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1. INTRODUCTION
1.1 Basic Problem and Solution Approach

This memorandum contains alarge amount of technica detail. However, in significant contrast,
it addresses an easily-understood and fundamental need in surveillance and navigation systems
analysis — guantifying the geometry of two locations relative to each other and to a spherica
earth. Here, geometry simply means distances and angles. Sometimes, distances are the lengths
of straight lines; in other cases they are the lengths of arcs on the earth’s surface. Similarly,
angles may be measured between lines on a plane or between lines on a spherical surface.

Because the earth has an established | atitude/longitude coordinate system, the approach that first
comes to mind isto address this situation as a three-dimensional problem and use vector analysis.
However, the approach preferred hereis that, to smplify and clarify the analysis process, the
three-dimensional problem should be re-cast as two separate two-dimensional problems:

= Vertical Plane Formulation (Section 1.2 and Chapter 3)” — This analysis considers
the vertical plane containing the two locations of interest and the center of the earth.
The two locations are unconstrained vertically, although one altitude must be known.
Plane trigonometry is the natural analysistool for this problem. Latitudes and
longitudes are not involved, which isits biggest limitation.

» Spherical Surface Formulation (Section 1.3 and Chapter 4) — Thisanalysis—
which is sometimes called great-circle navigation — only considers two locations on
the surface of a spherical earth. Spherical trigonometry is a natural analysistool in
this setting, and latitudes and longitudes are inherent in this method. A significant
l[imitation of this analysisisthat altitudes cannot be accounted for.

These separate two-dimensional analyses can generally be performed in the above sequence, with
the result that the limitations of each are overcome. The two-2D formulation is preferableto a
one-3D formulation because it provides better insight into the solution — which reduces
computational errors and improves the analyst’ s ability to understand and explain results. Also,
since scalar quantities are involved, calculations can be done with a spread sheet; specialized
vector-matrix software is not needed.

For historical and practical reasons', in this document the two locations of interest are labeled U
(for user) and S (for satellite). However, these are only labels, and have no relevance to appli-
cation of the analysis; other labels, such as“1” and “2” would be equally valid. Generally, for
surveillance applications, one location will be associated with a sensor and the other will be
associated with atarget — e.g., aground-based radar and aircraft target. For navigation

" Terminology: 1. Chapter; 1.1 Section; 1.1.1 Subsection.

" Historical: these notes were begun many years ago, for a project involving satellites. Practical: The Microsoft Word
equation editor does not have a global change capability.

-1-
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applications, the two locations are usually associated with the beginning and ending points of a
flight segment (e.g., an instrument approach to arunway) or an entire flight (e.g., Boston to
Tokyo).

While not preferred, Chapter 5 is devoted to the vector approach to a unified solution. Most
problems can be solved by either the two-2D or one-3D approach. However, some useful
equations can only be derived by one approach. More importantly, when addressing a new
situation to which the solution is not apparent, it is wise to have as many techniques available as
possible. Also, there are multiple software packages available for navigation analyses that use the
vector approach.

1.2 Vertical Plane Formulation

Figure 1 depicts atypical vertical-plane analysis scenario involving: an earth-based “user” U; a
satellite S above a spherical earth; the satellite nadir point, N; and the center of the earth, O. Al
four locations (modeled as points) are in the plane of the paper. Points O, N and S form a
straight line. These points have no special relationship with the earth's spin axis. Since a*“ snap-
shot” anaysisisinvolved, no assumptions are made regarding the satellite’ s trgjectory.

Figurel Vertica Plane Containing PointsU, O, N and S

In Figure 1, three linear distances are of interest:

-2
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» R¢ Earthradius (length of OU and ON)
= h Satdlite dtitude above the earth (length of NS)
» d User-satellite slant range (length of US).

And two angles are of interest:
» o Satellite eevation angle relative to the user's horizon (may be positive or negative)
= 0 Geocentric angle between the user and satellite nadir (is always positive).

The earth radius R. is always assumed to be known.

There are four variables associated with this formulation: h, d, a and 8. Any two must be known,
and the remaining two can be found (six possible groupings). Subsection 2.3.1 shows how to
relax the restriction of U being on the earth’s surface, to its having a known altitude. Chapter 3
detailsthe full set of 12 possible equations for this formulation.

Of these four variables, the geocentric angle 0 (which is equivalent to distance along the earth’s
surface) is aso avariable in the spherical surface formulation. It serves as the mechanism for
relating the two formulations — i.e., for transferring a solution to the vertical plane formulation
into the spherical surface formulation. The other three variables (h, d and a) are related to the
atitude of S above the earth’s surface and have no role in the spherical surface formulation.

1.3 Spherical Surface Formulation

The |eft-hand side of Figure 2 depicts the earth’s familiar latitude/longitude grid. Although the
earth is three-dimensional, restricting attention to the surface results in atwo-dimensiona
analysis formulation. The right-hand side shows U and S on the earth’ s surface and the seven
variables involved in atwo-location problem on a sphere:

= thelatitude/longitude, respectively, of U (Ly, Ay) and of S (Ls, As)

» thegeocentric angle 6 between U and S; and

» the azimuth angles ygy and yys of the great circle arc connecting U and S.

North

North

Vs Vs (negative

shown)

ULy, Ay

S(Lg, A9

*
e
|
|
T

Figure2 Spherica Surface Containing U and S
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Generally, four of these seven variables must be known, from which the other three can be
computed. There are 35 possible groupings of known/unknown variables, which can be reduced
to 16 unique and fully solvable mathematical problems (Subsection 4.1.6). These result in 48
equations for unknown variables. However, in contrast with the approach taken vertical plane
formulation (i.e., exhaust all possible groupings), a more selective approach is adopted for the
spherical-earth formulation. Attention is limited to the groupings of highest interest, and a
solution roadmap is provided for the remaining cases.

In geodesy’, analyses involving two groupings of known/unknown variables occur so frequently
that the groupings have been named:

= Direct (or first) problem' of geodesy: (a) Given the coordinates (Ly, Au) of U on the
earth’ s surface, the geocentric angle 6 between U and S, and azimuth angle ysy of a
geodesic path starting at U and ending at S on the surface; (b) Find the coordinates (L s,
As) of theend point S, and the path azimuth angle at the end point yys.

= Indirect (or second, or inverse) problem of geodesy: (a) Given the coordinates, (Ly, Au )
and (Ls, As), of pointsU and S on the earth’ s surface, (b) Find the geocentric angle 6
connecting U and S, and the azimuth angles (relative to north), yus and ysu, of the path
at each end.

Solution equations are only provided for the direct and indirect problems of geodesy, and small
variations thereon, in Chapters 4 and 5.

1.4 Limitations and Applicability of Analysis

Regardless of whether the scalar “two-2D” or vector “one-3D” mathematical approach is
employed, the methodol ogy addressed by this memorandum has inherent limitationsin its
applicability due to these ssimplifying assumptions:
= Static Scenarios— Scenarios analyzed are “ snapshots’ — i.e., motion of an
aircraft or satelliteis not explicitly involved. A sequence of locations may be
considered, but the notions of velocity or time as mechanisms for relating those
points are not utilized.
» Spherical Earth — Modeling the earth as a sphere (rather than as an dlipsoid)

ismuch easier to deal with analytically and is adequate for many applications.
(Chapter 6 quantifies this approximation and provides a method to improveit.)

» Great Circle Flight Paths — All trgjectories of aircraft and satellites are great
circles. That is, they liein avertical plane that contains the center of the earth.

» Terrain/Obstacles |gnored — Except for the earth, obstacles that could block
the signal path between the user U and satellite S locations are not addressed.

" Geodesy is the study of the earth (e.g., its shape, gravity field, and magnetic field); geometric geodesy includes
study of distances and angles between points on its surface.

" Note the academic/mathematical use of the word “problem” in the narrow sense of a specific grouping of known
and unknown variables. This memorandum also uses “problem” in the broader sense of a situation to be analyzed.

-4
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Engineering analyses have been characterized thusly: “There are exact solutions to approximate
problems, and approximate solutions to exact problems. But there are no exact solutionsto exact
problems”.” The techniques described herein fall into the first category — exact solutions to
approximate problems.

The simplifications employed herein are often made in authoritative documents that address
similar navigation and surveillance areas— e.g., Ref. 1 and 2. These techniques are well suited
to analysis of vehicle routes (navigation) and navigation and surveillance sensor coverage.

1.5 Recommended Approach to Finding a Solution

The problem of analyzing the geometry of two
points and a sphere is conceptually simple.
And the mathematics involved in its solution
aressmple aswell (aswill be seen, they pri-
marily involve trigonometry). Nevertheless,
finding a solution can be complex, because of
the number of variables/equationsinvolved.
Thisis an aspect of “the curse of dimension-
aity”. Asthe number of variablesin a
situation grows, the number of possible
groupings of known/unknown variables and
the associated number of solution equations
explodes.

1,500

1000 ft— — — — — — — |

s0t—m — — — — — —— ——

Number of Groupings or Equations

Equatiopfs

Groupings

Figure 3 illustrates the “ curse of dimension- ° 2 N ® 8 10

ality, in aworst-case sense, for the problem

addressed herein. The combination of the Figure 3 Increasein Solution Complexity with
Number of Problem Variables

Number of Variables

vertical plane and spherical surface formu-
lations involves atotal of 10 variables. If treated as a single set, such aformulation could result
in over 200 groupings and 1,200 equations. By taking account of the symmetry of the spherical
surface formulation, the number of equations can be reduced but will still exceed 500. Thisis
simply too many possibilities to address in amemorandum, or likely consider in an organized
manner.

The recommended approach in a problem involving two points and the earth (often, one point is
fixed and the other is varied over aroute or areq) isto

" Conveyed by Prof. Donald Catlin (Univ. of Mass. Amherst, Mathematics Dept.), who attributed it to Prof. Lotfi
Zadeh (Univ. of Calif. Berkley, Electrical Engineering Dept.).

5
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= Partition the overall problem into two separate problems that can be addressed, in
sequence, by the vertical plane and spherica surface formulations

= |dentify the known/unknown variables for the vertica plane problem

» Using the Table of Contents, find the solution equations for the unknown variablesin
Chapter 3 (i.e., treat Chapter 3 as areference or “cookbook™).

» Evauate the equations and transfer the value for the geocentric angle 0 to the next step
» |dentify the known/unknown variables for the spherical surface formulation
» Using Subsection 4.1.6, find the appropriate problem case

» For the most common four cases, evaluate the pertinent solution equations that are
provided in Chapter 4

» For less common cases, derive the solution equations using the roadmap in Subsections
4.1.41t0 4.1.6, then evaluate them.

1.6 Outline of this Document

Chapter 1 (this one) describes the basic problem addressed by this memorandum and outlines the
method of its solution. Chapter 2 is mathematical in nature, and is included to make this docu-
ment more self-contained. It has sections on: the solution of direct and inverse trigonometric
equations (including their approximations); the WGS-84 ellipsoid model for the earth; removing
the restriction of U to the earth’s surface; and the concepts of altitude that are used in aviation.

Chapters 3 and 4, in combination, detail the recommended solution to the basic task addressed by
this memorandum. Chapter 3 addresses the vertical plane problem described in Section 1.2. The
12 possible equations that may be needed to solve this formulation are derived. An effective way
to utilize this material is as “ cookbook” where equations can be found when needed. The last
section presents three example problems that can be solved by the methods described therein.
Chapter 4 addresses solution of the spherical surface formulation described in Section 1.3. The
first section isabrief introduction to spherical trigonometry, which is generally not well known.
It includes ataxonomy of spherical triangle problems and aroadmap to their solution. The next
sections provide solutions to the indirect and direct problems of geodesy, and two alternatives to
the direct problem. The last section revisits the three exampl e applications at the end of Chapter
3, and provides more complete solutions. It aso includes two additional example applications.

Chapter 5 addresses the solution to the basic task addressed by this memorandum using three-
dimensional vector analysis. It is shown that ailmost all of the equations derived by plane
trigonometry and spherical trigonometry in combination can also be derived by vector analysis.
Chapter 6 addresses the accuracy of the spherical earth approximation relative to the WGS-84
ellipsoid. It quantifies the accuracy and demonstrates that it can be improved in most situations.

-6
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While the focus of this memorandum is describing an approach to solving mathematical
problems, it isinstructive to see how this approach can be applied to problems that might occur
in practice. The examples presented at the ends of Chapters 3 and 4 address:

= Air Traffic Control (ATC) radar coverage (North Truro, MA, ARSR-4/ATCBI-6 is
the specific case)

= Aircraft precision approach procedure design (RNAV (GPS) to KMCI runway 19L is
the specific case)

» Satellite visibility of/from the Earth (WAAS is the specific case)

= Aircraft trajectory between two points on the earth (Boston — Tokyo is the specific
case)

» ATC radar display coordinate transformations (terminal and en route are the specific
cases).
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2. MATHEMATICS AND PHYSICS BASICS
2.1 Exact and Approximate Solutions to Common Equations

2.1.1 The Law of Sines for Plane Triangles

For future reference, the law of sines applied to the plane triangle UOS in Figure 1 yields

Sin(ﬂ+ aj Sin(ﬂ-a -9)
sin(@)_ 2 _ 2 Eq1

d R +h R,

which reducesto

sin(6) _ cos(a) _ cos(o +6)

d R +h R, Eq2
In Eq 2, the left-center equality,
(R+h)sin(6) = d cosex) Eq3
relates all five quantities of interest in asimple way.
The left-right equality in Eq 2 isequivalent to
Resin(0) = dcos(a +6) Eq4

This expression relates: one side variable, d; and the two angle variables a and 6.
Similarly, the center-right equality in Eq 1 is equivalent to
R, cosa) = (R, +h)cos(a +6) Eq5

This expression relates: one side variable, h; and the two angle variables a and 6.

2.1.2 The Law of Cosines for Plane Triangles

For future reference, the law of cosinesis applied to the plane triangle UOS in Figure 1. When
theanglea O isused, theresult is

d’=R’+(R +hf -2R (R +h)cos(9) Eq6

When the law of cosinesis applied using theangle at U, theresultis

(Re+ h)Z: Re2+ d2_2R6d003(%+0{] Eq7

Each of these equations relates the two side variables, d and h, and one angle variable. Eq 6
involves 6 and Eq 7 involves a.
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Solution of a Quadratic Equation

In some instances, a quadratic equation similar to the following must be solved
AX*+Bx+C =10 Eq8

The algebraic solution is

X = Eq9

214

We cannot have imaginary roots, so B2 > 4AC. In many instances, (a) the positive root is sought
(since lengths cannot be negative), and (b) B® > [4AC]|. For these situations:

- “BrB-4AC

2A

x:E[ED—EDZ+iD3—iD4+lD5—AD6ietc.j where D:_4':‘C Eq 10
2Al2 - 8 16 128 256 1024 B

C 4AC
X—>-— as ——0

B B

Computing Inverse Trigonometric Functions

Intrinsic to navigation analysis is the calculation of angles— e.g., satellite elevation angle, a, and
geocentric angle, 0 (Figure 1) using an inverse trigonometric
function. In performing this cal culation, two concerns should be

bornein mind: (1) numerical ill-conditioning and (2) ambiguous 1\ " arccos(z)
solutions. These conditions generally do not arise simultan- \\\ 3 | e
eously — numerical ill-conditioning occurs near sine or cosine \\'] “

function values of +1, or angles of O, n/2, &, etc. Ambiguous N

solutions generally arise when the approximate value of the ' \

angle is not known. The equations provided in the following » N
chapters attempt to address these concerns, but every situation o1 \\
may not be anticipated. | | | "! .
Concerning numerical ill-conditioning: Both the sine and cosine 6 05 1 *
functions have angular arguments for which the function’s it

(@) valueis non-zero (specificaly, £1), and (b) derivativeis zero arcsin(x)

— see Figure 4. Thus, changes in the angular argument result in
significantly smaller changes in the function value which may
be subject to truncation or roundoff.

)
=5

Figure4 Principa Values of
arcsin and arccos Functions
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Table 1 below illustrates this concern for the geocentric angle computed from the arc cosine
function. For example, if five decimal digits are used for angles and trigonometric functions, the
minimum detectable cosine function change corresponds to between 10 NM and 30 NM. A
remedy is to employ the sine or tangent function rather than the cosine function. Unlike the

cosi ne function, the sine and tangent functions (a) increase monotonically from a zero value for a
zero angle, and (b) have a positive derivative value near zero angle. In Table 1, the last column
indicates that for distances up to approximately 70 NM, the tangent function has a minimum of a
two decimal place numerical advantage over the cosine function. The same behavior occurs for
the sine function near n/2.

