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1 Introduction

This report is organized using the same section headings as the Manual for Bridge Evaluation
[AASHTO 2008]. Section 2 contains relevant information for the bridge files. Although the
Manual contains Sections 3 through 8, they are not referenced here.

2 Bridge Files
2.1 General

This report compiles the data from AEWC for the structural testing and design work done for
the Neal Bridge in Pittsfield, Maine. It follows the sections of the Manual for Bridge Evaluation
that are applicable to AEWC’s responsibilities. This includes plans, test data, and design of arch
structural members, decking and the headwall. Those sections where the work was completed
or designed by the Maine DOT are not included in this report.

2.2 Components of Bridge Records

See the following sections for the components included in the bridge records.

2.2.1 Plans

Plans included in this report are design drawings provided by AEWC. They do not include shop
drawings by contractor or as-built drawings.
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2.2.2 Specifications

Specifications are included here for those sections that AEWC was responsible for. They include
the expansive self-consolidating concrete mix used to fill the arches and the corrugated FRP
decking material.

SPECIAL PROVISION
SECTION 502

STRUCTURAL CONCRETE
(Carbon Fiber Tube Fill)

Description: This work shall consist of furnishing and placing a portland cement concrete fill as
shown on the plans, or as directed by the Resident. Except as otherwise specified in this Special
Provision, all work shall be in conformity with the applicable provisions of Section 502 -
Structural Concrete

MATERIALS

Concrete: Concrete shall be as specified below.

Table 1: Arch Fill Concrete Mix

ITEM WEIGHT PER YD3 NOTES

WATER 378.2 LBS

TYPE Il CEMENT 755.3 LBS

3/8” COURSE AGGREGATE 1263.3 LBS Shall satisfy Section 703.02
SAND FINE AGGREGATE 1391.7 LBS

ADVA 530 98.2 fl oz. 1/4 Added to initial mix with

Remainder added on site as needed
to obtain 10” slump

DARATARD 17 22.7 fl oz. Added to initial mix
CONEX 113.3 LBS Added to initial mix
Entrained Air 0 %to 3% Target shall be 0%

Min. Compressive Strength 5500 psi (38 MPa) At 28 days

CONSTRUCTION REQUIREMENTS

Placement of Concrete: The concrete mix shall be placed in a continuous placement operation.

A. General Concrete shall not be placed until arches have been plumbed and checked and
approved by the Resident. The method and sequence of placing the concrete shall be approved
before any concrete is placed. All concrete shall be placed before it has taken its initial set and,
in any case, as specified in Section 502.0701. Concrete shall be placed in such a manner as to
avoid separation and segregation. A sufficient number of workers for the proper handling of the
concrete is required. Care shall be taken to prevent mortar from spattering on tube members
and sheathing. Following the placing of the concrete, all exposed surfaces shall be thoroughly
cleaned as required, with care not to injure any surfaces.

AEWC Advanced Structures & Composites Center Page 10 of 55
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B. Pump Truck Pump truck will be the only method of concrete placement allowed. Payment,
for Pump truck with operator, will be incidental to this item.

C. Vibrating shall not be allowed when placing concrete into the composite arches. The mix is
self-consolidating and separation will occur if vibrated.

Method of Measurement Structural concrete, Carbon Fiber Tube Fill, satisfactorily placed and
accepted, will be measured for payment by the cubic yard, in accordance with the dimensions
shown on the plans.

Basis of Payment The accepted quantity of Structural Concrete, Carbon Fiber Tube Fill, will be
paid for by the cubic yard price.

Payment will be made under:

Pay Item Pay Unit
502.38 Structural Concrete, Arch Type Cubic Yard

SPECIAL PROVISION

SECTION 509.60

FRP Panels (Sheathing)
Description.

This work shall consist of the furnishing the FRP panels for the Carbon Fiber Tube Arch in
accordance with the plans, specifications and in conformity with instructions supplied by the
manufacturer.

Materials.
The materials include the panels, and hardware.

FRP Panels
Fiberglass Reinforced Plastic (FRP) panels and the fasteners required to secure the panels.

Panels shall be Tuff Span® 8.0 Roof Deck Series 700 or an approved equal that conforms to
these specifications.

Resin Type
Resin shall be premium grade, chemically resistant Vinyl Ester.
Glass Reinforcement

Reinforcement shall be straight and continuous, with fibers oriented in two directions (along
the length and width of unit). Glass content shall be a minimum of 47% by weight.

AEWC Advanced Structures & Composites Center Page 11 of 55
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Flame Spread

Panels shall have a Class 1 flame spread rating (25 or less when tested in accordance with ASTM
E-84), shall be listed by UL and bear the UL label.

UV Resistance

Panel material shall be made from a UV stabilized resin modified with acrylic monomers.
Additional UV resistance shall come from surfacing mats and a surface coating of an acrylic
polymer.

Color
White or other color approved by Owner.
Lengths

Use 16’-0” minimum lengths. Panels shall not be cut; lap panels to fit length. Contractor option
to have full width (~45’-0") panels supplied and delivered.

Structural Fasteners with Washers

Fasteners shall be stainless steel (300/316 series), spaced and installed per manufacturer's
recommendations.

Side Lap Fasteners
SB2 grommets, installed per manufacturer's specifications.
Structural Parameters Performance Criteria

Panels shall meet the performance criteria described below for the spans indicated on the
drawings (2°-0”). Product compliance with criteria shall be established by full-scale tests for
positive and negative loading per ASTM Test Method E-72.

Loads

Decking shall meet the following in single or multiple layers.
Dead (includes soil): 550psf
Live (truck & lane): 2000psf

Allowable Deflections
Decking: L/240
Factors of Safety
Decking

Live loads: FOS = 2.5

AEWC Advanced Structures & Composites Center Page 12 of 55
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Execution
Handling and Storage
Handling

Protect the surface of FRP panels from cuts, scratches, gouges, abrasions, and impacts. Do not
use wire slings unless material is fully protected. Use spreader bars when lifting FRP.

Storage

Store panels under cover. Keep panels dry. Stack panels off ground with one end elevated to
permit draining of incidental water that can permanently stain panels.

Installation of FRP Panels

3.02.01 Installation Instructions

Installer must follow manufacturer's installation instructions and the shop drawings.
Pilot Holes in Panels

Pilot holes must be drilled in panels for all fasteners. Drill holes with a sharp carbide tipped
sheeter's bit. Pilot holes in panels should be sized so that the fastener threads just clear the
edges of the hole.

Pilot Holes in Carbon Fiber Tubes

Pilot holes must be drilled in supports for Type A and B stainless steel self-tapping at drill
speeds of 500 RPM or less. Pilot holes in carbon fiber tubes shall be sized appropriately for
fasteners.

