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EXECUTIVE SUMMARY

The Oklahoma Department of Transportation specifications manual (ODOT 2009)
currently endorses a very limited number of geogrids for base reinforcement and needs
to be updated to include a wider range of products that are currently available on the
market. Therefore, a primary objective of the current study was to help ODOT expand
its selection of approved geogrid products for base reinforcement applications by
producing measured data on selected geogrids and a dense-graded base aggregate
that is commonly used in ODOT roadway projects.

Geogrids used in this study were classified and selected based on a comprehensive
survey of available products on the market. Survey of the geogrid specifications for
aggregate base reinforcement included all 50 State DOTs in the U.S. The results of the
survey was used to determine the range of geogrid strength properties currently used in
different DOT projects across the country. A geogrid classification table was made using

the information gathered from the survey.

This study investigated the influence of selected in-isolation properties of geogrids on
their in-aggregate performance. The focus of the study was on the rib and junction
strength properties of the geogrids. More specifically, the ultimate junction strength,
ultimate rib strength and the rib strength values at 2% strain and 5% strain were
investigated in machine (MD) and cross-machine directions (XD). A total of about 80 rib
strength and 80 junction strength tests were carried out on eight geogrids including
Tensar BX1200, Mirafi BXG11 and BXG12, Tri-Ax TX140, Tri-Ax TX160, Synteen SF11,
Stratagrid SG150 and Maccaferri EB2 products in both MD and XD.

A total of 36 pullout tests were completed as per the ASTM D6706 test protocol using
ODOT Type-A aggregates and eight different geogrid products for base reinforcement.
A series of sieve analysis (ASTM C136-06) and LA (Los Angeles) abrasion tests (ASTM
C131-06) were carried out on ODOT Type-A aggregates to check their durability. The
2%-strain rib strength value was found to be better correlated with the pullout resistance
at lower confining pressures (e.g. outside of the pressure bulb in the pavement resulting

from the wheel load). In contrast, the ultimate rib strength value was found to be a better
XXiii



indicator of the geogrid pullout behavior when subjected to larger overburden pressures.
The overall results indicated that as a general rule, greater in-isolation strength

properties of geogrids in the pullout direction result in greater pullout resistance.

Large-scale field installation damage tests on eight extruded and non-extruded geogrids
were carried out in conformance with the ASTM D5818 test protocol to investigate their
survivability during construction. After the installation damage test, 80 junction strength
tests (GRI GG2 test method) and 80 rib strength tests (ASTM D 6637 test standard)
were carried out on damaged specimens. Installation damage reduction factors of eight
geogrids were determined. The installation damage reduction factors for rib strength

values at 2% strain were especially found to be significant.

A total of five static plate load tests were performed and the results were compared to
determine a more effective reinforcement layer location in the model. Three preliminary
large-scale cyclic plate load tests indicated that the subgrade sand was too weak to
support the 1000 dynamic loading cycles. A series of CBR tests was carried out on the
subgrade sand at different compaction levels according to the ASTM D1883-07 test
protocol to determine a suitable CBR value for the sand in as-placed conditions. A total
of nine cyclic plate load tests were subsequently completed to evaluate the performance
of geogrid base reinforcement in flexible pavements, which included eight reinforced
cases and an unreinforced case. Cyclic plate load tests on reinforced aggregate base-
loose sand subgrade models indicated that the Settlement Reduction Factor (SRF) and
Traffic Benefit Ratio (TBR) values of the models were, by and large, proportional to the
rib strength of the geogrid reinforcement. Overall, the improvement in the performance
of the aggregate base-subgrade models tested was found to be strongly correlated with

the geogrid index properties.

These efforts collectively will help ODOT and other state DOT engineers to revise their
respective specifications manuals for base reinforcement and subgrade stabilization
applications and make them inclusive of a wider range of new products and hence,

make them more consistent and cost-effective.
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1. INTRODUCTION

It has been shown that geogrids, when properly installed as aggregate base
reinforcement, can help to improve the service life and performance of roads and
highways and help reduce their repair and maintenance costs (e.g., Perkins 1999, Leng
and Gabr 2002, Perkins et al. 2004, Giroud and Han 2004, Gabr et al. 2006, Aran 2006,
Holtz et al. 2008, Kwon and Tutumluer 2009). The existing specifications manual of the
Oklahoma Department of Transportation (ODOT 2009) endorses a very limited number
of geogrids for base reinforcement and needs to be updated to include a wider range of
products that are currently available on the market. However, there are currently no
universally accepted guidelines for the acceptance and specification of geogrids for
base reinforcement and subgrade stabilization applications. Alzamora and Anderson
(2012) highlighted challenges that different State DOTs and research institutions face in
establishing a direct connection between index properties of geogrids and their field
performance. Nevertheless, careful measurement of geogrids index properties and their
in-aggregate performance in controlled laboratory conditions is essential in order to
develop empirical correlations with field performance and input properties that are

needed to develop mechanistic models for the design of reinforced base pavements.

Therefore, a primary objective of the current study was to help ODOT expand its
selection of approved geogrid products for base reinforcement applications by
producing measured data on selected geogrids and a dense-graded base aggregate
commonly used in ODOT roadway projects. The study involved in-isolation and in-
aggregate laboratory testing of several base reinforcement geogrid products from major
geosynthetic suppliers. The in-isolation tests included rib strength and junction strength
tests, and the in-aggregate tests included pullout and plate load tests on reinforced
aggregate models involving selected geogrid products. Field-scale installation damage
tests were also performed to investigate the survivability of the selected geogrids during
simulated construction. A primary objective of the laboratory and field tests on different
geogrids in this study was to quantify the significance of the geogrids in-isolation

properties on their in-aggregate response under controlled conditions.

1



This page is intentionally left blank



2. IN-ISOLATION TESTING OF GEOGRIDS

2.1. A REVIEW OF GEOGRIDS USED IN THE U.S. AND CLASSIFICATION OF
GEOGRID PRODUCTS

2.1.1. Venders’ data

As a first step of this study, a survey was carried out on a wide range of commonly
available geogrids on the market in order to identify candidate products for ODOT’s new
geogrid specifications. Candidate geogrids were initially screened from the 2009 issue
of the Geosynthetics Specifier's Guide (IFAI 2009) on the basis of their aperture size
and rib strength at 5% strain. Tensar BX1100 and BX1200 geogrids which are primarily
used in ODOT projects are referred to as the control geogrids in this study. These
geogrids are referred to as Type-1 and Type-2 geogrids, respectively in the ODOT

specifications manual.

