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1. INTRODUCTION 

1.1. Research Problem and Motivation 

In the past transportation data was collected through the limited deployment of infrastructure-

based sensors and manual spot counts and surveys.  These “planning oriented data collection” 

approaches continued to be used extensively for decision making in transportation projects. 

However, with the advent of Intelligent Transportation Systems, an increasing amount of on-line 

operational transportation data for every component of a transportation system continue to 

become readily available. A wide variety of new technologies—from probe-based data captured 

by freely roaming cars and buses to electronic payment systems that can nearly capture every 

detail of a car, bus or train commuter’s trip—provide us new opportunities for improved 

monitoring and management of our complex transportation systems. Thanks in large part to on-

line data being collected on a nearly 24/7 basis, researchers and transportation managers alike are 

now able to quantify a number of realistic “performance measures” that allow transportation 

agencies to make timely and proactive decisions. Here are four of the major categories of 

performance measures identified by recent research: 

1. Preservation of assets mainly dealing with infrastructure conditions 

2. Mobility and accessibility  

3. Operations and maintenance  

4. Safety 

Previously, performance measurements have been utilized to develop long-term plans. Likewise, 

on-line transportation data have historically been used for short-run operational decisions 

regarding the operation of traffic adaptive signal systems or the real-time management of traffic 

incidents. In this project we propose the integration of these new on-line operational data 

with performance measurements not only to make long-term strategic planning decisions 

but also for the execution of relatively short-term tactical decisions.  

Among the myriad of new on-line transportation data sources, traffic flow and safety data are the 

two most significant categories that can be used to assess system performance and make better 

tactical decisions on a day-to-day basis. For example, if there are data about day-to-day traffic 

conditions and accidents while a major construction project is active on a given section of a 
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network, tactical performance measures of the number of accidents around the work zone, the 

time it takes to clear them, and travel times can be used to re-adjust the work zone configuration 

and the incident response operations to minimize delays and improve reliability.  This is a real 

tactical approach to assess the behavior of the transportation system through the use of short-

term performance measures and on-line data. Likewise, mid-term and long-term decisions can be 

made using a similar approach, integrating particular performance measures with newly available 

extensive on-line data.  

1.2. Objectives and Goals 

Our primary objective is to present and evaluate network-wide performance measures that can be 

quantified with “on-line data” from some of the general transportation system performance 

categories listed above. Although on-line data use for the quantification of individual 

performance measures such as “link travel times”, “queue lengths”, and “incident clearance 

times” is an important goal, it is not sufficient when a full evaluation of a system’s performance 

is needed. We are proposing the development of a new methodology that will both integrate 

these performance measurements and offer an improved understanding of the interactions among 

them. The body of data that this methodology will produce can then be coupled with estimated 

planning data from demand forecasting models such as NJTPA’s NJRTM-E and NYMTC’s 

NYBPM to better predict transportation system’s long-term behavior. 

As with the development of any new methodology, unexpected problems can arise, and there 

might be some difficulty in acquiring, processing and utilizing the data generated by a wide 

variety of sources, particularly when the data will be used to produce performance measures for 

various transportation management systems and planning objectives. At the outset, then, we have 

identified the most pressing research task as thus: to define the most important performance 

measures that can be quantified using this real-world on-line data. 

The key challenge behind our proposed approach is the effective use of “real-world on-line data 

to quantify selected performance measures”. The data sources that the research team have 

considered are: 

1. Traditional infrastructure based detector data such as loop detectors, remote traffic 

microwave sensors (RTMS), traffic cameras. 
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2. Emerging probe-vehicle data obtained from a variety of sources such as, INRIX1, TomTom2, 

TRANSCOM3, EZ-Pass, and Bluetooth readers. 

3. Incident management and other operational and planning data available from sources such as 

NJ safety patrol database, New York’s IIMS, NJDOT’s on-line accident database, etc. 

4. Road inventories containing information about link characteristics, traffic signals, etc. 

 

The overall objective, as stated above, can be achieved by effectively executing the following 

goals: 

Goal 1: Identify the short, mid and long-term performance measures that are the most 

important to all the stakeholders in our region. 

Goal 2: Identify and acquire all the on-line operational data sources that can be used to 

quantify selected performance measures.   

Goal 3: With the close cooperation of the stakeholders, design a comprehensive yet practical 

software development life cycle process to capture the data, process the data, and then estimate 

selected performance measures. 

Goal 4: Demonstrate the use of the developed performance-based off-line and on-line data 

source through real-world case studies.   

 

 

 

 
  

                                                 
1 www.inrix.com/  
2 www.tomtom.com/  
3 http://www.xcm.org/ 
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2. LITERATURE REVIEW 

NCHRP Synthesis 238 [1] explains the state practices for the development of performance 

measures, which themselves were influenced by trends defined in ISTEA (Intermodal Surface 

Transportation Efficiency Act of 1991). These trends can be identified as “strategic decision 

support, the need for better accountability, the need to be competitive, and being more customer-

oriented”. The study focuses on an agency’s multimodal transportation functions and explains 

data, methods and measures that can be used for multimodal functions based on the findings of 

DOT surveys. It is stated that although many well-known performance measures are in place for 

road maintenance and traffic safety, new performance measures are constantly being developed. 

The new developments tend to utilize performance measures for strategic plans as they relate to 

policy goals and objectives. 

NCHRP Report 446 [2] serves as a guidebook for performance-based transportation planning. 

This study emphasizes the use of performance measurement and monitoring in multimodal 

transportation planning. In the study, the reasoning for performance-based planning and the 

criteria for performance measure selection are discussed. The applications are provided in the 

form of case studies. A comprehensive library of performance measures is provided, culled from 

the literature, case studies and field visits to agencies. Based on the different goals and objectives 

of transportation operations agencies, the measures are categorized into different groups, 

including accessibility, mobility, economic development, quality of life, environmental and 

resource conservation, safety, operational efficiency, and system condition and performance. [2, 3] 

NCHRP Synthesis 326 [4] examines the experiences of state transportation departments with 

strategic management, and synthesizes current approaches for linking strategic planning with 

other key decision-making processes. The survey results show that many DOTs used 

performance measures to monitor the implementation of strategic initiatives and track the 

success in achieving strategic goals and objectives. Although it is a challenge to define 

meaningful, reliable, accessible, and cost-effective performance measures in some areas, it was 

found that DOTs tend to focus more on real outcome measures than they used to. They began to 

establish numerical targets for their strategic goals and objectives.  



9 
 

Similarly, NCHRP Report 551 [5] explores the best set of performance measures for good asset 

management. Additionally, some procedures are developed in the study to assist transportation 

agencies in the selection of performance measures. With these procedures, agencies can select 

performance measures for their specific needs and set measure targets. [5] In order to understand 

the current performance measures most commonly in use, as well as proposed ones and how they 

are applied in different agencies, 15 transportation agencies are interviewed in the report. The 

key benefits in using performance measures for decision making was summarized. 

The American Association of State Highway and Transportation Officials (AASHTO) [6] 

explores comparative performance measurements among state DOTs. The study summarizes the 

basic elements for developing a comparative framework. Based upon a peer group study of 

multiple states, two-tracked performance measures, on-time performance, and on-budget 

performance were found to have great variation among states. This variation might explain why 

certain agencies remain skeptical about benchmarking while other agencies have expressed an 

interest to try it.  

Baird and Stammer Jr. [7] state there is a need for the implementation of organizational and 

program performance measures at DOTs. The authors believe that DOTs need to consider two 

other disciplines (business management and public administration) while implementing 

performance measures. The study reviewed the current practice and analyzed the different views 

of these disciplines. The performance measurement issues considered in the study included 

motivations for performance-based planning, stakeholder perspectives, dimensions for 

performance measurement, comparisons as a way of measurement, and guidelines for 

performance measurement. The performance measurement systems in 10 DOTs are investigated 

from the view points of three different disciplines and five issues of performance measurement.  

Vandervalk-Ostrander [8] considers the performance measures from the perspective of small 

communities. The study identifies operations performance measures and its elements such as 

data collection and analysis, performance reporting, and decision-support. It also discusses the 

state-of-practice in small communities and recommends the implementation of certain 

performance measure programs. 
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MacDonald et al. [9] presents certain international findings on the performance measures for 

transportation planning and decision making. The countries scanned for performance measures 

include Australia, Canada, Japan, and New Zealand. It is found that these countries “use 

performance measures for setting priorities and making investment and management decisions to 

a greater extent than is typical in the United States”. Especially notable in the discussion is the 

approaches on road safety and their success in reducing fatalities. More specifically, agencies in 

these countries utilized performance measures to demonstrate greater accountability and 

visibility to the public as well as key decision-makers. 

Poister [10] reviews the current practice of performance measures and offers a way to use them  

efficiently. The study emphasizes the use of performance measures by DOTs and explains “what 

is measured, how performance is measured, how performance data are reported, and how 

performance measures are used”. The study suggests that only a few agencies currently use 

sophisticated systems for performance measurement, and that because of this limited use the 

practice of utilizing performance measures is still in its infancy, with much room for growth. The 

challenges and recent trends in this area of study are also outlined. 

Haas et al. [11] presents a comprehensive approach for developing performance measures. This 

approach considers the basic issues in performance-based modeling such as “a balance in use and 

reporting, efficiency and effectiveness, a tie to transportation values, objectivity in the 

measurements used and the stakeholders involved”. Based on the current Canadian and 

international examples, the study proposes a basic framework for performance-based modeling, 

which consists of two levels: (1) General macro-level overview and (2) Detailed level. The latter   

examines quality of service, institutional productivity, and effectiveness. The study includes 

performance measure examples from OECD, Australia and the United States. The study 

concludes that there should be a link between performance measures, objectives, and targets or 

acceptable level of performance. 

Moore et al. [12] indicates that MPOs are very different from each other and generally do not have 

the power to raise revenue or allocate funds. In spite of having a transportation plan at the local 

level to direct funds, they often do not have the resources to identify and implement performance 

measures in their transportation plans. The study provides a review of the current performance 

measures practice and guidance to MPOs and other transportation agencies for integrating 
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performance measures into their transportation plans. The study argued that the federally 

mandated one-size-fits-all performance measurement approach is unsuitable, particularly for 

smaller transportation agencies with limited funds and personnel. However, the smaller MPOs 

can still employ performance measures in their planning process using historical and trend data 

in their area.  

This review of the literature indicates that many transportation agencies have committed to using 

performance measures, but the degrees to which performance measures are developed may differ 

widely. Different goals and objectives at various levels require transportation agencies to use 

different measurable performance indicators. Although the review revealed occasional instances 

of inspired performance measure implementations, overall there were a limited number of 

studies specifically focused on exploring different performance measures based on existing data 

sources. 
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3. DATA SOURCES AND DATA ASSEMBLY 

The development of performance measures relies on the availability of related data. This chapter 

summarizes data sources commonly made available by agencies like State DOTs.  

3.1. Traffic Volume Counts   

The Federal Highway Administration (FHWA) requires traffic monitoring system (TMS) to be 

used for collecting traffic volume counts at many roadways. Currently, there are 3,000 such 

traffic detection stations in place on public roads throughout NJ. [13] Some sites provide 

continuous traffic counts while others may only measure traffic counts for particular instances, 

such as an estimate of the annual average daily traffic (AADT). Table 3.1 shows an example of 

traffic volume counts maintained by the NJDOT. Important information such as location, facility 

name, count time period, traffic counts and station types are usually provided. Some agencies 

like NJDOT and NYSDOT have also developed interactive map programs to display published 

traffic data graphically. [13, 14] Data for individual traffic stations, the type of data availability, and 

count sites can be queried from these programs. Estimates of AADT are usually included for 

roadway segments that contain a traffic station. Depending on the detection capability of the 

traffic station, additional short-term data may be also available. These data can be easily 

integrated into other compatible programs.  

Table 3.1 Example of traffic volume counts collected at different sites (source: NJDOT4) 

 

                                                 
4 http://www.state.nj.us/transportation/refdata/roadway/traffic.shtm 
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Traffic volume counts are the most common traffic data collected and archived by transportation 

agencies. They are the fundamental elements used to develop performance measures such as 

congestion indicators and crash rates. 