End Laps
End laps for panels shall occur at supports and be 6 inches minimum.
Approved Vendors:

Enduro Composites

16602 Central Green Blvd.

Houston, TX 77032

(713) 358-4000 — Phone

(713) 358-4100 — Fax

Or Equal, approved by University of Maine

AEWC Advanced Structures & Composites Center Page 13 of 55
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Submittals
Shop Drawings submitted for review in accordance with Section 105.7 of the Standard
Specifications.

Method of Measurement
The FRP Panels will be measured as one lump sum price in accordance with the plans and
specifications.

Basis of Payment
The accepted FRP panels will be paid for at the contract lump sum price, complete and in place.

Payment will be made under:
509.60 FRP Panels (Sheathing) Lump Sum

Other materials were called out on the drawings for items on the headwall. See the drawings
for this information on these materials.

2.2.3 Correspondence - This section not included.
2.2.4 Photographs - This section not included.

2.2.5 Materials and Tests

This section gives the results of material and structural level testing for the materials used in
the Neal Bridge in Pittsfield, Maine. Coupon tension testing of the laminate used in the arch
shell is covered as well as preliminary concrete mix testing conducted in the development of
the technology. Material data sheets are attached in Appendix A of this report.

2.2.5.1 Material Test Data

2.2.5.1.1 Coupon Testing

Mechanical testing was performed in accordance with ASTM D3039 on specimens for tensile
stiffness and with modified notched specimens for tensile strength. Compressive strength is
equated to the tensile strength because local buckling of the FRP is prevented due to the
expansive concrete filling the tubes. A comprehensive analysis was carried out using Classical
Lamination Theory to validate the results of these tests. Results of coupon tests were in good
agreement with theoretically predicted values.

The test method ASTM D3039 determines the in-plane tensile properties of polymer matrix
composite materials reinforced by high-modulus fibers. ASTM D3039 was designed to produce
tensile property data for material specifications, research and development, quality assurance,
and structural design and analysis. The results of the testing are given in Table 2.

AEWC Advanced Structures & Composites Center Page 14 of 55
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Table 2: ASTM D3039 Test Results

Specimen | Tested | Poisson's | Strength | Strength | Thickness | Predicted | Percent
MOE Ratio (kip/in (ksi) (in) MOE Difference
(ksi) width) (ksi) (MOE)

1 5872.8 0.477 2.831 28.26 0.1002 6722.7 12.64%
3 6558.4 0.435 3.066 30.46 0.1007 6722.7 2.44%
4 5956.1 0.473 2.698 27.30 0.0988 6722.7 11.40%
5 6473.9 0.433 2.996 29.81 0.1005 6722.7 3.70%
6 6373.0 0.352 2.773 27.55 0.1007 6722.7 5.20%
7 6650.5 0.448 2.913 28.29 0.1030 6722.7 1.07%
8 5938.3 0.411 2.572 25.63 0.1003 6722.7 11.67%
9 5739.1 0.404 2.625 27.98 0.0938 6722.7 14.63%
. | | |
Mean 6195.3 0.429 2.809 28.161 0.0998 7.85%
Std. Dev 355.3 0.04 0.176 1.490 0.0027
cov 5.73% 9.5% 6.2% 5.3% 2.7%

In order to obtain the laboratory specimens, flat CFRP panels were manufactured using the
Vacuum Assisted Resin Transfer Molding (VARTM) process. Panels were prepared by drawing
lengths of braided fabric over thin, rectangular molds, creating very wide, thin tubes. Panels
were then infused with resin and allowed to cure under controlled environmental conditions.

The angle and diameter of braided textiles can be adjusted by applying force in the longitudinal
direction to the dry fabric. Materials used were 24K tow T-700 carbon fibers braided at
approximately [¥ 45.0°] and 24-inch (300 mm) diameter and vinyl ester resin. The fabric was
tensioned during manufacturing to achieve a use angle for the carbon fiber of approximately 20
degrees and an outer diameter of approximately 11.75 inches. From these panels, specimens
were cut using a computer controlled water-abrasive cutting machine.

Initially, tension testing was performed in accordance with ASTMD 3039 to characterize both
the elastic and the strength properties of the braided composite. ASTM D-3039, however,
yielded ultimate tensile strength values an average of 74% below predicted values. This is due
to the free edge effects of fibers in the coupon. For this reason, other methods were
investigated to determine the tensile strength of the braided composite material. The notched
specimen tension test (Figure 1) was developed to more effectively test the strength
parameters. A “bowtie” shaped coupon was chosen because fiber continuity is maintained from
end to end of the specimen. This eliminated free edge effects and took advantage of the tensile
strength of a composite material being a fiber dominated property (only the continuous fibers
contribute to strength in measuring gage section area). Results of the coupon tensile strength
testing are shown in Table 3.

AEWC Advanced Structures & Composites Center Page 15 of 55
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Figure 1. Notched Tension Specimen

Table 3: Results of the Notched Specimen Tension Test

MOE (ksi) 6195.3
Specimen Width Thickness Area Max Load UIt. Strain | Measured Strength CLT Percent
(in) (in) (inA2) (Ib) (in/in) Strength (ksi) Predicted | Difference
(kip/in) Strength Tensile
(ksi) Strength
1 0.8315 0.0970 0.0807 8027.4 0.016065 9.654119 99.527 121.661 18.19%
2 0.8205 0.0990 0.0812 8658.363 0.017205 10.55254 106.5914 121.661 12.39%
3 0.8110 0.0985 0.0799 9071.571 0.01833 11.18566 113.56 121.661 6.66%
4 0.8520 0.1000 0.0852 8994.823 0.017041 10.5573 105.573 121.661 13.22%
6 0.8145 0.0980 0.0798 9622.614 0.019459 11.81414 120.5524 121.661 0.91%
7 0.8130 0.0985 0.0801 8880.889 0.017901 10.9236 110.8995 121.661 8.85%
8 0.8275 0.0990 0.0819 8190.996 0.016139 9.898485 99.98469 121.661 17.82%
9 0.8230 0.1020 0.0839 8909.703 0.017132 10.82588 106.1361 121.661 12.76%
Mean 0.8241 0.0990 0.0816 | 8794.5449 0.0174 10.6765 107.8530
STD. DEV. | 0.0133 0.0015 0.0020 506.3311 0.0011 0.6884 7.0112
cov 1.62% 1.50% 2.45% 5.76% 6.50% 6.45% 6.50%

2.2.5.1.2 Concrete Testing

The compressive strength of cylindrical concrete specimens was tested in accordance with
ASTM C 39-05. This test requires a compressive axial load to be applied to molded cylinders or
cores until failure occurs. The compressive strength of the concrete specimen is calculated by
dividing the maximum load attained during the test by the cross-sectional area of the specimen.
Table 4 shows the results of testing cylinders made with 15% Conex and 1% measured air.