Several geogrid producers and suppliers were contacted for additional information on
their products. A database of surveyed geogrids and their selected properties (aperture
size, rib strength at 5% strain and ultimate strength) is given in Appendix A. Figure 1
shows a histogram of geogrid products available on the market based on their machine
direction (MD) rib strength at 2% strain, which is used in specifications published by
several U.S. State DOTs (see Section 2.1.2.). The rib strength at 2% strain has been
recommended as a serviceability criterion in previous studies (e.g. Christopher et al.
2008). The histogram in Figure 1 was produced based on a survey of 113 geogrids

from available sources.
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Figure 1. Distribution of MD strength at 2% rib strain of all geogrids available on

the market

Among these 113 geogrids surveyed, 66 geogrids were biaxial. Since this study was
focused on bi-axial geogrids used for base reinforcement, the distribution of MD rib

strength at 2% strain of bi-axial geogrids as a subset of what is shown in Figure 1 is

shown in Figure 2.
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Figure 2. Distribution of MD strength at 2% rib strain of bi-axial geogrids available

on the market

Among the 66 geogrids represented in Figure 2, a total of 31 geogrids were found to
have either an aperture size or a 5%-strain rib strength value comparable to those of
ODOT Type-1 and ODOT Type-2 geogrids as given in Table 1. The geogrid products
discussed in this report are classified as extruded and non-extruded geogrids (EGG and
NEGG, respectively). The NEGG category, in turn, includes woven and knitted geogrids

(WGG and KGG, respectively).



Table 1. List of candidate geogrids with either aperture size or 5%-strain tensile

strength comparable to those of ODOT Type-1 and Type-2 geogrids

Product Aperture Size (in) Strength @ 5% Strain (Ib/ft)

e MD XD MD XD
1 ACE GG30-11 1.00 1.12 1027.40 NP
2 ACE GG300-11 1.00 1.20 8219.16 NP
5 BX1100* 1.00 1.32 582.19 917.81
6 BX 1120 1.00 1.32 582.19 917.81
7 BX1200** 1.00 1.32 808.22 1342.46
8 BX-1220 1.00 1.32 808.22 1342.46
9 BX 1500 1.00 1.24 1198.63 1369.86
10 BX 4100 1.00 1.32 547.94 719.18
11 BX-4200 1.00 1.32 719.18 1000.00
12 Fornit 20 0.60 0.60 753.42 1095.89
13 Fortrac 35 0.80 0.80 890.41 NA
14 LBO 202 1.12 1.52 650.68 924.66
15 MacGrid EB2 1.68 2.00 616.44 917.81
16 MacGrid EB3 1.68 2.00 924.66 1342.46
17 MacGrid WB1 1.00 1.32 1041.09 787.67
18 MacGrid WB2 1.00 1.32 1041.09 1130.13
19 MacGrid WB3 1.00 1.00 863.01 979.45
20 MacGrid WG3 1.00 1.12 1027.40 NP
21 MacGrid WG5S 0.96 1.12 1917.80 NA
22 MacGrid WGS 0.96 1.12 2739.72 NA
23 Mirafi BXG 11 1.02 1.02 917.81 917.81
24 Mirafi BXG 12 1.02 1.02 917.81 1349.31
25 Miragrid 3XT 0.88 1.00 1054.79 NA
26 MS 220 1.68 2.00 616.44 919.18
27 MS 330 1.68 2.00 924.66 1342.46
28 MS 500 2.40 2.40 924.66 1342.46
30 SF 11 1.00 1.00 1041.09 787.67
31 SF 12 1.00 1.00 1041.09 1363.01
32 SF13 1.00 1.00 1041.09 1164.38
33 SF 15 1.00 1.00 1198.63 1369.86

StrataGrid

34 SG150 1.02 0.96 623.29 424.66

Note: ~ ODOT Type-1 Geogrid; = ODOT Type-2 Geogrid; NA: Not Applicable; NP: Not

Provided; Products in green cells were ultimately selected for testing in this study.

Based on the above survey and the selection criteria illustrated in Figure 3, a total of
eight geogrids were selected as a final set for testing in this study (Table 2).

Dimensional and 5%-strain rib strength properties of the finalized geogrid products from



manufacturers’ datasheets are presented in Table 3.
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Figure 3. Procedure used to select geogrid products for testing in this study
(Note: EGG -Extruded Geogrid; NEGG - Non Extruded Geogrid)

Table 2. List of selected geogrid products tested in this study

Commercial | Designation | Fabrication Manufacturer Grid Polvmer

Name in this report | Category Structure ym
BX1200 EGGI1 Tensar BX
EB2 EGG2 Maccaferri BX

EGG PP

TX140 EGG3 Tensar X
TX160 EGG4 Tensar TX
BXGl11 WGGI TenCate-Mirafi BX

BXG12 WGG2 NEGG TenCate-Mirafi BX PET
SF11 WGG3 Synteen BX
SG150 KGG1 Strata BX

Notes: PP: Polypropylene, PET: Polyester, BX: Biaxial, TX: Triaxial




Table 3a. Selected properties of biaxial geogrid products listed in Table 2 from

manufacturers’ datasheets

Geogrid Size (in) (Ib/f)
MD | XD | MD | XD

EGG1 1 1.3 | 808.2 | 1342
EGG2 1.7 2 16164 |917.8
WGGI 1 1 917.8 | 917.8
WGG2 1 1 917.8 | 1349
WGG3 1 1 1041 | 787.7
KGGl1 1 1 623.3 | 424.7

