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1.1 Description of bridge 

The AWB is a suspension bridge with a main span of 785 feet and two side spans each of length 233.5 
feet.  Including the approaches, the full length of the bridge is 3215 feet.  The Anthony Wayne Bridge 
features two 13-5/16 inch diameter, parallel wire main cables, each of which contains 19 strands 
consisting of 186 No. 6 galvanized steel wires.  The current protection system includes a red lead paste, 
a continuous wire wrap, and an elastomeric wrapping as the exterior protection.  Suspender ropes run 
between the deck and cable bands at intervals of approximately every 20 feet along the suspended 
spans, creating a total of 118 panels between the north and south cables.  The roadway is supported by a 
stringer and floorbeam system.  The bridge carries four lanes of S.R. 2 across the Maumee River, two 
lanes in each direction, with an average daily traffic of approximately 24,000 vehicles.  An elevation of the 
bridge can be seen on the previous page (figure 1). 

 

1.2 Recent Monitoring & Inspections 

Monitoring System 

In line with the above mentioned goals, the main cables of the AWB were fitted with an acoustic 
monitoring system which has been actively listening for wire breaks since July of 2011.  The monitoring 
system includes 15 low frequency sensors spaced at roughly 100 foot intervals along each cable.  The 
sensors on both cables are hard lined into the Sensor Highway II data acquisition system. The data form 
the acoustic monitoring is stored temporarily and then sent wirelessly over a cell phone connection to a 
remote location.  It is also possible to log into the system via the internet and watch the real time acoustic 
emission (AE) data.  The AE system continuously provides an overview of the health of the entire cable 
volume. The system has also been used to identify potentially useful locations for internal inspection.  To 
date there have been no wire breaks recorded.     

Invasive Inspection 

In fall of 2012, ODOT performed an invasive inspection of the AW main cables generally following the 
NCHRP Report 534 guidelines.  A report titled the “2013 Cable Strength Evaluation Report” describes this 
inspection and was submitted to ODOT in February 2013 by Modjeski and Masters.  During this 
inspection a total of four panels were opened, two per cable.  The panels inspected on the north cable 
include the low point at mid-span and the panel at the far end of the east side span, just before the cable 
passes through the deck.  On the south side the panels inspected were on either side span.  The panel 
on the west side span was only about 1/3 of the way up, while the panel on the east side span was 
approximately 2/3 the way up the cable.  The approximate locations of these windows can be seen in 
figure 1, on the previous page.   

A total of 13 samples were taken during the inspection (three to four at each opening) for testing.  The 
remaining cable strength was estimated utilizing both the Simplified Strength Model and the Brittle Wire 
Model, which may be conservative depending on the condition of the wires in the bridge.  The Limited 
Ductility Model requires the ultimate strain at failure of each specimen as well as a full stress-strain curve.  
For unknown reasons, the laboratory testing did not record the ultimate strain at failure, eliminating this 
model from strength estimating calculations.  Due to the relatively low number of samples taken, it is likely 
wiser to utilize the more conservative Brittle Wire Method.   

The resulting, controlling, factor of safety for the cable based on the results from the Brittle Wire Method is 
2.41.  The strength evaluation report estimated that the factor of safety on the cable will reach the critical 
point of 2.15 in 2025, just 13 years after the cable inspection.     
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2.0 Research Objectives 

The overall goal is to lay the groundwork for long term continuous monitoring of the aging of the main 
suspension cables of the Anthony Wayne Bridge. ODOT has begun this process by installing an acoustic 
monitoring system on the bridge which is capable of detecting wire breaks.  The wire break monitoring 
can provide insight into cable deterioration throughout the whole volume of cable, but only after a wire 
has deteriorated enough to break.  The ability to detect active corrosion would allow more time for ODOT 
to plan any potential maintenance required for the cable.  Monitoring the most severely corroded sections 
of the cable would aid in more accurately depicting remaining cable life.  There are four objectives that 
support the overall goal: 
 

1)  Assess if the installed wire break acoustic monitoring system can be practically used to 
detect active corrosion. This objective includes assessing the effectiveness of the existing 
sensor to detect the corrosion signal, the ability to filter the corrosion signals from 
background noise, and to determine a practical application strategy for use on the AW. 

 
2) Determine what sensors, if any, it may be practical and useful to embed in the  

main cable. Such internal sensors have been tested in both laboratory, at Columbia 
University, and field settings, the Manhattan Bridge, which monitor the conditions inside 
the cable.  Tests have found that interior conditions are not uniform and that they are 
capable of fluctuating fairly quickly.  There is potential to use the information from the 
sensors to monitor the corrosion rate at various locations in the cable.  In addition, 
internal sensors may compliment additional technologies such as corrosion monitoring 
with AE or cable dehumidification.   

 
3)  Assure that the proposed system for main cable health assessment comprehensively 

considers the available technologies. The technologies should include both cable 
monitoring and preservation methods.  This study will report on the background of the 
technology, testing of the technology, results of implementation of the technologies 
(whenever applicable) and potential for application of the technology to the AWB. 

 
4)  A preliminary analysis of the cost trade-off for reviewed monitoring and protection 

strategies should be included.  
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3.0 General Description of Research 

This research supports the on-going effort by ODOT to determine the best available techniques for 
monitoring and preserving the main suspension cables of the Anthony Wayne Bridge.  The project will 
target corrosion as the primary aging mechanism of the main suspension cables.  The research will be 
performed through two major approaches.  The first is hands-on research, as befits a student study, to 
determine if the current sensors may be used to reliably identify active corrosion.  Laboratory experiments 
were performed to understand and characterize the corrosion of high strength bridge wire and to 
determine if the acoustic emissions from corrosion can be filtered from other noise sources.  Additional 
tests were performed with the specific purpose of evaluating the potential capacity of the existing sensors 
to monitor corrosion.   

The second involves a comprehensive literature review of state-of-the-art corrosion monitoring and 
protection strategies for suspension bridge main cables and discussion with leaders in this field.   The 
monitoring technologies reviewed include the potential use of embedded sensors to be installed within the 
cable as well as the magnetic main flux method for cable inspection.  The contacts at Columbia University 
have advised the researchers on the advantages of internal sensors for suspension bridge cables.  It 
appears that these sensors could serve as a functional indicator of potential corrosion and cable 
environment, as well as a valuable research tool.  The main flux method has been developed by Cable 
Technologies North America (CTNA), a local subsidiary of Tokyo Rope MFG. CO.  The researchers at UT 
have met with CTNA and established a line of contact between their company and ODOT.  The team has 
also been in contact with personnel from NYC DOT and Columbia University who have experience 
working with CTNA on testing the MMFM inspection capabilities.   