Table 4: Arch Fill Concrete Testing

Cylinder | Length | Diameter Cross-Sectional Max Load Compressive Average Comp.
Label (in) (in) Area (inz) (Ibs) Strength (psi) Strength (psi)
a 8 4 12.57 71190 5665.0
b 8 4 12.57 70620 5620.0 5715.0
C 8 4 12.57 73640 5860.0
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2.2.5.1.3 Beam Testing

Concrete-filled fiber reinforced polymer (FRP) beam specimens were tested using a four-point
bending apparatus. Simple supports were provided at each end of the specimen to provide
free rotation and load was applied at the beam third points. Load was applied to the specimens
using a 110-kip servo-hydraulic actuator. The actuator is mounted beneath the floor and load is
applied by pulling downward on the yoke using a high-strength DYWIDAG Threadbar®. A 110-
kip load cell was installed in-line to monitor applied load. A sketch of the test setup is shown in
Figure 2. The beam section was of the same construction as the Neal Bridge arch members.

Figure 2: Beam Test Fixtures

Three beams were tested to failure under static load. The average failure load for these three
beams was 54.3 kips. Following this, three beams were fatigued for one million cycles. The
first of these, fatigue beam 01, was tested monotonically over a 28 kip load range. The second
two were tested in both positive and negative bending to a load that was predicted to just
achieve the maximum ACI recommended fatigue strain for concrete (0.0015). The testing was
performed sequentially: 100,000 cycles in positive bending followed by 100,00 in negative and
then back to positive. A summary of the results for the fatigue beam testing is given in Table 4.
The average strength of the fatigues specimens was 54.3 kips, indicating that there was no
significant loss of strength due to the fatiguing. In fatigue beam 01, a small amount of residual
deformation was observed, which increased throughout the test as accumulation of damage
occurred. In the remaining two beams, no residual damage was seen.

AEWC Advanced Structures & Composites Center Page 17 of 55
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Table 5: Beam Testing Results
Specimen Loading Direction Load Range Failure Load | Failure Moment
Fatigue Beam 01 Positive Only +3.1k to +31k >55k* -—-
Fatigue Beam 02 Positive +2.05k to +20.5k 53.0k 1272 in-k
Negative +2.05k to -20.5k - -—-
Fatigue Beam 03 Positive +2.05k to +20.5k - -—-
Negative +2.05k to -20.5k 54.6k 1966 in-k
*Beam could not be broken with equipment as set, load assumed to be 55k (actuator capacity).

2.2.5.1.4 Arch Testing

Analysis and testing was conducted on arches similar to the Neal Bridge arches but with a gross
geometry (span and height) approximately 65% as big, having a tested span of 21’-2 %;”. Static
and fatigue testing were conducted. A description of the test setup, model, testing procedure,
and results are given here.

A nonlinear finite element model was used to predict the response of the arch test specimens.
By using symmetry, the model was reduced to a half arch. Two different boundary conditions
were modeled at the crown where the arch model was cut. These two cases are representative
of the two damage states of the arch specimen. Prior to peak loading (Figure 3A), the crown
behaves as a “fixed roller”; that is, rotation and horizontal translation are fixed, and vertical
translation is unconstrained. After the FRP has ruptured, the arch forms a hinge at the crown.
This condition may conservatively be modeled as a “pinned roller”; rotation and translation in
the vertical direction are allowed, while horizontal translation is fixed (Figure 3B). Thisis a
conservative lower bound as the hinge retains some amount of rotational stiffness after
sustaining damage. The actual damaged condition is highly variable and cannot adequately be
modeled using this simple finite element model.

A. Pre-Damage Model B. Post-Damage Model

~~

Fixed Roller
(No Rotation)

™~

Pinned Roller
(Free Rotation)

Rigid Link \

Pinned Support

Rigid Link \

Pinned Support

\ \

Figure 3: Structural Model of Arch Test

The cracking moment in the arches is greatly under predicted when using the equation given by
ACI [ACI 318-08] for modulus of rupture. This is attributed to the under prediction of the
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concrete’s tensile strength in this research. The under prediction of concrete tensile strength
has several effects on the predicted arch behavior, including an under predicted linear-elastic
region and an under predicted stiffness throughout the flexural response. The following
alternate equation was used for the concrete modulus of rupture in predicting the behavior of
the arch specimens. The coefficient is based on the experimental results.

f. = 17,5\/7; Equation 1

In this equation, f’; is the 28-day concrete compressive strength; the factor relating to
lightweight concrete has been taken as 1.0 for the purposes of this work. The proposed
equation represents a 2.3:1 increase over the modulus of rupture predicted using the ACI 318
equation. The moment curvature model developed by Burguefio [1999] accurately predicts
both the moment-curvature response and the moment capacity of the concrete-filled FRP
beam specimens once this adjustment is made.

All specimens tested were relatively lightly reinforced. The 11.8 in diameter tubes had an
average wall thickness of 0.10 in, resulting in a reinforcement ratio, p = 3.4%. Due to the
minimal reinforcement, all specimens failed due to tensile rupture of the FRP reinforcing shell.
This failure mode was consistent with model predictions in all cases.

Figure 4: Load- Deflection of Static Arch Testing

Table 6, below, shows results for the static and fatigue arch testing. The peak load at initial
fiber rupture on the underside of the crown is given as well as the corresponding moment for
that loading region at the crown.
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nar AAw~ LimAaina Aado



AEWC Report 09-43
Project 622

Table 6: Arch Testing Results

it | oy | omentat | NSO | pierenc
Crown (kip-in) from Predicted

Static Arch 1 747 | - 1440 1

Static Arch 2 71.0 | ----- 1370 1

Static Arch 3 709 | --—-- 1370 1

Static Arch 4 712 | - 1380 1

Static Average 72.0 2.6% 1390 4 4.14%
Predicted 690 | - | e e e
Fatigue 1 754 | - 1460 1

Fatigue 2 623 | - 1210 1

After the initial failure, the arch members retained their stability as well as a significant amount
of their initial load carrying capacity. The post-peak behavior of the arch members was studied
by subjecting the specimens to a secondary static test until complete failure was forced. During
the secondary tests, the arch members continued to show ductility and energy absorption.

