand 

at the upper plastic hinge, and the location of the lower plastic hinge. It underestimates 

the plastic deformation demand in the lower plastic hinge. However, with further study, 

this could be improved by using a different p-multipliers selection approach. 
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6. Guidelines are proposed for design practitioners to analyze the response of piles 

embedded in liquefiable soils subjected to frozen ground crust lateral spreading by the 

p-y approach. This includes how to obtain free-field displacement, select p-multipliers, 

model the frozen soil resistance, and account for the restraint offered by the 

superstructure.  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Liquefaction and associated ground failures have occurred during past major earthquakes 

across the world, including Alaska. A substantial portion of the ground failure and structural 

damage was a direct result of or related to liquefaction and lateral spreading of the ground crust. 

Lateral spreading is particularly damaging if a non-liquefiable crust rides on top of the liquefied 

soil. Moreover, when the ground crust is frozen, its physical properties including stiffness, shear 

strength, and permeability change by orders of magnitude (Akili 1971; Stevens 1973; Haynes 

and Karalius 1977; Vinson et al. 1983; Zhu and Carbee 1983; Zhang 2009). What would be the 

impact on a bridge foundation located in a frozen ground crust resting on a liquefied soil layer? 

How large are the generated loads when an earthquake occurs in winter and how should these 

loads be considered by the designer? 

Lessons were learned from historical earthquakes in Alaska. In March 1964, Alaska 

experienced one of the largest earthquakes in recorded history: the Great Alaska Earthquake with 

a moment magnitude of 9.2. Numerous cases of bridge foundation damage associated with 

liquefaction-induced lateral spreading were reported in Southcentral Alaska after this earthquake. 

Ross et al. (1973) reported many observations indicating the liquefaction of cohesionless soils 

and landslides. The following are a few direct quotations from the authors’ report: “‘mud’ oozing 

up in cracks”; “road embankment collapsing to the level of flood plain”; “embankment sliding to 

river centerline” (Figure 1.1); “downstream movement of the footing and upstream tilt of the pier 

shafts”; and “piers shifting or tilting longitudinally toward the channel centerline” (Figure 1.2). 

According to the statistical data, none of the then-existing foundation types was able to withstand 

the lateral forces, including cases where the superstructure had not yet been built (Figure 1.3).  
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Figure 1.1. Displaced embankment and damaged bridges 

 

 
Figure 1.2. Tilted bridge pier due to laterally spreading frozen crust 
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Figure 1.3. Ground settlement and tilted bridge pier at a bridge construction site 

The reason for such huge lateral loads was believed to be the frozen ground crust. A frozen 

crust overlying liquefiable soils is likely to generate significantly larger loads on foundations due 

to the distinct characteristics compared with the unfrozen soil. Coincidently, in November 2002, 

the Denali earthquake struck Interior Alaska, again in wintertime, resulting in extensive 

liquefaction and lateral spreading, as shown in Figure 1.4 (Shannon and Wilson Inc. 2002). With 

the past in mind, it is essential to better understand the influence of a frozen crust on soil-pile 

interaction in liquefiable soils for seismic design of bridge foundations in cold regions. 

 
Figure 1.4. Lateral spreading observed in a bridge site after the 2002 Denali earthquake 
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1.2 Literature Review  

Researchers around the world have studied soil-pile or soil-structure interaction and have 

used a number of methods in studying these interactions. The methods can be classified into 

three categories: (1) physical experiment (e.g., Shirato et al. 2008; Ashford et al. 2006; 

Cubrinovski et al. 2006; Rollins et al. 2005; Armstrong et al. 2008; Horazdovsky 2010); (2) 

solid-fluid coupled dynamic finite element (FE) modeling (e.g., Yang and Jeremic 2005; Abate 

et al. 2010; Elgamal et al. 2009; Lam et al. 2009; Cheng and Jeremic 2009; Lu et al. 2011); and 

(3) simplified analytic method (e.g. Boulanger et al. 1999; Takahashi et al. 2006; Zha 2005; 

Weaver et al. 2005; Naggar et al. 2005; McGann et al. 2011).  

The category of physical experiment can be further classified into single-gravity shake table 

experiment (1-g test), centrifuge experiment (N-g test), and full-scale experiment. To perform a 

1-g test, a scaled soil-foundation system is fixed to a platform and loaded with earthquake 

excitations. The N-g test overcomes the scaling problem by performing the scaled 

soil-foundation model test in a centrifuge. Due to the centrifugal force generated by spinning the 

model, the gravity in the soil-foundation model increases multiple times, and therefore stresses 

and strains are amplified. A full-scale experiment usually includes installing a full-size 

foundation and/or structure in the field and loading it by static force or dynamic force generated 

by blasting or other means. 

The FE analysis can explicitly model the bridge superstructure and pile foundation system 

behavior, including the effects of bridge abutments and liquefaction of soils on the seismic 

response of the bridge system. In recent years, studies have shown that dynamic FE analysis is 

capable of better representing certain aspects of pile foundation behavior during earthquake 

loading and liquefaction-induced deformations (Elgamal et al. 2002; Finn and Fujita 2002; Yang 

et al. 2003). Dynamic FE analysis has been successfully used to simulate the failure modes of 

piles observed in past earthquakes (e.g. Fujii et al. 1998; Kagawa et al. 1997; Tao et al. 1998; 

Uzuoka et al. 2008; Cubrinovski et al. 2008).  

Simplified analyses of piles in laterally spreading ground include the pseudo-static 

beam-on-nonlinear-Winkler-foundation (BNWF or p-y) approach and the limit equilibrium 

approach. In the limit equilibrium approach, pressure distribution along the resisting soils is 

assumed and is applied on a pile foundation to calculate the internal shear force and bending 

moment distributions (e.g., Dobry et al. 2003). Two alternatives to p-y approaches are depicted 
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by Boulanger et al. (2003). The first alternative requires free-field soil movement (ysoil) as an 

input; the second alternative applies limit pressures over the depth of laterally spreading soil 

(with the p-y springs removed in this interval). In either case, p-y springs are used to model the 

response of the underlying competent soil. In the second alternative, the applied lateral pressures 

are independent of the free-field soil displacements, since the soil movement is assumed large 

enough to cause the lateral pressures to reach their limiting values.  

To conduct an analysis using the p-y approach, one of the key issues in modeling the 

soil-foundation interaction in liquefied ground is the subgrade reaction behavior. Findings from 

prior physical modeling studies (e.g., Wilson 1998; Dobry and Abdoun 2001; Tokimatsu et al. 

2001; Ashford and Rollins 2002) show that the back-calculated p-y behavior of liquefied sand 

depends on soil relative density (Dr), prior displacement/strain history, and excess pore pressure 

(EPP) ratio in the far- and near-field, partial drainage and loading rate, and pile flexibility and 

head restraint, among others. These different studies reveal a wide range of subgrade reaction 

behaviors, which in return reflect the complexity of the phenomena. 

Another key issue is the ultimate pressure of the ground crust layer. Using the p-y approach, 

Brandenberg et al. (2005) analyzed the data obtained from centrifuge modeling of single piles 

and pile groups embedded in a clay crust overlying a loose sand layer and a dense sand layer. 

They found that the peak lateral loads on piles due to laterally spreading clay crust can be well 

predicted by Matlock’s “static” p-y curves, whereas his “cyclic loading” p-y curves were very 

conservative (Matlock 1970). The peak load produced by downslope spreading of the clay crust 

is more closely approximated by a static monotonic loading mechanism than by the 

displacement-controlled cyclic loading used in Matlock’s studies. Brandenberg et al. (2005) also 

found that large relative displacements, that is, 40~100% of the pile cap height, were required to 

mobilize peak crust load when the soil beneath the crust liquefied, because a large length of the 

crust (uphill of the pile cap) was compressed before pressures were sufficient to cause passive 

failure of the soil crust. Another independent study of large-scale shake table tests on single piles 

by Cubrinovski et al. (2006) showed that the ultimate lateral pressure from a sand surface layer 

was about 4.5 times the resultant Rankine passive pressure, and a relative displacement of 10% 

of the crust layer thickness was required to mobilize the peak load. One of the remaining issues 

is how the relative stiffness between the crust layer and the underlying liquefied layer affects the 

load transfer behavior. 
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1.3 Study Objective 

This project aims to advance the understanding of the impact of frozen ground crust on 

bridge foundations during liquefaction-induced lateral spreading and to investigate how to 

evaluate the lateral loads on bridge pile foundations induced by a laterally spreading frozen crust 

that overlies liquefiable soils during earthquakes. The objectives of this project are to: 

1. Gain an in-depth understanding of the impact of frozen ground crust on a typical 

ADOT&PF-style bridge foundation (i.e., concrete-filled steel pipe pile) embedded in 

liquefiable soils overlying competent soils during earthquakes. 

2. Validate numerical methods including the solid-fluid coupled FE model and p-y 

approach. 

3. Propose guidelines for conducting simplified pseudo-static analysis to account for the 

loads on bridge foundations induced by a laterally spreading frozen crust during 

earthquakes. 

1.4 Scope of Work 

The scope of work, using a shake table experiment, solid-fluid coupled FE modeling, and 

the p-y approach, includes the following: 

1. Conduct a shake table experiment to gain an in-depth understanding of the impact of 

frozen ground crust on a model pile foundation, and use the results to validate the FE 

model and the p-y approach.  

2. Study the impact of the frozen crust on pile foundations through solid-fluid coupled FE 

analysis of a pipe pile foundation typically used in Alaska for bridge structures. Build 

two models to investigate the frozen ground crust effects: one with an unfrozen crust 

and the other with a frozen crust.  

3. Evaluate the effectiveness of the p-y approach by comparing the results from the 

simplified approach with the results obtained from FE modeling.  

4. Propose guidelines for design practices on how to perform simplified analysis of pile 

foundations subjected to liquefaction-induced lateral spreading of a frozen ground crust. 

1.5 Organization of This Report  

This report is divided into six chapters: 
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1. Chapter 1 introduces the background, literature review, study objectives, and scope of 

the work. 

2. Chapter 2 presents a shake table experiment with experiment configuration, observation, 

results, and analyses.  

3. Chapter 3 presents the validation process of two numerical approaches— FE modeling 

and the p-y approach—through comparison with results from the shake table 

experiment. 

4. Chapter 4 analyzes a full-size soil-pile system by solid-fluid coupled FE modeling in 

both unfrozen and frozen conditions, and discusses the effect of frozen ground crust on 

the seismic performance of pile foundations in liquefiable soils. 

5. Chapter 5 evaluates the capability of the p-y approach and proposes guidelines for 

analyzing pile performance by using this simplified method in design practices. 

6. Chapter 6 summarizes the content of this report, presents the study’s conclusions, and 

discusses suggestions for future study. 
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CHAPTER 2 SHAKE TABLE EXPERIMENT 

2.1 Introduction 

As indicated from the literature, lessons have been learned from Alaska’s major 

earthquakes, such as that lateral spreading of a frozen crust overlying liquefiable soils can 

generate significant lateral force and induce extensive bridge foundation damage. Unfortunately, 

very limited studies have been carried out to investigate the impact of the frozen crust on built 

infrastructure during earthquake loading. Shake table experiments have been successfully 

applied in studying soil-pile interaction under liquefaction and liquefaction-induced lateral 

spreading conditions. Examples of shake table experiments on soil-pile interaction include 

Cubrinovski et al. (2006), Shirato et al. (2008), Ueng (2010), and Yao et al. (2004). 

This chapter presents the results and analyses of a shake table experiment that investigated 

the mechanism and consequences of frozen crust-pile foundation interaction during 

earthquake-induced liquefaction and lateral spreading. This chapter describes the experiment 

model design, instrumentation plan, model preparation, frozen soil simulation, and recorded data 

including acceleration, pore pressure, and displacement time histories. Included in this chapter is 

an analysis of the bending moment induced on the pile by using recorded strain data, and a 

discussion of the mechanism of soil-pile interaction in the presence of frozen crust under a 

liquefaction condition. The shake table experiment was designed in detail by authors at the 

University of Alaska Anchorage, and later performed by Dr. Runlin Yang from Beijing 

University of Science and Technology, Beijing, China. 

2.2 Shake Table Experiment 

2.2.1 Shake Table Experiment Facility and Model Configuration 

The shake table experiment was performed on a 3 × 3 m shake table. The payload capacity 

of the shake table is 10 tons, with a maximum acceleration ranging from 1.0 g (fully loaded) to 

2.5 g (unloaded). Figure 2.1 shows the soil-pile system set up in a 3 × 3 × 1.3 m (L×W×H) steel 

container. The container has a wall thickness of 4 mm with a frame support system welded to the 

outside. A steel pipe pile with an outer diameter of 5 cm and wall thickness of 0.175 cm was 

used to model a bridge pile foundation, typically used in Alaska, at a scale of 1:15. The pile was 

fixed at the bottom of the soil container and has a lumped mass of 250 kg on its top to simulate 

the inertial effect of the bridge superstructure. The soil profile consists of a 30 cm frozen soil 



 

11 

crust overlying a 30 cm loose sand layer and a 60 cm medium dense sand layer. The crust has a 

5° slope angle. A 25 cm wide opening between the left end of the frozen soil crust and the soil 

box was designed to mimic a river channel and allow the frozen crust to spread laterally during 

earthquake shaking. Water level was designed just above the interface between the loose sand 

and frozen soil to ensure that the sands were fully saturated. The sloping ground and river 

channel scenario resembles a typical topographical situation for a bridge site. 
 