Table1l Geocentric Angle 8 and Its Cosine and Tangent Functions, near 6 =0

0 (rad) | 6 (deg) g\leM‘; cos(@) | 1-cos(6) | tan(e) ff"c"o(:zé)
0.00000 0.000 0.000 | 1.00000 | 0.00000 | 0.00000 | —

0.00001 0.001 0.034 | 1.00000 | 0.00000 | 0.00001 | 2.0E+05
0.00003 0.002 0.103 | 1.00000 | 0.00000 | 0.00003 | 6.7E+04
0.00010 0.006 0.344 | 1.00000 | 0.00000 | 0.00010| 2.0E+04
0.00030 0.017 1.031 | 1.00000 | 0.00000 | 0.00030 | 6.7E+03
0.00100 0.057 3.438 | 1.00000 | 0.00000 | 0.00100 | 2.0E+03
0.00300 0.172| 10.313| 1.00000 | 0.00000 | 0.00300 | 6.7E+02
0.01000 0.573 | 34.378| 0.99995 | 0.00005| 0.01000 | 2.0E+02
0.03000 1.719 | 103.134| 0.99955| 0.00045 | 0.03001 | 6.7E+01
0.10000 5730 | 343.780 | 0.99500 | 0.00500 | 0.10033 | 2.0E+01

A method for recasting an ill-conditioned equation for cos(0), which dates to the middle of the
first millennium, is shown in Eq 11 immediately below. To be effective, the quantity under the
radical must be further manipulated to eliminate the subtraction of nearly equal quantities.
Given cos@) = f(a,d,h;R) where f(a,d,h;R)~1
0

And cos(f)=1-2s nz(—j
2 Eq 1l

. (0 11
Thus sn[ij:\/z—if(a,d,h,&)

Concerning ambiguous solutions: Trigonometric functions are periodic, so inverse trigonometric
functions can result in multiple angles. To address this issue: (a) when making a computation,
take account of the expected range of values for the angle involved — e.g., a generdlly varies
between +r/2, so the arc sine or arc tangent functions are preferable to the arc cosine function;

(b) utilize haf-angle formulas when possible (as immediately above), since they double the range
of angles that can be computed uniquely; and (c) when possible, use afour-quadrant (two argu-
ment) arc tangent function, which requires finding both the sine and cosine of the angle involved.
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Expansions of arcsin, arccos and arctan for Small Angles

In the analysis that follows, a common situation is the need to compute the inverse of atrigo-
nometric function for an argument such that the resulting angle will be closeto 0 — e.g.,
0 = arcsin(x), 6 = arccos(1 - x) or 0 = arctan(x), where x isclose to 0.

First, it iswell known (Ref. 3) that

arcsin(x)=x+lx3+ix5+ix7+etc. Eq 12
6 40 112

A Taylor series expansion of arccos(1 - x) is not available, dueto its lacking aderivative at x = 0.
However, more general power series (often called Frobenius) expansions are available; thus,
utilizing Eq 11 and Eq 12:

- ([x y N2 3y 32 5 52 1y
arccos(l— x) = 2arcsin| ,[— [=4V2X 2+ —x"2 4+ ——x"2 4+ —— X2 +€fC.
s4-%) [\fzj V2 12 160 896 Eq 13

Lastly, from Ref. 3:

arctan(x):x—%x3+éx5—%x7+etc. Eq 14

Surface Area on a Sphere

The surface area of the sphere with radius Re is 4n (Re). The surface areaenclosed by acircleon
the surface of that sphereis

A= 27(R,)?[1- cos(6)] Eq 15

Here 0 is the half-angle of the cone, with apex at the center of the sphere, whose intersection with
the surface forms the circle under discussion. Using Figure 1, the cone would be formed by
rotating sector ONU about line ON.

2.2 Shape of the Earth

2.2.1

WGS-84 Ellipsoid Parameters

While the assumption of spherical earth having radius Re is fundamental to this analysis, the
accepted model for the shape of the earth is not a sphere, but an oblate spheroid (ellipse rotated
about its minor axis). The World Geodetic Survey 1984 (WGS-84) fundamental model parameter
arethe elipsoid’' s semi-major axis, a, and the flattening f. Their numerical values are
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* a=6,378,137m (WGS-84)
= f=1/298.257,223,563 (WGS-84)

Inthe U.S,, the foot is the most common unit of distance. As aresult of the International Yard
and Pound Agreement of July 1959, the international foot is defined to be equal to exactly
0.3048 meter. Thus

» a=20,925,646.3ft (WGS-84)

Flattening of the ellipsoid is defined by
f="10— Eq 16

where b is the semi-minor axis. Numericaly
* b=(1-f)a=6,356,752.3 m=20,855,486.6 ft (WGS-84)

In computations, the square of the eccentricity is frequently used in lieu of the flattening.
Its definition and WGS-84 value are:

2 2
a‘—-b
e’ =

e =2f —f?=f(2-1) Eq 17

where
» € =0.006,694,379,990,14 (WGS-84)

In marine and aviation applications, the nautical mile (NM) is often used as the unit of distance.
The international nautical mile was defined by the First International Extraordinary Hydrographic
Conference, Monaco (1929) as exactly 1,852 meters. This definition was adopted by the United
States in 1954. The international nautical mile definition, combined with the definition for the
foot addressed above, result in there being 6,076.1155 feet in one nautical mile.

Radii of Curvature Defined in Literature

To approximate the ellipsoidal earth at alocation on its surface by a sphere, two radii of curva-
ture (RoCs) are commonly defined —the RoC in the meridian, Rns, and the RoC in the prime
vertical, Rey (Ref. 4). These RoCs lie in orthogonal planes that include the normal (perpendicular
line) to the surface of the elipse. Their values are afunction of the latitude L of the location
involved

_ a@-¢€)

- [1- g2 sinz(L)]3’2
a

[1-e*sin®(L)]?

Ry
Eq 18

R, =

-12-
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The earth’ s shape is— while not strictly a sphere — a sphere to 0.3%. The basis of this
statement is that the earth’s flattening is 0.00335281, or 0.34%. However, the RoCs defined by
Eq 18 vary more widdly. A plot of these quantities (Figure 5 below) shows that while Re, in fact
does change by about 0.34% between the Equator and a pole, R,s changes by over 1%.

1.004

1.002

1.000

0.998

0.996 -

Radius of Curvature / Semi-Major Axis

0.994 1

0.992

0 10 20 30 40 50 60 70 80 90
Latitude (deg)

Figure5 Ellipsoidal Earth’s Radii of Curvature, Normalized to Semi-Mgor Axis

The consequences of the behavior of Rey and Ry are that: (a) near the equator, at a given latitude,
the effective RoC varies by amost 7% with the path’ s azimuth angle; (b) near the poles, at a
given latitude, the effective RoC is amost insensitive to the path’ s azimuth angle; (c) for paths
restricted to mid-latitudes, the effective RoC varies amost linearly with latitude and can be well
characterized by the path end points; (d) for paths that cross the equator or pass over/near a pole,
the effective RoC will have an interior minimum or maximum and its accurate characterization
requires at least three points.

The RoC in an arbitrary plane that includes the normal to the elipse and makes azimuth angle y
with north is given by (Ref. 4)

~ 1
~ cos’(y) . sin?(y) Eq 19
R Ra

R
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When the latitudes/longitudes of U and N (or S) are known, the azimuth angle of the great circle
connecting the points can be determined. Then Eq 18 and Eq 19 can be used to generate an esti-
mate of R, that is suited to a specific situation.

The average of R, over 0 <y < 2x (at agiven latitude) is the Gaussian radius of curvature Rg

R =JR.Ry =281 Eq 20

T 1-€’sn (L)

In some applications, agloba approximation to Re (independent of latitude) may be sufficient —
e.g., the arithmetic mean of the three semi-axes of the ellipsoid

Re,arithmeanZ%(a—i_a_’—b):(l_%f]a Eq21

Thus
" R arith mean = 6,371,008.8 m = 20,902,259.7 ft (WGS-84)

When analyzing aircraft procedures for the FAA and other U.S. Government agencies with an
aviation mission, the value of R to be used is defined in Ref. 1:
» R.=20,890,537ft (U.S. TERPS)

Vincenty's Algorithm for the Direct and Indirect Problems of Geodesy

During the early 1970s, Thaddeus Vincenty  revisited the issue of geodesics on an ellipsoid, and
programmed aversion of earlier mathematician’s algorithms on a calculator. Given the available
computing technology, his primary concern was minimizing the program’s memory consump-
tion. Accordingly, Vincenty developed an iterative algorithm, including versions for both the
direct and indirect problems of geodesy (Ref. 5).

Dueto its ease of coding, Vincenty’s algorithm is now the most widely used method for
computing geodesics on an elipsoidal earth. The accuracy of Vincenty' s algorithm is quoted as
less than one millimeter, which has been independently validated by comparison with integration
of the differential equations governing geodesic arcs on an ellipsoid (Ref. 6).

2.3 Altitude-Related Matters

The equations developed in Chapters 3 and 4 assume that (@) the user’slocation U ison the
earth’s surface, and (b) there is only one notion of “altitude” (vertical height above the earth’s
surface) involved. Subsections 2.3.1 and 2.3.2 show how to take account of a user altitude, and

" Vincenty was working at the U.S. Defense Mapping Agency Aerospace Center, Geodetic Survey Squadron, Warren
Air Force Base, in Wyoming.
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Subsection 2.3.3 introduces different notions of vertical height above the earth’ s surface.

Accounting for User Altitude

In most situations of interest, there is no concern about the line-of-sight (LOS) between the User
U (generally a sensor) and the Satellite (or aircraft) S being blocked by the earth’s curvature.
Thisisthe case depicted in Figure 1. A method for determining the minimum elevation angle for
which thereis no LOS blockage is shown in Subsection 2.3.2.

Assuming that the user altitude hy is known, when the LOS between U and S is unblocked, the
equations presented in Chapters 3 and 4 can be used with these simple substitutions to take
account of a non-zero user atitude:

= R.— R.+hy,and

* h — hs—hy (Where hsisthe satellite's altitude).

Conditions for Unblocked US LOS

The conditions for which the US LOS is unblocked can be determined using a diagram like
Figure 6, which shows the LOS connecting the User U and Satellite S having a point of tangency
T with the earth’ s surface. Generally, the primary variables involved in these analyses are the
geocentric angle 6 and the user and satellite altitudes, hy and hs. Eq 22 applies to asituation
when hy and hgs are known and 0 is the unknown. (Observe that, if 0 isfixed, then hy and hs can
be traded off — i.e., if oneisincreased, the other can be decreased.)

_ Re Re
0—arcco{Re+mj+arcco{Re+th Eq 22

To complete this analysis, when 0, hy and hs are known, the variables d, ay and as, can be found
from

d = R, tan(@, ) + R, tan(6s)

ay = —%qLarcsin[R;}‘hJ J

ag= —Z+arcsin( Re J
2

Re+hs

Eq 23
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Figure6 Problem Geometry for LOS US Tangent to the Earth’ s Surface

While Eq 22 and Eq 23 reflect a common situation, the known and unknown quantities vary with
application. An exampleisthe siting an ATC radar, where hs (minimum required coverage
altitude) and 6 = 0+0s (distance between the location where the radar is to be installed and the
outer boundary of the coverage region) are known. Then hy isfound using Eq 24, and d, ey and

as, can be found from Eq 23.
05 = arcco Re
Re +hs

Oy =0—-0s Eq24

1
v =[cos(eu) _1JRE

In addition to the above geometric considerations, the analyst should be aware that radar signal
propagation paths, such as US in Figure 6, are subject to bending caused by changes in atmos-
pheric density with altitude. A simple but commonly used method for modeling this phenomenon
is discussed in Subsection 3.6.1.

2.3.3 Different Notions of Altitude

This memorandum is primarily mathematical, and — except for application examples — the
equations in Chapters 3 and 4 involve only one notion of altitude: vertical geometric height
above a spherical earth. However, when interpreting the results of calculations for applications,
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the analyst must be aware that there are multiple notions (thus, meanings) of altitude. The
differing notions are primary of concern in aviation, because aircraft (a) utilize barometric
altimeters, but (b) must also main avertical geometric distance above terrain. Figure 7 illustrates
several notions of vertical distance above the earth, or “altitude”:

e flight level 1013.25 hPa
------------ L "FL50
_lsobare .~
height transition level
altitude .

- v .

T height .~~~ Y R T
VR & WS elevatiz attitude |

.................

Figure 7 Illustrating Different Notions of Altitude

= Height — or, better, Height Above Terrain (HAT) — isthe vertical distance
between an aircraft (or top of a structure on the ground) and the terrain beneath it

= Altitude — or, better, Altitude MSL (above Mean SeaLevel) — isthe vertica
distance between an aircraft and mean sealevel. Generdly, aircraft use atitude
MSL intermina areas/at low altitudes. To do so, the aircraft’s altimeter is
adjusted for the current local MSL pressure by applying the QNH*, which is
broadcast by alocal airport.

»  Flight Level — Vertica distance between an aircraft and the point below where
the sea-level standard day pressure occurs (29.92 inches of mercury). Inthe U.S,,
flight levels are used above the transition atitude of 18,000 ft.!

= Elevation — Height of the terrain above MSL.

These definitions are reasonably standard, but are not universally used. Documents related to
aircraft procedures are particularly carefully to adhere to these definitions.

" QNH isnot an acronym. It is one of a standardized collection of three-letter message encodings, all of which start
with the letter "Q". They were initialy developed for commercia radiotelegraph communication, and were later
adopted by other radio services, especially amateur radio. Although created when radio used Morse code exclu-
sively, Q-codes continued to be employed after the introduction of voice transmissions.

" The figure, from Wikipedia, was apparently drawn by a European, asit has (a) alower transition altitude, and
(b) the QNH quantified in hectopascals (hPa) rather than inches of mercury.
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SOLUTION TO VERTICAL PLANE FORMULATION

3.1 Mathematical Problem and Solution Taxonomy

3.1.1

3.1.2

Mathematical Formulation

In mathematical terms, the basic objective of this chapter isto analyze the plane triangle UOS in
Figure 1. Asaplanetriangle, it isfully described by its three sides and three interior angles (or
guantities having a one-to-one relationship with these six quantities). However, since the interior
angles of a plane triangle (quantified in radians) must sum to =, interest can be limited to two
interior angles (or their one-to-one equivaents). Thus, any three of the five quantities Re, h, d, a,
and 0 can be selected independently (noting that at |east one quantity will be aside), and the
other two quantities will be uniquely determined. In this analysis,

» Theangle having its vertex at the satellite S has a secondary role and is treated
as adependent variable.

» Theearth'sradius Re is assumed to be aknown parameter, rather than avariable.

Consequently, one purpose of this memorandum is to provide solutions for two of the four
variables (h, d, a, 0) as afunction of any two of the remaining variables (and the known
parameter Re). Each group of three variablesis related by one equation (provided in the next
section) — thus atotal of four equations mathematically define the geometric problem illustrated
by Figure 1. Two equations (Eq 4 and Eq 5) are derived from the law of sines and involve two
angle variables and one side variable. Two other equations (Eq 6 and Eq 7) are derived from the
law of cosines and involve two side variables and one angle variable.

Taxonomy of Solution Approaches

The preceding formulation — calculating one variable as afunction of any two (of three
possible) other variables — resultsin atotal of 12 solutions. These solutions can be broken down
into the following taxonomy, in approximate increasing order of complexity

» 2anglevariables and 1 distance variable involved; the distance variableis un-
known — solution is based on the law of sines, and the most computationally
complex operation is division — 2 cases

» 2anglevariables and 1 distance variable involved; an angle variable is the
unknown — solution is based on the law of sines, and the most computationally
complex operation is an inverse trigonometric function — 4 cases

» 1anglevariable and 2 distance variables involved; the angle variable isthe
unknown — solution is based on law of cosines, and the most computationally
complex operation is an inverse trigonometric function — 2 cases
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= 1 anglevariable and 2 distance variables involved; the side opposite the angleis
the unknown — solution is based on law of cosines, and the most computation-
ally complex operation is a square root — 2 cases

» 1anglevariable and 2 distance variables involved; the distance variable adjacent
to the angle is the unknown — solution is based on law of cosines, and the most
computationally complex operation is solving a quadratic equation — 2 cases.

There are (usually more cumbersome) alternatives to the solution approaches outlined above. The
first case addressed below, finding 6 from h and a, provides an example.