2.2.5.2 Full Scale Bridge Load Testing

Diagnostic load testing of the Neal Bridge was conducted to increase the understanding of the
structural performance of the arches and the load distribution through the soil and to calibrate
the analytical load rating of the structure. Digital data acquisition was used to allow for 26 load
cases and a large number of instruments. A dynamic test was also conducted following the
static testing. Two roughly 66,500 pound double rear axle dump trucks were used to load the
bridge for both the static and dynamic tests. A description of the tests conducted, their results,
and the corresponding load rating is given in this section. Strain, deflection using linear
potentiometer deflection gages, and PONTOS 3D image correlation for deflection were used to
collect structural performance data.

2.2.5.2.1 Live Load

Two dump trucks provided by the bridge maintenance division of the Maine DOT were used as
the live load for this testing. They were tandem rear axle dump trucks loaded with soil. Axle
weights were taken by the Maine State Police. Figure 5 gives the average axle weights for the
two trucks. The trucks themselves are shown in Figure 6.
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Figure 5: Average Live Load of Two Test Trucks

Figure 6: Trucks Used in Testing of Neal Bridge

2.2.5.2.2 Test Setup

The first set of tests was conducted with two fully loaded dump trucks side by side, 4’-0” apart
measured from the outside surface of the outer set of rear tires. The trucks were facing north.
Strain, deflection, and soil pressure data were collected for this series of tests. Deflection data
were collected using linear potentiometer deflection gages at discrete points along the length
of the 10" arch from the downstream face of the bridge. Deflection data were also collected
used PONTOS 3D digital image correlation for a region of arches 10 and 11 at the crown. The
position of the front axle of the trucks is given in Table 7 and illustrated in Figure 7.

Table 7: Front Axle Position for 1°* Series of Static Tests

Truck Position

Side by side 1 2 3 4 5 6 7 8 9

Front Axle Location
(inches from bridge
centerline) 150 210 270 330 390 | -31 | 30 90 150
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Figure 7: Side-by-side truck locations during load testing (see Table 7)

The second series of tests used both dump trucks in the same downstream lane, both facing
south. The trucks were centered over arch 10, 4’-0” downstream of centerline. The positions

of the front axle of the lead truck are given in Table 8. The front axle of the second truck was
41’-0” behind the front axle of the first truck.

Table 8: Front Axle Position for Lead Truck during 2" Series of Static Tests

Truck Position
Tandem 1 2 3 4 5 6 7 8
Front Axle Location 182 122 62 2 58 -118 -178 -238
of Lead Truck (inches 9 10 11 12 13 14 15 16
from centerline) 298 -358 -418 -478 538 -598 -658 718

Figure 8: Tandem truck locations during load testing (see Table 8)
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The third test was a dynamic test with the trucks traveling at the speed limit of 45 mph across
the bridge with headway of approximately 10 feet. The trucks were centered in the
downstream lane heading north. PONTOS was unable to collect data for this test.

2.2.5.2.3 Instrumentation

Strain, deflection, and soil pressure data were collected continuously during the static and
dynamic tests. The fourth, sixth, eighth, and tenth arches from the downstream side of the
bridge were instrumented with strain gages. Deflection gages were placed on arch 10 to
measure perpendicular deflections of the arches. Soil pressure gages were embedded in the
soil above arch 10. Photos of the deflection gages can be seen in Figure 9. PONTOS was used
to collect deflection data for the center 1 meter of span of arches 10 and 11 as well as the
decking spanning between those arches.

Figure 9: Location of Deflection Gages: (A) Post carrying deflection gage at shoulder (B) Section
of arch 10 monitored with digital image correlation (C) Post for deflection gage at crown (D)
Post carrying deflection gage near foundation (E) Location of deflection gage at footing

Strain gages were installed on arches 4, 6, 8 and 10. Strain was recorded on 3 sections of
arches 8 and 10 and on 1 section of arches 4 and 6. Three longitudinal strain gages were placed
at each location. At the base of each arch one additional strain gage was placed in the hoop
direction (opposite E in Figure 6). The three locations on the arches that were instrumented
include the crown, the shoulder 85 inches horizontally from the crown and the top of the curb
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or foundation connection of the arches. Figure 11 shows the global location of the strain and
pressure gages. The strain gage location at each arch section is shown in Figure 12.

2.2.5.2.4 Measurement of Soil Pressure

Ten vibrating wire total earth pressure cells (TPCs) were installed along the outside of arch 10
within the backfill to assess the interaction between the structural backfill and the arch during
loading (Figure 11). The 9” pressure pad diameter TPCs (Figure 10) were manufactured by
Roctest to have a capacity of 4180 psf (200 kPa). At each location, a TPC was installed parallel to
the ground surface (horizontal) with the edge between 3” and 6” from the face of the bridge
decking. Horizontal TPCs were used to determine the vertical stress distribution beside the
arches. In all locations except the centerline of the arch, TPCs were installed parallel to the
bridge arch tangent, with the center of the pad nearly 6” vertically above the center of the
horizontal TPC pressure pad. These sloped TPCs were installed to assess soil-structure
interaction from arch. Additionally, one TPC was installed between arches 9 and 10 to assess
loading directly above the less stiff decked area.

As recommended by Roctest (2005), the TPCs were installed between the arch and backfill with
a fine sand layer at least 4” thick on the bottom and top of the cell to prevent point loading that
could lead to inaccuracy or damage. The sand layers under and above the TPCs were
compacted by hand using heavy tamper both before and after the installation to reduce the
presence of voids and adhere to construction specifications. Avoidance of vibratory compaction
over the TPCs was recommended to avoid damage to the instruments (Roctest 2005). TPC
wiring was run through small ports in the decking and connected to a Campbell Scientific
datalogging system powered by a battery charged by a solar panel, all of which was secured to
the north northbound headwall. Initial TPC data acquisition attempts were problematic, so
actual pressures in the cell locations after construction were not determined. Relative
pressures during the load test were gathered.

Figure 10: Schematic of a Roctest Total Pressure Cell (Roctest 2005).

Roctest (2005). Instruction Manual: Vibrating Wire Pressure Cells, Model TPC & EPC. <
http://www.roctest.com/modules/AxialRealisation/img repository/files/documents/E1078E-
050708b.pdf>, July 2009.
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Figure 11: Location of Strain Gages and Total Pressure Cells (TPC)
Gage Layout at All Sections Gage Layout at Supports
Top |
#3 #1 #2
45° #2 I I
I
#4
Bottom

#1

Figure 12: Location of Strain Gages at Each Arch Section

2.2.5.2.5 Results
The main goal of the load testing was to determine the live load effects and load distribution of

the two loaded trucks. The maximum strain, deflection and soil pressure measurements are
reported here as well as graphs of the strain at each location versus each truck location. Plots
of the live load strain for each arch are shown in the following four figures.
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The maximum live load strain averaged over the time period for each static loading was
negative 0.0068%. This is 0.4% of the average failure strain (1.74%) of the laminate from
coupon testing.

