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EXECUTIVE SUMMARY 
 

To ensure an uninterrupted supply of high quality aggregates for use in Portland 
cement, asphalt cement and unbound stone products, transportation agencies include 
test methods and criteria in their standard specifications to define the physical, chemical 
and mechanical property criteria that aggregates must exhibit for each specific end use. 
Most agencies rely on laboratory based test methods compiled by organizations such 
as the American Association of State and Highway Transportation Officials (AASHTO) 
and the American Society of Testing Materials (ASTM) to describe the appropriate test 
methods and criteria. Some of the more common aggregate properties supporting these 
specifications include gradation, specific gravity, absorption, organic content, plasticity, 
abrasion resistance, soundness, freeze thaw resistance, friable particles, insoluble 
residue, and aggregate reactivity. Almost all existing test methods and their 
corresponding criteria are empirical in nature and are based on studies undertaken over 
the years that have defined correlations between the results of laboratory test data and 
field experience.  
 

 

 

 
 

Most AASHTO and ASTM test methods are laboratory-based, and require the collection 
of representative samples for subsequent transport to a laboratory for analysis. 
Turnaround times from sampling to the completion of testing vary widely depending on 
the test method, but can range from a few hours to a few days to several weeks and 
even several months. As a result, aggregate quality assurance is in great part 
dependent on the collection, testing, and preapproval of aggregate sources prior to the 
actual material production process. Many agency quality assurance plans require that 
additional samples be collected during the production process to verify that the actual 
aggregate employed during production matches the preapproved sources. 
Unfortunately, when such methods are employed, the pavement or concrete structure is 
typically in-place by the time tests results become available. In certain instances, failure 
of such verification to comply with the appropriate specification necessitates the 
removal and replacement of the newly installed structure. 

This report describes the results of a research effort to establish the feasibility of using a 
laser monitoring system to provide real-time data to characterize aggregate properties 
in a laboratory or field environment. The approach does not employ new engineering 
test methods. It makes use of the known physical, chemical and mechanical properties 
and aggregate criteria as defined by AASHTO and ASTM, and correlates these 
properties with spectral emission data induced by a laser in a process referred to as 
Laser Induced Breakdown Spectroscopy (LIBS). To gain greater insight into this 
technology requires an overview of the process of atomic emission or optical emission 
spectroscopy and multivariate statistical modeling. 

Atomic emission spectroscopy (AES) is a spectroscopic technique that examines the 
wavelengths of photons emitted by atoms or molecules of a sample material during their 
transition from an excited state to a lower energy state (see Figure 1). Each element 
emits a characteristic set of discrete wavelengths according to its electronic structure. 
By observing these wavelengths and their respective emission intensities, the elemental 
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composition of the sample can be determined (see Figure 2.) For example, if an 
element, such as sodium, is known to emit at a certain wavelength, then the intensity of 
the light emitted at that wavelength can be used to determine the sodium concentration 
in the sample.  

 
Figure 1 Photon released in energy transition. 

 
 
 
 

 
 
 

 
Figure 2 LISB emission spectrum for TXDOT alkali silica reactive chert sample. 

There are many ways in which atoms can be brought to an excited state. The simplest 
method is to heat the sample with a flame to a high temperature. Electrical discharges 
such as arcs and sparks can provide the necessary energy as well as high-powered 
lasers, which can induce high energy plasmas. High powered lasers can impart much 
greater energy than flame or electrical excitation sources, causing the electrons to 
populate higher energy levels resulting in spectra with many more energy lines. This 
process is accomplished by focusing a laser onto a very tiny spot on a target material 
achieving a very high irradiance. During plasma formation (see Figure 3), electrons 
interact and subsequently, within microseconds, recombine with ions to release energy 
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across a broad spectral range. Flame or electrically induced AES is almost exclusively 
used in a laboratory environment where its primary purpose is to determine elemental 
concentrations of the target sample. A laser, however, can be employed as a remote 
sensing instrument designed to operate without sample preparation and in a field 
environment. 
 
 
 

 
 
 

 
 

Figure 3 Laser ablation process. 

The subject technology (LIBS) has the potential to be employed as an automatic laser 
monitoring system to provide real-time data of aggregate quality in a field environment. 
Unlike AES however, the objective is not to determine the elemental concentration of 
the target sample or aggregate. Instead, it is intended as a means to generate a 
spectral pattern, defined not by one wavelength, but by the interrelationship or pattern 
associated with over 13,000 different wavelengths. Analyzing a spectral output 
containing over 13,000 different wavelengths to define specific patterns cannot be done 
using traditional data analysis techniques. Multivariate discriminant analysis provides 
the means to simultaneously analyze multivariate data [1], and provide the means to 
correlate spectral patterns with and defined engineering properties. Using multivariate 
statistical modeling techniques, such patterns, which provide information on the latent 
properties of the aggregate material, have the potential to discriminate between 
aggregate types and identify specific aggregate properties. Discriminant modeling can 
be used as an indicator of whether the spectrum of unknown samples matches the 
spectra from samples taken previously (a training or calibration set of samples) that 
were known to be either good or bad quality or to possess certain fundamental 
properties. Two illustrative examples are presented below in Figure 4 and Figure 5. 
 
In Figure 4, the spectrum of an unknown sample is compared against the model to 
determine if it matches the training data for the model. If the training set was 
constructed from spectra of samples that were of known quality, the model can 
accurately predict if the sample is of the same quality by matching the spectrum and 
giving a "yes" or "no" answer. In Figure 5, the spectrum of the sample is compared to 
multiple training models of different materials or different levels of quality of the same 
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material. The models can predict the likelihood that an unknown sample matches the 
training spectra they were constructed from, again giving a "yes" or "no" answer. 
 
 
 

 
 
 

 
 
 

 

 

 
Figure 4 Quality identification model. 

 
Figure 5 Product identification model. 

Three State DOTs, New York State (NYSDOT), Kansas (KSDOT), and Texas (TXDOT) 
and one contractor/material supplier (APAC-Central) participated in the research effort 
to demonstrate the subject technology. Each supplied specific aggregates for laser 
calibration testing to determine if the technology could be used to identify specific 
aggregate types or engineering properties of interest, and to assess whether LIBS could 
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be used as a means to differentiate between good and poor aggregates as defined by 
the respective State specification criteria.  

New York: Aggregates from New York were studied to see if the acid insoluble residue 
(AIR) content of carbonates (a test criteria used by NYSDOT to determine friction 
course acceptability) could be modeled, and whether a compositional blend of 
noncarbonated rocks, which are almost entirely composed of quartz or silicate minerals, 
mixed with limestone could be quantified (i.e., the percent noncarbonate rock in the 
blend). 

Kansas: Aggregates from Kansas were examined to see whether the original (source) 
bed in a quarry, from which an unknown aggregate sample was extracted, could be 
identified by modeling the characteristics of the aggregate from each bed. D-cracking 
susceptible aggregates from Kansas were also analyzed to determine if models could 
be developed to discriminate between aggregates that passed and failed KSDOT D-
cracking test criteria.   
 

 

 

 

Texas: Aggregates from Texas were examined to determine if a compositional blend of 
chert and quartz sand could be quantified (i.e., the percent chert in the blend), whether 
high and low reactive cherts could be classified, and whether four cherts with different 
degrees of alkali silica reactivity (ASR) could be differentiated. 

APAC-Central:  Fine aggregates dredged from the Arkansas River in Arkansas (Van 
Buren sand) and Oklahoma (Muskogee sand) were analyzed for percent chert  and 
weight percent iron (Fe), respectively. 

The results of these studies were quite remarkable. In all cases, models were 
developed that were capable of identifying with a high degree of accuracy the quality of 
the test aggregate. For example, using the known AIR content of a series of carbonates 
from New York, it was possible to establish a highly accurate calibration model for 
estimating the acid insoluble residue (AIR) content of New York carbonate aggregates, 
and to use the model to predict the AIR content of test samples. It was possible to 
determine the compositional blend of noncarbonate rock in a noncarbonate-limestone 
blend. It was possible to model 16 beds from three Kansas quarries, and to identify the 
specific source bed of an unknown aggregate, and to model aggregates that pass or fail 
KSDOT tests for D-cracking aggregates. The analysis of alkali-silica reactive cherts 
received from TXDOT yielded similar, positive results as well. It was possible to 
differentiate between four types of chert, classify cherts as more or less reactive and 
develop a calibration curve to identify and quantify the percentage of reactive chert in 
quartz-chert mixtures. The chert calibration model, developed for TXDOT, was applied 
to chert in the Van Buren sand from Oklahoma, with errors of about 2%. Finally, the 
weight percent Fe was analyzed in Muskogee sand to within 0.08%.  

The results of this research suggest that multivariate discriminant modeling of laser 
induced spectra can be used to correlate spectral output data with aggregate types and 
aggregate properties. This should not be surprising, since it is reasonable to assume 
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that the engineering properties (physical, chemical and mechanical) of aggregates, as 
defined by AASHTO and ASTM test criteria, are dependent in great part on the 
chemical and mineralogical nature of the aggregate material. On the other hand, while 
such an assumption is reasonable, it is noteworthy that few studies have (up until now) 
effectively developed correlating relationships between the chemical or mineralogical 
properties of aggregate materials with most engineering properties.   
 
The authors believe that the success of this research in making such a correlation is 
based on two primary factors:  
 
1. The laser ablation process can generate an emission with over 13,000 potential 

wavelengths, and these data provide a rich spectra that can be used to pattern 
match or fingerprint latent properties within the material that are not readily 
identifiable by conventional elemental or mineralogical testing methods. 
 

2. The development of multivariate statistical software models over the past 20 to 30 
years that can process large spectral arrays has made it possible to manage and 
analyze in real time data from the emission spectra generated during a laser ablation 
process. 

