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Executive Summary 
The Federal Highway Administration (FHWA) evaluates fatality rates and estimates trends based on 
travel data measurements. Miles of travel per vehicle classification (VMT) is reported to the FHWA to 
determine risk exposure for vehicle collision. It is critical for the FHWA to receive accurate data 
measurements. However, a report published in September 2008 (Reassessment 2010+) prepared by the 
Highway Performance Monitoring System (HPMS) indicated the quality of reported travel data for 
motorcycles is questionable. The inability and inconsistency of current traffic monitoring equipment to 
detect and classify motorcycles is an urgent problem.   

 

This report presents research, hardware, and the development of a software algorithm for a computer-
based system to count and classify vehicles, in particular motorcycles. The system uses piezoelectric 
sensor(s) embedded in roadways to detect traveling vehicles regardless of shape, size, or weight, and then 
categorize them according to 13 FHWA-published vehicle classifications. The system design differs from 
current piezo-based classifiers in two primary aspects: 1) Unlike the current perpendicular configuration, 
the piezo-sensor is positioned diagonal to traffic flow, and 2) The piezo-sensor is segmented into a 
number of individually addressable elements with the potential to estimate vehicle width and velocity (in 
addition to performing vehicle classification).  

 

The system is comprised of a piezoelectric sensor(s), analog-to-digital converter, and an embedded 
computer that performs digital signal conditioning and classification processing algorithms. The 
configuration was developed to accommodate either a single or multi-element piezoelectric sensor 
embedded diagonal to traffic flow and to provide comprehensive vehicle detection between road 
shoulders. When a vehicle travels over the sensor, a force is applied to the sensor surface, generating an 
electrical charge from the activated piezoelectric sensor. An analog-to-digital converter translates the 
charge into voltage at an amplitude proportional to the applied force. In this way a vehicle with four 
wheels generates four distinct pulses, e.g., one pulse per wheel. A motorcycle with two wheels generates 
two pulses. Hence, vehicles with different classifications and number of axels, sizes, and shapes are 
characterized by a unique train of pulses that distinguishes them from one another. Since several different 
piezoelectric sensors are activated for each vehicle wheel, the distance between activated sensors and the 
time difference between the two activations can be determined, and, in turn, axel spacing, vehicle width 
track, and velocity can be obtained. A computer is required to acquire and analyze sensor pulses to 
determine vehicle classification and velocity, and then communicate real-time information to a database 
housed in an ODOT server. 

 

The developed system was able to achieve upwards of 84.4% classification accuracy using a single 
element piezoelectric sensor with generic average width; a range of 94.8% and 99.07% accuracy with 
(Width/Length) ratio using custom thresholds; and 86.9% accuracy using multi-element piezoelectric 
sensors. Overall impact of the system includes classification accuracy for motorcycles at tremendous cost 
savings when compared to current equipment and maintenance system costs. An added benefit is the 
prospect of relaying real-time traffic volume and average speed on Oklahoma highways and roadways to 
ODOT personnel.  
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Chapter I 

Introduction 
 

A current and widely adopted industry solution for vehicle classification combines one or two strips of 
piezoelectric sensors and/or inductive loop detectors [1-2], as shown in figure 1.1. An inductive loop 
detects a vehicle by measuring changes in magnetic field responding to vehicle metal. The signal from a 
piezoelectric sensor detects an axel by measuring force from axel weight; having a vehicle trigger two 
sensors indicates total number of axles and facilitates a calculation of vehicle speed and inter-axle 
distance. These factors can then be used to classify the vehicle. To execute this method of classification, 
two full-lane or half-lane piezoelectric sensors are installed on the roadway at a preset distance from one 
another. Figure 1.1 illustrates a system using loop-piezo-loop-piezo configuration.  

 

Figure 1.1. Typical Weigh in Motion (WIM) System: two inductive loops and two piezoelectric sensors 

This type of system has a number of advantages, including the ability to identify the class of the passing 
vehicle, as well as its speed and weight. However, one significant problem of this configuration is the 
high rate of inaccuracy in motorcycle classification. Regrettably, when the unit is calibrated to weigh 
heavy trucks, it becomes impervious to motorcycle weight. Additionally, motorcycles pale in size when 
compared to most vehicles, making it highly likely that motorcycles could avoid traveling across loops, 
thus avert detection. Furthermore, many motorcycles are built with a limited amount of metal, which 
hampers detection even when one travels directly across the loop. We propose a modified version of 
sensor configuration that mitigates possible misclassification of motorcycles. An added benefit of this 
system is cost savings—by utilizing a single- or multi-element piezoelectric sensor placed diagonal to 
traffic flow in an unconventional way, sensor length (thus total product quantity) is reduced.  

 

Proposed System 
  

The project proposes using piezoelectric technology—similar to that used in the weight in motion (WIM) 
system—to accurately detect and classify vehicles into 13 vehicle types, including motorcycles. The 
technology employs measurement of force instead of magnetic field to classify motorcycles traveling on 
highways and roadways. This method effectively eliminates detection failure due to a limited amount of 
metal in the motorcycles. When a motorcycle or vehicle travels over the piezoelectric sensor, an electrical 
charge/discharge signal of amplitude proportional to the weight of the traveling vehicle is generated.  
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The sensor employed in the proposed design consists of an array of piezoelectric sensors and is placed 
diagonally, instead of perpendicularly, to traffic flow on the roadway, as is typical of current WIM 
installations. As such, the sensor covers the roadway from shoulder to shoulder. Figure 1.2 illustrates the 
diagonal placement of the piezoelectric sensor. Given this configuration, a vehicle with four wheels will 
generate four distinct pulses: one pulse per wheel. A motorcycle with two wheels will generate two 
distinguishing pulses. In this way, vehicles with different classification, number of axels, size, or shape 
will be characterized by a unique train of pulses different from others. Figures 1.3 to 1.5 shows the unique 
train of pulses for a motorcycle, a passenger vehicle, and a truck. 

The figures illustrate that the piezoelectric sensor is multi-element, comprised of several sensors that can 
be uniquely identified by channel or multiplexer. An approaching vehicle activates one (or two) sensor 
element(s) depending on the number of wheels overpassing them. Hence, distance between activated 
sensor elements can be determined, and, in turn, car width can be calculated, e.g., distance between a 
vehicle’s wheels. Vehicle velocity can then be calculated using car width and the measured time 
difference between the first and second signal pulses. The unique advantage of this system is that it 
facilitates measurements of tire number and vehicle width. Additionally, axel spacing and vehicle velocity 
can be measured with two inductive loops and a piezoelectric sensor, providing two additional 
measurements necessary for accurate motorcycle detection and classification. 

 

Figure 1.2. Diagonal Placement of a Piezoelectric Sensor on a Roadway 

 

Figure 1.3. Motorcycle Classification and Pulse Signature 
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Figure 1.4. Passenger Vehicle Classification and Pulse Signature 

 

 

Figure 1.5. Four Axle Truck Classification and Pulse Signature 

Organization 
This report is organized as follows. Chapter II highlights background literature. Related vehicle 
classification, single inductive loop classification, and speed determination, as well as various 
classification algorithms, are also described. Chapter III details single- and multi-element piezo-based 
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system development and on-campus preliminary system evaluation. Chapter IV provides a brief 
description of the two ground-truth systems used to validate classifier accuracy, and Chapter V presents 
classification algorithms, including a novel scheme developed for the single-element sensor design. 
Results of system field-testing in realistic highway deployment are also discussed in Chapter V. The 
multi-element sensor design is explained in Chapter VI, and highway deployment classification results are 
presented in Chapter VI. The report concludes and future work is suggested in Chapter VII. 
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Chapter II 

Background search 
Vehicle sensing devices have been investigated for over 40 years and reported in both research and 
industry literature. FHWA and DOTs are typically interested in the most up-to-date methods and results.  

In this section several classification schemes are detailed according to methodology.  

Related research work on vehicle classification  
Keawkamnerd et al. [3] utilized two Anisotropic Magneto-Resistive (AMR) sensors placed on a mounted 
8x8 roadside board with sensors located next to each other. The board was located at roadside to collect 
signals from passing vehicles. From vehicle data researchers extracted a hill pattern of the magnetic 
signal, energy level, and magnetic length. This setup measured the number of signal peaks generated by 
from an inductive loop. A moving average was computed for the time series of the received signal to 
reduce sampling rate. The differential magnitude, along with the new energy-level moving averages, were 
computed to obtain the amount of energy change—rise or fall—during vehicle detection. Minimum, 
maximum, and normalized energy levels were computed based on vehicle speed and sampling period. 
These parameters were combined in a decision algorithm to classify four types of vehicles, namely 
motorcycle, car, van, and pickup. An overall classification accuracy of 81.69% was achieved. 

Sokra studied data fusion techniques using parameters collected from an inductive loop and a 
piezoelectric sensor [4]. The magnetic profile of the inductive loop includes mean value, mean square 
value, standard deviation, maximum value, moment of third order, and central moment of third order. 
These factors, along with the others like vehicle length, speed, and number of axles, were used in 
membership functions based on fuzzy logic. Classification accuracy ranged from 68 to 92% for triangular 
membership function and from 68 to 94% for Gaussian membership function. An overall performance 
improvement was noted for the Gaussian membership function.  

Sun et al. investigated a vehicle classification system comprised of two inductive loops and an Inductive 
Classifying Artificial Network (ICAN) [5]. ICAN is a self-organized feature map (SOFM) that uses 
inductive loop output to perform classification for a number of classes, e.g., similar to the number of 
neurons. The test set consisted of 300 selected vehicles of which four categories were chosen for testing. 
Classification rate accuracy was 81%. However, when a more complicated scheme with nine categories 
was employed, classification rate accuracy decreased to 71%. Limiting classification to seven categories 
for two separate data sets reached accuracy levels of 87% and 82%.  

Gajda et al. investigated the impact of loop length on vehicle classification in [6]. Loop lengths in the 
range of 0.25m to 4m with a step of 0.25m were tested, as was a separate 10cm loop used for reference. 
Signals acquired from inductive loops were normalized for velocity and sampling frequency. Several 
signal characteristics, mainly the magnetic profile, were used as criterion to define vehicle type. Test 
vehicles included two types of buses and a passenger vehicle. Testing demonstrated that shorter loops 
furnish more highly distinguished criterion, and, thus, improved differentiation between the three vehicle 
types. Also, vehicle axles were clearly distinguishable in the 10cm loop magnetic profile.   

