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Summary: In this project, we have shown that the hydrothermal method can be used to tune 

the shape/size of CeO2 nanocrystals. CeO2 nanorods and nanocubes have been successfully 

prepared at low and high hydrothermal reaction temperature, respectively. The chemisorption 

analysis and CO oxidation test evidenced that a high oxygen vacancy concentration in CeO2 

nanorods leads to a lower temperature reducibility and superior catalytic activity, compared to 

CeO2 nanocubes. Out of this project, three refereed and two proceeding papers were published, 

along with several oral presentations made by PI and students.  
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1. Major Accomplishments 

Phase purity of the samples was quantified using Powder X-ray diffraction.  As shown in 

Fig. 1, all diffraction peaks were indexed to the cubic fluorite structure (JCPDS card number 34-

0394) confirming that the two samples were pure CeO2. The diffraction peaks corresponding to 

nanocubes are slightly shifted to higher angles while those corresponding to nanorods are 

slightly shifted to lower angles (this observation is highlighted by the green dotted lines in Fig. 1 

below). This implies that the crystal planes of the nanocubes have shorter d-spacing and a 

smaller lattice constant while those of nanorods have a bigger d-spacing and a larger lattice 

constant. The calculated particle size of nanords and nanocubes are 8.2 nm 20.3 nm, 

respectively. The (hkl) miller indices and d-spacing data were used to compute lattice constant 

information. Calculations revealed that nanorods and nanocubes had lattice constants of 5.429 Å 

and 5.413 Å respectively, implying that lattice constants decrease with increasing particle size. 

The lattice constant difference could also due to the lattice strain caused by the lattice oxygen 

vacancy in ceria nanorods.  
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Figure 1. Powder XRD patterns of CeO2 nanorods and nanocubes prepared by the hydrothermal 

reactions at different temperature. 

BET surface area analyses revealed that nanorods have higher surface area as compared 

to nanocubes (see Table 1 below). We attribute this to the fact that nanorods are of a smaller size. 

Table 1 below is a summary of the particle size, lattice constant, and BET surface area data for 

CeO2 nanorods and nanocubes. 
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Table 1. Particle size and lattice constant data for pure ceria samples 

 

Fig. 2 shows the Raman spectra and the color of the CeO2 nanorods and nanocubes 

samples. In both spectra, first order scattering peaks appear at 454 cm
-1

 and 464 cm
-1 

for 

nanorods and nanocubes respectively while second order scattering peaks appear at 600 cm
-1

 and 

726 cm
-1

for nanorods and nanocubes respectively. The first order peaks are evidence of 

symmetric vibrations of the F2g modes of CeO2 while the second order peaks can be ascribed to 

extrinsic oxygen vacancies present in the samples. Upon closer inspection, it is evident that the 

second order peaks of these samples feature different intensities. These peak disparities arise 

from differences in the oxygen vacancy concentrations per unit cell volume of the material. 

Specifically, the greater intensity of the nanorod's second order peak at 600 cm
-1

 compared to the 

nanocube's second order peak at 726 cm
-1 

reveals that nanorods have higher oxygen vacancies 

compared to nanocubes.  

 

200 400 600 800 1000

726 cm
-1

 

In
te

n
s
it

y
 (

a
.u

.)

Raman Shift (cm
-1
)

CeO
2
-170

o
C

600 cm
-1

454 cm
-1

464 cm
-1

  

 

CeO
2
-90

o
C

 
Figure 2. Raman spectroscopy data. Inset picture shows color of (a) ceria nanorods and                                    

(b) ceria nanocubes. 

 Interestingly as shown in the inset picture on Fig. 2, the two nanopowders assume 

different colors despite their identical chemical composition. Our hypothesis is that the yellow 

color in ceria nanorods is as a result of high oxygen vacancy concentration and a rough surface 

morphology (as will be shown in the TEM images).  

Sample Identity Particle Size (nm) Lattice Constant (Å) BET Surface Area 

Ceria nanorods 8.246 5.429 78.73 

Ceria nanocubes 20.344 5.413 37.63 
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Fig. 3 shows the UV-VIS absorption spectra for the nanopowders. The absorption spectra 

have the same general shape with a slight difference in magnitude. From the data, it is clear that 

the onset of the absorption band for nanorods occurs at around 482 nm while that of nanocubes 

occurs at around 430 nm. These absorption edges correspond to band gap energies of 2.78 eV 

and 3.11 eV for nanorods and nanocubes respectively. We therefore hereby state categorically 

that the band gap of cerium oxide nanoparticles could be engineered through varying their 

particle size and morphology. The disparity in the band gap size of the two samples stems from 

the fact that nanorods have a higher oxygen vacancy density and a higher content of Ce
3+

 ions 

compared to the nanocubes. 
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Figure 3. UV-Vis data indicating the onset of absorption spectra in ceria nanopowders. 