 
In summary, the authors believe that the large data base along with the capability to 
model the data provide the framework for the predictive capability of the technology, in 
effect uncovering the latent properties present in the light emitted from the targeted 
aggregate material. The primary advantage of the subject technology over conventional 
aggregate testing and screening methods is its potential to identify the aggregate 
source in real-time in the field without sample preparation. This provides a means to 
identify preapproved materials and to ensure that only such materials are being 
introduced into the production process. It also provides a means to calibrate the spectral 
pattern or fingerprint against known engineering properties to determine whether the 
aggregate can be expected to pass or fail designated test criteria. Development and 
demonstration of the subject technology in the field could provide State DOTs and 
material suppliers with a real time, nearly instantaneous recording tool to address the 
need for transportation infrastructure material quality control monitoring. 

INTRODUCTION 

Product 
The product under development is an automated real-time quality control aggregate 
monitoring system. The system employs a laser and supporting optical equipment to 
scan aggregates and provide real-time monitoring during the pavement production or 
aggregate mining process to screen materials without sample preparation. This 
provides a means to identify pre-approved materials, to ensure that only such materials 
are being introduced into the production process. It also provides a means to calibrate 
the fingerprint against known engineering properties to determine whether the 
aggregate can be expected to pass or fail designated test criteria. Successful 
deployment of such a system can provide a layer of quality control that the industry 
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currently does not have, thereby ensuring that the transportation infrastructure is being 
rehabilitated or constructed using quality materials that maximize service life. 

Report Content 
The remainder of this report is divided into the following sections. The first section, 
Concept and Innovation, describes the principles and technical basis of the laser 
aggregate monitoring system. The second section, Investigation, summarizes the 
aggregate types received from NYSDOT, KSDOT, TXDOT and APAC-Central for 
testing, the laser equipment, analytical procedures, data processing and general 
modeling approach utilized in the research effort. This section is followed by four 
sections that respectively focus on the source materials, testing methods, modeling 
methods and results of the NYSDOT, KSDOT, TXDOT and APAC-Central efforts. 
These specific sections are followed by the Findings and Conclusions section, which 
provides a concise listing of the major findings and conclusions of the research effort. 
The last section, Plans for Implementation, provides a description of the requirements 
for transitioning the technology from the laboratory to the field and developing plans for 
implementing this transition. 

CONCEPT AND INNOVATION 

The Process 
The subject technology employs a rapid laser-scanning technique in which a very short-
duration pulse of energy from a high-power laser is optically focused at a point, 
instantaneously heating the target sample to cause vaporization and atomization of 
nanograms of material within a microplasma. Because of the high plasma temperature 
(initially >8000 deg K), atoms and ions are electronically excited and upon return to 
ground state emit light across a broad spectral range (most importantly the range of 200 
to 980 nm). The light generated by the plasma is characteristic of the chemical makeup 
of the ablated material. This light (emission) can be quantified by collecting it and 
generating a spectral image, which identifies the emission wavelengths and respective 
intensities in a spectrometer. The image is projected onto a charged couple detector. 
The spectral image can then be visually and mathematically recorded in a computer. 
Once the emission spectra are recorded and stored it is possible to make use of 
multivariate statistical techniques to generate models to profile or pattern match the 
spectral signal from unknown aggregate samples generated during the laser ablation 
process for comparison with spectra from known sources. This laser induced plasma or 
laser ablation process in which an emission spectra is captured is referred to as Laser 
Induced Breakdown Spectroscopy (LIBS). 
 
The LIBS process is fundamentally similar to traditional atomic emission spectroscopic 
(AES) methods that are used for elemental analysis. Each element emits a 
characteristic set of discrete wavelengths according to its electronic structure. By 
observing these wavelengths and their respective emission intensities, the elemental 
composition of the sample can be determined (see Figure 2). Unlike traditional methods 
however, lasers have the unique advantage of providing real-time “remote sensing” 
capability in field applications. In addition, in the subject application the objective is not 
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to determine the elemental composition of the target sample. The objective is to model 
the emission spectral output generated during the laser ablation process. No one 
specific element makes up the model. It is a composite of the relationship of over 
13,000 wavelengths of data. 
 
Imbedded in the spectral output of a laser ablated sample is an enormous amount of 
data. These data provide information on the latent properties of the target material. If 
the data could be manipulated or modeled in such a way so as to reveal specific 
properties of interest, then the proposed pattern identification approach can be 
converted to a powerful analytical tool. This is in essence how the process works. 
 
A schematic representation of the quantity of data imbedded in a spectral output is 
shown in the matrix presented in Figure 6. Each laser shot (1,2,3,4….s) shown on the 
left side of the matrix generates over 13,000 wavelengths or energy line outputs (w1, w2, 
w3, w4…..wn). Since lasers can be set to fire at frequencies ranging from 1 to 50 Hz, a 
very large sample population (s) can be generated. For example, the matrix shown in 
Figure 6 depicts a total of s shots and n energy lines. A laser firing at one shot per 
second (1 Hz) would generate 60 spectral outputs in one minute. At 10 shots per 
second (10Hz), 600 spectral outputs would be produced. The combination of the 
emission spectra with over 13,000 data points (i.e., variables) and the number of laser 
shots (i.e., samples) provide the means to generate models with unprecedented levels 
of information. These models, discussed in greater detail below, are capable of 
developing identifiable correlations with specific engineering properties or specific 
aggregate types.  
 
 

 
Figure 6 Spectra data output. 

 

Multivariate Statistical Modeling 
The collection of large numbers of measurements made on many samples has 
traditionally been analyzed using one or two variables at a time. This approach however 
cannot readily discover the relationships among all samples and variables efficiently. To 
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do this, all of the data must be processed simultaneously. Chemometrics is the field of 
extracting information from multivariate chemical data using tools of statistics and 
mathematics. This is directly applicable to laser induced spectral data, which can 
contain large numbers of samples and signals.   
 
Multivariate modeling of chemical data can be used for three primary purposes: 

1. To explore patterns of association in data, 
2. To prepare and use multivariate classification or discriminant models, and  
3. To track properties of materials on a continuous basis.  

 
In the course of this investigation, all three purposes were applied. Using Principal 
Components Analysis (PCA) patterns of data were explored. Using Partial Least 
Squares Regression (PLS) Modeling, discriminant predictive models were prepared and 
finally, the data was used to initiate the development of a system to track properties of 
aggregate materials on a continuous basis. 
 
Principal Components Analysis (PCA) and Partial Least Squares Regression (PLS) 
analysis are referred to as projection models. They use linear algebraic techniques on 
arrays of large samples of data, as shown in Figure 6, to generate new data projections. 
The new projections reduce the number of dimensions in the data so that relationships 
amongst the most important variables, if they exist, can be visualized and quantified. 
PCA in particular, permits an analyst to visualize whether the properties of samples 
introduced into the model can be differentiated. If the samples can be differentiated then 
this suggests that the structure of the data can be further analyzed to define underlying 
factors associated with the differences between the samples. Given these differences, 
PLS can then be used to develop predictive models that can correlate a multivariate 
array of independent variables, as depicted in the spectral data presented in Figure 6, to 
a dependent array of data. This is conceptually presented in Figure 7. The goal is to 
transpose the X-matrix (independent variables), which can represent the spectral output 
shown in Figure 6, into a new Y matrix (dependent variables) with fewer dimensions. In 
our case the goal is to reduce the X-matrix to a predictive Y-matrix that can be 
correlated with an aggregate type or property of interest. The models in this 
investigation were developed using PLS analysis. The specific properties listed in 
Figure 6 represent the actual properties that were modeled in this effort using 
aggregates from New York, Kansas and Texas. 
 
 

 
Figure 7 Spectral data modeling objectives 

 
 
The predictive reliability of a multivariate model is dependent on the development of 
an effective calibration or training model that is subsequently used as the predictive 
model. The accuracy of such a model is dependent on the source of data used to 
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calibrate the model. If the sources are correctly selected, the more input data that 
are available the more reliable the model. The development of PLS models to 
predict aggregate properties from laser generated spectra can be designed to make 
use of an extremely large database. The size of these databases is unprecedented, 
insofar as engineering modeling applications are concerned. The number of 
samples and the number of variables that can be included in the calibration or 
training models provides the means to generate engineering property predictive 
tools that previously were not possible. 

Laser Targeting and Spectrographic Equipment 
The spectral output data used to develop input to the PLS models was acquired by 
Laser Induced Breakdown Spectroscopy (LIBS). A LIBS setup consists of a laser, 
mirrors and focusing lenses to focus the laser on the target sample. It includes 
collection lenses and optical fibers to collect and transmit the light generated by the 
ablation process to a spectrometer and a charged couple device (CCD) capable of 
recording and storing the data in a computer. A schematic showing a general equipment 
arrangement is shown in Figure 8.  
 
 

 
Figure 8 Integrated LIBS system components. 

 
 
LIBS has been applied in a variety of applications since the late 1980s [2]. Some of 
these include coal and flue gas characterization, toxic material identification, explosives 
and chemical and biological weapons detection, soils analysis, and food quality. Major 
advances in the use of LIBS to identify geo-materials has been occurring [3,4,5] in great 
part due to a NASA Mars 2012 mission, where LIBS technology will be employed as 
part of the Mars rover to analyze Martian soils [6]. In 2003, the technology was 
proposed in Germany as a means to provide quality control on recycled concrete 
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aggregate [7]. The similarity of geo-materials to aggregate materials would appear to 
make the technology well suited for highway aggregate characterization, although no 
reported use of LIBS for quality control of virgin aggregate materials has been reported 
in the literature.   
 