3.2. Probe Vehicle Data 

Direct measurement techniques such as those used in electronic toll collection systems can also 

provide useful probe vehicle data. After the implementation of the E-ZPass system along the east 

coast, vehicle-by-vehicle disaggregate data became available. Although these data were 

processed and archived, they were seldom made publicly available. At certain toll road plazas, 

however, only probe vehicle data will be available, such as traffic volume/composition at each 

time period. For distance-based toll roads, each toll plaza transaction is recorded in the system 

database with both entry and exit information (time, interchange, type of vehicle, etc.). This type 

of probe data is more useful as it not only provides traffic volume counts but also travel time 

related information. Although probe vehicle data are usually not available in real-time, 

examining archived travel time information is valuable when monitoring a facility’s operational 

efficiency.  

Table 3.2 is an example of this kind of probe vehicle data that can be obtained from vehicles 

equipped with a toll tag and used to support the development of possible performance measures. 

The detailed description of the sample data sets and considered time periods are shown in Table 

3.2. 

Table 3.2 Description of sample probe vehicle data 

Type Data Description 

Disaggregated 

data 

Vehicle-by-vehicle entry/exit times and locations, and tolls paid for each  

vehicle equipped  with electronic toll collection tags 

Aggregated data Hourly, daily, weekly traffic counts for each interchange entry and exit 

toll plaza 
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3.3. Statewide Crash Records 

Statewide crash records are commonly maintained by DOTs and/or transportation agencies. The 

example crash data shown in Figure 3.1 were obtained from the crash database of the New Jersey 

Department of Transportation (NJDOT)5. Crash related attributes including roadway 

characteristics, environmental conditions, crash characteristics, driver information, vehicle 

information, and occupant information are collected for each crash in the database. The original 

data are kept in four separate tables, including accident table (crash summary), driver table 

(driver information), vehicle table (vehicle information), pedestrian table (pedestrian 

information), and occupant table (occupant information). In the crash table, each crash is 

described by one single data row regardless of the number of vehicles involved. The other three 

tables describe information about each individual (vehicle/person) in a row because multiple 

vehicles, drivers, and occupants may be involved in the same crash. A unique case number is 

shared among these tables to link together essential information about the crash, vehicles and 

victims in involved in the same crash. Figure 3.1 shows an example of linking different parts of 

crash information. 

 

Figure 3.1 Example of linking different crash information (source: NJDOT) 

The statewide crash data are very useful to develop safety performance measures such as crash 

rates, which can be used by the transportation system operators to evaluate safety issues, crash 

characteristics, and the effectiveness of countermeasures. Depending on the capability of the 

                                                 
5 http://www.state.nj.us/transportation/refdata/accident/ 
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agencies, these crash data can be available for on-line and off-line applications. Depending on 

data aggregation levels, they can be examined at specific sites, corridors, or networks. 

3.4. Weigh-In-Motion (WIM) Data 

The weigh-in-motion (WIM) technology provides opportunities for collecting 24-hour truck load 

data at many key locations in an efficient and effective manner. Typical information collected at 

WIM stations includes time, axle load, axle spacing and number, and vehicle classification. In 

addition, speed information, lane of operation, and traffic volume may also be available, 

depending, of course, on the capability of the WIM stations. The records of the individual 

vehicles can be then aggregated by vehicle class, time period, direction, and lanes. Figure 3.2 

shows an example of the aggregated weekday average information on vehicle classification at a 

WIM site in New Jersey. 

 

Figure 3.2 Weekday average information on vehicle classification at a WIM site in NJ [13] 

Timely WIM data is essential for pavement/bridge condition studies, highway monitoring and 

capacity studies, accident rate calculations, and the examination of truck activities. It can also be 

used for predicting future traffic loading. Important traffic characteristics such as future truck 

volume and axle weight frequency distributions can be derived from historical WIM 

observations.   
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3.5. Infrastructure-based Sensor Data 

Various infrastructure-based sensors such as inductive-loop detectors and remote traffic 

microware sensors (RTMS) are frequently deployed to collect traffic counts, occupancy, speed, 

and vehicle type. Figure 3.3 shows an example of the various RTMS on the NJ Turnpike and the 

Garden State Parkway. Both short- and long-term measurements from these sensors are widely 

used to evaluate the performance of the facilities as well as the whole transportation system. For 

instance, the traffic counts from the sensors provide the basis for determining vehicle miles 

traveled (VMT) and AADT during long-term assessments. In addition, short-term counts, speed, 

and/or occupancy data can be used to investigate the short-term performance of the facilities 

under both normal and disrupted traffic conditions (e.g., construction and incidents). 

 

Figure 3.3 RTMS on NJ Turnpike and Garden State Parkway (source: NJTA6) 

The availability of the infrastructure-based sensors is limited due to the high cost associated with 

installation, maintenance, and so on. Generally, only a relatively small portion of the 

                                                 
6 www.state.nj.us/turnpike/  

RTMS
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transportation network is covered with these sensors. Thus, they can generally provide data for 

some but not all performance measures for a state highway system.    

3.6. On-Line Open Source Data 

A number of third-party map services such as Google MapsTM, Bing MapsTM and MapQuestTM 

provide publicly available real-time traffic information. Travelers can now easily find out about 

prevailing traffic conditions and incidents that might disrupt their journeys. These data come 

from a variety of sources, including government agencies and private data providers. More 

recently, much of the traffic data used by these map service providers are sourced from 

thousands of commuters from their GPS feature enabled smartphones while traveling in their 

cars. For instance, MicrosoftTM has indicated that their Bing Maps now uses traffic information 

offered by Nokia (HERE) MapsTM [15]. This allows Bing Maps to acquire traffic data from many 

locations around the world as Nokia has access to millions of devices powered by their Symbian 

platform. These data from such a large number of devices allows Bing Maps to expand its 

coverage to an even larger number of roadways. For example, traffic information in the United 

States already available on Bing Maps now includes local roadways. Similarly, Google Maps 

taps into GPS data received from Android handset users through traffic crowdsourcing [16]. Any 

user that has enabled "My Location" with Google Maps on their device contributes anonymous 

GPS data and help Google capture and display live traffic conditions. 

Most of these third-party map service providers provide the Application Programming Interface 

(API) for developers to (partially) access their live traffic information displayed on their maps. 

For instance, Bing Maps REST Services API offers a Representational State Transfer (REST) 

interface which allows users to create a route and geocode an address [17]. More importantly for 

our purposes here, the Bing Map traffic API provides access to real-time information such as 

incidents, congestion and construction sites. Similarly, Google Maps, MapQuest and many 

others provide APIs to access their traffic information [18, 19]. 

To be able to use on-line open data for performance measure analysis, we propose the creation of 

virtual sensors that can capture traffic data through a customized API. One implementation of 

this idea, depicted in Figure 3.4, could be a highway segment of AB featuring eight virtual 

sensors. These virtual sensors would, at their essence, be a number of user-defined pushpins with 
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coordinate information. The distance between two of the virtual sensors can then be calculated 

by the virtual sensor coordinates. Depending on the needs of the user, a pair of adjacent virtual 

sensors can be placed to collect traffic information for a short link or a longer route, either a 

tenth, a half or a full mile in length. Similar to the regular query often performed on these maps, 

one could use the API’s query function to easily obtain travel time information in Extensible 

Markup Language (XML) format between two adjacent sensors. The obtained travel time 

information would then be converted into a speed calculation based on the section length.  

 

Figure 3.4 Obtaining real-time speed data by deploying virtual sensors on maps [20] 

Rather than relying on limited infrastructure-based sensor data on a single road, users can also 

create a large number of virtual sensors to cover the entirety of the highway network. This 

approach, in turn, enables us to obtain more traffic data to support many applications [21], i.e., the 

identification of secondary crashes for networks without infrastructure-based sensors.    

4. DATA DRIVEN PERFORMANCE MEASURES 

Performance measures provide quantitative information to transportation agencies and key 

decision makers. The use of these measures can lead to a more comprehensive view of the 

overall health of our transportation systems. They are the fundamental decision support tools 

called upon when selecting and deploying appropriate countermeasures, either through 

investment and operational decisions, strategies, innovations, or partnerships. The development 

of performance measures should be an iterative process involving all related agencies associated 
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with a transportation project or action. Although there are many useful performance measures, 

the final performance measures must be easily and accurately quantifiable using existing data or 

new data that only requires limited effort to collect. The next section summarizes the important 

performance measures that can be derived from the easily available and accessible data sources 

in NJ. 

4.1. Traffic Congestion and Reliability Measures 

4.1.1. Travel Time Reliability 

Travel time represents the amount of time that has elapsed when a traveler moves between two 

locations in a transportation system. Many factors such as road network conditions, driver 

characteristics, travel modes, traffic regulations and management, weather patterns, and traffic 

incidents can affect the travel time of a single trip. For instance, as seen in Table 4.1, travel times 

can vary from month to month. In general, both travelers and facility operators are even more 

concerned with the variations of the travel times rather than the magnitude of the travel time for 

a given route/trip. Therefore, a measure known as travel time reliability is used to describe the 

variation of travel times along a given route. 

Table 4.1 Travel time on selected routes during peak hours 

Route Month Total 
Mileage 

Average Travel Times
(AM Peak) 

Average Travel Times 
(PM Peak) 

Travel Times 
at Speed Limit 

I-33 WB March 6.5 miles 8.8 minutes 9.5 minutes 8.0 minutes 

I-33 WB July 6.5 miles 15.4 minutes 14.6 minutes 8.0 minutes 

I-33 WB October 6.5 miles 12.6 minutes 13.5 minutes 8.0 minutes 

I-9 SB February 3.8 miles 6.0 minutes 5.8 minutes 4.5 minutes 

I-9 SB April 3.8 miles 7.8 minutes 6.0 minutes 4.5 minutes 

I-9 SB December 3.8 miles 7.9 minutes 7.6 minutes 4.5 minutes 

 

Travel time reliability, then can be described as a measure of the amount of congestion travelers 

experienced at a given time. It is defined as the consistency or dependability in travel times, as 

measured from day-to-day and/or across different times within a day.[22] It is aimed to quantify 

the temporal variability of travel times on a road facility or network. A facility that offers a high 

level of service has a high level of travel time reliability, and vice versa. Reliability measure also 
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reflects the extent of unexpected travel time delays due to external events. Travel time reliability 

is determined with travel time estimates derived from data sets such as continuous loop detector 

data and / or probe vehicle data. According to the FHWA [22], there are five standard measures of 

travel time reliability most frequently used:  

 90th or 95th percentile travel time (PTT) — how much delay there will be on the busiest 

travel days for specific travel routes or trips. This measure is reported in minutes and 

seconds and can be easily understood by daily commuters that are familiar with their 

routes. [22]  

 Travel time index (TTI) — used to measure the peak period travel time in excess of that 

experienced in free-flow conditions. [22] It is calculated as the ratio of the peak period 

travel time to free-flow travel time (FFTT) with the following equation.  

      (1) 

 Buffer index (BI) — represents the extra time (or time cushion) that most travelers add 

to their average travel time when planning trips to ensure on-time arrival. It is calculated 

as the ratio of the difference between the 95th percentile travel time and mean travel time 

to the mean travel time (MTT). [22] For a specific route trip and time period, the buffer 

index is computed using the following equation.  

      (2) 

 Planning time index(PTI) — it means the total travel time needed to plan for an on-time 

arrival 95% of the time. [22] It is computed as the 95th percentile travel time divided by 

free-flow travel time. For a specific route trip and time period, the planning time index is 

computed using the following equation.  

      (3) 

 Congestion frequency index (CFI) — the percent of days or time during which the 

mean speed falls below a certain speed, or the travel time exceeds a certain threshold. [22] 

It can be easily calculated by counting the frequency that traffic conditions exceed a 

preset threshold; for instance, 1.5 times the free flow travel time: 

    (4) 
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4.1.2. Travel Delay 

Travel delay represents the additional travel time experienced by a traveler to complete his/her 

trip. It is calculated as the total travel time on a segment of highway minus the travel time for the 

vehicle under free-flow condition (see below for the equation). 

      (5) 

It is an important and frequently used indicator to examine the impact of different sources of 

congestion. A particular interest of many transportation agencies is to understand the travel 

delays due to traffic incidents, work zones, adverse weather, fluctuations in normal traffic, 

special events, traffic control and management, and the physical bottlenecks of roadways. 

Depending on various objectives, travel delays can be aggregated by different user groups such 

as trucks, passenger cars, and by time periods such as a weekday peak period, weekday off-peak 

period, and so on. 