Table 3b. Selected properties of triaxial geogrid products listed in Table 2 from

manufacturers’ datasheets

Rib Pitch (in) |  Mid-rib Depth (in) Mid-rib Width (in)
. E 0 E 0 E N . Aperture
= 7] b= 7] = = 17}
Geogrid -g gl B -g g 53 s g 53 Rib Shape Shape
3| | = E S > E S >
= en %] = en %) = an %)
22 5] 2 = 8 2y = 8
S| s 7 5| 5| 7] F
EGG3®™ | 1.6 | 1.6 - 0.05 0.05 - 0.04 0.04 Rectangular Triangular
EGG4® | 1.6 | 1.6 - 0.06 0.06 - 0.04 0.05 Rectangular | Triangular

®) included in the final set due to ODOT'’s interest




2.1.2. DOT agencies data

Table 4 shows a list of all 50 State DOTs in the United States that were surveyed with
respect to their geogrid specifications. This survey revealed that those DOTs that have
specifications for base reinforcement geogrids specify MD rib strength values at 2%
elongation which vary between 68.5 Ib/ft and 205.5 Ib/ft. This range represents 62% of
the biaxial geogrid products surveyed (i.e. 41 out of 66 products) within the lower end of
tensile strength values (Figure 3 and Figure 2). Stronger geogrids (especially of
uniaxial type) are primarily used for reinforced soil walls, embankments and steepened
slopes, which are outside the scope of this study. Based on the above survey, the
geogrids listed in Table 2 were grouped into categories shown in Figure 4. The 25-Ib
split value for junction strength shown in Figure 4 was selected based on the Holtz et
al. (2008) requirement for minimum ultimate junction strength of geogrids. The split
value for the 2%-strain rib strength was selected such that ODOT Type-1 and ODOT
Type-2 geogrids represent the weak rib (WR) and strong rib (Sr) categories,

respectively, with respect to this index property.



Table 4. State DOTs providing geogrid specifications for base reinforcement

No Info Specs No Info Specs No Info

State Specs. Specs | Sourc State Specs Sourc State Specs | Sourc
. e . e e
Alabama v w Louisiana v C Ohio W
Alaska* v C Maine v w Oklahoma* w
Arizona v W Maryland v C Oregon W
Arkansas 4 C Massachusetts 4 C Pennsylvania 4 W
California v W Michigan v C Rhode Island v W
Colorado 4 W Minnesota v w Cz(r)zlti:a 4 W
Connf“icu v W Mississippi v W s:;‘;:‘a v W
Delaware v w Missouri v w Tennessee w
Florida* v O W Montana 4 w Texas W
Georgia 4 W Nebraska 4 W Utah 4 W
Hawaii v w Nevada v w Vermont v w
Idaho v w Haﬂz‘;‘;ire v w Virginia v w
lllinois v W New Jersey v W Washington W
Indiana v O W New Mexico v W West Virginia W
lowa v w New York v w Wisconsin* w
Kansas v W North Carolina 4 w Wyoming W

Kentucky O W North Dakota v w
W por Agency Website

c

Correspondence with Agency

States that endorse specific products
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http://www.50states.com/scarolin.htm
http://www.50states.com/scarolin.htm
http://www.50states.com/nebraska.htm

Ultimate Junction Strength (Ib)

0 25 50
685
= 1. WGG3 1. EGGI
= 2. KGG1 2. EGG3
£ 3. EGG4
& 4. WGGI1
° 5. WGG2
(@\l
< 3425 '
5 !
[}
2 g 1. EGG2
[}
I
i
g
0 1
Note:

SgS;: Strong Rib Strong Junction
SgW;: Strong Rib Weak Junction
WS;: Weak Rib Strong Junction
W W;: Weak Rib Weak Junction

Figure 4. Classification of the geogrid products used in the study
2.1.3. Geogrid properties

A few recent studies have been aimed at developing a correlation between index
properties of geogrids and their field performance (e.g. Perkins et al. 2004, Chehab et
al. 2007, Christopher et al. 2008, Tang et al. 2008).

Perkins et al. (2004) developed numerical models and testing methods to determine
input parameters for the geogrid reinforcement and its interaction with the aggregate
and subgrade materials. The testing methods included tensile tests for evaluating

direction dependent, non-linear elastic constants for the reinforcement and cyclic pullout

11



tests for evaluating a stress-dependent interface shear resilient modulus. Perkins et al.
(2004) carried out wide-width tensile tests according to ASTM D4595 with a cyclic
loading protocol on three geosynthetic reinforcement products. They studied the
influences of the geogrids elastic tensile modulus, equivalent isotropic modulus and
Poisson’s ratio on the elastic response of reinforced pavement models. Their cyclic
pullout test results showed that the interface shear modulus was dependent on the

normal and shear stress on the interface.

Chehab et al. (2007) studied the effects of aperture size, tensile strength at 2% strain,
ultimate tensile strength, junction strength and flexural rigidity of geogrids on rutting
performance of small-scale roadway models. They performed Accelerated Pavement
Tests (APT) on a 7.3 ft x 12 ft test pit. The pit was originally 14 ft deep but was
backfilled with aggregate. The densely-compacted aggregate layer served as a firm
substrate. The top 16 inches was considered as the pavement section. They used
aggregate as subgrade and base material. They selected a Type-2A aggregate base
conforming to the PennDOT specifications. An asphalt slab was constructed on the top
of base layer. They presented a series of correlations between the geogrid index
properties and the rutting performance of their reinforced models. Chehab et al. (2007)
concluded that adequate ultimate junction strength is essential for the geogrid to
develop high pullout resistance. Overall, good correlations were found between geogrid
tensile strength and junction strength properties and results of their interface shear and

pullout tests.

Christopher et al. (2008) suggested that rib strength at 2% strain is a suitable value for
geogrid design for base reinforcement at service-level conditions. They concluded that
junction strength at 2% strain should therefore be used as an appropriate value to

achieve a consistent design.

Tang et al. (2008) examined the correlations between index properties such as the
aperture size, wide-width tensile strength and junction strength of four geogrid products
and their bench-scale interface test and pullout test results. They found that junction

and tensile strength properties of geogrids at small strains showed strong correlations
12



with their in-aggregate performance. They observed that the pullout coefficient of
interaction factors increased with the junction strength and the rib tensile strength at 2%

strain of the geogrids tested.