The integrated LIBS system depicted in Figure 8 is applicable to both a laboratory and a 
field monitoring system. Laboratory LIBS systems are currently available and can be 
purchased from vendors. The system used in this investigation is described in the next 
section. Few LIBS field systems however, have been developed for remote monitoring, 
and those that have been developed operate by preselecting a target material ablation 
point and focusing the laser on that location to generate a spectra that can be captured. 
If a second target shot is warranted, the laser must be repositioned and focused on the 
second target location. For aggregate (bulk material) field monitoring, such step by step 
laser focusing systems is not an ideal operational mode. In bulk monitoring, the full 
analytical power of LIBS and multivariate modeling can be better exploited by deploying 
a system where the laser can fired repeatedly at the target material analyzing numerous 
samples in a continuous manner. The authors have developed a patent pending system 
for such a purpose, which is described in the Plans for Implementation section of this 
report. 

INVESTIGATION 

Research and Modeling Objectives 
The NYSDOT research focused on the feasibility of using LIBS spectra to develop 
models to predict the acid insoluble residue (AIR) content present in carbonate 
samples, as well as the quantity of silicate rock present in a silicate rock-carbonate 
(limestone) blend. Acid insoluble residue content is the primary friction-related test 
criteria used by NYSDOT to evaluate the acceptability of surface course aggregates.  
 
The KSDOT research had two objectives. The first focused on the feasibility of using 
LIBS spectra to model aggregates from 16 beds in three quarries to predict whether the 
source bed of an unknown aggregate could be identified. The second focused on the 
feasibility of using LIBS spectra to model D-cracking susceptible aggregates to 
determine if D-Cracking pass/fail tests as specified by KSDOT could be predicted. 
 
The TXDOT research focused on the use of LIBS spectra to develop models to predict 
the presence and percentage of an alkali silica reactive chert in a sample of nonreactive 
quartz sand, to classify chert as a high or low ASR reactive chert, and to identify specific 
chert types from a series of unknown samples.  
 
The APAC-Central research focused on testing fine aggregates. The Van Buren sample 
was used to determine if the calibration model developed with TXDOT materials could 
accurately identify percent chert in the Van Buren sand. For the Muskogee sand, the 
research approach was to predict the amount of iron (Fe) present.   
 
To undertake this effort, a total of nine separate models were developed. These are 
listed in Table 1. 
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Table 1. Model Development 
 

Agency Model 
NYSDOT Acid Insoluble Residue Calibration 
NYSDOT Noncarbonate Rock-Carbonate Blend 

Calibration 
KSDOT Quarry Bed Identification 
KSDOT  D-Cracking Pass/Fail Test 
TXDOT Alkali-Silica Reactive Chert-Quartz 

Calibration 
TXDOT More reactive/Less reactive Chert 
TXDOT Chert Source Identification 
APAC Chert in Van Buren sand 
APAC Fe in Muskogee sand 

 
 
 
The NYSDOT models that were developed were compositional (or calibration) models, 
in which the spectra were correlated to a known concentration of one or more selected 
variable. In New York, these variables were the percent acid insoluble residue in a 
carbonate aggregate, and the percent noncarbonate aggregate in a mixed 
noncarbonate-carbonate aggregate blend. The Kansas models were not compositional 
models. The identification of the source of an aggregate derived from one of 16 beds 
required the development of a matching algorithmic process that was designed to 
compare and match beds to one another in order to select the correct source bed. 
Pass-fail models used in Kansas’ D-cracking studies were made using integer indicator 
variables that were regressed against spectra derived from aggregate that passed or 
failed the KSDOT D-cracking tests. TXDOT calibration models were a combination of 
calibration, integer indicator and matching algorithm models. In all cases, the models 
were tested with two separate sample sets: a calibration or training set and a validation 
set that were not included in model development. More descriptive details of these 
models are presented in subsequent sections where the models are applied. Both 
APAC models were compositional models. 

Sample Acquisition 
Aggregate samples, shown in Figure 9, were submitted by NYSDOT, KSDOT, TXDOT 
and APAC-Central in gallon-sized containers for testing. Particle sizes ranged from 
approximately ¼” to ½” in diameter; the TXDOT chert-quartz and APAC-Central 
samples were sand-sized. Detailed lists of the samples used in this research effort are 
presented in each respective section. NYSDOT provided carbonate samples with 
laboratory measured AIR values, in addition to various silicate aggregates. KSDOT 
provided samples from 16 limestone beds in three quarries from eastern Kansas, all of 
which were tested for D-cracking susceptibility. TXDOT provided samples of hand-
picked reactive chert from several sources and pure non-reactive quartz sand. Samples 
received by the research team were rinsed in distilled, deionized water to remove dust 
and air-dried prior to testing. Two sands were submitted by APAC-Central for analysis in 
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5-gallon-sized containers. The Van Buren sand was tested for chert content and the 
Muskogee sand for Fe content. 
 
 

 
Van Buren                   Muskogee 

Chert                            Fe 

 
Figure 9 Examples of aggregates used in this study. Ruler is 6" long. 

 

LIBS Equipment 
The LIBS system used to generate and record the spectra consisted of an Nd:YAG 
1064 nm 200 mJ laser supplied by Big Sky Laser Technologies, Inc., and an Ocean 
Optics LIBS 2500-7 channel system spectrometer. The laser system includes a sample 
chamber consisting of a sample platform, a focusing lens and a fiber optic cable 
designed to collect and transmit the light emission from the ablated aggregate to the 
spectrometer and charged couple device. A photograph of the LIBS system is shown in 
Figure 10. 
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Figure 10 LIBS lab system at New Mexico State University. 

 

 
 

Sample Analysis 
During laser testing, individual aggregate particles were placed on a sample target 
platform in the sample chamber (the black housing under the laser shown in Figure 10) 
for LIBS analysis. The laser was focused on the surface; one shot was collected from 
each particle. The laser power was 120 mJ.   
 
The TXDOT quartz sample used in the chert-quartz calibration and the APAC-Central 
samples consisted of sand-sized particles. Because the manipulation of individual sand 
grains in the sample chamber was found to be cumbersome, the sand from TXDOT and 
APAC Central were placed in a shallow aluminum dish with vertical sides, and the dish 
was placed on the target platform. The top surface of the sand was level with the top of 
the dish. The laser was set to shoot at 1Hz, and the sample was moved horizontally 
below the laser between shots. While this process results in some poor spectra due to 
poor focus and simultaneous analysis of two adjacent grains, the data can be reliably 
modeled (see TXDOT section below). This suggests that moving to an automated 
sampling and analysis system is highly feasible (see Plans for Implementation).  

Multivariate Statistical Modeling 
A total of nine different models, listed in Table 2, were developed in this effort. The 
number of models developed, the model reference name, the dependent variable 
modeled, the predictor type and the number of spectra averaged to create a single-
spectrum for input to the model are also listed in Table 2, and discussed in greater 
detail in each respective state section below. 
 
Early in this project, models were built using single-shot data, (i.e., each laser shot was 
used as a single spectrum). However, the modeling results improved radically by 
averaging spectra prior to multivariate modeling. Averaging improves results for two 
main reasons. First, averaging reduces the effects of the shot-to-shot variability inherent 
to LIBS analysis. Because there is essentially no sample preparation, samples differ 
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from one another in subtle ways such as surface roughness and angle between the 
surface and the laser light. These variations cause the laser to couple with the sample 
surface in different ways, resulting in shots with variable overall intensity. Averaging a 
large number of shots smoothes out these differences. Furthermore, averaging a large 
number of spectra captures the full chemical variability in the sample. Geologic 
materials are notoriously heterogeneous; compositions can vary even in materials that 
appear homogeneous.   
 
The column labeled “predictor type” in Table 2 lists for each respective model the type 
of evaluation procedure used to generate the model output. Models with compositional 
predictor types (Table 2) correlate the spectra with a compositional variable; for 
example the percent analyzed insoluble residue (AIR), the percent carbonate in a 
silicate-carbonate mixed aggregate, and the percent chert in a chert-sand mixture. For 
these models, all of the spectra collected from a sample (100 or 150) were averaged to 
make a single spectrum for the sample. The models were tested using separate 
validation samples not included in the model calibration.   
 

Table 2. Model Development Summary Table 
 

Agency Model 
Reference 

Dependent 
Variable Predictor Type 

Number of 
Spectra 

Averaged 

NYSDOT NYAIR Acid Insoluble 
Residue Content 

Compositional 
Calibration Curve 150 

NYSDOT NYNCC 
Noncarbonate-

Carbonate Blend 
Content 

Compositional 
Calibration Curve 150 

KSDOT KSSBI Quarry Bed 
Identification 

Matching Algorithm 
Indicator Integer 
(Yes = 1; No = 0) 

10 

KSDOT KSDPF D-Cracking 
Pass/Fail Test 

Indicator Integer 
(Yes = 1; No = 0) 10 

TXDOT TXRC Reactivity of Chert 
Indicator Integer 

(More reactive = 1; 
Less reactive = 0) 

30 

TXDOT TXCSI Chert Source 
Identification 

Matching Algorithm 
Indicator Integer 
(Yes = 1; No = 0) 

30 

TXDOT TXCQS Chert-Quartz Sand 
Content 

Compositional 
Calibration Curve 100 

APAC OKC Chert Content in 
Sand 

Compositional 
Calibration Curve 500 

APAC OKF Fe Content in Sand Compositional 
Calibration Curve 500 
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Models with indicator integer predictor types (Table 2) correlate the spectra with the 
integers "1" and "0," where these indicator integers display the dependent variable of 
interest. For example, "1" means pass and "0" means fail in the KSDPF D-cracking 
pass/fail test. For these models, half of the spectra were used to create the model, and 
the other half were used in test-set validation. The acquired spectra were averaged in 
groups of 10 or 30 in an effort to minimize the shot-to-shot variability while still 
producing a statistically robust model. The matching algorithm models were a 
combination of a sequential stepwise procedure of comparing one bed to the next and 
an integer indicator model to provide a “match” or “no match” answer. 
 
