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EXECUTIVE SUMMARY 
 

Travel reliability is a critical performance dimension of transportation systems and 
services. It enables people and firms to make better use of available resources, including 
time, through effective scheduling of personal and business activities. Shippers and freight 
carriers need predictable travel times to fulfill on-time deliveries and other commitments to 
remain competitive. The ability to arrive on time, with high reliability, is imperative to 
emergency responders. However, urban transportation systems are affected by 
uncertainties of various sorts, which can be broadly classified as those affecting the supply 
of transportation (e.g., weather, accidents, natural and manmade disasters) and those 
associated with the demand for transportation (e.g., travel and activity behavior, special 
events). Taken individually or in combination, these factors could adversely affect and 
perturb the quality of transportation services. Travel behavior researchers have established 
that unanticipated long delays on highways typically produce much worse frustration among 
motorists than “predictable” ones.  

Currently, state and local agencies neither archive travel reliability data nor have 
access to modeling tools that properly account for unreliability of travel times in the planning 
practice. Integrating travel reliability into methods of transportation network analysis 
presents a pressing challenge that is of both theoretical and practical importance. However, 
a prerequisite for the development and application of such tools is the availability of travel 
reliability data.  

To this end, this project developed necessary procedures and a computer tool 
named TRIC to systematically document travel reliability information for highway networks. 
The travel reliability inventory created by TRIC consists of various reliability measures on 
two types of facilities: individual road segments and key routes between selected origin-
destinations (O-D) pairs. The four reliability measures recommended by the Federal 
Highway Administration and considered in this research were 90th or 95th percentile travel 
time, buffer index, planning time index, and frequency that congestion exceeds some 
expected threshold. The research approach used to create these measures includes the 
following three steps: 

1. Develop empirical travel time distributions on individual road segments in the 
study area from available data sources, namely, the traffic data archived by the 
GCM database between 2004 and 2008. 

2. Compute travel time distributions on key routes for heavily traveled corridors and 
origin-destinations. 

3. Calculate corresponding reliability measures from road, route, and O-D travel 
time distributions.    

 

An important step in producing the travel reliability inventory (Step 2 of the research 
approach) is to establish empirical travel time distributions between O-D pairs of interest. 
Unlike individual road segments, however, travel time data between O-D pairs are not 
directly available in most cases. Consequently, one has to analyze travel reliability between 
O-D pairs using proper routing algorithms that not only compute travel time distribution on 
routes that connect the O-D pair but also rank the routes according to their travel time 
distributions. At the core of this analysis is finding a priori paths that are the shortest to 
ensure a specified probability of on-time arrival. This problem, known as the reliable a priori 
shortest path problem (RASP), is difficult to solve because each O-D pair in a real network is 
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connected by a huge number of routes, and enumerating all of them is virtually impossible. 
This project implements a RASP algorithm revised for the purpose of analyzing O-D–based 
travel time reliability. Although the algorithm was proposed and implemented by the project’s 
principal investigator (PI) and his co-authors in previous efforts, this report provides the 
technical details necessary to understand its underlying mechanism for the sake of 
completeness. The implementation of the algorithm is based on a software platform known 
as Toolkit of Network Modeling (TNM), a C++ class library developed by the PI in the 
previous efforts. The details of the implementation are also documented in this report, along 
with an introduction to the software’s graphical user interface.  

To validate the tool and provide guidelines for its application, case studies for the 
Chicago area were conducted. Examples were prepared to demonstrate how to create, 
visualize, and interpret travel reliability information for different O-D pairs. The case studies 
show how to export and use the travel reliability inventory in a GIS-friendly format. 
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CHAPTER 1 INTRODUCTION 
 

1.1 BACKGROUND 
Tackling traffic congestion has been a great challenge for modern society (Schrank 

and Lomax 2011). In addition to recurrent events such as rush hour traffic, traffic congestion 
also arises from various disruptions, ranging from disastrous events such as terrorist attacks 
or earthquakes to minor incidents such as bad weather conditions, highway maintenance, or 
accidents. The unexpected delays resulting from these disruptions produce far greater 
frustration among motorists than expected delays (FHWA 2000). The U.S. Federal Highway 
Administration (FHWA 2000) estimates that 50% to 60% of congestion delays are non-
recurrent, and the percentage is even higher in smaller urban areas.  

Currently, most existing decision-making tools for routing assume that road travel 
times are deterministic. The free-flow travel time is used to compute optimal routes. Even 
when the stochastic nature of the system is acknowledged, the mean value is usually 
employed as the nominal travel time when computing optimal routes. However, neither the 
free-flow travel time nor the mean travel time reflects travel time reliability.  

Travel time reliability is significant to many highway users (Cambridge Systematics 
and TTI 2005). Personal and business travelers value reliability because it allows them to 
make better use of their time. Shippers and freight carriers require predictable travel times to 
remain competitive. The lack of travel reliability forces motorists to choose between running 
the risk of being late (therefore missing important appointments or just-in-time deliveries) or 
budgeting a large buffer time, much of which is often wasted.  

Figure 1.1 shows an example from the Chicago area. The right panel in the figure 
displays the empirical distribution of travel times observed during weekday morning rush 
hour on a stretch of freeway that connects downtown Chicago to O’Hare International 
Airport (shown in the left panel), the second busiest airport in the United States. The travel 
times vary from as low as about 15 minutes to as long as 80 minutes in that period. In light 
of the magnitude of the variance, it is not surprising that travel time estimates based on the 
free-flow travel time or the mean travel time are at risk of being wildly inaccurate. For 
example, the figure shows that if a traveler wishes to have a 90% chance of catching a flight 
on time, 48 minutes must be budgeted for travel, which is more than 50% greater than the 
mean travel time (31 minutes).  

 
Figure1.1 An illustration of travel time variances in the Chicago area. 
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To facilitate decision-making by travelers to hedge against that uncertainty, it is 
important to develop, implement, and validate new decision-supporting tools that make the 
best use of various sources of data to (1) reveal and document random patterns of travel 
times on highway networks and (2) provide a real-time routing decision-making tool that 
takes uncertainty and motorist requirements for travel time reliability into account.  

For the first objective, we constructed the travel time distributions for expressway 
links for different times of a day (morning peak, evening peak, and midday), week (weekday 
and weekend), and season (spring, summer, fall and winter) using traffic data collected by 
loop detectors and at I-PASS plazas in previous research (Nie et al. 2009). We also built the 
travel time distributions for arterial roads and local streets at different times of a day and  
week by estimating from traffic assignment data (Nie et al. 2009) and Chicago Transit 
Authority (CTA) bus data (Nie et al. 2010). Given the travel time distribution of each link in a 
network, the second objective can be addressed: providing a reliable routing model that 
considers uncertainty and motorist requirements for travel time reliability.  

A reliable routing model would enhance mobility and allow travelers to make better 
use of their time, in that it would help avoid overly conservative time budgeting. Reliable 
routing is also useful to freight carriers and parcel delivery firms whose trucks must move 
through peak-period traffic and work zones on a regular basis. A reliable routing model 
would allow carriers to evaluate alternative routing plans for their fleets against the likelihood 
of on-time delivery, which is often an important criterion of level of service in the trucking 
industry.  

Travel time reliability has various definitions (see Chapter 2 for more details). In our 
research, travel time reliability is defined as the probability that a motorist can arrive at the 
destination on time within the given time budget. In this project, we proposed a “reliable a 
priori shortest path” (RASP) problem, which aims to find the shortest a priori paths that can 
ensure a specified probability of on-time arrival.  

Based on real traffic data collected in the Chicago metropolitan area (Nie et al. 
2009), we developed software called the Travel Reliability Inventory for Chicago (TRIC). 
This software provides data, functions, and decision-making tools at three levels: 

4. At the link level, it provides statistics information on expressway links in the 
Chicago metropolitan network, such as the link travel time distributions in a given 
time period (e.g., the morning peak on weekdays in spring). 

5. At the origin-destination (O-D) pair level, the software offers a function to identify 
reliable routes between an O-D pair. The connection and statistics information of 
the identified reliable routes is provided, such as a list of links traversed by a 
route, the travel time distribution in a given time period, and the 95th and 50th 
percentile travel times of the reliable routes. It also provides a tool to compare 
the travel time distributions of identified reliable routes.  

6. At the network level, the software gives the topology of the network and provides 
a visualized and dynamic view of travel speed changes on all expressway links in 
the entire network during a specified day, which reflects real traffic conditions.  

TRIC not only can help motorists plan trips according to a desired travel reliability, 
but it also can help transportation planning agencies calculate the travel reliability for some 
corridors in Chicago, such as from downtown Chicago to O’Hare airport or from the North 
Shore to the south suburbs, so as to establish better transportation planning and 
management policies. Moreover, TRIC can archive all information on links and reliable 
routes as shape files that can be used in GIS application packages. Chapters 4 and 5 
provide more-detailed descriptions of TRIC.  
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1.2 RESEARCH OVERVIEW 
A small example is employed here to demonstrate the concept of the RASP problem. 

Figure 2 shows the cumulative density functions (CDFs) of the random travel times for two 
routes. For the cumulative probabilityα , we have ( )P X t α≤ = , where X  refers to the 
random travel time and t  refers to the desired travel time budget. α  can be regarded as an 
on-time arrival probability. From Figure 2, it is shown that givenα , Paths 1 and 2 provide 
time budgets 1t  and 2t  (i.e., α -percentile travel times), respectively, so that the probability 
of being late ( ( )P X t> ) will not exceedα . 1 2t t<  indicates that Path 1 is a better choice. In 
other words, Path 1 provides a later departure time than Path 2 to ensure a desired 
probability of not being late.   

 
Figure 1.2 An illustrative example of the RASP problem. 

 
The optimal path can be found by enumerating all paths and comparing the 

distributions of path travel times, as shown in the above example. However, enumerating all 
paths is not practicable because it is difficult if not impossible to perform for large networks. 
Instead, the RASP problem can be formulated as a general dynamic programming (GDP) 
problem that identifies non-dominated paths by using the first-order stochastic dominance 
theory. The reliable shortest paths are included in the set of non-dominated paths. We show 
that Bellman’s principle of optimality can be applied to construct non-dominated paths. 
Acyclicity of non-dominated paths is established and used for proving finite convergence of 
solution procedures. A label-correcting algorithm is proposed to solve the RASP problem, 
and the complexity of the algorithm is analyzed.  