Cuelho and Perkins (2009) constructed field test sections to evaluate the performance
of several geosynthetics for subgrade stabilization application. A sandy clay soil was
prepared as a weak roadbed material to a CBR strength of approximately 1.8, and an 8-
inch-thick aggregate layer was compacted over the geosynthetic reinforcement. They
examined the effects of the tensile strength at 2% strain, 5% strain and the ultimate
tensile strength on the rutting performance of geogrid-reinforced roadway test sections.
Cuelho and Perkins (2009) acknowledged that a number of geosynthetic properties may
be working together to stabilize a subgrade. However, they attributed a majority of the
stabilization benefit to the geosynthetics ability to support loads in a direction transverse
to the applied load, i.e. their cross-machine direction. A direct comparison between
tensile strength in the cross-machine direction at 2% and 5% strain was made to
investigate whether. Cuelho and Perkins (2009) concluded that the observed rutting in
their test models was related to the tensile strength of the geosynthetic in the cross
machine direction and an increase in the 2%-strain and 5%-strain tensile strength
values in the cross machine direction would reduce the amount of rutting and hence a

better pavement performance.

The above studies have revealed the significance of geogrid mechanical properties on
their in-aggregate performance. However, the influence of individual index properties of
geogrids on their in-aggregate performance is still not well understood and requires
further study. Furthermore, the influence of the geogrid index properties on their in-
aggregate performance also depends on the properties of the aggregate. Therefore, this
study is aimed at producing experimental data which are specific to aggregate types
that are commonly used in highway projects in Oklahoma. Nevertheless, the
methodology adopted in this study as described in this report is applicable to other
aggregate types in future studies. Based on the survey of previous studies, the geogrid

properties that are important to their in-aggregate performance are summarized in
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Table 5. Selected geogrid properties of interest in this study are listed in Table 6.

Table 5. List of geogrid properties examined for base reinforcement applications

in related previous studies

. . Abu-
Mechanical \:i:f G:I?(lild Chehab | Tang | Christopher Cgrelglo T:III%I | Farsakh Current
Properties (199 | Hann et al. et al. et al. Perkins | Jers and Stud

(MD and XD) Y | Chen Y

(2007) | (2008) |  (2008)
2) | (2004) (2009) | (2009) | 5017

Ultimate Rib
Strength v v v v

Rib Strength
at 2% v v v v v

Elongation
Rib Strength
at 5% ol ol v

Elongation

Junction
Strength v v v v v

Tensile N
Modulus

Aperture Size \ \ \ \ \

Flexural
Rigidity v v

Aperture
Stability N \ N
Modulus
Rib N
Thickness

Rib Cross- N
Section Shape
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Table 6. Geogrid properties of interest in this study

Mechanical Properties (MD and Fabrication Technique

XD)
Ultimate Rib Strength Extruded
Rib Strength at 2% Strain Non Extruded (Woven and Knitted)

Rib Strength at 5% Strain
Ultimate Junction Strength

2.2. JUNCTION STRENGTH TESTS

2.21. Fabrication of junction strength testing clamps for extruded and non-
extruded geogrids

A total of eighty (80) junction strength tests were carried out on geogrids listed in Figure
4 in both MD and XD directions according to the GRI GG2 test method. A minimum of
five replicate samples of each product were prepared and tested. In these tests, a
junction clamp firmly gripped the transverse ribs on each side of the junction (Figure 5)
and the specimen was subjected to a monotonic tensile load until the junction failed. In
addition to obtaining junction strength values for the geogrid products, these tests
helped us to evaluate the performance of the fabricated clamps and apply necessary
modifications to improve their performance. Due to the manufacturing technique and
comparatively low junction strength, the strain magnitudes of the non-extruded geogrids
(NEGG) were low. Therefore it was decided to report only the ultimate junction strength
of these products. Digital imagery technique was used to determine the strain in
extruded geogrid (EGG) products (Wang 2009).

Figure 6 and Figure 7 show the tensile testing machine and an example output plot
from the in-isolation tests, respectively. Figure 8 shows different failure modes

observed in the junction tests carried out on the extruded geogrid (EGG) products.

15



Figure 5. Clamp and example test specimen used in junction tests (junctions in

the specimen shown are one inch apart from each other)

Figure 6. Tensile testing frame for testing rib and junction strength of geogrid

specimens

16



Figure 7. Specimen failure as captured on the data acquisition system screen

Figure 8. Different failure modes observed in junction testing of extruded
geogrids: (a) Brittle failure (b) Ductile failure

2.2.2. Junction strength test results

Samples of the eight (8) different geogrids examined in this study (Table 2 and Table 3)
are shown in Figure 9 through Figure 16, respectively. Figure 17 shows an EGG4

geogrid specimen in the junction test setup before and after failure.

17



Figure 9. EGG1 geogrid junction strength specimens after the test in (a) MD and,
(b) XD

Figure 10. WGG1 geogrid junction strength specimens in XD: (a) before failure,

(b) after failure
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Figure 11. WGG2 geogrid junction strength specimens: (a) before the test, (b)
after failure (MD), (c) after failure (XD)

Figure 12. WGG3 geogrid junction strength specimens (a) before the test, (b) after
failure (MD), (c) after failure (XD)

19



Figure 13. KGG1 geogrid junction strength specimens: (a) before the test, (b) after
failure (MD), (c) after failure (XD)
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Figure 14. EGG2 (single layer) geogrid junction strength specimens after the test:
(a) in MD and (b) in XD

Figure 15. EGG3 geogrid junction strength specimens: (a) before the test, (b) after
failure (MD), (c) after failure (XD)
21



4

Figure 16. EGG4 geogrid junction strength specimens: (a) before the test, (b) after
failure (MD), (c) after failure (XD)

. _. "-vm |

Figure 17. EGG4 geogrid specimen in junction strength test: (a) before the test,

(b) after failure
22



Junction test results for the eight (8) different types of geogrids investigated (Table 2)
are shown in Figure 18 through Figure 33. In the cases of EGG3 and EGG4 geogrids
in Figure 30 through Figure 33, the “MD” notation refers to the ribs that are situated at
30° from the machine direction due to their triangular configuration. The test results for
each geogrid product tested are summarized in Table 7 and Table 8. In the results
shown in these figures and tables, the outlier data points were discarded such that all

the remaining data will fall within £5% of the mean value.