3.1.3 Detailed Geometry

Figure 8 below is amore detailed depiction of the coordinate-free problem geometry shown in
Figure 1. For each of the vertices of triangle OUS alineis constructed that intersects the oppo-
site side (or an extension thereof) in aright angle. (The constructed lines are the same lines that
are created in some proofs of the law of sines and law of cosines.) These intersection points are
labeled A, B and C. Because triangle OUS is oblique, intersections points B and C are outside
the perimeter of OUS. Each of the constructed lines results in the creation of two right triangles
with theright angle at A, B or C (for example, line OC createsright triangles OCU and OCS).
Figure 8 also introduces the chord UN, which is an example of the role of half-angles. Color-
coded distances (violet) and angles (blue) associated with these new lines and points are also
shown. Figure 8 provides a geometric interpretation some of the equations devel oped below.

(Re+h) sin(6+a)

(Re+h) cos(0+a) = B¢

Y — (0+a)

d bos(0-+a) 4 h
o

d sin(0+a)

—~,

Figure 8 Detailed Geometry for Vertical Plane Formulation
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3.2 Computing Geocentric Angle

3.2.1 Altitude and Elevation Angle Known — Basic Method

Manipulating Eq 5 yields

_ R,
0=—-a+ arccos( R+h cos(a)j

(1 1
sin?| = ~h Eq25
R, (Za]+2

R.+h

=—qg+2arcsin

Referring to Figure 8, thefirst linein Eq 25 can also be derived from the right triangle AUS,
where the length of the adjacent side is Re sin(8) and the length of the hypotenuseis
(Reth) sin(0) / cos(a).

The expressions on the right-hand sides of two linesin Eq 25 are analytically equivalent;
however, the second is numerically better-conditioned when 0 is small.

Using Eq 13, the first linein Eq 25 can be approximated by

_ ( R ., h 1 jy ﬁ( R ., N f
= —a++2 o+ -—a +— o+
2(R,+h) R+h 24 12 { 2(R, +h) R, +h

to O(«®) and (—j
R

When o = 0 (satellite/aircraft is on user's horizon), 6 achieves its maximum value for avisible
target, which is given by

Eq 26

O is= ACCOS R |_2arcsin| |2 for a=0 Eq 27
R+ +

Since the interior angles of a planar triangle sum to =, it follows from Figure 1 that

ZUS0 = arcsi n( P:E - cos(a)j Eq 28

In the satellite field, it is sometimes said that angle USO accounts for the parallax caused by the
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satellite not being infinitely distant from the earth. The limiting values for angle USO are:

ZUSO0 -0, h>>R,

Eq 29
AUSO—>%—a, h<<R, a

3.2.2 Altitude and Elevation Angle Known — Alternative Method

An aternative expression for the geocentric angle can be found by starting with Eq 7 (which
involvesd, h and o), then using Eq 4 to introduce 6 and eliminate d. Theresult is

{ % } , sn(0)+ [2R(R+h) tan(a)]sin(0) - [n*+2R h]=0 Eq30

Thisisaquadratic equation in sin(0). Its solution is given by

6 = arcsin(x)
_ -B+4B?- 4AC
- 2A
A=[Re + hT Eq31
coy a )
B=2R (R +h)tan(a)
C=-h(h+2R)

3.2.3 Altitude and Slant Range Known

From Eq 6, the geocentric angle is given by

6 = arccos 1-1H d+h
2 R R+h

—2arcsm[1 [d-hd+ hJ e 32
R R+

d-h d+h y+i ﬂd+h%+etc
ReRe+h 24 R R+h '

Using Figure 8, thefirst line of Eq 32 can also be derived by applying Pythagoras's theorem to
right triangle UAS. The second and third lines are numerically better-conditioned when 0 is
small, and are preferred in such situations.
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3.2.4 Elevation Angle and Slant Range Known

Eqg 4 can be written

R sin(@) = d cos(a)cos(8) —d sin(a) sin(6) Eq 33
Thus
0 = arctan d COS(_a)
R, +dsin(a)
R Eq 34
T
=5 arctan(tan(a) - Ws(a)j

Theright-hand side of the first linein Eq 34 can also be derived from right triangle OBS in
Figure 8. The second line is simply an aternative form, as the arc tangent function is not ill-
conditioned for any value of its argument.

3.3 Computing Elevation Angle

3.3.1 Altitude and Geocentric Angle Known

Manipulating Eq 5 yields

. o1
hcos0)- 2 21 =0
o) (Bl "%
(R,+ h)sin(6) (R, + h)sin(0) Eq 35
= h cot(f) — R, tan[iej
R +h R +h 2
Thefirst expression on the right-hand side of Eq 35 can also be derived from right triangle UBS
in Figure 8.
Special / limiting cases of Eq 35 are
a=—19 for h=0
2
h 1 R. 6
—— — a 6-50
7R+h6 R+h2 - Eq 36
1 1
h= - =tan(f)tan| =0 for =0
(cos(e) jRe oraf 0 )R or

Thefirst line in Eq 36 describes how the satellite/aircraft el evation angle decreases as the
satellite/aircraft moves away from the user aong the surface of the earth. Thelast line gives the
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altitude of the satellite/aircraft, as afunction of distance, when the satellite/aircraft is on the
horizon (ignoring refraction due to the earth’ s atmosphere).

3.3.2 Altitude and Slant Range Known

3.3.3

Manipulating Eq 7 yields

Eq 37

_1(,_(d-h(d+h
d 2R,

Using Figure 8, thefirst line of Eq 37 can also be derived by applying Pythagoras's theorem to
theright triangle OB S, with the length of the sides being Re+h (hypotenuse), Re+d sin(e) and
d cos(a). In the second line, the term in large parentheses is the perpendicul ar height of the
satellite above the tangent plane at the user’ s location. It isinterpreted as the atitude of the
satellite minus a term which corrects for the curvature of the earth.

Geocentric Angle and Slant Range Known

Manipulating Eq 4 yields

oa=-0+ arccos(% sin(O)j Eq 38

Eq 38 can also be derived from right triangle AUS in Figure 8.

3.4 Computing Slant Range

3.4.1 Altitude and Geocentric Angle Known

From Eq 6, it follows that

d = [n?+ 2R (R, + h)(1- cosl0))
:\/ h2+ 4Re(Re+ h)sinzee £q 39

=2Re\/(1+ u)sinz(%ej+(%j2 UE%

Thefirst linein Eq 39 can a so be derived by applying Pythagoras's theorem to right triangle
AUS in Figure 8. The second and third lines are analytically equivalent to the first, but the ae
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numerically better-conditioned when 0 is small, and preferred in such situations.

Altitude and Elevation Angle Known
Eq 7 can be written
d2+ 2R dsin(a) - (12 + 2R;h) = 0 Eq 40
Its solutionis
d=-Rysin(a)+ /(R sin?(a)+ 2hRy+ h? Eq 41

Referring to Figure 8, Eq 41 can be interpreted as length(CS)-length(CU), where length(CS) is
found by Pythagoras's theorem applied to right triangle OCS.

The minimum and maximum values for the slant range d (requiring the satellite isvisible) are
dmn=h for o= ln
2 Eq 42

dmaxvis: ﬂh2+2&h fOr OC:O
Asthe satellite altitude approaches zero, the slant range converges as follows
h

d—— as h—0 Eq 43
sin(a)
Geocentric Angle and Elevation Angle Known
Eqg 5 can be written
sin(6)
d=R, ———— Eq 44
R cosla +0) .

Eq 44 is amanipulation of the two expressions for the length of AU in Figure 8. This equation is
not ill-conditioned for any values of 6 and a.

3.5 Computing Altitude

3.5.1

Slant Range and Geocentric Angle Known

Eq 6 can be written as a quadratic equation in Rgth. Its solution is

h=-R, (1-cos(0))+ ,/d* - R*(1—cos’(9))

Eq 45

h:—ZRESinZGQJh/dZ— R2sin?(0)
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Referring to Figure 8, the first line in Eq 45 can be interpreted as length(AS)-length(AN), where
length(AS) isfound by Pythagoras's theorem applied to right triangle AUS. The right-hand sides
of the two lines are analytically equivalent. However, the right-hand side of the second lineis
numerically better-conditioned when 0 is small, and is preferred in such situations.

3.5.2 Slant Range and Elevation Angle Known

Rearranging Eq 7 yields

h=-R +R2+d?+2R dsin(a)
[x x> x* 5x* 7X° 2dsin(a) d? Eq 46
299ma) & 1

R, R’

———+-——-——+—+etc.| when x=
2 8 16 128 256

Referring to Figure 8, the first linein Eq 46 can be interpreted as length(OS)-length(ON), where
length(OS) isfound by Pythagoras's theorem applied to right triangle OBS.

Asthe satellite dant range approaches zero, the altitude converges as follows
h—dsinf@) a d—0 Eq 47

3.5.3 Elevation Angle and Geocentric Angle Known

Manipulating Eq 5 yields

Eq 48 can also be derived by manipulating the equality of two expressions for the length of OC
in Figure 8.

Setting o = 0 in Eq 48 yields Eq 49 for the “height of the user’s horizon”. Sometimes Eq 49 is
replaced by a modified version that attempts to account for atmospheric refraction (bending of
electromagnetic waves as a function of aimospheric density). Thistopic is partially addressed in
the following section.

== L — = 1 =
hhoriz—(cos(g) 1JR9 tan(e)tan(ZQ)Re for a=0 s

_[Lp2, 200, 5L g6 e R
2 24 720

3.6 Example Applications

Three example applications are presented in this section, with the intent of providing a sense of
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how the coordinate-free mathematical equations presented earlier in this chapter relate to ared
problem. The examples are intended to illustrate that it is necessary to understand the application
in order to utilize the equations properly and to interpret the results. Also, these examples suggest
that, while providing useful information, the coordinate-free equations cannot answer some
relevant question. For that reason, the same examples are re-visited again at the end of Chapter 4.

Example 1: En Route Radar Coverage

’ “

A traditional surveillance engineering task is predicting aradar installation’s “ coverage”. There
are two common problem formul ations: Calculate either the minimum visible aircraft (a) Ele-
vation MSL or HAT, for aknown ground range from the radar; or (b) Ground range from the
radar, for aknown elevation or HAT.

For either case, the issuesto be considered, and the approach taken herein, are:

» Terrain Effects— Asstated in Chapter 1, blockage of el ectromagnetic waves by
hills/fmountains/structures is not addressed herein. These effects would beincluded in a
more thorough analysis, and are particularly important in mountainous areas. However,
terrain effects are handled numerically, rather than by an analytic model, and are thus
outside the scope of this memorandum. The earth surrounding the radar is assumed to be
smooth, athough not necessarily at sealevel.

* Propagation Model — Real sensors may not have the straight line propagation paths
assumed by the equations earlier in Chapter 3. Relevant to this example: electromagnetic
waves behave according to Snell’s Law and refract (bend) towards the vertical asthe
atmospheric density increases at lower altitudes. Refraction effects are most pronounced
for long, predominantly horizontal paths within the earth’ s atmosphere (all of which
apply to en route ATC radars). A widely used model (employed herein), that approxi-
mates the effects of refraction and is compatible with the equations devel oped earlier in
the chapter is the “four-thirds earth” model. According to Wikipedia (Ref. 7): “The 4/3
Earth radius rule of thumb is an average for the Earth's atmosphere assuming it is
reasonably homogenized, absent of temperature inversion layers or unusual meteor-
ological conditions.”

» Radar Antenna Height — Three values are used for the height of the radar antenna
phase center above the surrounding terrain, hy: 50 ft, representative of the antenna height
for aradar mounted on atower; 500 ft, representative of the antenna height for aradar on
top of ahill; and 5,000 ft, representative of the antenna height for aradar on top of a
mountain.

Based on these considerations, the two known/independent variables are taken to be:

(1) The satellite/aircraft elevation angle a (provided it is equal to or greater than the
minimum value for the associated antenna height hy); and

(2) Either

(a) the geocentric angle 6 between the radar and satellite/aircraft (so the unknown/
dependent variableis the aircraft altitude hs above the terrain) — governed by Eq 48; or

(b) the aircraft atitude hs (so the unknown/dependent variable is the geocentric angle 0)
— governed by Eq 25.

Associating U with the radar antennalocation (because its elevation is known) and S with
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possible aircraft |ocations, the resulting equations are shown in Eq 50 below. For both cases (a)
and (b), substitutions are made for the four-thirds earth model and to account for anon-zero user
atitude (Subsection 2.3.1). Also, the equation for the minimum user altitude (Eq 24) is repeated.

(@) hs=h, +[{(% —1](‘3‘Re+n,) for a>am,

COa+29
4 . 2(1 1
~Re+hJanCal+ - \he -
(b)9=—5a+§arcsin (3Re m)4 (2 ) 2(5 hU) for a> o, Eq 50
3 3 §|I\>e+r1J
4
Qin = — = +arcsin §Re
mn = 5 E—
2 §Re+l'U

The results of exercising Eq 50 for case (a), when the geocentric angle is known, are shown in
Figure 9. The maximum range depicted, 250 NM, is the specified value for current en route ATC
radars (e.g., ARSR-4 and ATCBI-6). Curves are shown that correspond to the three radar HAT
values at the theoretical minimum elevation angle for which targets are visible (blue) and for

1 deg larger than the minimum elevation angle (violet). Aircraft whose range/HAT combinations
are above agiven curve are visible to the radar; otherwise they are said to be “below the radar
horizon”. If curvesfor the visibility of aircraft relative to mean sealevel (altitude MSL) are
needed, the elevation of theterrain is added to the HAT valuesin Figure 9.

Sensitivity toradar antenna HAT — Increasing the height of the radar’ s antenna significantly
decreases the minimum HAT at which aircraft are visible. In this example, raising the antenna
HAT from 50 to 5,000 feet decreases the visible aircraft HAT by amost 21,000 feet — i.e., the
ratio is greater than 4:1. This “leverage” can be appreciated by examining Figure 6. Line US acts
likealever aam withitsfulcrumat T. Raising U lowers S, and since T is generally closer to U
than S, the change in the elevation of S isgreater thanitisin U.

Sensitivity to antenna elevation angle — Increasing (possibly mistakenly) the elevation angle
of the radar antenna above the minimum required to avoid blockage of the signal by the earth has
asignificant penalty. At the radar’ s maximum range, a 1 degree increase in elevation angle
corresponds to an increase in the minimum HAT at which targets are visible of approximately

Aa. « d = (1 deg)(n rad/180 deg)(250 NM)(6,076 ft/NM) = 26,511 feet Eq51

The resulting decrease in airspace under surveillance is more than is gained by raising the radar
HAT to 5,000 feet. Thus aligning (often called “bore sighting”) the antennais an important facet
of aradar installation.
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Coneof Silence— “Visihility” isnecessary for an aircraft to be detected by aradar. But it is not
sufficient. Energy transmitted by the radar must reach the aircraft; then, energy scattered (primary
radar) or transmitted (secondary radar) by the aircraft must return to the radar at a detectable
level. When aradar performs well for most targets (the case here) and atarget isvisible, the
determining factor for detectability is the antenna pattern. ATC radar antennas are designed to
have their gain concentrated near the horizon, where most aircraft are. Conversely, ATC radars
are not designed to detect aircraft amost directly above them (the “cone of silence’).

A “rule of thumb” for detecting atarget by an ATC radar isthat the target range be at |east twice
its height above the radar antenna— e.g., an aircraft at 10,000 ft above the antenna would not be
detected when less than 20,000 ft or 3.3 NM from the radar (Ref. 8). Figure 9 includes the pre-
dicted cone of silence for an ATC radar antenna on the surface; larger antenna HAT values will
result in slightly smaller cones of silence. Generally, the cone of silence is an issue to be aware
of, but is not amajor concern.

Earth Model — For either a normal-size or 4/3"® earth model, the minimum visible aircraft
atitudes are small at short ranges. However, the minimum visible atitudes for the individual
models (thus their differences) are substantial at longer ranges. For example, at a ground range of

-28-



3.6.2

DOT/RITA Volpe Center

250 NM, the predicted visible aircraft HAT for a4/3™ earth model is less than that for a normal-
size earth by between 13.4 kft (for aradar antenna HAT of 50 ft) and 9.4 kft (for aradar antenna
HAT of 5,000 ft).

Example 2: Aircraft Instrument Approach Procedure

Design of an Instrument Approach Procedure (IAP) is a straightforward application of the
equations earlier in this chapter. The LPV approach” to Kansas City International Airport (MCI)
runway 19L is selected as an example — Figure 10 is the current approach plate.

Thefirst consideration is that, since the navigation fixes on the approach plate quantify vertical
height in terms of altitude MSL, the same metric must be used for procedure design. Second, the
user location U is chosen as the point where aircraft crosses the runway threshold. The elevation
above MSL of U isthe sum of the elevation of the runway threshold (THRE = 978 ft) and the
threshold crossing height (TCH = 59 ft); thus, hy = 1,037 ft.

