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 3 

CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

In public transportation system of large cities, taxicab plays a vital role in 

transporting travelers across urban area. As an unique but important component in urban 

transportation system, taxis provide accessibility and flexibility with door-to-door service. 

In 2007, there were around 18,000 taxis in Hong Kong serving 10 percent of total 

passenger transportation volume (Yang et al., 2010).  As for New York City, it has the 

largest market for taxis in North America with a total number of 55,000 (2012) of taxis 

(including “for-hire” and “for-hail” taxis) transport 1.5 million passengers every day 

(NYCTLC 2012 annual report). The taxi service transports 25% of all fare-paying bus, 

subway, taxi and for-hire vehicle passengers that are traveling within Manhattan (Schaller 

Consulting, 2006; King et al., 2012).  

In big cities like New York City, GPS devices are installed in each medallion 

taxicab. The taxi locations coordinates together with trip information, such as trip 

distance, trip fare, number of passengers, etc. are collected and archived by taxi 

administration agencies like the New York City Taxi and Limousine Commission 

(NYTLC, which is responsible for all taxi related issues in New York City). As a result, 

taxicab data is emerged to become a new source of information that archives the “pulse 

of the city”. This data is particularly interesting for several reasons: 1) taxi services is an 

important transportation mode in urban transportation that contribute to a considerable 

proportion of total travel; 2) the taxis serve as mobile probe sensors that capture the 

mobility characteristics of all the taxi passengers; 3) the amount of data is huge (300,000 

to 550,000 trips per day); 4) rich information available (contains trip starting and ending 
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time and coordinates, trip time and distance, trip fare, number of passengers, payment 

method, etc.). Thus the taxi trip data becomes an ideal source of data to analyzing and 

characterizing the urban dynamics and estimating urban traffic conditions. In this study, 

we use the New York taxi trip data from NYTLC to explore and answer two important 

questions: 1) What are the urban dynamics pattern revealed by the large-scale taxi trip 

data? 2) Is it possible to utilize this novel dataset to estimate urban traffic network 

condition?  

Urban development shapes the transportation systems, it determines what kind of 

transportation system a city has, and what does it look like. As an important dynamic 

component in urban systems, activities of transportation systems in turn captures the 

dynamics of the entire urban systems and enhance of our knowledge about the complex 

urban systems. This will ultimately contribute to the improvement of level of service and 

policy making on transportation systems. Taxi as a transportation tool has its unique 

characteristics. It is capable of capturing urban movement patterns both spatially and 

temporally since they serve as real-time probes in the network. Moreover, we are able to 

examine the pulse of the city, the gap between supply and demand, real time road 

congestions and even more.  

On the other hand, accurate estimation and prediction of urban link travel times 

are important for improving urban traffic operations and identifying key bottlenecks in 

the traffic network. They can also benefit users by providing accurate travel time 

information, thereby allowing better route choice in the network and minimizing overall 

trip travel time. However, to accurately assess link travel times, it is important to have 

good real-time information from either in-road sensors such as loop detectors, microwave 

sensors, or roadside cameras, or mobile sensors (e.g. floating cars) or Global Positioning 

System (GPS) devices (e.g. cell phones). In most of these cases, only limited information 

is available related to speed or location, hence, one has to develop appropriate 

methodologies to accurately estimate the performance metric of interest at the link, path 

or network level. Taxis equipped with GPS units provide a significant amount of data 

over days and months thereby providing a rich source of data for estimating network 
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wide performance metrics. However, currently there are limited methodologies making 

use of this new source of data to estimate link or path travel times in the urban network. 

Within this context, this study proposes a new method for estimating hourly urban link 

travel times using large-scale taxicab data with partial information. The taxicab data used 

in this research provides limited trip information, which only contains the origin and 

destination location coordinates, travel time and distance of a trip. However, the 

extensive amount of data records compensates for the incompleteness of the data and 

makes the link travel time estimation possible. A novel algorithm for estimating the link 

travel times is also proposed and tested in this research. 

1.2 Study objectives 

As mentioned in previous section, this research contains two major directions, the 

first is characterizing the urban dynamics using large-scale taxi data; the other is to 

explore novel methodology of utilizing the large amount of trip data to estimate urban 

link travel times. 

For the characterization of urban dynamics, besides the general spatiotemporal 

pattern of taxi movements, we explore several unrecognized but important taxi trip 

related patterns. Based on the data collected from NYC taxicabs, the objective is to 

answer the following three questions: (1) what are the spatiotemporal patterns of urban 

taxi trips; (2) are there any similarities among different taxi trips based on their origin, 

destination, time of day etc. and (3) are there any universal patterns of urban mobility as 

related to taxi trips and their comparison with other mobility studies using other data 

sources. 

For the urban link travel time estimation model, the goal is to show the potential 

of using taxicab data as a complimentary data source in urban transportation operation 

and management. Currently, large-scale of taxi data has been generated and recorded 

every day by taxi administration agencies, however, there is no model in literature that 

can utilize the large-scale partial trip information from this new source of data. The novel 

model presented in this research will provide an important and meaninful solution for 

urban link travel time estimation. Efficient algorithms are proposed to solve for the 
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hourly average link travel times, which can be implemented in real time as a measure of 

urban network conditions. The estimations of urban link travel times can be further fused 

with the information from other existing data sources such as fixed sensors in the future 

to provide even better information for travelers. 

1.3 Organization of the research 

The remainder of the research is organized as follows. Chapter 2 provides a 

comprehensive review of the existing works related to urban dynamics study and link 

travel time estimation models. Chapter 3 describes the large-scale taxi data that is used in 

this research and corresponding data processing efforts. Chapter 4 characterizes the urban 

dynamic using the large-scale taxi data. Chapter 5 presents a novel urban link travel time 

estimation model using partial information. Finally, Chapter 6 summarizes findings of the 

research  and discusses about some future research directions. 

  



 

 

7 

CHAPTER 2.  RELATED WORK 

This chapter describes recent works that study urban dynamics and urban link 

travel time estimation using large-scale GPS data. At the end, specific contributions of 

this research are summarized. 

 

2.1 Literature review 

2.1.1 Urban dynamics 

The development of transportation system is affected by the spatial structure of a 

city (Muller, 2004). As city growth, transportation system shapes people’s travel 

behaviors and land use types by osmosis (Muller, 2004).  Hence, understanding a city 

from transportation system perspective as a bottom-up process is important to understand 

the functioning and evolution of urban areas. In the past few decades, efforts have been 

made in modeling and simulating urban dynamics using data from transportation systems 

(Harris, 1985; Batty, et al., 1994; Guiliano, 2004). 

Several pioneering studies mainly focused on mobile phone data to reveal basic 

urban activity and individual mobility patterns (Ratti et al., 2006; Reades et al., 2007; 

González et al., 2008). Based on location-based service, individual locations are collected 

and mapped onto actual maps to reveal urban dynamics. A case study in Milan 

successfully discovered the urban spatial and temporal variations of activity intensity 

(Ratti et al., 2006).  The intensity of activity locations is further used to locate hot spots 

and identify city structure by analyzing spatiotemporal signatures of Erlang data, which is 

a measure of network bandwidth usage usually collected at the antenna level (Reades et 

al., 2007). From individual perspective, González et al. revealed a highly regulated 

human mobility pattern (González et al., 2008) from 100,000 mobile phone users’ 

trajectories, and Calabrese et al. established a multivariate regression model to predict 

daily human mobility (Calabrese et al., 2013). All these studies show a promising 

direction in studying urban dynamics using large-scale pervasive sensing data. 
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In public transportation system of large cities, taxicab plays a vital role to move 

people across urban area. Taxis provide accessibility and flexibility with door-to-door 

service. In 2007, there were around 18,000 taxis in Hong Kong serving 10 percent of total 

passenger transportation volume (Yang et al., 2010).  As for New York City (NYC), by 

2012, a total number of 55,000 of taxis (including “for-hire” and “for-hail” taxis) 

transport 1.5 million passengers every day (NYCTLC 2012 annual report). In the last few 

years, most of the taxis in NYC are equipped with GPS devices, therefore the taxis 

become an ideal source of large urban sensing data. Taxi location data has already been 

widely used in studying urban dynamics, such as hot spot analysis (Chang et al., 2008), 

land use inference (Pan et al., 2013), and urban human mobility recognition (Veloso et al., 

2011, Li et al., 2012). The related works are illustrative, but not necessarily distinctive. 