200
MD 1
mEMD 2
150 +
EMD 3

100 —|rrrrmmmmmnnacaamnnneen e R - - - - = xxxxnnnns

N
[e)

Minimum
requireme
by FHWA

Ultimate Junction Strength (1b)

Samples

Figure 18. Junction strength variation in different EGG1 test specimens (MD)
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Figure 20. Junction strength variation in different WGG1 test specimens (MD)
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Figure 21. Junction strength variation in different WGG1 test specimens (XD)
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Figure 30. Junction strength test results of EGG3 geogrid in MD ribs (30°from

machine direction)
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Figure 31. Junction strength test results for EGG3 in XD
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Table 7. Summary of junction strength test results in machine direction (MD)

Geogrid

Type

Junction Strength in Machine Direction

(Ib)

Mean

(M)

Standard
Deviation

(0)

Co-efficient
of Variation,
COV (%)

MARYV value
from
manufacturer

EGG1

SrS,
Biaxial
Extruded

134.99

134.88

[132]

135.89

135.25

0.45

0.33

101.52

WGG1

SRS,
Biaxial
Woven

[41.27]

35.63

35.39

33.04

34.69

3.37

30.00

WGG2

SrS,
Biaxial
Woven

28.26

28.27

27.67

28.35

[39.9]

28.14

0.27

0.97

30.00

WGG3

SrW,
Biaxial
Woven

16.79

16.39

16.47

16.37

16.38

16.48

0.16

0.96

59.40

KGG1

SrW,
Biaxial
Knitted

17.29

10.24

14.41

12.81

13.69

2.56

18.68

30.50

EGG2
(single
layer)

WRS,
Biaxial
Extruded

[63.84]

82.95

81.38

82.92

79.40

81.66

0.73

0.90

70.53

EGG3

SrS,
Triaxial
Extruded

47.21

47.21

48.33

47.58

0.53

NP

EGG4

SrS,
Triaxial
Extruded

56.20

56.20

58.45

56.95

1.06

1.86

NP

Cell background color key:

Green: Junction meets minimum Holtz et al. (2008) requirement
Pink (ltalic font): Junction does not meet minimum Holtz et al. (2008) requirement

[

Outlier value

NP  Not provided by the manufacturer
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Table 8. Summary of junction strength test results in cross machine direction
(XD)

Junction Strength in Cross-Machine Direction

(Ib)

Geogrid Type
Mean Standard Co-efficient MARYV value
1 2 3 4 5 Deviation | of Variation, from

) (o) COV (%) manufacturer

SrS,
EGG1 Biaxial 156.31 | 153.63 | [125.60] | 142.64 150.86 5.92 3.92 152.67
Extruded

SrS,
WGG1 Biaxial 19.85 18.57 21.77 [28.81] 20.06 1.32 6.55 30.00
Woven

SrS,
WGG2 Biaxial 23.53 23.45 [38.63] 23.60 23.53 0.06 0.27 30.00
Woven

SrW,
WGG3 Biaxial 11.33 10.93 [6.44] 11.12 11.13 0.16 1.47 47.60
Woven

SrRW,
KGG1 Biaxial 6.72 6.72 6.72 6.40 6.64 0.14 2.09 20.30
Knitted

EGG2 WeS,
(single Biaxial 95.73 90.92 90.64 94.88 | 97.64 | 93.96 2.75 2.93 90.64
layer) Extruded

SRS,
EGG3 Triaxial 47.21 47.21 44.96 46.46 1.06 2.28 NP
Extruded

SrS,
EGG4 Triaxial 67.44 65.19 65.19 65.94 1.06 1.61 NP
Extruded

Cell background color key:

Green: Junction meets minimum Holtz et al. (2008) requirement

Pink (Italic font): Junction does not meet minimum Holtz et al. (2008) requirement
[---] Outlier value

NP  Not provided by the manufacturer
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2.3. RIB STRENGTH TESTS

Several preliminary tensile strength tests were carried out on selected geogrids
according to the ASTM D6637 test protocol. However, the existing clamping mechanism
for single rib specimens was found to be problematic; either the specimens would pull
out of the clamps or the measured tensile strength values for different specimens were
not consistent. Therefore, new clamps were fabricated to improve the test results as

described in the following sections.

The new clamps were successfully tried on both ODOT Type-1 and Type-2 geogrids.
Afterwards, these clamps were used to carry out a total of 80 in-isolation rib strength
tests to determine the 2%-strain, 5%-strain and ultimate tensile strength values of the
geogrids listed in Table 2 and Table 3 in both machine (MD) and cross-machine (XD)
directions. Five tests were carried out in MD and five in XD for each geogrid products.

2.3.1. Fabrication of rib strength testing clamps for extruded geogrids

Two 4 inches x 4 inches x 0.2 inch steel plates were fabricated as rib strength test
clamps. In order to grip the geogrid ribs properly, a clamping system was developed
that utilized frictional and interlocking forces using two layers of sandpapers mounted on
the inside edges of each clamp. A piece of No. 100 wood sandpaper was fixed on the
edge of the clamp using superglue as a permanent frictional layer. A 1 inch x 1 inch
piece of sandpaper was placed on the middle of each fixed sandpaper layer as a
disposable pad as shown in Figure 34. These pieces were replaced after each test

because they would lose their roughness during testing.
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Figure 34. Rib strength test clamp for extruded geogrids and accessories

Specimen preparation in our procedure for rib strength testing of geogrids included
several steps which are discussed below:

1. A piece of geogrid was cut with the length of two or more aperture sizes depending
on the aperture size. Then, the initial length of the geogrid specimen was measured and
its junctions were marked using a white marker, as shown in Figure 34. According to
ASTM D6637 test standard, each specimen should consist of 3 junctions or 12 in long.

2. Clamp bolts were inserted into the holes and 1 in by 1 in pieces of sandpaper were
placed and aligned on the two clamps as shown in Figure 35(a). The test specimen and
additional dummy (spacer) pieces of geogrid were placed on the clamps at equal
distances from the center of the bolts as shown in Figure 35(b). Spacer pieces of
geogrid were used to keep the clamp plates parallel to each other which would help

increase the grip of the clamp on the specimen during the application of tensile load.