In addition to monitoring, the research is aimed at identifying strategies for the preservation of the main 
cables.  The researchers have performed a literature review and utilized contacts to gain insight into the 
effectiveness of cable dehumidification.  The technology has seen success in Europe and Japan and is 
beginning to move into the United States.  It is the authors understanding that the Department has ruled 
out cable oiling as a preservation technique, and it is not discussed in this report. 

The final task of this project is to provide a synthesis of the reviewed solutions and identify the best 
practices based on some combination of the aforementioned strategies.   
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Corrosion begins when the surface of the metal comes in contact with some corrosive solution and is 
characterized by two major reactions.  These reactions are the oxidation reaction and the reduction 
reaction, also known as the anodic reaction and cathodic reaction, respectively.  During the oxidation 
reaction, at the anode, the molecules on the surface of the material are oxidized, losing an electron and 
releasing metal ions into the solution.  This is called the dissolution of metal.  Simultaneously, the 
electrons flow through the material to the cathode where they either react to neutralize positive ions, like 
hydrogen ions, or create negative ions [Roberge, 2006].  When the electrons react with the hydrogen ions 
this is called hydrogen evolution, as hydrogen gas is formed.  Other common reactions at the surface of 
the cathode are the oxygen reduction reactions.  These reactions may differ depending on the acidity of 
the solution.  If the solution is acidic the oxygen tends to react with both hydrogen ions and electrons to 
yield water molecules.  If the solution is more neutral or basic the oxygen will react with the water 
molecules and electrons to form negatively charged hydroxyl ions.  Throughout the process the metal 
ions will react with the hydroxyl ions to produce various metal oxides which collect on the surface of the 
material.  Depending on the metal, the oxide film may serve to protect the material beneath, such as for 
aluminum, or simply form and breakdown as the material continues to corrode, as happens in the case of 
steel.  All of these processes are illustrated in figure 3. 

The process of corrosion also opens up a pathway for other mechanical sources of deterioration which 
release AE.  Localized corrosion, or pitting corrosion, may cause microcracking along the surface of the 
material.  If the material is under enough tension, the material may develop stress corrosion cracking 
(SCC) which threatens to eliminate the benefits of plastic deformation in metals, especially high strength 
steel.  The initiation of cracks is the beginning for a number of additional mechanical sources of AE 
including cyclic loading, which leads to rubbing of crack faces as well as propagating fatigue cracks.  

Pollock [1986] lists principal processes of corrosion which includes all of the sources mentioned in the 
previous two paragraphs.  From these it is concluded that the majority of chemical processes, including 
passage of electric current, dissolution of metal, and film formation do not exhibit a high enough release 
of energy to be detectable by AE sensors.  However, the evolution and rupture of hydrogen gas and the 
breakdown of the oxide film have both been found to produce AE high enough to detect.  A discussion by 
Yuyama & Kishi [1983] also identifies hydrogen evolution and oxide breakdown as potential sources of 
AE.  These are the primary sources that are targeted during the corrosion studies performed in this study. 

4.1.3 Development of the Experimental Program 

The objectives of these experiments are to test the ability of acoustic emission sensing to detect active 
corrosion and to evaluate the practicality of applying the results to monitoring of the main cables of the 
Anthony Wayne Bridge (AWB).   These objectives were explored using two experimental stages.  The first 
was to perform a series of experiments, multiple times, and make observations concerning the 
characteristics of AE from corroding steel.  This stage can be simply referred to as laboratory corrosion 
cell testing.  The second stage of experiments involved three tests which would provide insight into the 
practicality of utilizing this technology to identify active corrosion on the AWB.  The first test was the 
attenuation experiment in which a corrosion cell was monitored as it was moved along a steel bar further 
and further away from the AE sensor.  The second test includes a field test of the corrosion cell, strapped 
to a cable band on the AWB near one of the AE sensors.  The corrosion signals were recorded by both 
the pocket AE and the bridge AE system.  The third test includes the identification of corrosion signal 
parameters which can be used to separate corrosion signals from other noise sources on the bridge.  The 
noise sources used in this study include friction and rain.  This section will describe the development of 
testing method, the corrosion cell and the procedures for each test.  The following section, “Experimental 
Results and Discussion”, will describe the observations made during the laboratory corrosion cell testing 
and AWB application testing. 

The corrosion cell testing method was determined over a period of months investigating the effects of 
stress and environment on corrosion.  The initial experimental technique would have used a small fixture 
in which a steel bridge wire would be tensioned while passing it through a trough of corrosive solution.  
According to a study by [Barton et al., 2000], in which a group of wires were corroded with various 
preloads, it was found that the level of load did not have a significant effect on ultimate strength of the 
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4.2 Findings from Review of Monitoring and Preservation Technologies 

4.2.1 Internal Sensor Technology 
Overview 

While suspension bridges have allowed man to span tremendous distances, they have also troubled 
engineers and owners the world over.  The main cables, the key structural element of these iconic 
structures, are fracture critical and therefore must be maintained to have a high level of reliability.  The 
NCHRP Report 534 recommends remedial action when the cable has deteriorated such that the 
estimated factor of safety for the cable reaches 2.15.  It is known that corrosion of the high-strength steel 
wires is the primary cause for the aging and deterioration of suspension bridge cables [Sloane et al., 
2012].  To protect against corrosion engineers have developed protection systems including corrosion 
inhibiting paste, painting, wire wrapping and elastomeric wrapping.  However; these solutions represent a 
double edged sword.  The wrapping, which is intended to keep water out, also keeps water enclosed 
once it finds a way in.  It also prevents maintenance personnel from completing a relatively simple visual 
inspection as can be done with most other structural components.  Internal sensor technology can 
provide a solution to both of these issues and will bring the bridges of yesteryear into the era of smart 
structures.  This is accomplished through the installation of a group of sensors throughout the cable 
cross-section.  These sensors then return information on including the temperature, relative humidity and 
corrosion rate at that section of cable.  Temperature and relative humidity are environmental conditions 
which have a correlation to general corrosion [Sloane et al., 2012]. 

The information on internal sensors collected and presented in this report is based on the results of a 5 
year research program at Columbia University and sponsored by the FHWA [Khazem, Serzan & Betti, 
2012].  The Columbia study included testing on direct and indirect sensing technologies in the laboratory, 
using a full-sized mock suspension bridge cable, and in the field.  The internal sensor package is an 
indirect sensing technology and was researched thoroughly.  A number of combinations of sensors were 
tested to determine the most applicable for suspension bridge cables.  Only those considered most 
successful will be discussed in this report.  This section will include discussions of the sensor technology, 
the results of laboratory and field testing, sensor package installation and maintenance, and general cost 
requirements. 