Fig. 4 presents Photoluminescence spectra for the nanopowders. The spectra are in very 

good agreement with UV-Vis and Raman spec data that have been presented above. Inspection 

of the spectra shows that the bandgap of naorods is 2.84 eV while that of nanocubes is 3.02 eV. 

As was mentioned earlier, these energies correspond to the O2p-Ce4f transitions in ceria. In 

addition to the band gap information, the figure also gives other information regarding the 

density of oxygen vacancies. Emissions that occur at around 2.37 eV in both nanorods and 

nanocubes can be associated with the intermediate energy levels that occur within the band gap 

of the nanoparticles. These intermediate levels are believed to consist of 2p states near the 

valence band and cerium 5d levels below the conduction band. In these intermediate levels, 

excitation processes occur when electrons are promoted from the oxygen 2p states to cerium 5d 

levels through the absorption of photons while emission processes occur when electrons 

localized in the cerium 5d levels decay into empty oxygen 2p states. The relative intensities and 

areas of these peaks compared to those that occur at higher energies and the total area of the 

spectra may be used to relay special information regarding to the extent of oxygen vacancies in 
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the materials. Based on the intensities and areas of the low energy (2.37 eV) peaks, it can 

therefore be concluded that ceria nanorods have a higher density of oxygen vacancies as compare 

to the nanocubes.  
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Figure 4. Gaussian fitting of Photoluminescence spectra for ceria nanorods and nanocubes.   

Figure 5 is a compilation of low magnification TEM images of the samples. From the 

data, it is easy to tell that different synthesis temperatures lead to different morphologies and 

size. Nanoparticles in both samples are well dispersed with negligible agglomeration.  

 

 
 

Figure 5. Low magnification TEM images of (a) ceria nanorods and (b) ceria nanocubes. 
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Close inspection of Fig. 6 shows that nanocubes are highly isotropic with each having a 

length of roughly 20 nm. Nanorods on the other side are comprised of multiple tiny crystals and 

each has a length of roughly 50 nm and a width of roughly 5 nm. It is believed that nanorods 

grow anisotropically since they have rough surfaces and are composed of multiple tiny crystals. 

Also, it is easy to note that crystal size and dispersion from TEM data are consistent with XRD 

and BET surface area analyses. Theoretical studies have shown that oxygen vacancy formation 

energies in different CeO2 surfaces follow the {110} < {100} < {111} sequence. In order to 

determine whether our samples were consistent with this theory, HRTEM analyses were 

performed as shown on Fig. 6 after which H2-TPR and CO conversion studies were then 

performed on the samples in order to correlate their low temperature reducibility and oxygen 

storage capacity to their exposed crystallographic facets. Our findings reveals that nanorods are 

{220}, {200}, and {111} terminated while nanocubes were {100} and {111} terminated. These 

results are consistent with theory as {200} and (220} facets belong to the same family as {100} 

and {110) facets respectively. 

 

 

Figure 6. HRTEM images for ceria nanorods (a-d) and nanocubes (e-f). 
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Fig. 7 shows the H2-TPR profiles for the samples. As can be observed from the data, 

ceria nanorods are characterized by three distinct surface and subsurface reduction bands that 

occur at 54.5
o
C, 410

o
C and 480

 o
C while the peak that appears at 773

 o
C represents bulk or lattice 

oxygen reduction. Ceria nanocubes on the other hand are characterized by two overlapped low 

intensity surface reduction bands at 382
 o

C and 504
 o

C and a higher temperature bulk reduction 

peak at 784.75
o
C. Based on the intensities of the surface reduction peaks, it is easy to note that 

ceria nanorods have higher low temperature reducibility compared to nanocubes. These 

observations are in agreements with HRTEM images as nanorods are seen to majorly contain 