Averaged spectra were modeled using PCA (Principal Components Analysis) and PLS 
(Partial Least Squares Regression) techniques with the software Unscrambler (Camo 
Software, Inc.).   

NEW YORK STATE: FRICTION AGGREGATES 

Objectives and Analysis 
NYSDOT Material Method (MM) 28 [8] covers the quality control procedures and criteria 
required to determine the acceptability of aggregate use in New York State hot mix 
asphalt and Portland cement concrete surface courses. The primary concern is the 
presence of an excessive carbonate component, which being softer than the silicate 
component, is susceptible to tire polishing and becomes slick when wet.   
 
Three types of aggregate or aggregate blends are permitted by NYSDOT surface 
course specifications. They include:  

1. Silicate rocks with little or no carbonate, 
2. Carbonates with more than 20% acid insoluble residue (the silicate component), 

and 
3. Any mixture with a greater than 20% silicate aggregate. 

 
A two-stage procedure is used by NYSDOT to qualify aggregate use in surface courses. 
If the aggregate is a carbonate, the AIR content must exceed 20%, by weight of 
aggregate, for the aggregate to be used. If the carbonate has less than 20% AIR, the 
carbonate must be blended with at least 20% of a silicate aggregate to be used. This 
evaluation process is illustrated in Figure 11.   
 
Two calibration models were developed to predict the AIR content of carbonates, and 
the silicate content of a blended silicate rock-carbonate mix in accordance with the 
process illustrated in Figure 11. These two models are referred to as the New York Acid 
Insoluble Residue (NYAIR) model and the New York Noncarbonate-Carbonate Blend 
(NYNCC) model. NYSDOT submitted two sets of samples, listed respectively in Table 3 
and Table 4, to support the development of the two models. 
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Figure 11 Friction aggregate quality control procedures in New York. 

 
 

 

 
 
 

Table 3. Ten NYSDOT AIR Calibration Samples 

Sample % Residue 
Limestone 8-17R 56.7 
Limestone 2-9R 3.7 

1-23R (10GP1024) 
limestone 31.5 

2-6RS1 (10GP17S) 
dolostone and 

limestone 
23.9 

3-8RS (10GP998) 
dolostone 46.3 

4-3RS (10GP1055) 
cherty limestone 38.6 

4-10RS (10GP925) 
cherty limestone 37.5 

4-12R (07GPC12) 
cherty limestone 33.1 

5-3R (10GP1015) 
cherty limestone 38.4 

8-15RS (10AR29S) 
limestone 36.7 
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Table 4. Additional Eight NYSDOT Carbonate-Noncarbonate Calibration Samples 
 

Sample Rock Type 
2-16R Granite 
8-24R Traprock 

Sample 1 
carbonate Limestone, AIR unknown 

Sample 1 silicate Carbonate/Noncarbonate 
Blend 

Sample 2 
carbonate Limestone, AIR unknown 

Sample 2 silicate Carbonate/Noncarbonate 
Blend 

Sample 3 
carbonate Limestone, AIR unknown 

Sample 3 silicate Carbonate/Noncarbonate 
Blend 

 

Modeling Procedures: NYAIR Model-Acid Insoluble Residue 
Calibration of the NYAIR Model proceeded as follows: 

1. Ten carbonate samples, listed in Table 3, with AIR contents ranging from 3.7 to 
56.7% were available to develop a calibration for percent AIR.   

2. Eight of the10 carbonates with known AIR were used to construct the NYAIR 
calibration model; samples 8-15R and 4-10RS were withheld for test-set 
validation.   

3. A total of 150 aggregate particles from each of the 8 samples was analyzed 
with one laser shot per particle, 

4. The 150 spectra were averaged to produce one spectrum per sample.  
5. The resulting spectra were regressed in the PLS NYAIR model against the 

known AIR content of each of the 8 samples in the calibration set. 

Test-set validation proceeded as follows: 
1. The test-set validation samples (8-15R and 4-10RS) consisted of two 

carbonates with known AIR content. 
2. A total of 150 aggregate particles from each of the 2 carbonate samples were 

analyzed with one laser shot per particle, 
3. The 150 spectra were averaged to produce one spectrum per sample.  
4. The resulting spectra were input to the NYAIR calibration model to predict the 

AIR content of the test sample. 
 
Modeling Results: NYAIR Model-Acid Insoluble Residue 
The NYAIR calibration model developed to predict the AIR content of carbonate 
samples, shown in Figure 12, exhibited essentially perfect correlation. Two samples 
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were used for test-set validation (Table 5). The predicted AIR for these samples were 
within 1.2% of the true values. The test set validation was highly satisfactory. 
 
 

 
Figure 12 NYAIR calibration model for AIR content in NYSDOT carbonates. 

 
Table 5. Determination of Percent AIR in Two Carbonates 

 
Test-
set 

Sample 

Known 
AIR 

Value 
Predicted 
AIR Value 

Absolute 
Error 

8-15R 36.7 37.9 1.2% 
4-10RS 37.5 37.0 -0.5% 

 
 
 
The NYAIR calibration model accuracy is attributed to the relative large data base (150 
shots per sample) and the fact that the LIBS spectra seems to readily resolve 
differences between the carbonate and noncarbonate fractions of an aggregate 
particle.  

Modeling Procedures: NYNCC Model - Percent Noncarbonate in Carbonate-
Noncarbonate Blend 
A total of 18 samples were available to calibrate and test the noncarbonate-carbonate 
aggregate model (Tables 3 and 4). All spectra generated were based on laser shots on 
150 separate particles and the 150 spectra were averaged to yield one spectrum per 
sample.  
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Test-set validation was also used to test the NYNCC Model. The test-set validation 
samples consisted of three mixed blends of carbonate and silicate rock discussed 
below. 
 

 

 

 

 
 

 

 

Calibration of the NYNCC Model proceeded as follows: 
1. Sample 2-16R (a single noncarbonate aggregate, granite), and Sample 2-9R (a 

low-residue limestone) were selected for use in model calibration (See Table 3 
and Table 4). 

2. A total of 150 aggregate particles from each of the samples were analyzed with 
one laser shot per particle, 

3. The 150 spectra were averaged to produce one spectrum per sample.  
4. Weighted spectra were then developed to reflect anticipated spectra for 

samples containing 10% carbonate rock and 90% silicate rock, 20% 
carbonate rock and 80% silicate rock, etc., up to 90% carbonate rock and 
10% silicate rock. 

5. The resulting spectra were regressed in the PLS NYNCC model against the 
actual percent noncarbonate rock content, expressed as the percent of 
particles. 

Test-set validation of the NYNCC Model proceeded as follows: 
1. Sample 8-24R (a silicate aggregate, traprock), and Sample 4-12R (a high 

residue limestone, with a 33.1% AIR content) were selected as the validation 
samples (See Table 3 and Table 4). 

2. Again, a total of 150 aggregate particles from each sample were analyzed with 
one laser shot per particle. 

3. The 150 spectra were averaged to produce one spectrum per sample. 
4. Weighted spectra were then developed, similar to the calibration set to reflect 

anticipated spectra for samples containing 33%, 50%, and 67% 
noncarbonate rock. 

5. The resulting spectra were input to the NYNCC calibration model to predict 
the percent carbonate stone in the test sample. 

Modeling Results: NYNCC Model - Percent Noncarbonate in Carbonate-
Noncarbonate Blend 
The NYNCC model is presented in Figure 13. This calibration was also excellent, 
suggesting again that carbonate and silicate resolution is very high and, if sufficient 
amounts of data are collected, the model can be very precise. 

Test-set validation was also effective. Despite the differences between the calibration 
samples and the test-set samples, the model was able to effectively predict the percent 
silicate rock in the mixtures, as shown in Table 6. In this case, the absolute errors 
varied from 4.2 to 9.3%. These results would improve if additional mixtures of 
noncarbonate rocks (e.g., granite, traprock, sandstone, etc.) and a variety of 
carbonates with different AIR values were available to increase the robustness of the 
model.  
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Figure 13 Calibration curve for percent noncarbonate rock in a noncarbonate-
carbonate aggregate blend. 

Table 6. Determination of Silicate Rock Content in Three Mixtures 
of Traprock and a Moderate-Residue Limestone 

Test-Set 
Sample 

Known % 
Noncarbonate 

Rock 

Predicted % 
Noncarbonate 

Rock 
Absolute 

Error 

33% 4-12R 
+ 67% 8-24R 

traprock 
67 57.7 9.3 % 

50% 4-12R 
+ 50% 8-24R 

traprock 
50 42.8 7.2 % 

67% 4-12R 
+ 33%  8-24R 

traprock 
33 28.8 4.2 % 

 

STATE OF KANSAS: D-CRACKING AGGREGATES 

Objectives and Analysis 
D-cracking of a Portland cement concrete pavement, a particular problem in Kansas 
and many Midwestern States is generally attributed to the destruction of the aggregate 
by cycles of freezing and thawing. Despite extensive study, the specific aggregate-
related property that induces a D-cracking pavement is not known. KSDOT requires that 
aggregates incorporated into Portland cement concrete pavements (a Class 2 KSDOT 
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aggregate) be directly subjected to modified freeze thaw (soundness) testing. In 
addition, concrete specimens made with the subject aggregates must be resistant to 
rapidly repeated cycles of freezing and thawing in the laboratory. These test methods 
are defined by two KSDOT test methods [9]: 
 

1. Modified freeze-thaw text (KTMR-21); must score 85 or better to be a usable 
aggregate. 

2. Expansion test (KTMR-22); % expansion cannot exceed 0.025%; and Durability 
factor test (KTMR-22); score must be 95 or greater. 

 
Samples that do not pass the first test are rejected and do not undergo the second test. 
 
The objectives in the KSDOT effort were twofold: 1) to identify the source quarry bed 
from unknown samples and 2) to anticipate overall pass/fail D-cracking test results. As a 
result, two general models were developed.  
 