If the distributions are continuous, the computation of the convolution integral is 
difficult. To avoid this problem, link travel time distributions must be discretized. An adaptive 
discretization approach (ADA) was proposed. The process of computing the convolution 
integral strongly affects the computational performance of the solution algorithm. We also 
developed some convolution schemes based on the discrete Fourier transform (DFT). The 
DFT-based convolution schemes were compared with the ADA-based direct convolution 
methods through numerical examples.  
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1.3 ORGANIZATION 
The rest of this report is organized as follows: Chapter 2 briefly reviews the literature 

on reliable routing models and the stochastic dominance theory. Chapter 3 presents the 
existing formulation and solution algorithms for the reliable routing problem and proposes 
techniques to improve computational performance. Chapter 4 first introduces the Toolkit of 
Network Modeling (TNM), a C++ class library for solving various transportation network 
problems, and then gives a detailed description of the Travel Reliability Inventory for 
Chicago (TRIC). Chapter 5 presents several case studies to help users better understand 
TRIC so as to improve decision-making processes. Chapter 6 concludes this report.  
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CHAPTER 2 LITERATURE REVIEW 
 

In this chapter, we briefly review the literature of reliable routing models and the 
stochastic dominance theory, then we introduce the notation for describing them.  

2.1 NOTATION 

Consider a directed and connected network ( )G N A P, ,  consisting of a set of nodes 
N  with the number of nodes N n| |= , a set of links A  with the number of links ( A m| |= ), 
and a probability distribution P  describing the variation in link travel times. The analysis 
time period is set to[0 ]T, . Let the destination of routing be node s  and the desired arrival 
time be aligned with the end of the analysis periodT . The travel times on different links 
(denoted as ijc ) are assumed to be random variables with a probability density function ( )ijp ⋅ . 
Let ( )ijF ⋅  be the cumulative density function (CDF) of ijc . For brevity, other notations used in 
the proposal are summarized in Table 2.1.  

 
Table 2.1 Notation 

 

2.2 STOCHASTIC ROUTING PROBLEM 
The routing problem aims to direct vehicles from an origin to a destination along a 

path that is considered optimal in some way or another. Depending on whether the guidance 
is coordinated by a central control unit, the problem can be classified as centralized or 
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decentralized. The routing problem can also be labeled as adaptive or a priori, according to 
whether en-route re-routing is allowed. Two other factors that are often used in problem 
classification are dynamics (i.e., if travel time varies over time) and uncertainties (i.e., if 
travel time is random). This research considers decentralized, a priori routing problems for 
stochastic networks (our routing model can be applied to dynamic networks, but we usually 
do not include them). The focus is to incorporate travel reliability as an integrated objective 
of routing.  

Where uncertainties are concerned, optimal routing, either adaptive or a priori, has 
many different meanings. A classic definition considers a routing strategy optimal if it incurs 
the least expected travel time (LET) (Hall 1986; Polychronopoulos and Tsitsiklis 1996; Fu 
and Rilett 1998; Cheung 1998; Miller-Hooks and Mahmassani 2000; Miller-Hooks 2001; Fu 
2001; Waller and Ziliaskopoulos 2002; Provan 2003; Gao and Chabini 1971; Fan et al. 
2005a). Clearly, the LET path may not properly weigh travel time reliability because it 
overlooks travel time variations. This concern gives rise to the reliability-based routing 
problems.  

Table 2.2 classifies previous studies on the stochastic routing problem into four 
categories, using two criteria. Our focus is the right bottom cell (i.e., reliability-based a priori 
routing problem).  
  

Table 2.2 Various Definitions of Stochastic Optimal Paths 
 LET-Based Reliability-Based 

Adaptive 

Cheung 1998; Fu 2001; Miller-
Hooks 2001; Provan 2003; 
Waller and Ziliaskopoulos 2002; 
Polychronopoulos and Tsitsiklis 
1996; Gao and Chabini 2006 

Bander and White 2002; Fan et 
al. 2005a 

A priori 
Hall 1986; Fu and Rilett 1998; 
Miller-Hooks and Mahmassani 
2000; Fan et al. 2005b 

Frank 1969; Sigal et al. 1980; 
Loui 1983; Sivakumar and 
Batta 1994; Yu and Yang 1998; 
Montemanni and Gambardella 
2004; Bard and Bennett 1991; 
Miller-Hooks 1997; Miller-Hooks 
and Mahmassani 1998b, 2003 

 
Reliability-based stochastic routing has been studied extensively, with the majority of 

the literature focused on a priori path problems. Frank (1969) defined the optimal path as 
the one that maximizes the probability of the travel time equal to or less than a given 
thresholdT , i.e., 

 arg( max ( ) )
rs rs

rs rs
k

k K
{P T }k π

∀ ∈
= ≤  (2.1) 

 

Note that the distributions of all link travel times are continuous. Let 
12( )ijC c c= , , , 

 and 1( )rs rs rs
kπ πΠ = , , , 

 be vectors of link travel times and travel times 
of paths between an origin-destination (O-D) pair rs , respectively. The joint distribution of C  
is known. Using the characteristic functions of C  and rsΠ , the joint distribution of rsΠ  can be 
obtained. Therefore, the optimal path can be identified. This method, however, is not 
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practicable because (1) the calculation of convolution integrals is complicated, and (2) it 
requires that all paths be enumerated.  

Mirchandani (1976) presented a recursive algorithm to solve a discrete version of 
Equation 2.1. However, the algorithm is suitable only for small problems because it requires 
not only that all paths be enumerated but also all travel time possibilities for each path 
through a network expansion be enumerated. 

Sigal et al. (1980) suggested using the probability of a path being the shortest as an 
index to define the optimal path. For path l , the optimality index lR  is defined as  

 ( )l l kR P k lπ π= ≤ ,∀ ≠  (2.2) 
 

To calculate lR , a multi-dimensional integral must be evaluated. To evaluate the integral, it is 
necessary to obtain the set of links that are used by more than one path, as well as the joint 
distribution of these links. Determining such a set requires enumerating all paths.  

Expected utility theory has also been used to define path optimality.  

Loui (1983) showed that the Bellman’s principle of optimality could be used to find an 
optimal path when utility functions are affine or exponential. This restriction was also noticed 
by Eiger et al. 1985. For a general polynomial and monotonic utility function, Loui’s expected 
utility problem can be reduced to a bi-criterion (mean and variance) shortest path problem. 
In effect, a traveler is allowed to trade off the expected value and variance using a 
generalized dynamic program (GDP) (see, e.g., Carraway et al. 1990) based on Pareto 
optimality (or non-dominance relationship).  

More general non-linear utility functions may be approximated by piecewise linear 
functions (Murthy and Sarkar 1996, 1998) who also proposed a few efficient solution 
procedures based on relaxation. The mean-variance trade-off has been treated in other 
ways. For example, Sivakumar and Batta (1994) added an extra constraint into the shortest 
path problem to ensure that the identified LET paths have a variance smaller than a 
benchmark. In Sen et al. (2001), the objective function of stochastic routing is a parametric 
linear combination of mean and variance. In either case, GDP cannot be applied. Instead, 
non-linear programming solution techniques must be used.  

Stochastic routing has also been discussed in the context of robust optimization, that 
is, a path is optimal if its worst-case travel time is the minimum (Yu and Yang 1998; 
Montemanni and Gambardella 2004; Bertsimas and Sim 2003). Depending on the setting, 
such robust routing problems are either NP-hard (Yu and Yang 1998; Montemanni and 
Gambardella 2004) or solvable in polynomial time (Bertsimas and Sim 2003).  

Bard and Bennett (1991) defined the optimal path as the one that maximizes the 
expected utility in a stochastic acyclic network. Compared with the study of Loui (1983), 
where utility functions have to be polynomial and monotonic, Bard and Bennett (1991) 
required only that the utility functions be non-linear and monotonic. To find the global 
optimal path, all paths have to be enumerated. To improve computational efficiency, they 
attempted to reduce the network size by using the theory of first-order stochastic dominance 
(see Section 2.3.2 for details). Specifically, if a path is dominated, the links used by this path 
are elected for possible elimination. In Bard and Bennett’s (1991) paper, the first-order 
stochastic dominance restraint is relaxed as post-median stochastic dominance; that is, only 
the points on the tail of CDF (after the median) are checked, in order to eliminate more 
paths. It is shown that through reduction, 90% of paths in an acyclic network are eliminated, 
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which makes path enumeration feasible. This approach, however, is applicable only to 
acyclic networks.  

Miller-Hooks (1997) and Miller-Hooks and Mahmassani (2003) also employed first-
order stochastic dominance to define path optimality. Besides first-order stochastic 
dominance, they also defined two types of path dominance: (1) deterministic dominance and 
(2) expected value dominance. Label-correcting algorithms were proposed to find non-
dominant paths under the path dominance rules. Recognizing that the exact algorithm does 
not have a polynomial bound, heuristics were considered by Miller-Hooks (1997), who 
attempted to limit the size of the retained non-dominant paths by a predetermined number. 
As noted by Miller-Hooks (1997), however, those heuristics might not identify any non-
dominant paths.  

Reliability has also been defined using the concept of connectivity (Chen et al. 2006; 
Kaparias et al. 2007). This approach models reliability as the probability that the travel time 
on a link is greater than a given threshold. Accordingly, the reliability of a path is the product 
of the reliability of links used by that path (assuming independent distributions). A software 
tool known as ICNavS was developed based on this approach (Kaparias et al. 2007).  

2.3 STOCHASTIC DOMINANCE 

2.3.1 Conventional Theory of Stochastic Dominance 
Bard and Bennett (1991), Miller-Hooks (1997), and Miller-Hooks and Mahmassani 2003) all 
employed first-order stochastic dominance (SD) to find reliable a priori shortest paths. In 
fact, SD theory has been extensively used in finance and economics to rank random 
variables when their distributions are known (Hanoch and Levy 1969; Hadar and Russell 
1971; Rothschild and Stiglitz 1970; Whitemore 1970; Bawa et al. 1983; Muller and Stoyan 
2002; Dentcheva and Ruszczynski 2003). Conventionally, SD theory is established by 
assuming that the utility function is increasing. We provide the following definitions.  