Sensor Description 

In selecting the proper sensors, the researchers at Columbia identified the following parameters to 
measure effectiveness: size, accuracy, durability, resistance to compaction forces, environmental 
durability and sensitivity to environmental variables [Sloane et al., 2012].  The optimal sensors identified 
after the experimental testing were the Precon HS2000V and Analatom Linear Polarization Resistance 
(LPR) sensor. 

The Precon HS2000V provides a measurement of temperature and relative humidity.  The sensor is 
accurate to 2% within the environmental operating ranges of 32° to 158°F and 0 to 100% relative 
humidity.  The sensor will continue to provide output for temperature in the range of -22° to 212°F.  The 
output is ratiometric and various with the output voltage from zero to the level of supply voltage.  
Additional benefits of the sensor include built in temperature compensation, factory calibration, easy field 
replaceability (relatively speaking) and good stability [PreconUSA.com]. 

The Analatom LPR sensor directly measures the corrosion rate of a particular metal in a corrosive 
environment.  The environmental operating temperature for this sensor is -40° to 185°F.  The sensor can 
accurately detect corrosion rate between 0.0001 and 10 mm/year. 

Laboratory and Field Testing 

The direct and indirect sensing technologies were tested utilizing a full scale mock-up suspension bridge 
cable.   The specimen was designed to simulate one panel length of a large suspension bridge main 
cable with galvanized parallel wire strands.  The cable was comprised of 9,271 wires making up 73 
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The system was able to detect variations in cross-sectional area the cable from the addition of steel 
ranging from 15 to 45 wires.  The Columbia cable is 20 inches in diameter and 45 wires makes up 
approximately 0.05% of the total cross-sectional area.  After the encouraging tests in the laboratory, the 
system was tested on one panel of the Manhattan Bridge.  Speaking with a representative from the NYC 
DOT, they found the results of the field test to be somewhat questionable.  MMFM is capable of detecting 
loss of cross-sectional area due to corrosion.  There is reason to believe, however, that the failure mode 
of wires would also determine the effectiveness of this technology in examining aged suspension bridge 
cables.  Wire breaks in the cable will only be detected if the break was a result of significant loss of 
section.  If the wires are breaking due to a brittle failure mode, such as hydrogen embrittlement, there 
would not be enough loss of section for MMFM to make that judgment.  It appears that prior to utilizing a 
technology such as MMFM, it should be determined that the wires in the bundle, on the majority, still 
behave in a ductile manner.       

Cost Estimate 

In August, representatives from CTNA traveled to the University of Toledo to meet with the researchers 
and ODOT representatives.  CTNA performed a demonstration of the MMFM technology using their 
system and a corroded strand wrapped in cellophane.  At the conclusion of the meeting, ODOT asked if 
CTNA might generate a quote for various levels of magnetic flux inspection for the AW Bridge.  A 
summary of those cost estimates is represented here and the full cost estimates can be found in the 
Appendix.   

A total of eight options were generated by CTNA for application to the Anthony Wayne Bridge main 
cables.  The options are as follows: 

 OPTION 1: Test 4 panels with 1 magnetizer  $179,498 
 OPTION 2: Test 118 panels with 2 magnetizers  $913,763 
 OPTION 3: Test 12 panels with 1 magnetizer  $245,670 
 OPTION 4: Test 12 panels with 2 magnetizers  $304,828 
 OPTION 5: Test 4 panels and 4 under cables with 1 magnetizer  $243,582 
 OPTION 6: Test 118 panels and 4 under cables with 2 magnetizers  $980,952 
 OPTION 7: Test 12 panels and 4 under cables with 1 magnetizer  $312,193 
 OPTION 8: Test 12 panels and 4 under cables with 2 magnetizers  $363,018 

 

The cost shown represents only that allocated to the inspection fee as well as to the use of equipment 
and personnel from CTNA.  The engineer and supervisor from CTNA will require assistance from an 
experienced contractor to facilitate the cable inspection.  This relationship would be similar to that 
between Modjeski & Masters and Piasecki Steel during the November 2012 invasive inspection.  The 
additional cost of the contractor’s services is not included.  It also does not include the cost of cable band 
removal, if desired.  The removal of bands would not increase the cost of the inspection, but reduce it.  

 Additional clarification on items from the quotes and inspection procedure is useful to fully understand 
what the inspection involves.  The following sentences provide explanation or background for certain 
terms from the quote and inspection procedure.  1) The use of 2 magnetizers compared to 1 for the 
potential 12 panel inspection options is simply a measure to complete the inspection in a shorter amount 
of time.  2) The under cable refers to the section of cable located under the deck, between the hold-down 
and the anchorages.  3) Modifying the magnetizer refers to adjustment of the existing magnetizer to fit the 
diameter of the AW main cable.  4) A crane will be required to lift the magnetizer onto the cable for each 
panel.  5)  Set-up of the system includes attaching the magnetizer, winding the cable and setting up the 
winch.  6) A panel is defined as the space between two adjacent cable bands.  Thus, if a band is 
removed, the magnetizer will be able to inspect the sections of cable on either side of that band without a 
second set-up.  7) The time required for the magnetizer to perform the inspection, once set-up is 
complete, is about 30 minutes for every 20 feet. 
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and Sorenson also suggest that this system could be optimized by changing the target level to something 
closer to 40%. 

Hӧgakusten Bridge, Sweden 

The Hӧgakusten Bridge is located in Stockholm, Sweden and opened in 1998.  The main cables are 
made up of parallel wires and are approximately 1,900 m long.  The original corrosion protection system 
included galvanized wires, zinc paste, wrapping wire and paint.  In 2004, a window of the cable was 
opened to inspect the condition of the zinc protection after suspicions arose of accelerated deterioration.  
The inspection showed ferrous corrosion already occurring on the bottom wires.  Later in 2004, a project 
was initiated to install a new dehumidification system on the bridge.  The layout included a buffer tank and 
dehumidification unit installed at each tower, as well as at mid-span.  Exhaust points were installed at the 
anchorages and the halfway points between the towers and mid-span.  Water removal data was collected 
during the period that the cable was still drying out.  Through comparing the water content of the injection 
and exhaust air, they estimated the system was removing about 1 liter per day from each stretch of cable 
(310 m).  It took about a year and a half for the cable to dry out, removing about 3% of the cable volume 
worth of water in the process. 

General Cost and LCC Analysis 

Bloomstine and Sorenson prepared a comparison of the Life Cycle Cost (LCC) of a dehumidification 
system and the traditional protection system.  Unfortunately, this cost comparison was normalized such 
that the highest cost strategy was indexed as 100, resulting in data that only provides relative cost 
information.  However, this data does provide insight into the relative advantages of dehumidification 
operation and maintenances costs.   The first strategy considered was dehumidification.  The costs 
included for this strategy encompassed the installation and lifetime maintenance for the elastomeric 
wraps (30 year lifetime), exposed ducts and details (30 year lifetime), the dehumidification system (60 
years) and the electrical consumption (< 20,000kWh per year) .  The second strategy actually considered 
two options for traditional protection (2 & 2a).  The first option (2) assumed a paint lifetime of 20 years, 
while the second option (2a) assumed a paint lifetime of 30 years.  Both options also included spot 
repairs of the paint system every 5th year of service, for 60 years.   