The first model, referred to as the Kansas Source Bed Identification (KSSBI) model, 
was designed to determine from which bed an unknown aggregate was derived,  and in 
the process identify quarry beds that were pre-certified as either high quality (e.g., Class 
1 or 2) or lower-quality aggregate. The second model, referred to as the Kansas D-
Cracking Pass/Fail (KSDPF) model, was designed to predict whether an aggregate 
would pass or fail KTMR-21 and KTMR-22 test methods. 
 
KSDOT supplied 16 aggregate samples for testing from three quarries, listed in Table 7. 
Each of the 16 samples was derived from a separate bed within its respective quarry. 
The 16 samples, all limestone, included samples that failed KTMR-21, samples that 
passed KTMR-21, but failed KTMR-22, and samples that passed both KTMR-21 and 
KTMR-22. Samples were provided by KSDOT from four formations (geologic units), with 
samples from the same formations from different quarries to test spatial variability in the 
units.  
 
As part of the calibration and validation process, for both the KSSBI and KSDPF 
models, each of the 16 separate samples was processed as follows: 

1. For each bed (or sample) 100 separate aggregate particles were collected and 
divided into 10 separate subsamples, each containing 10 aggregate particles. 

2. Each of the 10 particles within a subsample was analyzed with one laser shot; 
this resulted in 10 laser shots and 10 corresponding spectra per subsample. 

3. The 10 spectra were averaged to yield one average spectrum per subsample. 
4. Half, five of the 10 subsamples were randomly selected, as a training or 

calibration set, and the remaining five were reserved for test-set validation.  
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Table 7. KSDOT Calibration and Validation Samples 
 
Formation Member and Bed Pass or Fail 

Quarry 1-046-16, Johnson County, 38.8377oN, 94.8693oW 
Stanton Limestone Stoner A  Fail KTMR-22 
Stanton Limestone Stoner B  Fail KTMR-22 

Quarry 4-030-02, Franklin County, 38.65413oN, 95.25246oW 
Stanton Limestone South Bend 1 Fail KTMR-22 
Stanton Limestone Stoner 2 Fail KTMR-22 
Stanton Limestone Stoner 3 Fail KTMR-22 
Stanton Limestone Stoner 4 Pass 
Stanton Limestone Stoner 5 Pass 
Stanton Limestone Stoner 6 Fail KTMR-21 
Plattsburg Limestone Spring Hill (SPGH) 12 Fail KTMR-21 
Plattsburg Limestone Spring Hill (SPGH) 13 Pass 
Plattsburg Limestone Spring Hill (SPGH) 14 Pass 

Quarry 4-002-01, Anderson County, 38.34605oN, 95.25555oW 
Stanton Limestone Captain Creek 2 Pass 
Plattsburg Limestone Spring Hill (SPGH) 3 Pass 
Plattsburg Limestone Spring Hill (SPGH) 4 Pass 
Plattsburg Limestone Spring Hill (SPGH) 5 Pass 
Plattsburg Limestone Spring Hill (SPGH) 6 Pass 
 

Modeling Procedures: KSSBI Model-Source Bed Identification 
The Kansas Source Bed Identification (KSSBI) model development issue revolved 
around how to calibrate and validate a model in such a manner that an unknown sample 
(spectra) could be introduced and matched to one of the 16 beds effectively.  When 
focusing on 16 separate beds (all limestone) it became apparent during initial analyses 
that a simple comparison of all 16 spectra would not satisfactorily resolve differences 
between the individual beds. It was determined that a model was needed that was of 
sufficient resolution to identify more subtle differences in spectra. 
 
After several starts and stops, the calibration approach selected involved the use of a 
matching algorithmic process, based on work by R. Multari and others at Applied 
Research Associates, Albuquerque, NM (patent pending) [10]. In this procedure, the 
spectra derived from the samples are compared to one another in a stepwise manner 
by comparing the relationship of an “unknown sample spectra” to the spectra derived 
from “all the other beds.” This methodology provided the means to effectively identify 
the specific identity (e.g., bed) of an unknown sample.  
 
One way to think of the procedure is as follows: If one has 16 beds, labeled A, B, C, D, 
E………P, then the spectra of Bed A will relate to all other spectra in a unique and 
distinct manner, the spectra of Bed B will relate to all the other spectra in a different 
unique and definable manner and so on. While this is a somewhat simplified view of the 
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analysis it is sufficient to provide a conceptualization of the procedure, which is 
described in detail below. 
 
Calibration of the KSSBI matching algorithm model involved the development of 15 
separate models. Each of these models were designed to identify one of the 15 beds. 
The 16th bed would be unrecognized by the first 15 models. The developmental process 
involved the selection of an 

• Optimum sequence for examining an unknown sample (Sample X) with each of 
the 15 models generated (e.g., Model 1, Model 2….Model 15), as well as the 

• Criteria by which the unknown sample (Sample X) could be correlated with one 
of the 16 beds in each of the 15 models.  

 
The specific steps taken to develop the KSSBI model and a brief summary of those 
steps will hopefully provide some clarification:  
 
1. Generate a Principal Component Analysis (PCA) score plot using all calibration 

samples (i.e., the average spectrum of the five subsamples used as the calibration 
set in each of the 16 beds)   
A PCA score plot, as previously outlined, is a projection of the original data onto a 
new coordinate axis system (Principal Components). The PCA score plot projection 
groups samples with similar characteristics together in the new coordinate system 
and provides a means to see if the sample types used can be differentiated. Figure 
14 shows the PCA score plot for the 16 limestone beds.  

 
3. Select Model 1 of the 15 model sequence  

The first step in the analysis was to identify one bed in the PCA score plot that was 
distinct from all others. This bed was Spring Hill 14. Springhill 14 plots in a different 
space than all the other beds (Figure 14). Filled circles are for sample Springhill 14, 
which is compositionally distinct from all the other samples (open triangles). This 
distinctness of Springhill 14 suggests that Springhill 14 will be one of the easiest 
beds to identify. Thus, it is determined that Model 1 in the overall 15 model program 
would compare Springhill 14 to all other beds. 
 

4. Determine the criteria to be used to correlate an unknown sample with Springhill 14 
in Model 1 
A Partial Least Squares (PLS) Regression model was produced to discriminate 
between Springhill 14 and all the other beds. The PLS model created was an Integer 
Indicator model in which the selected bed (in this case, Springhill 14) was assigned 
the indicator value "1" and all other beds were assigned the value "0.” When an 
Integer Indicator PLS model is used in such a manner, the PLS model regresses 
each spectra relative to the set indicator values and provides a score in the 
“approximate” range of 0 to 1for all input spectra. This regression is shown in Figure 
15. Spring Hill 14 spectra have predicted values greater than 0.5, i.e., closer to "1," 
and all other samples have predicted values less than 0.5, i.e., closer to "0." The 
Value of Apparent Distinction (VAD) was selected at 0.5. This was accepted as a 
useful model because it discriminates between the two groups.   
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Figure 14 PCA score plot for the 16 limestone beds used in the KSSBI Model. 

 
 5. Select Model 2 of the 15 model sequence 

Spring Hill 14 was then removed from the data set and a new PCA score plot was 
made for the remaining beds. This score plot identified Stoner 4 as most distinct 
from the remaining beds and so Stoner 4 was selected as Model 2.  

 

 
Figure 15 Model 1 PLS indicator integer regression in the KSSBI. 

 
 6. Determine the criteria to be used to correlate an unknown sample with Springhill 14 

A PLS model was created in which the selected bed (in this case, Stoner 4) is 
assigned the indicator value "1" and all other beds are assigned the value "0.” Model 
2 was accepted because it was found to discriminate between the two groups.   

 
7. Develop remaining sequences of models 
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The process was repeated until all beds were identified. The resulting matching 
algorithm is depicted in Figure 16.  

 

 
Figure 16 KSSBI matching algorithm for identification of aggregate source beds. 
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8. Branch Model 4 in the matching algorithm. 
The algorithm was intentionally split into two branches at Model 4 with two separate 
arms. This was done because a single bed was not uniquely distinguishable in the 
PCA scoring plot for Model 4. The remaining beds at this point were found to cluster 
into two well-defined groups. This is illustrated in Figure 17, where the two groups 
are identified as filled circles and open triangles. Model 4 was split into Model 5 and 
Model 13, each containing one of the distinguishable groups. After splitting the 
model, the remaining beds were identifiable and the modeling sequence was 
completed. 

 
 
 

 
Figure 17 PCA score plot for Model 4 of KSSBI, in which the beds are separated 

into two groups. 
 
 
In summary, the calibrated KSSBI model compares each bed in turn to the other beds, 
removing a bed once it has been identified. By comparing only one bed to all the other 
beds, the unique characteristics of the bed are better recognized by the model. Also, 
because beds are sequentially removed from the model, the model is able to recognize 
the small differences between beds late in the model. When all beds are compared 
simultaneously, these small differences are insignificant and thus the beds are 
indistinguishable. 
 
The order of selection of each bed in the algorithm, as shown above, is not random. It is 
based on an analysis of PCA models (score plots) to identify beds that are readily 
identifiable (do not readily blend in with the other spectral data). Those beds that are 
most distinct are modeled first in the hierarchy. The bed spectra become more similar to 
each other as one proceeds through the modeling hierarchy by design. 
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Modeling Results: KSSBI Model-Source Bed Identification 
Validation of the KSSBI matching algorithm model proceeded as follows: 

1. The five reserved spectra for each bed were used for test-set validation of the 
models in the matching algorithm.  

2. All reserved spectra were run through each of the 15 models and predicted 
integer values were determined for each unknown sample. 