As can be seen in Figures 10 through 13, the strain gage data appears to indicate both high
variability and drift. There are many possible causes of this including temperature variation,
under-regulated voltage to the instrumentation and imperfect solder joints at the strain gages.

2.2.5.2.6 Conclusions

The maximum measured values of strain in the FRP and concrete are compared to the strain
capacities in Table 9. The values of strains represent 25 truck positions and 21 strain
measurement locations. The maximum measured positive strain in the FRP, which was
observed in laboratory testing as the critical failure mode, is 621 times less than the tension
strain capacity. This high number results from the very low strains measured during field load
testing, and illustrates the reserve capacity that the Neal Bridge FRP has in tension.

Table 9: Measured Strains during Field Load Test Series vs. Material Strain Capacity

Maximum | Calculated DL |  Material . Strain
i ; . Total Strain .
Measured (ii) Strain at Strain (DL + LL) capacity /
LL Strain (i) | locationof | capacity (iii) demand (iv)
maximum LL (4) — (1) + (2)
(1) strain (2) (3) (5)=(3)/(4)
Positive 2.8E-05 -8.66E-05 0.0174 2.8E-05 (v) 621
(tension)
Negative
(compression) -6.7E-05 -9.58E-05 -0.0087 -1.63E-04 53
FRP
Negative
(compression) -6.7E-05 -9.58E-05 -0.003 (vi) -1.63E-04 18
Concrete

(i) 25 truck positions, 21 strain locations

(ii) Arch weight, backfill, wearing surface, neglecting strain of wet concrete
(iii) Based on 2.2.5.1.1

(iv) Demand based on field test conditions

(v) Conservatively neglect dead load strain

(vi) Based on ACI 318, conservative for confined concrete

Similarly, while the compressive strength of the concrete did not control in the laboratory tests,
the maximum compressive strain in the FRP adjacent to the concrete in Table 9 is 18 times less
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than the compressive strain capacity of unconfined concrete. This further serves to illustrate
the reserve capacity of the Neal Bridge.

As discussed, actual pressures in the cell locations after construction could not be determined.
Therefore, the change in pressure measured during the load testing was determined relative to
pre-load test measurements. Pressures were measured at 5-second intervals, the fastest rate

possible. Due to the slow sampling rate, no useful data were collected during the dynamic test.

Figure 17: Increase in TPC pressures measured from time = 0 during static load test (Note:
legend numbers indicate the sensor number and letters indicate horizontal (H) and sloped (S)).
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Figure 17 shows the increase in pressures measured for all TPCs during static load testing. The
numbers at the top of the figure indicate the approximate load regime, where P1-1 corresponds
with side-by-side pressure loading regime 1 and P2-16 corresponds with tandem pressure
loading regime 16 (Table 7 and Table 8).

Results show there is less than a 3-psi increase in pressure in all sensors. These values are small
considering that the truck loading is 125 psi, assuming two tire patch areas of 10”x20” per axle.
With increasing depth, surface loading is distributed through the soil mass and geogrid
structure laterally away from the bridge. It is of interest that the south abutment, north mid-
span, and north abutment sloped TPCs have greater measured pressures than the horizontal
TPCs. This indicates that bridge deflections during loading engage the soil mass parallel to the
arch tangent. It is unknown why the south mid-span horizontal TPC shows greater loading than
the sloped TPC.

The pressure increase at each location is dependent on the surface location of the trucks, as
expected. Additionally, the sensors directly under the load do not have the greatest pressure
differences for a particular load scenario. The greatest pressure is from sensors that are
responding to arch deflections. This is best shown for tandem load position 16 (P-2-16). The
rear axle of the second truck is directly over the midspan TPC (68-H), while the front axle is
south and over TPCs 69 through 72. The sloped TPC (73-S) at the north abutment shows a load
of nearly 1.6 psi during this load scenario, even though there is no direct vertical loading at that
part of the bridge. Horizontal TPC 64-H only shows a pressure increase of 0.8 psi, further
indicating arch deflection is the likely cause of loading TPC 73-S.

Figure 18 shows the difference in pressure measured adjacent to the arch and adjacent to the
decking between arches for the northern mid-span location. It illustrates that for most loading
scenarios, the TPC along the arch registers higher pressures than the TPC over the decking.
During most of the static load testing, it is greater than 75% different (where % change is
calculated as the difference between the arch and decking pressure normalized by the arch
pressure -

Figure 19). It is interesting to note that during side-by-side load regime 4 (P1-4), which is near
the central mid-span of the arches, the pressures are similar. For this scenario, the decking and
arch are likely deforming together as there is little soil between the pavement and the arch to
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redistribute stresses away from the structure. Similar results occur when loading is near the
centerline and just to the southern end of the bridge.

Figure 18: Difference between pressure increases due to loading at the arch and between
arches adjacent to the decking.

Figure 19: Percent change in pressure measured between arches and over an arch.

It has been shown that all static loading conditions resulted in less than 3 psi increases in
pressure, which is significantly less than the applied load at the surface. However, it was of
interest to determine how much of a pressure change resulted compared to the in situ dead
load at each of these locations. As previously mentioned, actual pressures after bridge
completion could not be determined due to data acquisition problems. Therefore, dead loads
for the horizontal TPCs were estimated based on the assumed soil density after compaction
(using RC=95% for the dry unit weight and the corresponding average water content from the
Standard Proctor compaction curve) and the weight of the paving and base paving layers. Table
10 shows the percent change in pressure determined during loading. As expected, the
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shallowest locations experience the greatest increase in pressures. This information should be
used with caution, however. It is highly likely that greater vertical and horizontal stresses were
“locked-in” during compaction than estimated from soil weight. Therefore, the dead loads
calculated here represent the lower bound of earth pressure for the unloaded structure. In
reality, the percent change in pressure at these locations will be less depending on the actual
pressure at these locations.