The results of this study showed that installation and maintenance of a dehumidification system over 60 
years cost approximately 28% and 16% less than traditional options 2 & 2a, respectively.  When 
considering simply maintenance and operation costs, these savings jump to approximately 56% and 32%, 
respectively, showing a significantly reduced cost compared to a traditional system.  It should also be 
mentioned that the difference in cable deterioration is not included in this calculation; however, more 
severe deterioration as a result of using the traditional protection will likely result in higher inspection and 
rehabilitation costs down the road. 

The best quantitative estimate that UT is aware of is the 2013 Cable Preservation Study Report that was 
prepared by Modjeski & Masters in February, 2013.  This study analyzed the cost of three suspension 
bridges in Great Britain which have recently installed a dehumidification system and the William Preston 
Lane, Jr. Memorial Bridge, in Maryland, which plans to install a dehumidification system in 2016.  The 
study converted each total cost to the corresponding 2013 costs in U.S. dollars, and then identified a per 
foot cost for each bridge.  The average of these costs was $885 per foot of cable.  They calculate that 
installing a dehumidification system for the Anthony Wayne the approximate cost would be $3.5 million.  
This includes the cost of the CableguardTM sealing system, which the Department is likely to replace 
anyway.  In this view, the cost of adding the dehumidification system into tentative rehabilitation plans will 
add only the portion of $3.5 million not associated with wrapping/sealing the cable.     
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5.0 Conclusions & Recommendations 
 

5.1 Summary of Current Condition  
The recent invasive inspection did not collect enough statistically significant data.  Modjeski & Masters 
(M&M) mentioned that the minimum number of panels to be inspected during the first opening, as 
recommended by the NCHRP Report 534, is six panels.  When compared to only four openings, it should 
be assumed that this adds some amount of error to the calculated cable strength, in addition to the error 
intrinsically associated with assumptions made during this type of procedure.  However, the NCHRP 
Report 534 also recommends that the first invasive inspection occur at the age of 30 years old.  
Conditions for additional inspections require higher number of panels based on the amount of stage 3 and 
4 corrosion found during the previous inspection.  As an 82 year old bridge, the number of panels 
required to gain the statistical significance recommended by the NCHRP Report 534, and therefore 
validate the use of their strength calculations, would have been 6 to 12 panels per cable.  The recent 
inspection resulted in a calculated factor of safety of 2.41 and is estimated to reach 2.15 by 2025.  The 
inspection of additional panels and analysis of the ductility of the wires might produce an increase in 
expected cable strength, and the rate of cable decay, through the use of the limited ductility method.  No 
evidence of wire breaks was found during the invasive inspection.  In addition, no wire breaks have yet to 
be recorded by the acoustic monitoring system, which has been operating since 2011.  Considering this, 
it is possible the cable is in better condition than the data is able to suggest. 

The limited ductility method could not be used to calculate cable strength in the M& M report because the 
ultimate strain of wire specimens was not recorded.  If the ultimate strain were estimated based on the 
ultimate strength, assuming the strain-strain curve is linear from the last recorded point, it would be 
possible to project a rough estimate of calculated cable strength using the limited ductility method.  This 
would require the bold assumption that the ductility shown in the specimens taken from the four locations 
are representative of the conditions of the wires throughout the entire cable.  This technique would 
provide some idea of what could be expected if additional panels were inspected, as recommended by 
M&M. 

5.2 Rehabilitation and Advanced Inspection Cost vs. Reliability Estimates 
During the project review session, the technical panel presented an interest in identifying the reliability 
associated with potential monitoring and preservation technologies.  In short, if certain measures are 
taken, what level of confidence is there that the bridge will be in the condition expected?  This is an 
intrinsically difficult question to answer, and typically involves a level of statistical probability which is out 
of the scope of this project. However, reliability is a measure which requires a minimum amount of 
statistically significant field data to determine.  The best way to improve overall confidence in the reliability 
of cable health into the future, regardless of additional monitoring or preservation techniques, is to obtain 
a comprehensive understanding of the current state of the AW main cable.  

The question is cost vs. increase in reliability or increase in certainty of the reliability estimate.  This is an 
insightful question that is beyond the state-of-the-art.  However, answering this question is in the wind.  
The authors are reviewing some proposals to initiate work into investigating this topic.  The leader in this 
work is Daniel Frangpol at the Lehigh; however, no work has advanced to the point of comparing 
reliability to cost.  The present state of the art is developing estimates of reliability based on field data and 
changes in reliability with respect to time based on field data.  The authors will continue to investigate this 
topic during the review of this draft report.   

5.3 Best Practices Recommendation for the Anthony Wayne 
As mentioned above, the best way to increase reliability of monitoring and preservation strategies into the 
future is to gain a comprehensive understanding of the current condition of the cable.  Monitoring 
strategies can only provide a limited amount of confidence without a good baseline.  A base line could be 
established utilizing invasive inspection or non-invasive inspection in the form of the magnetic main flux 
method.  Based on the opinions of several distinguished suspension bridge experts, the most reliable 
action would be to wedge the entire length of the cable during the cable re-wrap project in 2016.  An 
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inspection can be performed following the NCHRP Report 534 guidelines with samples taken only from 
the worst locations found along the cable. 

With an established baseline, the wire break monitoring provides a great tool for tracking future 
deterioration of the cable through wire breaks.  Over the long term, this strategy should be continued and 
coupled with periodic invasive inspections of the cable. 

Installing a dehumidification system is the best long term cable preservation technique available.  This 
system will provide the highest level of confidence in slowing the deterioration due to corrosion.  The 
system has the capability of preventing infiltration of water into the cable by maintaining a minimum 
overpressure.  Installation of a dehumidification system would reduce the required frequency of invasive 
inspections.   

Internal sensors would compliment both continued corrosion monitoring research and the installation of a 
dehumidification system.  Installation of internal sensors would be most useful if installed at two locations; 
the worst cable location identified, and one of the better cable locations for comparison.  In this way the 
corrosion rate of the worst section could be monitored.  Internal sensors would also validate the 
effectiveness of a dehumidification system to lower relative humidity throughout the entire cross-section 
of the cable.  It is recommended that allow laboratory testing as a part of future research prior to potential 
installation during the cable rehabilitation in 2016. 