Gajda et al. researched the use of one inductive loop to calculate passing vehicle speed [7]. Researchers 
were able to obtain a correlating parameter between the inductive loop signal and vehicle speed 
independent of vehicle type. Passing vehicle speed was measured and comparisons were made between 
one- and two-loop systems. Given a 10m separation between inductive loops, the two-loop system 
demonstrated an inherent error occurring between the loops in response to vehicle acceleration or 
deceleration. Results indicated a velocity calculation with maximum RMS error of 2.5Kmph. The authors 
did not provide information on classification type or accuracy rate. 
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Wang and Nihan developed an algorithm that used a single inductive loop to estimate speed and classify 
vehicles accordingly [8]. The researchers assumed data contained two vehicle types: Short Vehicles (SVs) 
and Long Vehicles (LVs). SVs were assumed to have uniform length, which aided in speed estimattion. 
The algorithm divided data collected from a single inductive loop into 20-second intervals in which some 
contained only SVs and others contained a mix of SVs and LVs. Intervals containing zero number of 
vehicles were removed. Next, data from a fixed, five-minute period that contained only SVs intervals was 
processed. Using Eq. (1), the algorithm estimated speed using SVs interval, and then applied it to all 
remaining intervals within the same five-minute period. Test runs were performed at four sites. Estimated 
error for speed and volume were compared to results obtained from a dual-loop system. The estimated 
mean error for speed was found near zero with a standard deviation of smaller than 6.2km/h. The 
estimated mean error for volume was insignificant, as well; however, the standard deviation ranged 
between 2.76 to 3.38, which is relatively large for a period of five minutes. 

  (2.1) 

      where: 

      N= Number of vehicles in interval; 

      i = interval time index; 

      s = space mean speed for interval; 

     O = duty cycle of loop; and 

     g = speed estimation parameter 

    
Meta and Cinsdikici used a single inductive loop for vehicle classification [9]. Their system was 
comprised of a single loop with dimensions of 2m X 1m, an inductive loop detector, a validation camera, 
and a computer. Their contributions include signal preprocessing, data set reduction, and a method for 
choosing the proper training set for a neural network vehicle classification system. They chose a five-
category classification scheme: car, van, truck, bus, and motorcycle. The novel approach employed 
principal component analysis (PCA) rather than down-sampling for processing and applicability to Neural 
Networks (NN).  

PCA is a method that compresses data in an intelligent manner wherein vehicle data collected by the 
sensor in one domain (e.g., time) is transformed into another domain (e.g., frequency) only with 
significantly fewer data point representation. The components—or coefficients in the new domain— 
represent variance between data in the original domain and that in the new domain. The main component 
holds the highest variance between the two data sets. Any subsequent components hold variance values of 
less significance. Thus, by eventually using a limited number of components or features rather than the 
entire original data set, we can distinguish different vehicle types and perform classification. A more 
detailed description of PCA technique will be presented in Chapter 5. Meta and Cinsdikici used a number 
of principal components containing more than 99% variance between data observations in the data set. 

A data set of 1,000 vehicles was used for training the neural network, and a data set of 1,330 vehicles was 
used for testing purposes. Overall classification accuracy was 94.21%. 

This work can be compared to work completed during the project reported herein, e.g., a single sensor 
type was used to acquire traffic data along with PCA for feature extraction. The difference between the 
two lies in the fact that in our approach we use a single element piezoelectric sensor rather than an 
inductive loop. The advantage is accurate motorcycle detection using less complicated algorithms. In our 
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PCA feature extraction, we mined features for an eight (rather than five) category system with features 
covering less variance between data observations, i.e., approximately 92%, while achieving comparable 
classification results. 

Zhang et al. used an electrical resistance strain gauge sensor based on piezoresistive material to detect 
vehicle axels [10]. Three in-pavement sensors were used, and each axle was found to produce its own 
peak on the output of each individual sensor. Vehicles were classified into five categories—small truck, 
medium truck, bus/large truck, 3-axle truck, or combination truck—using the Support Vector 
Classification (SVM) learning pattern recognition/classification technique. A data set of 602 vehicles was 
collected from highway traffic: 50% were used for training, 25% for validation, and 25% for testing. 
Classification accuracy was 96.4%. 

Bajwa et al. developed a wireless sensor classification system using vibration and detection sensors [11] 
to indicate individual axles from pavement structure vibration. Although four accelerometers were 
implanted in the pavement, data from only three were used after one sensor failed to produce results. Two 
magnetometers were installed at a fixed distance from one other, and then used to calculate vehicle speed 
based on arrival time at each of two sensors. Fifty-three trucks were tested. Axle detection accuracy 
ranged from 86.8 to 90.6% when using a single sensor and approached 100% when using sensors in a 
deliberately combined manner. Notably, test results were used for axle detection, not vehicle 
classification. 

Golla et al. simulated a design for vehicle type and tire width on a highway [12]. The system consisted of 
16 or 49 polymer conductor segments to comprise a sensor. The segments undergo closure in the event of 
tire impact with a goal of distinguishing number of tires, and their width and type. Simulation was 
performed for sensor frequency response to determine physical dimensions. Only then is sensor able to 
detect tires at a maximum highway speed of 100mph. No experimental testing was provided. 
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Chapter III 

Systems design and preliminary testing 
This section describes the single- and a multi-element system and their designs. Also included are results 
from preliminary on-campus testing performed to ensure an appropriate signal is acquired from sensors 
and that signal preprocessing was executed properly. Preliminary testing is vital to advance the project, as 
it lays the groundwork for final highway deployment. Both single- and multi-element systems must be 
evaluated under typical highway conditions to validate system capability for collecting accurate signals 
and achieving appropriate classification. Prior to highway deployment, however, connection to DAQ and 
signal integrity should be investigated. This was accomplished for both systems by way of a series of lab 
and on-campus road tests for both systems.  

Initially an interface to the computing device had to be developed to relay the signal from sensors. Two 
DAQs were used for development and testing:  

1.) NI-9215 DAQ has four inputs, as shown in Figure 3.1. This configuration enables simultaneous 
sampling rate up to 100KS/s on the four well-isolated analog inputs. Resolution is 16bit, and maximum 
voltage range is  -10v to 10v with maximum accuracy of 0.003v 

 
Figure 3.1. NI-9215 data acquisition unit 

 

2.) NI-9205 DAQ has 32 single ended (SE) or 16 differential inputs, as shown in Figure 3.2. The 
configuration enables a maximum of 250KS/s sampling rate divided among a number of active input 
channels. Resolution is 16bit, and maximum voltage range is -10v to 10v with a maximum accuracy of 
6220μv. 
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Figure 3.2. NI-9205 data acquisition unit 

Single-element design and preliminary testing 
The single-element vehicle classification system is comprised of one piezoelectric sensor, a DAQ, and the 
embedded computing system, as shown in Figure 3.3. Although the single-element design was not 
included in the original OTC proposal, PI Dr. Refai and his research team investigated this design due to 
its uncomplicated, single-channel DAQ implementation.  

  
Figure 3.3. Single element vehicle classification system overview 

 

It is mandatory that the sensor cover the entire traffic lane diagonally across a lane of traffic at a certain 
known degree, ensuring that each tire of a passing vehicle produced an output pulse. As such, length 
constraints must be met. Roadtrax BL manufactured by Measurement Specialties was selected primarily 
because the sensor was specifically designed as a traffic sensor and maintains suitable signal integrity for 
our application. These signals were analyzed through a feature extraction algorithm where pulses from 
each passing vehicle were detected so that vehicle-related parameters could be computed. 

Data was subsequently sent to the classification phase of the algorithm. In this way, motorcycle class 1 
vehicles were accurately classified, primarily because they are the only class characterized by two tires, 
resulting in two pulses. For the remaining 13 FHWA classes, vehicle velocity was required to distinguish 
among classes with the same number of tires. Tire and axle spacing were required to set thresholds 
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between different classes with the same number of tires and axles. In turn, vehicle track width—defined 
as the distance between two tires on same axle—was needed to calculate vehicle velocity and achieve 
classification. Figure 3.4 illustrates an example of piezo-sensor expected output when triggered by a 
passenger vehicle 

 
Figure 3.4. Example of piezo-sensor expected output when triggered by a passenger vehicle 

Using vehicle track width w, velocity V, and axle spacing L can be determined using the following 
equations: 

V = [w * cot(θ)] / T12    (3.1) 

 L = V * T13      (3.2) 

Notably, given a single-element design, the system is unable to measure or provide vehicle track width. 
Figure 3.4 indicates that each tire impacting the piezoelectric sensor generates a signal pulse, even though 
the location of the impact cannot be determined because sensor consists of only a single element. A 
segmented or multi-element design was developed to mitigate this limitation.  

 

Preliminary Campus Testing Results 

This subsection offers on-campus test results that highlight the effects of changing velocity and vehicle 
type over output signal. 

Figure 3.5 shows examples of aligned test runs for a passenger car. In graph (a) four aligned runs are 
plotted to represent test results in which a driver was asked to maintain a speed of 20mph. Graph (b) plots 
four aligned runs depicting results when the driver was requested to maintain a speed of 30mph. A 
comparison is beneficial for highlighting uniform output at the same velocity for the same vehicle. 
Notably, uniformity will be disturbed when either velocity or axle spacing changes. Both parameters 
affect the time between pulses and the shape of detected signal pulses, consequently affecting vehicle 
classification. Figure 3.5 demonstrates that as velocity increases both amplitude level and time duration of 
the signal pulse decreases. Also, in (a) we can see that slight changes in vehicle velocity have a clear 
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impact on output signal. Variations in velocity are effects of the driver failing to maintain a constant 
speed for all test runs. 

 

Figure 3.5. Aligned vehicle signals acquired by diagonal single element piezoelectric sensor a) car at 
20mph b) car at 30mph 

A test set of 11 runs for a passenger car vehicle was used to monitor changes in inter-pulse periods at 
various velocities that ranged between 15 and 30 mph. Figure 3.6 plots time durations between the first 
and second pulse and between the first and third pulse. Duration between the first and second pulse 
corresponds to vehicle track width; duration between the first and third pulse corresponds to vehicle axle 
spacing.  

In Figure 3.7, time duration of the first pulse and second pulse are plotted against test vehicle velocity, 
which ranged between 15 and 30mph, as shown in Figure 3.6. Results in Figures 3.6 and 3.7 aided in 
determining an appropriate sampling rate for the embedded system DAQ unit. As vehicle velocity 
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increases, the time interval between individual pulses decreases, requiring an increase in sampling rate to 
accommodate for the higher frequency signal. Variation in inter-pulse time also has a direct effect on 
detected axle spacing due to a change in velocity. 

 

 

Figure 3.6. Time durations between 1st and 2nd tires and 1st and 3rd tires 

 

Figure 3.7. Time durations of 1st and 2nd tires pulses. 
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Multi-element design and preliminary testing 
Unlike single-element design, the multi-element sensor (constructed with several piezoelectric sensors) is 
able to estimate the distance between two tires on the same axle, thus determine vehicle track width. 
Using Eq. (3.1) and Eq. (3.2), the classification algorithm calculates speed and axel spacing, respectively.   

