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Application Aware Approach to Compression and Transmission of H.264

Encoded Video for Automated and Centralized Transportation Surveillance

Abstract

In this report we present a transportation video coding and wireless transmission system specifically tailored to automated
vehicle tracking applications. By taking into account the video characteristics and the lossy nature of the wireless channels, we
propose video preprocessing and error control approaches to enhance tracking performance while conserving bandwidth resources
and computational power at the transmitter. Compared with the current state-of-the-art H.264-based implementations our system

is shown to yield over 80% bitrate savings for comparable tracking accuracy.

Index Terms

Transportation video, object tracking, surveillance centric coding, preprocessing, forward error correction (FEC), error con-

cealment, H.264/AVC,

I. INTRODUCTION

Remote imaging sensors are commonly deployed for transportation monitoring and surveillance applications. Imaging sensors
present a unique set of advantages over other conventional sensing modalities such as embedded inductor cables and radars. The
captured videos can be used for applications such as tracking, as well as for real-time monitoring of traffic conditions [1]-[4].

To reduce infrastructure costs associated with the deployment of such sensors and increase urban coverage, most video
imaging solutions require the transmission of video to a centralized location for viewing, (automated) analysis, and/or archiving.
Remote nodes are deployed solely for the purpose of video capture and transmission, and hence should have low cost
which implies limited computational power. Transmitting high-quality real-time video requires communication channels with
bandwidth on the order of mega-bits per second per channel. The requirement for high bandwidth can only be fulfilled with
wired links, which are both cost-ineffective and inflexible. Alternatively, video compression technologies can be applied at the
remote sensors such that the compressed bitrate can be accommodated by the modern wireless communication channels.

Recently the state-of-the-art video compression technology H.264 has been proposed for transportation video related appli-
cations, and has significantly reduced the bandwidth requirement [5]. Most of the systems currently in use are not specifically
optimized for transportation videos and employ generic video encoding procedures to remove redundant information from the
source videos. Such information removal is based on numerical quality metrics such as peak signal to noise ratio (PSNR) or
structural similarity (SSIM) [6].

Although several approaches have been proposed to address compression in surveillance and monitoring applications, these
approaches are not application aware (i.e., they still optimize PSNR or similar criteria), may not be standard compliant, and

do not take into account possible channel losses [7]-[9].



Recently, in [10], it was shown that it is possible to further reduce bitrate by focusing resources in an application aware context
(automated tracking accuracy was used as the metric). While remaining standard compliant it was shown that computationally
simple temporal and frequency filtering operations could maintain high tracking accuracy, with reduced bitrate.

Another challenge faced by the transportation video transmission system is the lossy nature of the wireless channels. The
highly dependent H.264 bitstreams are sensitive to channel degradations, suffering error propagation due to the predictive
coding structure. There is significant interest in resource-distortion optimization given channel losses and error concealment
strategies [11], [12]; however, these works, as others, focus on maximizing PSNR and do not consider the accuracy of object
tracking. While the human visual system has the capability to mask certain artifacts introduced by packet losses and their
concealment, the effects of such artifacts on automated video analysis has not been explored. For example, error concealment
that ignores motion information will confuse trackers. Thus it is important to consider approaches that use some of the bitrate
to add resilience to errors in an application aware compression and transmission environment.

In this report, we extend the work in [10] and [13] and propose a transportation video transmission system that integrates
components at both the transmitter and receiver sides to increase performance (tracking accuracy) while minimizing bitrate,
given channel losses. The proposed system focuses on consolidating encoded bits on important video information and pro-
tecting it with error mitigation techniques. Specifically, at the transmitter, we propose a preprocessing component with the
goal of removing the signal components unimportant for tracking from the video and thus decreasing bitrate, while being
computationally efficient. To increase resilience to errors, we propose to use forward error correction (FEC) to minimize the
overall loss probability of important video content (in our case moving objects) while conserving bandwidth resources. We
consider both equal error protection (EEP) and unequal error protection (UEP) and provide the details on the implementation
and their merits. At the receiver side, we discuss two classes of error concealment (ERC) strategies and how they affect tracking
accuracy, and conclude that the temporal-domain motion copy (MC) algorithm is best suited for transportation video decoding.

The contributions of this report are centered on optimizing:

o bit allocation within video frames

e error protection schemes for video packets; and

« concealment strategies in case of losses, while

o maximizing tracking accuracy at the receiver’s end, and

e minimizing computational load at the encoder’s side.

Although other works discuss video quality-rate tradeoffs [11], [12], this is the first treatment of identifying beneficial error
mitigation and concealment strategies from the viewpoint of the performance of automated video analysis.

The rest of this report is organized as follows. In Section II we provide a high-level overview of the proposed system.
Section III presents the performance metrics used throughout this report. Section IV contains detailed descriptions of the
proposed system components, as well as discussions of their relative merits and limitations. In Section V we present experimental
results using real-life test videos and demonstrate the effectiveness of our proposed system. Our proposed systems yield
significant performance improvement over the state-of-the-art implementations and is shown to allow for over 80% reduction

in bitrate for comparable tracking accuracies. Finally the report is concluded in Section VI.



This report is based on work published in [14], [15].

II. SYSTEM OVERVIEW
We propose an application-specific video transmission system that aims at maintaining tracking performance at the central
office given the lossy nature of the wireless communication channels. The complete system design includes the processing at
both the transmitter side and the receiver side. The system architecture is illustrated in Figure 1.
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Fig. 1: System block diagram

At the transmitter side, the goal is to identify the video content that is most relevant to tracking and to consolidate the
encoded bits on such information. This is achieved by preprocessing the input uncompressed video V to remove the signal
components of low tracking interest. The preprocessor identifies motion of interest in the input video and classifies image
regions associated with such motion as foreground (FG), and conversely other image regions as background (BG). The core
operation of this process is to alter the signal composition in the BG such that a subsequent standard compliant generic video
compressor can encode it with a minimum number of bits. For example, the preprocessed video V contains background regions
exhibiting little motion, which can be efficiently encoded as the skipped macroblocks (MBs) using H.264. The goal is to obtain
an encoded standard-compliant bitstream V which is associated with bitrate R significantly smaller than the raw uncompressed
bitrate R.