In terms of the four variables defined in Subsection 3.1.1, the elevation angle a is set equal to the
specified glide path angle — i.e., a = 3.00 deg — and constitutes one independent variable. The
second independent variabl e describes movement along the approach route. Either 6 or hs could
be used; in this example, 0 is selected because it has fewer drawbacks. While its published
precision (0.1 NM) isless than desired, the limits of its precision are known. Conversely, only
lower bounds for hs are specified on the approach plate; the amount that each is below the glide
path angle is not known. (However, a positive, and one reason for selecting this example is that
there are six positions along the approach where the minimum altitude MSL is stated.)

For this set of variables— a and 6 known, h unknown — Subsection 3.5.3 provides the solution
equation (Eq 48). After making substitutions for a non-zero user altitude hy (Subsection 2.3.1),
the result is Eq 52. Evaluating this equation (using the TERPS value for Re) yields Table 2.

cos(a)
hs=hy +| —/——= - + Eq 52
S hU COS(a +9) (Re hJ)
Table 2 Specified and Computed Fix Altitudes for MCI Runway 19L LPV Approach
Fix Name UMREW | FELUR | REMNS | ZASBO | YOVNU | GAYLY
Dist. from Threshold, NM (Figure 10) 1.9 4.9 6.2 9.3 124 155
Min. Altitude MSL, ft (Figure 10) 1,640 2,600 3,000 4,000 5,000 6,000
Glide Path Altitude MSL, ft (Eq 52) 1,645 2,619 3,046, 4,075 5122 6,187

" LPV approaches utilize GPS and the Wide Area Augmentation System (WAAS) for lateral and vertical guidance,
and are a current focus of FAA 1AP activities. Their minimums are similar to those for ILS Category | procedures.
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Because the computed altitudes on the last row of Table 2 are dlightly larger than the published
minimum altitudes on the row above, it is reasonable to conclude that the |AP design process
described in the subsection closely replicates FAA process.
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Figure 10 Approach Plate: LPV Procedure to MCI Runway 19L
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Example 3: Satellite Visibility of/from Earth

A question that is readily addressed using the equations in this chapter is: What fraction of the
earth’ s surface can see (and be seen by) a satellite at altitude h? Clearly, h is one independent
variable in such an analysis. The other independent variable is taken to be the minimum elevation
angle o (sometimes called the mask angle in this context) at which the satellite provides a usable
signa. The quality of signals received at low elevation angles can be degraded due to multipath
and attenuation by the atmosphere; and terrain blockage is an issue at low elevation angles. The
dependent variable is taken to be 0, the geocentric angle between the satellite nadir N and the
user U. For this combination of variables, Subsection 3.2.1 provides an approach to the solution.

The remaining issue is whether to use a normal-size or 4/3 earth model. Normal-size is selected,
because (unlike radar signals) satellite signals are outside of the earth’s atmosphere over most of
their propagation path. The earth’ s atmosphere extends to an atitude of approximately 5 NM,
while satellite atitudes are at |east several hundred nautical miles.

The basic equation to be evaluated is thus taken from Eq 25. Asaway of visualizing the impact
of satellite altitude on visibility, amodified version of Eq 15 isused. The results of exercising
these equations (Eq 53) are shown in Figure 11.

o1 1
sin‘l =« |+=h
R’ Je )+

Re+h Eq53

0 =—oa+2arcsn

Fractionof EarthVisible= %[1— cos(0)]
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4. SOLUTION TO SPHERICAL SURFACE FORMULATION

4.1 Basics of Spherical Trigonometry

4.1.1

4.1.2

Historical Perspective

Spherical trigonometry deals with relationships among the sides and
angles of spherical triangles, defined by intersecting great circleson a
sphere (Figure 12). Spherical trigonometry originated over 2,000
years ago, largely motivated by two applications. maritime navigation
(practical) and understanding the relationship of the earth to the
“fixed stars” (intellectual). Early contributors were from classical
Greece and medieval Islam (Persian and Arab). The subject was
largely completed by Europeans in the 18" and 19" centuries. Until
the 1950s, spherical trigonometry was a standard part of the mathe-
matics curriculum in U.S. high schools — see Refs. 9 and 10.

Although it has fallen into academic disfavor, the spherical trigono-

Figure 12 Example
Spherical Triangle

metric equations for points on the (spherical) earth’ s surface are generally identica to, but
simpler to derive than, those for the vector approach that is addressed in the following chapter.

Conversely, adrawback of spherical trigonometry is that
it’s not well suited to problemsinvolving locations at finite
distances above the earth. Thus, it cannot be used to find
the elevation angle of a satellite S with respect to the user
U, or the user-satellite slant-range.

Application to Navigation

Although similar, there are differences between spherical
trigonometry and navigation on the surface of a spherical
earth. In general, the vertices of a spherical triangle can be
arbitrarily located on a sphere. However, for navigation
analyses, one vertex is taken to be the North Pole, P". Such
aspherical triangle is completed by the two endpoints of a
navigation “leg” — e.g., pointsU and S in Figure 13.

For a spherical triangle employed for navigation anaysis,

b
S(Ls. Ay
Figure 13 Spherical Triangle for
Navigation

" While the North Pole is generally used in deriving navigation equations, the resulting expressions are valid for

points in the southern hemisphere as well.
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six triangular elements (requiring seven navigation variables) are involved:

(8 Angular lengths of sides PU and PS — complements of the latitudes of pointsU and S,
respectively;

(b) Angle at P — the difference in the longitude of the points U and S;

(c) Angular length of side US — the geocentric angle between the mission’ s start and end
points; and

(d) Anglesat U and S — the azimuth (also called the bearing or course) angles of the leg
joining U and S with respect to north.

Two differences relative to plane trigonometry are that the three angles of a spherical triangle do
not sum to = and that right triangles do not play as prominent arole. Relative to item (b) above, if
the path US crosses the +x line of longitude (idealized International Data Line), the difference
between the east longitude and the west longitude may (depending upon the use) need to be
adjusted by +2x, so that the magnitude of the difference isless than or equal to . Adjustment is
not needed to use the difference as the argument of atrigonometric function, as all have a period
of 2x. However, if the longitude difference is computed and added to/subtracted from a known
longitude to find an unknown longitude, the result may need to be adjusted by +2x.

Figure 12 and Figure 13 can be misleading, in that all angles and sides are depicted as acute —
i.e, intherange (O, n/2). In reality, spherical trigonometric angles and sides are usually taken to
bein therange (0, ). In navigation thereis a need to deal with angles having awider range of
values: latitude varies over [-nt/2, /2], longitude varies over [-x, «t], geocentric angles vary over
(O, m) and azimuths vary over [-x, ]. Thus, latitudes are usually found with the arc sine, longi-
tudes with the two-argument arc tangent, geocentric angles with the arc cosine, and azimuths
with the two-argument arc tangent. In order to use the two-argument arc tangent, there is usually
the need to find expressions for both the sine and cosine on the angle.

On the surface of a sphere, point S to point U if isdiametrically oppositeto U; alinefromU to S
passes through the center of the sphere. U and S are antipodal if Ls=-Ly and As = Ay + . When
that is the case, the geocentric angle between U and S is &; however, an infinite number of great
circle paths connect U and S. As aresult, many spherical trigonometry equations, and parti-
cularly those for azimuth angles, are indeterminate or fail for antipodal points.

Resources Available on the Web

The worldwide web has many useful resources concerning spherical trigonometry. Examples that
I’m familiar with, in approximate decreasing order of their complexity:

= |. Todhunter, Spherical Trigonometry, 5" Edition (Ref. 11) — Written by a British
academic. Has been cited as the definitive work on the subject. Later editions were
published but are not available without charge.
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=  W.M. Smart and R.M. Green, Spherical Astronomy (Ref. 12) — Also written by a
British academics. Chapter 1 (24 pages of a 400+ page text) is devoted to spherical
trigonometry. It has equations and their derivations (including more complex and
useful ones) and associated narratives.

=  Wikipedia, Spherical Trigonometry (Ref. 13) — A fine collection of equations and
background information.

»  Wolfram MathWorld (Ref. 14) — A good collection of equations

= Aviation Formulary (Ref. 15) — A website with equations similar to those in this
chapter, without derivations. It also offers an Excel spreadsheet with formulas as
Macros.

= Spherical Trigonometry (Ref. 16) — An easily understood introduction to the topic.

4.1.4 Key Formulas

In genera (including herein) and without explicit statement otherwise, the labeling of the angles
and sides of a spherical triangleis arbitrary. Thus, cyclic substitutions—i.e.,, A — B, a— b, etc.
— can be made to derive two alternate versions of each identity. In addition to key formulas
displayed below, thereisarich set of other spherical trigonometric identities that may be found
in the literature.

Law of cosines for sides:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) Eq 54

The right-hand side of this law contains two sides (here, b and ¢) and their included angle (A).
The |eft-hand side contains the third side (a), which is opposite to the included angle.

Primary applications: (1) finding the third side of atriangle, given two sides and their included
angle; and (2) finding any angle of atriangle (using cyclic substitution), given three sides.

Law of cosinesfor angles:
cos(A) = —cos(B) cos(C)+sin(B)sin(C)cos(a) Eq 55

The right-hand side of thislaw contains two angles (here, B and C) and their included side (a).
The left-hand side contains the third angle (A), which is opposite to the included side.

Primary applications: (1) finding the third angle of atriangle, given the other two angles and their
included side; and (2) finding any side of atriangle (using cyclic substitution) from the three
angles.

Law of sines:

sin(a) _ sin(b) _ sin(c)

sn(A) sn(B) sn(C) Eq 6

Primary application: finding aside (or angle) of triangle, given the opposite angle (or side) and
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another opposite side-angle pair. The ambiguity of the arc sine function can be a concern.

Anaogue of law of cosinesfor sides:
sin(a) cos(B) = cos(b) sin(c) — sin(b) cos(c) cos( A)
sin(a) cos(C) = cos(c) sin(b) - sin(c) cos(b) cos(A)

Eq57

The right-hand sides of both lines of the above equation have the same sides and included angle
(and almost identical functions) as the right-hand side of the law of cosinesfor sides. However,
whereas the law of cosines for sides has cos(a) on the |eft-hand side, the analogue law has
sin(a) cos(B) or sin(a) cos(C), with B and C being the angles adjacent to side a.

Primary application: resolving ambiguities in situations where two sides and the included angle

are known, and it is desired to find the other two angles directly from the known quantities.

Four-Part Cotangent Formula:
cos(a) cos(B) = sin (a) cot (c) + sin(B)cot (C) (cBaC)
cos(a) cos(C) = sin (a) cot (b) + sin (C)cot (B) (BaCh)

Eq 58

The six elements of atriangle may be written in cyclic order as (aCbAcB). The four-part
cotangent formula relates two sides and two angles forming four consecutive elements around a
triangle. The side and angle at the ends of such a sequence appear once on each linein Eq 58, as
the argument of a cotangent function, whereas the middle elements appear twice on aline.

Primary applications: (1) given two angles (here, B and C) and their included side (a), find the
adjacent sides (b and c); and (2) Given two sides (c and a, or a and b) and their included angle (B
or C), find the adjacent angles (C and B).

With same known quantities as the two cosine laws, the four-part cotangent formula provides
solutions for the adjacent quantities that the cosine laws do not address. However, application
(2) can dso be accomplished by a combination of the law of sines and the analogue law (see
solutions for longitude difference and azimuth angles below).

Napier's Anaogies:

1l(g_ 1 B
tan (A+ B)=Mcot%c tan%(a+b)=wtan%c
cos; (a+b) cos3 (A+ B) Cuo
. _ .
3(a- 1 —
t6‘”%(A—B)=Mcot%c tan%(a—b)=wt 1
sini(a+b) sni(A+B)

Primary application: (1) given two sides (here, a and b) and their opposite angles (A and B), find
the remaining side (c) and remaining angle (C).
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Solving for Angles and Sides:

When solving for angles and sides after employing the above formulas, one must be aware of the
possibility of ambiguous solutions to inverse trigonometric functions. In the realm of spherical
trigonometry (versus navigation), where angles and sides are in the range (0, x), the arc sine
function and the law of sines are the primary source of concern, as two angles in the range

(O, )can have the same sine value. However, some problems do have two solutions; in these
cases, neither result from the arc sine function is extraneous. Additional comments are provided
concerning specific problems and equations below.

Taxonomy of Problems Involving Spherical Triangles

A spherical triangle is defined by six possible quantities. The case of five given elementsis
trivia, requiring only a single application of either cosine law or the sine law. For four given
elements there is one non-trivial case. For three given elements there are six cases. Each of the
total of seven casesisillustrated in Figure 14 and enumerated below (Ref. 17), along with a
solution approach. Others solutions may also exist.

(1) Three sides known — Eq 54, three times

(2) Two sides and the included angle known — Eq 54 for a, Eq 56 and/or Eq 57 for
BandC

(3) Two sides and a non-included angle known — Eq 56 for C, then follow case 7

(4) Two angles and the included side known — Eq 55 for A, then Eq 56 or Eq 58
bandc

(5) Two angles and a non-included side known — Eq 56 for b, then follow case 7
(6) Three angles known — Eq 55, three times
(7) Two sides and their opposite angles known — Eq 59 for A and a.

KBC\Q

(abc) (beB) )
—4c
AN alNeT
(aBC) (aAB) ABC)

Figure 14 Illustrating the Taxonomy of Spherical Triangle Problems
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Taxonomy of Spherical Surface Formulation Mathematical Problems

The spherical surface formulation introduced in Section 1.3 involves seven variables. For afull
solution to a given situation, four variables must be known, from which three can be found. Thus,
potentially, 35 mathematical problems and 105 solution equations could be involved. However,
the spherical surface formulation is symmetric in U and S; interchanging U and S only flips the
left and right sides in Figure 13 but does not change the underlying problem. Of the 35 possible
mathematical problems, three are self-symmetric (the mathematical problem does not change if

U and S are interchanged) and 16 have symmetric versions — see Table 3. Table 3 notes the 3 of
19 problems summarized (and 5 of the full 35) do not involve either longitude being known; thus
the solution can only yield alongitude difference rather than an actual longitude. Table 3 also
references the corresponding spherical triangle case (Subsection 4.1.5) and the cases that are
addressed in the remainder of this chapter. All seven spherical triangle cases presented in
Subsection 4.1.5 occur in Table 3

Table 3 Taxonomy of Spherical Surface Formulation Mathematical Problems

Czse LU )\.U Ysu Ls ;vS Yu/s 0 SPl SSZ No A CgTSQB Comment
1 X X X X X 2 Section 4.2
2 X X X X X 3 Section 4.5
3 X X X X X 3 Similar to #2
4 X X X X X 1
5 X X X X X 4 Section 4.4
6 X X X X X 5
7 X X X X X 3
8 X X X X X 5
9 X X X X X 2 Section 4.3
10 X X X X X 3
11 X X X X X X 7
12 X X X X X X 1, 2, + | Over-specified
13 X X X X X 5 Similar to #8
14 X X X X X 2 Similar to #9
15 X X X X X 3
16 X X X X X X 2,4, + | Over-specified
17 X X X X X 6
18 X X X X X 5
19 X X X X X 4

! Symmetric Problem exists
2 Self-Symmetric problem
% Spherical Triangle Case (Subsection 4.1.5)
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4.2 Solving the Indirect Problem of Geodesy

421

Theindirect problem of geodesy is stated in Section 1.3 and North North
illustrated on the right. In taxonomy of spherical trianglesin
Subsection 4.1.5, this problem falls under case (2). The
known elements (and dimensions) are sides PU (Yarr - Ly)
and PS (Yo - Ls) and their included angle UPS (s - Ay).

Computing the Geocentric Angle

Finding the geocentric angle between two locations on a S(ts. b
spherical earth is fundamental question, and apparently was a motivating factor in the creation of
spherical trigonometry. Referring to Figure 13, the distance 6 between U and S isreadily derived
from the law of cosinesfor sides (Eq 54), treating the leg connecting U and S as the unknown
guantity

cos(@) = cos(Ly )cos(Lg)cos(Ay - Ag )+ sin(Ly )sin(Lg) Eq 60

The right-hand side of Eq 60 should evaluate to avaluein [-1, 1]; 8 can then be found uniquely
in [0, ). Eq 60 was used by maritime navigators centuries ago, likely before 1,000 AD. How-
ever, when precision islimited (as it was for paper-and-pencil cal culations using rudimentary
trigonometry tables), the preceding equation is numerically ill-conditioned for small vaues of the
geocentric angles 6 (which were the most frequently occurring). Also see Subsection 2.1.4.