The basic design consists of 16 piezoelectric sensor elements—each 1.5ft long, including sensor, as well 
as the hard casing that connects the sensor to its coax wire. Piezoelectric sensor elements are arranged 
successively and installed into a pocket road tape. It is necessary that the tape remain affixed on the road 
at a specified angle (θ). Wires connecting sensor elements are channeled to the roadside DAQ via a 
second protective pocket road tube placed parallel to the one housing the sensor elements, as shown In 
Figures 3.8 and 3.9.  

 

Figure 3. 8.  Multi-element vehicle classification system overview 

 

Preliminary Campus Testing Results 

Preliminary testing included lab and on-campus road evaluation. The purpose of lab testing is to properly 
interface sensor elements to DAQ and ensure sensor output signal integrity. Labview signal express was 
used to collect and store data. 

Following lab testing, several on-campus road tests were performed. The latter was crucial to the success 
of highway deployment. A range of issues (from problems with sensor element road installation to signal 
coupling between various DAQ channels) arose during on-campus deployment. Solutions were proposed 
and implemented to minimize highway deployment errors.  

 

Three on-campus road tests with multi-element sensor were performed, as noted below: 

1) Four-element testing with NI-9205 
The purpose of this deployment was to test sensor signal output when impacted with a vehicle tire. 
Figure 3.9 shows the diagonal deployment of the four elements. During testing a high level of 
crosstalk among the DAQ channels was observed. Crosstalk makes it difficult to accurately 
distinguish impacted elements (channels) from those non-impacted although indicating a signal. See 
Figure 3.10, in which a signal appears on all four channels, in spite of the fact that vehicle impact was 
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only detected on the element connected to channels 1 and 2. Peak amplitude of noise detected on the 
non-impacted channel was 30 to 40% of that detected on the impacted channel (channel 2 in our 
case). The cause for crosstalk between channels is the result of impedance mismatch between 
piezoelectric sensors and DAQ input channels. This issue is discussed in more detail later in this 
chapter. 

 

 

Figure 3.9. First round on campus testing deployment 

 

Figure 3.10. Output signal from class 2 vehicle for first on campus testing deployment 
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2) Four-element testing with NI-9215 
To overcome the crosstalk problem, a test with NI-9215 DAQ was performed. Unlike NI-9205 used 
in the previous test runs, DAQ NI-9215 has analog-to-digital (ADC) channels that are isolated from 
one another, thus minimizing crosstalk among them. The four-element piezoelectric sensor was 
placed on a traffic lane similarly to the setup shown in Figure 3.11. Results of this deployment 
indicated a noticeable signal quality improvement and the essential reduction of crosstalk among 
channels, as shown in Figure 3.12. However, this solution is expensive, especially given the 16-
element sensor design planned for highway testing deployment.  

 

 

Figure 3.11. Second round on campus testing deployment 
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Figure 3.12. Output signal from class 2 vehicle for second on campus testing deployment 

Coupling and crosstalk among channels was further investigated to provide more stable readings from the 
sensor while taking advantage of the inexpensive multi-channel NI-9205 DAQ with multiplexer. The 
piezoelectric sensor proved to have high impedance once connected to the DAQ, thus preventing the 
discharge of the DAQ single internal amplifier. As such, when the DAQ multiplexer advanced to the 
adjacent channel to measure its applied voltage, the remaining capacitor charge interfered with current 
voltage measurement and resulted in crosstalk and erroneous readings. Several solutions were proposed: 
1) Reduce piezoelectric sensor impedance using operational amplifiers with high input impedance and 
low output impedance; 2) Reduce sampling rate to provide the DAQ amplifier capacitor additional time to 
discharge its previous measurement; and 3) Apply differential signal acquisition. The third solution was 
adapted due to minimal implementation costs, which in turn lead to the development of the interface used 
in highway deployment.  Figure 3.13 details the interface design. 
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Figure 3. 13. Schematic of interface between sensor and DAQ 

3) Twelve-element testing with differential NI-9205 
The sensor layout in the NI-9205 DAQ test setup was similar to the two previous campus deployments 
shown in Figures 3.9 and 3.11. Again, three vehicle types, namely a car, van, and truck, were tested. The 
vehicle driver was requested to travel at various predetermined speeds. Test results from the third 
deployment carried out with the differential solution showed tremendous improvement over the initial 
deployment. Signals from various sensors were distinguished by limited crosstalk. Figure 3.14 shows 
signals captured from a passenger vehicle as it passed over all 12-element sensors. 
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Figure 3.14. Aligned signal for class 2 using 12-element piezo sensor 

Data acquired via various test runs were processed accordingly, including extraction and timing of pulses, 
as well as impact element identification. Speed was also calculated using extracted features, and then 
compared with monitored speed enforced by the driver. Table 3.1 provides the speed results of the on-
campus 12-element filed-testing deployment. 
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Table 3.1. Speed analysis for third on campus testing deployment 

test  car type 
Approximate 
speed (mph)  

Calculated 
Speed 

1 car 10 10.865 

2 car 10 10.8912 

3 car 10 10.1971 

4 car 20 19.3569 

5 car 20 19.1519 

6 car 20 18.3174 

7 car 30 28.6974 

8 car 30 29.3486 

9 car 30 28.205 

10 Van 10 8.2254 

11 Van 10 7.5394 

12 Van 10 8.4208 

13 Van 20 18.8327 

14 Van 20 16.8181 

15 Van 20 17.9716 

16 Van 30 28.9657 

17 Van 30 27.1871 

18 Van 30 27.6374 
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Chapter IV 

Validation systems 
Developing a functional vehicle classification system that accurately detects motorcycles is the primary 
goal of this project. To render the project successful, the system must be validated after all system 
components, including hardware and software, are complete. Highway testing facilitates vehicle data 
collection required for classification. Ground-truth data is also required for comparison. This chapter 
highlights two validation systems employed during the project: 

1. ADR classifier—an Automatic Vehicle Classifier (AVC)—already deployed by Oklahoma 
Department of Transportation (ODOT) on highways. 

2. Video camera validation system—developed by the University of Oklahoma research team. 

ADR system 
Over 70 AVC sites are dispersed on highways throughout the state of Oklahoma. ODOT utilizes these to 
collect vehicle volume, speed, and classification, and then uses the data to design future Oklahoma 
roadways, bearing in mind road capacity and pavement endurance. 

The OU research team tested the developed classification systems within close proximity to permanent 
ODOT AVC sites that have been equipped with Peek Traffic manufactured ADR controllers. Each test 
site was comprised of two inductive loops with a piezoelectric sensor situated between them. The array of 
sensors was connected to an ADR to analyze the signal and provide classification data. Speed can be 
calculated from dual loop data since the distance between the two loops is predetermined. Axle number 
and spacing is calculated with the use of the piezoelectric sensor. Data is used to calculate vehicle speed 
and compare classification. 

ADR traffic data includes the number of vehicles per class within each speed bin recorded during a 
programmed time interval. The minimum recording time possible with ADR is one minute. Vehicle speed 
is binned every 5mph, starting at 30mph and ending at 80mph. Tables containing number of vehicles in 
each class per speed bin is generated within a mere 60 seconds of data collection. See Figure 4.1 for a 
schematic of ADR automatic vehicle classifier 



23 
 

 

Figure 4.1. Schematic of ADR automatic vehicle classifier  

Video validation system 
A video recording ground-truth system was employed to validate the newly developed system. The PI and 
his research team initially began recording video images of passing vehicles traveling on a highway 
situated within close proximity of a predetermined deployment site. Video footage was scheduled for a 
given time period once the camera became synchronized with the single- or multi-element sensor-based 
system.  Video recorded during initial tests was analyzed manually, pausing on each passing vehicle 
image to record class, lane, and video time parameters. This manual process proved extremely taxing and 
time consuming. As such, researchers were motivated to write a software program to automate processing 
and logging tasks. The program user was still tasked with determining class and lane parameters. 

A flow chart of the newly developed Video Validation Tool (VVT) is provided in Figure 4.2: VVT flow 
chart. The algorithm starts by initializing video object then creating output files to save data into. 
Detection mask dimensions are set to require vehicle detection. Motion detection commences when the 
frame displays motion. User then sets vehicle class among other information, which will be saved to a 
file. If no motion is detected, the algorithm continues scanning frames until the last frame of the video is 
reached. 

VVT utilizes the initial input of video files taken from two video cameras strategically placed in order to 
monitor traffic from two complementing point of views: 

1) An image from the highway to detect a vehicle’s motion when it crosses a predefined mask area. 
2) An image from video recorded on the highway to provide an added level of certainty when 

determining a vehicle’s class. 

VVT requests user input for the flow of information following the detection of each vehicle class, 
traveling lane, frame number or time of detection, as well as top and side vehicle image.  
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Figure 4.2. VVT Flow Chart 
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Chapter V 

Single element system development and highway testing 
This chapter describes algorithms developed for the single-element vehicle classification system and also 
reports on algorithm testing during highway deployment.  

New algorithms were developed using both Matlab and C in order to implement data acquisition, data 
processing and feature extraction of acquired signals, and vehicle classification. Highway deployment 
evaluated overall system performance and compared the newly developed single-element sensor results 
with those obtained from the ADR ground-truth system and video recordings.  

Algorithms 
This section provides a detailed description of program architecture developed for the project. System 
architecture can be defined as the path taken from the commencement of raw data acquisition by DAQ to 
the decision stage of the algorithm’s classification phase. The vehicle classification algorithm can be 
separated into two phases: feature extraction and classification.  

Program development was implemented for ODOT Roadside Embedded Extensible Computing 
Equipment (REECE) using C. C is widely accepted as the programing language of choice for embedded 
systems. It has flexible structure with various functions. Figure 5.1 illustrates the overall software 
architecture. The program is comprised of three primary modules: data acquisition; socket server and 
initial processing; and feature extraction and classification. 

  

 
Figure 5. 1. Overall software architecture 
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Data acquisition module 

The data acquisition module of the program encompasses the actual data acquisition phase and a socket 
client phase. This module configures the DAQ, collects raw data, formats it in character form, and then 
uses a Linux socket to send it to the data processing module. Two phases and their tasks are highlighted 
below: 

- Data acquisition phase: This phase (or sub-module) is responsible for raw data collection. The 
REECE DAQ is used for piezoelectric sensor output sampling. The program includes initiating 
the board, configuring the sampling parameters, and ensuring data is not lost due to slow 
processing. The phase flow graph and details are depicted in Figure 5.2. The process commences 
by initializing and configuring the DAQ. It scans sensor output and, then goes into sleep mode for 
short amount of time before reading the buffer. This is required so that the buffer is not empty. 
The algorithm wakes up, and then scans the buffer. If the number of new samples is greater than 
10, the algorithm reads the samples from the buffer in a cyclic fashion. If fewer than 10, it 
continues in sleep mode. If samples are overwritten before reading, an error (e.g., not processing 
fast enough) is reported. 
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Figure 5.2. Data acquisition phase 

 

- Socket client: Socket sends raw data from the DAQ module to the socket server and initial 
processing module. By using a multiple process scheme, the Linux multi-tasking/threading 
property is leveraged so that the data processing load can be distributed among different 
processes. In this way uninterrupted data acquisition is ensured. During the data acquisition 
phase, data is fetched from the DAQ buffer on a regular basis. Notably, if all data processing 
relied on the same data acquisition process without multi-threading, latency and data loss could 
result. 
 