This preprocessing step also aids in the channel protection step that will follow in two ways. Indirectly, by intelligently
allocating the encoded bits, it allows for the bitrate savings to be used for added redundancies to the encoded bitstreams such
that the transmitted video information is more resilient to channel degradations. More directly, the FG/BG information from the
preprocessing step serves as a useful guideline for unequal error protection, which is a channel protection option that assigns
higher protection levels to the foreground than to the background.

For channel protection, we specifically consider forward error correction in this work. For transportation surveillance
applications, the continuously captured video needs to be transmitted back to the central office in real time (due to application
constraints or due to low buffering capabilities), which imposes stringent delay requirements. FEC is suitable for such a
scenario because it has more controllable delay characteristics. FEC utilizes the channel state information (CSI) feedback from
the channel to determine the appropriate protection schemes. Let F'EC' denote the channel protection parameters. The bitrate

of the protected bitstream is consequently increased to R'(R, FEC), which is a function of both the base encoded bitrate



R and the protection scheme FEC. The preprocessor, encoder and FEC component comprise the transmitter module of the
system. More details about the design will be given shortly and we will also show how they influence the system performance.

The received bitstream, with possible transmission errors is decoded with error concealment techniques to yield the re-
constructed video sequence V, which is used as input for subsequent applications such as tracking [16]. Note that V the
reconstructed video at the receiver is different from V the captured raw video at the transmitter because (1) the video encoder
employs transform coding and quantization, which alter the video signal composition; (2) the lossy wireless channels introduce
degradations including packet losses and bit errors to the transmitted bitstream; and (3) the decoder employs error concealment
algorithms to estimate the lost information. Without proper handling, the discrepancies between V and V may severely affect
the tracker performance . The design objective of the system presented herein is to achieve the optimal balance between
tracking performance and bandwidth utilization, while always maintaining a low-computational profile at the encoder. In the

following paragraphs, we will introduce our approach in detail and compare it with current state-of-the-art implementations.

III. SYSTEM PERFORMANCE METRICS

In our system of transportation video surveillance, the ultimate application is to track (automatically) the objects (e.g.
vehicles) in the video and to perform subsequent operations based on the tracking results. Therefore, objective metrics are
necessary to quantify and optimize the tracking performance of the overall system. To quantitatively analyze the impact of
the various operations on the video quality, we compare the trajectories of the modified video with those of the input raw
video V, as is depicted in Figure 2. Here the modified video can be outputs at the different stages of the system, such as
the preprocessed video V, the encoder reconstruction V and the decoded video after transmission V. Since both tracking
and trajectory analysis are nonlinear operations, the relationship between the changes in tracking accuracy A and the video

modifications is rather complicated and to the best of our knowledge there is no effective analytical estimator so far.
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Fig. 2: Computation of tracking accuracy

There exist a multitude of tracking performance metrics and the associated trajectory analysis approaches, with various
solutions offering strength/weakness combinations suitable for different applications. In [17], a review of the state-of-the-art
for video surveillance performance metrics is presented. We choose the Overlap, Precision and Sensitivity metrics presented in
[10] and reintroduce them here for completeness due to their pertinence to the transportation tracking application. We denote
the trajectory obtained using the input raw video V as the ground truth (GT') and the trajectories obtained using the modified
video as the algorithm result (AR). The three accuracy components are defined as follows.

Overlap (OLAP) is defined in terms of the ratio between the intersection and union of the frame pixels covered by object



segmentations in ground truth and algorithm result, averaged over all detected objects,
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where GT,; and AR, represent the g™ object tracked in the raw video and the modified video, respectively, N and U denote
the intersection and union of the frame regions covered by the objects, respectively. The OLAP metric is normalized with
respect to the total number of objects detected in both the raw video and the modified video.

Define TP as the number of true positives and F'P as the number of false positives, where a true positive corresponds to
an object tracked in both the input video and the modified video while a false positive corresponds to an object tracked only

in the modified video but not in the input video. Precision (PREC') defined as

TP
PREC = 555 @

measures how credible the algorithm result is in terms of object identity.
Similarly, a false negative is an object tracked in the input raw video but not in the modified video. Let F'N denote the

number of false negatives. Sensitivity (SENS) is defined as

TP

In order to jointly optimize for a combination of the above metrics, the tracking accuracy A is defined as a convex combination

of OLAP, PREC and SENS.

IV. PROPOSED SYSTEM COMPONENTS
A. Preprocessor

As is introduced in the previous section, the preprocessing step serves two purposes: (1) to filter the input video to consolidate
encoded bits on video information that is most important for tracking; (2) and to provide a guideline for the channel protection
component if requested. To fulfill such purposes we present a preprocessing module illustrated in Figure 3. This “two branch”
design jointly serves the two aforementioned purposes. The lower branch analyzes the input video and identifies per-frame
background regions, in which it suppresses the intensity variations with the goal of minimizing the encoded bitrate and
maintaining tracking performance. The upper branch consists of an optional region-of-interest (ROI) extraction component
that explicitly provides foreground/background separation information to the forward error correction component. This ROI
extraction is optional since it is only used for explicit unequal error protection, which will be discussed in the following. For
equal error protection this FG/BG discrimination is not necessary, i.e., the switch is left open. In the following we will discuss
the details of each subsystem.

1) TDT Filtering: The temporal filtering process is performed using the temporal deviation thresholding (TDT) algorithm
introduced in [10]. The purpose of this filtering process is to both suppress intensity variations irrelevant to tracking and
hence reduce bitrate, and to improve tracking accuracy by removing signal components potentially distracting to tracking

applications. At reasonable compression ratios the intensity variations due to capture noise or local illumination changes are
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Fig. 3: Preprocessing block diagram

usually imperfectly represented in the compressed video, which, after decoding may contain artifacts that are misleading to
the tracker. For example, such noise-like variations may be sampled infrequently relative to the frame rate, and can result in a
seemingly random block update in the decoded video. These block updates may be interpreted as motion and hence may trigger
the tracking mechanism (thus either decreasing accuracy or increasing the complexity of the tracker by requiring particular
treatment of such spurious detections). The TDT algorithm seeks to suppress such intensity changes before encoding, thereby
both reducing the bitrate and improving the tracking accuracy.