As urban development shapes transportation system, retrieving urban dynamics from 

spatiotemporal patterns of transportation system will contribute to the improvement of 

level of service and policy making process at planning level. Taxi as a transportation tool 

has its unique characteristics. It is capable of capturing urban movement patterns both 

spatially and temporally since they are real-time probes in the network. Moreover, we are 

able to examine the pulse of the city, the gap between supply and demand, real time road 

congestions and even more.  

2.1.2 Urban link travel time estimation 

Urban link travel time estimation is another interesting yet meaningful problem in 

urban transportation operation and management. Previous research on urban link travel 

time estimation and prediction has largely relied on various data sources, including: loop 

detectors (Coifman, 2002; Zhang and Rice, 2003; Oh et al., 2003, Wu et al., 2004), 

automated vehicle identification (AVI) (Park and Rilett,1998; Li and Rose, 2011, Sherali 

et al., 2006), video camera, Remote Traffic Microwave Sensors (RTMS) (Yeon et al., 

2008), and automated number plate recognition (Hasan et al., 2011). All of these data 

collection methods require installing corresponding sensors to retrieve data. Therefore a 

large number of sensors are required to achieve a reasonable accuracy level based on 

these data sources. The cost of installing and maintaining such a large number of sensors 
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is prohibitive. Hence predicting link travel times with reasonable accuracy and network 

coverage based on sensor data could be expensive.  

On the other hand, there is a significant potential to use emerging large-scale data 

sources to estimate dynamic demand and dynamic network conditions in urban areas. For 

instance, GPS devices in dedicated fleets of vehicles or in users’ mobile phones can be 

viable sources of data for monitoring traffic in large cities (Herrera, et al. 2010). Industry 

models, such as Inrix1, have also gained popularity in recent years where private entities 

install, collect, utilize and sell “large-scale” historical traffic data from GPS-equipped 

vehicles or mobile phones. With an increasing amount of GPS data available from taxi, 

transit, and mobile phones, a new option of using such large-scale decentralized data for 

link travel time estimation becomes realistic. Herring et al. (2010) used GPS traces data 

from a fleet of 500 taxis in San Francisco, CA. to estimate and predict traffic conditions. 

However, in this work, instead of link travel times, discrete traffic states were predicted. 

Zheng and Zuylen (2012) also proposed an ANN model to estimate urban link travel 

times based on sparse probe vehicle data (e.g., GPS traces from GPS-equipped vehicles 

or smartphones). Hunter et al. (2009) proposed a statistical approach for path and travel 

time inference using GPS probe vehicle trajectory data. The GPS data used in their study 

has been recorded each minute, where the inferred path consists of at most five link 

segments. This method is not applicable if the GPS data has a longer recording interval or 

only has the starting and ending coordinates. Estimating link travel times from GPS data 

provides a much cheaper and a larger coverage area in the urban network compared with 

approaches using fixed sensor data. However, all of the above mentioned approaches are 

only applicable for GPS trace data, in which the trajectories of vehicles are available. To 

the best of our knowledge, there is no study found in literature that used OD level GPS 

data for urban link travel time estimation, even though extensive amount of such less 

detailed data (e.g. taxicab data) is generated and recorded every day. It is very important 

and meaningful to develop new model in urban link travel time estimation utilizing this 

novel source of large-scale data. 

                                                 
1 Inrix, Inc. http://www.inrix.com 
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2.2 Research contribution 

This research uses large-scale taxi trip data to understand urban dynamics and 

estimated urban link travel times. To summarize, the contribution of this research are as 

follows:  

1. Characterizing urban dynamics 

- Taxi data has been utilized as a novel tool to understand urban dynamics  

- Unbalanced trips in Manhattan area are observed and explored 

- Airport trips is identified as a special part of taxi trips and differ from regular 

taxi trip patterns 

- Land use has significant impact on taxi trip types, and different types of taxi 

trips are able to uncover the structure of a city 

- Moreover, the mobility of taxi trips are restricted by the urban geographical 

boundaries. 

2. Urban link travel time estimation 

- First model in literature to estimate urban link travel time using partial trip 

information. 

- Efficient solution algorithm is proposed to solve the optimization problem in a 

short time. 

- Hourly average link travel time can be obtained from the given model. 

- Showed potential of using large-data in traffic analytics. 
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CHAPTER 3.  CHARACTERIZING URBAN DYNAMICS USING LARGE-SCALE TAXI 

DATA 

This chapter explores the urban dynamics using the large-scale taxi trip data 

collected by New York City Taxi & Limousine Commission (NYCTLC). The data is 

combined with census tract and land use data to provide more information in the urban 

dynamics analysis. Extensive spatial and temporal patterns, taxi trip classification, and 

taxi mobility pattern have been analyzed. 

 

3.1 Data 

The data used in this chapter is compiled from the large-scale taxi trip dataset 

collected by NYCTLC, the census tract data from TRANSCAD map data and land use 

data from New York City Department of City Planning. Extensive data processing 

involved in this process. Following is the detailed description of the data. 

3.1.1 Taxi trip record data 

The taxi trip data used in this research is collected by NYCTLC from December, 

2008 to January, 2010. About 300,000 to 500,000 trips are recorded every day during the 

observation period.  The data does not contain taxi trajectories and the only geographical 

information is the longitude and latitude of trip origin and destination. Other trip 

information available includes starting and ending time, number of passengers, trip fare 

(with and without tax) and travel distance.  

For the urban dynamics characterization, we select one-week period’s data from 

September 7th, 2009 to September 13th, 2009. No major social events are reported during 

the time.  The overall statistics of this part of taxi data is given in Table 1.  
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Table 1 Taxi Data Set Statistics 

Date Number of Trip Recorded Number of Trips Filtered 

9.7.2009 307,528 302,888 

9.8.2009 421,549 415,513 

9.9.2009 480,084 473,043 

9.10.2009 521,209 513,536 

9.11.2009 540,529 533,817 

9.12.2009 510,875 504,337 

9.13.2009 450,234 443,740 

 

3.1.2 Census tract and land use data 

In addition to taxi data, census tract information and land use type are also 

combined in the analysis. The census tract information is extracted from the census tract 

area file provided in TRANSCAD
1
. On the basis of spatial distribution of taxi trips, 2211 

census tracts are selected to be the study area, which cover Manhattan, Bronx, Queens, 

Brooklyn, Long Island, and a small portion of New Jersey. The land use map comes from 

New York City Department of City Planning, which divides the city into four basic 

zoning district: park, residential, commercial, and manufacturing. The last three types are 

further categorized by density from low to high.  

3.1.3 Data processing 

To remove errors and inconsistency, the taxi data is processed before further 

analysis. Firstly, invalid values in taxi data are removed, such as 0 travel distance or trip 

fare under the initial price. After that, all data points are mapped onto census tract map 

and land use map using TRANSCAD. Points that are outside the boundary are eliminated, 

and each piece of trip record is tagged with the corresponding census tract id and land use 

type.  