3. Two additional small pieces of sandpaper were placed on the specimen inside the
clamp. During the assembly of the clamps, each nut was uniformly tightened one turn at

a time until the geogrid was completely secured in the clamps [Figure 36(a)].
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Figure 35. (a) Sandpapers mounted on test clamps (b) alignment of test specimen

and spacer pieces on clamps

White markings for digital imagery

Figure 36. (a) Geogrid specimen secured in the clamps, (b) test setup mounted on
the tension frame, (c) view from digital camera, ready to record the specimen

deformation

4. The clamps and specimen assembly were carefully transported to and mounted on
the testing frame as shown in Figure 36(b). A digital camera (camcorder) was set up to
record the specimen deformation during the test as shown in Figure 36(c). The view
frame of the camera was zoomed on the specimen such that the size of the specimen
image was as large as possible and yet, the two white marks on the specimen remained

within the viewing range during the entire test until specimen failed.
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5. The camcorder, the electric motor attached to the moving clamp and the data
acquisition system were started simultaneously. The test continued until the specimen
failed. This new clamping system was found to significantly improve the test success
rate for extruded geogrids that offer very low surface friction. Only a minimum portion of

the geogrid ribs needed to be placed inside the clamps.

6. The ASTM D6637 test protocol recommends placing three junctions across the width
of the geogrid specimen inside the clamp. However, it was observed that placing three
junctions in the clamped area prevented adequate pressure concentration on the middle
junction, which resulted in increased risk of the test rib sliding out of the clamps. Our
new procedure requires the placement of only one junction in a highly frictional clamped
area (Figure 35b) which proved to be very effective in securing the specimen in its
place throughout the test.

7. In all rib strength tests performed on the EGG1 specimens in the machine direction
(MD), the specimens failed at the locations of mid-span junctions, and the test was
unable to capture the failure of the ribs. It was concluded that the ribs in machine
direction are stronger than the junctions. This is explained by the fact that extruded
geogrids such as EGG1 are manufactured using a punching and drawing technique.
The ribs are stretched parts of a perforated polymer sheet during the manufacturing
process, which in contrast to the junctions, experience strain hardening. As a result, the
ribs become stronger than the junctions. We discussed our observations with Tensar
representatives and they acknowledged that failure of the mid-span junctions may likely
occur while testing the rib samples. Nevertheless, the failure load recorded regardless
of the location of the rupture in the mid-span is typically reported as the rib strength
value. It therefore appears that using two aperture size-long specimens in the rib
strength tests according to the ASTM D6637 test procedure makes it very difficult to
measure the rib strength without rupturing the junction [Figure 36(b) and Figure 37(a)].

8. In order to investigate the influence of specimen size on junction failure as stated
above and to eliminate any possible boundary effects (i.e. proximity of the failed junction

to the clamps), samples with five aperture size length were tested. It was observed that
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the specimens still failed at their mid-span junction as shown in Figure 37(b). This
observation confirmed that the reason for junction failure in rib strength tests was
indeed due to weaker junctions as compared to the ribs regardless of the specimen
size. It also confirmed that the clamping system was robust and consistently resulted in
failure at the specimen mid-span as opposed to a location near the clamps. The
specimens tested in the cross-machine direction (XD) all failed at the connection

between the ribs and junctions [Figure 37(c)].

Figure 37. (a) and (b) Two- and five—aperture-size-long specimens which failed at

their junctions in rib strength tests, (c) specimen failed in cross-machine

direction

In addition to conventional biaxial geogrids, recently introduced triaxial products (EGG3
and EGG4) by Tensar were investigated. Currently, there are no standard test protocols
for sample preparation, clamping requirements and in-isolation testing of triaxial
products. ASTM D6637 test standard was followed for this purpose, which was
originally developed for uniaxial and biaxial geogrids. Figure 38 shows the geogrid
samples prepared for the rib test according to ASTM D6637. Figure 39 and Figure 40
show the rib test setup for the EGG3 and EGG4 geogrids respectively, before and after

failure.

In the case of EGG3 and EGG4 products, rib strength tests were carried out in the
directions along the diagonal (MD) and transverse (XD) ribs. After comparing the

measured results and the test data supplied by Tensar with the criteria given in Figure
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4, both the EGG3 and EGG4 geogrids were classified in the strong rib and strong

junction category.

(a) (b)

(MD) (XD) (MD) (XD)

Figure 38. Geogrid specimens for rib strength tests (a) EGG3 specimens and (b)

EGG4 specimens
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Figure 39. EGG3 geogrid sample for rib strength tests, (a) before the test, (b) after

failure

Figure 40. EGG4 geogrid sample for rib strength tests, (a) before the test, (b) after

failure
2.3.2. Fabrication of rib strength testing clamps for non-extruded geogrids

When PVC-coated polyester (PET) geogrids were tested using the above test setup, it
40



was observed that in some specimens polyester yarns were pulled out of the PVC
coating leaving a piece of the coating in the clamp. Based on this observation, a new
clamping system was developed for non-extruded geogrids as shown in Figure 41 and
Figure 42. These clamps helped mitigate stress concentrations at the geogrid-clamp
connections and therefore, prevent immature failure of the specimen. This type of clamp
is comparable to Capstan clamps and roller grips discussed in the ASTM D4595 test
protocol (ASTM 2009).

Figure 41. Clamping system fabricated to test non-extruded geogrids

Figure 42. Rib strength testing of non-extruded geogrid in progress

41



2.3.3. Rib strength test results

Load-strain test results for the geogrids listed in Table 2 and Table 3 are shown in