The TDT algorithm is based on the assumption that for transportation surveillance video obtained from a static camera, the
majority of pixels undergo temporal variations due to noise. Therefore a video frame is predominated by a static background
where intensity changes are mainly due to capture noise and local illumination changes rather than actual motion. In the
TDT algorithm, noise-like intensity variations are modeled as a Gaussian process with zero mean and variance o7, where
the subscript ¢ is the time index. In our proposed system, we estimate the noise variance from both the temporal and spatial
domain, by examining the temporal intensity changes of all pixels within the ¢ frame and seeking the most probable one.

Specifically, let F; denote the t™ frame in the uncompressed raw video V. At any time instance, picture statistics computed
from the 7" most recent frames are maintained. The per-pixel standard deviation is computed and a histogram is constructed
from all these values. Since we assume most pixels undergo intensity variations due to noise or local illumination changes,
the mode of the histogram can be used as an estimator of the noise standard deviation. The reader is advised that the way
we estimate the noise is a suggestion and there are other (potentially more efficient and accurate) options that can replace this
step. The estimated noise standard deviation 6; is used as a threshold to classify the inter-frame intensity changes as either
of tracking interest or not. Subsequently a frame mask M, is obtained according to the classification which reveals the image
regions associated with actual motion and covers the ones associated with noise or local illumination changes. Mathematically,

the TDT algorithm operates iteratively as follows:

6+ = mode(std({Fi—141,...,Ft}))
Ay =[F; —F;4] @
Mt = At > Ta't

Ft:Mt*Ft‘F(l_Mt)*thl

where * denotes the element-wise multiplication of two matrices with the same dimensions and 7 > 0 is a threshold multiplier

that can be selected based on the tail probability of the Gaussian distribution. For example, letting ®(-) denote the cumulative



distribution function (CDF) for a standard Gaussian random variable, we have
Prob(A¢(ny,ng) < 1oy) =20(1) — 1. )

If we assume 95% of the intensity variations are not due to actual motion, we can select 7 to be 2. The output of the TDT
filtering is in the original format as the raw video, which is then used as the input to the encoder. Since the irrelevant intensity
variations in the background have been suppressed by the TDT algorithm, it was shown that the filtered video yields a bitrate
reduction compared with unfiltered video [10]. Moreover, since the information removed from the raw video has little tracking
interest, its removal is beneficial yielding a better rate-accuracy tradeoff.

2) Kurtosis-Based ROI Extraction for UEP: Although it will be presented in detail in a following paragraph, unequal error
protection assigns different levels of protection to different encoded video packets. The goal is to assign more protection to
video packets containing moving objects. As we will see later, we implement this using the flexible macroblock ordering
(FMO) option in H.264, which essentially requires a relatively static and homogenous map of FG/BG that is valid for a large
number of frames (ideally the whole sequence). Update to this map costs additional bits to be added to the bitstream. The
requirement therefore is to estimate a map (we term it here ROI) automatically which remains valid for as many frames as
possible (thus minimizes misclassification).

From the discussion above, TDT estimates a mask M for every frame, which would prohibit its direct use as an ROIL.
Multiple M; masks must be combined in an intelligent fashion to minimize misclassification. Recall that TDT is a pixel level
process that aims at reducing the effects of acquisition noise and thus may result in an increased number of false positives.
Identifying and eliminating such errors would require several computationally intensive higher-order processing steps. Here
rather than trying to combine masks from TDT we rely on another non-parametric algorithm that provides a homogeneous
ROI map.

The classification of FG/BG for the ROI is based on a non-parametric model of the temporal distribution of pixel intensities
that was introduced in [18] for the purpose of context aware compression. The goal there was to isolate the regions showing
events of high tracking interest (e.g., vehicles moving in streets) from regions undergoing periodic changes (such as waving
trees, water fountains, or light reflections) and focus bitrate in those regions. Note that TDT does not have the capability of
separating such type of motion. Here we adopt this approach for the purpose of FEC and UEP and we reintroduce it for
completeness with notation in agreement with the current manuscript. Specifically, let F;(n1,n2), denote intensity of a pixel
located at (n1,7n2) in the t" frame. In order to detect the ROI, we use the excess kurtosis of intensities for each pixel position

over time, defined as: - )
_ %Z;T:ol(Ft(nhnz) — F(n1,m9))*

wlmm) = s 2 e S (6)
(7 2i—0 (Fi(n1,n2) — F(n1,n2))?)

where F'(n{,ny) is the mean value of the intensities over the training length 7. Note that in order not to clutter the notation
we use 7' to denote both the buffer length in the TDT algorithm and the summation extent in the ROI extraction module. Also
note that T" should be less than the length of the entire sequence. In practice, if the scene is relatively fixed (e.g., the camera is

mounted on a pole), a single ROI can be used for a relatively long time, until significant scene change occurs. Therefore, the



switch before the “ROI Extraction” block in Figure 3 is closed only during the initialization (and re-initialization if necessary)
phase(s) of operation. We should emphasize that the ROI is not updated on a frame-by-frame basis, and hence has a relatively
low amortized computational complexity.

By definition, a Gaussian distribution has an excess kurtosis of 0. Furthermore, the additive property of kurtosis implies
that a mixture of Gaussians also has an excess kurtosis of 0. Since the capture noise is modeled as additive Gaussian, and
the periodic movements of objects (such as trees) can be modeled as a mixture of Gaussians, they both can be characterized
as having an excess kurtosis of 0 [18]. The desired type of motion due to events such as moving vehicles can be modeled as
a Poisson process, which has an excess kurtosis of 6. Based on the above discussion, we can build the ROI map of pixels
by thresholding their excess kurtosis values. For computational reasons, the threshold is set to a fixed value of 3, the middle
point between the excess kurtosis values of the two models. Once the pixels are classified, the classification of macroblocks
can be done based on a majority vote rule, i.e., the MB class label (FG or BG) is determined by the majority class of the
pixels within that MB.