Table 10: Increase in pressure during loading relative to estimated in situ vertical stresses

TPC Locati on Esti matedead Maximum pressure % Pressure
Load (psf) change (psf) Change
72-H South abutment 1208.8 211.7 17.5
70-H South mid-span 685.4 348.9 50.9
68-H Peak 483.2 254.8 52.7
66-H North mid-span 1013.0 222.1 21.9
64-H North abutment 1404.5 350.7 25.0

2.2.6 Maintenance and Repair History - This section not included.
2.2.7 Coating History - This section not included.

2.2.8 Accident Records - This section not included.

2.2.9 Posting - This section not included.

2.2.10 Permit Loads - This section not included.

2.2.11 Flood Data - This section not included.

2.2.12 Traffic Data - This section not included.

2.2.13 Inspection History - This section not included.

2.2.14 Inspection Requirements

2.2.14.1.1Schedule and focus

The Neal Bridge should be inspected every 24 months. Inspection should include, at a
minimum, the arches (surface and shape), the headwall (shape), and the decking above the
arches (surface and shape). In addition, the condition of selected bolts along the inside of the
headwall should be inspected. Three non-adjacent bolts on each side of the bridge should be
inspected. If deterioration is found, additional inspection may be required. The fasteners
which connect the decking to the arches are primarily for construction, and do not require
inspection.
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2.2.14.1.2 Arches
In general, it is expected that the tubing material will retain its glossy coat unless
subjected to abrasion. It is, however, possible that some areas may produce a chalky
surface if exposed to extreme ultra-violet light (UV). This should not be confused with
abrasion. Areas of the arches that are no longer glossy should be categorized as
follows:

Chalky — these areas are caused by excess UV, not abrasion. It is likely that this chalky
surface will protect the material from additional UV but if significant areas are found,
additional investigation is warranted.

Loss of sheen — these areas should be noted for follow-up inspection but are not
otherwise critical.

Dry undamaged fabric — these areas should be recoated with an appropriate resin
system but do not represent structural damage. If the source of abrasion is evident, it
should be removed or protected against. The area should be marked for follow-up
inspection.

Damaged fabric — torn or cut fibers represent structural damage. These areas should
be analyzed to determine percent capacity and a suitable layer of externally bonded
reinforcement should be applied. The area should be marked for follow-up
inspection.

Figure 20 — Approximately 1” x 2” (25 mm x 50 mm) sections of arch in various conditions: (A)
No damage (white paint marks) (B) Light loss of sheen, no structural damage, report only (C)
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Heavy loss of sheen, light dry undamaged fabric, no structural damage, should be recoated with
resin (D) Light damaged fabric, may require structural repair, should be recoated

Arches as installed were not perfectly round either in cross-section or in gross radius. No kinks
or other sharp transitions were noted, however, and inspections should include examination of
overall geometry for consistency from arch to arch and along each arch. Note that the surfaces
of the tubes themselves have some sharp ridges of clear resin. These are part of the
manufacturing process and their presence is not of structural concern.

Arches should be tapped lightly with a hard object at roughly 12” (30 cm) intervals along their
length, varying location from top to bottom of the arch. Tapping arches should produce a solid
sound. Any hollow sounding areas should be reported immediately, and an effort should be
made to measure the area that is hollow sounding. Note that some voids were found during
construction and filled with resin. These areas may sound slightly different from adjacent
areas, but should not sound hollow. The repaired arches are #2, #3, #4, #5, #13 & #15 counting
from the downstream end. Voids were found and filled within a foot or two on each side of
center as well as directly at the crown. They were all within the top few inches of the tube.

The outermost arch on each side supports the headwall skin. The joint between it and the
supporting arch (just to the interior) should be checked for signs of damage including cracks or
extreme discoloration.

2.2.14.1.3Decking
The bottom of the decking spanning between the arches should be glossy white. Areas that are
no longer glossy should be categorized and treated the same as the arches.

Decking should run flat from arch to arch. The midspan of the decking should not be more than
1/8” (3.2 mm) below the straight line connecting the two points of contact with adjoining
arches.

The following deflection limits are recommended based on a maximum allowable bending
stress in the decking panel. This bending stress is given by the manufacturer, Enduro
Composites, and uses a safety factor of 2.5. A deflection limit of 3/8 inch is recommended for
the panel perpendicular to the arches and a limit of 1/4 inch is given for the bottom flange of
the decking in the direction parallel to the arches. A combined total deflection between arches
at the center of the bottom flange of 5/8” could be seen and is acceptable. See Figures 15 and
16 for clarification of deflection requirements.
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Figure 21: Allowable Decking Deflection Perpendicular to Arches

Figure 16: Allowable Decking Bottom Flange Deflection

2.2.14.1.4Headwall

The headwall should be roughly plumb and planar. The east headwall showed some noticeable
bulging, especially at the top, immediately after backfill was complete. The top of the headwall
geometry should be recorded in the as-built drawings. Changes from the as-built condition
should be recorded. Plumbness should be measured and recorded at four to five locations on
each headwall. Appendix D contains images of the inspection notebook from the resident
engineer with initial measurements. These measurements were based on a string line. Future
measurements should provide accuracy and repeatability within 1/8” such that a 1/4”
movement can reliably be measured. Accelerating movement will require corrective action
that may include excavation and replacement of either the geogrid or the connections between
the headwall and the geogrid. Decreasing movements of up to 1/4” from measurements of
4/9/09 should be acceptable.
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2.2.15 Structure Inventory and Appraisal Sheets - This section not included.
2.2.16 Inventories and Inspections - This section not included.

2.2.17 Rating Records - This section not included

2.3 Inventory Data - This section not included

2.4 Inspection Data - This section not included

2.5 Condition and Load Rating Data

2.5.1 General

The load rating for this bridge was based on Section 6 of the Manual for Bridge Evaluation
(AASHTO 2008). We followed 6A.1.7.1 — Design Load Rating using the allowance for alternate
analysis methods. The analysis method and results are presented below.

2.5.2 Revised Condition and Load Rating Data

The moment-curvature response for the concrete-filled FRP arch tubes was predicted using the
model developed by Burguefio [1999]. Material input parameters were determined as
described in the respective sections of this report. The ultimate tensile strength of the laminate
was reduced using the reduction factor Cs = 0.90, as specified in ACI 440.1R Section 7.2 [ACI,
2006] for carbon composites exposed to earth and weather. The nominal moment capacity,
M, predicted by the model was reduced by ¢ = 0.55, as specified in ACI 440.1R Section 8.2.3
for tension controlled sections. The resulting reduced moment capacity is M, = 690 in*kip.
The predicted moment-curvature response for the arch members is shown in Figure 17.
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Figure 17. Predicted Moment-Curvature Response and Reduced Capacity for Concrete-
Filled FRP Beam Members

The service level load effects were determined for the Neal Bridge structure using the finite
element model for calculation of the load rating factors RF. The moment envelopes are shown

in Figure 15 and the values are given in Table 1. The load-rating factor, RF, was calculated using
Equation 3.