Figure 43 through Figure 58.
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Figure 43. Tensile strength test results of EGG1 geogrid in machine direction
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Figure 44. Tensile strength test results of EGG1 geogrid in cross-machine
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Figure 45. Tensile strength test results of WGG1 geogrid in machine direction
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Figure 46. Tensile strength test results of WGG1 geogrid in cross-machine

direction
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Figure 47. Tensile strength test results of WGG2 geogrid in machine direction
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Figure 48. Tensile strength test results of WGG2 geogrid in cross-machine

direction
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Figure 49. Tensile strength test results of WGG3 geogrid in machine direction
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Figure 50. Tensile strength test results of WGG3 geogrid in cross-machine

direction
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Figure 51. Tensile strength test results of KGG1 geogrid in machine direction
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Figure 52. Tensile strength test results of KGG1 geogrid in cross-machine

direction
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Figure 53. Tensile strength test results of EGG2 (single layer) geogrid in machine

direction
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Figure 54. Tensile strength test results of EGG2 (single layer) geogrid in cross-

machine direction
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Figure 55. Tensile strength test results of EGG3 geogrid in machine direction
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Figure 56. Tensile strength test results of EGG3 geogrid in cross-machine

direction
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Figure 57. Tensile strength test results of EGG4 geogrid in machine direction
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Figure 58. Tensile strength test results of EGG4 geogrid in cross-machine

direction

Rib tensile strength values at 2% strain in MD and XD are summarized in Table 9 and
Table 10, respectively. In Table 9, the 2% rib strength values of the extruded biaxial
geogrids (i.e. EGG1, WGG1, WGG2 and EB2) from our lab tests are slightly higher than
the MARV (Minimum Average Roll Value) values reported by the corresponding
manufacturers. This is not unexpected because the MARV values theoretically
represent two standard deviations below the mean value of a large population of
samples with an assumed bell-curve distribution (e.g. Koerner 2005). The FHWA
guidelines (Holtz et al. 2008) also stipulate that the test results from any sampled roll in
a lot should meet or exceed the minimum values reported by the manufacturers. The
overall summary of the rib strength test results for all geogrids tested are given in Table
9 through Table 14.
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Table 9. Summary of rib tensile strength values at 2% strain in machine direction

Geogrid

Type

2% Rib Strength in Machine Direction
(Ib/ft)

MD 1

MD 2

MD 3

Mean

()

Standard
Deviation

(o)

Co-efficient
of Variation,
COV (%)

MARYV value
from
manufacturer

EGGlI

SkS;
Biaxial
Extruded

698.63

1095.89

753.42

849.31

175.78

20.70

410.96

WGG1

SrS;
Biaxial
Woven

616.44

616.44

595.89

609.59

9.69

1.59

500.00

WGG2

SrS;)
Biaxial
Woven

[1301]

958.90

684.93

821.92

136.99

16.67

500.00

WGG3

SrW;
Biaxial
woven

616.44

684.93

582.19

627.85

42.71

6.80

527.40

KGGl1

S RWJ
Biaxial
Knitted

410.96

479.45

479.45

456.62

32.29

7.07

349.31

EGG2
(single
layer)

WkS;
Biaxial
Extruded

125.34

239.73

171.23

178.77

47.00

26.29

150.68

EGG3

SkS;y
Triaxial
Extruded

335.62

356.16

397.26

363.01

25.63

7.06

NP

EGG4

SkS;
Triaxial
Extruded

479.45

342.47

376.71

399.54

58.21

14.57

NP
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Table 10. Summary of rib tensile strength values at 2% strain in cross machine

direction

2% Rib Strength in Cross-Machine Direction

(Ib/ft)
Geogrid Type
Co-
Mean Standard efficient MARYV
XD 1 XD 2 XD 3 XD 4 (W) Deviation of value from
K (o) Variation, | manufacturer
COV (%)
SkS;
EGG1 Biaxial | 1506.85 | 1520.54 | 1095.89 1374.43 197.04 14.34 616.44
Extruded
SrS;
WGG1 Biaxial 616.44 | 684.93 | 684.93 662.10 32.29 4.88 500.00
Woven
SkS;y
WGG2 Biaxial 821.92 | 547.94 | 410.96 | [205] 593.61 170.85 28.78 746.57
Woven
SrW;
WGG3 Biaxial 753.42 | 753.42 | 890.41 799.09 64.58 8.08 575.34
woven
SRWJ
KGG1 Biaxial 376.71 377.40 | 376.03 | 376.71 | 376.71 0.48 0.13 301.37
Knitted
EGG2 WrS;
(single Biaxial 178.08 152.74 178.08 169.63 11.95 7.04 226.03
layer) | Extruded
SrS;
EGG3 Triaxial | 308.22 | 500.00 | 527.40 445.20 97.51 21.90 NP
Extruded
SkS;y
EGG4 Triaxial | 513.70 | 513.70 | 630.14 552.51 54.89 9.93 NP
Extruded
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Table 11. Summary of rib tensile strength values at 5% strain in machine direction

Geogrid

Type

5% Rib Strength in Machine Direction
(Ib/ft)

MD 1

MD 2

MD 3

Mean

W

Standard
Deviation

(o)

Co-efficient
of Variation,
COV (%)

MARYV value
from
manufacturer

EGGlI

SkS;
Biaxial
Extruded

1458.90

1589.04

1643.83

1563.92

77.56

4.96

808.22

WGG1

SrS;
Biaxial
Woven

1164.38

1232.87

1232.87

1210.04

32.29

2.67

917.81

WGG2

SrS;
Biaxial
Woven

[2328]

1917.80

1780.82

1849.31

68.49

3.70

917.81

WGG3

S RW ]
Biaxial
woven

1013.70

1109.59

1109.59

1077.62

45.20

4.19

787.67

KGG1

SrW;
Biaxial
Knitted

616.44

623.29

616.44

618.72

3.23

0.52

623.29

EGG2
(single
layer)

WRS J
Biaxial
Extruded

301.37

438.36

363.01

367.58

56.02

15.24

308.22

EGG3

SrS;
Triaxial
Extruded

767.12

787.67

808.22

787.67

16.78

2.13

NP

EGG4

SrS;
Triaxial
Extruded

616.44

821.92

993.15

810.50

154.00

19.00

NP
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Table 12. Summary of rib tensile strength values at 5% strain in cross machine