{110} and {100} surfaces that are believed to release oxygen at lower reaction temperatures as 

compared to nanocubes that are majorly dominated by {100} surfaces. Ceria nanorods show 

higher low temperature reducibility as compared to nanocubes. In fact, it is even noted that 

nanorods showed a small reduction band at 55.5
o
C while nanocubes did not show any noticeable 

signs of reduction between room temperature and 350
o
C. We therefore concluded that reduction 

in ceria nanorods is surface dominated and requires a comparatively low amount of thermal 

energy to occur while the reduction of ceria nanocubes is bulk dominated and requires a high 

amount of thermal energy to take place. We attributed these unique observations to the fact that 

ceria nanorods have a narrower band gap compared to nanocubes and therefore encounter less 

potential energy barrier in achieving Ce
4+

/Ce
3+

 charge transfer during reduction processes. As 

mentioned above, these observations are in good agreement with theory. 
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Figure 7: Gaussian plots of TPR data 

Hydrogen consumption and oxygen storage capacity estimations were also carried out by 

using the above plotted TPR data. In order to carry out accurate computations, peak area 
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calibrations were first done by reducing known masses of Cu2O to Cu metal after which the 

corresponding peak areas were converted to moles of hydrogen that had been consumed in the 

reaction according to the chemical equation below: 

                     ( )     ( )         ( )       ( )…………………………………….1 

Similar computations were then performed in calculating the moles of hydrogen that were 

consumed per each mole of ceria nanoparticles. It is believed that ceria (IV) oxide reduces to 

ceria (III) oxide according to the equation below where theoretically speaking, one mole of 

cerium (IV) oxide combines with 0.5 moles of H2 to generate 0.5 moles of cerium (III) oxide and 

0.5 moles of H2O. This implies that one mole of cerium (IV) oxide should theoretically donate 

0.5 moles of O atoms and should consume 0.5 moles of H2 assuming 100% conversion of cerium 

(IV) oxide to cerium (III) oxide. However, our calculations revealed that it is not possible to 

reduce these materials to a perfect Ce2O3 structure. In fact, nanorods offered less that 50% of the 

theoretically predetermined oxygen storage capacity while nanocubes offered slightly more than 

50% of the theoretical figure. 

                     ( )      ( )          ( )     ( )………………….…………………2 

Our calculations are summarized in the table below, from which it is clear that ceria 

nanocubes offer a higher hydrogen consumption as compared to nanorods although nanorods 

offer a higher low temperature reducibility as was discussed earlier on. These observations are a 

manifestation of the effect of oxygen vacancy concentration in the lattice structure of ceria. 

Comparison of Table 3 and Figs. 4 & 7 shows clearly that a higher concentration of oxygen 

vacancies in ceria nanorods leads to lower hydrogen consumption and lower oxygen storage 

capacity while a lower concentration of the same in ceria nanocubes leads to higher hydrogen 

consumption and higher oxygen storage capacity compared. Consequently, this difference in the 

concentration of oxygen vacancies in the nanoshape leads to an enhanced low temperature 

reducibility in nanocubes and a poor low temperature reducibility in nanorods. 

Table 2. A summary of hydrogen consumption and oxygen storage capacity data. 

Sample 

identity 

Surface 

reductio

n peak 

area 

Bulk 

reductio

n peak 

area 

Surface 

hydrogen 

consumption 

(H2 Moles/CeO2 

moles) 

Bulk hydrogen 

consumption 

(H2 Moles/mole 

of CeO2) 

Total H2 

consumption  

(H2 Moles/mole of 

CeO2) 

Corresponding O 

storage capacity   

(O moles/mole of 

CeO2) 

Nanorods 2.1833 1.93118 0.1 0.09 0.19 0.19 

Nanocubes 2.5206 4.80839 0.11 0.22 0.33 0.33 

 

Fig. 8 is a plot of CO oxidation profiles. It is clear from the data that nanorods have the 

capacity to neutralize CO at relatively lower temperatures as compared to nanocubes. For 
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example, comparison of the profiles indicates that the oxidation of CO over ceria nanorods 

begins to occur at just above 75
o
C while nanocubes begin to neutralize CO at temperatures well 

above 175
o
C. In addition, the light off temperatures for nanorods and nanocubes are 242

o
C and 

270
o
C respectively. Ultimately, nanorods show complete CO neutralization at around 317

o
C 

while nanocubes begin to show 100% CO conversion at temperatures above 350
o
C. These 

catalytic differences can only be attributed to the crystallographic and morphological disparities 

between ceria nanorods and nanocubes. As was mentioned above, these catalytic performance 

disparities stem from the fact that the two samples have different crystallographic and electronic 

properties. 
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Figure 8. CO conversion as a function of temperature. 
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