Definition 2.1 (First-order stochastic dominance (FSD) 1 ) 

A random variable X  dominates another random variable Y  in the first order, denoted as 
1X Y  if ( ) ( )X YF t F t t≤ , ∀  and ( ) ( )X YF t F t<  for some t , where XF  is the cumulative 

density function (CDF) of random variable X . 

Definition 2.2 (Second-order stochastic dominance (SSD) 2 ) 

A random variable X  dominates another random variable Y  in the second order, denoted 

as 2X Y  if ( ) ( )
t t

X YF w dw F w dw t
−∞ −∞

≤ ,∀∫ ∫  and ( ) ( )
t t

X YF w dw F w dw
−∞ −∞

<∫ ∫  for some t .  

According to the random utility theory, random variable X being preferred to Y  implies that 
X  has a higher expected utility. SD theory provides not only a tool to rank random 
variables, but it also explains the ranking within the framework of utility theory, 
corresponding to utility function ( )U ⋅  (see, e.g., Levy and Hanoch 1970).  

Theorem 2.1  1X Y  if and only if [ ( )] [ ( )]E U X E U Y≥  for any non-decreasing utility 
function ( )U ⋅ , i.e., 0U ′ ≥ .  
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Theorem 2.2  2X Y  if and only if [ ( )] [ ( )]E U X E U Y≥  for any non-decreasing and 
concave utility function ( )U ⋅ , i.e., 0U ′ ≥  and 0U ′′ ≤ .  

See Bawa 1975 and Heyer 2001 for proofs of the above theorems.  

In the above definitions and theories, the symbol z is used. Strictly speaking, X Y  
means that X  dominates Y  or X  is equivalent toY . However, in this report, we consider 
strictly dominate only, i.e., . Hence, X Y  if and only if [ ( )] [ ( )]E U X E U Y> .  

Theorem 2.1 implies that any insatiable decision maker who is never worse off with more 
quantities of interest ( 0U ′ > ) prefers X  to Y  if 1X Y . Theorem 2.2 is for insatiable and 
risk-averse decision makers because any concave utility function ( 0U ′′ < ) implies risk 
aversion (Friedman and Savage1948).  

2.3.2 Stochastic Dominance for Decreasing Utility Functions 
Definitions 2.1 and 2.2 are both based on the circumstance that decision makers are never 
worse off with more quantities of the random variable of interest. That is, their utility function 
is non-decreasing with respect to the quantity. However, as travel time is concerned, 
travelers usually prefer shorter travel times to longer ones. That is, if the utility depends on 
travel time, the utility function is decreasing, i.e., 0U ′ < . In this case, the stochastic 
dominance has to be re-defined (Wu and Nie 2011).  

Definition 2.3 (FSD for decreasing utility functions 1 )   A random variable X  
dominates another random variable Y  in the first order under decreasing utility functions, 
denoted as 1X Y , if ( ) ( )X YF t F t t≥ ,∀  and ( ) ( )X YF t F t>  for some t .  

Definition 2.4 (SSD 2 )   A random variable X  dominates another random variable Y  in 

the second order, denoted as 2X Y , if ( ) ( )
T T

X Yt t
F w dw F w dw t≥ ,∀∫ ∫  and ∃  at least an 

open interval [0 ]TΛ∈ ,  with a non-zero Lebesgue measure such that 

 ( ) ( )
T T

X Yt t
F w dw F w dw t> ,∀ ∈Λ∫ ∫ .  

 

When stochastic dominance is defined in Definitions 2.3 and 2.4, Theorems 2.1 and 2.2 
become  

Theorem 2.3 X  dominates Y  in the first order, i.e., 1X Y , if and only if 
[ ( )] [ ( )]E U X E U Y>  for any decreasing utility function ( )U ⋅ , i.e., 0U ′ < .  

Theorem 2.4 X  dominates Y  in the second order, i.e., 2X Y , if and only if 
E[ ( )] E[ ( )]U X U Y>  for any U  such that 0 0U U′ ′′< , < . 

 

See Wu and Nie (2011) for the proof of Theorems 2.3 and 2.4.  

Given that the utility function still has to be concave in Theorem 2.4, the second-order 
stochastic dominance (SSD) for decreasing utility functions is still associated with risk 
aversion (Friedman and Savage 1948).  
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CHAPTER 3 FORMULATION AND SOLUTION ALGORITHM 

 

In this chapter, we introduce the mathematical formulation and solution algorithm for 
the reliable a priori shortest path (RASP) problem, which aims to find a priori paths that are 
shortest to ensure a specified probability of on-time arrival.  

A priori path refers a non-adaptive path that is independent of past experience. In 
Section 1.2, an example (Figure 1.2) was created to illustrate the RASP problem. Given an 
on-time arrival probabilityα , the path is optimal if its random path travel time has the least 
α -percentile value. If X  is a random variable, let X α  refer to the α -percentile value of X , 
where α  is the cumulative probability. The RASP problem can be formulated as the 
following stochastic programming:  
 
 min( )

ij
ij ijx ij A

x c α

∀ ∈
∑  (3.1) 

 s t ji ij i
j ji A j ij A

x x d i N
: ∈ : ∈

. . − = , ∀ ∈∑ ∑  (3.2) 

 0 1ijx { }= ,  (3.3) 
 

where α  is a given probability, 0 1α≤ ≤ ; X α  is the α  percentile value of random variable 
X ; id  denotes the total shipping demands at node i  (note that 1 1r sd d= − , =  and 

0id i {r s}= ,∀ ∈ ,/ ), where r  and s  refer to the origin and destination node respectively; ijc  
represents the random travel time on link ij ; and ijx ij A,∀ ∈  is the unknown variable: link ij  
is selected if 1ijx = , and otherwise if 0ijx = . Constraint 3.2 ensures the connectivity of a 
path from origin r  to destination s .  

3.1 FORMULATION BASED ON FIRST-ORDER STOCHASTIC DOMINANCE 
This section aims to show that the RASP paths can be found from the Pareto frontier 

of all non-dominated paths under first-order stochastic dominance (FSD). To this end, we 
first define first-order dominance relationship as follows:  

Definition 3.1 (Path dominance) Let rs
kπ  and rs

lπ  be the random travel times on path rsk  

and rsl , respectively. If rs
kπ  dominates rs

lπ  in the first order, i.e., 1
rs rs
k lπ π , path rsk  is said to 

dominate path rsl  in the first order.  

Definition 3.2 (FSD-admissible paths) A path rsk  is FSD admissible if no path in rsK  
can dominate path rsk  in the first order, where rsK  is the set of all paths from node r  to 
node s . 

Then we have the following definition: 

Definition 3.3 (FSD-optimal paths) An FSD-admissible path rsk  is FSD optimal if, for at 
least one time budgetb , no other path can provide a higher on-time arrival probability.  
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We denote the set of FSD-admissible paths from node r  to destination s  by FSD
rsΓ . 

Admissible paths are also called non-dominated paths in the literature (Miller-Hooks 1997; 
Miller-Hooks and Mahmassani 1998a, 2003).  

 

If ( )rs
ku b  is the cumulative density function (CDF) of the travel time on path rsk , we define  

 
FSD

FSD ( ) max ( ) [0 ]
rs rs

rs rs
k

k
u b {u b } b T

∀ ∈Γ
= , ∀ ∈ ,  (3.4) 

 

as the Pareto frontier. A Pareto frontier has the following properties: (1) no feasible solution 
exists beyond the Pareto frontier, (2) all FSD-optimal solutions are located on the Pareto 
frontier of non-dominated paths, and (3) the solutions inside the Pareto frontier must not be 
optimal. If a path rsk  is FSD optimal, [ ( ) ]rs rs rs rs

kargmax u b k Kk = ,∀ ∈  atb , given a time 

budgetb , path rs
k  ensures the highest on-time arrival probability among all paths from node 

r  to node s . In other words, the solution to the RASP problem is always located on the 
Pareto frontier described in Equation 3.4.  

 

The above analysis employs ( )rs
ku ⋅  that gives an on-time arrival probability α  based on a 

specific travel time budgetb . Conversely, we can define the optimality with a given on-time 
arrival probabilityα . Denote ( )rs

kv ⋅  as the inverse function of ( )rs
ku ⋅ , and an alternative Pareto 

frontier FSD ( )rsv ⋅  and the FSD-optimal path rs
k  are respectively defined as  

 
FSD

FSD ( ) min ( ) [0 1]
rs rs

rs is
k

k
v {v }α α α

∀ ∈Γ
= , ∀ ∈ ,  (3.5) 

 [ ( ) ] [0 1]rs rs rs rs
kargmin v k Kk α α= ,∀ ∈ , ∀ ∈ ,  (3.6) 

 
 

argmax[u 0( )]rs b , and 0 0 0( ) ( )rs rs
kv v bα α= = .  

 

From Definitions 3.2 and 3.3, we have the following:  

Proposition 3.1 An FSD-admissible path is not necessarily FSD optimal.  

We use Figure 3.1 to demonstrate Proposition 3.1. There are three paths: 1, 2, and 3. The 
CDFs of the three paths’ travel times are shown in the figure. The three paths are all FSD-
admissible paths because no path can dominate the other(s) in the first order. The Pareto 
frontier is marked by the thick line. However, 3 ( )rsu ⋅  does not contribute to the Pareto 
frontier. Therefore, Path 3 is not an FSD-optimal path.   
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Figure 3.1 An FSD-admissible path that is not FSD optimal. 

  
Let ( )ijp ⋅  be the probability density function (PDF) of travel time on link ij . If the distribution 

of link traversal time is continuous and independent, ( )is
ku b  can be recursively calculated by  

 
0

( ) ( ) ( )
bis js

k k iju b u b w p w dw i s= − , ∀ ≠∫  (3.7) 

 ( ) 1ss
ku b =  (3.8) 

 
 
Equation 3.8 is the boundary condition.  

 

FSD-admissible paths have two important properties:  

Proposition 3.2 (i) Subpaths of FSD-admissible paths must also be FSD-admissible paths; 
(ii) FSD-admissible paths must not contain any cycle.  

Proof. To prove the first property, suppose path isk i s, ≠  is FSD admissible, but its subpath 

at node j , j s≠  jsk  ( is jsk k ij= ◊ ) is not FSD admissible. Therefore, there must exist a path 
jsl  such that 1

js jsl k
. Therefore, we have ( ) ( )js js

l ku b u b b≥ ,∀ , and ( ) ( )js js
l ku b u b>  for some

b .  