                                                 
1 TRANSCAD, a Transportation Planning GIS software by Caliper Corporation 
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3.2 Demand 

In this section, we explore the taxi demand pattern from a geographical scope 

across NYC. Note that taxi trips usually fall into two categories: (1) taxi driver roams for 

potential passengers when empty and (2) taxi drivers have a “loaded” trip in which they 

are taking the passengers to the desired destination. It is reasonable to assume that taxi 

drivers are acquainted with the city and are profit maximizing. Therefore, they are more 

likely to get to places with more potential passengers when there is no passenger aboard. 

As for the second status, it is more representative of passenger’s choices as they will 

designate the destination. As a result, we view a taxi trip from two parts: trip origin and 

destination. Here trip origin is the place where taxi driver picks up passengers, and trip 

destination is for places where passengers are dropped off.  

3.2.1 Overall demand 

Around 2 million taxi trips transported 3 million passengers during the week.  All 

taxi trips are mapped onto the census tract map by longitude and latitude of origins and 

destinations. Figure 1 presents an overall density plot on spatial distribution of taxi 

origins and destinations. It indicates that most origins and destinations are located inside 

Manhattan. Moreover, two very popular places lie outside Manhattan: LaGuardia Airport 

(LGA) and John F. Kennedy Airport (JFK). The overall demand pattern discovered is 

consistent with land use of NYC. Most business buildings and tourist sites are inside 

Manhattan, and transit locations like airport and train station always serve as big trip 

generators and attractors.  Within Manhattan area, a majority of the trips are congregated 

at midtown, while lower part (main business and government center) is less preferred. 

Very few trips head towards upper Manhattan.  
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(a) Trip Origins (b) Trip Destinations 

 

Figure 1 Aggregated Weekly Density Plot 

 

Figure 2 provides information on overall trip structures. It is observed that 94.45% 

of trips origins and 92.57% of trip destinations are from Manhattan area and the two 

airports. With 91.98% trips origins inside Manhattan, the lower Manhattan contributes 

21.22% and the midtown Manhattan dominates with 75.39%. For trip destinations, 88.52% 

are in Manhattan area, of which 18.23% reach lower Manhattan. Both are slightly fewer 

compared with trip origins. This turns out to be the fact that taxi drivers are more in favor 

of trips inside Manhattan, especially at midtown.  
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Figure 2 Weekly Manhattan Taxi Pattern 

 

3.2.2 Hot spots analysis 

Given the definition of hot spots as places with high activity intensity, here we 

focus on places most frequently visited across NYC. By aggregating trips of the entire 

week, five most popular places are identified: LGA, JFK international Airport, Penn 

Station, Central Park and the Fifth Avenue (between 49th street and 56th street). These 

places cover a wide range of land use functionality including major transit places (with 

different purposes), tourist site and commercial area. Figure 3 presents the temporal 

demand pattern of the 5 hot spots from Monday to Sunday.  
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Figure 3 Weekly Hot Spots Trip Distribution (Monday to Sunday) for Taxi Origins and Destinations 
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Of all the 5 hot spots, Penn Station serves as the biggest taxi trip generator and 

attractor.  Apparent origin morning peak is observed during workdays, suggesting that 

taxi might be quite popular as a transfer tool. It is hardly surprising that a large amount of 

people leave Manhattan on Friday night. However, the destination peak on Monday night 

indicates an unusual pattern that most people are returning to Manhattan at that time. 

Several patterns at the two airports are also very interesting. First, fluctuation is 

observed for origin curves at both airports, which is closely related to the arriving pattern 

of flights. The amount of trip origins remain at a high level till midnight and early in the 

morning. One explanation could be that people have less accessibility to public transit at 

the time thus giving rise to the taxi demand. Moreover, the amount of taxi trips to LGA is 

much larger than that of JFK. The major reason is that JFK is further from downtown 

area and the fixed trip fare is comparatively higher. This pattern can be further studied as 

a potential indication of trip elasticity concerning cost. 

The Central Park is a recreation and tourist site, and the demand pattern is 

observed to be stable. It serves as a hot spots not only for its population, but also because 

of the census tract covers a large area. With only one morning peak taking place on 

Sunday morning, most trips happens during daytime and evening peaks happen every day 

around 7 pm.  The Fifth Avenue is a remarkable business street at midtown Manhattan. 

During weekdays, an apparent morning peak happens around 9 am.and most departures 

are concentrated at noon and after 8 pm. 

3.2.3 Unbalanced taxi trips 

For taxi trips, both passengers and drivers have their preferences of destinations, 

and such preferences are varying from time. This will eventually lead to an unbalanced 

spatial distribution of taxi resources. There are mainly two types of unbalanced trip. One 

is of geographical discrimination, as some destinations may be against the willingness of 

taxi drivers, as they may have very few potential customers at the destination. The second 

type is of resources shortage, which usually comes with prominent temporal 

characteristics. Assuming a fixed supply of taxis, it is usually hard to hail a taxi during 

peak hours. Both types  of unbalanced taxi trips are observed in NYC taxi data. 
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From the overall trip pattern we found that most trip origins and destinations are 

located inside Manhattan, and we start by looking into patterns between trips inward and 

outward Manhattan area. Figure 4 gives the plot of the differences between trip origins 

and destinations. During daytime, the overall pattern turns out to be stable with outbound 

traffic slightly higher than those inbound. People may stay at Manhattan very late for 

entertainment and relaxation, while most public transits are out of service at that time. As 

a result, the huge gap observed at midnight is not surprising. The hidden fact behind the 

enormous gap is that taxi drivers are less likely to find potential customers outside 

Manhattan and return empty. Considering the large demand of taxis at that time, the first 

type of unbalanced trip will probably take place. 

  
(a) Weekday (b) Weekend 

Figure 4 Inward/Outward-Manhattan Unbalanced Trips 

 

In order to reveal the unbalanced condition of inbound Manhattan trips, we 

extract only weekday trips and plot the distribution of trip origins and destinations in 

Figure 5. As discussed before, the most significant taxi shortage should occur during rush 

hours. Hence, the data from the morning peak and evening peak is selected. Off-peak 

hours are also plotted for comparison purpose. Trips are found to be unbalanced with 

notable geographic characteristics. Firstly, an unbalanced trip pattern is observed outside 

Manhattan and at upper part of Manhattan which is consistent with overall pattern. 

Moreover, compared with the balanced status during off-peak hours, both morning peak 

and evening peak display an eminent difference between trip origins and destinations. 

During morning rush hours, most taxi trips are merging into the center of midtown area, 

and is reversed during evening peak. Northeastern part of midtown Manhattan 
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experiences the greatest shortage of taxi supply in the morning, since there is a large area 

of residential places. And the midtown Manhattan is undersupply in the evening. 

 
Figure 5 Trip Density Plot inbound Manhattan  

(the density increases as color going from blue to red) 

 

Based on the analysis of the unbalanced trips, several ideas might be useful to 

ease the problem. For nighttime unbalance of inward and outward Manhattan trips, 

pricing strategy should be helpful. An additional fee can be charged or a subsidy can be 

assigned for trips outward Manhattan only after midnight as taxi drives are less likely to 

leave Manhattan at that time. Moreover, since morning and evening trips have 

unambiguous origins and destinations, a shuttle service is believed to be effective. It can 

narrow the demand-supply gap of taxi service and reduce congestion at the same time. 
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3.3 Trip classification 

It is recognized that temporal repeatability exists for taxi origins and destination at 

a given place. Besides, taxi trips in different parts of the city also have inherent 

similarities. The similarities are related to the places of taxi origins and destinations, 

travel distance as well as the time of the day. Clustering algorithm is implemented to 

classify the taxi trips. 

3.3.1 Clustering algorithm 

Clustering algorithms are widely used to disclose underlying pattern in large 

databases.  Considering both spatial and temporal patterns of taxi trips, we use an eight-

dimensional data record which covers geographic location, time of the day, travel 

distance and land use type as clustering input. A summary of the data inputs is given in 

Table 2.  