3. An unknown sample (Sample X) was identified when it matched with the 
appropriate VAD (generally greater than 0.5). 

 
An example of this validation procedure is shown in Figure 18 for Model 1. Note that the 
predicted values in Figure 15 were calculated for the spectra used in the calibration. 
The predicted values in Figure 18 were calculated for the reserved (test-validation) 
spectra that were not used in the calibration. 
 
Table 8 lists the success rates for the matching algorithm, calculated as the number of 
correctly identified beds. The source bed for all the individual subsamples used in the 
validation set were correctly predicted over 90% of the time for all subsamples with the 
exception of  Models 12 (80%), and 15 (60%), which are at the bottom of the matching 
algorithm (see Figure 16). The beds in these models are chemically very similar, and 
thus more difficult to distinguish from each other. Overall, however, these success rates 
were found to be excellent given the minimal number of samples used in calibrating the 
model.   
 
 

 
 

Figure 18 Results of Model 1 test-set validation. 
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Table 8. Success Rates for KSSBI Algorithm 
 

Model 
Number 

Success, 
averaged 
spectra 

Success, 
averaged 

beds 
1 100 % 100 % 
2 100 % 100 % 
3 100 % 100 % 
4 96 % 100% 
5 100 % 100 % 
6 98 % 100% 
7 100 % 100 % 
8 100 % 100 % 
9 100 % 100 % 
10 100 % 100 % 
11 100 % 100 % 
12 80 % 100 % 
13 100 % 100 % 
14 93 % 100 % 
15 60 % 100 % 

 
 
 
It is noteworthy, that success rates can be increased to 100% by averaging the spectra 
from each of the five test validation subsamples. One average indicator value eliminates 
the particle to particle variability that could arise in a small sample set such as the one 
used in calibrating and validating the model. As an example, Figure 19 shows how 
averaging the subsamples can transform an 80% successful model (Model 12) to a 
100% successful model. The model is considered 80% successful because of the 10 
subsamples used two did not predict correctly. These two were Spring Hill 13 
subsamples. Averaging the five predicted values for Spring Hill 13 results in an indicator 
value of 0.59 (greater than the VAD value of 0.5). Using the average predicted value of 
0.59 this model would be considered 100% successful. In a real scenario, where a 
much larger number of particles and spectra would be averaged, this would almost 
certainly be the case. This concept is similar to analyzing a bucket of gravel. Although 
not every piece of gravel in the bucket may be correctly identified, the entire contents of 
the bucket can be correctly identified by averaging the results for the entire bucket. 

 

Modeling Procedures: KSDPF Model – D-Cracking Pass/Fail Classification 
The KSDPF model was developed to predict whether an aggregate would pass or fail 
the KTMR-21 or KTMR-22 test method. In the calibration, spectra were regressed 
against indicator integers with values of "1" for test passing samples and "0" for test 
failing samples. The reserved spectra were then fed into the model and success rates 
calculated from how many spectra were correctly identified as near 1 or near 0 (above 
or below the VAD).   
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Figure 19 Model 12 subsample averaging (large circle and large triangle depict 

averages of subsamples resulting in 100% predictability). 
 

Modeling Results: KSDPF Model – D-Cracking Pass/Fail Classification  
As shown in Figure 20, the KSDPF model correctly predicts whether a sample will pass 
or fail the KTSM tests, at 100% success rate. The calibration model (top panel) results 
in 100% correct identification of the validation-set spectra (lower panel). Again, the 
success rate achieved by this modeling was judged to be quite remarkable, given the 
complexity of the D-cracking phenomenon. It would seem that D-cracking susceptible 
aggregates display a unique spectral fingerprint captured in the LIBS spectra and that 
multivariate modeling techniques are capable of resolving and classifying these spectra 
into pass and fail categories. 
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Figure 20 Calibration and validation results for KSDPF model. The calibration 
model (top panel) results in 100% correct identification of the test-set spectra 

lower panel). 

STATE OF TEXAS: ALKALI SILICA REACTIVE AGGREGATES 

Objectives and Analysis 
The primary focus of the Texas study was the identification of alkali silica reactive (ASR) 
aggregates. Alkali silica reactivity (ASR) in Portland cement results in potentially harmful 
expansion within the concrete structure. This expansion is commonly attributed to the 
formation of an unstable gel during reaction of reactive silica in the aggregate with alkali 
hydroxides in the Portland cement. The research effort focused on the identification of 
reactive cherts containing a microcrystalline form of silica that is commonly thought to 
be one of the sources of reactive silica.  
 
More specifically, the TXDOT effort was designed to determine whether the laser-
analysis could: 1) quantify the percent reactive chert in a chert-quartz blend, 2) classify 
a chert sample as either a high or low reactive sample and 3)  differentiate and identify 
a particular chert sample from a pool of samples. As a result, three models were 
developed. The first model, a compositional model, referred to as the Texas Chert 
Quartz Sand (TXCQS) model, was designed to quantify the percent chert in a chert-
quartz sand blend. The second model, referred to as the Texas Reactive Chert (TXRC) 
model was designed to classify cherts into one of two classes (high or low reactivity). 
The third model, the Texas Chert Source Identification (TXCSI) model, was designed to 
identify the source of an unknown chert sample.  
 
Two TXDOT sample sets were used for testing: 
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1. The first sample set, used to develop the TXCQS model consisted of a reactive 
chert from the Adameek Pit and a non-reactive Ottawa quartz sand. 

2. The second sample set, consisting of four reactive cherts (Hanson Servtex Dark, 
M&M Beckman, TX1 Tin Top, and Hanson Servtex Light); these were used to 
develop the TXRC and TXCSI models. 

 

Modeling Procedures: TXCQS Model – Chert Content in Quartz Sand 

The TXCQS model developed was compositional and designed to determine the 
percent chert in a chert-quartz mixture. The calibration proceeded as follows: 

1. 100 laser shots were made on both the chert and quartz sand samples, 
resulting in 100 spectra for each sample. 

2. The 100 spectra were averaged to yield one spectrum for both the chert and 
quartz, respectively. 

3. Weighted spectra were then developed to reflect anticipated spectra for 
samples containing 10% chert and 90% quartz sand, 20% chert and 80% 
quartz sand, etc., up to 90% chert and 10% quartz sand. 

4. The resulting spectra were regressed in the PLS TXCQS model against the 
percent chert value. 

Test-set validation was performed by selecting a second set of chert and quartz 
sample. For this second set:  

1. 100 laser shots were also made on both the chert and quartz sand samples, 
resulting in 100 spectra for each sample. 

2. The 100 spectra were averaged to yield one spectrum for both the chert and 
quartz, respectively. 

3. Weighted spectra were then developed, similar to the calibration set to reflect 
anticipated spectra for samples containing 10%, 20%, 30%, 50% and 60% 
chert. 

4. The resulting spectra were input to the TXCQS calibration model to predict 
the percent chert content of the test sample. 

Modeling Results: TXCQS Model – Chert Content in Quartz Sand 
The TXCQS model calibration for the chert-quartz mixtures is shown in Figure 21. The 
test-set validation data, listed in Table 9, yielded very good results. The absolute errors 
ranged from 0.2 to 4.2%. Because LIBS can distinguish between chert and quartz, it is 
reasonable to suggest that the chert-quartz model will be strengthened by averaging 
together a variety of chert and quartz samples when constructing the model. 
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Figure 21 TXCQS calibration model for percent chert in a chert-quartz mixture. 
 

Table 9. Results for Analyzed Mixtures of Chert and Quartz 
 

Known 
% 

Chert 

Predicted 
% Chert 

Absolute  
Error 

10 9.8 -0.2% 
20 22.5 2.5% 
30 29.6 -0.4% 
50 51.7 1.7% 
60 55.8 -4.2% 

Modeling Procedures: TXRC Model – Reactivity Classification 
The TXRC model was developed for the purpose of classifying unknown chart samples 
with respect to degree of ASR reactivity. In the calibration, spectra were regressed 
against indicator integers with values of "1" for the more reactive cherts and "0" for the 
less reactive samples. The reserved (validation sample) spectra were then fed into the 
model and success rates calculated from how many spectra were correctly identified as 
near 1 or near 0 (above or below the VAD).   
TXDOT submitted four chert samples with known relative ASR reactivity for analysis. 
These are listed in Table 10.  
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Table 10. TXDOT Chert Samples Used in TXRC Model 
 

Sample Reactivity 
Hanson Servtex Dark chert Less 
M & M Beckman  Less 
TX1 Tin Top  More  
Hanson Servtex Light chert More  

 
 
Reactivity was divided into two categories, based on TXDOT input: less reactive and 
more reactive. The calibration procedures were as follows: 
 

1. For each chert sample, 150 spectra were acquired (one laser shot per 150 
aggregate particles).   

2. The 150 spectra were separated into 5 subsamples per sample, and the 30 
spectra associated with each subsample were averaged to yield one spectrum 
per subsample. 

3. Three averaged spectra (or 3 subsamples) were used to calibrate the model. 
4. Two averaged spectra (or 2 subsamples) were used to validate the model.  

 
The results of the integer indicator calibration process used to calibrate the TXRC 
model are graphically presented in Figure 22. A total of 12 spectra were used in the 
calibration, 6 with lower reactivity and 6 with higher reactivity. The regressed indicator 
values of the six spectra with lower reactivity are shown on the left side of the figure. 
The regressed indicator values of the six spectra with the higher reactivity are shown on 
the right side of the figure. The large circle and large triangle represent the average 
value of the indicator values for all the higher and lower reactivity samples, respectively. 
Instead of using a value of apparent distinction (VAD) value of 0.5 as in most other 
models, a value of 0.4 was used because it produced the best results in the calibration. 
 

 
Figure 22 Calibration of TXRC model for classifying reactive and less-reactive 

chert types. 
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Modeling Results: TXRC Model – Reactivity Classification  
The validation procedure was conducted with the two validation spectra. These were 
introduced into the model, and predicted integer values were calculated for each 
(unknown) test spectra. These results are shown in Figure 23. One spectrum was 
classified incorrectly in this model. There were 8 spectra used in validation; this is an 
87% success rate.   
 