Sockets are the most widely used method for inter-process communication in Linux-based 
operating systems. The client side of the server sends data in character form. Stream socket was 
selected for this project to guarantee sequenced, reliable data exchange. Stream socket uses 
Transmission Control Protocol (TCP), which is a reliable sequenced data transmission protocol. 
See Figure 5.3 for socket client phase detail. In this phase raw data is received and modeled as a 
character stream. A socket connection opens to a server process and sends data to it. 
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Figure 5.3. Socket client phase 

 

 

Socket server and initial processing module 

The socket server and initial processing module is responsible for a number of tasks, including receiving 
raw data from the socket client, initial data processing, and utilizing the multi-threading, call-feature 
extraction, and classification module. Vehicle data is a function input.  

The socket server first listens for a connection with the client. After client connection and commencement 
of data streaming, the socket server continuously receives data and converts it from character form to 
floating point for processing feasibility. The purpose for initial processing is to isolate single- or multiple-
vehicle data so it can be sent to the feature extraction and classification algorithm for further processing. 
Consequently, zeros are suppressed from occupying system resources.  

As raw data is received from the socket client, the socket server tests sample values. Given that they pass 
a certain negative or positive threshold, the detection flag is raised and samples are stored as vehicle data. 
If a predetermined number of zeros equal to two seconds is surpassed, vehicle detection ceases and stored 
vehicle data is provided to the feature extraction and classification module as input. Figure 5.4 illustrates 
a flow graph of the socket server and initial processing module. This phase commences by listening to 
connection from client and then receiving data stream from socket server. It models character stream into 
raw data, and then begins to detect vehicles. Given no detection, the algorithm performs calibration every 
three minutes. Given a vehicle is detected, then algorithm begins saving the signal and calculating time 
duration, where continuous zero amplitude values in the signal occur. If this duration passes a certain 
value, then data for a vehicle is considered already acquired. Algorithm passes this data to feature 
extraction phase on a separate thread. 
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Figure 5.4. Socket server and initial processing module 
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Feature extraction and classification module 

The feature extraction and classification module represents the vehicle classification algorithm. This 
algorithm constitutes the logic used to process raw data into useful information, including the parameter 
and class of passing vehicles. Feature extraction and classification modules are carried out on a separate 
thread to take advantage of operating system multitasking. Hence, the father process can return to raw 
data processing while the child process performs feature extraction and classification. The thread takes 
function to be executed and pointer to some data as input. Feature extraction function, isolated vehicle 
data, and number of samples in isolated vehicle data are passed to a new thread. 

The feature extraction phase is responsible for passing vehicle detection and subsequent extraction of 
characterizing information and specifications for classification purposes. After acquiring and 
preprocessing a piezoelectric response signal associated with one passing vehicle, pulses associated with 
distinct vehicle tires are identified and total number of vehicle tires is disclosed. Likewise, time at which 
each pulse commences is detected, which indicates intermittent time difference between pulses. The 
extracted vehicle information is used to determine vehicle velocity, tire/axle spacing, and total number of 
tires. Results will then advance to the classification phase. 

Regular sensor output calibration is added to the code to solve signal bias resulting from temperature and 
pavement effects, among other variables. During calibration the mean of sensor output signal is calculated 
regularly and removed from received raw data. Figure 5.5 illustrates the details of the feature extraction 
phase. The process commences by initializing a new thread and receiving vehicle data from socket server 
module. Pulse detection subsequently begins. When the first two pulses are detected, algorithm calculates 
vehicle speed using average speed. The algorithm continues with pulse detection until a maximum axle 
spacing of 35 feet is surpassed, indicating that vehicle data collection is complete. Finally, algorithm 
calculates number of tires and axle spacing, and then sends the information to classification phase. 
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Figure 5.5. Feature extraction phase 
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Classification phase 

The classification phase categorizes vehicles into 13 FHWA classes using vehicle information acquired 
and calculated in the feature extraction phase. Required parameters include number of tires, axle spacing 
for various axles, and time of pulses triggered by tire number relative to class. 

Accurate motorcycle classification is accomplished by counting the number of tires impacting the sensor 
element.  However, classification for other vehicle classes is not possible if only number-of-tires is used 
because differentiating between vehicle classes is limited due to overlapping parameters.  As such, a 
number of standard classification thresholds and algorithms were investigated. Thresholds developed and 
published by Diamond Traffic were eventually implemented. This algorithm utilizes passing vehicle axle 
spacing to produce a classification decision. 

A report by Diamond Traffic suggests axle spacing bins be used for vehicle classification. However, 
classification was ultimately based on the use of two straight piezoelectric sensors rather than a single, 
diagonally positioned sensor. Thus, the developed algorithm uses suggested axle spacing only after tire 
count data eliminates motorcycles from analysis. Axle spacing can then be determined by tire/pulse 
spacing. Thresholds were applied to yield a classification decision. Table 5.1 presents the exploited 
thresholds. 

The developed classification algorithm is also designed to filter an amount of erroneous or incomplete 
sensor activation. For example, let’s consider an event of 12 pulses, i.e., 6 axles. Depending on axle/tire 
spacing values, a certain vehicles might not always be classified as class 10 or class 12. Hence, if axle 
spacing values don’t satisfy thresholds for either class, the event is considered a false trigger. This 
phenomenon is particularly useful to minimize false detection, e.g., vehicle combining. 

Table 5.1. Diamond Traffic thresholds that were used in the developed classification algorithm 

Bin Axles Axle spacing (an ‘*’ corresponds to any 

calculated value) 

1 2-3 1-5.8, * 
2 2-3 5.9-10.2, 10-18.8 
3 2-3 10.3-15, 10-18.8 
5 2 15.1-24 
4 2-3 23.5-99.9, * 
8 3 *, 18.1-99.9 
6 3 *, 3.5-8 
2 4-5 1-10.2, *, 1-3.4, 1-3.4 
3 4-5 10.3-15, *, 1-3.4, 1-3.4 
8 4 *, 5.1-99.9, 3.5-99.9 
8 4 *, 1-5, 10-99.9 
7 4 *, *, * 
11 5 *, 6.1-99.9, *, * 
9 5 *, 1-6, *, 3.5-11 
3 5 9.9-15, *, *, 1-3.4 
5 5 15.1-24, *, *, 1-3.4 
9 5 *, *, *, * 
10 6 *, 3.5-8, 3.5-8, *, 8.1-99.9 
12 6 *, *, *, *, 8.1-99.9 
10 6-10 *, *, *, *, 3.5-8, 3.5-8, 3.5-8, 3.5-8, 3.5-8 
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Track width over length classification method 
Specific vehicle classification requires gathering distinguishing signal characteristics. These are extracted 
from the signal, and then used to perform classification. Signals vary upon the sensor employed to 
monitor vehicles, e.g., piezoelectric, magnetic field, vision, or inductive, among others.  

Our approach utilized a single-element piezoelectric sensor positioned diagonally across a traffic lane at a 
specified angle. Sensor output was a piezoelectric voltage signal characterized by a pulse for every 
passing tire. As aforementioned, in order to use collected data for vehicle classification, distinguishing 
features for various classifications must be extracted and input into a learning algorithm to generate 
another set of data, maximizing differentiation among classes to achieve accurate vehicle classification. 

Raw signal—sampled at frequencies of 10Ksps or 1Ksps—is too large for classification processing and 
algorithm learning. Dimension reduction must first be performed. If accomplished through a rough under-
sampling of the raw signal, a significant loss of information will occur. A more intelligent method should 
be employed to reduce data set size while maintaining the greatest amount of signal information possible. 

One drawback of our single-element sensor design is its inability to estimate vehicle width track; hence, it 
is unable to determine vehicle speed or axle spacing. In this research, several methods for performing 
vehicle classification were developed to overcome this limitation. The first method is to assume an 
average vehicle width for all passing vehicles and calculate vehicle speed. Another novel method adapted 
for our system development was using the ratio of vehicle track width over its length (W/L).  Figure 5.6 
shows a voltage signal acquired from a class 5 vehicle. Time duration between first pulse and second 
pulse is proportional to vehicle width. Also, time duration between first pulse and third (penultimate) 
pulse is proportional to vehicle length. The ratio of w over l eliminates the effect of speed on the data, as 
shown in eq. (5.1). Given that we can constitute thresholds that separate data from distinctive classes, 
vehicle classification can be determined using this novel method. 

                (5.1) 

Where: 

w: track width 

l: length 

T12: time duration between first pulse and second pulse 

T1p: time duration between first pulse and penultimate pulse 

V: vehicle speed 

θ: angle between piezoelectric sensor and traffic direction 
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Figure 5.6. Class 5 data 

Highway Deployments and Results 
Single-element classification system testing and associated newly developed algorithms required 
performance assessment under realistic conditions. Four highway deployments (AVC10, AVC18, 
AVC47, and AVC19) were scheduled and performed on a variety of Oklahoma highways. Each 
deployment was performed within proximity of an Oklahoma Department Of Transportation (ODOT) 
automatic vehicle classifier (AVC) site.  A Roadtrax BL piezoelectric sensor manufactured by 
Measurement Specialties was deployed diagonally across a traffic lane. For AVC47 deployment, a 
complete commercial-grade REECE-based system developed by the OU research team was deployed and 
evaluated. For AVC10 and AVC19 deployments, NI-9215 DAQ was used to collect data from the single-
element sensor. Algorithms for determining axle spacing and vehicle lengths using (W/L) ratio was coded 
on MatLab. AVC18 deployment resulted in biased data due to deployment site features. A description and 
discussion of each deployment is detailed below. 

Highway deployment at AVC47 
AVC47 deployment utilized a Measurement Specialties Roadtrax Bl piezoelectric sensor affixed 
diagonally over the traffic lane at a 45o angle and a REECE device running the newly developed vehicle 
classification algorithm. The site of the deployment for the new system was adjacent to the ODOT 
AVC47 site, which contained the ADR unit. Vehicle classification data from ADR was recorded and 
collected in intervals of one minute for the duration of testing. Classification results of the single-element 
REECE were compared to ADR results. Total deployment time was 80 minutes. 

Video footage was used as ground-truth data and compared with REECE device and ADR data. Table 5.2 
lists classification results for all 13 FHWA classes and compares them with video ground-truth data. 
Notably, class 15 vehicles did not fall in a specific class. Class 14 data was reserved for future use. 