4.2. Traffic Safety Performance Measures 

Traffic safety performance measures aim to monitor the evolution of traffic safety conditions in 

transportation systems. One measure that is often employed is the number of crashes on public 

roads. The characteristics of the traffic crashes such as their frequency, types, level of severity, 

and distribution are of great interest. Examining this information allows transportation agencies 

to screen and identify hot spots, and to evaluate and implement safety countermeasures. The 

major data source used to examine this safety performance is the statewide crash database.  

Some other supplemental and emerging measures such as crashes per 100 million vehicle miles 

and crash costs can be also be derived with this data source, if used with other related 

information. Given that the data are accurate, these measures can be used for comparisons across 

time, facilities and locations etc. 

( )Travel Delay time actual travel time free flowtravel time 
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4.3. Incident Management Performance Measures 

4.3.1. Incident Duration 

Incident duration is a measure used to depict how long it takes to clear non-recurring events that 

affect traffic. It represents the time elapsed between an incident being verified and logged and 

the time when responders have it cleared. Depending on the availability of event records, the 

incident duration can be reported for various time periods (daily, weekly, monthly, and 

annually). In addition, transportation agencies are interested in the relationship between incident 

durations and different factors, including but not limited to incident type, number of lanes 

blocked, incident occurrence time, number and types of vehicles involved, facility type, and 

weather conditions. Understanding these relationships can help transportation agencies compare 

and optimize their incident management programs so that the impact of future, similar incidents 

can be predicted and minimized by deploying faster clearance strategies. 

4.3.2. Secondary Crashes 

In spite of their notable impact on mobility, one of the most serious problems associated with 

traffic incidents is the risk of secondary crashes.[23] One notable study by Tedesco et al. [24] found 

that the crash risk can be six times higher in the presence of a prior crash. Similarly, Karlaftis et 

al. [25] estimated that each additional minute that a primary incident remains on the roadway 

increases the likelihood of a secondary crash by about three percent. Likewise, other studies have 

shown that more than ten percent of crashes were the direct result of previous incidents.[26-28] In 

the United States, secondary crashes alone were responsible for an estimated eighteen percent of 

all fatalities on freeways and twenty percent of all crashes annually.[29, 30] The occurrence of 

secondary crashes can further increase congestion and impede incident management operations. 

Therefore, it is crucial to examine secondary crashes, understand their characteristics, and 

provide necessary countermeasures. 

While traffic incidents have been widely analyzed in the literature, limited research has been 

conducted to explore secondary crashes. This is largely due to the lack of detailed incident data 

and corresponding traffic data required to identify secondary crashes.[31] It is difficult to identify 

secondary crashes solely by using the crash databases provided by many transportation agencies. 

A common method adopted by earlier studies [28, 32, 33] is to simply mark the secondary crashes 
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that occurred within a pre-defined impact range of the primary crash. However, the impact of a 

motor vehicle crash on traffic flow depends upon various factors such as crash characteristics, 

roadway conditions, traffic flow levels and weather conditions. Therefore, the validity of 

secondary crashes measured by this method is questionable. 

Traffic sensors such as inductive loop and microwave radar detectors are now being extensively 

used to automate the collection of traffic data. Large sets of high-quality, high-time resolution 

traffic data are now becoming available for a growing number of roadways. A more robust 

method for identifying secondary crashes can thus be developed by integrating this kind of 

emerging rich traffic data sources with available crash databases.  

Driven by this massive amount of newly available yet underutilized data, this study aims to 

develop an enhanced method for the measurement of secondary crashes that both utilizes 

archived traffic sensor data and existing crash records. The detailed algorithm is presented in the 

next chapter. The number of secondary crashes on roadways with instrumented sensors can be 

quantified as an important and novel performance measure for incident management. 
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5. PROPOSED METHODOLOGIES FOR THE QUANTIFICATION OF SELECTED 

PERFORMANCE MEASURES 

In the rest of this report, three different but extremely important performance measures namely, 

travel time reliability, incident duration, number of secondary crashes will be further studied to 

illustrate the opportunities that exist to estimate this type of performance measures using various 

extensive and emerging data sources. Moreover, novel estimation methodologies for the 

estimation of each one of these performance measures will be described in detailed.  Finally, 

real-world case studies will be used to illustrate the usefulness of these new data driven 

methodologies proposed to estimate selected performance measures. 

5.1.  Travel Time Estimation 

As presented in the previous section, travel time is a fundamental element used to derive a 

number of performance measures. This section provides a basic understanding of the estimation 

of travel time using vehicles instrumented with toll tags as probes. It develops improved models 

to estimate experienced travel time for closed tolling networks. Finally, sensitivity analysis of the 

model with respect to its parameters is performed.  

5.1.1. Problem Statement 

Automatic vehicle identification (AVI) systems record the exact times at which vehicles enter 

and exit the network. The EZ-Pass electronic toll collection (ETC) systems on the New Jersey 

Turnpike, Pennsylvania Turnpike, and New York Thruway are examples of such AVI systems. 

These systems provide very rich traffic information including traffic volume, traffic composition, 

time stamps, and type of payment. One important yet understudied topic is how to better utilize 

the large amount of transaction data generated from the ETC systems in an effort to improve the 

estimation of travel time.  

Since the ETC systems capture the enter and exit time stamps, the experienced travel time of a 

vehicle completing its trip between two toll plazas is directly accessible. However, there are 

several challenges associated with the use of the measured travel time as an estimation of the trip 

travel time. The most notable challenge is that the traffic demand between two toll plazas might 

be too low to develop a reliable estimation of the travel time. For example, the demand between 
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two consecutive junctions can be extremely low, since travelers do not prefer using tolling roads 

for short-distance trips. Furthermore, an estimation of travel time for a section based on 

measurements from a single OD pair would be biased by the experience of those vehicles. Travel 

time estimation should incorporate other through traffic data as well. Therefore, the problem is 

how to efficiently utilize EZ-Pass data to accurately estimate link travel times. 

5.1.2. Travel Time Estimation Methodology 

The travel time between an entry toll plaza  and an exit toll plaza  for vehicles that enter the 

toll plaza  at  time interval, as shown in Figure 5.1, can be simply represented by the 

following equation: 

 (6)

where  is the travel time calculated based on the entry time and exit time;  is the entry 

travel time for vehicles to reach the merge area on mainline;  is the exit travel time for 

vehicles to leave the exit toll plaza;  represents the travel time for the section between the on-

ramp merge area of the entry toll plaza  and the off-ramp diverge area of the exit toll plaza . 

 

Figure 5.1 Schematic of travel time analysis between two toll plazas 

As shown in Figure 5.1, the link travel time  of the mainline section between entry toll plaza  

and exit toll plaza  for vehicles entering at  time interval is consisted of two part: (a) the 

travel time  for the short segment between the off-ramp diverge area and the on-ramp merge 

area of toll plaza  and (b) the travel time  for the long segment between the on-ramp merge 
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area of the entry toll plaza  and the off-ramp diverge area of the exit toll plaza .  can be 

represented by the following equation: 

 (7)

Since there is no direct measurement for the travel time  of the short segment within an 

interchange, a linear expansion factor is assumed based on the length of the segments. The 

estimation of  is described as follows: 

 (8)

where  is the length of the segment between the off-ramp diverge area and the on-ramp merge 

area of toll plaza ;  is the length of the segment between the on-ramp merge area of the entry 

toll plaza  and the off-ramp diverge area of the exit toll plaza . 

Based on equation (8), the link travel time  of the mainline section between an entry toll plaza 

 and exit toll plaza  at  time interval shown in equation (7) is rewritten as 

 
(9)

As the length of each segment is a constant value, only information about the travel time 

between two toll plazas and the corresponding on-ramp travel time and off-ramp travel time is 

needed to estimate the link travel time  in equation (9).  

The travel time between a toll plaza  and toll  can be simply estimated by the above equation 

(9). However, the results might not be representative for the target link between  and .  This is 

because the demand between toll plaza  and toll plaza  might be very low for certain periods, 

particularly at night. In addition, the demand can be very low if toll plazas  and  are very 

close and few vehicles prefer to pay to use this short link for their trip. As mentioned before, it is 

desirable to combine travel time information from vehicles associated with other OD pairs that 

cross the target link. Therefore, a data fusion procedure is developed. Figure 5.2 is used to 

illustrate the proposed data fusion procedure. 
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Figure 5.2 Estimate target link travel time between i and j based on other adjacent OD pairs 

Let’s assume  that the objective is to estimate travel time for link  at the  time step. Using 

equations 6 to 9, we can obtain a rough estimation of travel time for any OD pair that crosses the 

target link and have  as its destination. For instance, let’s assume that there exist  toll plazas 

at the upstream of toll plaza . Travel times between an upstream origin toll plaza  

and toll plaza  and toll plaza  measured based on equation (9) are denoted as  and 

, respectively. Thus, the travel time of the target link  at the  time step can be calculated by 

equation (10). Since there will be delays due to vehicles traversing from one link to another, 

equation (11) is used to synchronize vehicles that enter the target link at the same time interval.  

 
(10)

 
(11)

Once the travel time for the target link  is derived based on equation (10) and equation (11), 

the final estimated travel time of  can be calculated using equation (12).  

 

(12)

Note that this equation assumes that the mean value of the derived travel time  from different 

OD pairs is the final estimation. Instead of using the mean value, the median value can be 

another option for the final estimation of . The estimated travel time  can also be 

compared with the one that is directly derived based on equation (9) using the ETC data between 

toll plaza  and toll plaza .                 
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5.1.3. Probe Vehicle Based Travel Time Algorithm 

When implementing the above proposed approach for travel time estimation, there are still two 

important questions that need to be answered. With equation (9) in mind, the first question is 

how to obtain the entry travel time  and exit travel time . The second question is how to 

filter and aggregate ETC measurements of multiple probe vehicles to obtain a representative 

travel time estimation  for each time interval.  

One way to obtain the entry and exit travel times is to assume that there is a constant travel time 

based on the fixed entry and exit distances and the corresponding speed limits. However, despite 

the relative short entry distances, the entry travel time  is closely related to the traffic 

conditions on the entry ramp as well as the mainline. Similarly, the exit travel time  is related 

to the traffic conditions at the exit ramp and the queues in the approach zone of the exit toll 

plaza. Depending on the traffic conditions, these two travel time values can vary. For instance, 

an assumption of constant entrance/exit times would not work when there is congestion along the 

mainline and exit toll plaza. In highway configurations, congestion along the mainline would 

block a vehicle’s access to the mainline whereas the congested exit toll plaza would delay the 

vehicle from leaving the toll plaza. Therefore, the constant travel time values calculated from the 

entry or exit distances and the posted speed limits cannot very accurately represent actual traffic 

conditions, particularly during peak periods. For instances where the historical travel time 

distributions for the entry section and the exit section are available, random samples of the 

corresponding time periods are preferable to using the assumed constant travel time values. 

To obtain the representative travel time for each time interval based on observed probe vehicle 

travel time measurements, unrealistic observations (outliers) have to be eliminated. These 

individual outlier observations might be caused by vehicles stopping in rest areas or various 

other factors. In addition, for the periods with very few or no observations, interpolation should 

be made based on other available information. In other words, the travel time from the previous 

period and the free flow travel time can be considered when making an interpolation.  
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Table 5.1 shows an example of the algorithm used to filter and aggregate the observed travel 

time for obtaining the representative travel time. 
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Table 5.1 Pseudo code for filtering and aggregating travel time measurements obtained probe 
vehicles 

At time interval : 

     Assumption: there were  probe vehicle travel time observations   

     Parameters: weight factors  

     Objective: filter outliers and estimate the travel time  based on  

     Step 1: check the number of probe vehicle measurements and found no observation  

                  

     Step 2: check the number of probe vehicle measurements and found only one observation  

                  

     Step 3: check the number of probe vehicle measurements and found two observations  

                  

     Step 4: check the number of probe vehicle measurements and found three or more 

observations  

                  

Iteration:  
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5.1.4. Case Studies 

The proposed travel time estimation method is applied to the New Jersey Turnpike (NJTPK). 

