FINAL REPORT

FHWA-WY-13/05F

State of Wyoming U.S. Department of Transportation

Department of Transportation Federal Highway Administration

STATEWIDE MESOSCOPIC SIMULATION FOR WYOMING

By:
Stephen D. Boyles, Ph.D.

Department of Civil, Architectural & Environmental Engineering
The University of Texas at Austin
301 E. Dean Keeton St. Stop C1761
Austin, TX 78712

Department of Civil & Architectural Engineering
University of Wyoming
1000 E. University Ave Dept. 3295
Laramie, WY 82071

October 2013

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation
in the interest of information exchange. The U.S. Government assumes no liability for the use of
the information contained in this document.

The contents of this report reflect the views of the author(s) who are responsible for the facts
and accuracy of the data presented herein. The contents do not necessarily reflect the official
views or policies of the Wyoming Department of Transportation or the Federal Highway
Administration. This report does not constitute a standard, specification, or regulation.

The United States Government and the State of Wyoming do not endorse products or
manufacturers. Trademarks or manufacturers’ names appear in this report only because they
are considered essential to the objectives of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve
Government, industry, and the public in a manner that promotes public understanding.
Standards and policies are used to ensure and maximize the quality, objectivity, utility, and
integrity of its information. FHWA periodically reviews quality issues and adjusts its programs
and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No.
FHWA-WY-13/05F

2. Government
Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle
Statewide Mesosopic Simulation for Wyoming

5. Report Date
October 2013

6. Performing Organization Code

7. Author(s)
Stephen D. Boyles

8. Performing Organization Report No.

9. Performing Organization Name and Address

Center for Transportation Research
The University of Texas at Austin
1616 Guadalupe Street, Suite 4.202
Austin, TX 78701

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
Wyoming Department of Transportation
5300 Bishop Blvd.

Cheyenne, WY 82009-3340
WYDOT Research Center (307) 777-4182

13. Type of Report and Period Covered
Final Report for January 2013-July 2013

14. Sponsoring Agency Code

15. Supplementary Notes

WYDOT Technical Contacts: Lee Roadifer, Sherm Wiseman

16. Abstract

This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway
networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to
scale to large regions, while realistic enough to represent traffic dynamics, including queue growth and dissipation
and intersection control; and (ii) a user behavior model in which drivers choose routes based on minimizing travel
times. Integrating these models is nontrivial, because route choices depend on route travel times, but route travel
times are determined from route choices through the traffic flow model. An iterative approach is used to seek a
consistent solution to this problem, using the cell transmission model as the traffic flow model.

These features have been implemented in a software program, for which source code and tutorials have been
provided as appendices to this report. Additional modules are provided for generating graphical views of networks,
performing warrant analysis based on MUTCD procedures (either to assist with network creation, or as a post-
processing step), and a spreadsheet interface to the program itself. Ready-to-use networks have been provided

representing the city of Casper and the state of Wyoming.

17. Key Words
Mesoscopic simulation; dynamic traffic assignment

18. Distribution Statement
Unlimited

19. Security Classif. (of report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of
pages
259

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

SI* (Modern Metric) Conversion Factors

Approximate Conversions from Sl Units Approximate Conversions to Sl Units
Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol
Length Length
mm millimeters 0.039 inches in in inches 25.4 millimeters Mm
m meters 3.28 feet ft ft feet 0.305 meters M
m meters 1.09 yards yd yd yards 0.914 meters M
km kilometers 0.621 miles mi mi miles 1.61 kilometers Km
Area Area
mm? square millimeters 0.0016 square inches in’ in’ square inches 645.2 square millimeters ~ mm?
m? square meters 10.764 square feet t? ft? square feet 0.093 square meters m?
m? square meters 1.195 square yards yo? yd? square yards 0.836 square meters m?
ha hectares 2.47 acres ac ac acres 0.405 hectares Ha
km? square kilometers 0.386 square miles mi? mi? square miles 2.59 square kilometers ~ km?
Volume Volume
mi milliliters 0.034 fluid ounces fl oz fl 0z fluid ounces 29.57 milliliters Ml
I liters 0.264 gallons gal gal gallons 3.785 liters L
m’ cubic meters 35.71 cubic feet ft® ft® cubic feet 0.028 cubic meters m’
m® cubic meters 1.307 cubic yards yd® yd® cubic yards 0.765 cubic meters m®
Mass Mass
g grams 0.035 ounces oz 0z ounces 28.35 grams G
kg kilograms 2.202 pounds Ib Ib pounds 0.454 kilograms Kg
Mg megagrams 1.103 short tons (2000 Ibs) T T short tons (2000 Ibs) 0.907 megagrams Mg
Temperature (exact) Temperature (exact)
°C Centigrade 1.8C+32 Fahrenheit °F °F Fahrenheit 5(F-32)/9 Celsius °C
temperature temperature temperature or (F-32)/1.8 temperature
[llumination [llumination
Ix lux 0.0929 foot-candles fc fc foot-candles 10.76 lux Lx
cd/m? candela/m” 0.2919 foot-Lamberts fl fl foot-Lamberts 3.426 candela/m” cd/m?
Force and Pressure or Stress Force and Pressure or Stress
N newtons 0.225 poundforce Ibf Ibf pound-force 4.45 newtons N
kPa kilopascals 0.145 pound-force per psi psi pound-force per 6.89 kilopascals kPa