The REECE device achieved an overall classification accuracy rate of 85.38% for vehicles, and 100% for 
class 1 motorcycles. Improved performance was indicated for vehicles in lower classes (e.g., passenger 
vehicles and lighter trucks). Heavier truck classification declined for class 9 and 6 vehicles. Analysis was 
not performed on erroneous data, e.g., when a class 9 vehicle combined with a class 2 vehicle and was 
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then erroneously classified as a class 13 vehicle; also, when a class 6 vehicle was misclassified as a result 
of error in tire detection. Instances such as these can be mitigated in future work by enhancing the 
classification algorithm to account for a non-formal number of pulses, as well as changing maximum axle 
spacing with respect to amount of traffic on highway and average speed. 

Table 5.2. Classification results by REECE compared to ground truth and ADR at AVC47 

 Video ADR Difference REECE Difference 

Class Lane 2 Lane 2 Lane 2 Lane 2 Lane 2 

Cl  1 2 2 0.00% 2 0.00% 

Cl  2 108 118 -9.26% 116 -7.41% 

Cl  3 88 64 27.27% 67 23.86% 

Cl  4 0 0 0.00% 0 0.00% 

Cl  5 3 17 -466.67% 0 100.00% 

Cl  6 6 6 0.00% 2 66.67% 

Cl  7 1 1 0.00% 3 -200.00% 

Cl  8 0 1 0.00% 3 0.00% 

Cl  9 4 4 0.00% 1 75.00% 

Cl 10 0 0 0.00% 0 0.00% 

Cl 11 0 0 0.00% 0 0.00% 

Cl 12 0 0 0.00% 1 0.00% 

Cl 13 0 0 0.00% 1 0.00% 

Cl 14 0 0 0.00% 0 0.00% 

Cl 15 1 0 100.00% 3 -200.00% 
 

Highway deployment at AVC18 
Data from AVC18 deployment was biased due to the non-uniform angle between approaching vehicles 
and the deployed piezoelectric sensor. Unknowingly, the system was inadvertently deployed directly after 
a highway entrance, which caused approaching vehicles to overpass the sensors from a variety of 
directions. Hence, the precise angle between sensor and traffic lane was unknown. Figure 5.7 depicts the 
deployment site. This deployment indicated that the angle of sensor placement is an extremely important 
parameter for data processing when using a diagonal sensor classification system. Usable classification 
results could not be extracted from data collected at AVC18. Again, this emphasizes the importance of 
proper deployment site.  
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Figure 5.7. AVC18 deployment site schematic 

Highway deployment at AVC10 
AVC10 highway deployment utilized a piezoelectric sensor covering a traffic lane at a 45o angle on 
Oklahoma highway 169 in Tulsa, Oklahoma. Data from the sensor was collected using NI-9215 DAQ for 
30 minutes. Data was processed using an assumed average width algorithm, as well as the W/L ratio 
presented earlier. Results were compared to ground-truth video data. Notably, data preprocessing was 
performed to remove incomplete data, e.g., when a vehicle changed lanes while driving over the sensor. 

Table 5.3 details classification results for both average width and W/L ratio methods for each of the 13 
FHWA vehicles, as well as classes 14 and 15 described earlier. The average width is assumed to be 5.78 
ft for this analysis.  

 

Table 5.3. Classification results for AVC 10 

 Video 
(W/L) 

Classification 
method 

Error Average 
width Error 

Class Lane 1 Lane 1 Lane 1 Lane 1 Lane 1 

Cl  1 9 9 0.00% 12 -33.33% 
Cl  2 107 113 -5.61% 118 -10.28% 
Cl  3 94 96 -2.13% 76 19.15% 
Cl  4 0 0 0.00% 0 0.00% 
Cl  5 7 5 28.57% 2 71.43% 
Cl  6 49 43 12.24% 49 0.00% 
Cl  7 0 0 0.00% 0 0.00% 
Cl  8 2 2 0.00% 9 -350.00% 
Cl  9 39 39 0.00% 37 5.13% 
Cl 10 1 1 0.00% 3 -200.00% 
Cl 11 0 0 0.00% 3 0.00% 
Cl 12 0 0 0.00% 0 0.00% 

Θ = 45 
degrees 

Piezo sensor

Traffic lane

Direction of traffic
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Cl 13 0 0 0.00% 0 0.00% 
Cl 14 0 0 0.00% 0 0.00% 
Cl 15 0 0 0.00% 9 0.00% 

 

An 84.4% classification rate was achieved using the generic width algorithm. Several reasons for 
misclassification are existent. Some classes overlap in axle spacing, making it impossible to determine a 
threshold that completely distinguishes them. The accuracy of pulse detection can also affect vehicle 
classification.  

Table 5.3 shows acceptable classification results with 0% error for classes 1, 8, 9, and 10 when using W/L 
ratio. Classification error for other classes is evident due to an overlap (same number of tires) between 
classes.  

For each number of pulses, a W/L threshold was chosen to distinguish between classes. A threshold at the 
center of W/L values was first selected at mean value between W/L ratios of two classes to distinguish 
between those with the same number of pulses. Thresholds values were then adjusted to increase 
separation between classes. This improved distinction between classes. Thresholds employed are listed in 
Table 5.4. 

Table 5.4. W/L thresholds used for vehicle classification for AVC10 deployment   

 
Thresholds between classes 

Pulse 
number 

Classes 
2,3 

Classes 
3,5 

Classes 
6,3 

Classes 
3,8 

Classes 
2,8 

Classes  
6,10 

4 0.575 0.47 x x x x 
6 X x 0.2724 0.19 x x 
8 0.1742 x x x 0.156 x 
12 X x x x x 0.135 

 

Highway deployment at AVC19 
The AVC19 highway deployment was performed on Oklahoma highway I-44 using a piezoelectric sensor 
covering a traffic lane at a 40o angle. Duration of deployment was approximately 2 hours, 45 minutes and 
utilized NI-9215 DAQ. Like the AVC10 deployment, data was processed using both an average width 
algorithm and W/L ratio. Results were compared to ground-truth video data. Classification results for 
both average width and W/L ratio are presented in Table 5.5. W/L thresholds used for vehicle 
classification for AVC19 are presented in Table 5.6. 

Table 5.5. Classification results for AVC 10 

  Video 
(W/L) 

Classification 
method 

Error Average 
width  Error 

Class Lane 1 Lane 1 Lane 1 Lane 1 Lane 1 

Cl  1 5 5 0.00% 31 -520.00% 
Cl  2 536 538 -0.37% 582 -8.58% 
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Cl  3 322 321 0.31% 260 19.25% 
Cl  4 2 2 0.00% 0 100.00% 
Cl  5 46 42 8.70% 0 100.00% 
Cl  6 36 38 -5.56% 38 -5.56% 
Cl  7 2 2 0.00% 2 0.00% 
Cl  8 9 10 -11.11% 13 -44.44% 
Cl  9 118 118 0.00% 101 14.41% 
Cl 10 1 1 0.00% 2 -100.00% 
Cl 11 1 2 -100.00% 0 100.00% 
Cl 12 1 1 0.00% 0 100.00% 
Cl 13 2 1 50.00% 0 100.00% 
Cl 14 0 0 0.00% 0 0.00% 
Cl 15 0 0 0.00% 63 0.00% 

 

Table 5.6. (W/L) thresholds used for vehicle classification for AVC10 deployment   

 Thresholds between classes    

Pulse 
number 

Classes 
2,3 

Classes 
3,5 

Classes 
4,5 

Classes 
4,6 

Classes 
6,3 

Classes 
6,8 

Classes 
3,8 

Classes 
7,8 

Classes  
8,9 

Classes  
9,11 

Classes  
10,12 

Classes  
6,13 

4 0.6342 0.53 0.385 0.333 x x x x x x x x 
5 0.275 x x x 0.39 x x x x x x x 
6 x x x x x 0.31 0.305 x x x x x 
8 x x x x x x x 0.18 0.14 x x x 
9 x x x x x x x x x 0.13 x x 
11 x x x x x x x x x x 0.1202 x 
12 x x x x x x x x x x x 0.135 

 

An 80.6% classification accuracy rate was achieved using the average width algorithm. Performance 
declined when compared to AVC10 deployment. The change in sensor position angle affected pulse 
detection, e.g., detection of three pulses for class 2 and 3 vehicles instead of four pulses corresponding to 
four tires. Pulses from the second and third tires were combined into one pulse. Thus, the pulse detection 
algorithm was modified for improvement by using two different pulse windows—a smaller one for 
classes 2 and 3 and larger one for higher numbered classes. Changing the pulse detection algorithm 
reduced errors significantly. However, pulse detection remained prone to error for some vehicles. For 
example, 26 vehicles classified as motorcycles had three detected pulses. In our algorithm, three-pulse 
vehicles are classified as motorcycles to accommodate three-tire motorcycles. We concluded that if an 
angle of less than 45o is used, the average width algorithm used to classify a vehicle with three detected 
pulses should be changed to indicate class 2 vehicle classification.  

Class 1, 4, 7, 9, 10, and 12 had a 100% accurate classification rate. Classification errors for other classes 
were clearly due to an overlap between them.  
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Principal component analysis 
Principal Component Analysis (PCA) has traditionally been used for feature extraction and data 
dimension reduction technique. PCA uses mathematical techniques to transform correlated data in domain 
of orthogonal components. Few primary principal components contain information required to distinguish 
data observations from one another [13].   

Covariance matrix V of the available vehicle data must be constructed to obtain Principal Components 
(PCs) of the data [14]. Matrix diagonal represents the variance of data observed for each vehicle, while 
other elements represent the covariance between observations corresponding to different vehicles. To find 
V, a modified data matrix , in which the ensemble mean  is removed, must be found. Let xp be a vector 
of length N that contains data for the pth vehicle, where p = 1,.., M, and M is the total number of vehicles. 
Data matrix X(M by N) can then be constructed, where each column of matrix X is a vehicle data vector 
xp. To construct , one must calculate  and then subtract the result from all vehicle vectors xp. See 
equations (5.2, 5.3, and 5.4) 

   (5.2) 

   (5.3) 

  (5.4) 

As a result, we can calculate V, which will be of size (N X N), by using  by its transpose : 

V =     (5.5) 

Eigenvectors of V, (g1, g2,…, gN), are then computed and associated with eigenvalues (λ1, λ 2,…, λN). The 
latter are placed in descending order where the highest eigenvalue represent the highest variance between 
data observations. The eigenvectors associated with eigenvalues represent the principal components of the 
data. 