The studied highway is a closed tolling system that collects tolls through both a traditional ticket 

system and a ETC collection system at the toll plazas. Despite the availability of the time stamps 

for all vehicles entering and exiting the toll plazas, only EZ-Pass users were considered as probe 

vehicles because other cash users may be delayed when picking up the tickets at an entry toll 

plaza, returning tickets, or paying cash at an exit toll plaza. Empirical EZ-Pass transaction data 

from 2011 were obtained. The case study section is limited to the eight links between 

Interchange 9 and Interchange 5 as shown in Figure 5.3.  

 

Figure 5.3 Analyzed links in selected section between Interchange 9 and Interchange 5 

When implementing the proposed travel time estimation approach, three time intervals are 

considered: 5-minute, 10-minute, and 15-minute. The 5-minute interval is considered to be the 

minimum update interval to follow the traffic conditions that would evolve quickly (e.g. incident 

conditions). The proposed method is tested using data of multiple days randomly selected from 

2011. The estimated link travel times based on different time intervals were compared through 

root mean square percentage error (RMSPE). RMSPEs are computed by comparing the observed 

and estimated travel times using the following equation: 

  

Interchange 

9 8A 8 7A 7 6 5 

Northbound Links 

Southbound  Links 
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(13) 

where  is estimated travel time at  period, ;  is the  observation in  

period, ;  that varies in each period is the total number of observations during a 

given time period; and  is the total number of observations during all analyzed periods. 

Figure 5.4 and Figure 5.5 show two examples of travel time estimation for the link between 

interchange 08A and 009 in the northbound direction. Figure 5.4 shows the estimated travel time 

under normal conditions whereas Figure 5.5 illustrates the estimated travel time under incident 

conditions on the same weekday but from a different week.  

 

Figure 5.4 Travel time estimation under normal conditions 
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Figure 5.5 Travel time estimation under incident conditions 

The estimations shown in Figure 5.4 and Figure 5.5 are based only on the probe data collected 

through OD pairs associated with the target link. In contrast, the improved estimations represent 

the results based on the additional probe data from OD pairs associated with the target link as 

well as adjacent OD pairs.  

To further examine the performance of the improved method, RMSPEs errors were computed for 

travel time estimations for both different days and conditions. Table 5.2 shows the computed 

RMSPEs. The results show that using 5-minute time interval produces relatively larger RMSPEs 

compared with RMSPEs found with longer time intervals. The 10-minute interval and 15-minute 

time intervals produce similar results. To improve computational efficiency, 15-minute interval 

will be used for deriving related performance measures.  
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Table 5.2 Comparison of travel time estimations based on different time intervals 

Analyzed 

Links 

RMSPE ( Day: 4/17/11) RMSPE ( Day: 9/22/11) RMSPE ( Day: 4/11/11) 

5-min 10-min 15-min 5-min 10-min 15-min 5-min 10-min 15-min 

8 to 7A 0.341 0.141 0.143 0.286 0.200 0.200 0.257 0.194 0.177 

7A to 7 0.427 0.325 0.295 0.378 0.293 0.285 0.398 0.711 0.389 

7 to 6 1.058 0.183 0.186 1.147 0.306 0.308 1.125 0.306 0.306 

6 to 5 0.331 0.250 0.265 0.338 0.162 0.183 0.343 0.138 0.142 

7 to 7A 0.634 0.213 0.217 0.326 0.302 0.297 0.414 0.431 0.461 

7A to 8 0.400 0.181 0.185 0.269 0.194 0.194 0.265 0.172 0.177 

8 to 8A 0.274 0.184 0.162 0.584 0.718 0.240 0.314 0.253 0.251 

8A to 9 0.231 0.120 0.121 0.255 0.150 0.151 0.256 0.151 0.152 

 

5.1.5. Travel Time Comparisons 

The estimated travel times based on probe vehicle data are compared with the measured travel 

time based on RTMS data. The RTMS data from 2011 from the NJ Turnpike were collected. 

Travel time for each short link was calculated. The travel time between two interchanges was 

then calculated by summing these individual link travel times. This summation represents the 

instantaneous travel time. The travel time estimation based on the probe vehicle data represents 

the experienced travel time, which is closer to the actual travel time for a vehicle traveling from 

one interchange to another. Of course, when the traffic is operating under a free flow condition, 

travel times based on the RTMS and ETC data should be relatively close. However, if there is 

congestion on a certain link, the RTMS downstream of the congested link may report  free flow 

travel time since no vehicle would have crossed that location due to the upstream bottleneck. 

Thus the instantaneous travel time will not reflect the actual travel time. Figure 5.6 shows an 

example of the travel time obtained from different data sources. Figure 5.6(a) and Figure 5.6(b) 

show that under non-congested conditions travel time based on the RTMS data is similar to the 

estimated travel time based on the probe vehicle. Figure 5.6(c) and Figure 5.6(d) show that the 

travel time based on the RTMS data is obviously different than the ETC estimates during the 

congested period. Thus, if the RTMS data were used to quantify travel time-based performance 

measures (e.g., travel time reliability measures), the results will be biased, particularly when 
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congestion occurs. It is advised then, to use experienced travel times instead of instantaneous 

travel times to develop travel time related performance measures.  

 

Figure 5.6 Comparisons between travel times based on RTMS and probe vehicles (7A to 8) 

5.1.6. Summary 

The primary purpose of this section is to provide accurate travel time estimates using probe data 

collected by the ETC system instead of other sensors specifically deployed for traffic monitoring. 

This dual use of toll readers for travel time estimation can be an attractive approach since it 

eliminates the burdensome additional costs incurred for deploying and maintaining infrastructure 

sensors. However, this approach can also present a significant challenge of achieving a high level 

of estimation accuracy when readers are not located on the main roadway but only on the ramps. 

To break down path travel times into link travel times, an improved estimation method is 

developed. Results showed that the proposed improved method clearly outperforms the simple 

estimation method, and 15-minute update periods provide the best results for the highway 

segment in this report. Thus case study segment is long enough to achieve a proper demand level 

and short enough to respond to rapid changes in the network. Our results, based on the real data, 
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show that it is possible to use vehicles with electronic toll tag data as probes to provide 

reasonably accurate estimations of link travel times to track traffic conditions. 

5.2. Assessing Travel Time Reliability 

In this section, the estimated travel time based on the travel time estimation methodology 

presented in the previous section has been used to develop travel time reliability measures. These 

travel time reliability measures for the eight links shown in Figure 5.3 are reported. As 

mentioned before, travel time reliability can be aggregated by different applications. Table 5.3 

shows an example of computed travel time measures based on one-year travel time information 

for each link. The free-flow travel time (FFTT) indicates the travel time based on a speed limit of 

65 mph for each link. The mean travel time (MTT) represents an annual average of estimated 

travel time for all time periods. 95th percentile travel time (95th PTT), buffer index (BI), planning 

time index (PTI), and congestion frequency index (CFI) were derived based on the definition in 

Chapter 4. The last four travel time indices (TTI) were considered for the purposes of showing 

the variation of travel time reliability during the AM peak period and PM period on different 

days. 

Table 5.3 Annual reliability measures for transportation performance evaluation 

Link FFTT 
(min) 

MTT 
(min) 

95th PTT 
(min) 

 BI   (%) PTI CFI (%) Weekday 
AM TTI 

Weekday 
PM TTI 

Weekend 
AM TTI 

Weekend 
PM TTI 

(1S) 8-7A 6.55 7.14 9.92 38.9 1.515 5.2 1.015 1.100 1.001 1.099 

(2S) 7A-7 6.18 6.49 8.12 25.1 1.314 2.8 0.984 1.058 0.989 1.072 

(3S) 7-6 2.77 3.53 4.75 34.6 1.715 11.1 1.096 1.227 1.148 1.291 

(4S) 6-5 6.00 5.59 6.59 17.9 1.098 0.7 0.948 0.932 0.948 0.925 

(1N) 7-7A 6.2 7.34 12.96 76.6 2.09 8.1 1.097 1.232 1.081 1.390 

(2N) 7A-8 6.47 7.17 11.28 57.3 1.743 7.2 0.996 1.176 0.992 1.261 

(3N) 8-8A 6.00 6.38 8.11 27.1 1.352 2.7 1.054 1.077 1.031 1.103 

(4N) 8A-9 8.77 8.52 9.86 15.7 1.124 1.0 0.934 0.973 0.926 0.979 

 

If the BI is used to rank the links, the link between interchange 7 and interchange 7A in the 

northbound direction with a BI of 76.6 percent is ranked as the highest. In other words, when 

crossing this link, travelers should incorporate more time cushion into their travel plans. 

Similarly, the PTI for this link is the highest, with a PTI value of 2.09. To ensure 95% on-time 
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crossing, the total travel time needed is more than twice that of the link’s free-flow travel time. 

Assuming the congestion frequency is increased every time when the travel time exceeded the 

1.5 times of free-flow travel time, we found that the link between interchanges 7 and 6 in the 

southbound lanes were more frequently subject to congestion as the CFI was 11.1 percent of the 

total number of periods This is followed by the link between interchanges 7 and 7A in the 

northbound direction. Overall, the TTI of AM periods during both weekdays and weekends were 

less than that of PM periods. This result indicates that the travel time during the PM periods is 

higher than that of the morning peak period. 

Since travel time reliability measures can be aggregated according to different criteria, 

transportation agencies need to define their specific goals. For instance, if they are interested in 

understanding the change of the reliability measures by time, they should develop weekly, 

monthly, and seasonal measures. Figure 5.7 shows an example of monthly analyses of the 

weekday travel time reliability measures. It can be seen that all measures fluctuated according to 

the months. More importantly, the months with a higher travel time, buffer index, planning time 

index and congestion frequency index are easy to understand visually. Based on these 

characteristics of the travel time reliability measures, transportation agencies can implement 

necessary countermeasures to maintain the optimal performance of their facilities. 
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Figure 5.7 Variations of travel time reliability measures by month 

5.3. Incident Duration Estimation 

The development of a practical model for traffic incident management is investigated through 

Bayesian Networks (BNs) in this section.  BNs are capable of accurately predicting incident 

durations and can be easily incorporated into the incident management activities of Traffic 

Management Centers to improve their real-time decision-making processes.  

5.3.1. Problem Definition 

Incidents, such as accidents, disabled vehicles, and other unusual events significantly contribute 

to traffic congestion and delays in urban freeways. If incidents are not responded to and cleared 
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in a timely manner, secondary crashes may also take place. To minimize the effects of incident-

induced congestion and to prevent secondary accidents, an effective incident management tool 

that can reliably predict incident durations in real-time is of the utmost importance. Real-time 

duration predictions can also provide useful information to travelers for decision-making (e.g. 

route diversion) as well as reduce uncertainty regarding their travel times [34]. 

At the early stages of an incident evaluation, reliable estimates of incident durations may 

improve incident response operations, which, in turn, have the potential to mitigate the effects of 

incidents considerably. At this point, Bayesian Networks (BNs) could be a good alternative to 

the traditional incident duration estimation models as it is possible to use BNs with uncertain 

conditions. A BN is essentially a graphical model in which nodes represent variables and arcs 

represent dependencies among the nodes. Since the problem domain is modeled as a whole by 

constructing a joint probability distribution over different combinations of the variables in BNs, 

they can be used for solving both classification and regression problems [35].  

Figure 5.8 shows how BNs can be utilized for real-time incident management operations. First, 

an incident occurs and it is either detected by traffic sensors or reported by travelers after its 

occurrence. At this stage, information about the details of the incident can be limited to the 

location and the number of vehicles involved in the incident. Even though this information is 

limited, a Bayesian network-based incident duration prediction model can be utilized to provide 

expected incident durations. Based on the first prediction using partial information, an initial 

response strategy can be determined and emergency vehicles can be dispatched. Later, when 

additional information is received from emergency teams and/or additional real-time reports, the 

input to the prediction model can be updated to obtain a new and more accurate prediction. Then, 

the response strategy can be re-evaluated and necessary changes can be made.  

The flexibility of the BN model stands in stark contrast to the models in the literature that call 

only for a single estimation using an initial dataset, thus lacking an appropriate mechanism for 

adapting to the changing incident conditions [36, 37]. The absence of such a learning mechanism 

within the model can also result in a decreased performance over time. This can be avoided, 

however, by incorporating an adaptive learning mechanism within the BNs that utilizes newly 

added data and maintains a high level of prediction performance.  
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Below are this section’s major objectives. 