 
Figure 2.1. Layout of the shake table model 

Figure 2.1 shows that four types of transducers were used in this experiment: pore pressure 

transducers (5, identified by “P”), accelerometers (9, identified by “A”), strain gauges (9, 

identified by “S”), and LVDTs (3, identified by “L”). Accelerometers and pore pressure sensors 

were placed at different locations in the soil profile to record acceleration and pore pressure. 

Strain gauges were installed on the pile to measure the strain values for quantifying the loads, 

which is also one of the foci of this study. Considering that concentrated strains and moments 

might be generated by the frozen crust, more strain gauges were installed at locations close to the 

loose sand-frozen soil interface and the top of the frozen soil. Note the reference point for all 

LVDTs is the soil container; therefore, the measure displacement is relative displacement to the 

soil container box. Among the LVDTs, L3 was assigned to measure the frozen crust lateral 
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displacement; L1 was assigned to measure pile deflection at the ground surface; and L2 was a 

backup sensor for L1 in case the expected strong interaction between the pile and the frozen crust 

damaged L1.Table 2.1 summarizes the instruments for this experiment. 

 
Table 2.1. Summary of instruments for the shake table experiment 

Instrument 
Name 

Instrument Type Location Depth[a] 
(mm) 

Distance[b] 

(mm) 

A1 Accelerometer Soil -1280 890 
A2 Accelerometer Soil -980 890 
A3 Accelerometer Soil -680 890 
A4 Accelerometer Soil -380 890 
A5 Accelerometer Pile -610 0 
A6 Accelerometer Pile -308 0 
A7 Accelerometer Pile 0 0 
A8 Accelerometer Soil 0 210 
A9 Accelerometer Pile 200 0 
P1 Pore pressure transducer Soil -1240 600 
P2 Pore pressure transducer Soil -1020 600 
P3 Pore pressure transducer Soil -800 600 
P4 Pore pressure transducer Soil -580 600 
P5 Pore pressure transducer Soil -360 600 
L1 LVDT Pile 0 0 
L2 LVDT Pile 60 0 

L3[c] LVDT Soil 0 200 
S1 Strain gauge Pile -1180 25 
S2 Strain gauge Pile -1180 -25 
S3 Strain gauge Pile -1120 25 
S4 Strain gauge Pile -1120 -25 
S5 Strain gauge Pile -740 25 
S6 Strain gauge Pile -740 -25 

 
Table 2.1 Summary of instruments for the shake table experiment (continued) 

Instrument 
Name 

Instrument Type Location Depth[a] 
(mm) 

Distance[b] 
(mm) 

S7 Strain gauge Pile -370 25 
S8 Strain gauge Pile -370 -25 
S9 Strain gauge Pile -310 25 
S10 Strain gauge Pile -310 -25 
S11 Strain gauge Pile -290 25 
S12 Strain gauge Pile -290 -25 
S13 Strain gauge Pile -240 25 
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S14 Strain gauge Pile -240 -25 
S15 Strain gauge Pile -60 25 
S16 Strain gauge Pile -60 -25 
S17 Strain gauge Pile 0 25 
S18 Strain gauge Pile 0 -25 

[a] Depth was measured vertically from the ground surface, and positive and negative values correspond with the 
above- and underground surfaces, respectively. 

[b] Distance was measured horizontally from the pile centerline, and positive and negative values correspond 
with the upslope and downslope sides of the pile, respectively. 

[c] L3 is placed 200 mm (4 times of pile diameter) away from pile, and thus it has been referred to as “far-field” 
in this report. 

 
 
Figure 2.2 presents the moment-curvature response for the pipe pile section. This curve was 

obtained by a moment-curvature analysis based on the following mechanical properties: steel 

yield strength 235 MPa, Young’s modulus 200 GPa, and strain-hardening ratio 0.005. Assuming 

a yield strain of 0.2% and a rupture strain of 5% for the steel pipe, the yield bending moment 

(My) of the pile was determined to be 0.8 kN.m and the bending moment capacity (Mc), to be 

1.06 kN.m.  

 
Figure 2.2. The pile cross section and its moment-curvature curve 

2.2.2 Model Preparation  

2.2.2.1 Soil Properties and Frozen Soil Simulation 

Sieve analysis was carried out for the sands used in this experiment, and a particle-size 

distribution curve is shown in Figure 2.3. The sand is characterized by an average particle size 
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D50 of 0.33 mm. The loose sand layer has a saturated density of 1.7×103 kg/m3 and relative 

density Dr of 40%, and the medium dense sand layer has a saturated density of 2.1×103 kg/m3 

and relative density Dr of 60%. 

 
Figure 2.3. Sand particle-size distribution curve 

Due to laboratory facility limitation, cemented sand was used to simulate frozen ground 

crust. The sand-cement-water mix ratio by weight was 9:1:1.8. Key mechanical parameters 

including density (ρ), compressive strength (qu), strain at 50% ultimate strength (ε50), and 

Young’s modulus (E) need to be comparable to those of frozen soil. Based on a number of 

experiments, it has been determined that a sand-cement mixture at a certain ratio after a 72-hour 

wet curing has comparable mechanical properties. Specimens for obtaining mechanical 

properties were made at the same time that the ground crust in the model was poured (see Figure 

2.4). Uniaxial compression tests (Figure 2.5) were conducted under variable strain rates ranging 

from 1×10-6 to 3×10-6 s-1. Figure 2.6 shows the stress-strain curves obtained from four specimens. 

The mechanical properties of the four specimens are quite uniform, having the following average 

values: ρ = 2.1×103 kg/m3; qu = 0.51 MPa; E = 310.1 MPa; 𝜀50 = 0.002. Zhu and Carbee (1983) 

conducted laboratory tests of frozen Fairbanks silts at temperatures varying from -0.5 to -10°C, 

and reported qu, E and ε50 values in the ranges of 0.4 ~17.3 MPa, 0.21 ~ 2.67 GPa, and 0.4×10-3 

to 1.5×10-3, respectively. By comparing the simulated frozen soil properties with those reported 

in Zhu and Carbee (1983), one can conclude that qu and E of the simulated frozen soil specimens 

are within, but closer to, the lower bound of the range for frozen soils, and 𝜀50 is within, but 
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closer to, the upper bound of frozen soils. In other words, the simulated frozen soil used in this 

study is similar to frozen soils at relatively high sub-zero temperature. Note that simulated frozen 

soil exhibits a brittle behavior that is similar to concrete, while frozen soil typically shows a 

more ductile behavior. 

 
Figure 2.4. Cemented sand specimens  

 

 
Figure 2.5. Snapshot of a uniaxial compression test of cemented sand specimen 
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Figure 2.6. Stress-strain relations of cemented sands 

2.2.2.2  Model Construction and Sensor Installation 

Before preparing the soil-pile model in the container (Figure 2.7), energy absorption mats 

made of rubber material were glued to the inside surface of the soil container to reduce seismic 

wave reflection (Coe et al. 1985). Sands were placed carefully to form two layers, with the top 

layer being loose and the bottom layer being medium dense (see Figure 2.8). The sand-cement 

mixture was poured on top of the loose sand layer and a 5° slope was formed on the surface (see 

Figure 2.9). A portion of the river channel was visible on the right of Figure 2.9. 
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Figure 2.7. Soil box and pile with strain gauges installed and wired 

 

 
Figure 2.8. Smoothing the loose sand surface for placement of simulated frozen crust 
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Figure 2.9. Cemented sands just placed for frozen crust simulation 

Water was slowly added into the sand to about 60 cm above the bottom of the container 

before the placement of the sand-cement mixture, and added again after the placement of the 

sand-cement mixture to maintain the groundwater table at 18 cm above the bottom of the open 

channel. Strain gauges were sealed with epoxy, and accelerometers were housed in waterproof 

containers to protect them from damage due to submergence in water. All strain gauges and 

accelerometers were checked to ensure that these sensors were correctly wired. Figure 2.10 to 

Figure 2.12 show the details of the sensor and installation. 
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Figure 2.10. Pore pressure sensors 

 

 
Figure 2.11. Strain gauges attached on the pile surface 
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Figure 2.12. An accelerometer in a waterproof enclosure as installed on the bottom of the soil container 

2.3 Input Motion 

The input motion experiment was performed by applying three stages of input motion, as 

shown in Table 2.2 and Figure 2.13. In the first stage, the model was loaded by a sinusoidal wave 

and scaled-down acceleration time histories recorded at Pump Station #10 along the 

Trans-Alaska Pipeline System during the 2002 Denali earthquake, named “Sine Wave” and 

“Scaled Denali Earthquake,” respectively. The sinusoidal wave had a peak acceleration of 0.05 g 

and the scaled-down Denali motion had a peak ground acceleration (PGA) of 0.15 g. The main 

purpose for these loadings was to check whether the model, instruments, and data acquisition 

system were functioning properly. Neither permanent deformation nor permanent bending 

moment was expected from these events. 

 
Table 2.2. Input motion sequence 

Test stage Event name 
PGA 
(g) 

Duration 
(sec.) 

Input Time 
(Local time) 

#1 
Sine Wave 0.03 20 8:20 a.m. 

Scaled Denali Earthquake 0.15 20 8:23 a.m. 

#2 
Japan Part 1 0.53 40 8:53 a.m. 

Japan Part 2 0.53 40 8:56 a.m. 

#3 Scaled Japan Part 1 0.80 40 10:00 a.m. 
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Figure 2.13. Acceleration time histories of input motions 

In the second stage, after we ensured that the model, instruments, and data acquisition 

system were functioning properly, the model was loaded with acceleration time histories 

recorded at the AKTH04 station on the ground surface during the 2011 Tohoku Earthquake 

(Mw=9.0). This earthquake had a PGA of 0.53 g and duration of 80 sec. The source mechanism 

and magnitude of this earthquake are similar to those of the 1964 Great Alaska Earthquake. Due 

to the facility’s limitations, however, the records for source mechanism and magnitude had to be 

split into two segments, named “Japan Part 1” and “Japan Part 2,” respectively, and input to the 

shake table sequentially, A three-minute gap occurred in between to allow for this transition. 

Substantial permanent deformation and bending moment were expected from this stage of 

loading.  

In the third stage, the first portion of the Japan record with its PGA scaled up to 0.80 g was 

used as the excitation. This motion was input about one hour after Test Stage 2 to allow time for 

the excess pore pressure to drop to hydrostatic pore pressure. We expected that residual 

displacement and bending moment from Test Stage 2 would exist. The purpose of this stage 

loading was to induce larger displacement and gather pile performance data. 
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2.4 Observation of Model Behavior 

Figure 2.14 to Figure 2.18 show several representative snapshots during the experiment. 

Figure 2.14 shows the shake table model before the test. During Test Stage 1, no observable 

permanent deformation was noticed in either the ground crust or the pile.  

 
Figure 2.14. Model before loading 

 
Figure 2.15. Cracks formed near the soil-pile interface 
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Figure 2.16. Gap formed between the soil and pile, and water spilled out 

 
Figure 2.17. Tilted pile head  
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Figure 2.18. Lateral spreading of the simulated frozen crust  

Starting at Test Stage 2, the following phenomena were observed: Cracks started to form on 

the frozen crust surface near the soil-pile interface after a few cycles of loading in Stage 2 (see 

Figure 2.15). As the input moved past the main shaking period, cracks gradually developed into a 

gap near the soil-pile interface, and water rose to the ground surface from the gap and spilled out 

(Figure 2.16). At the end of Test Stage 2, the pile head tilted about 15° toward the downslope 

direction (Figure 2.17), and the frozen crust laterally spread in the downslope direction for about 

2 cm (Figure 2.18). During Test Stage 3, the frozen crust continued moving in the downslope 

direction for about 1 cm, and the pile head continued to tilt; water was seen spilling out of the 

gap long after the shaking ended. 

These phenomena indicate that the input motions generated a considerable amount of excess 

pore pressure in the sand layer and induced full or partial liquefaction in Test Stages 2 and 3. 