According to Equation 3.7, we have  

 0

0

( ) ( ) ( )

( ) ( ) ( )

bis js
l l ij

bis js
k k ij

u b u b w p w dw

u b u b w p w dw

 = −

 = −

∫
∫

 (3.9) 

then  

 
0

( ) ( ) [ ( ) ( )] ( ) 0 and 0
bis is js js

l k l k iju b u b u b w u b w p w dw b b− = − − − ≥ ,∀ , > ,∃∫  
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It implies 1
is isl k

. It contradicts the assumption that isk  is FSD admissible.  

To prove the second property, without loss of generality, suppose that paths rsk  and rsl  are 
FSD admissible. rsl  contains one and only one cycle starting at node i , i r s≠ , ; while rsk  is 
acyclic. Then according Equation 3.7, assuming the cycle from node i  to node i  is reduced 
to a link ii , is

lu  is calculated as  

 
0

( ) ( )
bis is

l k iiu u b w p w dw= −∫  

 

Then we have
 0 0

( ) ( ) ( ) ( ) ( ) ( )
b bis is is is

l k k kii iiu b u b p w dw u b p w dw u b b≤ = ≤ ,∀∫ ∫ . The first inequality 

is due to the monotonicity of CDF. The second inequality holds because 


( )iip ⋅  is a 

probability density function,
0
( ) 1iip w dw

∞
=∫ , and b∃ < ∞ , so 

0
( ) 1

b

iip w dw <∫ . Therefore, 

( ) ( )is is
k lu b u b b≥ ,∀  and ( ) ( )is is

k lu b u b>  for some b  (see Definition 3.1). Therefore rsl  has no 
chance to be an FSD-admissible path.   

 

Using the first property of FSD-admissible paths, the RASP problem can be formulated as 
the following general dynamic programming problem:  

1FSD FSD FSD FSDFind such that ( ) 0is is is js js js ss ssi k k ij k ij A i sγΓ ,∀ Γ = = ◊ | ∈Γ ,∀ ∈ ,∀ ≠ ; Γ =


 (3.10) 

where ijk ij◊  extends path jsk  along link ij ; 
1
( )rsKγ



 represents the operation that retrieves 

FSD-admissible paths from a path set rsK  using Definition 3; 0ss  is a dummy path 
representing the boundary condition.  

3.2 SOLUTION ALGORITHM 
Solving the RASP problem (Equation 3.10) involves two main operations: iteratively 

constructing and storing admissible paths, and evaluating their travel time distributions. 
Central to either operation is the capability to discretize the underlying problem. We first 
introduce the basic algorithmic concept using a simple and easy-to-implement discretization 
scheme and then discuss more-sophisticated approaches.  

3.2.1 Basic Discretization Scheme 
The convolution integral (Equation 3.7) can be evaluated in the continuous space. 

For instance, Fan et al. (2005a) suggested using Laplace transform to perform a similar 
integral. Their method makes use of the fact that Laplace transform of a convolution equals 
the product of the individual transforms; that is  

0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )st st stU s F s G s F s e f t dt G s e g t dt U s e u t dt

∞ ∞ ∞− − −= . , = , = , =∫ ∫ ∫          (3.11) 

where
0

( ) ( ) ( )
t

u t f t w g w dw= −∫ .  
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The evaluation of a convolution is divided into three steps. First, both functions (in Equation 
3.7, they are ( )is

ku ⋅  and ( )ijp ⋅ ) are transformed and numerically integrated for a set of 
discrete s . The second step calculates the convolution of the transformed functions, which 
turns out a point-to-point multiplication. The resulting function is reverted to the original 
domain. The last step involves solving a linear system U Vu=  in which U  and u  are 
vectors of ( )U s  and ( )u t  evaluated at discrete points s  and t , respectively, and V  is a 
Vandermonde matrix. We did not adopt this method in this research because the resulting 
Vandermonde matrix is usually ill conditioned and the inverse operation is therefore 
unstable.  

In most cases, it is more convenient to approximate the continuous distributions with their 
discrete counterparts. By assuming that the central limit theorem (CLT) always holds, which 
guarantees that the path travel time follows a normal distribution, the path travel time 
distribution can be calculated from a continuous analytical expression (Lo and Tung 2003; 
Lo et al. 2006). However, the normal distribution, which is symmetric, usually cannot reflect 
general link travel time distributions in the real world (Waller et al. 2006). 

Let T  be divided into L  uniform discrete intervals with L Tϕ = .The probability mass of 
interval l  is then calculated as  

 
( 1)

( ) ( ) 1
l

ij ijl
P l p w dw l L

ϕ

ϕ−
= , = ,..., .∫  (3.12) 

 

Accordingly, Equation 3.9 can be discretized as  

 
0

( ) ( ) ( ) 1
l

is js
k k ij

l
U l U l l P l l L

′=

′ ′= − , = , , .∑ 
 (3.13) 

where ( )is
kU l  denotes the cumulative probability on path isk K∈  up to the l th discrete 

interval. Intuitively, the quality of convolution results is controlled by the resolution of the 
discretization L : a larger L  generally leads to greater accuracy. This scheme is called b-
discrete because it explicitly considers discrete supports. The convolution based on 
Equation 3.13 is also called b-based direct convolution in the following text.  

3.2.2 A Label-Correcting Algorithm 
We now describe a label-correcting algorithm to search for all FSD-admissible paths. 

The algorithm is named FSD-LC, with FSD standing for first-order stochastic dominance, 
and LC standing for label correcting. The following definitions are used in the algorithm 
description: a list of candidate paths is denoted usingQ ; ( )ω ⋅  is a subpath operator used to 
track paths (e.g., ( )is jsk kω =  such that is jsk k ij= ◊ ); isΩ  denotes a tentative set of FSD-
admissible paths.  

Algorithm FSD-LC   
Step 0 Initialize. SetQ =∅ , ( ) 0 0is

isu b b L i s iϕ ϕ= ,∀ = , ,.., ,∀ ≠ ,Ω =∅,∀ . For 

the destination node s , set ( ) 1 0ssu b b Lϕ ϕ= ,∀ = , ,..., . Create a path from s  to 

itself, 0ss  and set 0 ( ) 1 0ssu b b Lϕ ϕ= ,∀ = , ,... . Let 0ssQ Q { }= ∪ .  



15 

Step 1 Check optimality. IfQ =∅ , terminate the procedure. The optimal 
solution is found; otherwise, proceed to Step 2.  

Step 2 Take the first path jsk stored in Q  and scan every incoming link ij of 
node j .  

step 2.1 If all links ij  have been scanned, go to Step 1; otherwise, take 
the next link ij A∈ .  

step 2.2 Check whether path jsk  has already traversed node i . If yes, go 
back to step 2.1; otherwise, proceed to step 2.3.  

step 2.3 Set FSD 1isl =| Γ | + , create a new path isl , calculate Equation 3.13. 

step 2.4 If FSD
isΓ =∅ , set FSD FSD ( ) ( )is is is is

ll u b u bΓ = , = , ( )is isb lk = ,  
0b Lϕ ϕ∀ = , ,..., . Update ( ) 1 ( )is is jsl L l kσ ω= + , = ;   

otherwise, call Procedure FSD-CHECK. If isl  is not FSD admissible, go to 

step 2.1; otherwise, set ( )is jsl kω =  and update
isQ Q {l }= ∪ . Go to step 2.1.  

 
Procedure FSD-CHECK   

Inputs A new path isl , a set of FSD-admissible paths FSD
isΓ , as well as the 

associated Pareto frontier ( )isu ⋅ .  

Return A Boolean value LR indicating whether isl  is FSD admissible, and 
update FSD

isu  and FSD
isΓ .  

Step 0 Set LR = TRUE, set ( ) 0islσ = , set Q′ = ∅  (Q′  is the set of paths that 
are currently FSD admissible but have a zero degree of strong dominance).  

Step 1 Update the Pareto frontier and identifyQ .   

for each 0b Lϕ ϕ= , ,...,  do   

set ( )isisk bk= .   

If FSD( ) ( )is is
lu b u b>    

update FSD ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1isis is is is is is is
lu b u b b l l l k kk σ σ σ σ= , = , = + , = −    

If ( ) 0iskσ = , set isQ Q {k }′ ′= ∪ . end if   

end if   

end for  

Step 2 Update the set of FSD-admissible paths.   

while LR = TRUE and Q′  is not empty, do   
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take path isk  out ofQ′ , set 0 0 0l e gn n n= , = , = .   

for 0b Lϕ ϕ= , ,...,  and if ( 0ln =  or 0gn = ) do   

if ( ) ( )is is
l ku b u b> , set 1g gn n= + ;  

else if ( ) ( )is is
l ku b u b= , 1e en n= + ;  

else, 1l ln n= + .  

end if   

end for   

if 0ln = , set LR = FALSE;   

else if 0gn = , set FSD FSD
is is is{k }Γ = Γ / . end if   

end while   

If LR = TRUE, set FSD FSD
is is is{l }Γ = Γ ∪ . end if. Return LR.  

 

The following remarks are in order.  

Remark 1:  Although they deal with different problems, Algorithm FSD-LC is conceptually 
similar to the EV algorithm of Miller-Hooks and Mahmassani (2000), in which a non-
dominance relationship is defined with respect to departure times instead of time budgets. 
However, FSD-LC promises to reduce the amount of work required to carry out the 
dominance check (although the strategy does not improve the worst-case scenario).  

Remark 2:  For each node i , Algorithm FSD-LC needs to store isu  and isk . Both are vectors 
of length 1L + . Moreover, a vector is

ku  (length 1L + ) must be stored for each path FSD
is isk ∈Γ .  

 

To examine the complexity of Algorithm FSD-LC, the following proposition is needed.  

Proposition 3.3 In Algorithm FSD-LC, a scanned path will never reenter the candidate listQ
.  

Proof. Note that a path enters Q  only at initialization (Step 0) or in step 2.4. In the latter 
situation, the path is always newly generated in step 2.3, on top of the existing set of FSD-
admissible paths FSD

isΓ .  

Because the number of acyclic paths in a directed network is finite, Algorithm FSD-LC must 
terminate after finite steps. This is formally stated in Theorem 3.1.  