Since the kurtosis-based ROI extraction can utilize higher-order statistics to associate the intensity variation with different
types of motion, it can potentially generate an ROI that highlights the most important image regions. This ROI map can be
used as a guideline for explicit unequal error protection, which treats the foreground and background regions differently by
assigning higher protection levels to the more important foreground. Furthermore, this UEP treatment requires the grouping
of MBs according to their class labels, which can be fulfilled by using the FMO feature of the H.264 encoder. Therefore, the
ROI map generated herein is fed into both the encoder and the FEC module, as is illustrated in Figure 1.

3) Discussion on preprocessing: As is introduced in the previous section, the preprocessing step serves the purpose of
filtering the input videos for bitrate consolidation and providing when needed a guideline for channel protection in an UEP
scheme. In order to achieve these goals, we propose TDT for video filtering and a kurtosis-based approach for ROI extraction.
As we have seen from the previous sections, both TDT and kurtosis-based ROI extraction target at identifying video components
of high tracking interest. However, each algorithm implements this at a different scale.

TDT is essentially a pixel-level noise filtering process, and considers any pixel that is above a certain threshold as of
interest. This process is repeated at each frame and the goal is not to spend bits on encoding noise-like intensity variations.
Thanks to its fast adaptivity, TDT is less sensitive to misclassifications as it has the opportunity to correct misclassified pixels
on a frame basis. In this way TDT ensures the encoded bits are spent on the most important pixels. However, TDT cannot
distinguish between pixels undergoing periodic motion (e.g., swaying trees) versus a passing vehicle. In contrast the kurtosis-
based ROI extraction is a non-parametric area of interest extraction algorithm that aims at identifying a region (ideally the
road infrastructure) where aperiodic motion is mostly likely to occur. This ROI is not adapted at every frame and is estimated
during an initialization phase that is longer than the number of frames needed in TDT. In fact, a static ROI map is desirable
from an implementation viewpoint. Due to limitations of the H.264 standard and how flexible macroblock ordering is designed
which was alluded previously and will become apparent in a later paragraph, the ROI map cannot be updated at every frame
and must remain static for as long as possible, since updating it incurs bitrate cost. Thus, the choice of how up to date an

ROI map is constitutes a choice of bitrate savings: one could use the mask M, of TDT as an ROI map for UEP, but this map



would need to be updated frequently which would cost bits, or could use a single map from several TDT masks (e.g., an OR
combination of multiple M; for an extended duration) to minimize the need for an ROI update but risk degrading accuracy.
Therefore in our system we propose to use a separate kurtosis-based non-parametric approach to solve this problem. In the

results section we will discuss the above points further with some examples.

B. Encoder

In this system we use the state-of-the-art video compression technology H.264 as the source encoder [5]. The input to the
encoder is the TDT-filtered video in its original format (YUV in our experiments), and the output of the encoder is a standard-
compliant bitstream. The video frames are divided into slices, each consisting of a set of MBs. Each slice is independently
decodable and can be transmitted as an individual unit.

As mentioned above, if the ROI map is present and UEP is desired, the FMO option is enabled in the H.264 encoder.
Specifically, we divide the video frame into two slice groups, with one for the foreground regions and the other for the
background regions. The slice groups cover potentially disconnected image regions, and with FMO we can assign non-
consecutive macroblocks to the same slice (within the same slice group). This feature adds flexibility in the encoded bitstream
and facilitates the application of unequal error protection. Since the SG mapping information is conveyed in the picture
parameter set (PPS) network abstraction layer (NAL) unit as specified by H.264 and one PPS is referenced by a set of frames
(possibly all frames within a video sequence), the information contained in PPS is relatively stationary and does not allow
fast per-frame changes. Any necessary update in the PPS due to a new ROI will cost bits. Thus, how up to date the FG/BG

information for the purpose of UEP is limited by the H.264 standard and by bitrate requirements.

C. Forward Error Correction

The output of the H.264 encoder is a set of NAL units, where each NAL unit contains a slice of encoded macroblocks.
Encoded slices are encapsulated into individual packets. Therefore, we will use “packets” and “slices” interchangeably.

The forward error correction module improves error resilience of the transmitted packets by adding redundancies in the
encoded bitstreams. There exist various approaches for adding redundancies, including both intra-packet FEC and inter-packet
FEC [16], [19]. Considering the limited computational resources at the remote node, we propose a simple yet effective channel
protection methodology using redundant slices (RS) to minimize the overall packet loss probability in the wireless transmission.

Since the multiple copies of an encoded slice are transmitted independently, a slice can be decoded without error as long as
at least one copy is received intact. Let C denote the number of copies for a packet and {e.}<_; the loss probabilities for the
copies. Therefore, the overall loss probability e of the protected packet is the product of loss probabilities of all the copies,

given as follows:
C
e= Hec . @)
c=1

If the channel is characterized by an independently and identically distributed (IID) fading model, then we have

er =ey =---=ec, 8



and

e:elc. 9)

Hence for channels characterized by an IID fading model, the RS strategy linearly increases bandwidth usage, yet exponentially
decreases the overall packet loss probability.

With RS as the FEC scheme, the question at hand is how to determine the protection level C. As is mentioned in the previous
paragraphs, based on the choice of C, the protection schemes can be broadly categorized as either equal error protection or
unequal error protection. EEP assigns a uniform protection level to all the encoded packets, while UEP assigns possibly different
protection levels to different packets.

The apparent advantage of EEP is its inherent simplicity. In many cases since the TDT filtering step has suppressed the
video signal of low tracking interest, our system can be considered to have an “indirect” UEP. Although we assign the uniform
protection level to all the encoded packets in this case, significantly higher bitrate is devoted to the important video signal
than to the intensity variations due to noise and local illumination changes. In practical systems, given the available bandwidth
and the channel conditions, joint source-channel coding can be employed to determine the encoded bitrate and the protection
level C. For example, if the channel condition is good, more bits should be spent on source encoding to achieve better video
quality. Otherwise, if the channel is very lossy, using low bitrate and high protection level can potentially achieve better result.