Model excavation at the end of the experiment revealed that permanent deflection was found at 

0.28–0.30 m and 0.7–0.8 m below the ground surface, respectively, indicating the formation of 

plastic hinges during the experiment. 
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2.5 Results and Analysis 

2.5.1 Data Processing 

The following sign conventions are defined to facilitate discussion: positive and negative 

depth values indicate the location above and below the ground surface, respectively; depth 0 m 

refers to the frozen ground surface. Displacement is defined as positive if it is along the 

downslope direction, and bending moment is defined as positive if it warps an element to the 

upslope direction in a “U” shape. 

Recorded pore pressure data were first converted to excess pore pressure (EPP) by 

subtracting the hydrostatic pore pressure. Then the EPP ratio (𝑟𝑢) was calculated by normalizing 

the EPP by the effective overburden pressure. 

Assuming a linear distribution of strain along the pile cross section, measured strain data 

were converted to curvature by using Equations 2.1 and 2.2. Bending moment was evaluated by 

the moment-curvature relation of the model pile (see Figure 2.2). 

 

ϕ =
ε
ℎ

 2.1 

ε =
1
2

(ε𝑡 − ε𝑐) 2.2 

 

where ϕ is the curvature; ε is the strain; ε𝑡 and ε𝑐 represent tension and compression strains 

obtained from symmetrically installed strain gauge pairs on the pile; h is the distance from the 

strain measurement point to the neutral axis of the section and the outer-radius of the pile was 

used for h in this study. 

2.5.2 Experiment Data from Test Stage 1 

Figure 2.19 presents the time histories of 𝑟𝑢 for several depths of the sine wave motion in 

Test Stage 1. Note that 𝑟𝑢 for all depths is very small. This is expected since the input motion 

has a very low peak acceleration amplitude. Note the spikes at the depth of -1.25 m. Very similar 

spikes were also observed in the scaled Denali earthquake motion (see Figure 2.20). These spikes 

could be observed in all loading stages, as presented later, and the cause of these spikes is not 

clear, but we believe it might be due to this particular sensor’s defect. 
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Figure 2.19. Excess pore pressure ratio for Test Stage 1 ‒ Sine Wave 

 
Figure 2.20. Excess pore pressure ratio for Test Stage 1 ‒ Scaled Denali Earthquake 

Figure 2.21 shows the recorded acceleration time histories at different depths in soil for the 

sine wave input. Except for a failed sensor, the other three accelerometers recorded signals that 

are very similar to the input in terms of both shape and magnitude. Figure 2.22 shows soil 
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acceleration for the scaled Denali earthquake input. It also displays a similar shape of the base 

input motion, but with some magnitude amplification. 

 
Figure 2.21. Acceleration time histories in soil for Test Stage 1 ‒ Sine Wave 

 
Figure 2.22. Acceleration time histories in soil for Test Stage 1 ‒ Scaled Denali Earthquake 

Figure 2.23 and Figure 2.24 show the displacement time histories from LVDTs for the sine 

wave and the scaled Denali earthquake motions, respectively. Displacement on the pile can be 
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seen fluctuating in a small range, but no permanent displacement is visible. No relative 

movement between the box and the simulated frozen crust is observed from the displacement 

time histories recorded by the “far-field” LVDT.  

 
Figure 2.23. Displacement time histories for Test Stage 1 ‒ Sine Wave 

 
Figure 2.24. Displacement time histories for Test Stage 1 ‒ Scaled Denali Earthquake 

In summary, Test Stage 1 data show that the instruments and data acquisition system 

functioned properly and the model was ready for further high-intensity loading. 

2.5.3 Experiment Data for Test Stage 2 

Figure 2.25 shows the 𝑟𝑢 time histories for Test Stage 2. At around 20 seconds, 𝑟𝑢  began to 

build up quickly, when the first main shaking occurred. The corresponding maximum values of 

𝑟𝑢 for different depths are 31%, 39%, 41%, 33%, and 62% from the top to the bottom. The EPP 
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buildup indicates partial liquefaction in the loose and medium dense sand layers. As mentioned 

in Section 2.3, this earthquake record was input in two segments, with about 3 minutes of gap in 

between. A noticeable but not significant drop in the pore pressure time histories can be observed 

in Figure 2.25. Again, spikes are observed in the 𝑟𝑢 time history at the depth of -1.25 m. Despite 

these spikes, a clear trend in the EPP buildup can still be observed. 

 
Figure 2.25. Excess pore pressure ratio time histories for Test Stage 2 

Figure 2.26 presents acceleration time histories at different locations in the soil. No apparent 

features of liquefaction such as attenuation of ground acceleration amplitude and disappearance 

of high-frequency signal (Kostadinov and Yamazaki 2001) can be observed. Since the sand layer 

only went through partial liquefaction, considerable effective contact and shear modulus existed 

in the soil, and a relatively high-frequency wave still propagated to the ground surface. Another 

possible reason for the high-frequency components is the relative simple design of the soil 

container, which did not completely prevent the seismic wave from reflecting at the boundary. 

As mentioned previously, the motion used in this loading stage was characterized by double 

acceleration peaks, which correspond to about 19 sec. and 80 sec., respectively. These two time 

instants will be referred to frequently later in this section of the report. 
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Figure 2.26. Acceleration time histories recorded in soil for Test Stage 2 

Figure 2.27 shows the displacement time histories measured at two locations on the pile and 

at a “far-field” location on the frozen ground crust. Observe in Figure 2.27 that the displacement 

for all locations was very small, up to 19 sec. into the shaking. After that time, displacement 

started to increase quickly at around 20 sec., which corresponds to the occurrence of the first 

peak of input motion. The displacement remained almost flat to the end of the first segment of 

shaking. It is clear that displacement of the pile continued at the end of Part 1 excitation, as 

indicated by the abrupt change in displacement during the 3-minute gap between the two 

segments of loading. This displacement is likely due to tilting of the pile and the creep of the 

sand-cement mixture that was not fully cured. Such abrupt change is not present in the 

displacement time history recorded on the frozen crust. The displacement remained almost 

constant from the beginning of Part 2 shaking to 75 sec., and gradually increased until 80 sec. At 

80 sec., a sharp increase is apparent in the displacement time history recorded on the frozen crust 

and in the time history recorded on the pile. Displacement kept increasing, although quite slowly, 

until the end of Part 2 shaking. 
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Figure 2.27. Displacement time histories for Test Stage 2 

The maximum lateral spreading of the frozen ground crust reached 2.1 cm, or 40% of the 

pile diameter. By comparing the displacement of the frozen crust with that of the pile at the 

ground surface, one notes that the frozen crust moved ahead of the pile, which implies that the 

pile deflection was driven primarily by lateral spreading of the frozen crust. Figure 2.28 shows 

the difference between the frozen crust lateral spreading and the pile deflection at the ground 

surface. The maximum difference is about 10 mm, which is roughly the maximum gap formed 

between the frozen crust and the pile. Note that the deflection of the pile at 0.06 m above the 

ground surface is far greater than that at the ground surface, indicating that the pile tilted by a 

fairly large angle, which agrees well with the observations presented in Section 2.4. 

 
Figure 2.28. Relative displacement of the far-field soil and pile at the ground surface 

Figure 2.29 shows the time histories of bending moment recorded at different locations on 

the pile. The strain gauges located at the ground surface were damaged due to strong frozen 

crust-pile interaction. From Figure 2.29, it is apparent that, overall, the bending moments at the 
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depths of -0.29 m and -0.74 m are much larger than other locations. Note that the bending 

moment concentrations at these locations have different signs, indicating that the pile bent in 

opposite directions. Careful examination of the bending moment time histories at these locations 

reveals different trends. At depth -0.29 m, the bending moment reached the yield bending 

moment when the first peak of input motion occurred, and started to drop slightly, even though 

the frozen crust lateral spreading increased gradually before the second peak of the input motion 

occurred. At depth -0.74 m, however, the bending moment increased quite gradually, reaching 

the yield bending moment when the second peak of input motion occurred at 80 sec., and 

remained high until the end of shaking.  

 
Figure 2.29. Bending moment time histories 

The bending moment envelope along the pile depth is shown in Figure 2.30 to illustrate the 

location of possible plastic hinges. It is easy to see from Figure 2.29 that the shaking formed two 
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other in the middle of the partially liquefied medium dense sand layer. The bending moments at 

both locations reached the pile’s yield bending moment, indicating the formation of plastic 

hinges. The yielding of the pile at different times for these locations reveals the different 

mechanisms that are responsible for the formation of plastic hinges. The plastic hinge at the 

frozen crust-loose sand interface (at -0.29 m) started to form at the occurrence of the first peak of 

input motion (around 20 sec.), when the frozen crust lateral spreading was about 0.9 cm. It is 

very likely that this plastic hinge formed because of the large distributed load (soil resistance) 

applied on the pile by the laterally spreading frozen crust. Later, as lateral spreading of the frozen 

crust increased gradually, the bending moment actually dropped slightly, possibly due to yielding 

and creep of the cemented sand. A similar trend was observed in the bending moment time 

histories at the same depth after the occurrence of the second peak for like reasons. For the 

plastic hinge in the middle of the partially liquefied medium dense sand layer (-0.74 m), the 

bending moment started to form at the time of the second peak of input motion (around 80 sec.), 

when lateral displacement of the frozen crust reached it maximum value 2.1 cm. The bending 

moment remained high, while lateral spreading remained around 2.1 cm until the end of shaking. 

Apparently, this plastic hinge formation was due to lateral spreading of the ground crust.  

 
Figure 2.30. Bending moment envelope along the pile depth 
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2.5.4 Experiment Data for Test Stage 3 

Test Stage 3 was performed to induce more lateral spreading and gather additional data of 

pile performance under larger lateral spreading. The time histories of acceleration, displacement, 

bending moment, and EPP ratio are presented in this section. Since the previous loading stage 

already pushed the pile into inelastic behavior, one would expect significant permanent 

displacement and bending moment of the pile. Generally, the trends of these time histories are 

similar to those from Test Stage 2. 

Figure 2.31 presents the 𝑟𝑢 time histories at different depths. Maximum 𝑟𝑢 reached 19% in 

average at different depths. Compared with 𝑟𝑢 time histories of Test Stage 2 (see Figure 2.25), 

𝑟𝑢 is lower, although the input motion had larger amplitude. The main cause of this difference is 

that, after the previous shaking in Test Stage 2, the loose sand layer became denser during the 

pore water dissipation process at the one-hour interval between Test Stages 2 and 3. In fact, the 

frozen crust settled about 3 cm after Test Stage 2, which is a direct indication of densification of 

the sand layers, particularly the loose sand layer. In addition, the water table dropped about 1 cm 

after Test Stage 2. Note that these factors were not considered in the calculation of 𝑟𝑢 for Test 

Stage 3.  

 
Figure 2.31. EPP ratio time histories for Test Stage 3 
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Figure 2.32 shows that the frozen crust continued to move to the downslope side for about 

1.1 cm, and the pile at the ground surface deflected an additional 9 mm. Due to sensor failure, no 

data were available from the LVDT, located 0.06 cm above the ground surface.  

 
Figure 2.32. Displacement time histories for Test Stage 3 

Figure 2.33 shows the bending moment time histories. Note the large residual bending 

moments from Test Stage 2. The bending moment in locations at or below -0.74 m remained 

almost constant in this stage due to formation of plastic hinges or unchanged pile deflection. At 

depth -0.24 m, one can observe a sudden increase to the pile yield bending moment at around 20 

sec. The possible reason is that the large inertial force from the pile head formed more cracks and 

gap at the frozen crust-pile interface, and the pile continued to tilt. In return, the inertial force and 

the p-Δ effect due to pile tilting induced a large bending moment that yielded the pile to a depth 

of -0.24 m. The yielding of the pile also affected the plastic hinge already formed at -0.29 m in 

Test Stage 2 and reversed the bending direction. 
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Figure 2.33. Bending moment time histories for Test Stage 3 

2.5.5 Pile Deflection  

Although limited pile deflection data are available from the experiment, the overall shape of 

the deflected pile at the end of Test Stage 2 can be derived qualitatively, as shown in Figure 2.34. 
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conventions defined previously in this section, the pile deflection with two plastic hinges 

bending in opposite directions can be sketched, as shown in Figure 2.34.  

 
Figure 2.34. Deformed shape estimated by observation and measurement 
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2.6.1 Summary 

A model pile embedded in loose to medium dense sands underlying a frozen ground crust 

simulated by cemented sands was constructed and tested on a shake table to investigate the 

frozen ground crust-pile interaction during liquefaction-induced lateral spreading. Partial 

liquefaction was induced in the sands, and lateral spreading of 2.1 cm was induced in the frozen 

ground crust for loading Stage 2. The following conclusions are based on recorded data and 

observations made during the experiment: 

1. Cemented sands can be used to simulate the frozen ground crust. After wet curing for 

about 72 hours, the properties of cemented sand specimen demonstrate mechanical 

properties similar to those of frozen soils reported in literature. 
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2. Partial liquefaction was induced during the experiment with excess pore pressure ratio 

in the range of 30% to 60%. Water was observed spilling out from the gap formed 

between the frozen crust and pile. Considerable ground crust lateral spreading, that is, 

2.1 cm or 40% of the pile diameter, was induced in Test Stage 2.  