 

5.4 Future Research 
While the attempts in this study to practically detect corrosion using the current AE system were 
unsuccessful, the investigators are not convinced that this cannot be done.  Corrosion experiments in the 
laboratory setting show corrosion, given the right conditions, to be quite detectable.  The low frequency 
sensor, R.45, proved to be much more suited to corrosion detection than the all-purpose R15α.  During 
corrosion of galvanized wires, corrosion was not only detectable but abundant, with amplitudes reaching 
as high as 82 dB.  The lack of attenuation along the steel bar is also promising.  In fact, through the 
application testing from this study, the team simply identified several methods of how not to detect 
corrosion at the cable bands.  More importantly, however, the results have helped to identify additional 
methods to improve the quality of corrosion testing & monitoring.  Modifications and opportunities for 
potential future research include: 

 Improved attenuation and filter studies through the use of more accurate wire to cast iron bar 
interface to simulate the cable band. 

 Modification and refinement of graphical corrosion filter.  One possible waveform feature which 
may help distinguish corrosion from other sources of AE is the signal envelope.   

 Experience will improve future field testing through improved methods for attaching a corrosion 
cell and AE sensor to the cable band. 

 Potential future laboratory testing and use of internal sensor would compliment corrosion 
monitoring research. 

 The closure of the AW over the next two years provides a unique opportunity to have more 
frequent access to lowering the threshold during periods of interest. 

 Estimating the effect of rehabilitation and inspection on reliability and factor of safety. 

The understanding and foundation built through this project should translate into a more effective 
experimental program.  Combined with opportunities related to the bridge closure and potential internal 
sensors, future corrosion studies should produce more definitive results.  It is recommended that ODOT 
allow this research to continue through an additional student study contract.   
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6.0 Recommendations for Implementation of Research Findings 
 

A full length invasive inspection would be performed in conjunction with the cable rehabilitation work 
already planned.  Combining these two activities will likely include substantial cost savings from the 
$5,200/foot which was average cost of a standalone cable inspection as determine by M&M in the 2013 
Cable Preservation Report.  The process of wedging the cable would likely add some time to the project.  
Having wedged the full length of the cable, ODOT will gain significant confidence in the condition of the 
cable.  Additional wire samples should be taken for testing in order to determine if the limited ductility 
method can be used by examining the ultimate wire strain.  This will likely provide cost savings in the form 
of less frequent invasive inspections for the remaining life of the cable.  The recommended interval of 
inspections for the NCHRP Report 534 is every 10 years, based on the condition of the cable.  Based on 
the cost figure from M&M, if six panels are inspected per cable, the cost is $1.25 M per inspection.  It is 
possible the frequency of inspection may be reduced by half or more if a full length inspection is coupled 
with Dehumidification.  Future cost savings and a substantial increase in reliability may justify increased 
upfront costs. 

Installation of a dehumidification will require some investigation into the flow capacity and flow lengths of 
the cable.  Any residual paste that may remain in the cable will hinder the flow of dry air through the 
bundle.  In preparation for a dehumidification system, the wedging of the cable would also provide 
assurance that there is no such blockage.  Eventually, the department will need to design a 
dehumidification system layout, such as the one shown in figure 22.  One of the more challenging aspects 
to this implementation might be in determining the proper location of the dehumidification plants and 
buffer tanks; however, how many and the most beneficial location will depend on the flow lengths 
determined for the cable.  It should be noted that as the target of dehumidification is to virtually prevent 
corrosion, the new driving mechanisms for aging of the AW would likely be fatigue and loss of ductility of 
the wires.  This should be taken into consideration in the selection of monitoring techniques.  For  this 
reason it is recommended that ODOT continue to monitor wire breaks with the Acoustic Monitoring 
system.  This system will continue to serve as a warning of potential issues as the cable continues to age.     

Application of an internal sensor system to the AW would also occur during the cable rehabilitation project 
in 2016.  The sensor system would provide additional validation for the potential dehumidification system 
and corrosion monitoring research.  A section on internal sensor testing will be included in the proposal 
for future research mentioned below.  Mistras Group was part of the project at Columbia which designed 
and implemented the internal sensor package.  Therefore, connecting the sensors to the existing SHII 
data acquisition system should not be an issue.  It can be expected that the cost for sensor hardware 
would be approximately $1000 per location, not including additional cables or software/hardware 
upgrades for the DAQ. 

The primary investigator will submit a separate proposal outlining future research, describing the impacts 
on all the work to be completed on the Anthony Wayne in the near future.     
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Sample Data Sheets from Corrosion Testing 
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*Note: all data collected and presented in this report is stored on a disk.  This information can be 
made available if required.  The following forms are samples of the Experimental Set-up Data 
Sheet (shown below) and Experimental Analysis Data Collection Sheet (next page) respectively. 
 
 

 

Channel #1 R15α Channel #2 R.45

Experiment Start Time Experiment Corrosion Time (hrs)

Experiment End Time Cumulitive Cell Corrosion Time (hrs)

Maximum Duration (ms) 3 Threshold (dB) 45

PDT (us) 500 Pre-Amp Internal

HDT (us) 800 Sample Rate 5MSPS

HLT (us) 1000 Lower Frequency  (kHz) 20

Upper Frequency (kHz) 300

Amplitude Risetime Pre-Trigger 64

Energy Avg. Frequency Length 15k

Counts

Duration

ASL

Pictures (left: before; right: after)

C4-G-RS3-3

Date

Data file name

General Information

Hardware Setup for Corrosion Layout on Pocket AE
Timing Standard

Hit Set Waveform

General Description of Experiment

Comments & Observations
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Phase:

0 to 800 0 to 400 10 to 200

0 to 800 0 to 400 10 to 200

Average Hit Rate (Hits vs. time)

Total Hits

High FrequencyLow Frequency

Number of Hits

Channel 1 (R.40)

Submerged cell Wet cell

Third Slope

Continuous corrosion Non-continuous corrosion

Channel 1                           

(High Frequency)

Channel 2                     

(Low Frequency)

Avg. Frequency

Minimum and Maximum for Channel 2 (Low Frequency Sensor, R.40)

Minimum and Maximum for Channel 1 (High Frequency Sensor, R15α)

Amplitude Duration Rise Time Avg. Frequency

Amplitude Duration Rise Time

Additional Comments

Test Conditions

Data Collection Sheet

Ranges of Parameters

Shape of Hits vs. Time Curve

Channel 2 (R15α)

Name of File:

Duration (us) Rise Time (us) Avg. Frequency (kHz)

Low Frequency Sensor 

(R.40)

Length of 

Test

Second SlopeFirst Slope

Number of Hits that are within filter settings

High Frequency Sensor 

(R15a)
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Internal Sensors Product Specifications 
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Analatom Linear Polarization Resistance (LPR) sensor information: 
 
 

 

Source: http://www.analatom.com/system.html 
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 E .veR   4114 # SD

DATA SHEET           HS-2000V
RH & TEMPERATURE SENSOR 

The innovative HS-2000V Humidity Sensor 
combines capacitive-polymer sensing technology 
with a novel measurement method, eliminating 
the need for temperature correction and 
calibration by the user. The sensor, which is 
calibrated at Precon before shipment, includes a 
thermistor and circuitry to correct for temperature 
and calculate the true relative humidity. The 
sensor provides both humidity and temperature 
outputs and is accurate to ±2%.   