Theorem 3.1 Algorithm FSD-LC terminates after a finite number of steps and yields a set of 
FSD-admissible paths FSD

isΓ  for each node i .  

Proof. The finite termination directly follows from Proposition 3.3. Upon the termination, all 
acyclic paths between any node i s≠  and s  should have been examined because the 
procedure essentially performs a breadth-first search. Through FSD-CHECK, only acyclic 
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paths that are not dominated will be kept in FSD
isΓ  at termination. Therefore, the retained 

paths form a final FSD
isΓ .   

It is clear that the complexity of FSD-LC depends on the size of FSD
isΓ . In theory, FSD

is| Γ |  is 

bounded by isK| | only, which grows exponentially with the number of nodes n  (roughly 
1nn −  in the worse case. Thus, no algorithm of polynomial complexity exists for the RASP 

problem. We note that the RASP problem belongs to a class of multi-criteria shortest path 
problems, which are known to be intractable (Hansen 1979; Henig 1985; Miller-Hooks and 
Mahmassani 2000). 

 

Proposition 3.4 Algorithm FSD-LC runs in a non-polynomial time 2 1 2( )n nO mn L mn L− + . 

Proof. In the worst case, the algorithm may have to examine all possible paths for any O-D 
pair is . There are roughly 1n nn n n−× =  paths in total. For each path, all links might be 
scanned. Therefore, Step 2 of the algorithm may be executed nmn times. In Step 2, ( )O n  
operations are required to check the acyclicity, and 2( )O L  operations are required to 
calculate the convolution integral. In FSD-CHECK, ( )O L  and 1( )nO n L−  operations are 
consumed in Step 1 and 2, respectively. Thus, the complexity is on the order of

2 1( ( ))n nO mn n L L n L−+ + + , which yields the above result, ignoring the n L+  portion in the 
parentheses.   

In practice, we expect that isK| |  is much smaller than 1nn − , in particular for sparse networks 
commonly seen in transportation applications. This has been noticed by a number of 
authors in numerical experiments (see, e.g., Brumaugh-Smith and Shier 1989 and Miller-
Hooks and Mahmassani 2000). Using the results of Henig (1985), we can show that the 

expected number of FSD-admissible paths is bounded by 1
1

log( )
isK is

kk
K| |

=
| |∑   when 1L =  

(i.e., two discrete time budgets). For 1L > , however, it is more difficult to establish such a 
theoretical bound.  

3.3 ADAPTIVE DISCRETIZATION APPROACH 
A key component in the RASP algorithm is calculation of the path travel time 

distributions rs
ku  by convolving the travel time distributions of its member links. In the last 

section, we showed a straightforward convolution method (see Equation 3.13). However, 
our previous research has shown that this method is not computationally efficient (Wu and 
Nie 2009). We further propose a discretization and convolution approach called the adaptive 
discretization approach (ADA).  

ADA starts by dividing the support of each random variable into L  intervals with a 
uniform lengthϕ , and then computes the probability mass functions using Equation 3.12. 
The key difference here, comparing with Equation 3.13, is that ϕ  may vary from one 
random variable to another, depending on the range of the support (discrete random 
variables often have a well-defined, finite support range. (For continuously distributed 
random variables that have infinite support ranges, the upper [lower] bound of the support 
can be taken at a 100(1 )ε−  (ε ) percentile value, where ε  is a small positive number 
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selected by the modeler. The value used in our study is 0.001). Moreover, a procedure 
termed consolidation is introduced to merge consecutive intervals such that no more than 
one interval has a probability mass smaller than1 L/ . Merging two consecutive discrete 
intervals means removing the boundary between them and assigning the sum of their 
probability masses to the new interval. Consolidation produces a set of effective support 
intervals (ESI) whose size is often much smaller than the initial discretization resolution L .  

Consider two random variables X  andY , which, after discretization and consolidation, can 
be represented by a set of discrete support points, xW  and yW , and associated probability 

mass vectors, xQ  and yQ . Let the number of effective support points for X  and Y  be D  
and E , respectively. We have  

1 1 1 1[ ] [ ] [ ] [ ]x x y y x x y y
x D y E x D y EW w w W w w Q q q Q q q= ,..., , = ,..., , = ,..., , = ,...,  

 

The following procedure can be used to convolve X  andY , i.e., to obtain Z X Y= ⊗ .  
 
ADA-Based Direct Convolution Scheme   

Inputs  x y x yW W Q Q, , ,   

Outputs z zW Q, , i.e., the vectors of discrete support points and probability 
mass for Z X Y= ⊗ .  

Step 0 Obtain the range of support for Z . Set
0 1 1 2 2 1 11 5( ) 0 5( ) 1 5( ) 0 5( )z x y x y z x y x y

L D E D Eb w w w w b w w w w− −= . + − . + , = . + − . + . Divide 

0[ ]z z
Lb b,  into L  intervals of uniform length, and compute 0( )z z

Lb b Lϕ = − / . 
Initialize 0 1z

lp l L= ,∀ = , , .  

Step 1 for 1 2i D= , , , ,    

for 1 2j E= , , , , -8pt   

Calculate x y
i jts w w= +  and x y

i jtp q q= . Define 0[ ] and set
zts b z z

l ll p p tpϕ
−

−= , = +    

end for  

 end for  

Step 2 Call Procedure Consolidation to obtain z zW Q,  with inputs

0 1
z z z

L{b b b }, , ..., , 1
z z

L{p p }, ..., .  

Consolidation   
Inputs Vectors of initial discrete intervals and probability 

0 1 1L L{b b b } {p p }, , ..., , , ...,   

Outputs
0 01 1L LW {w w } Q {q q }= ,..., , = ,..., , where 0L  is the number of effective 

support points.  

Step 0 Initialization. Set 1 1l i= , = , 1 Lϕ = / . Set 0 0tp ts= , = .  
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Step 1 if i L> ; stop, set 0L l= ; otherwise, 10 5( )i i i itp p ts b b p−= , = . + , go to 
Step 2.  

Step 2 If tp ϕ> , l lq tp w ts tp= , = /  set 1 1i i l l= + , = + , go to Step 1; 
otherwise, go to Step 3.  

Step 3 Set 11 0 5( )i i i ii i tp tp p ts ts b b p−= + , = + ; = + . + , go to Step 2.  

 

The direct convolution scheme has a quadratic complexity. That is, if the number of support 
points is L , the computation effort required by each convolution is on the order of 2( )O L . Our 
previous research also proposed a group of convolution methods based on the discrete 
Fourier transform (DFT) (Wu and Nie, 2011). It is well-known that the Fourier transform of 
the convolution of two integrable functions equals the product of the Fourier transforms of 
two functions, which is reduced to the pointwise multiplication of two corresponding discrete 
Fourier transforms (DFT) if the two functions are discrete (Bracewell 2000). Because DFT 
can be computed in time ( log )O L L  using a fast Fourier transform (FFT) algorithm (Cormer 
et al. 2001), the DFT-based convolution may be much more efficient than the direct 
convolution methods for large L . However, recent research conducted by us showed that 
the ADA-based direct convolution outperformed all proposed DFT-based convolution 
schemes (Wu and Nie 2011) in terms of computational performance. The ADA-based 
convolution scheme strikes a better balance between accuracy and efficiency. Therefore, in 
TRIC, all link distributions are discretized by using ADA, and all path travel time distributions 
are computed by using the ADA-based convolution method.  
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CHAPTER 4 IMPLEMENTATION 
 

The algorithm described in the last chapter is implemented on top of the Toolkit of 
Network Modeling (TNM), a C++ class library for solving various transportation network 
problems. A graphical user interface (GUI) tool named Travel Reliability Inventory for 
Chicago (TRIC) was developed using MFC and MYSQL. TRIC documents information about 
travel reliability on Chicago’s highway network. We first briefly introduce TNM then describe 
TRIC.  

4.1 CLASS HIERARCHY 
This section provides an overview of class hierarchy, with a focus on the classes 

designed for the stochastic routing problem. A detailed class implementation can be found in 
Appendix A.  

Originally, TNM defines four major network classes:  
• TNM_SNET: for static applications such as traffic assignment.  
• TNM_DNET: for macroscopic dynamic applications such as dynamic network 

loading and dynamic traffic assignment.  
• TNM_MNET: for microscopic dynamic applications, such as studying vehicles’ 

lane-changing behavior.  
• TNM_ProbeNet: reserved for stochastic applications.  

 

All four network classes are derived from TNM_SNET, whose major data members 
include, among others, lists of nodes and links, which together represent the topology of the 
network. Each type of network is usually associated with link and node objects of corresponding 
types. For example, Class TNM_SLINK is the basic link type for TNM_SNET, while Class 
TNM_DLINK is used by TNM_DNET. For a detailed description of these classes, see Nie (2006).  

  
Figure 4.1 A class hierarchy tree. 

As shown in Figure 4.1, TNM_ProbeNet is derived from TNM_DNET. While this class 
exists in the original TNM, it has been substantially expanded in this research to support 
reliable routing. The important new functions include generating non-dominant paths and I-O 
functions for travel time distributions, as well as building functions for a new network format.  
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In addition, new node and link classes are introduced. TNM_PNODE, derived from 
TNM_DNODE, is used to construct, store, manipulate, and compare paths. The most 
important operations defined in Algorithm FSD-LC are actually implemented in this class. 
TNM_PRBLK and TNM_GCMLINK are derived classes of TNM_DLINK. No important methods 
are defined in these classes. Instead, they are primarily holders of new data members, such 
as detector information and road names.  

TNM_ProbDist is a new class intended to handle discrete probability distribution. In 
addition to regular functionality, the class provides an efficient implementation of the 
convolution integral using the hybrid discretization scheme introduced in Chapter 3. It also 
allows easy comparison of one distribution with another using stochastic dominance. 
TNM_ProbDist is further wrapped by class TNM_PPATH, which implements the connection 
among paths stored at adjacent nodes. Through this connection, it is possible to construct a 
path from its pointer at any given node. Finally, to be consistent with the existing hierarchy, 
a new class TNM_ProbPATH is derived from the existing path class TNM_SPATH and wraps 
TNM_PPATH.  

4.2 INTRODUCTION TO TRIC 
Software called Travel Reliability Inventory for Chicago (TRIC) was developed based 

on TNM. In this section, we provide an overview of TRIC, covering various menus, tool bars, 
and functions.  