3. Test data show that the shaking formed two plastic hinges in the model pile. One plastic 

hinge, located at the frozen ground crust-loose sand interface, started to form at the 

occurrence of the first PGA. The other, located in the partially liquefied medium dense 

sand layer, started to form at the occurrence of the second PGA, when the lateral 

spreading of the frozen ground crust reached its maximum value.  

4. The plastic hinge at the frozen ground crust-loose sand interface formed because of the 

large distributed load (soil resistance) induced by the frozen ground crust; the plastic 

hinge in the partially liquefied medium dense sand layer formed by lateral spreading of 

the ground crust. 

2.6.2  Discussion 

There were certain limitations in this experiment due to budget constraints and the shake 

table test facility that was used. However, the findings are valid despite these limitations. They 

include: 

1. A welded steel box, instead of a laminate box, was used as the soil container. The steel 

box may cause seismic wave reflection at its boundaries. The approach used to 

minimize the reflection was to glue seismic wave absorption material such as rubber 

mat on the inside surface of the box. Coe et al. (1985) found that rubber mats have the 

desirable damping characteristics to help attenuate seismic waves. 

2. Both the soil domain and the pile are in small scale, and the force and displacement 

obtained from the experiment cannot be scaled to a full-size model. However, the 

mechanism of the frozen ground crust-pile interaction under liquefaction-induced lateral 

spreading condition is valid, and the results obtained from this experiment can be used 

to validate numerical approaches, as presented in Chapter 3.  

3. A bridge superstructure constraint was not modeled in the experiment. Only the inertial 

interaction with a bridge deck was simulated by a lumped mass. Thus, any constraint 

provided by bridge superstructure that would reduce the lateral deformation is not 

considered in the model.  
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CHAPTER 3 VALIDATION OF NUMERICAL MODELS 

3.1 Introduction 

The confidence of nonlinear finite element (FE) analyses hinges on the calibration or 

validation of the computer model. Physical data from either case histories or physical model tests 

can be very useful in this process. Solid-fluid coupled three-dimensional FE modeling is a 

complex dynamic analysis based on constitutive soil models. This chapter presents validation of 

the capability of solid-fluid coupled FE modeling in capturing the essence of the frozen ground 

crust-pile interaction under liquefaction and lateral spreading. The beam-on-Winkler-foundation 

(BNWF or p-y) method is widely used in practice as a simplified approach. By applying a newly 

developed frozen soil p-y model (Li 2011), we attempt to model the frozen ground crust-pile 

interaction under liquefaction and lateral spreading with the p-y method and evaluate the 

effectiveness of the simplified approach in modeling this complex problem based on experiment 

data.  

3.2 Finite Element Modeling of the Shake Table Experiment 

3.2.1 Model Description 

3.2.1.1 Finite Element Platform 

Solid-fluid coupled FE modeling has been applied to study soil-pile interaction during 

earthquake shaking. The Open System for Earthquake Engineering Simulation (OpenSees), 

which has emerged as an effective research tool for studying dynamic soil-pile interaction 

(Mazzoni et al. 2006), has been applied to study the performance of the soil-pile system 

subjected to earthquake loading. A graphic user interface, OpenSeesPL 

(http://cyclic.ucsd.edu/openseespl), developed for conducting soil-pile interaction analysis based 

on OpenSees, was used for pre- and post-processing of the soil-pile FE model. 

3.2.1.2 Finite Element Model 

Due to symmetry, only half of the soil-pile system was modeled. The final mesh is shown in 

Figure 3.1. Soils including the pore fluid were modeled by the eight-node brick u-p element; the 

steel-pipe pile was modeled by the nonlinear beam-column element and fiber section. The elastic 

beam column element was used to model rigid links to couple the soil and pile elements and take 

into account the pile size effects. A shear-beam boundary was used to model the boundary 

condition of the soil container.  

http://cyclic.ucsd.edu/openseespl
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Figure 3.1. Half FE mesh of the soil-pile system 

3.2.1.3 Constitutive Model for Soil Liquefaction  

Saturated soil consists of solid particles and pore fluid. During earthquake shaking-induced 

shear loading, the soil skeleton goes through complex contraction and dilation processes and 

generates excess pore pressure (EPP), which leads to soil liquefaction when the EPP exceeds the 

hydrostatic pore pressure before the earthquake loading. Given a slope angle on the ground 

surface, even if very mild, the shear force along the slope due to gravity drives the non-liquefied 

ground crust downslope and causes lateral spreading. Soil constitutive models can model the 

complex interaction between the soil particles and the pore fluid including dilation and 

contraction effects. In this study, soil was modeled as solid-fluid coupled material based on 

Biot’s theory of porous medium (Mazzoni et al. 2006). Each node of a soil element has four 

degrees of freedom: three for solid displacement (ux, uy, and uz) and one for fluid pressure (p).  

The constitutive model for cohesionless soil (Parra 1996; Yang and Elgamal 2002; Elgamal 

et al. 2003) implemented in OpenSees was used to model unfrozen sands. This model was 

developed based on the multi-yield-surface plasticity theory (Prevost 1985), and its yield 

surfaces are depicted in Figure 3.2. In this model, emphasis was on controlling the magnitude of 

cycle-by-cycle permanent shear strain accumulation in clean medium dense sands (Yang and 

Elgamal 2002; Yang et al. 2003; Lu et al. 2006). Special attention was given to the 

deviatoric-volumetric strain coupling (dilatancy) under cyclic loading (see Figure 3.3), which 

causes increased shear stiffness and strength at large cyclic shear strain excursions (i.e., cyclic 

mobility). In OpenSees, this model is identified as “PressureDependMultiYield.” The parameters 

used in the soil constitutive model in this study are generic data for clean sand, available in 

OpenSeesPL. 
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Figure 3.2. Multi-yield surfaces in principal stress space and deviatoric plane 

 
Figure 3.3. Shear-effective confinement and shear stress-strain response 

No material model is readily available in OpenSees for modeling frozen soils. Note that low 

confining pressure has little effect on the compressive strength or axial strain at failure (Baker et 

al. 1982; Vinson et al. 1983), and seasonally frozen ground crust typically occurs at the top few 

feet. Thus, frozen soil may be satisfactorily modeled by pressure-independent models such as 
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those for cohesive soils (e.g., clay) with appropriate parameters (Yang et al. 2012). This study 

used the “PressureIndependentMultiYield” material in OpenSees to model frozen crust. 

PressureIndependentMultiYield is a nonlinear hysteretic kinematic plasticity material model 

(Parra 1996; Yang 2000; Yang et al. 2003) with a von Mises multi-surface (Iwan 1967; Mroz 

1967). This constitutive model was used to simulate monotonic or cyclic response of materials 

whose shear behavior is insensitive to the confinement change. Figure 3.4a and b illustrate 

pressure-independent yield surfaces and shear stress-strain response, respectively. 

 
Figure 3.4. The von Mises multi-surface kinematic plasticity model 
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3.2.1.4 Steel Model 

Steel material was modeled by the uniaxial bilinear steel material model with kinematic 

hardening and optional isotropic hardening described by a nonlinear evolution equation 

(Mazzoni et al. 2006); this material is named “Steel01” in OpenSees. Figure 3.5 shows the 

stress-strain relationship. The steel used in this experiment has the following mechanical 

properties: Young’s modulus of 200 GPa, yield strength of 235 MPa, and a strain-hardening ratio 

of 0.005. 

 
Figure 3.5. Stress-strain relationship of the Steel01 material 

3.2.1.5 Base Input Motion 

As presented in Chapter 2, the experiment was loaded in three stages. Stage 1, which 

consisted of short-duration and low-PGA excitations, checked the data acquisition system; Stage 

2 used the 2011 Tohoku Earthquake as the base input motion; Stage 3 used the amplified “Japan 

Part 1” as the input motion. Considering Stage 1, loading induced little soil and pile deformation. 

Stage 3 loading had considerable residual pile deflection and bending moment carried over from 

the previous loading stage. This study chose to model the Stage 2 experiment. 

Stage 2 loading was a horizontal motion recorded by the Japan nation-wide strong-motion 

seismograph network (K-NET) at the Hachimori station during the 2011 Tohoku Earthquake (see 

Figure 3.6). Note that two peak ground accelerations occurred during the earthquake. The only 

difference in base motion between the FE modeling and the shake table experiment is that this 
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motion was input in two halves in the experiment, with a three-minute gap between the two 

segments, and it was input into the FE model as a single record with a gap. As mentioned in 

Chapter 2, the three-minute gap only caused a slight drop in excess pore pressure and an increase 

in pile deflection.  

 
Figure 3.6. Base input motion from the 2011 Japan earthquake 

3.2.2 Finite Element Modeling Results 

3.2.2.1 Lateral Spreading of the Frozen Crust  

Figure 3.7 shows the time history of lateral displacement of the frozen crust obtained from 

FE modeling. Although the timing of the sudden increase in lateral displacement is quite 

different from that observed in the experiment, the trends are similar to each other. The frozen 

crust was found to move about 2.4 cm (about 50% of pile diameter) in the downslope direction, 

which is slightly larger than the maximum lateral spreading observed in the experiment, that is, 

2.1 cm.  
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Figure 3.7. Ground surface displacement time history from FE modeling 

3.2.2.2 Pile Response 

Figure 3.8 presents a pile deflection snapshot at the end of shaking. Note that the pile 

underwent large deflection at the ground surface and bottom of the frozen crust due to the high 

stiffness and large strength of the frozen ground crust. The observed pile deflection data are also 

plotted in Figure 3.8 for comparison. Based on this snapshot, the tilting angle of the pile portion 

above the ground surface is about 10°, which is comparable to the tilt angle of 15° measured in 

the experiment. 
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Figure 3.8. Snapshot of the pile deflection at the end of shaking from FE modeling 

Figure 3.9 presents the bending moment envelope along the pile elevation and data from the 

experiment. This plot shows that solid-fluid coupled FE modeling can well predict the bending 

moment concentration at around -0.3 m in terms of both location and magnitude. For the plastic 

hinge at -0.75 m, the FE model correctly predicted the location, but slightly underpredicted the 

bending moment value.  
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Figure 3.9. The maximum bending moment along the pile depth from FE modeling 

For the plastic hinge predicted at ground surface, no experiment data are available for 

comparison. This plastic hinge is the combined result of inertial force, p-Δ effect and 

confinement of frozen crust. Based on field experiments and analyses, Li (2011) reported that 

this plastic hinge could occur at very shallow depth (less than 0.75 pile diameter). In the 

experiment, because of extensive cracking and damaging of the cemented sand, this plastic hinge 

moved from the ground surface to lower depth. The soil model adopted for frozen soil is 

incapable of modeling the crack and damage; hence, the FE model is unable to predict the 

location of this plastic hinge. However, we believe that this weakness is insignificant, since in 

reality much less cracking and gapping are expected due to higher strength and ductile, rather 

than brittle, behavior of frozen soils in the field. Further, the response of the pile at and above the 

ground surface is also relatively easy to analyze by structural-analysis methods.  

In summary, the solid-fluid coupled FE model proved reasonably effective in predicting the 

two plastic hinges formed at -0.3 m and -0.75 m.  
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3.3 Modeling the Shake Table Experiment by the p-y Approach 

3.3.1 Model Details 

3.3.1.1 Model Configuration 

As mentioned in Chapter 1, the static p-y approach has been successfully applied in 

modeling pile foundations subjected to laterally spreading ground crust induced by earthquakes. 

In addition, a simplified method such as the p-y approach is more attractive to practicing 

engineers. LPILE (http://www.ensoftinc.com) was used to perform this analysis. LPILE is a 

commercial program that analyzes laterally loaded piles using the p-y method. The soil lateral 

behavior was modeled as nonlinear springs with prescribed nonlinear lateral load-transfer (p-y) 

curves. Various soil p-y models and pile types are available in the software. LPILE also allows 

user-defined p-y curves and nonlinear pile sections. A flexible definition of pile head boundary 

conditions and loading is also allowed. By using LPILE, the pile was discretized into 80 

nonlinear beam elements. The moment-curvature curve of the pile presented in Section 2.2.1 was 

input to LPILE. The p-y relations for regular sands are based on American Petroleum Institute 

(API) (1987). 

3.3.1.2 Frozen Soil p-y Curve 

Crowther (1990) carried out a study to analyze laterally loaded piles embedded in layered 

frozen soil and constructed frozen soil p-y based on frozen soil shear strength and strain criteria, 

but unfortunately, the p-y curves proposed had significant creep effect that made it inappropriate 

for analysis during earthquake loading. Li (2011) proposed a p-y curve based on back-calculated 

p-y values and existing p-y curves for weak rock (Reese 1997) and clay (Matlock 1970). This 

frozen soil p-y curve was used in the present analysis. 