1. Identify the best ways to estimate BNs so that they provide more accurate predictions of 

incident durations given the known difficulties with using traditional parametric 

prediction methods. Different structure learning algorithms are tested to construct a BN 

structure for incident duration prediction using 2005 New Jersey incident data.  

2. Clearly quantify and discuss the predictive power of the BNs based on a cross validation 

method and Bayesian Information Criterion (BIC) statistic. The best performing model is 

picked based on the prediction accuracy and BIC statistic. 

3. Demonstrate the adaptive learning performance of the Bayesian model for future data. 

First, 2011 incident durations are predicted with the model using only 2005 New Jersey 

incident data. Then, the model is updated with 2011 New Jersey incident data for the 

same locations in a monthly and quarterly basis. The six-year difference between training 

and prediction data can demonstrate how the model performance changes over time; it 

can also indicate if the model is still valid after a substantial period of time after its initial 

estimation.  

 
Figure 5.8 Use of BNs for real-time incident duration prediction 
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5.3.2. Modeling Background 

5.3.2.1 Bayesian Networks and Inference 

A BN is also known as a directed acyclic graph (DAG). Figure 5.9 depicts an example of a 

simple DAG with 5 nodes. If an arc is not present between two nodes in a DAG, then these two 

nodes are said to be conditionally independent. While nodes represent variables that can be either 

discrete or continuous, arcs between the nodes stand for conditional dependency between 

variables. Each variable  is independent of its child nodes given the values of its parents in the 

graph. The joint probability distribution P of the variables in the example DAG is equal to the 

product of its conditional distributions of all nodes given values of their parents; it is written as 

follows: 

  (14) 

 

Figure 5.9 Example BN 

If the conditional probabilities on the right side of the equation exist (i.e. conditional 

dependencies between nodes) then the above equation can also be written in the factorized form 

as follows: 

      
(15) 

where  is the set of parents of  in the DAG. The assigned value of a variable will be 

propagated through the network and will update the marginal posterior distributions of all nodes. 

The details of belief propagation in BNs can be found in a previous study [38]. 

5.3.2.2 Structure Learning for Automatically Building Bayesian Networks 

When expert knowledge is available, the BN structure can be easily created by defining the 

dependencies between variables. However, if it is unknown, it is still possible to learn the 

network structure automatically from the data. Bayesian Information Criterion (BIC) is a widely 
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used measure for model selection in structure learning. The measure includes a goodness of fit 

term and a penalty term to account for model complexity [39]: 

       
(16) 

where L is the sum of likelihood of parameters , d is the dimension of BN and N is the sample 

size. To evaluate the BIC score of a BN, first, the maximum likelihood of the parameters of the 

model is estimated. If the data is complete, this part can be reduced to frequency counting. Then, 

probability for each case in the data can be computed using the estimates.  

The problem in finding the best scoring model is known to be NP-hard (i.e. computationally 

intractable) due to the complexity of the search space of all possible graphs [40]. Hence, the 

structure learning algorithms use search heuristics to limit the size of the search space. They use 

operators such as arc-insertion or arc-deletion to explore the graph space and local score to 

minimize the computational effort to the score variation between two neighboring graphs. Now, 

we will briefly discuss the structure learning algorithms that are evaluated in this study. 

Naïve Bayes classifier is a simple probabilistic classifier where all the parameters are assumed to 

be independent given the class variable (node). Class variable is the parent of all other variables 

in a Naïve Bayes classifier and other variables do not have any other parent in a Naïve Bayes 

classifier. Even though the independence assumption is violated in most cases, Naïve Bayes 

classifiers are shown to work well within many classification problems. To learn and use the 

dependencies between variables other than class variable, one can override the independence 

assumption in Naïve Bayes using an augmented Naïve Bayes classifier (TAN) [41]. Chow and Liu 
[42] proposes an estimation method derived from the maximum weight spanning tree algorithm 

(MWST). This method associates a weight to each edge which can then be either the mutual 

information between two variables [42] or the score variation when one node becomes a parent of 

the other [43]. The K2 algorithm proposed by Cooper and Herskovits [44] limits the search space to 

a subset of all possible networks based on the ordering of the variables. Since the processing of 

the K2 algorithm depends on the given enumeration order, this order needs to be pre-defined by 

a heuristic method if it has not already been defined by experts. As Andrieu et al. [45] proposes, 

the oriented tree obtained with the MWST algorithm can be used to generate this order.  

log log
2

d
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5.3.2.3 Parameter Estimation for Adaptive Learning in Bayesian Networks 

Provided that the data is complete (a value provided for each of the variables for each record), 

the parameters in a BN can be estimated using batch learning. For each record d in the data D, 

the probability is called the likelihood of model M given d. For a DAG, the conditional 

probability distribution can be estimated using either maximum likelihood or maximum a 

posteriori. Then, the log-likelihood of M given d is 

    
(17) 

To estimate the conditional probabilities among the possible models  that have the same 

structure but different parameters, , one must select a parameter estimate that maximizes 

the likelihood: 

     
(18) 

However, when new data is acquired sequentially, it is necessary for the model to adapt to new 

cases. Hence, the conditional probabilities need to be updated since the new records will increase 

the uncertainty in the accuracy of the conditional probabilities. This can only be achieved by 

modifying certain parameters in a BN structure. As the new records are acquired, the goal is to 

learn from the new records. Although we are certain of the network structure, the conditional 

probabilities will vary depending on each new case. Thus it is essential to develop a model that 

can automatically adapt to new cases. For a BN structure such as the one in Figure 1, the variable 

X5 is influenced by X2 and X3, and the conditional probability can be modeled as P(X5 |X2, X3). 

The uncertainty in the conditional probability can be explicitly modeled by introducing a new 

parent Y for X5. To represent each possible result of X5, a prior distribution, P(Y), can be defined 

for Y. When a new case, r, is entered to the BN, the propagation will result in a new distribution 

P*(Y)= P(Y|r) and this way the change in the distribution will reflect what is learned from the 

case. For the additional cases P*(Y) can be used in the same way and when ith case is acquired, 

the corresponding variables will be instantiated and P*(Y) = P(Y|r1,…,ri-1) will be updated to 

P(Y|r1,…,ri) ) 
[46]. 
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5.3.3. Case Study 

Incident duration prediction using BNs approach is applied to incidents along the New Jersey 

Turnpike (NJTPK). 

5.3.3.1 Description of Data 

The data in this study is created by using individual incident logs and New Jersey Department of 

Transportation crash records from 2005 and 2011. An incident log is used to obtain the duration 

and the number of vehicles involved in an incident. The second dataset also includes the same 

crashes with a different set of parameters such as direction, weather conditions, and vehicle type. 

Since these two datasets are coming from different sources, even for the same incident, there 

exists a small discrepancy between them, which requires the utilization of a matching procedure. 

The data is combined using a simple matching algorithm. The steps are as follows: 

 

For Each Record in Incident Database(I) 
Search for Matching Record in Accident Database(II) with following conditions 
Date(I) = Date (II) 
|MILEPOST(I) – MILEPOST(II)| <= 0.2 miles 
|STARTTIME(I) – STARTTIME(II)| <= 15 minutes 
Then match RECORD(I) to RECORD(II) 

 

As a result of the above process, 2221 records in 2005 and 1951 records in 2011 from incident 

logs are matched with the accidents in the NJDOT crash database. The outliers in the records in 

2005 dataset, which later will be used in model development, are discarded using the method 

explained in a previous study [47]. In this method, the distance of a data from kth (k=5) nearest 

neighbor is calculated and then the points are ranked by the distance from its kth nearest neighbor 

and the top n points are identified as outliers (n = 247, 10% of the data). The description of 

parameters in the combined dataset is given in Table 5.4. Since BNs work with tabular nodes, 

prior to model development, incident durations are discretized into 4 separate categories 

1) Low: incidents lasting less than 30 minutes. 

2) Medium: incidents lasting between 30 to 60 minutes. 

3) High: incidents lasting between 60 to 90 minutes. 
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4) Very High: incidents lasting more than 90 minutes.  

Table 5.5 shows the frequency of the records in those categories and summary statistics for 

incident duration data. As Table 5.5 shows, the distribution of the incident duration in 2005 and 

2011 are quite similar. Accessibility measures that indicate the distance of the incident location 

from the nearest exit are also discretized by rounding up the distance to the nearest integer value.  

The data used in the study incorporate incident specific parameters such as incident duration, 

number of injuries and incident type as well as the parameters related to environmental and 

roadway conditions. One advantage of predicting incident duration using this data might be the 

ease of initial estimation as some of the parameters like weather conditions are known as soon as 

the incident has been reported.  However, parameters such as the number of injuries, number of 

fatalities, or roadway damage are unknown until after the incident has occurred.  
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Table 5.4 Description of the model variables 

Parameter Description State description 

Month Month of year 0-12 

DayofWeek Day of week (1) weekday; (2) weekend 

TimeofDay Time of day (1) morning peak (6-9 a.m.); (2) afternoon off-peak (9 a.m.-4 p.m.); (3) 
evening peak (4-7 p.m.); (4) evening off-peak (7 p.m. - 6 a.m) 

NumFat Number of fatalities 0, 1, 3 

NumInj Number of injuries 0-12 

CrshType Type of crash (1) rear end; (2) side swipe (same direction); (3) right angle; (4) head-on; 
(5) side swipe (opposite direction); (6) struck parked vehicle; (7) left/u 
turn; (8) backing; (9) encroachment; (10) overturned; (11) fixed-object; 
(12) animal; (13) pedestrian; (14) pedalcyclist; (15) non-fixed object 

VehNo Number of vehicles 
involved 

1-6 

Pavement Pavement conditions (1) dry; (2) wet; (3)snowy; (4) icy 

Light Lighting conditions (1) daylight; (2) dawn; (3) dusk; (4) dark (street lights off); (5) dark (no 
lights); (6) dark (continuous lighting) 

Weather Weather conditions (1) clear; (2) rain; (3) snow; (4) fog/smog/smoke 

Roadway 
Damage 

Presence of roadway 
damage 

0,1 (binary) 

NumTrkInv Number of trucks 
involved  

0-4 

Location Link on which incident 
occurred (interchange 
to interchange) 

1-28 

Distance Distance from the 
closest exit (in miles) 

0-6.6 

Duration Duration of incident 3-762 

 
 

Table 5.5 Summary statistics of the incident duration data 

 Frequency Duration (minutes) 

Year 0-30 min 30-60 min 60-90 min 90+ min Min Max Mean St. Dev. 

2005 13.4% 51.9% 23.0% 11.7% 3 762 62.4 57.5 

2011 13.5% 52.2% 22.7% 11.6% 5 615 60.8 48.7 

 

5.3.3.2 Structure Learning and Model Estimation 

In this section, three structure learning algorithms, namely Naïve Bayesian classifier, Tree 

Augmented Naïve Bayes (TAN) and K2, are tested to determine the best BN to use for an 

incident duration model using the integrated incident dataset. Development of the BNs in this 

study requires the use of software packages such as Bayes Net Toolbox (BNT) [48] and Structure 

Learning Package (SLP) for BNT. These software packages are used because SLP for BNT 
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complements BNT by offering additional structure learning algorithms while using the basic 

functions of BNT [49]. The combination of these software packages can handle algorithms used in 

the study as they have been already implemented in the packages as built-in functions. Using the 

built-in functions of the software packages mentioned above, the following BNs (see Figure 

5.10) are estimated: 

Naïve Bayes Model: This model has a fixed structure around the class node. Therefore, for this 

algorithm, the structure learning is minimal as long as the class node, which in our case is 

incident duration, is defined. When the only requirement of the algorithm (defining a class node) 

is supplied, the other nodes have a one-to-one connection to the class node. The resulting BN 

structure is shown in Figure 5.10 (a). According to this structure incident characteristics are 

conditionally independent of each other given the value of incident duration. In other words, in 

this model, it is assumed that the presence (or absence) of information on a particular variable 

(node) of a class node (incident duration) is unrelated to the presence (or absence) of information 

on any other variable. For example, the model will predict the duration of an incident if only 

VehNo, CrshType and Light variables are known. Although these variables might be related to 

each other or other variables, the model considers all of these variables to independently 

contribute to the probability of the incident duration. Even though the Naïve Bayesian classifier 

is an over simplistic model due to the very simplistic assumption of complete independence 

between class variables, it has shown superior performance to other classifiers in complex real 

world problems [50]. 