After finding PCs, a calculation will be determined to select learning methods for vehicle classification. A 
number of PCs will be used to extract k features from total N samples for each vehicle data. The first k 
PCs with sufficient information about the original signal will be chosen. This figure can be found by 
examining the first k eigenvalues as they carry the information explaining the variance of data 
observation for the first k PCs. Features can be calculated using the following equation: 

 (5.6) 

Our data consists of M = 308 vehicles signals of different classes where each signal is 12,001-long 
samples obtained at 10KS/s. Table 5.7 details number of vehicles in each class. Signal was down 
converted to 1KS/s to facilitate simpler data handling without significant loss of information and to yield 
a signal length of N= 1,201 for each vehicle. The sensor was positioned at a 45o angle to traffic direction.  

Table 5.7. Number of each class in data set 

Class 1 2 3 5 6 8 9 10 
Number of 

vehicles 
9 107 94 7 49 2 40 1 

   



40 
 

PCA procedure was performed on the available data set. As mentioned earlier, a small set of the total 
number of PCs, when compared to total signal size, is ample for generating a feature that encompasses a 
large percentage of those used to distinguish vehicles from one another. Figure 5.8 shows data variance 
for the first 308 PCs, i.e., percentage of features contributed by each PC. Notably, the total number of PCs 
equals N = 1,201; however, PCs greater than the number of vehicles, i.e., M = 308, are insignificant. The 
first 308 PCs explains 100% of the variance. Hence, they retain 100% of features required for extraction.  
Variance percentage declines exponentially as the number of PCs increases.  

 

Figure 5.8.  Percentage of variance of data for PCs 

Utilizing 50 PCs covers 92.6816% of the signal. Figure 5.9 shows a comparison between an original class 
2 signal and a reconstructed one when using 50 PCs to compress vehicle signal. 
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Figure 5.9. Class 2 original signal and reconstructed signal 

Vehicle classification using PCA and Bays networks including W/L ratio 
A relatively large sample of vehicle data representing different classes must be collected to determine if 
and how effectively thresholds are able to distinguish vehicle data.  

A piezoelectric sensor covering a traffic lane at a 45o angle was deployed on Oklahoma highway 169. 
Sensor data was acquired for approximately 30 minutes.    

To associate each signal with its corresponding class, it was imperative to use a ground-truth data system. 
For this purpose, a video camera was installed to record highway traffic during deployment. Video 
recording was processed to classify passing vehicles and associate them with corresponding voltage 
signals. Notably, data preprocessing was performed to remove incomplete data, e.g., when a vehicle 
changed lane. 

Figure 5.10 shows that data is more distinguishable when pulse number is corresponded with tire number 
and plotted against W/L ratio. An overlap is apparent for lighter vehicles, such as classes 2, 3, and 5. 
However, heavier trucks, such as classes 6 and 9, are better distinguished from other traffic data. Also, 
many class 2 and 3 vehicles generate more than four pulses when attached to some type of trailer. 
Classification in this situation will be challenging. 
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Figure 5.10. Pulse number vs. W/L ratio 

Utilization of W/L ratio and pulse number will be examined with 50 feature extracted using PCA.  

These features will establish the input vector for the Bayesian learning method used to perform vehicle 
classification. Bayesian Networks or Belief Networks (BN) are a hybrid of graph theory and probability 
theory. BN is a directed acyclic probabilistic graphical models consisting of a node at which a conditional 
probability distribution is defined, as is the probabilities of directed paths between nodes. Learning with 
BN aims to determine structures and conditional probabilistic tables between nodes by using input 
training data [15-16].  

A preliminary test was performed using our data and BN. A random learning sample of 154 was chosen 
to train the network. Results were subsequently tested on our data set. Experiments had a number of 
features, including: 

- Test 1 included 52 features that corresponded to 50 features extracted by PCA, W/L ratio, and 

pulse number 

- Test 2 included 51 features—50 features extracted by PCA and W/L ratio 

- Test 3 included only 50 features extracted by PCA 

- Test 4 included 51 features—50 features extracted by PCA and pulse/tire number 

 Classification results for selected features are presented in Table 5.8. 

 

 

 

 

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pulse number

w
/l

 

 

Class 2

Class 3

Class 5

Class 6

Class 8

Class 9

Class 10



43 
 

Table 5.8. Classification results using PCA and bays network on single element piezo-sensor 

 
Test 1 Test 2 Test 3 Test 4 

  Classification Accuracy Percentage 

Total 

Classes 
  90.29   90.94 88.03 89 

Class 1 100 100 100 100 
Class 2     89.57     90.35 81.75     81.89 
Class 3      93.98     94.12 93.59     94.81 
Class 5    37.50 40 85.71     85.71 
Class 6 100 100 90.57     94.12 
Class 8 100 100 100 100 
Class 9     93.02     93.02 92.68     93.02 
Class 

10 
0 0 0 0 

 

A superior classification rate of 90.94% was achieved with test 2 when using 50 PCA extracted features 
and W/L ratio. Classification for class 2 vehicles was unsurpassed, most likely because this class had the 
largest number of vehicles in the data set. Class 5 vehicles had the poorest classification results in test 2. 
However, class 5 classification was improved in test 4 when using 50 features extracted by PCA and 
pulse number, although class 2 had a lower classification rate. This phenomenon can be explained by the 
significant overlap in class 5 in test 2. Class 2 and 3 vehicles had overlap in test 4 with regard to W/L 
ratio, e.g., approximately 42% of class 5 vehicle were overlapped.  

A classification rate of 100% was achieved for classes 1, 6, and 8 in all tests. In future experiments, 
classes with a lower rate of success, e.g., class 8 and 10, could possibly be omitted, because they could 
bias feature extraction using PCA. It is important to remember that a classification rate of 100% for class 
1 motorcycles is obtained simply by observing the two pulses. Motorcycles are the only class with two 
pulses. Hence, we suggest it is prudent to classify motorcycles independently from other vehicles. 

 

Errors reported when processing Single-element data 
This section explains the three types of errors encountered during classification processing of data 
obtained from the single-element sensor.  

Type 1 Error: No Pulses in Signal Data 

In Type 1 Error, a vehicle is captured on video crossing the sensor; however, no pulses were recorded in 
the signal data. For AVC19 deployment, 11 out of 1,128 vehicles were characterized without a pulse, 
resulting in 0.975% of Type 1 Error. Figure 5.11 clearly shows a class 2 vehicle crossing over the sensor. 
Review of the video confirms that the vehicle crossed over the sensor without switching lanes. 
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Figure 5.11. Picture of class 2 vehicle missed by the sensor of Frame 16641 

Table 5.9 is a record of the video data. Indicators validate that a class 2 vehicle was recorded crossing the 
sensor in frame 16641. 

Table 5.9. Example of missed vehicle within vehicles from Frames 15376 through 17012 

Video File Name Lane Class Frame Is Recreational Time Actual Time 

MAH00037.MP4 1 2 15376 0 00:08:33 12:07:30 

MAH00037.MP4 1 2 15546 0 00:08:38 12:07:35 

MAH00037.MP4 1 9 15792 0 00:08:46 12:07:43 

MAH00037.MP4 1 3 16167 0 00:08:59 12:07:56 

MAH00037.MP4 1 2 16217 0 00:09:01 12:07:58 

MAH00037.MP4 1 3 16303 0 00:09:04 12:08:01 

MAH00037.MP4 1 2 16641 0 00:09:15 12:08:12 

MAH00037.MP4 1 9 16980 0 00:09:26 12:08:23 

MAH00037.MP4 1 3 17012 0 00:09:27 12:08:24 

 

Figure 5.12 shows signal data from vehicles in Table 1.1. The numbers above each signature denote to 
which class of vehicle the signature belongs. Matching the record data from Table 1.1 to the signal data 
reveals no pulses for the class 2 vehicle appearing in the frame. The location at which pulses should be 
present is denoted in red. The cause for missing pulses is unclear.  
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Figure 5.12. Example of a vehicle signal missed by sensor 

 

Type 2 Error: Extra Pulses in Signal Data 

In Type 2 Error, pulses are evident in the signal data but no vehicle is shown crossing the sensor in the 
video data. For AVC19, an excess of 14 signals were indicated for 1,128 vehicles. This phenomenon 
resulted in a 1.241% error. 

Figure 5.13 validates that a class 2 vehicle is not apparent before the vehicle shown in the frame. Data 
recorded in the next table reveals that no class 2 vehicle was recorded as crossing the sensor before the 
vehicle in frame 42593. However, the subsequent figure of pulses reveals an excess of pulses before the 
class 2 vehicle in frame 42593. Video footage reveals that the white class 2 vehicle in Figure 5.14 crossed 
the sensor before the black class 2 vehicle in frame 42593. The program for recording the video data 
failed to detect and record the white class 2 vehicle. 
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Figure 5.13. Frame 42593 

 

 

Figure 5.14. Saved Image before Frame 42593 

As stated previously, Table 5.10 contains no record of a class 2 vehicle crossing the sensor directly before 
the class 2 vehicle captured in frame 42593. The following figure conflicts with this data. 
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Table 5.10. Vehicles from Frames 42418 through 43486 

Video File Name Lane Class Frame Is Recreational Time Actual Time 

MAH00037.MP4 1 9 42418 0 00:23:35 12:22:32 

MAH00037.MP4 1 6 42461 0 00:23:36 12:22:33 

MAH00037.MP4 1 2 42593 0 00:23:41 12:22:38 

MAH00037.MP4 1 2 42799 0 00:23:48 12:22:45 

MAH00037.MP4 1 2 43096 0 00:23:57 12:22:54 

MAH00037.MP4 1 5 43486 0 00:24:11 12:23:08 

 

Figure 5.15 displays the signal data from vehicles in Table 5.10. The numbers above each signature 
denote the class to which each vehicle signature belongs. Matching the record data from Table 5.10 to the 
signal data reveals an extra set of pulses (denoted by a red number) before the class 2 vehicle captured in 
frame 42593. This extra set of pulses in Figure 5.14 demonstrates that the white class 2 vehicle was not 
successfully detected and recorded by the video data program. 

 

 

Figure 5.15. Pulses from Frames 42418 through 43486 
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Type 3 Error: Distorted Pulses 

In Type 3 Error, signal data pulses match video data in which a vehicle crosses the sensor; however, 
pulses are fewer than expected. Typically this phenomenon is the result of a vehicle changing into another 
lane as it crosses the sensor. This section also illustrates another example of Type 2 Error discussed in the 
previous section. Files containing distorted pulses were not marked as distorted, so no percent error is 
calculated for Type 3 Error. 

Figure 5.16 displays a class 6 vehicle at frame 13303. Although the following table shows that a class 9 
vehicle crossed the sensor before the class 6 vehicle, video footage reveals that a class 3 vehicle changed 
to lane 2 while crossing the sensor ahead of the class 6 vehicle. Figures 5.17 and 5.18 display the vehicle 
as it changes lanes. 