 

 
Figure 23 Validation of TXRC model for classifying reactive and less-reactive 

chert types. 
 
 
It is noteworthy that if the average of all the subsamples were included in the model, 
then the success rate would be 100%. This can be seen in Figure 23, where the large 
circle and large triangle represent the average spectra values for the more and less 
reactive chert samples, respectively. The average of a greater number of subsamples is 
always above or below the VAD in accordance with the expected calibration. 
 
Although this is a small pilot study, the technique shows enormous promise for the 
capability of rapid and accurate detection of reactive cherts.  A larger study of > 20 chert 
samples of known reactivity would be useful to more fully determine the efficiency of the 
technique. 

Modeling Procedures: TXCSI Model - Chert Source Identification 
A matching algorithm model, the TXCSI model, was developed to identify a specific 
chert sample from the series of four chert samples available for testing. The four 
TXDOT cherts, listed in Table 10, were used to create the model, which was similar to 
the KSSBI model described previously. More detailed information on the matching 
algorithm model was presented in the introduction to the modeling procedures for the 
KSSBI model (page 20). 
 

35 
 



Calibration of the TXCSI matching algorithm model involved the development of three 
models. Each of these models was designed to identify one of the 3 cherts. The 4th 
chert would be unrecognized by the first 3 models.  
 
As in the KSSBI model, the developmental process for the TXCSI model involved the 
selection of an 

• Optimum sequence for examining an unknown sample (Sample X) with each of 
the 3 models generated (e.g., Model 1, Model 2 and Model 3), as well as the 

• Criteria by which the unknown sample (Sample X) could be correlated with one 
of the 4 chert samples in each of the 3 models.  

 
The specific steps taken to develop the TXCSI model and a brief summary of those 
steps were as follows:  
 

1. Generate a Principal Component Analysis (PCA) score plot using all calibration 
samples (i.e., the average spectra of the five subsamples used as the calibration 
set for each of the 4 cherts)   
A PCA score plot, as previously outlined, is a projection of the original data onto 
a new coordinate axis system (Principal Components). The score plot projection 
groups samples with similar characteristics together in the new coordinate 
system and provides a means to see if the sample types used can be 
differentiated. Figure 20 shows the PCA score plot for the 4 chert samples.  

 
2. Select Model 1 of the 3 model sequence 

The first step in the analysis was to identify the chert sample in the PCA score 
plot that was distinct from all others. This sample was TX1 Tin Top. TX1 Tin Top 
plots in a different space than all the samples (Figure 24). Filled circles are for 
sample TX1 Tin Top, which is compositionally distinct from all the other samples 
(open triangles). This distinctness of TX1 Tin Top suggests that this chert will be 
one the easiest beds to identify. Thus, it was determined that Model 1, in the 
overall 3 model program, would compare TX1 Tin Top to all other samples.  
 

3. Determine the criteria to be used to correlate an unknown sample with TX1 Tin 
Top  in Model 1 
A Partial Least Squares (PLS) Regression model was produced to discriminate 
between TX1 Tin Top and all the other samples. The PLS model created was an 
Integer Indicator model in which the selected sample (in this case,  TX1 Tin Top ) 
is assigned the indicator value "1" and all other samples are assigned the value 
"0.” When an Integer Indicator PLS model is used in such a manner, the PLS 
model regresses the spectra in relation to the set indicator values and provides a 
score in the “approximate” range of 0 to 1for all input spectra. This regression is 
shown in Figure 25. The TX1 Tin Top spectra have predicted values greater than 
0.5, i.e., closer to "1," and all other samples have predicted values less than 0.5, 
i.e., closer to "0." The Value of Apparent Distinction (VAD) was selected at 0.5. 
This was accepted as a useful model because it discriminates between the two 
groups.   
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4. Select Model 2 of the 3 model sequence  

TX1 Tin Top was then removed from the data set and a new PCA score plot was 
made for the remaining samples. This score plot, shown in Figure 26, identified 
Hanson Servtex Light as most distinct from the remaining beds and so Hanson 
Servtex Light was selected as Model 2.  
 
 

 
Figure 24 PCA score plot for the 4 chert samples used in the TXCSI model. 

 
 

 
Figure 25 Model 1 PLS indicator integer regression in the TXCSI model. 
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Figure 26 PCA score plot for the 3 remaining chert samples used in the TXCSI 

model. 
 

5. Determine the criteria to be used to correlate an unknown sample with Hanson 
Servtex Light 
A PLS model was created in which the selected sample (in this case, Hanson 
Servtex Light) was assigned the indicator value "1" and all other beds are 
assigned the value "0.” Model 2, shown in Figure 27, was accepted because it 
was found to discriminate between the two groups.   
 

 

 
Figure 27 Model 2 PLS indicator integer regression in the TXCSI model. 
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6. Select Model 3 of the 3 model sequence 
Hanson Servtex Light was then removed from the data set and a new PCA score 
plot was made for the remaining samples (Hanson Dark and M&M). This score 
plot, shown in Figure 28, shows the two remaining samples, which are readily 
distinguishable.  
 

 
Figure 28 PCA score plot for the 2 remaining chert samples used in the TXCSI 

model. 
 
 
 

7. Determine the criteria to be used to differentiate between the remaining two chert 
samples 
A PLS model was created in which the two remaining chert samples were 
assigned indicator values of “1” and “0”. Model 3 shown in Figure 29, was 
accepted because it was found to discriminate between the two groups.   
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Figure 29 Model 3 PLS indicator integer regression in the TXCSI model. 

 

Modeling Results: TXCSI - Chert Source Identification 
The resulting matching algorithm is depicted in Figure 30. All three models were 100% 
successful when any of the validation set samples were introduced into the algorithm. 
Again, this is a small pilot study, and a larger study would be useful to further validate 
these findings. However, there is a high likelihood that LIBS analysis of ASR reactive 
chert samples will be effective in identifying specific cherts. 

APAC-CENTRAL: ANALYSIS OF FINE AGGREGATES 

Objectives and Analysis 
The primary focus of the APAC-Central study was the quantitative analysis of certain 
components in fine aggregates. The analysis was different from the other studies 
because the small grain size of particles made it impractical to analyze each particle. 
Instead, spectra were taken as the laser moved across a layer of sand, simulating an 
automated process.  
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Figure 30 Matching algorithm model for TXDOT chert samples. 

 
 
Two Arkansas River sands were analyzed for different components: 
 
Van Buren Sand (chert content) The Van Buren sand is used as a general construction 
aggregate. The problem is ASR (alkali-silica reaction) when used as concrete sand. If 
the cement has a high alkali content and the sand has sufficient chert, ASR can be an 
issue. Traditionally, samples of Van Buren sand are occasionally sent to a mineralogist, 
who estimates chert content visually.   
 
Muskogee Sand (Fe content)   The Muskogee sand plant is about 200 miles up the 
Arkansas River from the Van Buren plant. The Muskogee plant produces general 
construction aggregate and some of the sand is sold to a glass plant. The sand is a 
reliable construction aggregate, containing mainly quartz and feldspar. For glass 
production, the Fe content must be reduced because Fe colors the glass. The glass 
sand undergoes two treatments before it is usable for glass production. Raw sand, with 
> 0.17 wt. % Fe passes through a bubble classifier that removes heavy particles; it is 
then passed through a high-intensity magnetic separator to remove magnetite (iron 
oxide). The resulting sand, called amber sand, typically has 0.14-0.17% Fe. To make 
glass sand, the amber sand is washed in HCl to remove iron oxide coatings. Glass sand 
typically has < 0.07 % Fe. Quality control is currently achieved by analyzing relatively 
small samples of sand by atomic absorption (AA). 
 
Prior to analysis, approximately a quart of sand was split with a sample splitter to assure 
that no bias influenced each aliquot for analysis.   
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Van Buren Sand. For the Van Buren sand, several grams of sand were placed in an 
aluminum foil dish, and analyzed with the laser. The sample was moved under the laser 
as it fired at one shot per second. Focus was manually adjusted prior to each shot. 
Laser power was 180 mJ; the Q-switch delay was -1.5 μs. One thousand (1,000) shots 
were acquired on each of two samples. The shots were averaged into two averages of 
500, to provide two analyses of the same material. Two splits of Van Buren sand (VB-1 
and VB-2) were analyzed in this way, yielding a total of four analyses. 
 
The VB-1 and VB-2 splits were made into thin sections for visual inspection. The sands 
were impregnated with epoxy and sent to an external lab for thin section preparation. 
The mineral content of each split was determined by counting 500 points on each thin 
section.   
 
Muskogee Sand. Three types of Muskogee sand were used in this project:  raw (MR), 
amber (MA), and leached (ML). Three splits of each sand type were analyzed by LIBS, 
yielding nine analyses. One thousand shots were averaged by 500 in each analysis. In 
this case, the laser energy was 105 mJ and the Q-switch delay time was -1.5 μs.  
 
Because the calibration for the Muskogee sand was to be for weight percent Fe, two of 
the three splits for each sample were analyzed for Fe by atomic absorption at APAC-
Central’s Muskogee sand plant. The analyzed splits were MR-1, MR-2, MA-1,. MA-2, 
ML-1. ML-2.   

Modeling Procedures: APACC Model – Chert Content in Fine Sand 

The TXCQS model developed with the Ottawa quartz sand and Adameek Pit Chert 
was used to analyze the percent chert in the Van Buren sand. It was not clear if this 
calibration would be appropriate for the Van Buren sand because the calibration 
included only quartz and chert, but the sand contains other minerals as well (Table 
11). The LIBS measurements of percent chert were validated by comparison with 
point-count data. 