TAN (Tree Augmented Naïve Bayes) Model: The TAN model is simply a modified version of 

the Naïve Bayes model where the relationships between variables are recovered using a structure 

learning algorithm. In our case, the mutual relationships between incident characteristics are 

recovered using a MWST algorithm.  The resulting undirected tree can be oriented around any 

chosen root node except the class node (incident duration). In Figure 5.10 (b), it can be seen that 

the tree structure is oriented randomly around Day-of-Week but note that any other node would 

result in the same structure as the MWST algorithm initially produces an undirected tree. As 

explained before, the relationships between variables are recovered by using mutual information 

(where mutual information is variable pairs of, say, X and Y, with the measure for the amount of 

uncertainty being removed from X by knowing the state of Y and vice versa). Therefore, the BN 
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structure generated based on this algorithm may not necessarily show causality between the 

variables, as the better mutual information between variables does not always necessitate a 

cause-effect relationship. 

K2 Model: K2 algorithm limits the search space to a subset of all possible networks based on the 

ordering of the variables. Since no expert opinion is assumed in this study, the initial search for 

ordering the variables is obtained by using the MWST algorithm. According to the output of 

MWST, the initial ordering of variables is as follows: Duration > Location > Distance > Light > 

TimeofDay > CrshType > NumTrkInv > DayofWeek > Roadway Damage > VehNo > NumInj > 

Month > Pavement > Weather > NumFat where Duration variable accepts the most and NumFat 

accepts the least number of variables as parents. This algorithm searches all DAG space (limited 

by variable order) and also gives room for additional input, mainly expert knowledge for variable 

ordering. Therefore, it may perform very well especially if expert knowledge is available. Figure 

5.10 (c) shows the BN created by the K2 algorithm. It can be observed from the figure that this 

BN is less complex than the previous BNs (less number of edges) and six variables are excluded 

from the pool of all variables. It is found that Light depends on TimeofDay and Distance 

depends on Location. NumFat and NumInj variables are found to be independent of the other 

variables in the BN. It is worth noting that although these variables are in fact considered in the 

model development stage, they are not shown in Figure 5.10 (c) as the algorithm excluded the 

variables from the BN structure. 
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(a) 

 
 
 

(b) 
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(c) 

 
Figure 5.10 BN structures from (a) Naïve Bayes, (b) TAN and (c) K2 

 

5.3.3.3  Model Validation 

To determine the best BN among these three BN structures, their BIC scores are calculated and 

shown in Table 5.6. The Bayesian Information Criterion (BIC) assesses the overall fit of a model 

and facilitates the comparison of BN models. For example, if we have two different models and 

there is no prior information on which model performs better, BIC identifies the model that is 

more likely to have generated the observed data. The smaller the value of the statistic (or the 

more negative the value is) the better is the fit of the model.  

When BIC scores of the models are considered, Naïve Bayes algorithm results in a network with 

the lowest BIC score compared to the other structure learning algorithms, which are TAN and 

K2. The BIC scores also suggest that: 

 Although complete independence among the variables is assumed, the Naïve Bayes model 

ranks the best among the three algorithms.  
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 When relaxing the independence assumption of Naïve Bayes, a better representation of the 

data cannot be achieved (TAN model). 

 K2 achieves the worst representation of the data by employing a simpler structure and 

excluding the many variables that might help better represent the data. 

Table 3 gives the prediction accuracy of each model. Here, prediction accuracy is defined as the 

number of correctly predicted incident durations by the model; expressed as a percentage of the 

total number of samples in the data. Prediction accuracy of the models is computed using a 10-

fold cross-validation method, in which incident durations are randomly partitioned to 10 equal 

size subsamples and one of the subsamples is kept for validation. Other samples are used for 

model estimation. This process is then repeated 10 times to produce prediction accuracy for the 

models in Table 5.6.  

For our dataset, Naïve Bayes model predicts, on average, 63.1% of the incidents accurately. The 

prediction accuracy of TAN and K2 model are also calculated as 61.4% and 60.9%, respectively. 

Although the best performing BN was found previously using BIC scores, these values again 

confirmed that the Naïve Bayes model represents the data best among all the models estimated 

using other “structure learning algorithms” tested in this study.  

Table 5.6 BIC scores and accuracies of prediction models 

Structure Learning 
Algorithm 

BIC Prediction 
Accuracy (%) 

Naïve Bayes -39037 63.1±3.6 
TAN -37365 61.4±5.6 
K2 -34281 60.9±4.9 

 
Thus, BN estimates using the Naïve Bayes algorithm are selected for the prediction of incident 

durations. This structure makes it possible to predict incident duration even in the cases where 

just a single parameter is known since any evidence provided in a node will result in an update of 

the probability distributions of connected nodes. It’s worth pointing out that traditional methods 

such as classification trees require a-priori knowledge of sequential information. Moreover, 

missing information in the sequence would result in the failure of estimating incident duration 

due to hierarchy involved in their structure.  
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Classification trees are constructed in such a way that only one variable of interest can be 

estimated from the tree as opposed to the flexible dynamic representation capability of a BN. As 

the probabilistic relationships between multiple variables are captured by BNs, there is no need 

to define a classification variable [44]. For example, a Naïve Bayes model can be used to predict 

the conditional probability distribution of the number of injuries in an incident, which ultimately 

produces the values of parameters that are conditionally dependent on the number of injuries.  

5.3.3.4 Real-time Prediction Performance and Adaptive Learning using 2011 Data 

One of the main problems in using the real-time incident duration prediction models is that most  

are estimated using a particular dataset and the prediction performance of the model is only 

tested using a subsample of this data. Even if the subsample is not used in estimating the model, 

the data used in testing still belongs to the same sample and the same timeframe from when the 

data has been collected.  

Hence, to evaluate the real performance of a BN model for future data, it is important to predict 

future incident durations using the model. In this study, 2011 NJ incident data is used for the 

prediction of incident durations. Since the model is estimated using 2005 incident data, there is a 

considerable time difference between training and prediction data. Therefore, the prediction data 

may reveal how the model can be expected to behave in the relatively distant future. 

Another related problem in the real-time incident duration prediction is that the data acquired 

from the system evolves over time. However, most models are static and they can only provide 

estimation based on archived data. Generally, it is not easy to tune model parameters by using 

data acquired after the model has been developed. This may lead to a decrease in model 

performance over time since the model cannot adapt to the continuously changing incident 

conditions and durations.  

In this study, an adaptive learning scheme is introduced into the BN model, to overcome the 

problems listed above. Figure 5.11 demonstrates how adaptive learning occurs in the proposed 

BN prediction model. At t=0, the adaptive model is initialized by using the parameters of the 

base model. At the end of first time interval t, the data is received and the adaptive model learns 

the new data. The scheme also keeps track of another instance of the model without learning the 

data for the current time interval t. At the end of next time interval t+1, both instances are used to 
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predict incident durations in time interval t+1. If the learning in the previous time interval helped 

improve the model performance (prediction accuracy), the parameters of the model are updated. 

The updated model is then used for the next time interval and so on. Note, though, that if the 

learning data in the previous time interval does not improve prediction accuracy then the 

parameters of the model are kept the same for the next time interval. Figure 5.12 shows the 

prediction results for 2011 data provided by the base model and by the adaptive learning scheme 

using the new data. First, month-to-month prediction accuracy performance of the base model 

and the model with adaptive learning is compared. For adaptive learning the model is fed with 

monthly data and the model parameters are automatically adjusted. If the learning criteria is met 

for the base model, the predictions are estimated without changing the initial parameters. 

The same performance analysis is done once again by dividing the data into quarters.  

 

Figure 5.11 Adaptive learning mechanism in the BN model 

The results indicate that: 

 Adaptive learning can improve the prediction of the model by adjusting the model 

parameters when the new data is acquired. It can be clearly seen from Figure 5.12 that the 

prediction accuracy of the base model is significantly improved after introducing 

adaptive learning to the base model. 
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 Even without adaptive learning and 6 years after the development of the model, BN 

models can still produce reasonably accurate predictions.  

If the data is fed to the model monthly, the results appear to fluctuate more than when the data is 

fed quarterly. 

5.3.4. Summary  

In this section, three different “structure learning algorithms” are used to develop a BN for 

predicting incident durations. Although all of the algorithms provided promising results, the BN 

generated using a Naïve Bayes algorithm is selected since it is observed to be the best 

representation of the data according to its BIC score and cross-validation results. Then, the 

prediction performance of the chosen model with and without adaptive learning is examined 

using 2011 incident data. 

It is found that the model performance in predicting future incident durations significantly 

improves if the proposed adaptive learning scheme is employed. This improvement occurs 

because the model can adjust its parameters based on the new data to consider time-dependent 

changes. Based on the prediction results of the model for 2011 data with and without learning 

from the future data, it is shown that the developed BN has the capability to automatically adapt 

itself by learning the emerging patterns of new incident durations (see Table 5.7). 

BNs can also be considered good candidates for real time incident duration prediction because of 

their flexibility in adjusting to future conditions. Moreover, BNs can also deal effectively with 

missing data, creating a suitable tool for real-time incident management applications. Another 

advantage of BNs over the classification tree and other regression-based models is that it makes 

its predictions in the form of a probability distribution of possible outcomes instead of fixed 

outcomes like a point estimate. The probability of outcomes other than the one predicted can also 

be evaluated and more informed decisions can be made about a response strategy based on the 

variability of the outcome.  
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Figure 5.12 Percent increase in prediction accuracy of the model with adaptive learning with    
monthly and quarterly 2011 data 

 
Table 5.7 Performance of the model for 2011 data with adaptive learning 

 % Improvement in Prediction Accuracy 

 Q2  Q3  Q4 

  April May June  July August September  October November December 

Monthly 18.9 17.5 16.9  22.0 13.7 20.1  15.4 11.5 22.0 

Quarterly 10.1  7.9  5.8 

 

5.4. Identification of Secondary Crashes  

Highway agencies have been using inductive-loop detectors since the 1960’s for data collection 

and traffic surveillance. Much is known about their operation, advantages and disadvantages. As 

the technology has improved, new and more efficient traffic detection and surveillance devices 

have also emerged (e.g., video image detectors, microwave radar sensors, and passive acoustic 

sensors). Today many freeway corridors are equipped with these surveillance units that 

continuously monitor and archive traffic data (e.g., PeMS in California [51]). In addition, state 

DOTs keep and maintain a crash database that includes detailed data such as time, location, 

severity, number of vehicles involved, gender, age and vehicle type. The proposed methodology 

aims to combine these rich data sources and to fully account for the dynamic spatio-temporal 
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impact of an incident under the prevailing circumstances. The proposed methodology consists of 

following major components:  

(1) Defining secondary crashes. 

(2) Detecting the impact range of a primary incident using archived traffic sensor data. 

(3) Identifying secondary crashes within the spatio-temporal impact range of the primary 

incident. 

5.4.1. Secondary Crash Definition  

Secondary crashes are stochastic events mainly induced by the impact of a prior incident. Figure 

5.13 describes the potential occurrence of secondary crashes under different scenarios. The first 

scenario describes a case where a secondary crash B occurs as a result of the queue caused by the 

prior incident A. Similarly, the second scenario indicates a case where the prior incident A 

causes a queue and multiple secondary crashes (B and C) occur as a result. It should be 

mentioned that these multiple secondary crashes could sometimes be interdependent. For 

instance, if an upstream secondary crash (C) occurs after another secondary crash (B), both the 

primary crash (A) and the earlier secondary crash (B) could be the cause of a third crash C. 

Scenarios 1 and 2 represent typical cases where a prior incident results in a bottleneck and 

negatively affects roadway mobility and safety. The third scenario shown in Figure 5.13 

describes the prior incident A causing a secondary crash B, although there is no queue formation. 

This represents a number of minor incidents that do not seriously impede traffic flow but still 

induce crashes. For instance, an off-road crash that does not cause an obvious queue formation 

may distract some drivers passing the incident scene and cause a secondary crash. It is assumed 

that such secondary crashes can only occur close to the onset time of a primary incident and also 

within a short upstream distance . The last scenario shown in Figure 5.13 depicts a case where 

the secondary crash B is caused by the rubbernecking effect. This describes the incurred crashes 

in the opposite direction of the prior incident A. 
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Figure 5.13 Defining secondary crashes under some typical conditions [52] 

5.4.2. Impact Range of Primary Incidents 

The impact range is the vehicle queue caused by a primary incident measured in time and space. 