The output of the HS-2000V is ratiometric, with 
the output voltage varying from zero to the 
supply voltage as the measured parameter 
varies from zero to full-scale. For example, at a 
supply voltage of 5.0 volts, 50% RH produces a 
2.5 volt output signal on the RH output pin. 

The four-pin connection provides for easy 
installation or replacement in the field, reducing the 
overall cost to maintain large or complex systems. 

Features
• RH & Temperature Outputs 
• Temperature Compensated 
• Factory Calibrated 
• Accurate to + 2% 
• Field Replaceable 
• Good Stability 
• Excellent Chemical Resistance 
• Analog Voltage Output
• Low Cost

Typical Applications
• OEM Equipment • Medical 
• HVAC • Pharmaceutical 
• Computer Rooms • Industrial
• Critical Space Monitoring 
• Food Equipment 
• Humidifiers • Data Logging 
• Automation • Refrigeration 
• Environmental Chambers 
• Laboratory • Clean Rooms 

MAXIMUM RATINGS
Operating Temperature .. 32° to 158°F (0° to +70°C)

Temperature Output Range -22° to 212°F (-30° to 100°C)

Storage Temperature ..... 22° to 257°F (-40° to +125°C)

Operating Humidity Range ..... 0-100 percent 

Supply Voltage ..... ................. +5.5 volts     
Soldering Temperature........... 10 sec at 520°F (250°C)

The HS-2000V may be applied within an 
environmental operating temperature range of
32° to 158°F (0° to 70°C). The temperature
output range is -22° to 212°F (-30° to 100°C),
linear from 0 VDC to power supply voltage. 
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DATA SHEET           HS-2000V
RH & TEMPERATURE SENSOR 

Application Notes
1.  Stabilization Period:  The HS-2000V requires a 
stabilization period of up to 5 minutes upon powering 
up the sensor.  This is primarily due to the slew rate of 
the output circuit. When the sensor is first powered up it 
will read near zero volts.  After a short period (less than 
15 seconds), the sensor output will begin to increase.  
Since the output is slew rate limited, the final 
stabilization time will depend on the ambient conditions.  
The longest stabilization is required when the ambient 
parameter, either temperature or humidity, is near full 
scale (130 degrees C or 100% RH respectively) since 
these will generate output voltages near the supply 
voltage.

2.  Temperature Output:  The temperature output is 
ratiometric over the range of -22° to 212°F (-30°F to
100°C) for the HS-2000V. Note: Accuracy published
within recommended operating temperature.  

3.  PCB Connectors:  It is recommended that HS-
2000V be socketed rather than soldered to circuit 
boards.  If a direct solder connection is required, it is 
recommended that hand-soldering be performed using 
a rosin-based flux.  The soldered surfaces may be 
cleaned with isopropyl alcohol (do not immerse). 
The recommended PCB sockets include: 

Surface Mount: 
   Mill-Max: 310-93-104-41-105, 4 pin SMT, Left hand 

footprint, 30 micro inch gold plate 
   Mill-Max: 310-93-104-41-107, 4 pin SMT, Right hand 

footprint, 30 micro inch gold plate 
These sockets are available from Digi-Key in 64 pin 
strips.  See part number ED23064-ND 

Through hole: 
   Mill-Max: 310-93-104-41-001, 4 pin standard solder 

tail, 30 micro inch gold plate 
These sockets are available from Digi-Key in 63 pin 
strips.  See part number ED7063-ND 

4.  Chemical Resistance:  Contact Precon for data on 
resistance to specific chemicals and environments. 

Warranty
WARRANTY: The Seller warrants that 
Warranted Goods shall not fail to function 
in accordance with the seller’s 
specifications because of defects in 
material or workmanship, for one year from 
the date of purchase.  The foregoing 
warranty is expressly in lieu of all other 
warranties, express or implied, including 
warranties of merchantability or fitness for 
a particular purpose, or any other matter 
with respect to the goods are excluded and 
shall not apply to the goods sold.  The 
warranty undertaking in this agreement 
does not apply to any goods that have 
been subjected to accident, disaster, loss 
or damage during shipment, neglect, 
misuse, improper installation, corrosive 
atmosphere harmful to electronic circuitry, 
excessive electromagnetic fields, failure or 
insufficiency of electrical power or unusual 
electrical surge or shock, nor to dysfunction 
or malfunction of, or caused by, any other 
equipment or device (other than equipment 
or devices you have purchased from us) to 
or in which such goods have been attached 
or installed. 
Seller’s employees, agents and/or 
representatives may have made oral 
statements about the goods sold or to be 
sold. Such statements DO NOT constitute 
warranties and ARE NOT part of a sales 
Contract. Seller’s liability to Buyer, their 
agents, employees, customers, assigns, 
successor or other related parties for any 
and all losses or damages resulting from 
Seller’s breach of a sales Contract, 
whether in tort or in contract or otherwise, 
shall be limited to the replacement of a like 
quantity of goods sold and IN NO EVENT 
SHALL SELLER BE LIABLE FOR 
SPECIAL, INDIRECT, INCIDENTAL, 
CONSEQUENTIAL, OR CONTINGENT 
DAMAGES (including, without limitation, 
loss of anticipated profits, business 
interruption, loss or use or revenue, 
litigation costs, cost of capital, Buyer’s fixed 
costs, or avoidable costs). 