To improve computationa accuracy when the geocentric angleis
small, over 1,000 years ago (Ref. 18) mathematicians defined the
versine (in Latin, sinus versus) function as (Figure 15)

vers(0) =1-cos(f) = 2si nz(%j Eq 61
In early terminology, the familiar sine function was called sinus

rectus, or vertical sine. Tablesfor the versine or the haversine (half
of versine), and their inverses, date to the fourth century.

Using the haversine function, the geocentric angle can be found
from what is sometimes called termed the “haversine formula’

Figure 15 Sine, cosineand
hav(6) = hav(Lg — Ly )+ cos(Ls)cos(ly, )hav(As—4y) Eq62 | versinerelated to the unit
circle

The haversine formula eliminates the ill-conditioning of Eq 60 for

small geocentric angles and requires only a few rea-time (possibly, at sea) calculations.

Without explicitly utilizing the versine or haversine (which are less needed today, due to the
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availability of modern computational capabilities), an analytically equivalent version of the
haversine formulais

sin[%}:\/sm (LS ZLU J+ cos(Lg) cos(Ly, ) sin (ls 2 J Eq 63

The right-hand side of Eq 63 should evaluate to avaluein [0, 1]; 6 can then be found uniquely in
[0, wr]. The small latitude and longitude differences that occur when U and S are close only
involve the sine function. This expression is reminiscent of Pythagoras's formulafor the
hypotenuse of a plane triangle. In fact, it reduces to Pythagoras's formula when the two points are
close together and close to the equator.

A drawback of Eq 63 (although far less an issue than the problem it solves) is that it’s numerical
ill-conditioned for angles near the antipodal point. One solution isto use the original equation
(Eq 60) in these situations. Another is to use the following:

cos(%):\/cos{%}— cos(Ls) cos(Ly, ) sin (/15 LY J

\/co{ Ls ;LU j— yeoos(Lg) cos(Ly ) sin(/18 ;AU j\/co{ Ls _ZLU j+ yJoos(Lg) cos(Lyy) dn(%)

Eq 64

The previous two eguations can be combined to create aform that is not ill-conditioned when
executing an inverse trigonometric function

L.—L A=A
\/sinz{sz UJ+ cos(LS)cos(Lu)sinZ{ 52 UJ
[ Eq 65

2

(9]
2) - _ - .
\/co{LSLU)— cosle) COS(LU)gn(lszluj\/m{'—sz"u}r cos(Lg) cos(Ly) sin()bS Zlu)

An expression for sin(0) (vice for sin(¥20) in Eq 63) can be derived by vector analysis techniques,
and is presented in Section 5.2 (Eq 114).

Computing the Azimuth Angles of the Connecting Arc

Having solved for the geocentric angle, the remaining “ part” of the indirect problem of geodesy
is finding the azimuth angles at (the nadirs of) U and S of the great circle arc connecting these
two points. This determination is slightly complicated by the fact that azimuth angles can vary
over therange [-=, ], SO that a two-argument arc tangent function must be used.

First, the spherical trigonometry law of sines (Eq 56), applied to the anglesat P and at U yields
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cog(Ls) sin(4s — A4y)

sin(ysyy) = Sn(o) Eq 66
Second, the anal ogue to the law of cosinesfor sides (Eq 57) yields
in(L Ly)— Lg)s Ag —
cosiy g, ) = SLs)oosLy) Cojn(se))sm(l-u)cos( s~ ) Eq67
Thus
_ cos(Lg)sin(As —4y)
S0 = (o) cos(Ly) - cos(Le)Sn(Ly ) costs — ) Eq 68

Observe that, while Eq 66 and Eq 67 depend upon the geocentric angle 0 (which is not a“given”
for the indirect problem), the solution (Eq 68) for ywsu only depends upon the latitudes and
longitudes of the great circle arc end points, which are “givens’. Thus, the solution for g does
not “daisy chain” from the solution for 0.

The spherica trigonometry method is symmetric with respect to the user and satellite, so

cos(Ly )sin(Ay — Ag)
sin(Ly ) cos(Ls) — cos(Ly ) sin(Ls) cos(y — 2s)

tan(yy /s) = Eq 69

As mentioned previously, in navigation analyses it is useful to employ azimuthsin the range

[-m, ], where negative val ues denote angles west of north. In some expositions, the azimuth
angle at the second point is taken to be the angle the path would take if it were to continue — i.e.,
implicitly or explicitly, the first point is taken as the origin and the second as the destination of a
trgjectory. However, herein, the two points are on an equal basis and the azimuth angle at the
second point isthat for the great circle path toward the first point. Eq 68 and Eq 69 reflect these
points of view.

4.3 Solving the Direct Problem of Geodesy North

North

The direct problem of geodesy is stated in Section 1.3 and is
illustrated on the right. In taxonomy of spherical trianglesin
Subsection 4.1.5, this problem falls under case (2). The known
elements (and their dimensions) are sides PU (¥2r - Ly) and
US (0) and their included angle PUS (ysu).

4.3.1 Computing the Satellite Latitude S(Ls?,2s?)

Applying the spherical law of cosines for sides, where the unknown is the side PS, yields
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sin(Ls) = sin(Ly, ) cos(6) + cos(Ly, ) Sin(6) cos (s ) Eq 70

Note that |atitude angles are restricted to the range [-n/2, &/2], so in this context, the principal
value of the arc sine function always yields the correct solution.

Computing the Satellite Longitude

Finding the satellite longitude As is more complex, as longitude angles are in the range [-xt, 7] .
First, apply the spherical law of sinesto the angelsat P and U

sin(AS—AU)=sin(9)%ES) Eq71

Then apply the analogue to the law of cosines for sides
_ cos(Ly ) cos(6) —sin(Ly )sin() cos(v'sy )

Aa —
cos(Ag — Ay ) cos(Lo) Eq 72
Thus the satellite longitude can be found from
tan (A — 4, ) = sin(@) sin(y s,y ) Eq73

cos(Lyy ) cos(9) - sin(Ly, ) sin(6) cos(y'sy )

The right-hand side of the above equation only depends upon “given” quantities for the direct
problem, and not on the solution for Ls. After taking the arc tangent, the solution will yield a
value of As— Ay intherange[-x, «]. If thisis added to avalue of Ay (also in the range [-, x]), the
result will bein the range [-2x, 2x]. Adjustments of £2x must then be made to obtain a value of
Asintherange (-n, 7] — e.g., (1) If As <O, then As = As + 2m; (2) If As> 7, then hs = As— 2.

Eqg 70 and Eq 73 can be used to find a set of equally-spaced points on the trgjectory from U to S
by replacing 6 by k-6/N and letting k = 1,..,N.

Computing the Azimuth of the Connecting Arc at the Satellite

After Ls and As have been found, the direct problem solution can be completed by finding the
azimuth of the great circle arc at the satellite’ slocation, yys. using Eq 69. An alternative,
preferred approach that does not daisy chain solutionsisto first apply the law of sines,

cos(Ly ) sin(y s,y )
cos(Ls)

sin(yy/s) = - Eq 74

A minus sign isintroduced in the above equation to cause the two azimuth angles to have
opposite signs.

Then apply the analogue to the law of cosines for sides
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sin(Ly )sin(9) — cos(Ly, ) cos(0) cos(y s, )
cos(Lg)

cos(yy /s) = Eq 75

Thus

—cos(Ly ) sinfysyu)
sin(Ly ) sin(6) — cos(Ly, ) cos(6) cos(y' s, )

tan(yy/s) = Eq 76

Eqg 69 and Eq 76 have identical computational burdens.

4.4 Solving a Modified Version of the Direct Problem: Satellite Longitude Known

44.1

4.4.2

In this modification to the direct problem, the longitude of S, A, is known, and the geocentric
angle, 0, between U and S is unknown (the opposite of the assumptions for these quantitiesin
unmodified problem). In taxonomy of spherical trianglesin Subsection 4.1.5, this problem falls
under case (4). The known elements (and dimensions) are angles UPS (As - Ay) and SUP (ygu)
and their included side UP (Yar - Ly).

Thisisawell-posed problem, as every great circle crosses line of longitude exactly once. Also,
the solutions presented below do not require daisy-chaining of one solution to another.

Computing the Satellite Latitude

Thelatitude Lsis found from the four-part cotangent formula (Eq 58)

tan(Ls) = sin(Ly ) cos (A5 — Ay ) - sin(4s — 4 Jcot(y'sy )

o5y ) Eq 77
In computing Ls from Eq 77, observe that, using the arc tangent function, it can be
unambiguously found in [-a/2, nt/2].
Computing the Geocentric Angle
The geocentric angle 0 is found from the four-part cotangent formula (Eq 58)
cot(0) = sin(Ly ) cos (v s;y ) —Sin(y sy ) Cot(As — 4y ) Eq78

cos(Ly )

In computing 6 from Eq 78, observe that, using the arc cotangent function, it can be
unambiguously found in [0, n].
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Computing the Azimuth of the Connecting Arc at the Satellite

The azimuth angle yy,s is found from the law of cosines for angles (Eq 55)

cos(yy ss) = —€os(¥syy) C0s(As— Ay )+sin(ysy)sin(is — Ay )sin(Ly) Eq 79

In computing yys from Eq 79, observe that, using the arc cosine function, it can be unambig-
uously found in either [0, ] or [-x, O]. The former is employed when S iswest of U; the latter is
employed when S is east of U.

4.5 Solving a Modified Version of the Direct Problem: Satellite Latitude Known

45.1

In this modification to the direct problem, the latitude of S, Ls, isknown, and the geocentric
angle, 0, between U and S is unknown (the opposite of the assumptions for these quantitiesin
unmodified problem). In the taxonomy of spherical triangle problems described in Subsection
4.1.5, this situation falls into case (3). The known elements (and their dimensions) are sides PU
(¥am-Ly) and PS (Yar-Ls) and adjacent angle PUS (ysu).

The problem posed may have zero, one or two solutions — because every great circle, except a
meridian, has a maximum latitude L nax and minimum latitude -L max. Section O contains the
formulafor Lmax, but is not needed here. Unlike the previous three sections, | am not aware of an
analysis that avoids daisy-chaining solutions to this problem.

Computing the Azimuth of the Connecting Arc at the Satellite

The approach begins by applying the law of sinesto finding yu/s

sinfyys) = - COS(L::JO)S‘(SIE]S(;//S/U) Eq 80

Consistent with the convention used herein, aminus sign is introduced on the right-hand side of
the above equation, causing the two azimuth angles to have opposite signs.

The absolute value of the right-hand side of Eq 80 can be: (a) greater than unity (in which case
thereis no solution, as |Ls| > Lmax); (b) equal to unity (in which case there is one solution, as

ILs| = Lmax); and (c) less than unity (in which case there are two solutions, as |Ls| < Lmax). If (8) is
true, there’ s nothing more to be done. If (b) istrue, refer to Section 0. If (C) istrue, label the
solutions yys 1 and yys2 and proceed.
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Computing the Satellite Longitude

The longitude As is found using one of Napier’'s Anaogies (Eq 59) and using the solutions for
ygy found with Eq 80

cosl(Ly - Ls)

tan(Asi —Ay) = cot2 (wsiu —Vussi) Eq 81

sini(Ly +Ls)

In computing As; (i = 1, 2) from Eq 81 using the arc tangent function, each solution can be
unambiguoudly found in [Ay-mt, Aytn].

Eq 81 isindeterminate when L = -L s (the sine term and the cotangent term are both zero). In
this case, an aternate equation can be used:

sinl(Ly - L)

1 o =
tan (Asi ~4) cosi (Ly +Lg)

cot5 (Wsiu +Wurs,) Eq 82

Eq 82 isindeterminate when Ly = Ls (the sineterm is zero and the cotangent term isinfinite).

Computing the Geocentric Angle

The geocentric angle 0 is also from Napier’s Analogies (Eq 59) using the solutions for ysu
found with Eq 80

1
cos; (Wsiu —Yussi)

tanlg =—2 slu_TUIs) cot3(Ly +Ls) Eq 83
cos5 (Ws/u +Vuysii)

In computing 6; (i =1, 2) from Eq 83 sing the arc tangent function, each solution can be
unambiguoudly found in [0, n].

Eq 83 isindeterminate when L = -L s (the cosine term in the numerator is zero and the cotangent
termisinfinite). In this case, an aternate equation can be used:

sint (¥su —Yurs,)
snZ(¥su +Yurs;)

tanlo = tanZ(Ly —Ls) Eq 84

N

Eq 84 isindeterminatewhen Ly = Ls.
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4.6 Latitude Extremes of a Great Circle

A special case of Clairaut’s equation” appliesto full great circles (circling the earth), and can be
simply derived using the law of sines applied to the angles at two end points of a navigation leg
— U and S, inthis case. If both azimuth angles are treated as positive

cos(Ly )sin(ys/y )= coslLs)sinlyy s) Eq 85

Using the trigonometric identity sin(y) = sin(r—y) yields the interpretation

cos(L)sin(y)=C Eq 86

Thus all points on agiven grest circle have the same value, C, for the product cos(L) sin(y).
Clearly, |C| < 1 andis positive for eastward routes and negative for westward routes. Satisfying
Eq 86 is anecessary, but not sufficient, condition for the path to be agreat circle— e.g., a
counterexample is a constant-latitude route.

A common application of Eq 86 is finding the northern- and southern-most latitudes of a great
circle. At those points, sin(y) = £1, so cos(L max) = |C|. The geometric interpretation of a great
circleistheintersection of a plane and the surface of the earth, where the plane contains
locations U and S and center of the earth O. Lnax is the angle between that plane and the
equatoria plane (and |C|is the cosine of that angle). It follows from Eq 66 that

cos(LU)cos(Ls)Sin(ls—ﬂuﬂ Eq 87
sn(o) | !

cos(L,,) = |COS(|—U )sin(y sy )| -

The longitude A(L max) corresponding to L nmax can be found using the methodology in Section 4.5.
At Lmax, the azimuth y is +x/2, where the sign is opposite of the sign of ygy. Thus from Eq 82

Sin%(l—u - I-max)
cos5 (Ly + Linax)

tan 5 (A(Lmax) = A0 ) = COt%(WS/U —Sgn(l//sw)%j Eq 88

A(-Lmax) will occur at AM(Lmax) £ 7. Eq 88 is derived from the solution to the direct problem of
geodesy. An alternate expression for A(Lmax), derived by vector analysis and based on the indirect
problem of geodesy, is presented in Chapter 5 (Eq 122).

As stated in Section 4.5, not all great circle routes connecting U and S or pass through L . and
ML max) Or its Southern Hemisphere equivalent. Stated informally, to pass through L max and
ML max) — OF -L max, M(~Lmax) — aroute between U and S must have enough of achangein

" Alexis Claude de Clairaut (or Clairault) (1713 —1765) was a prominent French mathematician, astronomer and
geophysicist.
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longitude to bend towards a pole.

Mathematically, aroute will pass through L yax and AM(Lmax) if the azimuth anglesat U and S are
both acute

|l//5/u|<% and |l//U/s|<% Eq 89

In this situation, the route will achieve larger latitude (pass closer to the North Pole) than either U
or S. Alternatively both azimuth angles may be obtuse

|l//5/u|>% and |‘I/U/s|>% Eq 90

In this case, the route will pass closer to the South Pole than either U or S.

4.7 Example Applications

4.7.1

The example applications presented at the end of Chapter 3 are extended in the first three
subsections below, to demonstrate the capabilities of spherical trigonometry to provide more
complete solutions to relevant technical issues. A fourth application example is added concerning
planning aroute of flight — a problem which cannot even partialy be addressed by the plane
trigonometry methodology of Chapter 3.

Example 1, Continued: En Route Radar Coverage

Predictions of radar visibility of aircraft as afunction of the aircraft’s range and altitude, like
those in Subsection 3.6.1, are useful. However, for a specific radar installation, a more valuable
analysis product is a depiction of the radar’ s altitude coverage overlaid on amap. As an example,
the ARSR-4/ATCBI-6 installation at North Truro, MA (FAA symbol: QEA) is selected. Its
coordinates are Ly = 42.034531 deg and Ay = -70.054272 deg, and its antenna elevation is

hy =224 ft MSL. It is assumed that the terrain elevation in the coverage areais 0 ft MSL, which
is correct for the nearby ocean and a bit optimistic (in terms of coverage) for the nearby land.

The sequence of calculationsis as follows:

1. Using Eq 50 (third line), the radar’s minimum usable elevation angle is found to be
Omin = '0230 deg

2. Aircraft altitudes hs of 3,000 ft, 10,000 ft and 25,000 ft MSL are selected for the
contours to be depicted.

3. Using Eq 50 (second line), the geocentric angles 6 corresponding to the selected
atitudes are found; the associated ground ranges are 85.7 NM, 141.2 NM and
212.6 NM, respectively.
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4. Using Eq 50 (first line), the minimum visible aircraft altitude at the maximum ground
range (250 NM) is found to be hg = 35,590 ft.