As noted previously, the previous studies estimated vehicle queues either by assuming fixed 

queue length and duration or by relying on simple queuing modeling techniques. Instead, this 

study takes advantage of archived traffic sensor data and develops a new methodology to 

accurately capture the impact range of primary incidents. The following steps describe the 

proposed data-driven methodology. 

 Step 1- Constructing Speed Contour Plots: The impact of each incident on traffic 

mobility can be visualized through a series of speed contour plots (SCP) over time and space. 

Figure 5.14 (a) shows an example of a SCP of a freeway under normal traffic condition. The x 

and y axes represent time and the roadway length, respectively. Each cell in Figure 5.14 (a) 
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represents a speed measurement  by traffic sensor  at  time interval,  and 

. Traffic speed is color coded. Figure 5.14 (b) shows a slice of a typical SCP when a 

crash occurs on the same freeway but on another day. It can be seen that a clear congestion 

pattern forms soon after crash A. 

 

Figure 5.14 Speed contour plots: (a) without incident, (b) with incident 

 Step 2- Constructing a representative speed contour plot: In order to determine what 

speed range constitutes a queue formation, an average baseline speed range needs to be 

estimated. Historical sensor data for the days when no incident occurred are used to create a 

representative speed contour plot (RSCP). Specifically, the  percentile speed  is used as 

the representative speed measured at detector  and time period , where  is analogous 

to the day of the week from Monday to Sunday. For instance, we can create a RSCP that 

represents normal Wednesday traffic conditions on a freeway based on data collected every five 

minutes during all other Wednesdays in a calendar year. Specifically, the representative speed 

 of the RSCP is obtained by using the following sub-steps: 

 (a) Create a subset of historical speed measurement  from detector  at each time 

period  on  day of each week, where  means  sample, ;  is the total 
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number of all sampled days that belong to the  category. For instance, if ,  represents 

the total number of Wednesdays during a period (e.g., a calendar year) for which historical data 

are available; 

 (b) Sort the historical speed measurements  in ascending order. Denote  as 

the sorted speed measurement at  place, ; and 

 (c) Let  be an integer such that , where  denotes an integral part of a 

number . Find the   such that . 

If there is recurring traffic congestion at a specific section of the freeway, the corresponding 

representative speeds shown in RSCP should be low (e.g., red cells in RSCP). In contrast, if 

there is no recurring congestion, the RSCP should reflect very smooth traffic conditions (e.g., 

most of measurements are high speed (green cells) in RSCP). Identifying the recurring 

congestion is very useful as the incident-induced congestions can be separated from the recurrent 

congestion. However, it should be mentioned that serious recurrent congestion at some sections 

could lead to long queues formed upstream. Primary-secondary crash pairs occurring within the 

queue cannot be practically determined. This is because the recurrent queue covered the 

congestion caused by the prior incident. In this case, it is difficult to clearly judge whether a later 

crash was caused by the prior incident or caused by the recurrent congestion. Thus, such 

confounded cases are excluded in the following step. 

 Step 3- Constructing a binary speed contour plot (BSCP): Compare  of SCP in 

step 1 with the corresponding  in RSCP generated in step 2. If , the speed 

measurement  in the original SCP is converted into . Otherwise, it is denoted as 

. This constraint defines the abnormal traffic condition if the measured speed is below 

the threshold . Here  is a user defined weighting factor between 0 and 1. It assumed 

that a  percent reduction in the representative (normal) speed indicates the occurrence 

of congestion. A small  suggests an aggressive threshold to define congestion whereas a large 

 implies a conservative threshold. To reflect the consistency of speed measurements in short 

time periods, the speed measurement at the  time period will be changed to  if 

. After conversion, the original SCP will be represented by a 
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BSCP. Figure 5.15 shows an example of converting the original SCP into a BSCP based on the 

RSCP of 50th percentile historical speeds. In BSCP, a red cell indicates that  and a green 

cell means . Each cluster of red cells visualizes non-recurring traffic congestion 

associated with an incident [e.g., crash A in Figure 5.15 (b)]. 

 

Figure 5.15 Converting SCP into a binary speed contour plot 

5.4.3. Identifying Secondary Crashes 

We can identify the queue that has been caused by incidents by using the steps described in the 

previous section. The next task is to identify whether a crash is associated with a prior incident. 

Let us recall the BSCP generated in Figure 5.15, and assume that there are two more crashes B 

and C that happened on the same day after the first crash A. The time and location of each crash 

are shown in Figure 5.16. The task is to determine whether B and C are secondary crashes 

related to the first crash A. If we use the static method or queue-based method that assumes the 

maximum temporal and spatial impact range as thresholds, both crash B and C have to be 

classified as secondary crashes. However, crash C should not be a secondary crash as the queue 

triggered by crash A  has not reached the location of crash C at the time when it 

occurred . In contrast, when crash B occurred  it was in the 

queue. Therefore, only crash B should be classified as a secondary crash. 
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Figure 5.16 Binary speed contour plot with multiple crashes 

However, it is time consuming to identify secondary crashes visually as it has been done above. 

Therefore, we have developed an algorithm that automatically identifies secondary crashes 

within the impact range. The algorithm is described as follows: 

 Step 1- Estimate the Equation of a Straight Line between a Pair of Crashes: Using the 

coordinates of the prior incident and a potential secondary crash, a line that links the two crashes 

is formed. Using Figure 5.17 as an example, the line AB and line AC can be represented using 

the following equations:  

 Line AB:                     Line AC:  

where , , and  are coordinates (in terms of time and distance) of crash A, crash 

B, and crash C,  respectively. The pair  represents the coordinate of any point  on an 

estimated line (i.e., line AB). 

 

Figure 5.17 Estimate lines between a prior crash and a possible secondary crash 

 Step 2- Make Two Types of Predictions Using the Estimated Line Equation in Step 1: 

Type 1 -- given , predict , assuming that . Type II -- given 
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, predict , assuming that . Figure 5.18 (a) and Figure 5.18 

(b) show the examples of these two types of predictions, respectively.  

 Step 3- Calculate the Coordinates of Middle Points: The midpoint of any two adjacent 

points predicted in step 2 is calculated. Figure 5.18 (c) illustrates an example of  middle points 

 that have to be calculated. The coordinate of each middle point is 

denoted by . 

 Step 4- Check Binary Speed Measurements  of the Cells that Enclose Middle 

Points: Let , where  is the  time interval in BSCP and  is the 

location of the  sensor. We can easily find the cell that contains the  middle point based on 

the information of the coordinates of the point [see Figure 5.18 (d) as an example]. Assume the 

binary speed measurement of the identified cell is , where  indicates congestion 

and  means normal condition.  

If the binary speed measurements of all corresponding middle points are equal to 1 [i.e., Figure 

5.18 (e)], we have . This condition indicates that the line between the prior 

incident and a later crash is located in the impact range of the prior incident. Once we confirm 

that the line is located within the impact range, the later crash is identified as a secondary crash 

[e.g., crash B in Figure 5.18 (e)]. However, if a part of the line is not located in the impact range 

of the prior incident, we have . In other words, the later crash is not affected by 

the prior one if a portion of the line is out of the impact range. Thus the later crash is not 

classified as a secondary crash [e.g., crash B in Figure 5.18 (f)]. 
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Figure 5.18 Visual depiction of the proposed algorithm that determines the relationship between 

two crashes 

5.4.4. Case Study 

The proposed methodology is used to identify secondary crashes on a 27-mile section of a major 

highway in New Jersey.   
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5.4.4.1 Data Description 

A section of New Jersey Turnpike located between interchanges 5 and 9 was used as the case 

study. Figure 5.19 shows the site map. The study section is about 27 miles. It has 25 traffic 

sensors placed approximately every one mile of the mainline. There are 3 lanes between 

mileposts 48 and 72.5 and 5 lanes beyond milepost 72.5 in the northbound direction, as shown in 

Figure 5.19. The posted speed limit of the section is 65 mph. Traffic data collected by each 

traffic sensor in 2011 are used for the analyses. The data include volume, speed, and occupancy 

measured at different time intervals at each sensor station. The data aggregated in 5-minute 

intervals is extracted to develop the speed contour plots using the proposed method.  

 

Figure 5.19 Schematic of the studied freeway section. 

The corresponding crash records in 2011 are obtained from the online crash database of the New 

Jersey Department of Transportation (NJDOT) [53]. The records include detailed crash 

characteristics such as date, time, location, crash type, number vehicles involved, vehicle 

characteristics, and crash severity. After the exclusion of two ramp crashes and another 24 

ceashes with unknown direction, the remaining data consist of a total of 1,188 crash records for 

the studied section (Southbound: 575 crashes; Northbound: 613 crashes).  

 

5.4.4.2 Implementation of the Proposed Methodology 

To identify the potential secondary crashes on a given day, the corresponding SCP, RSCP, and 

BSCP need to be generated. The daily SCP is created based on the speed measurements from the 

traffic sensors. The 50th percentile value of the historical speed data is used to create the RSCP 

based on the proposed method. It is assumed that the weighting factor is  when converting 0.7 
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the SCP to BSCP. In other words, a 30 percent reduction in the representative (normal) speed is 

identified as the traffic congestion. This weighting factor is based on previous studies related to 

congestions and/or bottlenecks analysis on freeways [54-57]. Based on the SCP, RSCP, and the 

selected weight factor, the BSCP for each day is generated. The observed crashes are also 

superimposed on the BSCP. Then the BSCP, together with the proposed identification algorithm, 

is used to identify the major types of secondary crashes shown in Figure 5.13 (a) and Figure 5.13 

(b). The third type of secondary crash shown in Figure 5.13 (c) was assumed to be crashes that 

occurred within 30 minutes and 0.5 miles upstream of the prior incident. The fourth type of 

secondary crash is defined as a crash that occurred in the opposite direction within one hour and 

one mile upstream of the prior incident. In addition to the spatial and temporal criteria, the 

potential secondary crash in the opposite direction has to be in a queue to be considered as a 

secondary crash due to rubbernecking.  

For comparison purposes, secondary crashes are also identified using the static method. Sixteen 

types of fixed spatio-temporal boundaries ranging from 0.5 to 2 miles and from 0.5 to 2.0 hours 

are identified as secondary crashes in the same direction of a prior incident. For possible 

secondary crashes in the opposite direction of a prior incident, the same criteria as described in 

the previous paragraph are used.  

Both the proposed method and the static approach are coded and implemented in the statistical 

software package R. The results are summarized in the following section. 

5.4.4.3 Results and Discussion 

The secondary crashes are identified using both the static and the proposed methods. The static 

method identified 42 out of 1,188 crashes (3.5 percent) as secondary crashes based on the 

maximum spatio-temporal boundaries of two miles and two hours. If the spatio-temporal 

thresholds of 0.5 miles and 0.5 hours are used the static method identifies only 18 secondary 

crashes. If the static thresholds were increased, the static method can capture more secondary 

crashes. However, the false identifications will also increase. As mentioned earlier, the selection 

of spatio-temporal criteria is subjective and the static method cannot account for different types 

of incidents that have a varying impact range (in time and space). For instance, Figure 5.20 (b) 

shows a crash (time= 17:30) occurred within two miles upstream of the prior crash (time=15:37). 

If the static method were used, the crash would have been classified as a secondary crash. 
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However, the original speed contour plot in Figure 5.20 (a) clearly suggests that the prior crash 

(time=15:37) had no notable impact on overall traffic flow. In addition, it was not the scenario 

described in Figure 5.20 (c) where the later crash is in the vicinity of a prior crash. Thus, the later 

crash (time= 17:30) was unlikely to be caused by the prior incident.   

In contrast, the proposed method individually examines the impact of each incident and 

identified 100 secondary crashes as a result of 71 primary crashes. For a sensitivity analysis, if 

we use an aggressive weighting factor , 80 secondary crashes are identified.  In contrast, 

if  is increased to 0.75, 116 secondary crashes are identified. The variations of the results 

suggest that a reasonable weight factor should be used based on the highway operators' 

definitions of normal and congested traffic. Despite the variation, all the numbers are twice or 

more than the number (42 crashes) identified by the static method. The large difference between 

the findings of the two methods is expected because the static method cannot capture many of 

the primary incidents that impact traffic beyond the defined boundaries. For instance, a major 

crash such as a multi-vehicle collision blocking multiple lanes can create multiple hours and/or 

miles of disruption of traffic [27, 28, 51]. Thus, many secondary crashes that occurred beyond the 

defined boundaries are not identified by the static method but by the proposed method (see 

Figure 5.20 (b) for an example).  