In the other cases when the input frames exhibit complex motion of mixed types including actual object movement,
background light reflection, and periodically changing objects, UEP and the proposed kurtosis-based ROI extraction (Section
IV-A2), have the potential to distinguish the motion types and make better utilization of the bandwidth resources. The assignment
of protection levels (in terms of the number of copies transmitted for a packet) constitutes a trade-off between the effective
bitrate and the overall loss probability.

Given the estimated ROI map (Section IV-A2), we divide a video frame into slices in such a way that all the MBs in a single
slice belong to the same group. For foreground slices, we assign the protection level = 1,2, --- , and for background slices,
we assign the protection level L < H. The values of H and L can be selected based on the maximum supported bitrate Randa
target overall loss probability Peei. Specifically, let Zy denote the set of foreground slices, and let Z;, = {0,1,--- ,I—1}\Zx,
where I is the total number of slices and “\” is the set difference operator. Let R; denote the size of the i slice. The pseudocode

shown in Algorithm 1 can be carried out to determine H and L.

Algorithm 1 Determining UEP Error Protection Levels

—_

© Crarget = {log P..np.-m(Rarget)—‘ ; /* Punprot is the unprotected packet loss probability */

2 f Carger Doz, Ri + Yosez, Ri > It then

% H=|(R=Yieq, B)/ Yier, Bi|:

4: L=1;

5: else

6: H= Ctarget

T = L(R — Crarget ZiEIH Rl)/ ZiGIL RZJ ;
8: end if

The underlying assumption here is that R can support at least one copy of each packet (in either group). If this assumption



is violated, then we can prioritize important packets and drop the less important packets first as discussed in [20].

D. Decoder and Error Concealment for Tracking

In our case by design of FEC a lost packet will not be retransmitted; consequently the information contained in the lost
packet must be estimated in the decoding process. The estimation of the lost video content using the reconstructed video
content available in the decoded picture buffer (DPB) is known as error concealment (ERC). Although ERC strategies have
been developed in the context of video transmission their effects on tracking performance (and thus their use in application-
aware environments) have not been studied. Here we present a few of the most commonly used strategies and discuss their
relative merits in our application.

In general, ERC works by utilizing the spatial or temporal correlation between the lost information and its neighbors [21].
A typical example of ERC scheme utilizing spatial correlation is the boundary matching algorithm (BMA) [22], which
is implemented in the JM H.264 reference model. The algorithm works by interpolating the video content from reliably
reconstructed spatial neighbors into the region with information loss. The interpolation option is selected to minimize the

discrepancies of the boundaries surrounding the lost region. Pseudocode for the BMA strategy is shown in Algorithm 2.

Algorithm 2 Boundary-Matching Error Concealment Algorithm

1: predM BStatus = Collect PredM BStatus(curr M B Location, M BLossMap, frameWidth, frameH eight);
2: for all block in the current MB do
3: minDist = BIGNUM BER,;

4: best Neighbor = 0;

5: for all neighbor of block do

6: motionIn folblock] = motionIn fo[neighbor];

7: predRec|block] = BuildPredRec(DP B, motionIn fo[block]);
8 currDist = CalcEdgeDist(predRec[block], dist Metric);

9: if currDist < minDist then

10: minDist = currDist;

11: best Neighbor = neighbor;

12: end if

13: end for

14: reconM Blblock] = BuildPredRec(DP B, motionIn folbest Neighbor]);
15: end for

Besides spatial types of ERC (e.g., the BMA), there are ERC schemes making explicit use of temporal correlation. A
straightforward but intuitive example in this category is the motion-copy (MC) algorithm [23]. The MC algorithm copies the
motion information from co-located MBs in the previously decoded frames and then reconstructs the pixel values using such
estimated motion information. In a simple case, the MC algorithm copies the reference picture index from the previously
decoded frame, and then scales the motion vectors accordingly. Pseudocode for the MC strategy is shown in Algorithm 3.

Any mismatch between the reconstructed frame and its encoded variant prior to errors (known as encoder/decoder mismatch)
creates severe artifacts (e.g., flashing/unsmooth macroblocks, errors in motion consistency, intensity variations). In transportation
videos, it is reasonable to assume that objects of tracking interest exhibit smooth and consistent translational motion throughout
consecutive frames. In such scenarios, encoder/decoder mismatch creates trailing artifacts that are particularly distracting to

trackers and lead to decreased accuracy. Thus, it is desirable to identify ERC strategies that minimize such type of errors.



Algorithm 3 Motion-Copy Error Concealment Algorithm

1: for all block in the current MB do

2 motionVector[block] = Scale M otionV ec(motionV ector|colocated BlockInPrevFrame));
3 ref Picldz[block] = ref Picldx|colocated BlockInPrevFramel;

4 motionIn folblock] = {motionV ector|block], ref PicIdx[block]};
5

6:

reconM Blblock] = BuildPredRec(DP B, motionIn folblock]);
end for

The MC algorithm is potentially able to accurately estimate the motion information due to its use of the motion vector (line
2) in the pseudocode list. The MC algorithm is particularly suitable for the preprocessed video, because the pixel variations
not due to translational object motion have been suppressed by TDT. With the MC algorithm, the scaled motion vector and
extrapolated reference frame index provide reliable reconstruction of the lost video information using its temporal predecessors.
In the numerical examples below, we will show several examples of such artifacts and demonstrate that the MC algorithm
indeed outperforms the spatial BMA scheme, in terms of tracking accuracy improvement and show that use of BMA leads to

an increase in false positives.

V. EXPERIMENTS
A. General Framework

To verify the gains made possible by our proposed schemes, we conduct experiments using multiple sequences with different
characteristics such as viewing angles, quality and type of observed vehicle traffic. Details of the sample implementation and
experimental procedure with the test results are presented below.