Figure 3.10 shows the p-y curve, which consists of a parabolic section and a constant 

section, as described by Equations 3.1 and 3.2. 
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Figure 3.10. Sketch of the p-y curve for frozen soil 

 

p = pu
2

( y
ym

)1/3             for  y≤ yu 3.1 

p = Pu                   for  y> yu                 3.2 

 

where pu is the ultimate resistance of frozen silt and can be derived through Equations 3.3 and 

3.4; ym is the pile deflection corresponding to half of the soil’s resistance; p represents soil 

lateral resistance per pile unit length (kN/m); and y is the lateral deflection corresponding to each 

p.  

 

pu = qub(1.5 + 0.25 xfs
b

)  for 0 ≤ xfs ≤ 12b 3.3 

pu = 4.5qub            for xfs > 12b 3.4 

 

where qu is the compressive strength of the frozen silt, b is the diameter of the pile, and xfs is 

the frozen soil depth below the ground surface. 

 

ym = kmb 3.5 
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where km is a constant and equal to the strain at which 50% of the ultimate strength is 

developed. The value of yu can be determined by solving for the intersection of Equations 3.1 

and 3.2, and is shown in Equation 3.6. 

 

yu = 8ym 3.6 
 

Based on a series of compressive strength experiments by Haynes and Karalius (1977), the qu 

was found to be related to frozen soil temperature (T) by Equation 3.7.  
 

qu = (0.145
𝑘𝑘𝑘
𝑀𝑀𝑀

)×(2.15 − 0.33T + 0.01T2 𝑀𝑀𝑀) 
3.7 

 

For the shake table experiment in this case, since qu is a constant for the frozen crust, the frozen 

soil p-y can be directly calculated based on Equations 3.1 and 3.2 

3.3.1.3 Approximating Soil Strength Reduction in Liquefaction 

As previously discussed, sand layers underwent partial liquefaction during the shake table 

experiment. The p-multiplier approach has been successfully applied to the drained p-y 

resistance of sand for approximating the effects of liquefaction on soil resistance reduction for 

design purposes (Wilson et al. 1998; Boulanger et al. 1997; JRA 2002). Based on centrifuge and 

shake table experiments of single piles and pile groups, Boulanger et al. (2003) provided 

recommendations on how to represent the equivalent p-y behavior of liquefied soils. For 

instance, the suggested value of p-multiplier varies from 0.1 to 0.5 depending on the standard 

penetration test (SPT) counts for inertial loading analysis. The authors concluded that peak 

lateral loads imposed on piles by laterally spreading nonliquefied soils could be reasonably 

predicted using existing p-y curves. For partially liquefied soil, Dobry et al. (1995) summarized a 

correlation of p-multiplier (also called degradation parameter Cu) and excess pore pressure ratio 

based on quasi-static cyclic displacement loading of a pile after liquefaction. Figure 3.11 shows 

this correlation.  
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Figure 3.11. Degradation parameter Cu versus pore pressure ratio ru from centrifuge tests 

Recall the excess pore pressure ratio obtained from the experiment as presented in Figure 

2.25. For this study, p-multipliers were evaluated using the excess pore pressure ratio according 

to Figure 3.11; its variation along the pile depth is shown in Figure 3.12. 
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Figure 3.12. P-multiplier (Cu) variation along the pile depth 

3.3.1.4 Loading 

As discussed in Chapter 1, two methods are available for modeling lateral spreading loads: 

one, by applying a limit pressure directly on the pile nodes, and the other, by imposing free-field 

soil displacements. Brandenberg and Boulanger (2007) recommended the second alternative, that 

is, displacement-based BNWF pushover analysis.  

The loading pattern was assumed constant in the nonliquefied crust and linearly decreasing 

in the liquefied sands. A sketch of the loading is shown in Figure 3.13. The lateral displacement 

recorded on the ground surface in Stage 2 of the shake table experiment, 2.1 cm, is used to 

determine the final displacement of the frozen crust. Inertial force was considered by applying 

half of the PGA-induced inertial force on the pile top. 
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Figure 3.13. Lateral spreading load of the p-y approach for the shake table experiment modeling 

3.3.2 Analysis Results 

Figure 3.14 presents the p-y curves for several selected locations, including the bottom of 

the frozen crust (depth = -0.3 m), the interface of the loose sand and medium dense sand layer 

(depth = -0.6 m), and the bottom of the medium dense sand layer (depth = -1.2 m). Note in 

Figure 3.14 that the ultimate frozen soil resistance at a depth of -0.3 m is ten times that at a depth 

of -0.6 m and is 2.5 times that at a depth of -1.2 m, and the deflection required to attain ultimate 

resistance for the frozen soil is much smaller than that for unfrozen soil.  
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Figure 3.14. P-y curves for selected depths 

Figure 3.15 presents the pile deflection predicted by the p-y approach. When compared with 

the experiment data, the p-y model predicted a similar deflection shape below the ground surface. 

However, the p-y model significantly underpredicted pile deflection above the ground surface. 

The reason for this difference in prediction is lack of inertial loading on the pile top. Further, a 

pseudo-static p-y analysis is incapable of modeling the effects of inertial force during kinematic 

loading. In the shake table experiment, it was observed that inertial force yielded the pile and 

induced permanent deformation. 
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Figure 3.15. Pile deflection predicted by the p-y approach 

Figure 3.16 presents the predicted bending moment profile by the p-y approach. The results 

obtained from the experiment and from FE modeling are also shown for comparison. Note in 

Figure 3.16 that the magnitude of the plastic hinge at the frozen soil-loose sand interface as 

observed from experiment data is well predicted by the p-y approach, with the location being 

slightly off. Similar to the FE model, the p-y approach was able to predict the location of the 

bending moment concentration within the medium dense sand layer, but underpredicted the 

magnitude of the maximum bending moment. The p-y approach was not able to predict the 

plastic hinge at the ground surface. However, this weakness is insignificant due to similar 

reasons given in Section 3.2.2. 
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Figure 3.16. Pile bending moment predicted by the p-y approach 

In summary, the p-y approach was able to predict the formation of plastic hinges at the 

frozen ground crust-loose sand interface and within the medium dense sand layer with good 

accuracy. This method also has the potential for use in predicting the response of full-size piles 

in liquefiable soils with a frozen crust. 

3.4 Summary 

Two approaches—solid-fluid coupled FE modeling and the p-y approach—were used to 

model the shake table experiment. By comparing the results from the two numerical approaches 

with those from the experiment, both models were confirmed as effective in predicting the pile 

response under lateral spreading of a frozen ground crust, particularly the formation of plastic 

hinges at the frozen crust-loose sand interface and within the medium dense sand layer.   
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CHAPTER 4 ANALYSIS OF SINGLE PILE PERFORMANCE USING SOLID-FLUID 
COUPLED FINITE ELEMENT MODELING 

4.1 Introduction 

The shake table experiment provided valuable data for the validation of two computer 

models for analyzing the pile performance of pile foundations embedded in a frozen crust under 

liquefaction and lateral spreading. This chapter applies the computer models to a selected bridge 

foundation and studies the impact of the frozen ground crust on the pile performance under 

similar conditions. 

Based on a typical bridge from the ADOT&PF bridge inventory, supported on commonly 

used pile foundations that penetrate a liquefiable sand layer, two cases of the same 

soil-foundation system were created: one named “frozen case” (with a frozen ground crust) 

representing the typical winter conditions in Alaska, and the other named “unfrozen case” (with 

an unfrozen ground crust) representing the summer conditions in Alaska. Both models have 

liquefiable soils underlying the ground crust, and the ground crust has a small slope angle that is 

common in a bridge site. 

Soil reactions and pile response are analyzed by solid-fluid coupled finite element (FE) 

modeling, and are presented for both the frozen and unfrozen conditions to illustrate the key 

characteristics of pile performance in liquefiable soils underlying a frozen crust.  

4.2 Site Condition and Pile Configuration 

4.2.1 Soil Profile 

In this study, an idealized soil profile was created based on the general soil conditions in 

Alaska. The soil profile has a 2 m thick ground crust layer consisting of clayey silt that freezes in 

winter and thaws in summer (also referred to as the active layer). The active layer was 

subdivided into four sub-layers to accommodate the substantial variation of compressive strength 

and other mechanical properties due to temperature variation when it is frozen. The active layer 

overlies a 6 m thick loose sand layer that rests on a 6 m thick medium dense sand layer and a 7 m 

thick dense sand layer. A 3° sloping ground surface is assumed. All the soil layers except for the 

active layer are assumed saturated. Figure 4.1 presents such a typical soil profile. 
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Figure 4.1. The soil-pile system of a typical bridge foundation system used in Alaska 

Table 4.1 lists the parameters for the frozen and unfrozen status of the active layer. For the 

frozen case, mechanical parameters were selected from a series of unconfined uniaxial tests of 

naturally frozen soils obtained from a bridge site in Anchorage, Alaska (Yang et al. 2012). 

Frozen soil uniaxial compressive strength is very sensitive to soil temperature (Haynes and 

Karalius 1977). A temperature profile increasing linearly from -12° to 0°C was assumed for the 

frozen active layer. However, a constant average temperature was defined for each frozen soil 

sublayer. Table 4.2 lists the properties of the soil layers underlying the active layer used in this 

analysis. 
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Table 4.1. Summary of the soil properties for the active layer 

Depth 
(m) Status 

Permeability 
(m/s) 

Mass 
density 
(kg/m3) 

Shear 
modulus 

(kPa) 

Bulk 
modulus 

(kPa) 
Cohesion 

(kPa) 
Friction 
angle (°) 

Peak 
shear 
strain 

0-0.5 
-10.5°C 1.0×10-8 

1.8×103 
2.5×106 5.4×106 2600 25 0.01 

Unfrozen 1.0×10-7 7.5×104 2×105 50 30 0.1 

0.5-1.0 
-7.5°C 1.0×10-9 

1.8×103 
2.1×106 4.6×106 2200 25 0.01 

Unfrozen 1.0×10-7 7.5×104 2×105 50 30 0.1 

1.0-1.5 
-4.5°C 1.0×10-8 

1.8×103 
1.7×106 3.8×106 1700 25 0.01 

Unfrozen 1.0×10-7 7.5×104 2×105 50 30 0.1 

1.5-2.0 
-1.5°C 1.0×10-8 

1.8×103 
1.3×106 2.9×106 1200 25 0.01 

Unfrozen 1.0×10-7 7.5×104 2×105 50 30 0.1 
 

Table 4.2. Summary of the soil properties for unfrozen layers 

Depth 
(m) Soil Type Status 

Permeability 
(m/s) 

Mass 
density 
(kg/m3) 

Shear modulus 
(kPa) 

Bulk 
modulus 

(kPa) 

Friction 
angle 

(°) 

Peak 
shear 
strain 

2.0-8.0 
Loose 
Sand 

Unfrozen 6.6×10-5 1.9×103 5.5×104 1.5×105 30 0.1 

8.0-14.0 
Medium 
Dense 
Sand 

Unfrozen 6.6×10-5 1.9×103 7.5×104 2.0×105 33 0.1 

14.0-24.0 
Dense 
Sand 

Unfrozen 6.6×10-5 2.1×103 1.3×105 3.9×105 40 0.1 

 

4.2.2 Pile Configuration 

Concrete-filled steel pipe (CSP) piles are widely used for constructing highway bridge 

foundations in Alaska. For this study, the pile dimensions and parameters were selected based on 

the North Fork Campbell Creek Bridge constructed in 2007 in Anchorage, Alaska. The total 

length of the piles is 24 m, with 3 m above the ground surface. The CSP pile has an outer 

diameter of 0.9 m and a wall thickness of 0.019 m. Ten steel reinforcing bars (#11) are evenly 

placed at 0.4 m away from the pile center, which represents a reinforcing ratio of 1.52%. Note 

that the CSP pile connects to the cap beam with a 5 cm gap by which only the 

reinforced-concrete part of the CSP pile is extended to the cap beam. Figure 4.2 shows both the 

CSP and the “gap” sections of the foundation. This gap section of the pile has a much smaller 

plastic hinging moment than the CSP section. The intention of the gap design is to prevent 

hinging in the pile cap beam. A moment-curvature analysis was conducted based on parameters 
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listed in Table 4.3 and Table 4.4, and the results are shown in Figure 4.3 and Figure 4.4. The first 

yield bending moment (My) and moment capacity (Mc) of sections were determined by the yield 

and rupture strains of the outmost steel fibers, respectively. In summary, the CSP section has a 

My of 6200 kN.m and Mc of 10,400 kN.m, and the gap section has a My of 1100 kN.m and Mc of 

1900 kN.m. 