4.2.1 Get Started 

To start TRIC, click “File → Start” on the menu bar at the upper left corner of the 
window to load Chicago Highway Network, as shown in Figure 4.2. This network is adapted 
from the planning network developed by the Chicago Metropolitan Agency. It contains 
roadways with a speed limit of 45 mph or higher and roadways that are necessary to 
maintain a reasonable degree of connectivity.  

 
Figure 4.2 Start TRIC. 
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After the map is initialized, the TRIC screen appears, as shown in Figure 4.3. 

 
Figure 4.3 TRIC screen. 

 
• Title bar: Displays the name of the software and map information.  
• Menu bar: Offers access to TRIC’s commands.  
• Tool bar: Provides shortcuts to frequent commands.  
• Map window: Displays the map of Chicago metropolitan area.  
• Input panel: Sets up parameters for path travel time distribution.  
• Output panel: Provides information about the reliable path.  
• Reliability panel: Adjusts on-time arrival probability.  
• Status bar: Provides information about the loaded map.  

 

4.2.2 Menu Bar 
The menu bar provides different commands for TRIC. This section introduces the 

commands under the menu bar.  

1. Control: Contains basic commands for TRIC (Figure 4.4).   
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Figure 4.4 Control menu on the menu bar. 

 
• Database: Allows users to connect to the database server located at NU-

TREND. Click “Control → Database” on the menu bar. A pop-up window 
appears, as shown in Figure 4.5. In the pop-up window, select the server 
“NUTranslab” and click “Connect” (accept the default user name and password). 
Once the server is connected, the status bar will show “gcm at 129.105.69.117”. 
To return to TRIC screen, click “Ok”.   

 
Figure 4.5 TRIC database. 

 
• Close: Closes the current map and returns to TRIC before initialization.  
• Exit: Exits TRIC. 
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2. Map: Provides map navigation and setting commands, as shown in Figure 4.6.   

 
Figure 4.6 Map menu on the menu bar. 

 
• Zoom in/out: Zooms the current view in/out. 
• Zoom full: Zooms to the full size of the map.  

Setting: Changes display options. It is also accessible by double-clicking on the 
map window. Click on “Settings” to bring up the “Set display properties” window, 
as shown in Figure 4.7.  

 
Figure 4.7 Set display properties. 
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• Map size: The default setting is “Fit current network”. It can be changed by 
adjusting the width and length.  

• Text display: Enables/disables the display of node/link name, and the text size 
of the display.  

• Macroscopic: Provides options to change the node size. Max speed, Max delay, 
and Max density cannot be changed yet. They are set as their default value.  

• Microscopic: Provides options to change lane width, as well as display of 
direction arrows and loop detectors.  
 

3. Tools: Provides general TRIC commands (Figure 4.8).  

 
Figure 4.8 Tools menu on the menu bar. 

 
• Replay: Provides a visualized as well as dynamic view of traffic speed. To 

enable replay, switch to speed map first (View → Maps → Speed). Specify the 
time and data type, and then click “Play” (Figure 4.9). Traffic speed is denoted by 
different colors as a fraction of free-flow travel time. A change in color on the map 
indicates a change in traffic speed. Control the replay by dragging the slide bar or 
using the “F step” (forward) and “B step” (backward) buttons.  

 
Figure 4.9 Replay function to show visualized traffic speed. 

 
• Log: Opens a log window that contains detailed trip information from origin node 

to destination node, as well as warnings or error massages that are otherwise 
invisible to users in the log panel.  
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• Figure template: Opens a PGL graph editor. All plots produced by CTR are in 
PGL format and can be saved as a PGL file. The saved PGL files can be loaded 
and edited using this function and exported to other formats such as jpeg, eps, 
etc. To create a figure template, click on “Figure template” to open the “Figure 
template layout” window. Figure 4.10(a) shows a layout of 2 × 2 figures.   
Archive all links: Saves all links in the network to the folder “NU-Trend → 
TRICSetup → TRI”. It can write all link statistics into the corresponding shape 
files (up to 30 shape files, each corresponding to one distribution) in a single run. 
However, the user can choose to write one shape file (corresponding only to the 
current distribution setting) at a time. The user can also decide whether the 
existing shape files should be overwritten or the existing shapes in the current file 
should be kept. As shown in Figure 4.10(b), when “Archive all links” is selected, 
two options are provided: “Overwrite existing files” and “All distributions”. The first 
option creates new files and overwrites all previously archived links. (Overwrite 
will greatly accelerate the process because it waives the need for checking the 
existence of particular shapes.) The second option archives 30 distributions for 
all link statistics obtained from 30 combinations of “Time of day” and “Day of 
week”.  

 
Figure 4.10 Figure template layout and the panel for archiving all links/O-D. 

  
• Archive all O-D: Provides a one-step archive function. It can write all reliable 

path statistics for all O-D pairs stored in the O-D pair list into the corresponding 
shape files (up to 30 shape files, each corresponding to one distribution) in a 
single run. However, the user can choose to write one shape file (corresponding 
only to the current distribution setting) at a time. The user can also decide 
whether the existing shape files should be overwritten or the existing shapes in 
the current file should be kept. (Overwrite will greatly accelerate the process 
because it waives the need for checking the existence of particular shapes.)  
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4. View: Provides commands to display different figures/tables and to display/hide 
the status bar and tool bar, as shown in Figure 4.11.  

 
Figure 4.11 View menu on the menu bar. 

 
• Map: Provides three different choices:  

Normal: The normal GCM map.  

Speed: Provides speed information on the map. The colored bar on 
the right-hand side shows the speed as a fraction of free-flow speed, 
as illustrated in Figure 4.12.  

 
Figure 4.12 Speed map with the colored legend. 
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• Density: Provides a colored scheme for data coverage. As shown in Figure 4.13, 
the blue line indicates that data are collected from loop detectors. The amber line 
indicates that data are collected from traffic reports. The green line indicates that 
data are collected from both sources.  

 
Figure 4.13 Density map. 

 
 

• List of links:  Displays the link table, as shown in Figure 4.14. The number of 
links in the network is 1,970. The link table contains link ID, Type, Start node, 
End node, Length, Capacity, Free flow speed, RoadName, MODES, Stamp ID, 
and detection type. The link list and map view are linked inherently. That is, when 
you click a link on the link view, the map view will automatically zoom to the link 
and highlight it. This feature makes it easier to locate a link on a map according 
to its ID (and other properties) or vice versa. The windows can be tiled (vertically 
or horizontally) to show the dynamic linkage between the link view and map view.  
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Figure 4.14 Link table. 

 
 

• List of OD: Displays a window that stores all archived O-D pairs: the total 
number of archived O-D pairs and the origin node and destination node of each 
pair, as shown in Figure 4.15. It is not recommended to directly modify this file. 
To change O-D pairs, use the “Save: button in the reliable path panel.  

 
Figure 4.15 Table of O-D pairs. 
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• Tile window: Tiles windows vertically when map view and link list windows are 
opened simultaneously.  

• Status bar/toolbar: Displays/hides status bar/toolbar.  
 

5. Help: Offers help for TRIC use.  
 

4.2.3 Tool Bar 
The tool bar provides shortcuts to commands described in the menu bar section, as 

shown in Figure 4.16.   
 

 
Figure 4.16 Tool bar. 

 

Opens the database window.  

 

Adjusts the size of the map.  

 

Displays different kinds of maps.  

 

Dynamically displays travel time data on the entire network.  

 

Opens the log window.  

 

Opens the figure template window.  
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4.2.4 Map Window 
The map window displays a map of expressways in the Chicago metropolitan 

network, as shown in Figure 4.17.  

 
Figure 4.17 Map window. 

 
• Double-click the map to open the “Set display properties” window, as shown in 

Figure 4.18.  
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Figure 4.18 Map settings and properties. 

 
• Right-click on the map to open the drop-down list to zoom the map or to select 

the origin point (from here) and destination point (to here) for a route, as shown 
in Figure 4.19. Once the origin point and destination point are selected, a red 
straight line is plotted on the map to connect these two points. The red line does 
not indicate a path; it is only a convention to denote the origin point and 
destination point for reference.  

 
Figure 4.19 Map drop-down list. 

 
• Right-click on a path to open a drop-down list, which consists of two options, as 

shown in Figure 4.20: archive and inquiry (it is sometimes necessary to zoom in 
the map to right-click on a path). Click “Archive” to save this path (corresponding 
to the current specified distribution) or click “Inquiry” to pop up the travel time 
distribution window. The travel time distribution window provides information 
about the CDF and PDF of the path travel time, as shown in Figure 4.21. To 
display the travel time distribution, specify “traffic quantity” first by choosing I-
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PASS data or detector data. Then specify parameters related to time (season, 
day of week, and time of day). You can also change the resolution and 
lower/upper bounds of the distribution. Once all parameters are set up, click the 
“Distribution” button to display the travel time distribution (Figure 4.21).  

•  

 
Figure 4.20 Drop-down list for a selected path. 

 

 
Figure 4.21 Travel time distribution window for a specified path. 
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4.2.5 Input Panel 
The input panel provides options for entering different parameters. Users can choose 

both distribution of link travel time and O-D pairs, as shown in Figure 4.22(a).  

 
Figure 4.22 Input and output panel. 

 
Distribution panel: Adjusts different link travel time distributions at different 
times. This panel generates different travel time distributions based on the 
user’s choice of travel time. There are 30 different distributions on each link. 
When the choice for time of day or day of week is changed, the distribution 
information will be reloaded.  

• “Time of day” provides five options from the drop-down list.  
o AMPEAK: Morning peak hour (6–10 a.m.)  

o PMPEAK: Afternoon peak hour (4–8 p.m.)  

o MIDDAY: Middle of the day (10 a.m.–4 p.m.)  

o OFFPEAK: Non-peak hour (other time)  

o NA: All day  

• “Day of week” provides six options from the drop-down list.  

o WEEKDAY  

o WEEKEND  

o 0: Sunday  

o 6: Saturday  

o 5: Friday  

o NA: All week  

 
O-D panel: Allows users to choose different O-D pairs. Users can either 
enter the O-D pair on this panel or right-click the map to set up O-D pairs 
(select “From here” and “To here,” respectively). Users can click the “show” 
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box to display/hide the red line that indicates the origin and destination of a 
route.  