The following video sequences are used for the experiments. The “Camera6” sequence (resolution 640 x 480) [24] used
under the NGSIM license courtesy of the US FHWA shows an intersection with light traffic, with trees swaying in the wind
and buildings casting reflections of passing cars as part of the scene. The “dt_passat” sequence (resolution 768 x 576) [25] by
courtesy of KOGS/IAKS Universitit Karlsruhe shows a busy intersection with steady traffic interrupted by a traffic signal and a
light urban rail crossing. Both sequences contain significant capture noises. Both sequences consist of 600 raw video frames in
YUV420 format. For videos captured at real-time (e.g. 25 Hz), this amounts to uncompressed bitrates on the order of hundreds
of Mbits/sec, which far exceeds the capacity of current wireless channels. Therefore videos must be heavily compressed prior
to transmission.

To implement the proposed system the open-source JM 16.2 [26] encoder is used. When UEP is employed and the ROI map
is present, FMO is enabled and the ROI map is used to allow for packetization of the two different slice groups. Otherwise, the
packets are to be uniformly protected and hence no FMO is needed. Unless otherwise noted, in the experiments we employ the
packetization strategy of maximum slice size (in terms of encoded bytes). At the receiver side the JM decoder is modified to
enable the MC strategies. The JM decoder has a built-in BMA for error concealment, and it is used for performance evaluation.
The open-source OpenCV 2.3 [27] “blobtrack” module is used as the object tracker which relies on the mean shift object
tracking algorithm [28].

In the following experiments, we consider an IID channel model, which results in independent losses of the transmitted

packets. Although it is an ideal model, it provides a reasonable approximation to real channel conditions under certain



assumptions. One such assumption is the channel conditions vary much faster than the transmission data rate. In that case the
effect of channel variation is smoothed over the transmission of packets. In addition, if packet interleaving is possible then the
multiple copies of an encoded slice can be transmitted at disperse time instances. If the temporal distance is sufficiently large
compared with the channel memory, the channel conditions can be reasonably approximated as being IID. As an example,
consider the transportation videos captured and transmitted at constant frame rate of 25 frames per second (FPS). If our system
allows maximum latency of 5 frame intervals, and we interleave the transmission of different copies of a packet by this amount
of time, then the temporal distance between two copies of the same packet is 200 ms. Since the coherence time of modern
wireless communication channels is typically on the order of a few milliseconds [29], [30], IID channel model is a reasonable

approximation.

B. Effect of Preprocessing

To illustrate the effect of the proposed preprocessing filter in terms of bitrate consolidation and accuracy improvement, we
take the raw video encoded using H.264 as the benchmark. In addition, we consider an independent FG/BG segmentation
algorithm initially introduced in [31] and improved in [32]. Despite its popularity as a FG/BG segmentation approach, this
algorithm has not been used for video filtering applications similar to what is considered herein. We adopt the principles from
the original algorithm and explain how to adapt it for video filtering in the following paragraphs. This adapted segmentation
approach is used as a reference for our proposed preprocessing module, and we will discuss the relative merits of the two
designs.

Briefly explained, in this reference approach, the temporal pixel intensity variation is considered as a “pixel process” [31],
where at each particular time instance, the pixel intensity value is a random variable drawn from a mixture of Gaussians (MoG)
distribution. The Gaussian components are ranked by their pertinence (inversely related to variance) and prior probabilities. The
pertinent Gaussian components with high prior probabilities are considered to be associated with the background. For pixels in
a new frame, they are matched to one of the Gaussian components based on the normalized distance between the pixel value
and the component mean. A pixel is classified as background if the Gaussian component it matches to is considered to be
associated with the background, and it is classified as foreground otherwise. After the matching process, the parameters (means
and variances) and the prior probabilities of the Gaussian components are updated, incorporating the information carried by
the new pixel. For details about the MoG FG/BG segmentation algorithm, the reader is referred to [31] and [32].

The MoG-based FG/BG classification is performed for all pixels in the new frame. After the FG/BG separation process is

completed, a mask M, is generated such that

1, if Fi(n1,ne) € foreground
Mi(n1,n2) = ) (10)

0, otherwise

where M;(nq,n2) is the value of the mask at location (n1,n2) and time instance ¢. Adopting notations similar to what are
used in the discussion of TDT, we have

Ft = Mt *Ft + (1 - Mt) * Fstaticv (11)



where F, is a static image taken from the video to represent the background. In a typical background subtraction application
the background frame is usually set to black but for visual purposes a static frame from the video is used to obtain the processed
video. Although any frame taken from the video can be used as the static image Fy., it is necessary that this frame is not
updated because otherwise it will confuse the tracker .

Although TDT can be considered a simplification of MoG using a single Gaussian component, the different classification
decisions between the two imply different treatment as to what is considered to be background. For TDT algorithm, the
background regions are replaced by the collocated image signal from the previous filtered frame; thus a pixel in background
is considered unchanged between frames ¢ and ¢t — 1. For the MoG algorithm, the FG/BG decisions are made by comparing
the input pixel values with the statistical models and therefore the background pixels may not exhibit resemblance to their
predecessors in the previous frame. This implies that TDT will have a more visually appealing background that is constantly
updated and adaptable to changes. However, this adaptability leads to bitrate costs since as expected fewer macroblocks are
skipped. MoG on the other hand uses a static background that may be visually less appealing but results in more skipped
macroblocks (thus bitrate savings). Letting MoG mimic TDT in BG treatment and use the previous filtered output to replace
the background will result in trailing artifacts due to how MoG treats the background.

An illustrative example will demonstrate the different treatment of background between TDT and MoG. For explanatory
purposes we assume the MoG has two components, with one representing the FG (high intensity) and the other representing
the BG (low intensity). The MoG algorithm classifies a pixel based on its normalized distance to the means of these two
components instead of based on its difference between its predecessor. Consider a pixel on the inner boundary of a moving
vehicle (FG object) in frame ¢ — 1. In this frame (£ — 1), this pixel is classified as FG and hence the pixel in the filtered frame
F,_1 has high intensity value. In frame ¢ due to the motion of the vehicle, this pixel is no longer located within the vehicle.
This is where the difference between TDT and MoG starts to appear. For TDT, because this pixel experiences a significant
change in intensity value (from high value in the foreground to low value in the background), it is classified as FG and hence
the output at time ¢ will be the same as the input, which is low intensity value. However, in MoG the pixel will be classified
as BG because of its low intensity value matches the BG Gaussian component. Since MoG replaces this BG pixel by the
colocated pixel in the static image, the output pixel assumes a low intensity value. However, if we let MoG mimic TDT in
BG treatment and use the previous filtered output to replace the background, this pixel (classified as BG) would assume the
value from the filtered frame at time ¢ — 1, which was FG and had high intensity value. Therefore as the video proceeds,
there would be severe trailing artifacts following the moving vehicle if the MoG algorithm had used a background treatment
similar to that employed in TDT. In summary, for TDT, whatever decided to be BG should exhibit little difference from its
predecessor, and hence using its predecessor to replace it makes sense. For MoG, a pixel classified as BG does not necessarily
mean it is similar to its predecessor, and therefore we may not directly use its predecessor to replace it.