 
Figure 4.2. Configuration of the CSP and the “gap” sections 

Table 4.3. Properties of the concrete material 

Properties Concrete type Value 

Unconfined compressive 
strength (MPa) 

Patch / cover 45.5 

Core 93.5 

Strain at maximum 
strength 

Patch / cover 0.0025 

Core 0.0125 

Crushing strength 
Patch / cover 43.0 

Core 90.0 

Strain at crushing strength 
Patch / cover 0.004 

Core 0.02 
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Table 4.4. Properties of the steel material 

Rebar 

Yield strength (MPa) 470 
Yield strain 0.002 
Initial elastic tangent (GPa) 200 
Strain-hardening ratio 0.01 
Rupture strain 0.05 

Steel 
Pipe 

Yield strength (MPa) 335 
Yield strain 0.002 
Initial elastic tangent (GPa) 200 
Strain-hardening ratio 0.01 
Rupture strain 0.05 

 

 
Figure 4.3. Moment-curvature curve for the “gap” section 
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Figure 4.4. Moment-curvature curve for the CSP section 

4.2.3 Base Input Motion 

A horizontal motion recorded at Pump Station #10 along the Trans-Alaska Pipeline System 

during the 2002 Denali earthquake was used as the base input (Figure 4.5). Deep stiff soil 

underlies this site. The record has a duration of 82 seconds and a PGA of 0.3 g.  

 
Figure 4.5. Base input motion from the 2002 Denali earthquake. 

4.3 Finite Element Modeling of the Soil-Pile System 

4.3.1 Model Configuration 

The Open System for Earthquake Engineering Simulation (OpenSees) (Mazzoni et al. 2006) 

and the graphic user interface OpenSeesPL (http://cyclic.ucsd.edu/openseespl) were again used 

to perform the analysis. Due to symmetry, only half of the soil-pile system was modeled (see 
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Figure 4.6). The dimensions of the FE model are 50 m (longitudinal or X) × 25 m (transverse or 

Y) × 25.05 m (vertical or Z). The bottom of the soil domain is 3 m below the pile tip, and the 

input motion was applied in the X-direction at the base of the model. The soils were modeled by 

1550 eight-node brick elements, and the pile was modeled by three-dimensional nonlinear 

beam-column elements with fiber sections. The pile elements were connected with the 

surrounding soil nodes with rigid links (i.e., elastic beam-column elements). The soil-pile 

interface was modeled as cohesionless material to mimic the gapping behavior. The following 

boundary conditions were defined: (1) the bottom of the soil domain was fixed in the X-, Y-, and 

Z-direction; (2) these front and back side nodes were fixed in the Y-direction and were free in 

the X- and Y-direction. The nodes on the left, right, and back sides were given equal degrees of 

freedom in all depths in the X- and the Z-direction to simulate vertically propagating shear 

waves; nodes above the groundwater table were fixed in pore water pressure (set to zero). 

 

Figure 4.6. The FE mesh of the soil-pile system 

4.3.2 Constitutive Models 

The concrete was modeled by the uniaxial Kent-Scott-Park concrete material model with 

degraded linear unloading/reloading stiffness and no tensile strength according to the work of 

Karsan-Jirsa (1969). Constitutive models for steel, sandy soil, and frozen soil described in 

Section 3.2.1 were used in this analysis as well.  

4.3.3 Consideration of Superstructure Constraint 

The constraints of the bridge superstructure affect the frozen ground crust-pile interaction, 

and they are quite different from each other in the longitudinal and transverse directions. For a 
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typical design of highway bridges in Alaska, such as the one used on the North Fork Campbell 

Creek site, girders are discontinuous, and they are laid on top of the cap beam with shallow shear 

keys to prevent them from moving transversely. In the longitudinal direction, the horizontal 

constraint to the pile top would be the friction between the girder and the cap beam, which is 

very small. Due to lack of constraint in the rotation of the pile top and the cap beam, the pile top 

is free to rotate. 

In the transverse direction, however, the constraint is quite different. Since the cap beam is 

almost rigid and supported by multiple piles, the cap beam as well as the pile top is not allowed 

to rotate in this direction. It seems that the deck would have some, but quite small, constraint to 

the pile top and cap beam in this direction as well, because the girders are discontinuous and 

there are gaps between the deck and the abutments. This horizontal constraint was considered by 

applying a linear-elastic spring. Assuming the bridge abutments are totally fixed and the bridge 

deck is in linear-elastic range, the total lateral stiffness of the deck was estimated to be 1×105 

kN/m. Only 1% of the total stiffness, that is, 1,000 kM/m, was used for a single pile in the 

modeling, for reasons discussed above. The inertial interaction was not modeled due to the 

relative small impact of the superstructure mass in this case. 

The ground crust typically laterally spreads toward the river channel because of the slope 

and the existence of an open surface. If a bridge intercepts with a river channel at right angles, 

the lateral spreading typically occurs in the longitudinal direction of the bridge. A bridge, 

however, does not always intercept with the river channel perpendicularly, such as in the case of 

a skewed bridge. Therefore, it is possible that lateral spreading could also occur in the transverse 

direction. In this research, the frozen ground crust was assumed to laterally spread in the 

transverse direction of the bridge, which represents a more dangerous case for the bridge 

substructure due to constraint of the bridge substructure and superstructure.  

4.4 Results and Discussion 

4.4.1 Unfrozen and Frozen Cases 

Two three-dimensional FE models were constructed, with one model simulating winter 

conditions, when the active layer becomes frozen, and the other model simulating summer 

conditions, when the active layer becomes unfrozen. These models share identical dimensions, 

parameters (except for the active layer), and base input motion. Yang et al. (2012) indicate that 
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low temperature in winter can increase the strength of both concrete and steel, but this was not 

considered in the frozen case model. 

4.4.2 Soil Response 

4.4.2.1 Acceleration 

Figure 4.7a and b present acceleration time histories along the longitudinal direction in the 

soil column at depths of 0 m, 4.67 m, 11 m, and 21 m for both unfrozen and frozen cases, 

respectively. One can observe from Figure 4.7a and b that at the dense sand layer, the 

acceleration time histories for both cases are very similar to base input motion, as presented in 

Figure 4.5. One can observe considerable changes as the motions propagate from the dense sand 

layer to the ground surface: more long-period components are present within the loose sand layer 

and in the ground surface, and the amplitude of acceleration decreases. The alteration of 

acceleration time histories including frequency and amplitude indicate liquefaction in the loose 

sand layer (Kostadinov and Yamazaki 2001).  

 
Figure 4.7. Acceleration time histories in the soil column for (a) unfrozen case and (b) frozen case 

4.4.2.2 Excess Pore Pressure 

Excess pore pressure (EPP) ratio (ru) time histories for selected depths—4 m and 6 m 

(within the loose sand layer), 9.5 m and 12.5 m (within the medium dense sand layer), and 18.7 

m and 21 m (within the dense sand layer)—are plotted in Figure 4.8 for both unfrozen (a) and 
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frozen (b) cases. Note that the ru time histories and peak values are quite similar for both cases. 

Also, note that ru ranges from 70% to 100% in the loose sand and medium dense sand layers, and 

ranges from 40% to 50% in the dense sand layer for both cases. This suggests that 

shaking-induced liquefaction is similar for both cases; the loose and medium dense sand layers 

were mostly liquefied, while the dense sand layer only underwent partial liquefaction. This 

finding echoes the conclusion that was drawn about liquefaction based on the observation of 

frequency and amplitude changes in acceleration time histories. 

 

 

Figure 4.8. Excess pore pressure ratio in sand layers for (a) unfrozen case and (b) frozen case 

4.4.2.3 Frozen Soil Shear Strain Time Histories 

Frozen soil behavior is of key interest in this study. Figure 4.9 presents the strain rate time 

histories produced from two selected frozen soil elements: one located at 0.9 m (referred to as 

near-field) and the other at 18.7 m (referred to as far-field) away from the pile center at the depth 

of 0.89 m. The strain rate values from the near-field are much larger than the strain rate values 

from the far-field, obviously due to the frozen soil-pile interaction. Generally, the peak strain rate 

values in the near-field frozen soil elements are in the range of -3×10-3 to -7×10-3 per sec. 
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Figure 4.9. Strain rate time histories in the frozen soil 

4.4.2.4 Ground Displacement 

During the base excitation, the lateral resistance of the loose and medium dense sand layers 

was significantly reduced due to liquefaction. Because of the mild ground inclination (3°), a 

downslope driving shear stress component was imposed to the soil-pile system under gravity, 

which causes downslope lateral spreading during the earthquake. Figure 4.10a and b present the 

respective ground surface lateral spreading time histories for both cases. These time histories 

were displacements in the longitudinal direction recorded at a soil node that is 12.5 m away from 

the pile center to exclude pile-induced local strain/deformation on the frozen crust. The trends of 

lateral spreading for both cases are quite similar. At the end of base excitation, the final 

displacement was 1.53 m for the unfrozen case (see Figure 4.10a) and 1.43 m for the frozen case 

(see Figure 4.10b). The difference in ground crust lateral spreading between the frozen and 

unfrozen cases was 7%. The decrease in lateral spreading in the frozen case was likely caused by 

a slightly stronger pinning effect due to higher ground crust stiffness and strength than the 

unfrozen case. However, the difference is quite small, which will facilitate the comparison of the 

pile performance between these cases. 
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Figure 4.10. Lateral spreading time histories of the ground crust for (a) unfrozen case and (b) frozen case 

Figure 4.11 shows the relative displacement between the ground crust and pile at the ground 

surface. Note in Figure 4.11 that the maximum relative displacement of the unfrozen case (see 

Figure 4.11a) is about 2 cm and that of the frozen case is about 0.1 cm (see Figure 4.11b). These 

values indicate the possible widths of the gap in both cases. Recall that the observed gap between 

the model pile and the simulated frozen ground crust in the shake table experiment was 10 mm 

(see Figure 2.28). 
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Figure 4.11. Relative displacement between the ground crust and pile on the ground surface for  

(a) unfrozen case and (b) frozen case 

4.4.3 Pile Response 

Figure 4.12 presents maximum pile deflection, rotation, bending moment, and shear force 

along the pile depth. One can see in Figure 4.12a that the deflection profiles for both cases are 

quite similar for the pile portion below the ground crust-loose sand layer interface. However, 

deflection profiles (see Figure 4.12b) for the pile above this interface are very different. The pile 

in the frozen case remained almost vertical due to the strong confinement of the frozen crust, 

while the same portion in the unfrozen case was able to rotate moderately. These different 

behaviors, which are reflected by the difference in pile rotation at this pile segment, further 

translate into the difference in bending moment profile. Due to the strong confinement of the 

frozen ground crust, a sharp increase in the pile rotation can be easily observed just below the 

frozen ground crust-loose sand interface, which translates into a large curvature and hence a 

bending moment concentration for the frozen case (see Figure 4.12c). The peak bending moment 

reaches 11,060 kN.m, exceeding the bending moment capacity (i.e., Mc = 10,400 kN.m) and 

indicating failure of the large CSP pile. For the unfrozen case, there is also an abrupt increase in 

rotation at the interface, but not as sharp as that observed in the frozen case. Corresponding to 

this abrupt increase in rotation, one can find a bending moment concentration at the interface. 

The peak bending moment in the unfrozen case is 9,390 kN.m, well exceeding the first yield 
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bending moment (i.e., My = 6,200 kN.m) but significantly less than the bending moment 

capacity. The bending moment differences between the frozen and unfrozen case are due to a 

greater plastic deformation demand and hinge rotation in the frozen condition (also refer to 

Figure 4.14). Not only are the demands greater, but also the moment gradient is much steeper, 

indicating a smaller plastic hinge zone. 

 

 
Figure 4.12. Maximum deflection, rotation, bending moment, and shear force for unfrozen and 

frozen cases 
 

For both cases, one can observe a sharp change in pile rotation approximately in the middle 

of the medium dense sand layer, which translates into another bending moment concentration 

(referred to as lower plastic hinge). The maximum bending moment in the frozen case is 11,620 

kN.m, exceeding the bending moment capacity and indicating failure of the large size CSP pile; 
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helps reveal the mechanism responsible for the formation of both the upper and lower plastic 
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ground crust lateral spreading (see Figure 4.10), and reaches its maximum value at around 50 

sec. The time histories are almost identical, except that the sign is opposite. For the frozen case, a 

distinctly different trend can be observed in the bending moment for both locations. For the 

lower plastic hinge, the bending moment increases gradually in a similar trend as the unfrozen 

case. For the upper plastic hinge, the bending moment, however, oscillates rapidly around 19 sec. 

and reaches its maximum value around 20 sec., when the PGA of input motion occurs. This peak 

value is likely due to the large distributed load (soil resistance) of the laterally spreading frozen 

ground crust, as mentioned earlier. One can conclude that the lower plastic hinge was a direct 

result of the ground crust lateral spreading, and the upper plastic hinge was due to the large 

distributed load or soil resistance induced by the frozen ground crust. This conclusion is 

consistent with the conclusion drawn in Chapter 2 based on the analysis of the shake table 

experimental data. 