M —
RF = (p;j\/[—% Equation 3
L

The calculated load rating factors are given in Table 8. At each section along the arch,
maximum positive and negative moments were calculated. In addition, dead load moments
using y of both 1.25 and 0.9 were calculated. The ultimate dead and live load moments were
combined to create the maximum absolute moment. The load-rating factor was taken as the
minimum value of RF from the analysis. From the values in Table 1 the minimum RF = 3.7.
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Figure 17. Dead and Live Load Moment Envelopes
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Table 8. Moment Envelope and Load Rating Factor

Distance From M., (in*kip) Mou (in*kip) Minimum
Crown (in) Maxim'um Maxi.rrzlum y=1.25 y=0.9 RF
Negative Positive

184.4 -154.3 174.5 -77.2 -55.6 4.3
176.6 -125.8 112.3 -52.5 -37.8 5.8
168.6 -98.1 63.0 -32.0 -23.1 7.2
160.4 -81.1 324 -15.4 -11.1 8.6
152.0 -84.3 15.4 -2.3 -1.7 8.2
143.4 -95.6 13.3 7.5 54 7.1
134.7 -114.2 33.3 14.4 10.4 5.9
125.7 -125.9 53.6 18.8 13.6 5.3
116.7 -132.4 70.8 21.0 15.1 5.0
107.4 -134.1 85.8 21.4 15.4 5.0
98.1 -130.3 98.3 20.2 14.6 5.1
88.6 -122.5 108.5 17.9 12.9 5.5
79.0 -111.6 117.0 14.9 10.7 5.8
69.4 -102.6 120.3 11.3 8.1 5.6
59.6 -94.5 129.5 7.5 54 5.3
49.8 -84.9 138.5 3.8 2.7 4.9
39.9 -74.4 146.5 0.3 0.2 4.7
30.0 -65.4 158.6 -2.6 -1.8 4.3
20.0 -54.1 171.2 -4.8 -3.5 4.0
10.0 -42.1 180.9 -6.2 -4.5 3.8
0.0 -29.5 185.0 -6.8 -4.9 3.7

RF is increased or reduced based on the adjustment factor K, which relates the load test results
to the calculated response. K accounts for two factors: (1) the ratio of computed strain in the
member to measured strain, and (2) the ratio of load effects due to the test truck to those due
to the design vehicle. K was calculated for each section of the bridge, and the minimum was
taken as the overall load rating factor for the bridge. The calculations are given below for the
strain gage, location and truck position that produced the lowest overall load rating factor. It
should be noted that the calculations do not necessarily represent the maximum strain
measured during the load test, but rather the combination of measured strain, and predicted
strain under both the test vehicle and design vehicle that produce the worst case load rating
factor for the structure.

gy:=-7.10510" 6 Measured strain during load test for worst case load rating

g, =-377210 6 Corresponding calculated strain due to test vehicle
e . ) . . .

K, =50 1=-0469 Equation 2: Factor Comparing Predicted and Measured Strain (Ref. 4.
g, 8.8.2.3.1-2)

T=¢g,=-3.772%10"° Calculated strain due to unfactored test vehicle

W =-532%10"" Calculated strain due to unfactored gross rating load

K=0.531 T/W
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K,=10 Ky — (Ref. 4. Table 8.8.2.3.1-1)
K=-1+K K, =053 Equation 3: Adjustment Factor
(Ref. 4.8.8.2.3.1-1)
RF, = RF.K =1.964 Equation 4: Load Rating Factor for Live Load Capacity Base on Load
Test Results (Ref. 4)
Based on the above calculation, the minimum load rating factor for live load capacity based in
the results of the field load test is 1.96. The load rating for the bridge is 1.96 times the design
live load. The design tandem produces the worst case load effects in this structure. The
resulting load rating for the arch members is 1.96 x 25 kips = 49 kips.

2.5.2.1 Conclusions

Based on the results of field load testing and the analytical load rating a revised load rating has
been determined for the bridge. A minimum load rating factor of 1.96 was found. The load
rating for the bridge may be taken as 1.96 times the design live load, or 49 kip per tandem axle.
The total live load rating for the bridge based on a pair of tandem axles is 98 kip.

2.6 Local Requirements - This section not included
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Appendix A. Material Data Sheets
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Appendix B. Lessons Learned

A four-hour meeting was held at AEWC to review the Neal Bridge project and document the
lessons learned amongst the Maine Department of Transportation, AEWC and Stetson &
Watson. One of the key outcomes is that the arches can be installed in half a day for a bridge
like the Neal Bridge. The most time consuming procedures were the foundation fabrication and
the backfilling.

The arch foundation should be simplified by using a rectangular form encompassing all the arch
ends. Several ideas were advanced to facilitate the installation of the arches. Vertical and
horizontal alignment jigs could expedite the placement of the arches, improve the accuracy of
positioning, and reduce the construction stage on-site solution development. Sheet piles as
head wall material are a good solution that perhaps should be extended to wing walls.
Backfilling was impeded by the geogrid. Headwall attachment and backfilling presents one of
the most significant opportunities for time saving.

For more details and a list of the lessons identified during the meeting please the table on the
next page.
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Issue

Influencing factors

Solution Employed

Recommendation for future

All steel must be domestic steel, some steel had to be imported

Material selection

Design not complete, changes on the run, many change orders

Tight schedule

Need a complete design from the beginning

Rock (ledge) was too deep

Site selection

Headwall appearance and alignment Once the soil was put down Whalers 1. Different head wall details
Need temporary support head wall construction: contract needs temporary ties could only influence 2. Need temporary bracing detail
proper tools head wall above the soil level 3. Could have rigid temporary bracing that becomes
Connection needs a solid connection, should not rely upon geogrid permanent
to hold up head wall initially 4. Use Conspan type headwall
Sheet pile Good solution 3D cut for fit 1. Pre-cut sheet pile for a better fit into channel
2. Use concrete filler in channel
Facing sheet on headwall is not necessary and would probably look | Color was too white. A different color | Fascia 1. Let the sheet pile be seen.

better if left off.

may be more acceptable

2. Use fascia to mask headwall alignment

Foundation - concrete piles

1. Did not have head room drilling rig
with overhead wires

2. Ledge variation was 2 to 8 feet

3. Piles would have been too close
together

4. DOT geotechs wanted foundation
to bedrock

5. More contractors have ability to
dig holes and fill rather drill

Full foundation to bedrock

Dig two holes and fill with concrete and cap

Rebar was difficult to work with, difficult to hold everything in
place while filling with concrete

Tight schedule

1. Rebar detail should have been in several pieces
limited to 90 deg bends

2. Footing should have been longer across the road,
one foot on each side to allow forming

3. J hooks connecting footing to arches should have
been shorter, 90deg bend inside footing to allow
constructability to hold them in place

AEWC Advanced Structures & Composites Center
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Arch alignment

Method is not a big time factor

1. 4x4 wood beams strapped
to the arches

2. plywood template was
used for horizontal
alignment

1. Use full length template with composite box bear
with integrated straps for full width of bridge for
vertical alignment of arches, could be a permanent
brace to be left in place for attaching the headwall
2. Should also include radiused cutouts for horizont:
alignment