5. For each contour, using specia cases of Eq 63, four (Ls, As) points on the contour —
those at the same latitude or the same longitude as the radar — are found as follows:

(1
. sn[ZOJ
Ls=Ly Ag=Ay —2arcsin cos(Ly )
sin(é@} Eqo1
Ls=Ly Ag =y + 2arcsin cos(Ly )

Ls=Ly -0  As=4y
Ls=Ly+0  As=4y
6. With agraphics program, the remaining points for each contour are found by
“interpolation” using acircle/ellipse.
An dternative to steps 5 and 6 is to compute four sets of points (one set for each contour) using
Eq 63, by assuming values for Ls, and solving for As.

The result of carrying out steps 1-6 for the North Truro radar system is shown in Figure 16. The
significance of the contour valuesisthat: () Inside a contour, al aircraft having altitudes greater
than the contour value are visible to the radar (and aircraft closer to the radar are visible at lower
altitudes); and (b) Outside the contour, all aircraft having atitudes less than the contour value are
not visible to the radar.

Consistency Check — The primary purposes of QEA are (1) surveillance of higher altitude
airspace, for use by ARTCC controllers; and (2) surveillance of much of the New England off
shore airspace, for use by the Department of Defense (DoD) in their air defense mission. A third
purpose is backup surveillance of the Boston TRACON airspace; horizontally, thisairspaceisa
circle centered on Logan Airport with aradius of 60 NM. | have been told by Boston TRACON
controllers they consider QEA coverage to extend upward from an atitude of 3,000 ft MSL.
Figure 16 is consistent with that statement.

Cone of Silence— Asdiscussed in Subsection 3.6.1, ATC radars usually have a cone of silence
directly above the antenna; targets within the relatively small cone of silence cannot be detected.
Following the usual practice, contours for QEA’s cone of silence are not shown in Figure 16.

The U.S. has an extensive ATC radar infrastructure. Generally, one radar’ s cone of silence will
be covered by nearby radar(s). In the case of QEA, the Boston ARTCC also receives feeds from
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the Nantucket, MA, terminal radar, which covers QEA’s cone of silence down to low altitudes
(46.5 NM between the two).

Figure 16 Aircraft Altitude Visibility Contours for the North Truro, MA, Radar System

4.7.2 Example 2, Continued: Aircraft Instrument Approach Procedure

Subsection 3.6.2 demonstrates computation of the flight profile (altitude vs. distance from
threshold) for an aircraft instrument approach procedure. However, for the procedure to be used
operationally, the coordinates of the fixes are needed by ATC personnel. Computing them isa
straightforward application of spherical geometry.

The sequence of calculationsis asfollows:

1. Using the website AirNav (Ref. 19), the latitudes and longitudes of the ends of KMCI
runway 19L / 1R are obtained.
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2. Associating U with the 1R end and S with the 19L end of the runway, the azimuth of
the approach course in the direction away the 19R end is computed, using Eq 68, to

be ygu =12.89 deg

3. Associating U with the 19R end of the runway and S with the fix locations, the

coordinates of the fixes are found using Eq 70 and Eq 73.

The results of carrying out steps 1-3 are shown in Table 4.

Table4 Computed Fix Coordinates for MCl Runway 19L LPV Approach

Fix Name UMREW FELUR REMNS ZASBO YOVNU GAYLY
Range from Threshold, NM 1.9 4.9 6.2 9.3 12.4 15.5
Latitude, deg 39.337737| 39.386470| 39.407586, 39.457940| 39.508292| 39.558642
Longitude, deg -94.692345|-94.677907|-94.671645| -94.656696| -94.641725| -94.626732

Example 3, Continued: Satellite Visibility of/ffrom Earth

Extending the analysisin Subsection 3.6.3 to calculating the latitude/l ongitude coordinates of the
footprint of a geostationary satellite is a good example of the application of the equationsin this
chapter. Geostationary satellites have circular orbits. They are positioned directly above the
earth’s equator, and their altitude is selected so that their orbital speed matches the earth’s
rotation rate. Thus, from the earth, they appear to be stationary. Many communications satellites,
including those used for television, are geostationary.

The Wide Area Augmentation System (WAAYS) satellites (which augment the Global Positioning
System (GPS)) are chosen for this example. The FAA operates three geostationary WAAS
satellites (Ref. 20) in order to satisfy the needs of the most demanding civil aviation operations or
functions — e.g., guidance for low-visibility approaches or aong narrow, obstacle-constrained
routes. The parameters used in this calculation are:

= Altitude, h = 35,786,000 m = 19,323 NM

= Mask angle, a =5 deg

» Radius of the earth, Rg = 6,378,137 m = 3,444 NM (WGS-84 equatorial radius)

Substituting these values into the top line of Eq 53 yields 6 = 76.3 deg. Thus the user’s position
U can be up to 76.3 deg (in terms of the geocentric angle) away from the satellite nadir N and
satellite will be visible. Since geostationary satellites are directly above the equator, the
maximum user latitudes with visibility are £76.3 deg if the user is at the same longitude as the
satellite. Similarly, if the user is on the equator, the longitude extremes at which the satellite is
visible are £76.3 deg from the satellite longitude.

Obtaining the coordinates of perimeter of the visible region (satellite footprint) involves solving
the following modified version of Eq 63:
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-y
2 2 Eq92

smz(
= Ag + 2arcs
Ay s T 2arcsin cos(Ly)

A set valuesisassumed for Ly intheinterva [-0, 0], and the corresponding two sets of values for
Ay are computed (which are symmetrically located about As).

The WAAS satellite labels and longitudes are: AMR, -98 deg; CRE, -107.3 deg; and CRW,

-133 deg. When these calculations are carried out, the resulting footprints are depicted in Figure
17. To provide context, the locations of afew airports are also shown in Figure 17. As acheck on
the calculations herein, Ref. 20 has a page, “WAAS GEO Footprint”, that is very similar to
Figure 17.
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Figure 17 WAAS Satellite Visibility Contoursfor 5 deg Mask Angle

4.7.4 Example 4: Great Circle Flight Route

For many reasons — e.g., siting of ground-based communications, navigation and surveillance
equipment; estimation of fuel consumption; positioning of search and rescue assets; and analysis
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of over-flight paths — there is aneed to be able to calculate great circle routes between any two
places on the earth. Such calculations are a straightforward application of the equations presented
earlier in this chapter. The basic approach is: first solve the indirect problem of geodesy (Sec-
tion 4.2), so that geocentric angle and the azimuth angle of the path starting point are known;
then divide the path into equal-length segments and solve the direct problem of geodesy (Sec-
tion 4.3) for each segment, starting at one end of the path and progressing to the other.

The sequence of calculationsis:

1. Thelatitudes and longitudes, (Ly, Ay ) and (Ls, As), are obtained for the path end
points. The calculation starting point, U, may be assigned to either end.

2. Thefull-path geocentric angle 6 and starting point azimuth angle ygy are found from
Eq 63 and Eq 68, respectively.

3. Theflight path is divided into equal-length segments, which are labeled 1 to N; the
points at the ends of the segments are labeled from 0 to N, where U has coordinates
(Lo, Ao) and S has coordinates (Ln, An). The starting azimuth angle is w10 = ysu.

4. Fori=1toN,

(a) the coordinates (L; and A;) of the end point of the current segment are found using
Eq 70 and Eq 73, where the geocentric angle employed is /N and starting point
azimuth angleis yiji_1;

(b) the azimuth angle at the segment end point ;.1 is found using Eq 76; and

(c) the starting azimuth angle for the next segment is found using yi+1i = yi.1i £ .

Theresult of carrying out steps 1-4 for the route between Boston Logan (BOS) and Tokyo Narita
(NRT) airports — using coordinates from Table 5 and Table 6 in Chapter 6 and with N =50 — is
shown in Figure 18.

In addition to showing the predicted BOS-NRT flight path for a spherical earth model (green
curve), Figure 18 aso shows the predicted path for an ellipsoidal earth model using Vincenty’s
algorithm (Subsection 2.2.3). Qualitatively, thereis close agreement between the two models
predictions. For the scales and line thickness employed, the only perceptible separation between
the curvesis at the highest latitudes. Chapter 6 addresses quantitative differences between a
spherical earth model and Vincenty's algorithm.

For this route the computed geocentric angleis 8 = 1.689 rad, which is 53.8% of & rad (= rad
corresponding to the longest possible great circle route). The associated computed distance
(using the earth radius defined by Eq 21) is 5,807 NM. Using equations from Section 0, the
trgjectory’ s northern-most latitude is N71.7 deg (from Eq 87), which occurs at alongitude of
W143.42 deg. If the earth were dliced in half by a plane passing through BOS, NRT and the
center of the earth, that plane would make an angle of 71.7 deg with the plane of the equator. The
plane would intersect the equator at W143.42 deg + 90 deg = W53.42 deg and E126.58 deg.
Using equations from Section 4.5, the trgjectory crosses the Arctic Circle (N67 deg latitude) at
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the longitudes W104.7 deg and E177.9 deg. Although it appears to be larger, because the
convergence of longitude lines at the North Pole is not depicted, 29.2% of the trajectory iswithin
the Arctic Circle.

N75 T T T

N70[

Arctic_Circle

NG5

N60 [

N55

Latitude (deg)

NS0

N451

Spherical Earth Approximation
—Vincenty Ellipsoidal Algorithm
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N35 L L L L L L L
E140 E160 +180 W160 W140 w120 W100 w80 W60
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Figure 18 Latitude/Longitude Coordinates of Paths Connecting BOS and NRT for
Spherical-Earth Approximation and Vincenty’s Ellipsoidal-Earth Algorithm

4.7.5 Example 5: Radar Display Coordinate Transformations

In this subsection, an ATC radar is associated with the user U and an aircraft under surveillance
with the satellite S. The radar’ s installation information will include:

Ly — Radar latitude

Ay — Radar longitude

hy — Radar antenna el evation above sealevel

For each radar scan (revolution), a secondary surveillance radar provides three quantities
concerning an aircraft:
ysu — Aircraft azimuth relative to North (from antenna direction)
d — Slant range between the aircraft and the radar (determined from interrogation-reply time)
hs — Aircraft barometric elevation above sealevel (reported by transponder)

Some long-range radars may correct for propagation phenomena (e.g., refraction), but those
capabilities are not addressed here.
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Thefirst goal in ATC radar display isto accurately
depict the horizontal separation between aircraft. When
two aircraft are only separated vertically (i.e., are a the
same latitude and longitude) then their screen icons
should overlay each other — or at least be close in com-
parison to the minimum allowabl e separation. Figure 19
shows the effect of directly displaying the slant range of
two aircraft with only vertical separation (although it
exaggerates the effect). Without altitude or elevation
angle information, this may be the best that can be done
— e.g., for an aircraft without Mode C altitude-reporting

Figure 19 Effect of Displaying a
Target’s Slant Range

capability. Busy airspace typically requires Mode C
capability. Generally, the display processing methodology depends upon the radar’ s maximum
range. Two situations are addressed.

Tangent Plane Display — This method displays targets on a plane that is tangent to the earth at
the radar’ s latitude/longitude and sea level. Locations on the plane can be computed in Cartesian
(east/north) or polar (range/azimuth) coordinates. The stepsin the calculation are:

1. Theaircraft elevation angle, a, isfound using Eq 37, modified to account for the radar
antenna elevation:

“h.)? _ _ g2
o=acsn| s =)+ 2(hs —hy)(Re +hy) ~d Eq93
2d(Re +hy)
2. Theaircraft range aong the tangent plane, TPRng, is found (sometimes called the
slant-range correction)
TPRng = d cos(«) Eq 94
3. If needed, TPRNng can be resolved into east and north components
TPEast = TPRng sin

gsinlysmy) Eq %5

TPNorth=TPRng cos(y g, )

If the earth were flat, this method would be error-free, but it does not fully account for the earth’s
curvature. Figure 20 shows the slant range correction error (difference in computed TPRng
values for two aircraft at the same latitude/longitude but different altitudes) for ranges/altitudes
characteristic of aterminal radar. The maximum error is approximately 250 ft. This value should
be contrasted with the terminal area separation standard of 3 NM and the en route separation
standard of 5 NM (which pertainsto aircraft entering terminal airspace from the en route
domain). Thus the maximum display processing error is less than 1.5% (terminal) and less than
1% (en route) of the relevant separation standards. Thisis acceptable for engineering work.
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Figure 20 Separation (Slant Range Correction) Error for Tangent Plane Radar Display

L atitude/L ongitude Display — Because errors for a tangent plane display increase with the
ranges and altitude differences of targets, en route radars use a more accurate method that fully
accounts for the earth’s curvature.

1. Thetarget’s geocentric angle relative to the radar is found using Eq 32, modified to
account for the radar’ s elevation:

_ (1 /d-(hs—hy) d+(hs —h,)
0 =2 =
arcsm(z\/ Rty R he Eq 96
2. Thetarget'slatitude/longitude are found from Eq 70 and Eq 73, repeated here:

Ls= arcsin(sin(L,) cos(9) + cos(L, ) sin(6) cos (v, )

is = AU + arctan Sln(@) sin (WS./U ) Eq 97
cos(Ly, ) cos(8) —sin(Ly, ) sin(8) cos (v, )

3. Thetarget'slatitude and longitude are converted to the coordinates of a map
projection (e.g., Lambert conformal conic) for display to a controller.

En route radar coverage areawill include multiple airports, and possibly several major ones. It’s
advantageous to display targets relative to the airport locations.
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5. VECTOR APPROACH TO A UNIFIED 3D SOLUTION

Section 5.1 immediately below provides definitions of the vectors and coordinate frames needed
to analyze the geometry of an earth-based user and aircraft or satellite. Section 5.2 addresses the
classic indirect problem of geodesy, and provides vector versions of the key equationsin Sec-
tion 4.2. Section 5.3 returns to the problem illustrated by Figure 1. It demonstrates that for some
combinations of known and unknown variables, vector analysis provides an aternative method
of deriving solutions found in Chapter 3. Section 5.5 addresses the direct problem of geodesy,
and shows that, to a significant extent, the equations in Section 4.3 can be found by vector
analysis. Lastly, Section 5.3 shows how vector analysis can be used to find the highest |atitude of
atragjectory.

A list of software packages which generally utilize the vector approach can be found at Ref. 21.

5.1 Vector and Coordinate Frame Definitions

5.1.1 Earth-Centered Earth-Fixed (ECEF) Coordinate Frame

The coordinates of the locations of interest on the earth’ s surface are:
= User position: latitude Ly and longitude Ay
» Satellite position: latitude Ls, longitude As. and altitude h

Define the earth-centered earth-fixed (ECEF) coordinate frame e by (see Figure 21, where the
figuresegisourlL):

» x-axis liesinthe plane of the equator and points toward Greenwich meridian

» y-axis: completes the right-hand orthogonal system

» z-axis: liesalong the earth's spin axis.

The location of the user and satdllite in the e-frame are

15U .x LBux cos(ly, ) cos(ay)

rou =| fSuy |=10uRe =|10uy | Re=| coslly ) sin(ay) | Re Eq 98
rgU z lgu,z s n(LU )

and
(o5 15sx cos(Lg) cosl/is)
ros =|osy |=10s(Re +h) =| gy |(Re+h)= cosLs) sin(zs) | (Re+h) Eq 99
e e sin(Lg)
rosz Ios: S

-56-



DOT/RITA Volpe Center
Here 1°%ou and 1°s are unit vectors associated with r oy and r o5, respectively.

Given r°ou, the user’ s latitude and longitude can be found from
rOeU,z — arcsin r(()eU,z
Re Eq 100

\/(r(()eU,x)2 + (r(gu,y)2

L, = arctan
AU = arctan(rguly ) r(()eU,x)
Similarly, given, ros, the satellite’ slatitude and longitude can be found from

0S,z 0S,z
. —arCS|n _—

\/("OeS,x)2 + (rOeS,y)2

Ls = arctan

Ag = arctan(rgsly , rSS‘X)

Zecef

A

rld[an

Merig;

Prime

\ ..~f(;;;ke1025

Figure21 Vector Technique Coordinate Frames of Interest

5.1.2 Local-Level Coordinate Frame at User’s Position
Define alocal-level coordinate frame u corresponding to the user's position

» e-axispoint east
n-axis points north
» u-axispoints up (away from earth's center).

The direction cosine matrix which rotates the e-frame into the u-frameis
Eq 102

Ce = T Ta(-Ly) T3(4y)
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where T;(€) denotes the rotation matrix about axisi by angle &.