 
Figure 4.13. Bending moment time histories for the upper and lower plastic hinges for  

(a) unfrozen case and (b) frozen case 
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Since the pile underwent significant plastic deformation, pile bending moment values may 

not be very effective to indicate the significant difference in pile performance between frozen 

and unfrozen cases. Figure 4.14 presents the maximum curvatures induced along pile depth for 

both frozen and unfrozen cases. One can see from Figure 4.14 that the respective peak curvatures 

induced at the upper plastic hinge are 0.05 and 0.15 for the frozen and unfrozen cases; that for 

the lower plastic hinge are -0.06 and -0.19 for the unfrozen and frozen cases. It indicates that the 

curvature at either the upper plastic hinge or lower plastic hinge increases by 200% from 

unfrozen case to frozen case at the same lateral spreading. This shows that the pile is subjected to 

much greater hinge rotation/plastic deformation demand in the frozen case than in the unfrozen 

case. 

 

 

Figure 4.14. Maximum curvatures induced along pile depth for both frozen and unfrozen cases 
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about 4,210 kN.m, well exceeding the bending moment capacity (1,896 kN.m) and indicating 

that the failure of the “gap” section occurs early in lateral spread-induced loading on the 

foundation system. That for the frozen case reaches 1,700 kN.m, exceeding the yield bending 

moment (1,096 kN.m) but well below the bending moment capacity. The reason for the different 

behaviors of the “gap” section is still the strong confinement of the frozen ground crust, which 

does not allow the embedded pile section to rotate, therefore inducing less rotation on the “gap” 

section. Considering that two plastic hinges are formed in the foundation in both cases, the 

performance of the “gap” section is of less significance. 

The bending moment above ground surface level was the result of the constraint of the 

superstructure and the pile head deflection. Since the constraint was quite soft, the bending 

moment was relatively small. However, it is sufficient to fail the “gap” section in the unfrozen 

case and yield the same section in the frozen case. Figure 4.15 shows the bending moment time 

histories of the “gap” section for both frozen and unfrozen cases. This figure helps reveal when 

the “gap” section fails. With My and Mc marked in the figure, it is clear that the bending moment 

for the unfrozen case exceeds My at about 18 sec., indicating the “gap” failure. For the frozen 

case, the bending moment increases very slowly and does not exceed Mc.  

 
Figure 4.15. Bending moment time histories at “gap” for both cases 
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the other three cases with a 12 in., 24 in., or 36 in. pile. The pile head is free of inertial force and 

rotational and lateral constraints. In other words, the superstructure constraint is not considered. 

The soil domain is 50 m (longitudinal or X) × 25 m (transverse or Y) × 50 m (vertical or Z) with 

a 3° sloping ground surface and is the same for the four cases. Table 4.5 lists the configuration of 

these pile sections.  

Table 4.5. Pile section configurations 

Pile outer 
diameter (in.) 

Pipe thickness 
(in.) 

Internal 
radius (in.) 

Bar 
size 

Number of 
rebars 

Reinforcement 
ratio (%) 

12 0.25 5.842 #4 6 1.06 
24 0.5 11.684 #7 7 0.93 
36 0.75 17.526 #11 10 1.53 

 
Figure 4.16 presents ground surface lateral spreading time histories in the longitudinal 

direction for all cases. The soil node located at 12.5 m away from pile center was used to retrieve 

far-field displacement data, which excludes the pile-induced local strain/deformation on the 

frozen crust. 

 
Figure 4.16. Far-field ground surface lateral displacement time histories 
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Table 4.6. Summary of the ultimate ground lateral displacements 

Case Name Final Disp. (m) Change 
no pile 3.42 0% 
12'' pile 2.73 20% 
24'' pile 1.95 43% 
36'' pile 1.51 56% 

 
Also, note that the 36 in. pile case produces a maximum lateral displacement of 1.51 m, 

which is 0.08 m larger than that of the “frozen case” presented in Figure 4.10b. This difference is 

due to the pile head constraints and inertial force. The difference also indicates that in this case 

the bridge superstructure only has insignificant influence on the pile pinning effect.  

It would be very useful if one could factor the pile pinning effect in assessing ground lateral 

spreading for design purposes. In fact, the magnitude of lateral spreading is very sensitive to the 

soil profile, particle-size distribution, and fines content of the liquefiable layers, topographical 

data including surface slope angle, and size of the laterally spreading ground crust (potential 

cracking of the ground crust due to ground shaking), among others. For such a complex problem, 

accounting for the pile pinning effect via design charts generated by a computer model, however, 

is very difficult, if not impossible, to achieve. 

4.6 Summary 

In this chapter, solid-fluid coupled FE modeling was used to study the effect of the frozen 

ground crust on the performance of pile foundations subjected to liquefaction-induced lateral 

spreading. Two cases—unfrozen and frozen—were analyzed with selected ground motion 

excitation. By comparing soil and pile responses from both cases, the following observations 

were made: 

1. Two plastic hinges were observed in both frozen and unfrozen cases: the upper plastic 

hinge near the ground crust-loose sand interface and the lower plastic hinge within the 

medium dense sand layer. 

2. The hinge rotation/plastic deformation demand were much higher in the frozen case than 

in the unfrozen case under similar seismic loading conditions. Results show that the 

large-size CSP pile would not be able to survive the lateral spreading in the frozen case, 

but would otherwise survive in the unfrozen case.  
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3. The upper plastic hinge formed because of the large distributed load or soil resistance 

induced by the frozen ground crust; the lower plastic hinge was the direct result of 

ground crust lateral spreading. 

The modeling results from these cases are intended for use in examining the impact of 

frozen ground crust on pile performance in reference to unfrozen ground crust. The lateral 

spreading predicted by the solid-fluid coupled FE model does not necessarily represent what 

would occur in the field, since the computer model results, particularly the lateral spreading of 

the ground crust, are very sensitive to the soil constitutive model, the slope angle and size of the 

ground crust, and other factors. The subject of lateral spreading is revisited in Chapter 5.  
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CHAPTER 5 A SIMPLIFIED APPROACH 

5.1 Introduction 

This chapter focuses on the analysis of pile performance with a simplified method. The p-y 

approach, or beam-on-nonlinear-Winkler-foundation (BNWF) approach, was validated in 

Chapter 2 by the shake table experiment data. The capability of the p-y approach, or BNWF 

approach, to predict the pile response of full-size pile foundations is further confirmed by 

analyzing the “frozen case” and comparing its prediction results with those from coupled 

fluid-solid finite element (FE) analysis, as presented in the previous chapter. A set of guidelines 

is proposed for designers who analyze the response of pile foundations under lateral spreading 

using the p-y approach.  

5.2 Model Description 

5.2.1 Model Details 

The commercial program LPILE was used to perform the analysis of the “frozen case,” 

which was described in the previous chapter. The 25.05 m long pile was discretized to 500 

elements, with soil p-y springs connected to each pile node below the ground surface. Two 

user-defined nonlinear sections—the CSP section and the “gap” section—were defined based on 

the moment-curvature response presented in Figure 4.3 and Figure 4.4. A sketch of the model is 

shown in Figure 5.1.  

 
Figure 5.1. LPILE model 
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5.2.2 Soil p-y Model 

The sand p-y model developed by Reese et al. (1974) was used for sandy soils in this 

analysis. The p-y curve proposed by Li (2011) was used to model frozen soil. Table 5.1 

summarizes the soil parameters used in this analysis. Details of the p-y curve were summarized 

in Section 3.3.1.2. 

 

Table 5.1. Soil parameters for defining p-y curves 

Soil type Depth (m) Status γ’[a]  
(kN/m3) 

ω[b] 
(°) 

k[c] 
(kPa/m) 

ε50
 [d] 

qu
[e] 

(MPa) 
Frozen soil 0 -12°C 18 - - 0.001 5.8 
Frozen soil -2 -1°C 18 - - 0.001 2.0 
Loose sand -2 ~ -8 Unfrozen 7 29 5430 - - 

Medium dense sand -8 ~ -14 Unfrozen 10 35 16000 - - 
Dense sand -14 ~ -21 Unfrozen 11 40 33900 - - 
[a] Effective unit weight 
[b] Friction angle 
[c] Soil modulus parameter 
[d] Axial strain corresponding to 50% of ultimate compressive strength 
[e] Unconfined compressive strength 
 
 

The user-input p-y curves were specified in LPILE for the top (0.0 m) and bottom layer (2.0 

m) of the frozen crust. These curves are shown in Figure 5.2. For unspecified frozen soil layers, 

LPILE uses linear interpolation to generate the p-y curve. As can be seen in the figure, the p-y 

curve at the ground surface is much stiffer than that at the bottom of the frozen crust, due to the 

temperature increase with depth.  
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Figure 5.2. User-defined p-y curves for frozen silts 

Soil lateral resistance reduction in the loose and medium dense sand layers due to full or 

partial liquefaction should be considered. In this analysis, p-multipliers, discussed in Section 
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pore pressure ratios (ru) induced for the loose and medium dense sand layers and the dense sand 

layer are 70%‒100% and 40%‒50%, respectively. Loose and medium dense sand layers were 

assumed fully liquefied (i.e., ru=100%), and a p-multiplier of 0.1 was used. The dense sand layer 

only underwent partial liquefaction, and a p-multiplier of 0.5 was selected. A sketch of the 

p-multiplier versus the pile depth is shown in Figure 5.3 
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Figure 5.3. P-multipliers distribution along pile depth 

5.2.3 Loading 

The lateral spreading load was assumed constant in the frozen ground crust and linearly 

decreasing in the liquefied loose and medium sand layers. Figure 5.4 shows a sketch of the 

lateral spreading load. The far-field ground displacement obtained from the FE model, 1.43 m, 

was applied at the ground crust. Note that the far-field displacement does not stand for free-field 

displacement in this case due to pile pinning effects. In practice, the free-field displacement can 

be estimated using empirical or analytical methods, which will be discussed further. 
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Figure 5.4. Imposed displacement loading 

5.2.4 Boundary Conditions at the Pile Head 

As mentioned in Chapter 4, the pile top is not allowed to rotate due to constraint of the cap 

beam. This was modeled by imposing a 0 rad angle on the pile top. The elastic spring simulating 

bridge deck constraint cannot be included in the LPILE model directly. The solution is to apply a 

constant constraint force (estimated as 1,500 kN by multiplying the spring stiffness and the final 

pile displacement) on the pile top in the counter-soil-movement direction. 

5.3 Comparison with Solid-Fluid Coupled Finite Element Modeling 

5.3.1 P-y Curves at Selected Depths 
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Figure 5.5. P-y curves for the frozen crust 

 
Figure 5.6. P-y curves for sand layers 
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5.3.2 Deflection, Rotation, Bending Moment, and Shear Force 

Figure 5.7a to d shows the maximum deflection, rotation, bending moment, and shear force 
results obtained from the p-y approach. For comparison purposes, the maximum values of 
corresponding variables from solid-fluid coupled FE model are also shown. 

 

Figure 5.7. Comparison of pile performance predicted by the p-y approach and solid-fluid 
coupled FE model 

The predicted deflection shape from LPILE analysis agrees well with that from FE 

modeling. However, the confinement effect of the frozen ground crust as modeled by LPILE 

seems to be smaller because the straight portion of the pile is shorter in the LPILE analysis. The 

difference of confinement effect is further shown by comparing the rotation of the pile shown in 

Figure 5.7b. In the FE model, a sharp rotation change of the pile occurs at the bottom of the 
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model. These rotation changes imply that the p-y curves might be too soft. 
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approach is able to predict the formation of two plastic hinges at locations similar to those 

predicted by FE modeling. However, it is obvious that the peak bending moments at both plastic 
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bending moment for the upper plastic hinge is 10,390 kN.m (11,060 kN.m by the FE model), and 

the maximum bending moment for the lower plastic hinge is 8,963 kN.m (11,620 kN.m by the 

FE model). The p-y approach underpredicts the maximum bending moment of the upper and 

lower plastic hinges by 6% and 23%, respectively. It is found that the maximum bending 

moment at the lower plastic hinge is sensitive to the p-multipliers and the prediction could be 

improved by using a different approach in selecting p-multipliers. 

Figure 5.8 illustrates pile curvature profiles as predicted by the p-y approach and solid-fluid 

coupled FE model. Generally, the magnitude and location of the peak curvature in the upper 

plastic hinge from the p-y approach compares favorably with these from the FE model.  

However, the simplified model significantly underestimates the peak curvature at the lower 

plastic hinge when compared with the FE model, which again could be improved by using a 

different p-multipliers selection approach. 

  

 
Figure 5.8. Comparison of results from the p-y approach and solid-fluid coupled FE model 
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crust is 5,987 kN.m (9,330 kN.m by the FE model). Again, this prediction suggests that the p-y 

curves used in this analysis are on the soft side.  