direction

5% Rib Strength in Cross-Machine Direction

(Ib/ft)
Geogrid Type Co-
M Standard efficient MARV
XD! | XD2 | XD3 | XD4 (e‘;‘“ Deviation of value from
M (o) Variation, | manufacturer
COV (%)
SkSy
EGG1 Biaxial | 2273.97 | 2410.95 | 2054.79 2246.57 146.69 6.53 1342.46
Extruded
SkS;y
WGG1 Biaxial | 1630.13 | 1369.86 | 1506.85 1502.28 106.31 7.08 917.81
Woven
SkS;
WGG2 | Biaxial | 1849.31 | 1917.80 | 2054.79 | 2054.79 | 1969.17 88.98 4.52 938.35
Woven
SRWJ
WGG3 Biaxial | 1082.19 | 1089.04 | 1095.89 1089.04 5.59 0.51 1041.09
Woven
SrW;
KGG1 Biaxial 513.70 | 479.45 | 547.94 | 527.40 | 517.12 24.93 4.82 424.66
Knitted
EGG2 WrS;
(single Biaxial 356.16 | 315.07 | 342.47 337.90 17.09 5.06 458.90
layer) | Extruded
SkS;
EGG3 Triaxial | 821.92 | 890.41 | 924.66 878.99 42.71 4.86 NP
Extruded
SkS;
EGG4 Triaxial | 821.92 | 924.66 | 1130.13 958.90 128.14 13.36 NP
Extruded
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Table 13. Summary of ultimate rib tensile strength values in machine direction

Geogrid

Type

Ultimate Rib Strength in Machine Direction
(Ib/ft)

MD 1

MD 2

MD 3

Mean

(W

Standard
Deviation

(o)

Co-efficient
of Variation,
COV (%)

MARYV value
from
manufacturer

EGGlI

SrS;
Biaxial
Extruded

1798.63

1767.12

1849.31

1805.02

33.86

1.88

NP

WGG1

SrS;
Biaxial
Woven

4383.55

4445.88

4315.06

4381.50

53.43

1.22

2000.00

WGG2

SrS;
Biaxial
Woven

2513.01

2876.71

2097.94

2495.88

318.16

12.75

2000.00

WGG3

SrW;
Biaxial
woven

3210.27

2894.51

2943.14

3015.98

138.81

4.60

239041

KGG1

S RW ]
Biaxial
Knitted

2191.78

2260.27

2054.79

2168.95

85.43

3.94

1876.71

EGG2
(single
layer)

WrS;
Biaxial
Extruded

477.40

502.05

410.96

463.47

38.47

8.30

461.64

EGG3

SrS;
Triaxial
Extruded

1027.40

1027.40

1034.24

1029.68

3.23

0.31

NP

EGG4

SrS;
Triaxial
Extruded

1164.38

1232.87

1301.37

1232.87

55.92

4.54

NP
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Table 14. Summary of ultimate rib tensile strength values in cross machine

direction

Ultimate Rib Strength in Cross-Machine Direction

(Ib/ft)
Geogrid Type Co-
M Standard efficient MARV
XD! | XD2 | XD3 | XD4 (e‘;‘“ Deviation of value from
M (o) Variation, | manufacturer
COV (%)
SkSy
EGG1 Biaxial | 2503.42 | 2652.73 | 2739.72 2631.96 97.58 3.71 NP
Extruded
SkS;y
WGG1 Biaxial | 2494.52 | 2173.97 | 1917.80 2195.43 235.93 10.75 2000.00
Woven
SkS;
WGG2 | Biaxial | 3082.19 | 2415.06 | 2607.53 | 2808.21 | 2728.25 247.15 9.06 3999.99
Woven
SRWJ
WGG3 Biaxial | 3972.59 | 4168.48 | 4105.47 4082.18 81.65 2.00 3869.85
woven
SrW;
KGG1 Biaxial | 1890.41 | 2027.39 | 1917.80 | 1917.80 | 1938.35 52.61 2.71 1876.71
Knitted
EGG2 WrS;
(single Biaxial 67534 | 654.11 | 660.27 663.24 8.92 1.34 702.05
layer) | Extruded
SkS;
EGG3 Triaxial | 958.90 | 1130.13 | 1198.63 1095.89 100.82 9.20 NP
Extruded
SkS;
EGG4 Triaxial | 958.90 | 1095.89 | 1130.13 1061.64 73.98 6.97 NP
Extruded
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3. PULLOUT TESTS

3.1. GENERAL

Geogrids used in aggregate base reinforcement applications can be subjected to
significant compaction-induced stresses during the construction stage. Pullout tests can
provide a methodic means to study geogrid-aggregate interactions at different stress
levels under controlled conditions. In addition, pullout tests can help to isolate the
tensile performance of geogrids in the anchorage zone outside the pressure bulb of the
tire from its out-of-plane membrane behavior when the geogrid is subjected to the

vertical load of traffic (Hatami et al. 2011a).
3.2. FABRICATION OF A NEW PULLOUT BOX

A new pullout test box with the dimensions 6 ft (H) x 3 ft (W) x 2.5 ft (H) was fabricated
in the OU Fears laboratory to carry out pullout tests on geogrids in aggregates (Figure
59).

Figure 59. One of the two pullout test boxes at the OU Fears laboratory
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3.3. PULLOUT TEST SETUP AND PROCEDURE

A total of 33 pullout tests were carried out on the eight geogrid products listed in Table
2 and Table 3 as per the ASTM D6706 test protocol (ASTM 2009). The pullout tests
were carried out in ODOT Type-A aggregate which is a widely used dense-graded
aggregate in ODOT projects. Most of the tests were carried out at 69 psf, 138 psf and
240 psf overburden pressures. Additional tests were carried out at other overburden
pressures (e.g. 101 psf and 112 psf) to improve the accuracy of the results. These
overburden pressures on the geogrid-aggregate interface were primarily due to the
weight of a compacted aggregate layer of different thicknesses on the top of the
interface in the pullout box. The overburden pressures 69 psf, 101 psf, 112 psf and 138
psf were generated using aggregate thicknesses of 6 inches, 9 inches, 10 inches and
12 inches, respectively. In the case of the 240 psf overburden pressure, an airbag was
used on the top of a 12 inch-thick aggregate layer to apply the additional pressure
needed. These pressure levels resemble field conditions (outside the tire pressure bulb)
where pullout (as opposed to geogrid rupture) would be the likely failure mechanism.
Pullout tests on biaxial and triaxial geogrid specimens were carried out in the machine
direction. However, due to the distinctive geometry of triaxial products (i.e. EGG3 and
EGG4), the MD geogrid ribs are actually at 30° angles diagonally from the machine
direction on both sides (Figure 78).

Different steps of the pullout tests are depicted in Figu