 

Table 2 Input Variables of Data Record 

Name Type Example Remark 

Origin Longitude continuous -74.004 

 Origin Latitude continuous 40.722 

 Destination Longitude continuous -73.981 

 Destination Latitude continuous 40.761 

 Start time continuous 19.26 In hour-scale 

Trip distance continuous 2.7 

 Origin Land use type categorical 2 1-Park, 2-Commerical 

3-Residential, 4-Manufacturing Destination land use type categorical 4 

 

Conventional clustering algorithms including k-means, DBSCAN and 

agglomerative hierarchy clustering are sufficient dealing with continuous variables. But 

in our study, both continuous and categorical (land use type) variables are introduced. 

Therefore, a two-step clustering algorithm (Chiu et al., 2001) is implemented to process 
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different variables in two steps, with all continuous variables assumed to be normally 

distributed and categorical variables to be multinomial. The first step is a pre-cluster 

approach which uses a sequential clustering method. The second step uses the 

agglomerative hierarchical approach which processes the sub-cluster from the first step 

recursively. Details for each step of the algorithm are referred to SPSS manual (SPSS, 

2001).  

3.3.2 Clustering Results 

We use SPSS to run the two-step clustering algorithm. The clustering result is 

presented in Figure 6. For both weekday and weekend, taxi trips are classified into 7 

groups. We name each cluster by its land use feature, including C-C, R-C, C-R, R-R, 

Multi-Multi, M-Multi, and Mul-M trips (C: Commercial, R: Residential, M: 

Manufacturing, Mul: the combination of the three). The spatial distribution of trip origin 

and destination in each cluster on weekdays is given in Figure 6.  

 
(a) Weekday (b) Weekend 

Figure 6 Clustering Result 

 

In general, C-C trips take the largest proportion with 36.1% of weekday trips and 

34.7% for weekend. This turns out to be a rational pattern as commercial area attracts and 

produces large amount of trips. The typical urban sprawl pattern is observed from the 

clustering result. The commercial area are located at central and lower parts of Manhattan. 

Residential places are surrounding the commercial area and sprawled outside Manhattan 
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with a lower value of the land. Taxi trips for residential places are dense by two sides of 

the Central Park. All these places are observed to have a higher average personal income.  

The distribution of travel distance and trip starting time for each cluster is given in 

Figure 8. It is revealed that Mul-Mul cluster is a unique type of taxi trips.  Most trip 

origin and destination of the cluster are positioned at midtown Manhattan, LaGuardia 

airport and JFK airport. The distribution of trip distance differs from other types of trip 

significantly. A majority of the trips have a long travel distance, and two distinct peaks 

are observed to be consistent with the travel distance from Manhattan to LGA and JFK. 

Hence, the cluster mainly account for airport trips to-and-fro Manhattan. Morevoer, these 

trips should be dealt with separately while analysis since short distance trips are the main 

component of other clusters.  

For trip starting time, it is not surprising that the cluster patterns have weekday-

weekend disparity. During weekdays, commercial related commuting including C-C trips, 

R-C trips and Mul-M trips have apparent morning and evening peaks. The evening peak 

usually lasts more than 4 hours starting at 5 pm. For weekend, no morning peak is 

observed and the amount of daytime trips increase after 10 am. The highest demand take 

place around midnight, which implies a shift from commercial related activities to 

entertainment related activities from weekday to weekend.  
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(i.a) (i.b) (ii.a) (ii.b) 

    

(iii.a) (iii.b) (iv.a) (iv.b) 

    

(v.a) (v.a) (vi.a) (vi.b) 

 

  

 

 (vii.a) (vii.b)  

Figure 7 Spatial Density Plot of Cluster Origins and Destinations. 

(i: C-C trip; ii: R-R trip; iii: Mul-Mul trip; iv: C-R trip; v: R-C trip; 

vi: M-Mul trip; vii: Mul-M trip; a for origin and b for destination; density increases from blue to red) 
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Figure 8 Travel Distance and Trip Starting Time Distribution for 7 Clusters 

  

3.4 Taxi mobility pattern 

Individual mobility pattern have been realized barely random. Several studies 

using data from the movement of an online game (Szell et al., 2012), the dispersal of 

bank notes (Brockmann et al., 2006) as well as trajectories from cellular data (González 

et al., 2008) have found highly regulated pattern in human movement. The human 

movement is observed to follow a heavy-tailed plot under logarithmic scale and can be 

well approximated by scaling law. With human beings as the main participants, the taxi 

trips are results of human movement in an urban context as well. Hence, an effort is made 

to reveal the taxi mobility and examine the relationship with individual mobility.  

To uncover the taxi mobility, first, the distribution of travel distance under 

logarithmic scale is plotted as shown in Figure 9(a). From the observation, the 
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distribution of travel distance can be divided into parts: an ascending ranges from 0 to 0.8 

mile, and then gradually descending as trip distance increases.  

 
(a) Distance with airport trips 

 
(b) Distance without airport trips 

Figure 9 Taxi Trip Distance Distribution 
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Two minor peaks around 10 miles and 20 miles in the distribution are mainly 

caused by trips to LGA and JFK airport. The interference of airport trips has been 

discussed in previous section. We remove the trips to and from the two airports as they 

have specific purposes and unique characteristics. A refined distribution is generated in 

Figure 9(b). 

Trips with distance less than 0.8 mile take 14.75% of total trips. As very short 

trips within walking radius, these trips differ from the general pattern of taxi mobility on 

a decision making process of whether to take taxis. The first part of the trips can be 

approximated with distribution: 

  ( )      (1) 

where exponent   0.9793.  

The distribution resembles a power-law like distribution (straight line under 

logarithmic scale), however, the exponent takes a positive value. As mentioned earlier 

this phenomenon captures model choice process in whether take a taxi. It is intuitive that 

with the increase in distance, the probability of taking a taxi also increases until attaining 

its maximum around 0.8 miles.  

The refined second part is used to capture urban mobility features of taxi trips. 

The trips greater than 0.8 mile contribute 85.25% of total trips. It is found that the 

distribution of taxi trip distance is well approximated by a power-law with exponential 

cut-off (also known as truncated power-law): 

  ( )          (2) 

With exponent   0.8652 and   0.3161. The distribution is found to be heavy-

tailed. Unlike the power-law distribution of human movement reported (Szell et al., 2001; 

González et al., 2008; Brockmann et al., 2006), the taxi trip distance distribution has a 

faster probability decay in the tail part (the effect of the exponential cut-off term). This 

indicates the unique effects of urban environment on the distribution of taxi trip distance. 

Since the underlying size of urban area limits the distance of taxi trip, very long trip 
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(e.g.>30 miles) are less likely to happen, and the scale-free property of a typical power-

law distribution fails. It is notable that as taxi trips are important component of urban 

human movement, the trip distance distribution reflects a unique perspective of human 

mobility. That is, the taxi mobility pattern reveals the hidden role of urban geographical 

boundaries in limiting urban human movement. 
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CHAPTER 4.  URBAN LINK TRAVEL TIME ESTIMATION 

Taxicabs equipped with Global Positioning System (GPS) devices can serve as 

ubiquitous sensors monitoring traffic states in urban areas. This chapter presents a new 

descriptive model for estimating hourly average of urban link travel times using taxicab 

origin-destination (OD) trip data. The focus of this study is to develop a methodology to 

estimate link travel times from OD trip data and demonstrate the feasibility of estimating 

network condition using large-scale data with partial information. The data, collected 

from the taxicabs in New York City, provides the locations of origins and destinations, 

travel times, fares and other information of taxi trips. The new model infers the possible 

paths for each trip and then estimates the link travel times by minimizing the error 

between the expected path travel times and the observed path travel times. The model is 

evaluated using a testing network from Midtown Manhattan. Results indicate that the 

proposed method can efficiently estimate hourly average link travel times. Currently, 

there is a limited research on estimating urban link travel times using large-scale OD 

travel time data. This research provides a new possibility of fully utilizing the partial 

information provided in the urban taxicab data for network condition estimation purpose, 

which is cheap and also has a much better coverage than the usual centralized approaches. 