5.4 Guidelines for Analyzing Pile Response by the p-y Approach  

The p-y approach is effective in modeling the response of pile foundations subjected to 

laterally spreading frozen ground crust in liquefiable soils. To utilize this method in design 

practice, the following aspects must be treated with care, including obtaining free-field lateral 

spreading, selecting p-multipliers in fully or partially liquefied soils, constructing the p-y model 

for frozen soil, and modeling superstructure impact. 

5.4.1 Estimating Lateral Spreading 

5.4.1.1 Suggested Methods 

In practice, the p-y approach would require free-field lateral displacement as the input. 

Empirical and semi-empirical procedures are available and commonly used to estimate free-field 

lateral spreading. We present two approaches for evaluating lateral spreading; their applicability 

in the case of frozen crust is not validated by field data.  

Youd et al. (2002) proposed Equations 5.1 and 5.2 for evaluating lateral spreading: 

 

logDH = −16.713 + 1.532M − 1.406logR∗ − 0.012R +
0.592logW + 0.540T15 +   3.413 log(100 − F15) −
0.795log (D5015 + 0.1mm) (for a steep vertical face) (5% 
≤ W ≤ 20%) 

5.1 
 

logDH = −16.213 + 1.532M − 1.406logR∗ − 0.012R +
0.338logS + 0.540logT15 + 3.413 log(100 − F15) −
0.795log (D5015 + 0.1mm) (for gently sloping ground) 

5.2 
 

where DH is the horizontal displacement (m); M is the moment magnitude of the earthquake; R 

is the nearest distance (km) to the seismic energy source; T15 is the thickness (m) of saturated 

cohesionless soils (excluding soils deeper than 20 m or with more than 15% clay content) with 

N1,60 ≤ 15, where N1,60 is the standardized SPT blow count corrected for overburden pressure and 

energy efficiency; F15 is the average fines content for granular material in T15; W is the free-face 

ratio defined as the height of the free face divided by the distance from the base of the free face 
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to the point in question; S is the ground slope in percent; and D5015 is the average D50 grain size 

(mm) in T15. R∗ is calculated by Equation 5.3: 

 

R∗ = 10(0.89𝑀−5.64) + 𝑅 5.3 
 

Zhang et al. (2012) proposed a simpler approach, which consists of Equations 5.4 and 5.5: 

 

𝐿𝐿 = (𝑆 + 0.2) × 𝐿𝐿𝐿 for (0.2%<S<3.5%)  5.4 

𝐿𝐿 = 6 × (𝐿/𝐻)2 × 𝐿𝐿𝐿 for (4<L/H<40) 5.5 

where LDI is the lateral displacement index, which can be obtained by a set of plots proposed by 

Zhang et al. (2012); S is the ground slope; H is the free-face height; L is the distance to a free 

face; and LD is the estimated lateral displacement. 

5.4.1.2 Example for Estimating Free-Field Lateral Spreading 

Golder Associates Inc. (2010) and Alaska Department of Transportation and Public 

Facilities (2010) have documented detailed geotechnical and seismic investigation reports for the 

Brotherhood Bridge site in Juneau, Alaska. For example, the empirical equations in Youd et al. 

(2002) were used to estimate free-field lateral spreading. The process is presented in the 

following four steps: 

Step 1: Obtain topographic parameters 

Figure A. 1 in the appendix presents the topography map for the bridge site. No steep face 

exists at this site. A gentle slope can be observed from left-top corner to bottom-right corner, and 

a rough calculation shows the average ground slope S is 1%. 

Step 2: Obtain geotechnical parameters 

Figure A. 2 in the appendix presents the SPT blow count results for borehole TH-01 and 

TH-02. Only the data from TH-01 were used to demonstrate the process. Figure A. 3 and Figure 

A. 4 in the appendix present the particle-size distribution curves. According to these data and the 

definitions of each parameter, the following parameters are obtained by interpolation: T15 = 4.3 

m, F15 = 11.3%, and D5015 = 0.36 mm.  
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Step 3: Obtain seismic source parameters 

The geologic and geometric characteristics of two main seismic sources are shown in Figure 

A. 5. The SE Denali fault was selected for the analysis because it has a slightly smaller moment 

magnitude and a much shorter distance to the bridge site. A Mw of 7.8 and an epicentral distance 

R of 25 km were used in this example. In practice, all credible source parameters should be 

considered. 

Step 4: Calculate DH with the selected equation 

Since no steep free face exists, Equation 5.2 should be used. By applying the appropriate 

topographic, geotechnical, and seismic parameters, Equation 5.2 yields a lateral displacement of 

2.5 m.  

5.4.2 Selecting P-multipliers 

Applying the excess pore pressure (EPP) ratio data to acquire p-multipliers is not directly 

applicable in design practice due to lack of such data. In situ tests such as the SPT provide a 

possible solution for estimating p-multipliers. Ashford et al. (2011) suggest a method to estimate 

p-multipliers (mp) based on the clean sand equivalent corrected blow count ((N1)60cs); it is 

presented in Table 5.2. However, more research is needed on how to properly select 

p-multipliers for better prediction results as noted in Section 5.3.2. 

 

Table 5.2. P-multipliers (mp) to account for liquefaction 
(N1)60cs mp 

<8 0.0 to 0.1 

8-16 0.05 to 0.2 

16-24 0.1 to 0.3 

>24 0.2 to 0.5 

 

5.4.3 Modeling Frozen Soil Resistance 

The p-y curve proposed by Li (2011) is recommended for modeling frozen soil resistance. 

The frozen soil properties obtained by Yang et al. (2012) can be used in constructing the frozen 

soil p-y curves if the frozen soil conditions are similar.  
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5.4.4 Superstructure Interaction 

Superstructure interaction includes translational and rotation constraints, and inertial force. 

Translational and rotation constraints are easily considered by defining appropriate boundary 

conditions on the pile top. The p-y approach is incapable of modeling the impact of inertial force 

that is time-dependent. In the case of foundations that may suffer from considerable 

superstructure inertial force, it is recommended that more sophisticated solid-fluid coupled FE 

modeling or other analyses be conducted. 

5.5 Summary 

In this chapter, a simplified approach, that is, the pseudo-static p-y approach, was used to 

model pile response subjected to frozen ground lateral spreading in liquefiable soils. Pile 

responses, including deflection, bending moment, and shear force profiles, were evaluated and 

compared with pile responses from FE modeling. The following conclusions were drawn: 

1. Pile response results obtained from the p-y approach compare favorably with those from 

solid-fluid coupled FE modeling. The p-y approach predicted the formation of two 

plastic hinges and the maximum bending moment in the upper plastic hinge, but it 

underpredicted the maximum bending moment in the lower plastic hinge.  

2. Overall, the p-y approach is effective in predicting the response of piles subjected to 

frozen ground crust lateral spreading in liquefiable soils. 

3. The frozen soil p-y curve proposed by Li (2011) is quite effective in modeling frozen 

soil resistance in frozen soil-pile interaction.  

4. Guidelines are proposed for practitioners who analyze the response of piles subjected to 

frozen ground crust lateral spreading in liquefiable soils by the p-y approach. These 

guidelines include how to obtain free-field displacement, select p-multipliers, model 

frozen soil resistance, and account for the effects of superstructure. 
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CHAPTER 6 SUMMARY AND RECOMMENDATIONS 

6.1 Summary 

Liquefaction and associated lateral spreading induce extensive ground failures and 

infrastructure damage around the world. One of the lessons learned from Alaska’s major winter 

earthquakes is that frozen ground crust plays a crucial role in causing bridge foundation failures. 

From three aspects, this study analyzed the effect of ground crust on the seismic response of pile 

foundations: (1) A shake table experiment was conducted to gain an in-depth understanding of 

the impact of frozen ground crust on a model pile foundation, and the results were used in 

numerical model validation. (2) Loads imposed on pile foundations by the frozen crust were 

studied through solid-fluid coupled finite element (FE) analyses of a typical Alaska bridge 

foundation under two soil conditions—one an unfrozen crust and the other a frozen crust—and 

by the comparison of results obtained from these two cases. (3) The effectiveness of a simplified 

approach (i.e., the p-y approach) in predicting the response of piles subjected to frozen ground 

lateral spreading in liquefiable soils was evaluated by comparing the results of the p-y approach 

with those obtained from FE modeling.  

The content and conclusions of this study are summarized below: 

1. In the shake table experiment, laterally spreading frozen ground crust formed two 

plastic hinges: one near the frozen crust-loose sand interface and the other in the 

medium dense sand layer. The plastic hinge at the frozen crust-loose sand interface 

formed because of the large distributed load (soil resistance) induced by the frozen 

ground crust; the plastic hinge in the medium dense sand layer was the direct result of 

lateral spreading of the ground crust.  

2. Two approaches—solid-fluid coupled FE modeling and the p-y approach—were used to 

model the shake table experiment. By comparing the results from numerical approaches 

with those from the experiment, both numerical approaches were confirmed effective in 

predicting the response of piles subjected to lateral spreading of a frozen ground crust, 

particularly the formation of plastic hinges at the frozen crust-loose sand interface and 

within the medium dense sand layer. 

3. Solid-fluid coupled FE analysis was conducted for a full-size soil-pile system of both 

frozen (with a frozen active layer) and unfrozen (with an unfrozen active layer) 
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conditions, and lateral spreading with almost the same magnitude was induced in the 

ground crust for both cases. 

4. Two plastic hinges were observed in both the frozen and unfrozen cases: one located 

near the frozen ground crust-loose sand layer interface (referred to as the upper plastic 

hinge) and the other within the medium dense sand layer (referred to as the lower plastic 

hinge).  

5. For the frozen case, the maximum bending moments in these two plastic hinges 

exceeded the bending moment capacity of the pile; those in the unfrozen case did not 

reach bending moment capacity. The peak curvatures in both plastic hinges in the frozen 

case are 200% larger than that in the unfrozen case. This clearly indicates that the frozen 

crust will induce substantially larger hinge rotation and plastic deformation demand in 

the pile than will the unfrozen crust under similar seismic loading. 

6. The p-y approach is effective in predicting the location and plastic deformation demand 

at the upper plastic hinge, and the location of the lower plastic hinge. It underestimates 

the plastic deformation demand in the lower plastic hinge. However, with further study, 

this could be improved by using a different p-multipliers selection approach. 

7. Guidelines were proposed for practitioners who analyze the response of piles subjected 

to frozen ground lateral spreading in liquefiable soils by the p-y approach. These 

guidelines include how to obtain free-field displacement, select p-multipliers, model 

frozen soil resistance, and account for the effects of superstructure. 

6.2 Suggestions for Future Research 

The following topics or issues are recommended for future research:  

1. Obtaining reliable free-field lateral spreading is one of the key issues that need to be 

resolved in applying the pseudo-static p-y approach. One could apply empirical methods 

in the literature to estimate free-field lateral spreading. However, it is recommended that 

field data, if available, be used to evaluate free-field lateral spreading. Two major winter 

earthquakes have occurred in Alaska. In particular, the 2002 Denali earthquake caused 

numerous cases of liquefaction and lateral spreading in Interior Alaska. Abundant data 

were collected through many site reconnaissance visits and satellite images. These data, 

if analyzed and synthesized for various sites, can be used to validate existing empirical 
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models or establish new or improved models that consider frozen crust cases, providing 

input for bridge design practices. 

2. The shake table experiment and solid-fluid coupled FE modeling were performed for a 

single pile. In practice, pile groups, rather than single piles, are used as bridge 

substructures. It would be worthwhile to investigate how to extend the findings from 

this study to analysis of the performance of pile groups subjected to frozen ground crust 

lateral spreading in liquefied soils. 

3. We found that the p-y approach tends to underpredict the maximum bending moments 

and peak curvatures of two plastic hinges. These results are quite sensitive to 

p-multipliers and frozen soil lateral resistance. The performance of the p-y approach 

could potentially be improved by conducting a sensitivity study of results to 

p-multipliers and frozen soil properties. 

4. Further study is necessary to provide a more reliable prediction of lateral spread, 

including the reduction, if any, that is associated with pile pinning effects. 
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APPENDIX 
This appendix presents the geotechnical, topographical, and seismic investigation data for the 

Brotherhood Bridge site in Juneau, Alaska. 

 
Figure A. 1. Exploration location map (Golder Associates, Inc. 2010) 
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Figure A. 2. SPT blow count corrections and liquefaction potential (Golder Associates, Inc. 2010) 
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Figure A. 3. Particle size distribution ‒ 1(State of Alaska Department of Transportation and Public 

Facilities 2010) 
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Figure A. 4. Particle size distribution ‒ 2 (State of Alaska Department of Transportation and Public 

Facilities 2010) 
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Figure A. 5. Estimated fault geologic and geometric characteristics (Golder Associates, Inc. 2010) 
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