 

 

Figure 5.16. Frame 13303  
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Figure 5.17. Saved Image before Frame 13303 

 

 

Figure 5.18. Saved Image before Frame 13303 
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Table 5.11. Vehicles from Frames 12857 through 14071 

Video File Name Lane Class Frame Is Recreational Time Actual Time 

MAH00037.MP4 1 9 12857 0 00:07:09 12:06:06 

MAH00037.MP4 1 6 13303 0 00:07:23 12:06:20 

MAH00037.MP4 1 2 13327 0 00:07:24 12:06:21 

MAH00037.MP4 1 6 13584 0 00:07:33 12:06:30 

MAH00037.MP4 1 2 13651 0 00:07:35 12:06:32 

MAH00037.MP4 1 2 14071 0 00:07:49 12:06:46 

 

As stated previously, Table 5.11 contains no record of a class 3 vehicle crossing the sensor directly before 
the class 6 vehicle in frame 13303. The following figure conflicts with this data. 

 

Figure 5.19 Pulses from Frames 12857 through 14071 

 

Figure 5.19 displays signal data from vehicles listed in Table 5.11. The numbers above each signature 
denote to which class of vehicles the signature belongs. Matching the record data from Table 5.11 to the 
signal data reveals that there is an extra set of pulses (denoted by a red number) before the class 6 vehicle 
in frame 13303. The extra set of pulses is the result of the class 3 vehicle pictured in Figures 5.17 and 
5.18 as it switched lanes when crossing the sensor. Lane changes caused two pulses instead of four (Type 
3 Error) since only two tires hit the sensor. This also caused Type 2 Error because the sensor picked up 
two pulses from the class 3 vehicle while the video data program failed to detect and record the vehicle 
changing lanes. 
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Chapter VI 

Multi element system development and highway testing 
This chapter reviews software design and classification results obtained during highway testing of the 
multi-element vehicle classification system developed by PI Dr. Refai and his research team. The system 
was developed to accurately classify motorcycles and other vehicles according to FHWA class 
specifications. System performance under highway conditions was necessary, and collected data had to be 
processed accordingly. Highway deployment requires suitable sensor packaging, as it houses 16 sensor 
elements and their cabling, each measuring 1.5 ft long. 

Data collected from sensors triggered by passing vehicles should be processed to extract vehicle 
parameters such as width, velocity, axle spacing, and length. These features can then be used to classify 
each vehicle. Algorithms used for processing data, extracting features, and making a classification 
decision will be presented in the following section. 

Algorithms 
This section describes the algorithm employed to process a multi-element sensor signal. The algorithm is 
divided into three major modules: pulse extraction, feature extraction, and classification. A description of 
each module and accompanying flow graph is provided in the following subsections. The algorithm was 
coded using Matlab. 

Pulse extraction 
The pulse extraction module detects pulses corresponding to tires impacting the sensor. This module 
reads raw data samples and determines peak amplitude for each channel, which aids decision-making 
about the impacted channel. Data compare sample amplitude sequentially to a threshold for all channels 
to detect pulses corresponding to vehicle tires. The algorithm then generates an index log of pulse start 
and stop times to calculate pulse duration, as well as peak amplitude value. Figure 6.1 offers a flow chart 
of the algorithm developed to identify all pulses captured on all channels. Algorithm detects peaks in the 
acquired signal and compares peaks from different channels with each other to make a decision on which 
channels were impacted. Then algorithm starts peak detection where it scans for amplitude higher than or 
equal to 25% of the peak detected amplitude value. Algorithm then finds the indices of start and end and 
peak value of each pulse and saves them. 
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Figure 6.1. Pulse extraction module 

Feature extraction 
The feature extraction module is extremely important, as it calculates features required by the subsequent 
vehicle classification module. This module reads output delivered by the pulse extraction module and 
calculates vehicle width based on impacted elements. If multiple adjacent sensor elements were impacted, 
the distance between tires is calculated based on the midpoint of the group of sensors impacted.  
Depending on tire size and angle of deployment, multiple adjacent sensors could be impacted by crossing 
vehicles. The potential for impacting more sensor elements increases as the angle of deployment 
decreases from 90o  (perpendicular to traffic) toward 0o (in line with traffic, i.e., not an valid angle). 

Once the separating distance between two sensors impacted by tires belonging to the same axle is 
determined, the algorithm calculates speed using time difference between detected pulses corresponding 
to the tires. Eventually, having acquired speed, the algorithm can then calculate vehicle length and axle 
spacing between consecutive axles. Pulse indexes from one impacted element can be used to perform this 
task, as they correspond to consecutive axles of the same vehicle. Consult Figure 6.2 for a flow chart of 
the feature extraction module. Feature extraction module commences by finding the first impacted 
channel, and then dividing impacted channels into two groups. If only one channel was impacted then the 
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vehicle is classified as a motorcycle. If more than one, then algorithm calculates vehicle track width using 
sensor angle and tires indices from the two channel groups corresponding to the two front tires. Based on 
track width, speed can then be calculated. Finally, speed and pulses indices indicate vehicle length and 
axle spacing. Algorithm calculates and passes to classification module for classification decision.  

 

Figure 6.2. Feature extraction module 

 

Vehicle classification 
The primary goal of the work detailed in this report is building a system to classify vehicles, primarily 
motorcycles. The vehicle classification module receives data from the feature extraction module to 
execute vehicle classification. The algorithm employed for this module is based upon vehicle length, axle 
spacing, and number of tires. Axle spacing thresholds from Diamond Traffic were initially employed to 
differentiate between classes. The thresholds were later modified according to test results to improve 
differentiation. Table 6.1 shows thresholds ultimately developed and employed. 
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Table 6.1. Thresholds used in multi-element classification algorithm 

Bin Axles Axle spacing (consecutive axles 

spacing separated by comma) 

2 2-3 0-6.8, 10-18.8 
3 2-3 6.8-9.5, 10-18.8 
5 2 9.5-12.5 
4 2-3 12.5-24, * 
8 3 *, 18.1-99.9 
6 3 *, 1-15 
2 4-5 0-6.8, *, 1-1.9, 1-3.4 
3 4-5 6.8-10, *, 1-3.4, 1-3.4 
8 4 *, 5.1-99.9, 3.5-99.9 
8 4 *, 1-5, 10-99.9 
7 4 *, *, * 
9 5 *, *, *, * 
10 6 *, 3.5-8, 3.5-8, *, 8.1-99.9 
12 6 *, *, *, *, 8.1-99.9 
10 6-10 *, *, *, *, 3.5-8, 3.5-8, 3.5-8, 3.5-

8, 3.5-8 
13 6-10 otherwise  

 

Highway deployments and results 
This section describes highway deployment carried out to assess the vehicle classification algorithm and 
its results for the newly developed multi-element vehicle classification system. AVC19 site on Oklahoma 
highway I-44 was selected for deployment. Testing included six separate intervals totaling 2 hours, 45 
minutes. The signal for the first five intervals was acquired at a sampling rate of 5kS/s. Sampling rate for 
the final interval was increased to10kS/s.  

Extensive work was required to construct sensor packaging, which included a 16 piezoelectric sensor 
element housed in road pocket tape connected to the DAQ module via 100ft coaxial cable for each sensor 
element. Cables were channeled to roadside inside road pocket tape, and then connected to the NI-9205 
DAQ unit. The principal pocket road tape housed sensor elements deployed at a 30o angle to traffic 
direction. Secondary pocket road tapes were employed to channel connecting cables. Figure 6.3 
demonstrates the deployment site and sensor layout. 
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Figure 6.3. AVC19 deployment site and sensor layout 

Data was preprocessed to eliminate irregularities, such as an incomplete signal resulting from a vehicle 
changing lanes. 

Sixteen sensor elements are required to cover a 12ft traffic lane at a 30o angle diagonal layout. 
Unfortunately, sensor element 3 was damaged during transportation to the testing site, and its data was 
removed from results. This occurrence allowed the research team to assess fault tolerance of the system 
and its ability to utilize fewer elements while maintaining a high level of accuracy. Figure 6.4 depicts an 
example of aligned signal for passing vehicles collected from 15 sensor elements. 

 

Figure 6.4. Raw signal from 15 aligned elements for class 2 vehicle 
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The algorithm was applied on data for all passing vehicles to calculate speed during corresponding test 
time intervals. A distribution of calculated speed was then plotted and compared with ADR speed for the 
six test intervals. Figure 6.5 compares the speed distribution calculated by the multi-element sensor and 
the ODOT ADR system. 
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Figure 6-.5. Speed distribution comparison between multi-element system and ADR for testing intervals 
1 through 6 

 

Notably, multi-element speed data in figure 6.5 was shifted by 2mph for all vehicles. This translates to an 
average of 0.35ft shift in distance between impacted elements. The reason for this adjustment was gaps 
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between consecutive sensors that averaged 0.35ft. Applying an average 2mph shift in speed compensated 
for the gaps resulting from multi-element sensor fabrication. 

Figure 6.5 shows that both systems show similar distribution in terms of speed for all testing intervals, as 
well as only slight differences in vehicle count. Distribution in Figure 6.5 indicates extremely 
encouraging results, as it validates our speed calculation. Such results are essential for accurate system 
operability. A difference in vehicle count at a specific bin could result from data binning or error in width 
calculations from distance resolution when calculating width. 

Axle spacing and vehicle length was calculated. Vehicle features were applied to the vehicle classification 
algorithm to generate classification results shown in Tables 6.2 and 6.3. Table 6.2 corresponds to test 
intervals in which signal sampling rate was 5kS/s. Data was accumulated for approximately 2 hours, 30 
minutes. Classification data shown in Table 3 was obtained from a test interval of approximately 10 
minutes at a sampling rate at 10kS/s. 

Table 6.2 shows that total achieved classification accuracy was 86.9% when compared to data generated 
from the video ground-truth system. The system scored 100 and 98.9% classification accuracy for 
motorcycles and passenger vehicles, respectively. Lower classification percentage for other classes can be 
attributed to a number of factors. For example classes 3, 4, and 5 have the same number of tires and axles. 
Thus, the algorithm can distinguish between vehicles based only on vehicle length. Likewise, false pulse 
detection can play a part in misclassifying heavier trucks. In this case, classification rate for the same 
interval was much lower at 70.6%. The short, 10-minute interval sample was simply not long enough to 
accurately reflect classification rate. See Table 6.3. 