All specifications are subject 
to change without notice.  For
the latest specifications, visit our 
website at www.preconusa.com 
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PIN DIAGRAM

(Front View)

       Pin #     1   2   3   4 

Notes:
1. See Figure 1 on page 3 

2. See Figure 2 on page 3 

3. Supply voltage equals 5 volts. Does not 
include current supplied to loads 
connected to temperature and relative 
humidity outputs 

4. For a discussion on slew rate, see 
Application Note #1 on page 4. 

5. For loads between 1k to 50k, contact 
factory. 

Pin 1 Temperature Out (0 to Vsupply)
Pin 2 Power (2 to 5.5 volt) 
Pin 3 RH Out (0 to Vsupply) 
Pin 4 Ground 

SPECIFICATIONS

Humidity
Accuracy...................... ±2.0% RH typical, 0-100% non-

condensing  (Note 1) 
Linearity ....................... ±0.5% RH 

Hysteresis.................... ±1.0% RH , maximum 

Temperature
Coefficient ................... ± 0.008% RH / °C, maximum 

Response Time ........... 25 sec. in slow moving air at
 77°F (25°C)
Recovery Time 
(from condensation) .... 10 seconds  

Stability ........................ ±0.5% RH / year 

RH Voltage Output……Ratiometric: 0 VDC to Supply 
                                     voltage corresponds to 0% to 
                                     100% RH  

Temperature
Accuracy………………..±0.40°C Typical  (Note 2)  

Temperature Voltage 
Output………………….Ratiometric: 0 VDC to Supply 
 voltage corresponds to -22° to
 212°F (-30° to +100°C)
Response Time…………50 sec. in slow moving air 

General
Power Requirements… 

   Voltage Supply……….2.0 – 5.5 VDC, 32° to 158°F
 (0° to 70°C )

    Operating Current…..1.5 mA, maximum (Note  3) 
                                       1.2 mA, typical 

Output Slew Rate………0.015 volt / second (Note 4) 

Load Impedance……….50,000 ohms minimum (Note 5) 

Package………Four pin SIP with 0.100 inch lead spacing

Handling………………..ESD >4 KV, Human Body Model  
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Dimensions

Tolerance on all dimensions + 0.005 inch 

Ordering Information

MODEL
NUMBER DESCRIPTION 

HS-2000V 

FIG. 2  TEMPERATURE ACCURACY
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Relative humidity and 
temperature sensor:
Analog voltage output; RH
range: 0 to 100%; 
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FIG. 1  RH ACCURACY
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Quote from CTNA for MMFM Inspection of AW 

45



OPTION-01
4 panels
0 location
1 set

Subtotal
41,180
4,902

39,916
93,500

179,498

Supervisor
Hours

Engineer
 Hours

Technician
Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  4 days x 10hours 40.0 40.0
      Under cable parts  0.0 0.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (24 hours x 0.5 = 12 hours) 12.0 12.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 40.0

Total Hours 140.0 100.0 0.0
Labor Rates (per hour) 187.00$           150.00$           -$                 
Labor cost 26,180$           15,000$           -$                 
Labor Subtotal 26,180$           15,000$           -$                 
Total cost of Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 6 days  x 2 persons day 12 45$                  540$                
Hotel 5 night  x 2 persons night 10 125$                1,250$             
Mileage 200 miles x 1 time miles 200 0.56$               112$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
Total cost of Travel 4,902$            

Total Cost
Inspection Fee 39,916$           

Unit Quantity Unit Cost Total Cost
Modifying fee of magnetizer set 1 20,000$           20,000$           
Production fee of jigs set 1 30,000$           30,000$           

Transportation fee of equipment(from Japan) each 1 35,000$           35,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 1,000$             1,000$             

93,500$          

Total Cost

Travel

Inspection Fee

Equipment fee

Total

QUOTATION

Task Description

41,180$                                                                  

Item
1. Labor Cost
2. Travel Fee
3. Inspection Fee
4. Equipment Fee

179,498$                             

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-02
118 panels

0 location
2 set

Subtotal
259,688
22,281

447,294
184,500
913,763

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  12week x 5 days x 10hours 600.0 600.0
      Under cable parts  0.0 0.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (112hours x 0.5 = 56 hours) 56.0 56.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 120.0

Total Hours 824.0 704.0 0.0
Labor Rates (per hour) 187.00$           150.00$           -$                 
Labor cost 154,088$         105,600$         -$                 
Labor Subtotal 154,088$         105,600$         -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 62 days  x 2 persons day 124 45$                  5,580$             
Hotel 49 night  x 2 persons night 98 125$                12,250$           
Mileage 200 miles x 13 time miles 2600 0.56$               1,451$             
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
22,281$          

Total Cost
Inspection Fee 447,294$         

Equipment fee
Modifying fee of magnetizer set 2 20,000$           40,000$           
Production fee of jigs set 2 30,000$           60,000$           

Transportation fee of equipment(from Japan) each 1 50,000$           50,000$           
Depreciation fee of equipment each 1 22,500$           22,500$           
  (Wear and Tear Fee)
Miscellaneous each 1 12,000$           12,000$           

184,500$        

Total Cost

Inspection Fee

Travel

Task Description

259,688$                                                                

913,763$                             

2. Travel Fee
3. Inspection Fee
4. Equipment Fee
Total

QUOTATION

Item
1. Labor Cost

Number of using magnetizer

Typical panel parts
Under cable parts

Number of measurement location
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OPTION-03
12 panels
0 location
1 set

Subtotal
71,880
7,345

70,945
95,500

245,670

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization
    Transfer to Toledo 12.0 12.0

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  12days x 10hours 120.0 120.0
      Under cable parts  0.0 0.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (24 hours x 0.5 = 12 hours) 12.0 12.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 60.0

Total Hours 240.0 180.0 0.0
Labor Rates (per hour) 187.00$           150.00$           100.00$           
Labor 44,880$           27,000$           -$                 
Labor Subtotal 44,880$           27,000$           -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 14 days  x 2 persons day 28 45$                  1,260$             
Hotel 11 night  x 2 persons night 22 125$                2,750$             
Mileage 200 miles x 3 time miles 600 0.56$               335$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
7,345$            

Total Cost
Inspection Fee 70,945$           

Equipment fee
Modifying fee of magnetizer set 1 20,000$           20,000$           
Production fee of jigs set 1 30,000$           30,000$           

set
Transportation fee of equipment(from Japan) each 1 35,000$           35,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 3,000$             3,000$             

95,500$          

Total Cost

Inspection Fee

Travel

Item
1. Labor Cost
2. Travel Fee
3. Inspection Fee
4. Equipment Fee
Total

QUOTATION

Task Description

71,880$                                                                  

245,670$                             

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-04
12 panels
0 location
2 set

Subtotal
58,400
6,123

80,805
159,500
304,828

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  8days x 10hours 80.0 80.0
      Under cable parts  0.0 0.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (24 hours x 0.5 = 12 hours) 12.0 12.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 60.0

Total Hours 200.0 140.0 0.0
Labor Rates (per hour) 187.00$           150.00$           100.00$           
Labor 37,400$           21,000$           -$                 
Labor Subtotal 37,400$           21,000$           -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 10 days  x 2 persons day 20 45$                  900$                
Hotel 8 night  x 2 persons night 16 125$                2,000$             
Mileage 200 miles x 2 time miles 400 0.56$               223$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
6,123$            

Total Cost
Inspection Fee 80,805$           

Equipment fee
Modifying fee of magnetizer set 2 20,000$           40,000$           
Production fee of jigs set 2 30,000$           60,000$           

Transportation fee of equipment(from Japan) each 1 50,000$           50,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 2,000$             2,000$             