 
Table 11. Mineralogy of the Van Buren Sand, From Point-Count Data 

 

Sample Chert Quartz Feldspar 
Other 
minerals 

VB-1 17.2 68.6 12.4 1.8 
VB-2 15 68 14.4 2.6 

 

Modeling Results: APACC Model – Chert Content in Fine Sand  
The calibration for the Van Buren sand was built with data from pure Ottawa quartz 
sand (Texas) and a reactive chert (Adameek Pit Chert, Texas). The calibration is quite 
good, with r2 = 0.9965 (Figure 31). Table 12 presents the results of the analysis. Both 
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LIBS analyses of VB-1 and one analysis of VB-2 are good; one analysis of split VB-2 is 
quite high, probably because of the heterogeneity of the sample.   
 
 

 

R² = 0.9965 

0

20

40

60

80

100

120

0 20 40 60 80 100

%
 C

he
rt

, L
IB

S 

Known % Chert 

Calibration

VB-1

VB-2

Figure 31 Calibration of chert-quartz model and analysis of chert in Van Buren 
sand. 

 
 

Table 12. Results of Chert Analysis in Van Buren Sands 
 

Sample %Chert, LIBS % Chert, Point 
Count 

Absolute Error 

VB-1 17.3 17.2 0.1 
VB-1 14.8 17.2 -2.4 
VB-2 17.5 15.0 2.5 
VB-2 27.4 15.0 12.4 

 

Modeling Procedures: APACF Model – Fe Content in Fine Sand 
The calibration for the Muskogee sand was built with the Fe concentrations as analyzed 
by atomic absorption. Splits 2 and 3 (MR-2, MR-3, MA2, MA-3, ML2, and ML-3) were 
used for the analysis, assuming that split 3 would have the same Fe concentration as 
the other two. The first splits (MR-1, MA-1, and ML-1) were used to validate the model. 
Measured Fe concentrations are given in Table 13. 
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Table 13. Fe Concentrations in Splits of Muskogee Sand 
 

Sample Fe, wt. % 
MR-1 0.69 
MR-2 0.68 
MR-3* 0.68 
MA-1 0.17 
MA-2 0.17 
MA-3* 0.17 
ML-1 0.08 
ML-2 0.09 
ML-3* 0.09 

*assumed to be the same as the other splits 
 

Modeling Procedures: OKF Model – Fe Content in Fine Sand 
The calibration curve is robust, with r2 = 0.993 (Figure 32). Results are given in 
Table 14. Most of the analyses are within 0.01 wt% of the measured values, but as 
high as 0.08%. A larger number of calibration samples would improve the results. 
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Figure 32 Fe calibration for Muskogee sand. 
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Table 14. Results of Fe Analysis, Muskogee Sand 
 

Sample 

Fe, 
wt. %, 
AA 

Fe, 
wt. %, 
LIBS 

absolute 
error 

MR-1 0.69 0.68 0.01 
MR-1 0.69 0.77 -0.08 
MA-1 0.17 0.16 0.01 
MA-1 0.17 0.21 -0.04 
ML-1 0.08 0.09 -0.01 
ML-1 0.08 0.09 -0.01 

 

FINDINGS AND CONCLUSIONS 
Research was conducted on the feasibility of using Laser Induced Breakdown 
Spectroscopy (LIBS) as a real-time construction aggregate monitoring system. In 
cooperation with NYSDOT, the KSDOT and TXDOT, aggregate samples were 
evaluated to determine whether laser-induced spectra could be modeled and correlated 
with known aggregate sources or known aggregate or engineering properties. 
 
Research findings were as follows: 
 
NYSDOT Findings 
 

• The acid insoluble residue (AIR) content and percent carbonate rock (or silicate 
rock) in a silicate rock-carbonate blend were effectively predicted by a LIBS 
generated model. Using test samples received from NYSDOT, AIR predictions 
were within 1 to 2% of the analytical values provided by NYSDOT.  

 
• Percent carbonate content in silicate rock-carbonate blends were effectively 

predicted within approximately 4 to 9% of the actual blended values. 
 
KSDOT Findings 
 

• The specific source bed of limestone aggregates extracted from one of 16 beds 
in three KSDOT quarries could be predicted by the model 100% of the time.  

 
• Similarly, the expected results of KSDOT D-cracking tests could be predicted 

100% of the time. 
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TXDOT Findings 
 

 

 

 

• The percent of alkali-silica reactive chert, in a chert-quartz sand blend, could be 
predicted within a range of approximately 0.2% to 4.2% of the actual blended 
value. 

• More and less reactive cherts could be properly classified with limited modeling 
data approximately 87% of the time. 

• The identity of our different chert types (some reactive and some nonreactive) 
could be differentiated 100% of the time 

APAC-Central Findings 
 

 

• The percent chert in a fine aggregate (sand) could be predicted within a range of 
2.5% using a calibration curve generated with quartz and sand from a different 
area. One sample with larger error indicates that sample heterogeneity is a 
problem and more laser shots should be taken to insure that the analyzed 
sample is representative. These results are additionally significant because it 
appears that calibrations might be transportable from one area to another (i.e., 
TX chert to APAC chert). 

• The percent Fe in glass sand could be predicted to within 0.08 wt. %, even at 
relatively low concentrations (< 1 wt. %).   

 
It was concluded from these findings that: 
 

 

 

 

• Laser-induced spectra are unique to the specific aggregate material tested and 
contain significant information about the fundamental properties of aggregate 
material. 

• Such spectra can be modeled using multivariate models and such models 
provide a means to generate regression equations that can effectively identify the 
specific spectral pattern associated with the target material. 

• Remote laser monitoring using LIBS has the potential to generate a large number 
of samples and spectral data arrays, within a very short period of time and this 
feature is significant in concluding that such a technology offers real potential for 
its application as a quality control tool in aggregate processing systems.  

PLANS FOR IMPLEMENTATION 
 
Results of this research effort suggest that a laser-induced spectral emission can be 
modeled and correlated with aggregate sources and aggregate properties. The light 
emitted from the targeted aggregate material, if resolved, can uncover latent properties 
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of the material that conventional chemical and physical tests do not readily reveal. The 
subject technology has the potential to identify the aggregate source in real-time in the 
field without sample preparation. It provides a means to identify preapproved materials 
and ensure that only such materials are being introduced into the production process. It 
also provides a means to calibrate the spectral pattern against known engineering 
properties to determine whether the aggregate can be expected to pass or fail 
designated test criteria. Commercialization of the subject technology could provide 
State DOTs and material suppliers with a real time, nearly instantaneous aggregate 
characterization and quality control tool. 
 
Furthermore, while the results presented in this report are based on discrete laser shots 
focus on individual aggregate particles, the frequency of laser firings can typically be set 
to range from 1 to 50 Hz (shots per second). As a result, it is possible to generate very 
large sample populations; for example thousands of analyses can be obtained in a few 
minutes. The combination of emission spectra with over 13,000 data points (i.e., 
variables) and the number of laser shots (i.e., samples) provide the means to generate 
models with unprecedented levels of information, especially when compared to the 
number of samples collected and tests conducted during conventional physical, 
chemical and mineralogical testing of aggregate, which is commonly in the single digits. 
 
The authors of this report have initiated the development an automated real-time 
monitoring system that can be used to capture the data generated by a continuous firing 
laser system. This developmental process involves transitioning the LIBS process from 
an individual “particle to particle focusing and targeting system” to a “bulk material 
sampling and laser targeting system.” The objective of the patent pending Bulk Material 
Sampling and Laser Targeting (SLT) System under development is to provide a 
continuous or semi-continuous flow of aggregate passed a laser, to enable repeated 
firing at the target source. The planned system is composed of three major sub-
systems: 1) a material flow system that provides for the flow of aggregate material 
passed a laser targeting point, 2) a laser targeting system (including dust suppression), 
and 3) the laser- optical system.  A series of prototypes have already been fabricated.  
 
Although the concept of employing a laser monitoring system for quality control 
purposes might at first glance appear to be readily adaptable to a field application, the 
practical application of transitioning from a laboratory based LIBS system to an 
industrial setting is not so straightforward. Industrial settings, and in particular an 
aggregate processing system, will almost certainly introduce non-uniform ablation 
conditions, unlike those experienced in laboratory systems. Such conditions can 
interfere with laser targeting and the laser to target focal length. Such interferences 
could significantly affect the intensities and induced spectral emission. In addition, the 
presence of dust and the atmospheric gas composition, including the humidity, in the 
vicinity of the laser induced ablation, could interfere with the laser energy reaching the 
targeted material and the light emitted during the ablation process. The laser and optical 
system must be segregated from the dust particles to prevent a buildup of dust in the 
system and corresponding operational difficulties. Finally, safety issues in a bulk 
material production environment demands that eye or skin exposure to operating 
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personal be avoided. Open and exposed targeting of materials in such an environment 
would be problematic. 
 
The Research Team believes that the development of a viable field system will be 
successful. Plans have been initiated to develop a pooled fund study (KSDOT being the 
lead agency) to assist in making this transition.  
 
It is of note that while a field system will not be capable of controlling all of the 
environmental conditions as precisely as a laboratory system and some poor spectra 
will result (due to factors such as poor focus and the simultaneous analysis of two 
grains), the robustness of a bulk monitoring process itself, in which hundreds or 
thousands of spectra will be collected, will permit the development of models that can 
average and smooth out the data to provide effective pattern recognition. This was 
already observed during the special-procedures testing of TXDOT sand samples 
described in the TXDOT Sample Analysis section (page 13). In this testing sand-sized 
cherts were placed in a shallow aluminum dish with vertical sides, and the dish was 
placed on the laser target platform, and randomly moved without focusing. This was 
done to see whether spectral data could be obtained to model the system. The results 
were positive and effective TXDOT chert and ASR identification models were 
developed. 
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