An additional benefit of TDT is its lower computational complexity. The MoG algorithm maintains a multi-component
model for each pixel while the TDT algorithm maintains a single-component model for all pixels within a frame. Hence TDT
requires less computation to update its statistical model and uses less space to store the model than MoG. This difference is

important in light of the application considered in this work, where the remote imaging sensors are typically computational



power constrained and memory limited.

We will see shortly that TDT, despite its relative simplicity, has satisfactory performance in terms of bitrate consolidation
and accuracy improvement compared to the MoG algorithm, which is used as a reference.

For the remainder of our experiments for TDT filtering, we set the threshold 7 to be 2 (assuming 95% intensity variations
are due to noise or illumination changes) and buffer size 7" to be 7; for MoG filtering 5 Gaussian components are used. Unless
otherwise noted, in the experiments we use the first frame in a video sequence as the static image for MoG. Note that in a
practical deployment the statistical models can be updated in an auto-regressive fashion instead of maintaining a full buffer of
image frames.

In Figures 5 and 6, we present sample outputs from the preprocessing steps from typical frames that exhibit moving
objects of tracking interests (e.g. vehicles and pedestrians) as well as noise and irrelevant motion. Figure 5(a) shows the 422t
frame in the “Camera6” sequence, which includes a group of people walking on the sidewalk and streams of vehicles passing
through the scene. Figure 5(b) and 5(d) show the masks generated by the MoG and TDT filters, respectively. As can be seen
from the figures, both algorithms generate relatively accurate foreground masks, uncovering the moving objects of tracking
interest. TDT filtering misclassifies some solitary pixels in the background as foreground, leading to false positives. Although
these may not hurt bitrate performance noticeably (because of the small proportion of such pixels per frame) as we will see
next, they are evidence as to the difficulty of fusing multiple masks to create a homogeneous region of interest for UEP. To
the contrary, Figure 5(c) shows the ROI map extracted by the kurtosis-based algorithm. After analysis of the video statistics
(excess kurtosis), the ROI extraction identifies the regions in the video where motion of tracking interest is likely to occur.
The generated ROI map clearly highlights the streets and sidewalk and is thus well suited for UEP. However, if it were to be
used for compression some bits would be spent on encoding static information (e.g., road surface). Thus our proposed design
takes advantage of the complementary behavior of the two algorithms achieving higher accuracy with less computational cost.

We examine quantitatively the effectiveness of the TDT and MoG algorithms in bitrate consolidation and compare their
performance with unpreprocessed video encoded using H.264 (the baseline). All videos are encoded and decoded using the
standard JM codecs and tracking accuracies are recorded. It is evident from Figure 4 that the proposed TDT filtering effectively
consolidates bitrate on the video content most relevant to tracking. Compared to the baseline, TDT significantly reduces
the encoded bitrates while maintaining satisfactory tracking accuracy. Compared to its MoG counterpart, TDT demonstrates

comparable or even improved performance despite its computational simplicity.

C. Effects of Error Concealment

As alluded in Section IV-D error concealment algorithms vary in terms of their effectiveness in recovering the lost information
and maintaining tracking accuracy. To investigate these variations, the unpreprocessed videos are encoded with various
quantization parameters (QPs) and for each QP eight random channel realizations are obtained. In order to make a fair
comparison, for each realization, the same lossy bitstream is decoded with the ERC strategies being considered, and the final
tracking accuracy results of each realization are averaged. Besides, in order to clearly examine the effects of ERC, we employ

a popular packetization strategy in which each slice consists of a row of MBs.
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Fig. 5: Preprocessing for “Camera6” sequence

Figures 7 and 8 show zoom-in views of the concealed image regions for the “Camera6” and “dt_passat” sequences,

respectively. As disc

ussed in Section IV-D, the “trailing” artifacts seen in the figures are examples of artifacts due to

encoder/decoder mismatch that occurs when the lost information is imperfectly estimated at the receiver. It is expected that

such artifacts are quite misleading to many trackers, which rely on local image features to determine the position and shape

of the objects.

Since the spatial-domain BMA algorithm only considers local image consistency it uses metrics based on the difference

between pixel intensities (such as sum-of-squared-differences and sum-of-absolute-differences). Minimizing cost functions



(c) kurtosis-based ROI (d) TDT mask
Fig. 6: Preprocessing for “dt_passat” sequence
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Fig. 7: Sample concealed frame for “Camera6” sequence

based on such metrics does not necessarily lead to optimal concealment for the purpose of tracking. On the other hand,
the temporal-domain error concealment strategy MC, takes into account the importance of consistent motion. It makes better
utilization of the motion information embedded in the previously decoded frames and gives results with less severe “trailing”
artifacts. This visual observation is confirmed also from our quantitative analysis.