3. Include a reference point for alignment, such as a
short, several inch, vertical cut, or a reference point
the arch to align the arches relative to each other
4. Need individual pieces to space arches during
placement, straps are acceptable and do not take lo
to employ

Arch handling: difficult to handle without some kind of handle

1. Integrate handles that maybe could be used as
spacers

Arch foundation

Irregular cut at end of arch may have
been conducive to the arch not
floating

1. Set arches on flat footing and use a rectangular fc
encompassing all arch ends together

2. Redesign rebar detail to facilitate arch install.
Minimize transverse rebar.

3. 1.5" step does not require a bulkhead

Decking - no complaints

Self tapping screws worked well

Slump 1. 10 inch slump specified 1. Specify slump flow, must have trial batch
2. Sunrise did not do a trial batch 2. Specification should accommodate the supplier
3. Need at least a 3 inch hole, preferably 4 inch
diameter
4. If flow is slow increase the super
Geo grid attachment Geo grid is very 1. Geo grid doubled thebackfill Eyebolts and bars 1. Use a set of angle bars to clamp geo grid

time intensive

2. A lot of hand compact around
layers of geo grid

2. Eliminate geo grid, especially above the arch
elevation

Guardrail

Use enough cover so that a guardrail does not have
be in concrete, can be driven

Staged construction

The design is amenable to staged construction, one
lane at a time

Headwall/Wing wall

Continue headwall design to wingwalls
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Appendix C. Construction of the Neal Bridge

One major attribute to the arch technology used in the structure of the Neal Bridge is its
lightness and subsequent ease of construction. Demonstrating this attribute was a major goal
of this project. This section will highlight the major areas of construction with emphasis on the
composite technology components.

Foundation

The foundation for the Neal Bridge was designed as a typical reinforced concrete foundation.
Four concrete placements were used in the construction of the foundations. They were the
“seal” pour for the concrete beneath the footing and underwater, the footing pour where the
base of the arches sat, the “cap” pour to cap the old abutment, and the “curb” pour which
encased the base of the arches. The seal pour was Class S concrete to ledge. The other
concrete in the footing was Class A structural concrete. Requirements for these two classes of
concrete can be found in the MDOT specifications for this project. Other than some trouble
placing the concrete in the north abutment seal pour and some redesign that followed, there
were no significant problems for the foundation construction.

Arches

The erection of the arches was an important and exciting step in the construction of the Neal
Bridge. In one day the arches were shipped from the University of Maine in Orono to the
bridge site and erected. Some shimming and preparations were done in the morning of the
following day.

The arches were shipped from Orono in a box tractor trailer in two loads. Once on site they
were unloaded from the truck, inspected and then laid out on the grass near the bridge side. A
boom truck was positioned to pick up the arches from the lay down area and place the arches
on the footings. Hand labor was not used to move the arches onto the footing due to safety
and walking conditions. Some arches were set in place by hand once they were in the hole.
Once on the footing the arches were spaced and braced using wooden jigs. Ratchet straps
available at any hardware store, were used to tie the arches together temporarily.
Approximately 5 men were used in placing the arches. The upstream arch was the first to be
placed and was laterally braced. Subsequent arches were strapped to this first arch and then to
each other, therefore bracing the system until decking could be installed.

There were areas for improvement found when placing the arches on the footings. Finding a
better way to carry the arches by hand was one suggestion. If hand labor is required to move
the arches some sort of handle system is desirable. This will especially be true for larger
diameter arches where personnel will be unable to wrap their arms around the diameter of the
arches. A second improvement that must be made is the manufacturing tolerances of the
arches. As mentioned previously in Appendix B, the difference in the shape of the arches was
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an issue. The half-day of shimming would have been eliminated if the arches more similar in
shape.

Decking

The decking (or sheathing) was attached to the arches in one day. Three-inch long self-drilling
stainless steel screws were used to attach the decking panels to the arches. The panels were 45
feet long and trimmed with large circular saw at each end to match the 7-degree skew of the
bridge. 37" to 4” of fill concrete was placed on top of the decking prior to backfill. The
concrete was placed to protect the decking from large stones in the backfill material as well as
from vandalism from underneath the bridge. There were concerns about the durability of the
decking due to its thickness. Thicker decking panels or decking panels designed compositely
with concrete above will be one solution to this concern.

Headwall and Backfilling

The construction of the headwall and backfilling were significant tasks in the construction of the
Neal Bridge. The FRP sheetpile worked well as a wall material. The geogrid and connection
scheme did not work as well as expected. The connection of the FRP sheetpile to the arches
was also not a great detail. The three-dimensional cuts to fit the pile to the arches were not
easy to make. Another concern raised was that the amount of geogrid lengthened the time
needed to backfill the bridge with this crew. These points will be discussed more in the
following paragraphs.

The backfilling began with the placement of flowable fill behind the footings. Granular backfill
was used above the elevation of the top of the footing. Compaction was achieved using hand
compactors, plate compactors and vibratory rollers. Maine DOT inspected the densities at each
lift of granular backfill.

The geogrid was placed by hand, generally by two laborers. The unidirectional geogrid was cut
parallel to the strong axis of the grid to fit past the galvanized eyebolts and wrap around the
FRP rebar. See Sheet 2 and Sheet 3 of the headwall drawings on pages 6 and 7 if further
clarification is needed. The geogrid was wrapped around the FRP rebar and attached to itself
with a Bodkin bar from Tensar. Tension of the geogrid was achieved using steel bars and two
labors prying on the geogrid. An excavator buck load of backfill material was then unloaded on
the geogrid.

Vibratory rollers and heavy plate compactors were used. In future projects their use should be
limited in the specification. Excessive vibrations were seen when the vibratory roller was
initially used on the Neal Bridge. Its use was then limited to areas that were roughly 6 to 8 feet
from the exposed deck. This seemed adequate in preventing excessive vibrations in the
structure. It cannot be said that this will be true for future projects though.
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Wingwalls

A precast concrete T-Wall retaining wall system was used as wing walls for the Neal Bridge.
Forty sections of T-Wall were used, ten at each corner. The walls were 13’-4” tall with a 6”
wide by 18” thick by 10’-0” long concrete leveling pad beneath the walls.

Paving

Paving of the Neal Bridge was conducted in November 2008 for the binder and in May 2009 for
the finished wearing surface. The binder was placed November 21, 2008 with the road
opening on November 22",

Guardrail

The guardrails were driven as specified in the Maine DOT’s standard specifications. The depth
of the top of the arches was adequate which prevented the need for the posts at the crown of
the arches to be shortened and their bases encased in concrete. This is a detail that is favorable
and should be achieved where possible in future FRP arch bridges.
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Appendix D. Inspection Notebook - Headwall Measurements
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