1 0 0

Ti(¢) = [0 coslg) sin(¢)

0 -sin(¢) cos¢)

cos(§) 0 -sin(¢)
T,&)=] 0o 1 o0

sin¢) 0 cos¢)

cos(¢) sin¢) ©

T3(¢) = |-sin(§) cosl¢) O

0 0 1

Eq 103

and T denotes the axis-permutation matrix

T=|0 0 Eq 104

Thus
—sin(4, ) cos(4y ) 0

CY = [ sin(-Ly)cosldy) sin(-Ly)sin(dy)  cos(-Ly)
cos(~Ly ) cos(y)  cos(~Ly)sin(Zy) —sin(-Ly)

Eq 105

5.1.3 User and Satellite Positions in User’s Local-Level Frame

The positions of the user and satellite in the u-frame are, respectively
0

e u
f'ou x lou.e
= 0|R, Eq 106

u _ u e _ u
Fou =Ce|Touy | =|Toun
e u
lou,z fou,u 1

and

rSSX rOuS,e cos(Ls) sin(1s— Au)
ros=Ce | Ssy |=| osn |= | —cos(Ls)sin(Ly ) cos(1s— Ay) + sin(Ls)cos(Ly )

sz ] [fosu| | cos(Lg)cos(Ly)cos( 15— 4y ) + Sin(Ls)sin(Ly,)

(Re+h) Eq107

Thus, using Eq 106 and Eq 107, the vector fromU to S is

-58-




DOT/RITA Volpe Center

s (Re+ h)cos(Ly )sin(4s - 2)
-(Re+ h)cos(Ls)sin(Ls) cosls - 2y )+ (R + h)sin(Ls Jcos(Ly ) | Eq 108
Usu | [ (R, + h)cos(Ls ) cos(Ly )coslis - 2 )+ (R, + h)sin(Ls)sin(Ly )- R,

u u u u
Fus=ros —Trou =|usn

The horizontal and vertical components of r'ys can be expressed as

rijs,horiz :\/(rljjs,e)z + (rljjs,n)z = (Re + h) S| I’I(Q)

Eq 109
rijs,vert = rljjs,u = (Re + h) COS(O) - Re

Eqg 109 can be found from Figure 1 by inspection. It can also be derived analytically from Eq 108
using Eq 60.
Two angles associated with r'ys are of interest

*  WYg, —The azimuth angle of the horizontal component of r“ys, measured clockwise
from north

» o —Theédevation angle of of r"ys, measured from the horizontal plane

Vsiu = arctan(rLj’S'e ,rLTs,n) Eq 110
o = arctan rfs’“ Eq 111
\/(rijS,e) + (rLElJS,n)2

The two-argument arc tangent function is used in Eq 110 because azimuth angles lie in the range
(-mt, m].

Thelength d of r"ysisalso of interest

d= \/(rljjs,e)2 + (rLlJJS,n)2 + (rljjs,u)z Eq 112

5.2 Solving the Indirect Problem of Geodesy

5.2.1 Geocentric Angle from Latitudes and Longitudes, by Vector Dot Product

The vectors oy and ros meet at the earth’ s center, in geocentric angle 8. The dot product of
these vectors, normalized by the product of their lengths, yields
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lgU b lgS zl(e)U,xl(e)S,x +:_I-gU,y1(e)S,y +:_lgU,zl(e)S,z
= cos(Ly, )cos(Lg)cos(4, - Ag)+sin (L, )sin(Lg) Eq 113

= cos(6)

Eqg 113 demonstrates that if one forms the vector dot product indicated on the first line, the result
will be the same as if one performed the scalar operations indicated on the second line, which in
turn is equal to the equation for cos(0) found by spherical trigonometry (Eq 60).

Geocentric Angle from Latitudes and Longitudes, by Vector Cross Product

The cross product of vectors oy and r ‘os, normalized by the product of their lengths, yields
another expression for the geocentric angle:

sin(9) =

l-gu Xl-gs

_ Jeo* (L) sin?(Lg) + cos?(Lg) Sin?(Ly, ) + cos* (L, ) cos’ (Lg) Sin*(Ag — A,) -~ EA 114
|- 2co8(Ly, ) sin(Ly, ) cos(Ls) sin(Ls) cos(As — 2, )

Since 8 liesin [0, @], solving Eq 114 for 6 using the arc sine function yields both the correct
angle and an extraneous sol ution. Another source of information, such as Eq 113, also must be
used.

Path Azimuth Angles, from Latitudes and Longitudes

By substituting two elements of r“ys from Eq 108 into Eq 110, ygy is found to be equal to

COS(LS) Si”(/ls%u)
sin(Ls)cos(Ly )- cos(Ls)sin(Ly)cos(2s- Ay)

sy = actan ("thse vrthjsn)z arctan( j Eq 115

Eq 115 demonstrates that if one computes ygy using the arc tangent function with two elements
of the vector r"ys as arguments, the result will be the same as if one computed gy using the arc
tangent indicated on the right-hand side. The latter is equal to the equation for ygy found by
spherical trigonometry (Eq 68).

The labeling of the pointsU and S in Eq 115 can be reversed, yielding

cos(Ly) sin(iy - 1s) j Eq 116

Yurs= arCtan(Sin(LU)cos(LS)-cos(l_U)Sin(Ls)COS(lu - 1s)

While the arguments on right-hand sides of Eq 115 and Eq 116 are shown (for convenience) as
ratios, the azimuth angles should be computed using a two-argument arc tangent function.
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Eq 116 isderived by vector analysis (rather than by spherical trigonometry). However, it not a
vector equation per se— i.e,, it does not make use of vectors or the components of vectors. The
vector equation for yysis

Wy, s = arctan (rSsU,e ,rSSU,n) Eq 117

Vector r°y isfound from
18y =18y 185 =Clrdy ~rds) Eq 118
wherer %oy and r o5 are given by Eq 98 and Eq 99, respectively, and (interpreting Eq 105)
—-sin(4g) cos(Ag) 0
Cg = | sin(-Lg)cos(Ag) sin(-Lg)sin(Ag) cos(-Lg) Eq 119
cos(-Lg) cos(ds) cos(-Lg)sin(As) —sin(-Ls)

5.3 Corollaries of the Indirect Problem Solution

5.3.1 Latitude Extremes of a Great Circle

| am not aware of avector form of Clairaut’s equation as used herein (Eq 86), or in general.
However, the most useful application of Clairaut’s equation, determining the northern- and
southern-most latitudes of a great circle, isreadily found by vector analysis. The cross product of
unit vectors 1%y (Eq 98) and 1%s (Eq 99) is normal to the plane of the great circle containing
UandS.

- e e e e
lgu Xl—gs y Lou ylos,z ~1ou.zdosy
16y x16s =| 16y *15s ), |=| Lou, 2108 x ~16u,xLds 2
e e
L lOU Xlos z :_I-(e)U,x:_lgS,y _:_lgU,yl(eDS,x Eq 120
| cos(Ly )sin(Lg) sin(4y) - sin(Ly ) cos(Ls) sin(4s)

=| sin(Ly ) cos(Ls) cos(s) — cos(Ly, )sin(Ls) cos(A, )
cos(Lyy ) cos(Lg) Sin(As — 4y )

When 1%y x 1%s is adjusted to unit length (Eq 114), its z-component is equal to the cosine of
the latitude of the highest (and lowest) point on the great circle that includes the route in question
(projection of aunit vector onto the earth’s spin axis). Thus,

_|C05(|—u )cos(Ls) sin(Ag — 4, )|
coS(Lyax) _| Sn() | Eq 121

Eq 121 isidentical to Eq 87, demonstrating that manipul ating the components of 1%oy and 1%s
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yields the same result as Clairaut’ s equation.

The longitude where the highest latitude is achieved can be found from the x- and y-components
of vector 1%y x 1%s (from Eq 120).

(15, x15), J_ arctan[s-n(LU )Jeos(Ls) cosis) — cos(Ly )sin(Ls) cos(2, )j Eq 122

A(Lpex ) = arctan = _ _ , ,
[ cos(Ly, )sin(L) sin(Z, ) — sin(Ly, ) cos(Ls) sin(Ag)

e e
1oy x1os)y

The statements found at the end of Section 4.4 arevalid here aswell. Not al great circle routes
between two points on the earth’ s surface, U and S, will contain one of the points where the full
great circle passes closest to the North or South Poles. Criteriafor when aroute will include a
point closest to either pole are given in Section 4.4.

Locus of Points on a Great Circle

From Eq 98, it follows that any point X on the earth has the e-frame coordinates r “ox

r(()eX,x l(e)X,x COS(LX ) COS(AX )
rox = r(gx,y =1ox Re = 1(%x,y Re=[cos(Lx) sin(1x) | Re Eq 123
rOx.2 102 sin(Ly)

Here Lx and Ax are the latitude and longitude of X, respectively. In order for X to be on the great
circle containing U and S, the vector r°ox must be orthogonal to the vector 1%y x 1%0s — that is,
the dot product of these two vectors must be zero. One can then solve for Lx in terms of Ax and
the coordinates of U and S.

(18 % 15, costi) + (18, * l%s)y sin(Ay)
(;%U X lgs)z

tan(Ly ) =- Eq 124

Solving for Ax in terms of Lx and the coordinates of U and S is more complicated. Thisisa
consequence of the fact that while every great circle crosses every line of longitude exactly once,
agreat circle may crossaline of latitude zero, one or two times. Section 4.5 addresses thisissue
using spherical trigonometry.

5.4 Computing Satellite Elevation Angle and Slant Range

Section 5.2 shows that, if the latitude/longitude of locations U and S on the surface are known,
the vector method can be used to find the three angles 0, ygy and yy;s. However, the equations
in Section 5.2 do not include h, d or a. (all of which are related to the height of the aircraft/
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satellite above the earth’ s surface). The two subsections immediately below show that if h and 0
are known, then d and a can be found by the vector method. Moreover, the expressions that are
derived are identical to those found in Chapter 3 using the coordinate-free method.

The four other possible equations associated with an aircraft or satellite above the earth when the
geocentric angleis known — finding h or d from e and 0, and finding h or a from d and 6 — are
not pursued. For these variable combinations, the solutions for the unknown variables will
involve manipulation of the scalar components of r“ys. That being the case, one may as well
utilize the scalar equations derived in Chapter 3.

Solution for Elevation Angle from Altitude and Geocentric Angle

As shown in Eq 111 the satellite €levation angle can be found from the components of r"ys.
Using Eq 109, Eq 111 can be expanded as

. 2 1
tan(ec)= (R +h)cos(0) - R, _ h cos(9) - 2R, sin (zej
(R. +h)sin(9) (R h)Sn@)

Theright-hand side of Eq 125 isidentical to thefirst line of Eq 35, demonstrating that manipul a-
ting the components of r"ys can yield the same value for o as the scalar methodology used in
Chapter 3.

Eq 125

Solution for Slant Range from Altitude and Geocentric Angle

The user-satellite slant range can be found by substituting both lines of Eq 109 into Eq 112,
yielding:

d = \/ h2+ 4R, (R, + h)gnz(%ej Eq 126

Eq 126 isidentical to the second line of Eq 39. This demonstrates that applying Pythagoras's
theorem to the components of r"ys (Eq 112) yields the same value for d as the scalar
methodol ogy used in Chapter 3.

5.5 Solving the Direct Problem of Geodesy

The approach used to finding Ls and s isto form rs and utilize its components. Then, yys can
be addressed utilizing Ls and/or As.

Given Ly, Ay, 0 and ygy, N isconstrained but S is not. Consequently, form right triangle OUS
with right angle at U and sides R, d and hypotenuse (Re + h), where
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d = R, tan(6)
R Eq 127
Re+h= cos(6)

Thenr"ysisgiven by
] [E@snsy)

rus =| [isn |= | tan(0) cos(ws;y) |Re Eq 128
rL?Su 0

Utilizing Eq 98 and Eq 105 yields

e
. losx
e e e _ e ul' yu _|. e
r'os=Tlou tlus=rou + (Ce) I'us =| losy
e
losz

Eq 129
cos(Ly ) cosl iy )—sin(Ay ) tan(0) sin(y s,y ) + sin(-Ly, ) cos(4y ) tan(6) cos(y sy )
=| cos(Ly, ) sin(iy )+ cos(A, ) tan(f) sin(y s, ) +sin(-Ly ) sin(4, ) tan(8) cos(y s, ) | Re
sin(Ly, ) + cos(-Ly ) tan(8) cos(y s, )

From Eq 101 and Eq 129 it follows that

Lg = arcs n(si n(Ly ) cos(0) + cos(Ly, ) sin(0) cos(w s, ))

cos(LU)s‘n(m)wos(zu)tan(e)s'n(wS/u)—sin(LU)sn(zu)tan(e)cos(wS,u)J Eq 130
cos(Ly, ) cosliy )~ Sin(2, ) tan(8) sin(y s, ) — SIn(Ly ) cos(Ay ) tan(6) cos(y's )

Ag = arctan(

While the right-hand side of the second line of Eq 130 involves aratio, As should be computed
using atwo-argument arc tangent function. Eq 130 can be used to find a set of equally-spaced
points on the trajectory from U to S by replacing 0 by k-0/N and letting k = 1,..,N.

Once Ls and As have been found, s can be computed using Eq 116.

It's of interest to compare the equations in this section to those for the same/similar quantities
developed using spherical trigonometry in Section 4.3. First, the expressionsin Eq 130 for Ls
and As only involve known quantities — i.e., there is no “daisy chaining” of the solution for one
unknown quantity to determine the other. The equations for Ls in Eq 130 and Eq 70 are identical.
A differenceisthat Eq 130 isasolution for As while Eq 73 isasolution for As — Ay; thus, the
right-hand sides of these equations are necessarily different. In terms of the azimuth angle yys,
Eqg 116 in this chapter daisy chains from the solutions for Ls and As in Eq 130, while Eq 76 in
Chapter 5 does not involving daisy chaining of solutions.
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6. SPHERICAL EARTH APPROXIMATION ACCURACY

6.1 Evaluation Methodology and Scenarios

To analyze the accuracy of the spherical earth approximation, a set of fourteen airports were
selected. This set is intended to be representative of current aviation activity. However, in terms
of frequency of operations, these airports over-emphasize longer routes — e.g., some routes are
too long for commercial transport aircraft at thistime. The result isatotal of 91 possible paths
between airport pairs. For each pair, estimates of the length of the shortest path are computed for:

a) WGS-84 ellipsoida earth model utilizing Vincenty' s agorithm (Subsection 2.2.3);
b) Spherical approximation of the earth utilizing a constant radius; and

c) Spherical representation of the earth utilizing several methods for tailoring the radius of
curvature (RoC) to the path involved.

The airports employed for this analysis were partitioned into two groups of seven each —
CONUS (Table5) and International (Table 6). The CONUS group essentially spans the CONUS
land area. It includes paths of various lengths and orientations (e.g., predominately east-west and
predominately north-south). The International airport group, which includes one each in Alaska
and Hawaii, provides additional pairs with greater separation but also with varying orientations.
Airports near the Arctic Circle and south of the Equator are included. HNL-JNB is the longest
path (10, 365 NM). As apoint of interest, the current longest scheduled commercia flight route
is 8,285 NM, between Newark and Singapore.

Table5 CONUS Airports Used in Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Gen. Edward Lawrence Logan International (BOS) 42.3629722 | -71.0064167 | Boston, MA
Ronald Reagan Washington National (DCA) 38.8522 -77.0378 Washington, DC
O'Hare International (ORD) 41.9786 -87.9047 Chicago, IL
Miami International (MIA) 25.7933 -80.2906 Miami, FL
San Diego International (SAN) 32.7336 -117.1897 | San Diego, CA
Dallas/Fort Worth International (DFW) 32.8969 -97.0381 Dallas/Fort Worth, TX
Seattle—-Tacoma International (SEA) 47.4489 -122.3094 | Seattle, WA

Table 6 International Airports Used in Anaysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Wiley Post—-Will Rogers Memorial (BRW) 71.2848889 -156.7685833 | Barrow, Alaska
Honolulu International (HNL) 21.318681 -157.9224287 | Honolulu, Hawaii
London Heathrow (LHR) 51.4775 -0.4614 London, England
Narita International (NRT) 35.7647 140.3864 Tokyo, Japan
Ministro Pistarini International (EZE) -34.8222 -58.5358 Buenos Aires, Argentina
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Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Oliver Reginald Tambo International (JNB) -26.1392 28.246 Johannesburg, South Africa
Sydney (SYD) -33.946111 151.177222 | Sydney, Australia

Because the ellipsoidal earth model is symmetric with respect to the equator, the signs of all the
above airport latitudes can be reversed without changing any computed airport-pair distance.
Also, dl airport longitudes can be adjusted by adding the same arbitrary val ue to them without
changing any airport-pair computed distance. Thus the spherica -earth characterizations
presented below are more widely applicable than it might initially appear.