In Figure 9 we plot the tracking accuracies for the concealed video sequences at various bitrates. Average packet loss
probability is maintained at 0.05 for both sequences. As can be seen from the figures, videos concealed with MC in general
preserve more useful information for tracking and therefore yield higher tracking accuracies. The comparison of tracking
accuracy and its components (Section III) between videos concealed with MC and BMA is given in Table I. The average

improvements in tracking performance (overlap, precision, sensitivity, and overall accuracy) for videos concealed using MC
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(a) BMA concealed frame (b) MC concealed frame

Fig. 8: Sample concealed frame for “dt_passat” sequence
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Fig. 9: Comparison between error concealment for tracking performance

over BMA are given and the standard deviation of such improvements are computed. The experimental results verify our
theoretical reasoning from the previous section. In fact when examining the individual components of tracking accuracy, we
see that when BMA is used a 12% reduction in precision is observed across all bitrates compared to MC, while for overlap and
sensitivity the differences are relatively small. By the definition of precision and sensitivity (Section III) this implies that BMA
results in an increase of false positives, which is directly attributed to trailing artifacts due to encoder/decoder mismatches.
We should note that channel impairments (even under moderate channel conditions) do affect tracking accuracy negatively
and in particular the precision metric due to an increase in false positives. This explains the overall low tracking accuracies
for both sequences. Thus either trackers must be designed that are capable of dealing with such inputs or as we will see in

the next paragraph bitrate consolidation and channel protection must be introduced to improve overall system performance.



TABLE I: Tracking Performance Improvement with MC over BMA

Overlap Precision Sensitivity Accuracy
Mean | Std_dev | Mean | Std_dev | Mean | Std_dev | Mean | Std_dev
Camera6 | 0.0203 | 0.0099 | 0.0581 | 0.0207 | 0.0053 | 0.0170 | 0.0279 | 0.0129
dt_passat | 0.0194 | 0.0118 | 0.0330 | 0.0133 | 0.0117 | 0.0122 | 0.0214 | 0.0074

Sequence

TABLE II: System component settings

Svstermn ID Input Kurtosis-based ROI Extraction | FMO FEC Type Protection | ERC
y Filtering Method Enabled (Section IV-A2) Enabled | (Section IV-C) Level Type
TDT
Proposed-1 (Section IV-Al) No No EEP C= MC
TDT H=3
Proposed-2 (Section IV-Al) Yes Yes UEP I —9 MC
MoG
Reference (Section V-B) No No EEP c=3 MC
Baseline-1 None No No None C= MC
Baseline-2 None No No EEP C= MC
Baseline-3 None No No EEP Cc=3 MC

D. Overall System Performance

In the previous paragraphs we show that some preprocessing (TDT or MoG) can consolidate bitrate and that different ERC
strategies have different effects on tracking accuracy. In this section, we combine the proposed TDT preprocessing, FEC (EEP
and UEP) and ERC modules together into a complete system, and compare the performance with a reference system based on
MoG as well as variations of baseline H.264 implementations. Depending on the selection of preprocessing configuration and
FEC strategy, there exist multiple settings for the proposed system. From all possible combinations we present those settings
(Table II) that help illustrate the combined gains of the proposed approach.

We refer to the different system settings by their respective IDs listed in the first column in Table II. Note that both Proposed-
1 and Proposed-2 use TDT. However Proposed-1 employs EEP and hence does not require FMO-enabled encoding or explicit
ROI extraction. Proposed-2 on the other hand uses UEP for channel protection, which requires FMO-enabled encoding for
macroblock to slice group mapping and requires the ROI extraction step. The reference system employs the MoG algorithm for
video filtering and EEP as the channel protection option. MoG filtering replaces the background regions with a static image,
and thus minimum bits are spent on encoding such regions. Therefore a UEP scheme leads to minimal gains and is not shown
for clarity.

For the baseline implementations we use the H.264 encoder with the unpreprocessed video. Since channel errors have a
major impact on the decoded video quality, unprotected bitstreams (Baseline-1) yield exceptionally low tracking accuracy. In
order to make the comparison of results more meaningful, we apply EEP with two levels (C=2 and C=3) to the baseline
encoded bitstreams and record their respective tracking accuracy after transmission and decoding.

The performance comparisons are shown in Figures 10. The proposed and reference systems are plotted in solid curves
while the baseline implementations are plotted in dashed curves.

The figures make it evident that the baseline implementations, despite their great efficiency in generic video compression, are
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Fig. 10: Comparison of system performance for I[ID channel

less effective in handling the tracking-specific video compression and transmission. The proposed TDT filtering step removes
video content unimportant for tracking from the raw video and saves bitrate for protection purposes. The FEC module utilizes
the bitrate savings to add robustness to the encoded bitstream, providing protection to the video information most relevant for
tracking. At the decoder side, tracking-aware error concealment strategy is employed to recover the lost motion information
and therefore further improves the overall system performance. Quantitatively the proposed system yields approximately 80%
reduction in bitrate for the same tracking accuracy compared with the protected baseline implementation.

Comparing the proposed systems with the reference MoG-based system, we can see that they have similar performance
despite the simplicity of TDT. TDT being computationally less expensive than MoG, provides a significant advantage in
computational power constrained environments such as the remote nodes considered here.

Comparing between Proposed-1 and Proposed-2, we can see that under certain circumstances gains are possible by using
UEP. In situations when complex motion types are present UEP has the potential to outperform its EEP counterpart because
the ROI map it relies on is derived using higher-order statistics.

From this numerical analysis and comparison, we see that the proposed system is effective in (1) consolidating bitrate onto
the most important video content for tracking; (2) protecting the encoded bitstreams against channel degradations; and (3)
recovering lost information via tracking optimized error concealment strategies, while always maintaining a low computational
cost profile at the encoder side. The proposed system yields significant performance improvement over current state-of-the-art
video coding implementations that are not customized for tracking applications. Its performance is also validated with an
independent design adopted for the transportation video transmission and surveillance system. While achieving comparable
(and in some cases better) performance, our proposed system is computationally more efficient and provides a more feasible

solution in a resource-constrained environment.

VI. CONCLUSIONS

In this report we presented a video coding and transmission system specifically tailored to automated centralized vehicle

surveillance and monitoring. The characteristics of transportation video and the lossy nature of the wireless channels were
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considered when designing the system. Video signal components were analyzed and information less important to tracking

was removed effectively by preprocessing steps. To mitigate the negative effects of channel losses to automated tracking

of vehicles, we combined forward error correction at the transmitter and an error concealment module at the receiver. The

effectiveness of the proposed system was tested using real-life video sequences and the performance improvement over the

current state-of-the-art system in maximizing tracking accuracy shown.
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