4.1 Introduction 

In the last few years, there has been a growing trend of installing GPS devises in 

taxicabs in urban areas. While GPS-equipped taxicabs have many advantages, including 

the ability to locate taxis and track lost packages, they also serve as useful real-time 

probes in the traffic network. Taxis equipped with GPS units provide a significant 

amount of data over days and months thereby providing a rich source of data for 

estimating network wide performance metrics. However, currently there are limited 
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methodologies making use of this new source of data to estimate link or path travel times 

in the urban network. Within this context, this study proposes a new method for 

estimating hourly urban link travel times using large-scale taxicab data with partial 

information. The taxicab data used in this research provides limited trip information, 

which only contains the origin and destination location coordinates, travel time and 

distance of a trip. However, the extensive amount of data records compensates for the 

incompleteness of the data and makes the link travel time estimation possible. A novel 

algorithm for estimating the link travel times will be presented and tested in this study 

using a test network in New York City. 

Data collected from New York City taxicabs is used to estimate the link travel 

times. The dataset provides an extensive amount of taxi trip data, which records the trip 

starting and ending geo-location, along with information about trip distance, time and 

fare. Unlike the detailed GPS trajectory data used in previous studies, the dataset only 

provides the trip origin and destination information (i.e. starting, ending location and time) 

without the exact trajectory of the taxicab; only path travel time and distance are known. 

However, the advantage of the massive amount of data (the number of observations 

recorded within a day range between 450,000 to 550,000) makes it possible to infer the 

possible routes that the taxicab is taking and further, to estimate the link travel times in 

the New York City network. There is potential bias associated with measuring network 

link travel times from taxis, as taxi drivers are just one particular group of all drivers in 

the network. However, given the high penetration rate of taxicabs, it is reasonable to 

assume that taxis are good probe vehicles and therefore taxi travel times are a good 

representation of the actual network condition. 

In this research we propose a methodology to estimate urban link travel times based 

on taxi GPS data that includes only the information about the origin and destination of 

the trip and total travel time to reach the destination. The goal of this study is to show the 

potential of using taxicab data as a complimentary data source in urban transportation 

operation and management. The link travel times estimated from taxicabs provide an 

hourly aggregate measure of the urban network condition, which can be fused with the 

information from other existing data sources such as fixed sensors in the future.   
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4.2 Methodology 

This section presents the proposed link travel time estimation model. We treat the 

path taken by a taxi as latent and derive the expected path travel time as a summation of 

each of the probable path travel time multiplied by the probability of taking that 

particular path. Link travel time estimation problem then becomes estimating the link 

travel times that minimize the least square error between the observed and expected path 

travel times. An MNL model is embedded to compute the probability that a taxi driver 

chooses a given path in the constructed reasonable path set, and the expected path travel 

time is computed for each trip record. The data are first processed to run the model, 

which include two steps: data mapping and constructing reasonable path set. The taxi trip 

origin and destination points are first mapped to the nearest links in the network. Instead 

of using all possible paths between each origin and destination points, we use k-shortest 

path algorithm to construct 20 shortest paths for each OD nodal pair of a trip, referred as 

the reasonable path set. The generated reasonable path sets serve as the basis for the link 

travel time estimation process.  

4.2.1 Link travel time estimation 

Link travel times in the network are estimated by minimizing the least squared 

difference between expected path travel times and the observed path travel times. We 

consider the actual path choice of the taxi as a latent variable and the link travel times as 

the model parameters to be estimated, the expected path travel time for observation  , 

 (     ) can be written as: 

  (     )  ∑   ( ⃗)  ( ⃗    )

    

 (3) 

where  

-    is the variable of path travel time for observation  . 

-    is the set of possible paths of a OD trip observation  . 

-  ⃗ is the vector of link travel times. 

-   is the path distance set for   . 
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-   ( ⃗) is the path travel time for path  . 

-   ( ) is the probability of selecting path  . 

-   is a positive scale parameter
1
. 

For a given path, the path distance is fixed, the variables to be estimated are the 

vector of link travel times  ⃗ and the scale parameter  . Then,  (     ) can be represented 

by a function of   ,  ⃗ and  ,  

  (     )   (    ⃗  ) (4) 

The error between observed path travel time    and expected path travel time  (     ) is 

defined as the residual for observation  , which is: 

        (    ⃗  ) (5) 

Link travel times are estimated by minimizing the square difference between the expected 

path travel times and the actual path travel times observed in the data set  , defined as 

 ( ⃗  ), 

  ( ⃗  )  ∑  
 

   

 ∑(    (    ⃗  ))
 

   

     (6) 

  ⃗        
 ⃗

 ( ⃗  )    (7) 

4.2.2 Route choice model 

Due to the absence of any information on the path taken by the taxicab drivers, 

the actual path needs to be inferred. Thus a route choice model is developed to find the 

path choice of the taxicab drivers. Due to the lack of social or behavioral characteristics 

of taxi drivers in the dataset, traditional econometric models cannot be estimated. Hence, 

we build the route choice model using the limited cost variables from the dataset. We 

implement an MNL model to serve as the route choice model and consider the trip cost 

   in terms of both trip time and distance. The route choice model is defined as 

                                                 
1 This will be further discussed in the route choice model. 
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   ( ⃗    )  
     ( ⃗   )

∑      ( ⃗   )    

 (8) 

The parameter   scales the perceived path cost. A large   indicates a small 

perception error, and drivers will tend to select the path with minimum cost; while a 

small   suggests a large perception variance, larger cost path gets more probability of 

being selected. In this model,   is estimated together with the link travel times, which 

captures the variation in drivers’ perceived path cost in different time period and network 

conditions. 

The path cost    can be assumed as a function of trip fare. This is based on the 

assumption that each driver minimizes both trip time and distance, so that the driver can 

make more trips and thus make more revenue. We introduce a threshold ratio when 

constructing the reasonable path sets to exclude the trips that violate the aforementioned 

route choice behavior assumption. That is, if the taxi driver takes a much longer route to 

make more revenue in a single trip, then none of the paths in the reasonable path set will 

fall within the threshold given the observed path distance. These records are removed 

from the model estimation to ensure the input data matches with the route choice 

behavior assumption. 

According to the taxicab fare rates provided by New York Taxi and Limousine 

Commission, the taxicab fare calculation involves both trip time and distance
1
. For 

standard city rate (taxi trips within Manhattan all follow this rate), fare (exclude 

surcharge and tax) include $2.50 upon entry, and $0.5 for each additional unit. The unit 

fare is: 

 One-fifth of a mile, when the taxicab is traveling at 6 miles an hour or more; or  

 60 seconds when not in motion or traveling at less than 6 miles per hour.  

 The taximeter shall combine fractional measures of distance and time in 

accruing a unit of fare.  

                                                 
1 Taxicab rates from New York Taxi & Limousine Commission: 

http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml 
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The taxi rate of fare suggests a linear relationship with trip time and distance. The 

actual fare-time-distance relationship from the data is illustrated in Figure 10. 

Considering the complicated traffic condition and fare calculating method in actual 

situations, a linear model for the trip fare-time-distance relationship estimated from the 

data is used rather than the rate of fare provided by NYTLC: 

                             (9) 

 

  
Figure 10 Fare-time-distance relationship 

 

Table 3 Linear model for fare-time-distance relationship. 