 

 Switches between origin and destination nodes.  

 

 Saves O-D pairs to list of O-D pairs. This list will be used when an O-D archive is 
performed.   

 

Once distribution and O-D pairs are set up, click “Search” or “Archive” to find or save the 
reliable path between the O-D pair for the specified distribution. All reliable paths for the 
selected O-D pair will be listed. The search result is reported in the output panel.   

 

4.2.6 Output Panel 
The output panel provides information about reliable paths based on user-specified input, as 
shown above in Figure 4.22(b).  
 

Display the CDF and PDF of a reliable path: Double-click the path. At the 
top of the PDF plot, minimum, maximum, mean, and standard deviation are 
calculated (Figure 4.23). At the top of CDF plot, 50th percentile, 95th 
percentile, B-index (buffering index, the ratio of the 95th percentile travel time 
to free-flow travel time) and P-index (planning index, the ratio of the 95th 
percentile travel time to mean travel time) are calculated. 

 
Figure 4.23 Display PDF and CDF of reliable path. 
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• Adjust the properties of the plots: Double-click the plot.   

 
Figure 4.24 Graph properties. 

 

 Compares multiple paths. Select multiple paths with Shift or Ctrl, then click 
“Compare” to display the comparison graph of multiple paths, as shown in Figure 4.25.   

 

 
Figure 4.25 Multiple paths comparison. 
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 Deletes paths from the list. Select paths from the list and click “Delete” to remove 
the paths from the list.  

 

4.2.7 Log Panel 
The log panel is below the path list, as shown in Figure 4.26(a). It provides a summary of 
the path. It directs the path choice at each node and summarizes the 50th percentile travel 
time and 95th percentile travel time.  

4.2.8 Reliability Panel 
The reliability panel adjusts the user’s preference regarding on-time arrival probability, as 
shown in Figure 4.26(b). The scroll bar is used to adjust on-time arrival probability. Travel 
time corresponding to the selected on-time arrival probability is displayed in the log panel 
after adjustment. When there is more than one path for a given O-D pair (and if they are all 
selected), the minimum percentile travel time will be displayed, and the path that gives the 
optimal value will be highlighted.  

 
Figure 4.26 Log panel and reliability panel. 
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CHAPTER 5 CASE STUDIES AND INTEGRATION WITH GIS 
 

5.1 TRIC CASE STUDIES 
In this chapter, we provide several case studies to help users better understand the 

how the TRIC software package can improve their decision-making process. We chose two 
specific nodes as the O-D pair. Node 908 is the starting node, and Node 132 is the ending 
node (Figure 5.1). Node 908 is close to the Chicago Transit Authority’s Clinton Blue Line 
Station. Node 132 is close to Montrose Avenue where Kennedy Expressway merges with 
the southern end of the Edens Expressway. This O-D pair was chosen for two reasons: (1) 
this O-D pair is a connecting segment between downtown Chicago and O’Hare airport, and 
(2) the pair traverses two major routes: I-90 and the I-90 Expressway.  

 
Figure 5.1 Snapshot between Node 908 (A) and Node 132 (B). 

 

Three case studies are provided to illustrate use of the software package, each of which is 
analyzed between the same O-D pair at different times. These cases are as follows: 

1. Weekday morning peak hours (WEEKDAY AMPEAK, 6–10 a.m.) 
2. Weekday middle of the day (WEEKDAY MIDDAY, 10 a.m.–4 p.m.) 
3. Weekend morning peak hours (WEEKEND AMPEAK, 6–10 a.m.) 

Traffic conditions vary significantly during each time period.  
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5.1.1 Case 1: WEEKDAY AMPEAK 
The first case is for weekday morning traffic during peak hours. We set up the 

distribution as shown in Figure 5.2. We can choose the O-D pair from the map by right-
clicking the nodes on the map or by enter the O-D pair directly into TRIC. In this case, we 
chose Node 908 as the start node and Node 132 as the end node.  

Once all parameters are set up, click “Search” to find the reliable paths [Figure 
5.2(a)]. In this case, two reliable paths are found, as shown in Figure 5.2(b).  

 
Figure 5.2 Input parameters and the identified reliable shortest paths in Case 1. 

 
Note: It is helpful to show the log panel (click the “Log” button in tool bar). The log 

panel provides detailed information about the reliable paths, including origin node, path 
detail, destination node, and percentile travel time, as shown in Figure 5.3.   

 
Figure 5.3 Log panel. 

  
Display detailed path information: Click on either path to display the detailed path 

information in the log panel [Figure 5.2(b)]. In this case, the reliable path starts at Node 908, 
then goes to Node 367 via Link 1244 (I-90), as shown in Figure 5.3. Each row in the result 
includes the next node and the link leading to the node. The result provides two ways to 
track the reliable path: tracking the next node and tracking the next link. We can use either 
way to find the reliable path between the origin node and destination node.  

The end of log (Figure 5.4) shows the percentile travel time of the selected path. In 
this case, the 50th percentile time = 12.92 (min). This means that if we want to guarantee a 
50% probability of arriving on time, 12.92 minutes should be reserved for the trip. In the 
meantime, if we want a higher on-time arrival probability, say 95%, 18.17 minutes should be 
reserved for the trip. The result is consistent with common sense—the higher the desired 
arrival probability, the more time we have to budget for our trips.  
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Figure 5.4 Path choice in Case 1. 

 
Display CDF and PDF: Double-click a path to display the cumulative density 

function (CDF) and probability density function (PDF) of the selected path, as shown in 
Figure 5.5 for Path 1. The minimum travel time on Path 1 is 8.05 minutes, the maximum 
travel time is 23.41 minutes, the mean travel time is 13.26 minutes, and the standard 
deviation is 2.67 minutes. The CDF curve shows that the 50th and 90th percentile times are 
12.92 minutes and 18.17 minutes, respectively. The B-index gives the ratio of the 95th 
percentile time to free-flow travel time. The P-index gives the ratio of the 95th percentile time 
to mean travel time. In this case, the B-index is 2.11 and the P-index is 1.37.  

 
Figure 5.5 PDF and CDF in Case 1. 

 

Compare different paths: We can also compare the CDF of different paths between 
the O-D pair. Select multiple paths and click the “Compare” button to show the reliable path 
comparison plot. In this case, two paths are selected, Path 1 (red line) and Path 31 (green 
line), as shown in Figure 5.6. The two paths intersect around point (12.5, 0.42). Before the 
intersection, Path 1 lies above Path 31 on the CDF curve. The comparison plot indicates 
that if on-time arrival probability is less than 0.42, Path 1 is better than Path 31. For 
example, Path 1 requires less travel time to achieve the same on-time arrival probability or 
Path 1 generates a higher on-time arrival probability if travel times are identical. On the right 
side of the intersection, Path 31 is a better choice because the CDF curve of Path 31 lies 
above Path 1.   
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Figure 5.6 Path comparison in Case 1. 

 
Adjust on-time arrival probability: Use the reliability panel to adjust on-time arrival 

probability. Once on-time arrival probability is adjusted, travel time is recalculated and 
shown in the log panel to reflect the adjustment. In this case study, we calculated different 
on-time arrival probabilities and summarize the results in Table 5.1.  

 
Table 5.1 Travel Time Budgets for Different On-Time Arrival Probabilities 
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5.1.2 Case 2: WEEKDAY MIDDAY 
This case is for midday traffic on a weekday. We set up the distribution as shown in 

Figure 5.7. We choose Node 908 as start node and Node 132 as end node, as in Case 1, so 
that we can see the impact of time of day on reliable paths.  

 
Figure 5.7 Input parameters and the identified reliable shortest paths in Case 2. 

  
Clicking “Search” identifies two reliable paths, Path 2 and Path 32, as shown in 

Figure 5.7(b). To compare the effect of peak hour, reliable paths for the morning traffic peak 
from Case 1 (Path 1 and Path 31) are also included.  

Display detailed path information: Click on a path (Path 2, for example). Detailed 
information is displayed in the log panel (Figure 5.8). The panel shows that the 50th 
percentile travel time is 9.33 minutes and the 95th percentile travel time is 13.09 minutes.  

 
Figure 5.8 Log panel in Case 2. 

 
Display CDF and PDF: Double-click a path to display its CDF and PDF. In this 

example, we chose Path 2 for display of CDF and PDF, as shown in Figure 5.9. The 
minimum travel time on Path 2 is 7.23 minutes, the maximum travel time is 17.04 minutes, 
the mean travel time is 9.69 minutes, and the standard deviation is 1.75 minutes. The CDF 
curve shows that the 50th and 95th percentile times are 9.33 minutes and 13.09 minutes, 
respectively. As before, the B-index gives the ratio of the 95th percentile time to free-flow 
travel time, and the P-index gives the ratio of the 95th percentile time to mean travel time. In 
this example, the B-index is 1.52, and the P-index is 1.35.  
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Figure 5.9 CDF and PDF in Case 2. 

 
Compare different paths: As before, we can compare different paths generated for 

the same time period (Path 2 and Path 32). Moreover, we can compare the same path for 
different time periods (Path 1 and Path 2). Before comparison, we know that Path 1 was 
generated during morning rush hour (AMPEAK), while Path 2 was generated during the 
middle of the day (MIDDAY). Based on the information, we can predict that Path 2 should 
have higher on-time arrival probability for the same travel time budget and a lower time 
budget for the same on-time arrival probability. In short, the CDF of Path 2 lies above Path 
1. Indeed, this is true in our example. Path 2 lies above Path 1 if we compare the CDF of 
both paths. In the comparison plot, Path 2 (green line) lies above Path 1 (red line).  

 
Figure 5.10 Path comparison in Case 2. 
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Adjust on-time arrival probability: As before, we can adjust on-time arrival 
probability to reflect the traveler’s risk-averse behavior. The higher the on-time arrival 
probability, the more risk-averse the traveler. Moreover, high on-time arrival probability 
normally corresponds to more travel time. In this case, we adjust on-time arrival probability 
on Path 32 to 66.4%, as shown in Figure 5.11. The log panel (Figure 5.12) summarizes the 
result after the adjustment. The percentile travel time obtained is 10.1 minutes.  

 
Figure 5.11 On-time arrival probability in Case 2. 

 

 
Figure 5.12 Output for on-time arrival probability 66.4% in Case 2. 