Table 6.2. Classification accuracy for AVC19 with 5kS/s testing round 

  
Video  

 Multi-element 
classification  

 Error  

Class 

Cl  1 5 5 0.00% 

Cl  2 453 458 -1.10% 

Cl  3 245 225 8.16% 

Cl  4 2 10 -400.00% 

Cl  5 32 16 50.00% 

Cl  6 27 42 -55.56% 

Cl  7 1 12 -1100.00% 

Cl  8 5 12 -140.00% 

Cl  9 99 77 22.22% 

Cl 10 1 3 -200.00% 

Cl 11 0 0 0.00% 

Cl 12 0 0 0.00% 

Cl 13 2 10 -400.00% 

Cl 14 0 0 0.00% 

Cl 15 0 2 0.00% 
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Table 6.3. Classification accuracy for AVC19 with 10kS/s testing round 

  
Video  

 Multi-element 
classification  

Error 

Class 

Cl  1 0 0 0.00% 

Cl  2 53 55 -3.77% 

Cl  3 39 26 33.33% 

Cl  4 0 3 0.00% 

Cl  5 1 2 -100.00% 

Cl  6 1 5 -400.00% 

Cl  7 0 4 -1100.00% 

Cl  8 0 1 0.00% 

Cl  9 6 6 0.00% 

Cl 10 0 0 0.00% 

Cl 11 1 0 100.00% 

Cl 12 1 0 100.00% 

Cl 13 0 0 0.00% 

Cl 14 0 0 0.00% 

Cl 15 0 0 0.00% 

 

 

Effects of changing angle on the system 
The angle of deployment between sensor and traffic direction, i.e., θ, is an important parameter in the 
vehicle classification system. Effects of altering this angle will be addressed in this subsection. By 
decreasing the θ figure, fewer sensor elements are required to fabricate the sensor. Hence, a DAQ with 
fewer input channels is required, given that element length is fixed at 1.5ft. This advantage reduces 
system cost and ensures data processing. Also, less time is spent fabricating the multi-element sensor, and 
highway deployment is less complicated. Another advantage of decreasing the angle of the sensor in 
relation to traffic direction is reducing the probability of a malfunctioning element. 

Decreasing θ will result in lower resolution when calculating vehicle width, primarily because fewer 
sensors are used in the system. A higher margin of error is possible when calculating width, which will 
effect speed and axle spacing calculations. However, from collected deployment data it is apparent that 
for many vehicles, especially trucks, multiple elements are impacted by wide or double tires. This implies 
that the system might work well with lower resolution relative to distance between elements. The system 
achieved respectable speed calculations even without utilizing the channel 3 signal, as indicated earlier in 
this chapter. This information implies the worthiness of investigating an increase in θ for future 
deployments. 
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Differences between single element and multi-element classification systems 
The following table highlights advantages and disadvantages of single- and multi-elements systems. 

Table 6.4. Comparison between single element and multi-element systems 

 Single element system Multi-element System 

Width detection Not Possible Estimate vehicle width track 
Analog to digital conversion 

specifications 

Requires DAQ with one input 
channel 

Requires DAQ with multiple 
input channels 

Ease of sensor packaging and 

road installation 

Easy to construct and deploy on 
highways 

Challenging to construct and 
deploy on highways.  

Sensor disconnection tolerance Stop operation with damaged 
sensor.  

Maintain operation even with 
damaged sensors but less 
resolution.  

Classification accuracy  - Achieved up to 84.4% with 
average width algorithm. 
- Achieved up to 99% when 
using vehicle (W/L) ratio 

Achieved up to 86.9% 

 

Errors reported when processing multi-element data 
This section explains the various type of errors encountered during the classification processing of the 
data obtained from the multi-element sensor design. Two different types of error were identified. They are 
similar to those identified during the single-element highway deployments.  Description of the errors is 
described below.  

Type 1 Error: Extra Pulses in Signal Data 

Type 1 Error is indicated when pulses occur in signal data, although no vehicle is detected in video data. 
Thus, when processing raw signals and comparing them to video records, it can be assumed that signals 
could be the result of vehicles passing in an adjacent lane. 

Type 2 Error: Distorted Pulses 

Type 2 Error is indicated when the detected pulses associated with a particular crossing vehicle are fewer 
than expected. The primary reason is vehicle lane switching from the instrumented lane one to an adjacent 
one.  
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Conclusion 
 

Vehicle classification accuracy is important for determining vehicle miles travelled (VMT) and designing 
roadways and highways that accommodate traveling passengers and goods transportation. Most US state 
departments of transportation employ a vehicle detection and classification system that uses two inductive 
loops combined with a piezoelectric sensor to measure vehicle speed, length, axel count, and axle 
spacing. However, this technology has been shown to misclassify motorcycles (class 1 vehicles) that 
leave a negligible roadway footprint. It is imperative to investigate other techniques and technologies to 
improve motorcycle classification. 
 
This project proposed to develop a vehicle classification system to accurately classify motorcycles, as 
well as vehicles in the remaining 12 FHWA classes. The newly developed system utilizes a single- or 
multi-piezoelectric sensor(s) unconventionally placed diagonal to traffic flow. Sensor deployment tilt 
affords the system the ability to detect individual vehicle tires, estimate vehicle width, and potentially 
detect double tires used on trucks, in addition to tire width. The single-element design employs a single 
piezoelectric sensor, a one channel DAQ, and an embedded computer to process classification algorithms. 
The system is easy to deploy, simple to use, and inexpensive, although it offers less accurate speed 
estimates because of its inability to accurately estimate vehicle width. Alternately, the multi-element 
design uses several in-line piezoelectric sensors, a multi-channel DAQ, and embedded computer to 
process specific classification algorithms. This system is more tolerant of sensor failure and able to 
estimate vehicle width, thus more accurately estimate vehicle speed. However, the system is expensive 
and more complicated to use and deploy.  
 
Various classification algorithms were developed for both single- and multi-element designs. Algorithms 
for the multi-piezoelectric system were implemented to determine tire count, tire spacing, vehicle width 
velocity, and pulse timing/duration, in addition to axel spacing and vehicle length, effectively leveraging 
the utility of the inductive loop technology. Tire-based parameters provide additional data that can be 
used to enhance classification accuracy, especially for class 1 motorcycles. Given this new technology, 
class 1 vehicles are easily detected primarily because they have only two tires, i.e., tire-initiated pulses are 
used to process feature extraction and vehicle classification. Vehicle width estimation provides accurate 
vehicle speed estimates. This outcome alone is beneficial, especially when considering that at least two 
inductive loops are required to measure vehicle speed. Classification accuracy using the multi-element 
sensor achieved up to 86.9% accuracy during highway deployments. 
 
Algorithms developed for the single-piezoelectric sensor system were required to compensate for missing 
vehicle width data. Two algorithms were developed—one that uses an average vehicle width to calculate 
vehicle speed regardless of vehicle type and class, and another, more novel algorithm that uses the ratio of 
vehicle width over its length. This method does not require speed calculations and has proven superior in 
classification accuracy, even among vehicles with an equal number of tires. Accuracy ranged between 
94.8% and 99.07% during highway deployment. Classification accuracy was calculated at 84.4% when 
average width is employed.  
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Implantation/Technology transfer 
Single-element design and field testing portion of this project was published and presented at the 
International Transportation Systems Conference (ITSC) in September 2012 [17].  

Single element system design and preliminary testing was presented at NATMEC 2012 under title: 
“Accurate Vehicle Classification Including Motorcycles Using Piezoelectric Sensors”.  

Also, project progress was presented to the Oklahoma Department of Transportation (ODOT) on several 
occasions.  
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Appendix A 
In this appendix the Diamond Systems Helios computing system interface and related capabilities 
pertinent to this report are briefly explained. 

The REECE device was initially developed as part of an Oklahoma Transportation Center (OTC) project 
funded in 2005-06. The goal of the project was to develop wireless access to Oklahoma Department of 
Transportation (ODOT) traffic data collection sites, enabling automatic vehicle classification (AVC) and 
weight-in-motion (WIM). The device was developed by PI Dr. Refai and his research team at the 
University of Oklahoma-Tulsa. The REECE is able to access a cellular network using either a 3G or 4G 
wireless modem, and then transfer data back and forth to servers in real time. Diamond Systems 
Prometheus served as the basis for the computing system; development advanced to incorporate the new 
generation of Helios. 

Helios is an embedded system designed by Diamond Systems. See figure A.1. The compact, embedded 
computer is able to execute a number of operating systems, including Linux. 

 

 
Figure A. 1. Helios computing system 

Helios has an 800 vortex86DX CPU and is equipped with six VGA ports; PS/2 mouse and keyboard 
ports; RS-232 ports; four USB ports; 40 digital programmable I/O lines; four analog outputs; and Ethernet 
port with 10/100 Ethernet circuit integrated into the processor. Most important among Helios I/O ports is 
the 16 analog inputs, further detailed below.  
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Helios includes a built-in DAQ unit that can operate with 16 single ended (SE) channels or 8 differential 
channels. Helios DAQ scans input channels sequentially and has a maximum sampling rate of 250kS/s, 
although this rate is divided among input channels when more than one channel is used. For example, 
when using 16 SE input channels, the rate drops to 15.625kS/s.  

Signal input is connected to Helios DAQ through a 50-pin male header on the I/O module. The header is 
comprised of all 16 analog input channels; four analog outputs; grounds; voltage out; and digital I/Os. See 
figure A.2. 

 
Figure A. 2. DAQ I/O connector 
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The aforementioned features render the REECE device Helios an appealing platform for the development 
of a vehicle classification embedded system. It is currently deployed at 80 ODOT data collection sites, 
making the deployment of the single/multi-element classifier at these sites inexpensive, thus feasible.  
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Appendix B 
This appendix shows the procedure by which a new REECE device is added to the Linux server VPN 
network.  It is assumed that the REECE device is working and has Internet connection. 

- REECE will continue to attempt to connect with server. 

- On server, check for REECE connection and obtain its public IP address: tail 

–f /var/log/secure 

- Connect to REECE using Linux terminal software putty of any other terminal 

software 

- Generate new RSA keys 

- Secure copy (scp) public key to the server 

- On server, add REECE name to the list of users 

- Give user (REECE) permission to create VPN connection 

Echo ‘<name> ALL=NOPASSWD: /usr/sbin/pppd call <name>’ >> 
/etc/sudoers 

- Make new file in “/etc/ppp/peers/” named as REECE user. Then file the VPN 

connection options and parameters for this user and the specific VPN network 

address assigned to the REECE. 

- Install public keys on server and make REECE user as their owner: 

cp /PATHofPublicKey/id_rsa.pub /home/<name>/.ssh/authorized_keys2 
chown <name>:<name> -R /home/<name>  
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Appendix C 
This appendix describes the algorithm output developed program for the REECE device. When executed, 
the program continuously processes sensor data, looking for a passing vehicle. Per-vehicle records are 
reported on screen and saved on the REECE memory. These include passing time, date, vehicle class, 
velocity, and number of tires. See figure C.1 for an example of reported output. A connection is initiated 
to the REECE device either directly to its public IP address or through a VPN connection from a server. 
During the session, the program can be initiated and stopped, and vehicles can be detected as they pass. 
The output has the following parameter:  

- Time and date of record 

- Vehicle class 

- Vehicle speed 

- Number of tires 

 

Figure C. 1. Vehicle per vehicle reported output. 
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