 
Coefficient Standard Deviation P Value 

   (intercept) 2.143 0.00161 0.000 

   (coefficient for time) 0.275 0.00021 0.000 

   (coefficient for distance) 1.563 0.00058 0.000 

Number of observations 415561  

R-squared 0.99  

Adjusted R-squared 0.99  

 

The estimated coefficients of        and    are listed in Table 3.The units for 

time and distance are minute and mile respectively; the fare used in the calculation does 

not include surcharge and tax. The estimation result shows that time and distance are 

highly significant in determining the trip fare. The model has a    value of 0.99, 
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suggesting that the data is well fitted using this simple linear model. The path cost used in 

the route choice model is therefore modeled as: 

   ( ⃗   )       ( ⃗)        (10) 

Where    is the distance for path  , and the path travel time of path  ,   ( ⃗) is defined 

as 

   ( ⃗)            ∑     
   

 (11) 

where 

-    is the travel time of the link where the trip starting point lies. 

-    is the travel time of the link where the trip ending point lies. 

-   is the set of the links. 

-    is the tavel time of the link  . 

-     is the link-path incident relationship, 1 if link   is in path  , 0 otherwise. 

-   ,    are the distance proportions. 

The simple linear form of the path cost function is used for two reasons: 1) the 

linear fare-time-distance relationship is supported by data, and distance and time are 

identified as significant factors that impact the trip fare; 2) a simple form of path cost 

function ensures the model is computationally tractable for large-scale input data and the 

short term link travel time estimation purpose. The constant term is not included since 

this common component cancels out in the MNL model. Further, as the starting and 

ending points lie within the starting and ending links, a taxi only experiences a part of the 

total link travel times to traverse those links. In this study, the proportion of this part of 

link travel time to the total link travel time is assumed to be the distance proportions    

and    defined in the data mapping section. 

4.2.3 Data mapping 

It is common in urban environments such as New York City that taxicabs often 

travel in the GPS shadow of tall buildings causing errors in the GPS data. Thus a data 

mapping process is introduced to pre-process the raw GPS data. There are two purposes 



 

 

35 

in this step: first, to map the data to nearest links in the road network to reduce GPS 

errors; second, to match the starting and ending points to the actual road network and 

transform the raw data into usable data for network level analysis. 

 

Figure 11 Illustration of data mapping 

 

Figure 11 illustrates the data mapping procedure. The raw origin and destination 

points (black points in Figure 11) are mapped to the perpendicular foot of the nearest link 

(blue points in Figure 11), and the new points are then used in the later analysis. The 

locations (represented by distance ratio between two endpoints of a link) of the new 

points on the link are also computed to calculate accurate k-shortest path distance in later 

step. 

The new origin and destination points correspond to four endpoints of two links. 

In big cities like New York, a great proportion of the links in the urban grid network are 

one-way streets. For origin and destination points that lie on one-way streets, the actual 

two intermediate nodes in abovementioned four endpoints are easily identified given the 
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directional information of the link. For any point lies on the two-way street, both the two 

endpoints of this link are used as intermediate origin/destination nodes for this record. All 

the combination of the intermediate origin and destination nodes and the corresponding 

shortest path sets are then used to generate the reasonable path sets for this record. These 

identified intermediate points serve as intermediate origin and destination nodes. The 

distance proportion to the total length of the link from the new origin point to the 

intermediate origin node is defined as   , and the distance proportion from the new 

destination point to the intermediate destination node is defined as   . For points lying on 

the two-way streets, different combination of    and    are allowed for the same record, 

depending on the combination of intermediate origin/destination node. 

4.2.4 Constructing reasonable path sets 

Given the origin and destination of a taxi trip, the number of paths in urban 

network between the origin and destination are potentially large, especially for downtown 

grid networks of big cities. Since the actual path taken by a taxi driver is unknown, an 

important sub-question of the analysis is to infer the possible path set of a given taxi trip. 

Considering the large number of observations available in a large network, the overall 

search space for the possible path sets are huge. It is necessary to reduce the size of the 

possible path sets. In this study, Yen's k-Shortest Path algorithm (Yen, 1971) (    ) is 

used to generate the initial path sets, and the trip distance recorded in the data is then used 

to eliminate unreasonable paths. Only the paths that do not have excessively high or low 

lengths compared to the observed taxi trip distance will be used. 

Because the trip distance recorded in the data is not very accurate (only accurate 

to 0.1 mile), a threshold ratio of 15%~25% for weekday, and 20~25% for weekend (both 

upper and lower) is used, depending on the amount of data available during one hour. 

The threshold ratio is used to filter out the unreasonable paths whose measured lengths 

deviate significantly from the recorded trip distance.  

4.2.5 Solution approach 

To solve this non-linear least square problem, the Levenberg-Marquardt (LM) 

method (Nocedal and Wright, 2006; Fletcher, 1971) is used. The Levenberg-Marquardt 
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method is a widely used optimization algorithm in solving least square curve fitting and 

nonlinear programming problems. It outperforms the simple gradient decent method and 

the well-known Gauss-Newton (GN) methods in a wide variety of problems. The 

traditional Gauss-Newton method uses a line-search method, which is computationally 

expensive for solving this problem, since the objective function is huge. The updating 

method in Gauss-Newton method is similar to Newton’s method, which has numerical 

issues when the approximated Hessian is near singular and easily fails to converge to the 

optima if improper initial value is used. Levenberg-Marquardt method on the other hand, 

uses a trust-region strategy instead of the line search method, which determines the step 

size before the updating step. The different Hessian approximation method used in LM 

also helps to ensure the positive definiteness of the approximated Hessian in each 

iteration. This results in a more robust performance, which means that in many cases 

Levenberg-Marquardt method finds a solution even if it starts very far off the final 

minimum. It is showed in Nocedal and Wright (2006) that Levenberg-Marquardt enjoys 

rapid local convergence near optima, and under ideal cases, the convergence is actually 

quadratic. 

For simplicity, define 

   ( ⃗  )   
 (      ( ⃗)      ) (12) 

Thus we can write the denominator of Eq. (12) as: 

    ( ⃗  )  ∑   (      ( ⃗)      )

    

 ∑   ( ⃗  )

    

 (13) 

Then, the expected path travel time can be written as, 

  (     )   (    ⃗  )  ∑   ( ⃗)
  ( ⃗  )

   ( ⃗  )    

 (14) 

Define  
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  (    ⃗  )

   
             

      
  (    ⃗  )

  
 

(15) 

Thus   forms a    (   ) matrix, where    is the number of observations in data set 

 ,   is the number of links in the network. The vector of link travel times and the scale 

parameter   are updated iteratively using 

 
 ⃗   ⃗     ⃗   ⃗ 

( ) 

            
( )

 
(16) 

 ⃗( )  ( ⃗ 
( )    

( ))
 

 is the update direction in kth iteration, which is obtained by solving 

the following linear system, 

( ( )   ( )    ) ⃗( )   ( )
 
                                                        (  ) 

where,  ( )   ( ) is the first order approximation of the Hessian matrix of the problem, 

and   is referred to as damping factor, which adjusted at each iteration under a trust-

region strategy. A modified Levenberg-Marquardt method replaces the identity matrix   

with the diagonal matrix with the diagonal element of  ( )   ( ), which shows as follows 

( ( )   ( )       ( ( )   ( )))  ⃗( )   ( )
 
                                      (  ) 

This study uses the modified version of Levenberg-Marquardt method, as it avoids slow 

convergence in the direction of small gradient. Detailed description of the updating 

scheme of damping factor   and implementation is discussed by Fletcher (1971). 