 
Compare multiple paths: We now have found four reliable paths for two different 

time periods. These four paths are summarized in Table 5.2.   
 

Table 5.2 Comparing Multiple Paths 

 
 

The performances of Path 2 and Path 32 are better than those of their counterparts 
for all five measurements. This effect is due to the time period selected for traveling. The 
effect of morning rush hour (AMPEAK) is obvious in this case. Moreover, the choice 
between Path 1(2) and Path 31 (32) depends on on-time arrival probability. For low on-time 
arrival probability, Path 1 and Path 2 are preferred. For high on-time arrival probability, Path 
31 and Path 32 are preferred.  
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5.1.3 Case 3: WEEKEND AMPEAK 
In this case, we analyze the travel time during morning peak traffic on the weekend. 

As before, we use Node 908 as the start node and Node 132 as the end node. The input 
parameters are shown in Figure 5.13(a).   

 
Figure 5.13 Input parameters and the identified reliable shortest paths in Case 3. 

 
In this case, only one reliable path is found, Path 6, as shown in Figure 5.13(b). The 

50th percentile travel time is 6.63 minutes, and the 95th percentile travel time is 7.26 
minutes, as shown in Figure 5.14. Percentile travel time is far lower than in the previous two 
cases because there is less traffic during weekends. As explained in the following 
paragraphs, other statistics are also lower than those on weekdays (Figure 5.15).   

 
Figure 5.14 Path choice in Case 3. 

 
Display CDF and PDF: Double-click Path 6 to display CDF and PDF of the path, as 

shown in Figure 5.15. The minimum travel time on Path 1 is 6.29 minutes, the maximum 
travel time is 8.35 minutes, the mean travel time is 6.70 minutes, and the standard deviation 
is 0.29 minutes. The standard deviation is much less than during the week. On weekends, 
road capacity is greater than demand so traffic speed is close to free-flow speed. As shown 
in Figure 5.15, the CDF curve shows that the 50th and 95th percentile travel times are 6.63 
minutes and 7.26 minutes, respectively. The B-index is 0.91, and the P-index is 1.08.   
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Figure 5.15 CDF and PDF in Case 3. 

 

 
Figure 5.16 Path comparison in Case 3. 

 
Compare different paths: We can compare the CDF of Path 6 (WEEKEND 

AMPEAK) and Path 1 (WEEDDAY AMPEAK). As shown in Figure 5.16, the difference in the 
two paths’ travel times is obvious. Travel time on Path 6 for any percentile is far less than 
that on Path 1, and  the time variation for Path 6 is smaller than that on Path 1. In short, the 
performance of Path 6 is better than that of Path 1. (Note: This comparison does not provide 
any information about path choice because Path 6 and Path 1 are generated for different 



47 

days of the week. It only illustrates how the day of the week may affect the travel time 
distribution.)  

Adjust on-time arrival probability: We can also adjust on-time arrival probability for 
Path 6, as before. Table 5.3 summarizes several percentile travel times corresponding to 
different on-time arrival probabilities for Path 6.  
 

Table 5.3 Travel Time Budgets for Different On-Time Arrival Probabilities

 

5.2 INTEGRATION WITH GIS 
In this section, we integrate our results from TRIC with GIS software packages to 

demonstrate the capability of TRIC for graphical comparisons. In our example, Quantum 
GIS is used for demonstration purposes. The same logic applies to other GIS software 
packages.  

Assuming the default install directory, all GIS files can be found at ...\ NU-TREND\
TRICSetup\ Data and\ NU-TREND\ TRICSetup\ TRI. The Data folder is used to store 
network information, which includes CMAP_ntwk and CMAP_nodes. The TRI folder stores 
link and O-D information generated by TRIC. Because all required attributes have been 
generated by TRIC, we can easily import .shp files into the GIS package. Then we can use 
GIS software for graphical comparison. (Details about GIS software are not elaborated 
because they are beyond the scope of this report.)  

We first compared the B-index and P-index for the three cases. We colored all links 
in the network based on their indices (Figures 5.17 through 5.20). It is readily apparent that 
both indices reach the highest value during AMPEAK of WEEKDAY. On the other hand, 
they plummet during MIDDAY of WEEKEND. This is reasonable because the numerators of 
both indices are the 95th percentile travel time, which increases when traffic becomes 
congested.  

We can see from the figures that the area around Chicago Loop is more congested 
than the suburban areas. In addition, the indices for the routes between our O-D pair (Node 
908 and Node 132) vary widely during different time periods. The justifies use of TRIC to 
find the most reliable path during different time periods.  

Next, we focused our analysis on six major freeways/arterials around the Chicago 
area (I-90/94 East, I-290, I-55, I-90/94 West, N. Lake Shore Dr., and S. Lake Shore Dr.). 
These freeways/arterials are major connections between Chicago and its suburban 
neighborhoods. We studied the indices for all these freeways/arterials at the same time. The 
purpose of the investigation was to shed light on traffic reliability data around the Chicago 
area during different time periods.  

A close examination of Figures 5.17 through 5.20 reveals that (1) indices of different 
routes are different at the same time of day and (2) indices for the same route vary for 
different travel times. For example, I-90/94 West is less reliable during morning rush hour. 
This is mainly due to the large traffic flow coming from the northwestern suburbs. For the 
same time period, I-90/94 West becomes more reliable compared with other routes on 
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weekdays at midday and on weekends during peak morning traffic hours. However, during 
those times, I-55 becomes less reliable.  

In short, TRIC reveals varying indices for different routes during different time 
periods. These indices show the risk associated with traveling a particular route. With TRIC, 
travelers benefit from better planning based on their travel time budget and risk level. Using 
TRIC by itself provides estimated travel time between O-D pairs. Integrating TRIC with GIS 
generates information about macroscopic traffic conditions.  
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Figure 5.17 B-index for the studied cases. 
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Figure 5.18 P-index for the studied cases. 
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Figure 5.19 B-index for the studied cases. 



52 

 
Figure 5.20 P-index for the studied cases. 
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CHAPTER 6 CONCLUSIONS 
 

Travel time reliability is important to highway users. Personal and business travelers 
value reliability because it allows them to make better use of their time. Shippers and freight 
carriers require predictable travel times to remain competitive in the market. The lack of 
travel reliability forces motorists to choose between running the risk of being late (therefore 
missing important appointments or just-in-time deliveries) or budgeting a large buffer time, 
much of which is often wasted.  

To hedge against such uncertainty, highway users need decision-supporting tools 
that are capable of exploiting existing data sources to (1) reveal and document random 
patterns of travel times on highway networks and (2) provide real-time routing decision-
making tools that take into account the uncertainties of travel time and traveler requirements 
for reliability.  

We addressed this challenge by developing a software program called Travel 
Reliability Inventory for Chicago (TRIC), which not only helps visualize and archive statistics 
information for link and path travel times but also provides a reliable routing decision-making 
tool. In this chapter, we first summarize what was accomplished in this project and then 
discuss possible directions for further research.  

6.1 MAIN RESULTS 
We proposed a reliable a priori shortest path (RASP) problem to find the shortest a 

priori paths so that a traveler can arrive at his/her destination on time, or earlier, at a desired 
probability. We found that solving this problem is equivalent to solving the non-dominated 
paths under the first-order stochastic dominance rule. We showed that Bellman’s optimality 
principle can be applied to solve all non-dominated paths. In light of this, we developed a 
label-correcting solution algorithm.  

The path travel time distribution was computed by convolving the travel time 
distribution of its member links. The convolution process was found to have a strong effect 
on the computational performance of the solution algorithm. To simplify the implementation 
of integral convolution, the distributions were all discretized. Some solution techniques were 
proposed and tested to try to improve the computational performance of the solution 
algorithm. We found that the direct convolution scheme based on a discretization method 
called the adaptive discretization approach (ADA) achieved the best balance between 
accuracy and computational efficiency. The ADA-based direct convolution scheme was 
employed in TRIC to solve the reliable a priori shortest paths problem.  

The premise in solving this problem is that we have perfect information about link 
travel time distributions throughout the entire network. We also assumed that the link travel 
time distributions are not correlated to each other. In one of our previous research projects 
(Nie et al. 2009), we constructed the travel time distributions of expressway links during 
different time periods based on the traffic data collected by loop detectors and I-PASS 
plazas in the Chicago metropolitan area. TRIC contains the data for these link travel time 
distributions and provides tools to visualize them, as well as to archive them as a shape files 
for GIS applications. 
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6.2 FUTURE WORK 
Because computational efficiency is always a concern in achieving reliable routing 

guidance in real time (as with a on-vehicle navigation system), the computational 
performance of our solution algorithm to the RASP problem could be refined.  

Our RASP model does not consider the link travel time correlation, which implies that 
travel time in one link has nothing to do with that of its adjacent links, which is contrary to 
beliefs about traffic congestion. The research team did not employ Markovian probability to 
study the correlation between link travel times (Nie and Wu 2009); therefore, some 
assumptions must be imposed on transition mapping. For example, if one link has multiple 
adjacent upstream links, the transition probabilities have to be identical. However, these 
assumptions were not verified with the real traffic data we obtained from loop detectors in 
the Chicago metropolitan area. Finding an adequate method to model the link travel time 
correlation is an interesting direction for further research.  

Currently, TRIC covers just the interstate highways and expressways, which 
accounts for only a small portion of the links in the Chicago metropolitan area. We estimated 
the travel time distribution of arterial roads and local streets through congestion data from 
the Chicago Metropolitan Agency Planning (CMAP) (Nie et al. 2009). We also attempted to 
use Chicago Transit Authority (CTA) buses as traffic probes to evaluate traffic speed in the 
network of Chicago. However, travel times obtained from CTA buses did not present a clear 
pattern of distributions because buses make frequent stops (Nie et al. 2010). To obtain 
travel time data for arterial streets, additional data sources should be exploited. More and 
more motorists are using the navigation functions of smart phones when driving and 
motorist travel information is being collected by wireless service providers. Cell phone data 
represent the actual traffic situation better than the bus data do because cell phone data are 
associated with individual vehicles in most cases. Moreover, cell phone data provide 
broader coverage than bus data because not all local streets are covered by bus routes. 
Therefore, cell phone data may provide high-quality information about individual trips, which 
can be used to construct distributions of travel times on arterial roads and local streets.  
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