159,500$        

Total Cost

Inspection Fee

Travel

Item
1. Labor Cost
2. Travel Fee
3. Inspection Fee
4. Equipment Fee
Total

QUOTATION

Task Description

58,400$                                                                  

304,828$                             

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-05
4 panels
4 location
1 set

Subtotal
68,140
7,345

62,597
105,500
243,582

Supervisor
Hours

Engineer
 Hours

Technician
Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  4 days x 10hours 40.0 40.0
      Under cable parts  8days x 10hours 80.0 80.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (24 hours x 0.5 = 12 hours) 12.0 12.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 40.0

Total Hours 220.0 180.0 0.0
Labor Rates (per hour) 187.00$           150.00$           100.00$           
Labor cost 41,140$           27,000$           -$                 
Labor Subtotal 41,140$           27,000$           -$                 
Total cost of Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 14 days  x 2 persons day 28 45$                  1,260$             
Hotel 11 night  x 2 persons night 22 125$                2,750$             
Mileage 200 miles x 3 time miles 600 0.56$               335$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
Total cost of Travel 7,345$            

Total Cost
Inspection Fee 62,597$           

Equipment fee
Modifying fee of magnetizer set 1 20,000$           20,000$           
Production fee of jigs set 1 30,000$           30,000$           
Production fee of jigs for under cable part set 1 10,000$           10,000$           
Transportation fee of equipment(from Japan) each 1 35,000$           35,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 3,000$             3,000$             

105,500$        

Total Cost

Inspection Fee

Travel

243,582$                             

Task Description

68,140$                                                                  

Total

QUOTATION

2. Travel Fee
3. Inspection Fee

Item
1. Labor Cost

4. Equipment Fee

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-06
118 panels

4 location
2 set

Subtotal
283,278
24,182

470,492
203,000
980,952

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  12week x 5 days x 10hours 600.0 600.0
      Under cable parts  6days x 10hours 60.0 60.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (132hours x 0.5 = 66 hours) 66.0 66.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 120.0

Total Hours 894.0 774.0 0.0
Labor Rates (per hour) 187.00$           150.00$           100.00$           
Labor cost 167,178$         116,100$         -$                 
Labor Subtotal 167,178$         116,100$         -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 68 days  x 2 persons day 136 45$                  6,120$             
Hotel 54 night  x 2 persons night 108 125$                13,500$           
Mileage 200 miles x 14 time miles 2800 0.56$               1,562$             
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
24,182$          

Total Cost
Inspection Fee 470,492$         

Equipment fee
Modifying fee of magnetizer set 2 20,000$           40,000$           
Production fee of jigs set 2 30,000$           60,000$           
Production fee of jigs for under cable part set 1 10,000$           10,000$           
Transportation fee of equipment(from Japan) each 1 50,000$           50,000$           
Depreciation fee of equipment each 1 30,000$           30,000$           
  (Wear and Tear Fee)
Miscellaneous each 1 13,000$           13,000$           

203,000$        

Total Cost

Inspection Fee

Travel

980,952$                             

Task Description

283,278$                                                                

Total

QUOTATION

2. Travel Fee
3. Inspection Fee

Item
1. Labor Cost

4. Equipment Fee

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-07
12 panels
4 location
1 set

Subtotal
101,873

9,788
94,032

106,500
312,193

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization
    Transfer to Toledo 12.0 12.0

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  12days x 10hours 120.0 120.0
      Under cable parts  8days x 10hours 80.0 80.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (42 hours x 0.5 = 21 hours) 21.0 21.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 60.0

Total Hours 329.0 269.0 0.0
Labor Rates (per hour) 187.00$           150.00$           -$                 
Labor 61,523$           40,350$           -$                 
Labor Subtotal 61,523$           40,350$           -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 22 days  x 2 persons day 44 45$                  1,980$             
Hotel 17 night  x 2 persons night 34 125$                4,250$             
Mileage 200 miles x 5 time miles 1000 0.56$               558$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
9,788$            

Total Cost
Inspection Fee 94,032$           

Equipment fee
Modifying fee of magnetizer set 1 20,000$           20,000$           
Production fee of jigs set 1 30,000$           30,000$           
Production fee of jigs for under cable part set 1 10,000$           10,000$           
Transportation fee of equipment(from Japan) each 1 35,000$           35,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 4,000$             4,000$             

106,500$        

Total Cost

Travel

Inspection Fee

101,873$                                                                

312,193$                             

Task Description

Total

QUOTATION

2. Travel Fee

Item
1. Labor Cost

3. Inspection Fee
4. Equipment Fee

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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OPTION-08
12 panels
4 location
2 set

Subtotal
81,990
8,025

102,503
170,500
363,018

Supervisor
Hours

Engineer Hours
Technician

Hours

1. Preparation of equipment at facility 16.0 16.0

2.  Mobilization 12.0 12.0
    Transfer to Toledo

       Unpacking and setting of the equipment

3. Magnetic measurement work at site 
     Typical panel parts  8days x 10hours 80.0 80.0
      Under cable parts  6days x 10hours 60.0 60.0

4. Demobilization 12.0 12.0
      Packing and loading 

   Transfer back home

5. Over work extra  (44 hours x 0.5 = 22 hours) 22.0 22.0

6. Clean up at facility 8.0 8.0
      Unloading and cleaning up of the equipment at facility

7. Report 60.0

Total Hours 270.0 210.0 0.0
Labor Rates (per hour) 187.00$           150.00$           -$                 
Labor 50,490$           31,500$           -$                 
Labor Subtotal 50,490$           31,500$           -$                 
Total Labor 

Unit Quantity Unit Cost Total Cost
Per Diem 16 days  x 2 persons day 32 45$                  1,440$             
Hotel 13 night  x 2 persons night 26 125$                3,250$             
Mileage 200 miles x 3 time miles 600 0.56$               335$                
　（Novi ⇔ Toledo)
Airfare (1 engineer from Japan) trip 1 3,000$             3,000$             

-$                 -$                 
-$                 -$                 

-$                 
8,025$            

Total Cost
Inspection Fee 102,503$         

Equipment fee
Modifying fee of magnetizer set 2 20,000$           40,000$           
Production fee of jigs set 2 30,000$           60,000$           
Production fee of jigs for under cable part set 1 10,000$           10,000$           
Transportation fee of equipment(from Japan) each 1 50,000$           50,000$           
Depreciation fee of equipment each 1 7,500$             7,500$             
  (Wear and Tear Fee)
Miscellaneous each 1 3,000$             3,000$             

170,500$        

Total Cost

Travel

Inspection Fee

81,990$                                                                  

363,018$                             

Task Description

Total

QUOTATION

2. Travel Fee

Item
1. Labor Cost

3. Inspection Fee
4. Equipment Fee

Number of measurement location

Number of using magnetizer

Typical panel parts
Under cable parts
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