In the above equations,     is computed as 

    ∑

{
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in which          , and for      , the       is defined as 

       ∑
  ( ⃗  )   ( ⃗  )

   ( ⃗  )
[    ( ⃗)       

    ( ⃗  )
  

   ( ⃗  )
]

    

                  (  ) 

   ( ⃗)

   
, and  

    ( ⃗  )

   
, are defined as follows, 

   ( ⃗)

   
 {

                                                    
                                                     

    {
                              
                          

                               (  ) 

    ( ⃗  )

   
    ∑ [  ( ⃗  )

   ( ⃗)

   
]

    

                                            (  ) 

    ( ⃗  )

  
  ∑[    ( ⃗)      ]  ( ⃗  )

    

                                      (  ) 

One can observe that the problem is not convex and hence may have multiple 

local optima. A proper initial point is needed to ensure the convergence to the most 

probable solution. A preprocessing step is used to search for the network wide optimal 

mean speed. In this step, all the links in the network are assumed to have the same mean 

speed   , thus a 1-dimensional search algorithm can be implemented to find the    that 

minimizes the objective function. The obtained mean speed is then used to calculate the 

initial values of the link travel times. In Table 4, data from 3/15/2010 (Monday) 21:00-

22:00 are used to test the choice of different initial link speeds for link travel time 

estimation. The result shows that using the network wide optimal mean speed as an initial 

point yields the lowest objective value and RMSE, which suggests that the preprocessing 

step is an effective approach of finding desirable link travel time estimates. 
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Table 4 Test results for different choices of model initial values. 

Initial Speed (mph) 
Objective Function 

value 
Iteration Used RMSE MAPE 

10
*
 779.830 20 1.372 21.87% 

8 1215.410 17 1.713 29.30% 

12 783.143 16 1.375 21.52% 

8-12 uniformly 

distributed 
801.487 20 1.391 22.49% 

8-12 uniformly 

distributed 
805.075 16 1.394 22.68% 

6-14 uniformly 

distributed 
805.146 27 1.395 22.55% 

6-14 uniformly 

distributed 
807.044 23 1.396 22.35% 

*  
Network wide optimal mean speed. 

 

4.3 Testing data and network 

The data used in this research was collected by New York City Taxi and Limousine 

Commission on a trip by trip basis. The data records each trip origin and destination GPS 

coordinate, trip distance and duration, fare, payment method, and other related 

information. The data set contains data from February 2008 to November 2010. In this 

study, a week’s data (from 3/15/2010 to 3/21/2010) is selected to test the proposed 

method. 

A small region in the southeast of Central Park of Midtown Manhattan is selected 

to serve as the study region, which is a             rectangle area. The 

corresponding network is also extracted (Figure 12), which contains 193 nodes and 381 

directed links. The network has 331 road segments and only 50 of them are two-way 

streets. From the original data set, all the records that fall within the region are extracted. 

Figure 13 presents the number of observations inside the study region in a typical 

weekday (3/15/2010, Monday) and weekend (3/20/2010, Saturday) respectively. We 

obtain as many as 1000 observations in one hour on a typical weekday (Monday) and 

about 500 observations in one hour in a weekend (Saturday) inside the study region. 

In this study, the data is split into hourly intervals, and link travel times are 

estimated using the data from the corresponding hour. Although traffic conditions can 
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change rapidly during one hour, a shorter time period will not guarantee a good statistical 

significance due to the insufficient amount of observations given the limited information 

in the data.   

 

 
Figure 12 Testing network in the study region 
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Figure 13 Histogram for number of hourly observations in the study region 
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4.4 Model Results 

To implement the model discussed in the previous section, a Matlab code is 

written using Parallel Computing Toolbox. A k-shortest path set is required to be 

computed for each nodal pair in the network and this process takes a considerable amount 

of time. But once the process is complete, the path sets are stored and needs no further 

computation. The steps of data mapping and constructing reasonable path sets take little 

time to complete, as they make use of the information from already computed k-shortest 

path sets of the network. The Levenberg-Marquardt method provides good convergence 

properties, and the entire optimization process can be efficiently solved within 15 

minutes using an Intel i7 CPU laptop. The computation time can be further reduced by 

using Matlab C/MEX code or a more powerful computer. 

Link travel times for four time periods (9:00-10:00, 13:00-14:00, 19:00-20:00, 

and 21:00-22:00) in a day are estimated based on a week’s Taxi GPS data (from 

3/15/2010 to 3/21/2010). The time period from 9:00 to 10:00 represents the morning peak 

period, as the highest number of taxi trips are observed in this period on weekdays; while 

21:00-22:00 is tested for the off-peak hour situation. A lower bound of speed (one mile 

per hour) is used to ensure that we do not obtain unreasonably large travel times; an 

upper bound of speed (30 miles per hour) is used as the free flow speed to set a lower 

bound for the estimated link travel times. We use the link speeds instead of the link travel 

times to give a more intuitive representation of the link travel time estimation results. 

Figure 14 presents the estimated link speeds and correlation plots of observed and 

estimated path travel times for Monday, Tuesday, Wednesday and Saturday, which are 

more representative, and the results for Thursday, Friday and Sunday are presented in 

Figure 15. 
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Figure 14 Histogram of estimated link speed and correlation plot of observed and estimated path travel time for Monday, 

Tuesday, Wednesday and Saturday (Inside plot, X-axis: observed path travel time (min), Y-axis: estimated path travel 

time (min))
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Figure 15 Histogram of estimated link speed and correlation plot of observed and 

estimated path travel time for Thursday, Friday and Sunday  

(Inside plot, X-axis: observed path travel time (min), Y-axis: estimated path travel 

time (min)) 
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Table 5 Model estimation error and estimated value for the scale parameter  . 

Day Error 
Time Period 

9:00-10:00 13:00-14:00 19:00-20:00 21:00-22:00 

Monday 
RMSE (min) 2.614 1.981 1.937 1.372 

MAPE 29.51% 24.22% 26.27% 21.87% 

  0.165 0.063 0.435 0.068 

Tuesday 

RMSE (min) 2.461 2.302 1.827 1.437 

MAPE 29.63% 25.59% 23.33% 22.20% 

  1.082 0.049 0.329 0.003 

Wednesday 
RMSE (min) 3.827* 3.216* 2.180 1.691 

MAPE 41.32%* 34.97%* 28.73% 24.40% 

  1.030 0.867 1.153 0.539 

Thursday 
RMSE (min) 2.468 2.699 2.490 1.382 

MAPE 27.28% 27.92% 28.54% 21.05% 

  0.469 0.037 0.264 0.499 

Friday 
RMSE (min) 2.260 2.179 1.692 1.334 

MAPE 27.76% 27.04% 25.17% 22.26% 

  0.075 0.010 0.717 0.245 

Saturday 
RMSE (min) 1.034 1.690 1.839 1.584 

MAPE 16.84% 24.58% 27.14% 21.61% 

  0.469 0.287 0.081 0.087 

Sunday 
RMSE (min) 2.041 1.518 1.395 1.160 

MAPE 25.44% 23.70% 22.72% 19.87% 

  0.166 0.239 0.190 0.615 

* Traffic disturbance caused by Patrick's Day Parade. 

Based on model estimation results, for weekdays, it is found that most of the links 

have speeds between 4 to 8 miles/hour in the 9:00-10:00 morning peak hour. During the 

13:00-14:00 period, the distribution of speed is slightly improved and peaks around 7 

miles/hour. In the 19:00-20:00 period, the mean speed is observed between 6 to 8 

miles/hour. However, in the 21:00-22:00 off-peak period, a great number of links are 

observed to have speeds around 10 miles/hour. In contrast, during weekends, a relatively 

higher average speed (8-10 miles/hour) is observed during 9:00-10:00 in the morning, 

and relatively lower average speed (about 8 miles/hour) is observed during 19:00--20:00 

pm period. These values are consistent with a previous study on New York City traffic 

speeds where it is reported that on weekdays in the daytime, in east Midtown, average 

traffic speed is 6.3 mph whereas on Saturdays, the average speed is about 8.5 mph 

(Grynbaum, 2010). 
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The root mean square Error (RMSE) and mean absolute percentage error (MAPE) 

are used to evaluate the estimation results: 
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where 

-   
   is the model estimated trip path travel time. 