Twenty-three of the secondary crashes identified by the static method are also classified as 

secondary crashes by the proposed method. The remaining 19 (like the one identified by the 

static method in Figure 5.20 (b)) are successfully excluded by the proposed method. Figure 5.20 

(c) and Figure 5.20 (d) illustrate the case when both methods identified the same secondary 

crashes. In this case, the secondary crash is not only within the pre-defined spatio-temporal 

boundaries of a prior crash but also in the queue that caused it. Other than the single primary-

secondary crash pair, the proposed method can also determine multiple secondary crashes in 

relation to a primary one. For instance, Figure 5.20 (e) and Figure 5.20 (f) illustrated that a crash 

(at 14:57) in the northbound side of the studied freeway induced two secondary crashes (at 15:58 

and 16:26) at the end of the long queue, which was far beyond the spatial boundary of the static 

method.  

In summary, the static method can only identify 42 secondary crashes whereas the proposed 

method can identify 100 secondary crashes based on the assumed weighting factor. These results 

0.65 


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indicate that the proposed method not only reduces the incorrect classifications but also captures 

more secondary crashes missed by the static method. Another advantage of the proposed method 

is its computational efficiency. Our case study showed that it only took two to three minutes to 

process the 24-hour archived sensor data and complete the identification.   
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Figure 5.20 Identified secondary crashes using different methods. 
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5.4.5. Summary 

This section extended the previous research on identifying secondary crashes. A new 

methodology that takes advantage of archived traffic data from traffic sensors is presented. 

Instead of assuming fixed spatio-temporal thresholds, the proposed methodology uses the 

concept of the Binary Speed Contour Plot (BSCP) to capture the evolution of an actual traffic 

queue induced by a primary incident. Based on the detected impact range of each primary crash, 

the proposed identification method automatically examines potential secondary crashes caused 

by the prior incident. It should be mentioned that the proposed framework also integrated the 

static method to cover cases when no queue exists. Step-by-step descriptions of the proposed 

approach provide a readily deployable data analysis tool for transportation agencies to identify 

secondary crashes through archived sensor data and existing crash databases.  

A case study to test the performance of the proposed methodology is also presented. The 

secondary crashes induced by primary crashes are identified. The results show that the proposed 

methodology can identify twice the number of secondary crashes than the static method based on 

fixed spatio-temporal thresholds. This is because the proposed methodology successfully 

captures crash impacts far beyond the pre-defined spatio-temporal thresholds of the static 

method. In addition, 45 percent of secondary crashes identified by the static method are excluded 

by the proposed method as there is a weak evidence to link them with prior incidents. Although 

the case study demonstrates the secondary crashes identified by primary crashes, the same 

approach can be used to examine secondary crashes caused by other non-crash incidents given 

the availability of the incident data. The proposed methodology reduces biases (overestimation 

and underestimation) associated with the subjective thresholds used by the static method. In 

addition to the superior performance of the proposed identification approach, it only takes a short 

time period to aggregate the daily sensor data and crash information to identify whether a 

primary incident caused secondary crashes. With the availability of real-time sensor data, this 

kind of computational efficiency enables the proposed method to conduct a faster identification 

of secondary crashes. Given the access to real-time sensor data, the proposed methodology can 

be easily implemented to conduct on-line identification of secondary crashes. More studies with 

high-quality sensor data to investigate the capability of the proposed approach are suggested. 
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5.5. On-Line Scalable Analysis of Performance Measures 

Before using the derived measurements from virtual sensors the data quality has to be examined. 

The derived speed measurements from virtual sensors have to be consistent with the other known 

reference data such as the infrastructure-based sensor output. As a case study, multiple remote 

traffic microwave sensor (RTMS) stations deployed along the New Jersey Turnpike are selected 

and corresponding virtual sensors are created on the Bing Maps. A customized API is developed 

to derive speed measurements from virtual sensors on the Bing Maps. The speed estimations 

from the virtual sensors are then compared with the outputs from the RTMS. Comparisons are 

conducted for different weekdays, incidents, and work zone conditions. Figure 5.21 illustrates 

the speed data collected by both types of sensors. The Wilcoxon signed-rank test is applied to 

examine the two-paired samples (The null hypothesis H0 is that the two data sets are equivalent). 

The corresponding p-values for all the scenarios were greater than 0.05. Thus, it is concluded 

that the speed measurements derived from the virtual sensors are consistent with the 

measurements from infrastructure-based sensors. Like the RTMS data, the virtual sensor 

measurements can be used to identify the events that disrupt the normal traffic. 

 

Figure 5.21 Virtual sensor speed versus infrastructure-based sensor output. 
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Despite the relatively acceptable performance of virtual sensors, users need to recognize that the 

accuracy of their information is often affected by the penetration rate of smartphone users with 

their GPS enabled. For instance, the penetration rate might be too low to generate reliable speed 

estimates for highways in a rural area. In addition, the performance of the undisclosed algorithms 

used by the map service providers also affects the quality of the results. With increasing 

penetration rate of smartphone users with their GPSs enabled and more open source data, the 

quality of the virtual sensor measurements is expected to improve. Given the availability of these 

open source data, researchers are enabled to conduct on-line scalable analyses of different 

performance measures for large networks. 

5.5.1. Travel Time Reliability Application Example 

As an example, the travel time reliability measures of a 78-mile section between interchanges 2 

and 11 on the NJTPK is developed using collected virtual sensor data. There are eleven sub-

sections which are exit-to-exit segments along the facility and for each subsection reliability 

measures are calculated separately. Buffer index (BI) is used as the reliability parameter, which 

represents the extra time (or time cushion) that most travelers add to their average travel time 

when planning trips to ensure on-time arrival. It is calculated as the ratio of the difference 

between the 95th percentile travel time and mean travel time (MTT). For a specific route trip and 

time period, the buffer index is computed using the equation (2) presented in Chapter 4. 

The results are shown in Figure 5.22. We collected one-week real-time data using virtual sensor 

methodology from both Bing Maps and MapQuest and then compared the reliability parameters 

using heat maps. The vertical axis shows the road sections and the horizontal axis shows the 

time-of-day. Buffer index is a parameter between zero and one and increasing values mean lower 

reliability or higher variability in travel times. As seen for both northbound and southbound 

segments, real-time data from both sources yield similar results in terms of the subsections’ 

travel time reliability. For the northbound segment, most unreliable travel times are observed 

during afternoon peak hours (i.e. between 4:00 pm and 8:00 pm). For the southbound segment, in 

addition to afternoon peak hours, unreliable travel times are also observed during the midday 

period (i.e. around 12 pm). Subsections with higher travel time variability can also be identified 

using the proposed methodology; for example, subsections 4 to 8 have comparably higher travel 

time variability during the afternoon peak for the northbound segment.  
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Figure 5.22 Buffer index analysis using virtual sensor data. 

5.5.2. On-Line Scalable Identification of Secondary Crashes 

The development of a scalable approach for identifying secondary crashes involves two major 

tasks: (a) large-scale traffic data acquisition and (b) development and implementation of a new 

identification algorithm. Instead of using data from infrastructure-based sensors such as loop 

detectors, this study proposes utilizing traffic information from open sources such as Bing Maps, 

Google Maps, and MapQuest. Combining the obtained traffic information and the identification 

algorithm enables practitioners to identify secondary crashes quickly and at a large scale. Figure 

5.23 shows the methodological framework of the proposed approach. The following sub-sections 

describe the proposed approach in detail.  
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Figure 5.23 Framework of using virtual sensor data for identifying secondary crash. 

As an example, Figure 5.24 shows a potential primary-secondary crash pair on New Jersey's 511 

interactive map on July 19, 2013. Crash A had occurred earlier on southbound I-95 and induced 

congestion due to left lane blockage. Then crash B had occurred upstream just 9 minutes after 

the first crash A. In order to identify whether or not crash B is a secondary crash, the major task 

is to examine the impact area of the prior incident A. The impact area is described by temporal 

and spatial constraints. If a simple static threshold 1 shown in Figure 5.24 was used as the 

spatiotemporal criterion, crash B will not be identified as a secondary crash. However, if another 

static threshold 2 with longer spatial and temporal limits was used, crash B will be classified as a 

secondary crash. The difficulty is to determine an appropriate threshold to capture the 

progression of the actual impact of crash A. This is because each crash will have a different 

impact on traffic. Figure 5.25 shows an example of the impact progression of a severe crash on 

July 30, 2013 on the New Jersey Turnpike. It can be seen that the queue length reached as long 

as 10 miles and the queue presented more than 3 hours. Thus any static thresholds cannot capture 

the queuing evolution process.    
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Figure 5.24 Example of potential primary-secondary crashes shown on 511NJ map. 

 

Figure 5.25 A crash with significant impact (10-mile maximum queue; queue presented 3+ 

hours). 
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Instead of using fixed thresholds or simplified queuing models, the developed identification 

approach uses virtual sensor data to explore secondary crashes on a larger scale. With the 

increased penetration of smartphones and GPS use among travelers, the quality of these third-

party data is also expected to increase. These traffic data in turn can support extensive 

investigation of secondary crashes on highways with limited or no infrastructure-based sensors. 

With the developed algorithm, the identification process will be automated and the identification 

performance will be improved as the real-time traffic information becomes ubiquitous. In 

practice, many existing traffic and transportation information systems can extend their functions 

to conduct real-time identifications of secondary crashes using the developed approach. For 

example, the New Jersey’s 511 system shown in Figure 5.24 already displays live traffic speed 

and traffic incidents on its interactive map. In that figure, the first crash at 11:29 am causes 

notable congestion and then another crash occurs in the queue at 11:38 am. Consequently, these 

two crashes are independently recorded in the police reports (and shown on the map). If the 

system had implemented the proposed identification approach based on the live traffic speed and 

crash information from the interactive map, it would have detected the two incidents to be a 

primary-secondary crash pair in real time and alerted travelers.   
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6. CONCLUSION AND SUMMARY 

This research explores the tactical performance measures based on a number of transportation 

data sources. The major performance measures associated with traffic congestion, traffic 

reliability, and traffic safety are studied. The travel time, travel time reliability, incident duration, 

and secondary crashes are of particular interest than many conventional, easily-derivable 

performance measures such as traffic counts and crash counts. The potential of using various 

data sources to develop these performances is also demonstrated.  

First, an improved algorithm is developed to estimate the travel time using electronic toll 

collection data. This adds additional value to the archived toll transaction data and develops the 

useful information to monitor the highways' operational performance. More reliable performance 

measures such as traffic delays and travel time reliability can be derived given the improved 

travel time estimation. 

Second, structure learning algorithms are used to develop the Bayesian Networks for predicting 

incident duration, which is one of the key performance measures for traffic incident management 

programs. The proposed approaches help understand the exact mechanism of incident duration 

with respect to incident characteristics by examining incident logs and  crash records obtained 

from the New Jersey Department of Transportation.   

Third, secondary crashes are identified by exploring sensor data and historical crash records. 

Traditionally, it is very difficult to identify secondary crashes caused by prior incidents/crashes. 

However, archived traffic data from sensors such loop detector and RTMS enable us to develop a 

practical new algorithm to identify secondary crashes. The value of these sensor data has not 

been fully explored before to help understand the secondary crash issues. The data driven 

approach and associated crash records provide us a better view of the safety impact of the both 

primary and secondary crashes.  

Considering the fact that not all highways are installed with traffic sensors, an on-line scalable 

approach has been developed to acquire real-time traffic data from the third-party traffic services 

providers such as the Bing map and Google map. A large amount of traffic data can be obtained 

from the transportation network through the developed virtual sensors. This enables us to 
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identify the operational performance of traffic and impact of secondary crashes for many 

roadways without traffic sensors.  

The data-driven methodologies proposed in the study provide valuable insights for the 

understanding of how some of the key performance measures important for transportation  

agencies can be used to improve their systems. The success of these performance measures relies 

on the availability of appropriate data sources. This research project also shows that by mining 

existing data sources, the performance measures can be more efficiently and accurately 

quantified without major expenditures for the deployment of new sensors.   
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