6.2 Spherical Earth Model Azimuth Error

For 14 airports, there are (14x13)/2 = 91 interconnecting paths. Each path has a beginning and
ending azimuth angle, resulting in atotal of 182 angles to be considered. Statistical character-
izations of the difference between the ellipsoidal- and spherical-model predictions for these
azimuth angles are shown below, in Table 7 and Figure 22. For 177 angles (97.3%), the
difference in computed angles for the two modelsisless than 0.25 deg. For three angles (1.7%),
the difference is between 0.25 and 0.5 deg. For the path between HNL and JNB, the differencein
the beginning and computed azimuth angles (1.1%) is between 1.5 and 2.0 deg. This path, which
islong and crosses the equator at a shallow angle, appears to be a near worst-case for the
spherical earth model in terms of predicting azimuth angles.

Table7 Absolute Vaue of Differencein Calculated Airport-Airport Path
Azimuth Angles for Spherical and Ellipsoidal Earth Models

Airport Pair Characterization MO, O Angle Dif. (deg)
Angles Ave Max

CONUS-CONUS 42 0.070 0.118
CONUS-International 98 0.099 0.339
International-International 42 0.162 1.873
All Combinations 182 0.101 1.873

6.3 Methodology for Determining Spherical Earth Model Distance Error

The primary accuracy metric used herein isthe relative difference in the calculated lengths for
the shortest path connecting two airports using ellipsoidal and spherical earth models.

0 o
RelDif = w Eq 131
in
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Figure 22 Histogram of Differencesin Airport-Airport Azimuth Angles
between Spherical and Ellipsoidal Earth Models

In Eq 131,

pvin = Distance along an geodesic arc connecting the latitudes/longitudes of two airports on
an ellipsoid, calculated using Vincenty’s algorithm

Osn = Spherical earth geocentric angle encompassing the radials to the same airport
latitudes/l ongitudes

Ret = Effective RoC of the earth.

Tailoring Re to a specific path or application will be most accurate for (1) paths along a
meridian, and (2) “short” paths. Paths along a meridian have (a) the same ground tracks for the
ellipsoidal and spherical earth models, and (b) the same great circle angles (latitude differences)
for the ellipsoidal spherical earth models. Thus, aong a meridian, by tailoring the effective RoC
based on the latitude of the path, the spherical earth model can be used to determine an ellip-
soidal path length to any degree of accuracy.

The accuracy of the spherical earth model for estimating the lengths of “short” paths is based on
the fact that Rns and Rey do not change rapidly with latitude (Figure 5), so asingle value for Res
can be quite accurate. The next two sections quantify a“short” path for various methods of
determining Res.

Tailoring Res to a specific path or application will be least accurate for paths that are primarily
east-west in orientation and “long”. For such routes, the ground tracks for the two earth models
are different. For example, for aroute between two airports at the same latitude, the spherica
earth model will predict a path that passes further from the nearer pole than will the ellipsoidal
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earth model. Thus a strategy based on tailoring Re to a spherical-earth ground track generally
will not converge to the ellipsoidal/geodesic path length between the airports. However, it can
provide improvement over asingle, global value for the effective RoC.

6.4 Distance Errors for Three Methods of Computing the Effective RoC

Calculations are made using three methods for determining the effective RoC to be used with a
spherical earth model determination of the geocentric angle between two locations.

Resto = Global radius of curvature, independent of the airport end points involved,
found using the arithmetic mean of the ellipsoids three semi-axes (Eq 21)

Ret1 = Radius of curvature corresponding to the latitude and azimuth of the mid-point
of the great circle joining the starting and end points involved, found using Eq 18
and Eq 19

Rest 3 nn = Effective RoC, computed as the weighted sum of the RoCs corresponding to
the latitudes and azimuths of the starting point (denoted by U), mid-point (denoted
by M) and end point (denoted by S) of the great circlejoining U and S. A nearest
neighbor (NN) weighting method is used — each point along the path is assigned
the RoC of the nearest computed RoC

Rs s = 0.25R,, +0.5R,, +0.25R ¢ Eq 132

Statistics for the relative differencesin calculated distances between pairs of the airportslisted in
Table 5 and Table 6 are shown in Table 8 below. For the global radius of curvature, the accuracy
isin the range 0.17% (average) to 0.43% (maximum), that are consistent with the assumption
that the spherical earth approximation’s accuracy is comparable to the earth’s flattening, 0.3%.

Table 8 Absolute Vaue of Relative Difference in Calculated Distances (Percent)
for Spherical-Earth Model and Three Methods of Determining the Effective RoC

Airport Pair Number Rett 0 Res 1 Rest 3NN
Characterization of Pairs Ave Max | Ave | Max | Ave | Max
CONUS-CONUS 21 0.176 | 0.271 | 0.005 | 0.018 | 0.003 | 0.009

CONUS-International 49 0.171 | 0.406 | 0.085 | 0.186 | 0.029 | 0.066
International-International 21 0.165 | 0.433 | 0.106 | 0.212 | 0.033 | 0.069
All Combinations 91 0.171 | 0.433 | 0.071 | 0.212 | 0.024 | 0.069

In Table 8, there isa significant progressive decrease in the relative distance error as the number
of points used to compute the effective RoC is increased. When only the mid-point of the path is
used to compute the effective RoC, the overall average relative error in the length of the paths
between airports and the maximum relative error are both reduced by approximately a factor of
two from their values for the global radius of curvature. When the effective radius of curvatureis
based on the two end points and the midpoint of the path, with nearest-neighbor weighting, the
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overall average and maximum relative errors are both reduced by a further factor of three, to less
than 0.03% and 0.07% respectively.

In Table 8, the primary distinction among the three airport groups is that the relative path length
errors are significantly smaller for the CONUS-CONUS routes when at |east one path point is
used to estimate the effective RoC. For the same number of computed RoC values, the CONUS-
International and International-International routes have comparable errors.

The scatter plot immediately below (Figure 23) depicts the error in calculated airport-airport path
lengths using a spherical-earth model, when three points with NN weighting are used to
determine the effective RoC. For path lengths less than 2,300 NM, which includes all CONUS-
CONUS paths, the error is always less than 0.2 NM (or 0.009%). For paths lengths between
approximately 2,000 NM and 6,000 NM, the length error increases monotonically, reaching a
maximum of approximately 4.5 NM (0.08%). For path lengths greater than approximately

6,000 NM, the errors become unstructured but do not increase.

Table 9 below lists the paths having the ten greatest errors in cal culated length when the
spherical earth approximation in used with three points and NN weights used for determining the
effective RoC. The two paths having the largest error in calculated distance EZE-SY D and HNL-
LHR are depicted in Figure 24 below (Ref. 22). All ten paths are longer than 5,800 NM; conse-
guently, they generally involve passage close to a pole or have large longitude changes.
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Figure 23 Path Length Errorsfor Spherical-Earth Model vs. Actual Path Lengths,
for Three-Point NN Determination of Effective RoC
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Table9 Ten Airport Pairs Having the Largest Error in Calculated Path Length, for a
Spherical-Earth Model and Three-Point NN Determination of the Effective RoC

Airport 1 | Airport 2 L(el\'lﬁ;h I(E’\rlrl\cA))r E(z;oc))r
EZE SYD 6,366 441 0.069
HNL LHR 6,289 3.98 0.063
LHR SYD 9,188 3.90 0.042
BRW SYD 6,675 3.85 0.058
BOS NRT 5,823 3.84 0.066
MIA NRT 6,462 3.78 0.059
DCA NRT 5,883 3.72 0.063
BRW EZE 7,515 3.42 0.046
LHR EZE 5,999 3.40 0.057
SEA JNB 8,919 3.27 0.037

Average 6,912 3.76 0.056

for a Spherical-Earth Model and Three-Point NN Determination of the Effective RoC

6.5 Improving the Effective RoC by a 3-Point Parabolic Fit

Spherical-earth effective RoCs using values calculated at the path’s beginning, middle and end
points, with nearest-neighbor weights, are satisfactory for many applications. However, thereis
always interest in improving accuracy. One obvious approach to improving estimation accuracy,
discussed subsequently, isto increase the number of points where the RoC is computed.

An dternative, computationally cheaper, approach isto adjust the weights for the three calcul ated
RoCs. The aternative employed here isto fit a parabola to the three computed RoC values, then
use the parabola’ s average value over the path as the effective RoC. This approach thus employs
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an interpolating curve that better matches the behavior of the actual RoC over a path, whichis
continuous and has a continuous derivative. The resulting aternativeto Eq 132 is

Rett 3,pF = 2/ 6)Re,u + (2/3)Re,M +( G)Re,s Eq 133
This method is equivaent to Simpson’s (earlier, Kepler's) rule for numerical integration.

For the same set of 91 airport-airport paths, Table 10 below contrasts the results for parabolic-fit
(PF) weights to the results for NN weights. For CONUS-CONUS paths, there is little difference.
For the longer pathsinvolving International airports, the PF weights reduce the path-length error
to approximately half the value for the NN weights. For PF weights, the overall average path
length error isless than 0.01%, and the maximum error is less than 0.05%.

Table 10 Percentage Error in Calculated Airport-Airport Path Lengths, for
Spherical-Earth Model and Two Methods of Weighting Three Computed RoCs

Airport Pair Number Rest 3NN Rest 3.pF
Characterization of Pairs | Ave Max | Ave Max
CONUS-CONUS 21 0.003 | 0.009 | 0.003 | 0.006

CONUS-International 49 0.029 | 0.066 | 0.010 | 0.036
International-International 21 0.033 | 0.069 | 0.014 | 0.044
All Combinations 91 0.024 | 0.069 | 0.009 | 0.044

Figure 25 below is a scatter plot of the path length error versus latitude change experienced over
apath for the PF weights. Use of the PF weights reduces path-length errors significantly for paths
with alatitude change of less than 40 deg. Moreover, for latitude changes of more than 40 deg,
the errors appear to be better structured than those in Figure 23, indicating that the calculation
technique is better aligned with the underlying physics.

Table 11 below lists the paths having the ten largest errorsin calculated length when the
spherical earth approximation in used with three points and PF weights for determining the
effective RoC. When contrasted with Table 9 (which has the same information for the NN
weights), the paths in Table 11 are longer (averages: 8,397 NM vs. 6,912 NM) and have smaller
errors (averages. 2.56 NM vs. 3.76 NM).

Thefirst nine of the ten paths listed in Table 11 cross the equator, generaly at a shallow angle —
i.e., the paths are primarily east-west in orientation. Figure 26 (Ref. 22) below illustrates the path
with the largest error, NRT-EZE. The tenth path listed, EZE-SYD, is the one exception; it
happens to be the path with the largest error for NN-weighting of the three calculated RoCs, and
isshown in Figure 24.
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Figure 25 Airport-Airport Calculated Path Length Error for Spherical-Earth Moddl vs.

Latitude Change over the Path, for Three-Point PF Determination of the Effective RoC

Table11 Ten Airport Pairs Having the Largest Error in Calculated Path Length,
for a Spherical-Earth Model and Three-Point PF Determination of the Effective RoC

Airport | Airport | Length Error Error
#1 #2 (NM) (NM) (%)
NRT EZE 9,884 4.31 0.043
SEA JNB 8,919 3.19 0.036
HNL JNB 10,364 3.07 0.030
BOS SYD 8,774 2.92 0.033
DCA SYD 8,485 2.59 0.031
ORD SYD 8,022 2.25 0.028
BRW EZE 7,515 2.19 0.029
SAN JNB 8,969 1.92 0.021
BRW SYD 6,675 1.60 0.024
EZE SYD 6,366 1.56 0.025

Average 8,397 2.56 0.030

Asobserved earlier, tailoring of the effective RoC to a path is least effective for long paths
having a primarily east-west orientation. The resultsin Table 11 are consistent with that
observation, and suggest that determining the RoC at the start, mid-point and end of a path,
combined with using PF weights to cal cul ate the effective RoC, may be approaching the limit on
path-length accuracy that can be achieved using a spherical earth model.
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Figure 26 Great-Circle Path Having the Largest Error in Calculated Length, for a
Spherical-Earth Model and Three-Point PF Determination of the Effective RoC

6.6 Experiments in Further Improving Path Length Accuracy

Several hypotheses were explored with the intent that they might lead to further improvementsin
path length determination accuracy based on a spherical earth model and atailored effective RoC:

» |solating trans-equatorial paths having (a) both airports at least 15 deg from the
equator, and (b) the airport longitude difference at least twice aslarge as their
latitude difference; then using the nearest neighbor agorithm

= Utilizing five points to calculate the RoC and fitting a cubic spline to these
points

= Utilizing nine points to calculate the RoC and fitting a cubic spline to these
points

In exploring the first hypothesis, seven airport-pairs were found to satisfy the criteria and the
associated error statistics were computed. The overal 91-path average error was slightly reduced,
from 0.009% to 0.008%. The reduction in the maximum fractional error was a bit more, from
0.044% to 0.037%. The most dramatic change was in the path having the largest length error,
which was reduced by more than one nautical mile, from 4.31 NM to 3.28 NM. However, the
overall effect was not comparable to the change observed previously when transitioning from one
to three computed RoC values or from NN to PF weighting of three computed RoC values.

Figure 27 below is a scatter plot of the path length error for three methods of determining the
effective RoC: (1) parabolic fit to three calculated RoC values (blue “x”), (2) cubic splinefit to
five calculated RoC values (green “0”), and (3) cubic splinefit to nine calculated RoC values
(red “+"). There are quantitative variations, but qualitatively, the three-point parabolic fit is at
least as accurate as the two other methods for longer paths. This figure tends to confirm the
observation (at the end of Section 6.5) that determining the RoC at the start, mid-point and end of
a path, combined with using PF weights to calcul ate the effective RoC, appears to be approach-
ing the limit on path-length accuracy that can be achieved using a spherical earth model.
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Figure 27 Airport-Airport Calculated Path Length Errors for Spherical-Earth Moddl vs.
Latitude Change over the Path, for Three Methods of Determining the Effective RoC

To elaborate further, the following two tables illustrate the error characteristics for a spherical
earth model for five north-south and five east-west routes, respectively. In Table 12, for north-
south routes, the path azimuth angle is essentially constant, as the change in direction is less than
10 deg for all five paths. More pertinently, the relative path length determination error decreases
monotonically to afew parts per million as more calculated RoC values are utilized.

Table 12 Error Statistics for Five Airport Pairs Having Predominately North-South Paths
for Spherical-Earth Model and Three Methods of Determining the Effective RoC

Airport | Airport Dist Mid Az | Az Chg Error Error Error

#1 #2 (NM) (deg) (deg) 3pt (%) 5pt (%) | 9pt (%)
BOS EZE 4,666 172.3 1.1 0.0085 0.0005 | 0.0001
DCA EZE 4,523 167.9 0.8 0.0076 0.0006 | 0.0003
BRW HNL 2,999 -179.3 0.9 0.0000 0.0000 | 0.0000
LHR JNB 4,884 163.8 8.2 0.0089 0.0008 | 0.0004
NRT SYD 4,211 172.3 0.2 0.0058 0.0004 | 0.0001
Average 4,257 — — 0.0062 0.0005 | 0.0002

In contrast, in Table 13 for east-west routes, the paths fall into two subcategories — those with
both airports on both sides of the equator (BOS-NRT, EZE-SY D and JNB-SY D) and those with
airports on opposites sides of the equator (MIA-SYD and NRT-EZE). The former have large (on
the order of 100 deg) changes in the path azimuth angle, as the paths “bow” towards the nearer
pole; the latter have small changes in azimuth angle.. More pertinently, for these five paths, the
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relative path length determination error does not decrease (and in fact increases) as more
calculated RoC values are utilized.

Table 13 Error Statistics for Five Airport Pairs Having Predominately East-West Paths
for Spherical-Earth Model and Three Methods of Determining the Effective RoC

Airport | Airport Dist Mid Az | Az Chg Error Error Error

#1 #2 (NM) (deg) (deg) 3pt (%) | 5pt (%) | 9pt (%)
BOS NRT 5,823 -100.8 132.0 0.0180 0.0443 | 0.0589
MIA SYD 8,113 -123.0 19.3 0.0182 0.0023 | 0.0176
NRT EZE 9,884 125.7 6.9 0.0436 0.0437 | 0.0615
EZE SYD 6,366 -88.7 129.7 0.0245 0.0386 | 0.0544
JNB SYD 5,963 97.0 85.4 | 0.0127 0.0075 | 0.0183
Average 7,230 — — 0.0234 0.0273 | 0.0421
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