-   
   is the observed trip path travel time. 

-   is the number of observations. 

The model estimation errors and the estimated values of the scale parameter   are 

presented in Table 5 As showed in the result, except for 2 time intervals (Wednesday 

9:00-10:00 and 13:00-14:00), all the link travel time estimation results have MAPE 

below 30%, and for some off-peak hours, e.g. 21:00-22:00 pm, the MAPE is only around 

22%. It is noticeable that Wednesday 9:00-10:00 and 13:00-14:00 have much larger 

errors and lower link travel speeds compared with other days. It is found that this 

Wednesday (3/17/2010) happened to have St Patrick's Day Parade. The parade was from 

8:00 to 15:00 and marched down the 5th street (contained in the test network). Few roads 

were temporarily closed and huge crowds were drawn along the parade routes. This 

caused huge disruption in traffic network and explained the high estimation errors on 

Wednesday. It is also observed that after the parade ended, the estimation results for 

19:00-20:00 and 21:00-22:00 restore to normal condition, which have RMSE under 2.5 

min and MAPE under 30%. It is found that in congested time period (e.g. 9:00-10:00 on 

weekdays), the results have relatively higher estimation errors. This could be the effect of 

the rapid changes in the network condition, since the model estimates hourly average link 

travel times. The link speed estimates also confirm that in high estimation error time 

period, a greater proportion of links have relatively lower traveling speed. 

The estimation results for the scale parameter   show relatively large variance in 

drivers’ route choice behaviors. All the estimated values for   are smaller than 1.2, and 
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very small   (0.003) is observed. The change in   reflects the relatively large variance in 

taxi drivers’ route choice behaviors in different time periods, days and network 

conditions. The wide range for the estimated values of   (0.003~1.153) could be the 

result of several reasons. One plausible explanation could be that as traffic conditions 

change in different time periods of a day, taxi drivers may have different levels of 

perception error, which are reflected in their route choice behaviors. However   only 

considers the overall variance in taxi drivers’ perceived path costs and treats all taxi 

drivers as homogeneous individuals, which does not capture the behavioral heterogeneity 

among the taxi drivers. 

Three consecutive Mondays in 2009 (2009/9/14, 2009/9/21, 2009/9/28) are also 

investigated to see if repeatability exist across weeks (due to space limitation, these 

results are not included). However, no significant pattern is found in terms of link speed 

profile and travel time variation during a day. The findings of the three Mondays agrees 

with the general pattern found on weekdays discussed above, but variation in terms of the 

distribution of link travel speeds is also observed, and no conclusive inference can be 

made across weeks. 

In this model, intersection delay is not modeled due to the lack of detailed vehicle 

trajectory information in the data. In the testing network, most of the links have lengths 

ranging from 80 to 300 meters; assuming the vehicle traveling at a speed of 8 miles per 

hour, a great number of links will have a travel time less than 1 minute. However, the 

intersection delay at a traffic signal sometimes can be greater than the link travel time 

itself. In a 10 minutes trip, it is very likely to have at least 2 minutes of intersection delay 

on average, which partly explains the RMSE of around 2 minutes in the model. This is a 

potential source of errors of the model. The intersection delay causes inconsistency in the 

link travel time estimation and leads to overestimation of actual link travel times. 

However, given only origin and destination information provided in the data, modeling 

intersection delay separately will introduce excessive complexity in travel time 

estimation, which makes the short term estimation intractable. Also, there is no guarantee 

on the quality of the estimated intersection delay, since too little information is available 
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to separate the intersection delay from the total link travel time. Thus given the 

incompleteness of the data, we combine the intersection delay into the link travel times 

and focus on estimation the hourly average link travel times. 

Furthermore, because the link travel times are estimated as hourly average values, 

variations in link travel times within one hour can introduce errors in the model 

estimation. The heterogeneity among the drivers’ behaviors (e.g. some drivers prefer to 

drive fast and choose the shortest path, some drivers prefer to drive at a moderate speed 

and take a relatively long path, etc.) may also contribute to the estimation errors. Certain 

trips are observed to take as much as 20 minutes in the testing network, which involve a 

lot of uncertainty in path choices, leading to some errors in estimation results as well. 
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CHAPTER 5.  CONCLUDING REMARKS AND FUTURE RESEARCH 

This research exploits a large-scale taxi trip data from NYCTLC. The two major 

focus of this study is to understand underlying patterns of urban dynamics from the taxi 

trip data, and estimate urban link travel times using partial trip information. 

Taxi data has been proved to be an efficient tool to understand urban dynamics 

and several interesting insights are raised in our study. Unbalanced trips are common in 

taxi industry and should be carefully investigated to improve the level of service. Airport 

trips is a special part of taxi trips and differ from regular taxi trip patterns. Land use has 

significant impact on taxi trip types, and different types of taxi trips are helpful to 

understand the structure of a city. Moreover, we discover that the mobility of taxi trips 

are restricted by the urban geographical boundaries. 

A new model is also proposed to use the limited information provided in the taxi 

GPS data to estimate urban link travel times. The taxicab data used in this study lacks the 

information of actual paths taken by the taxi drivers. The proposed model treats the path 

taken as latent, constructs a reasonable path set, formulates an MNL model to compute 

the probability of a path being taken by the driver, and estimates the link travel times by 

optimizing a nonlinear least square problem. Model estimation results indicate that the 

proposed method can efficiently estimate hourly average link travel times. 

It is recommended to split the whole urban region into smaller zones (e.g. 

1.5km 1.5km) to implement this model, because of the following reasons: (1) Larger 

zones contain longer trips, which involve more uncertainties in path choices, thus long 

trips are less reliable in the link travel time estimation given this type of data. (2) 

Preparing the k-shortest path set for all the nodal pairs in a large network is 
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computationally expensive. The number of nodal pairs grows as    as the number of 

nodes in the network, and a greater k value is also needed to ensure a good representation 

of reasonable paths. By reducing the zone size, we can ensure the computational 

tractability for short term link travel time estimation. (3) The data provides a large 

number of records in an hour even in a 1.37km 1.6km size zone, thus the amount of data 

is enough for the model. 

This model can be further verified using the actual trajectory information of the 

taxi trips. Although this information has been collected by NYLTC, it is currently 

unavailable to the researchers. The model is also applicable to use trajectory data 

(treating two intermediate trajectory points as origin and destination point). The accuracy 

of the model can be improved with more detailed data and greater number of 

observations. 

There are still some scopes to further improve this study. From the urban 

dynamics perspective, the current researches are primarily focused on exploring patterns. 

Future study can be focused on building a model from the patterns discovered to account 

for human movement within urban context. Moreover, more information such as social 

economics can be combined into the data analysis to provide more in depth information. 

Furthermore, it would be interesting to develop a methodology to infer urban land use 

types from taxi patterns. Also, attentions can be paid on extracting travel information 

from taxi dynamics and provide feedbacks to users.  

From the urban link travel time estimation perspective, only the data in the current 

time period are used in the current estimation model, and historical data are not used. 

Further research can be done to investigate a hybrid approach of using historical data as 

well as optimizing current estimation error. Another research direction in the future is to 

improve the route choice model to account for more realistic route choice behaviors of 

the taxi drivers. The current route choice model only considers drivers who minimize trip 

time and distance in each trip, and records that do not comply with this assumption are 

filtered out. A more comprehensive route choice model would utilize more data records 

and provide less estimation bias. Furthermore, intersection delays are important causes of 
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irregularity of link travel times, which may lead to bias in the estimated travel times. 

Future research can be done to incorporate the effects of intersection delays in the link 

travel time estimation, and thus improve the estimation accuracy. All these efforts would 

provide a more accurate and reliable way to estimate urban network conditions using the 

partial information provided by the taxicab data.  
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