square inch square inch

Executive Summary

The purpose of this project was to develop a mesoscopic simulation model which can be applied
to Wyoming either at the statewide level or the level of individual cities. The main concept
behind mesoscopic simulation is to bridge the gap between microscopic simulation, which
models small geographic areas (such as a single corridor) with high detail, and macroscopic
modeling, which models large geographic areas (such as a state) with relatively little detail. This
is particularly important in rural states such as Wyoming, in which a larger share of trips are
long-distance, and in which a significant share of freeway volume is out-of-state traffic such as
heavy vehicles.

The key to mesoscopic simulation is combining (1) a reasonably simple traffic flow model which
can still capture fundamental traffic behavior such as queue growth and dissipation, and signal
control at intersections, and (2) a route choice model which reflects drivers’ desire to choose the
fastest routes to their destinations. These two models interact heavily: for instance, if a major
roadway is temporarily closed for a construction project, the route choice model is needed to
predict how traffic patterns will shift, but doing so requires knowing how travel times throughout
the network will change as well. Briefly, the traffic flow model requires route choices as input
and produces travel times, while the route choice model requires travel times as input and
produces route choices.

The ultimate goal is to achieve a mutually consistent solution between the traffic flow and route
choice modules. In this project, such a system was developed and implemented in the C
programming language, with a Microsoft Excel frontend to allow editing and program operation
in a more familiar environment. This system is based on iteration between the cell transmission
model (the traffic flow model deemed most appropriate after a literature review), a time-
dependent version of the A* algorithm (which finds the least travel time route between two
points in a network), and the method of successive averages (which adjusts vehicles’ route
choice based on the updated travel times). Additional modules produce graphical versions of the
output data, and perform a warrant analysis to either recommend updated intersection control and
signal timing, or generate an initial set of intersection controls and timings when creating a
network from scratch.

Three case studies are provided: a small “toy” network to demonstrate the model capabilities; a
network representing the city of Casper, under a hypothetical road closure for construction; and a
network representing the state of Wyoming, under a hypothetical toll on Interstate 80. For the
latter two case studies, “before-and-after” analyses are shown to demonstrate potential
applications of the software.

Appendices include more extensive tutorials, a programmer’s guide to the simulator, and the C
code used to implement the model. In this way, users may continue to modify the software as
needed for specific applications.

1 Introduction
1.1 Motivation
1.2 Primary Accomplishments

Contents

1.3 Outline
2 Methodology
2.1 Overview
2.2 Trafficflowmodel
2.2.1 Overview of contrastingmodels
2.2.2 The hydrodynamictheory.
2.2.3 Cell transmissionmodel
2.2.4 Trafficflowonaroadwaylink
2.2.5 Traffic flow atintersections
2.3 Userbehaviormodel
3 Implementation
3.1 Overview e
3.2 PrimaryModules.
3.2.1 Cell transmissionmodel
3.2.2 Fastestroutemodel,
3.2.3 Route switchingmodel
3.3 Demand Profiling
34 FileFormats e
3.4.1 Parametersfile
3.4.2 Networkfile
3.4.3 Node coordinatefile
344 Demandmatrix
3.4.5 Intersectioncontrolfile
346 Countsfile

3.4.7 Link summary file
3.4.8 Node summary file

3.5 Graphics Module
3.6 Warrants Module
3.7 Spreadsheet Interface . .

4 Case Studies

v

41 ToyNetwork
4.2 Casper e e e
43 Wyoming e e
5 Summary & Conclusions
References
A Tutorials
Al Toynmetwork
A2 Casper e
A3 Wyoming
B Source Code Guide
C License agreement

Simulator code

D.1 Mesoscopic simulationmodule
D.1.1 main.c e
D.1.2 main.h e
D13 dta.c e e
D14 dta.h
D.1.5 fileio.C. e
D.1.6 fileio.h. e
D.1.7 node.c e
D.1.8 node.h e
D.1.9 vehicle.c
D.1.10 vehicle.h
D111 cell.c e
D112 cell.h e e
D.1.13 network.c e
D.1.14 network.h e
D.1.15 sampling.c e
D.1.16 sampling.h e
D.1.17 datastructures.c e
D.1.18 datastructures.h
D119 utils.c e
D.1.20 utils.h e

D.2 Warrantsmodule
D.2.1 mainwarrant.c

D.3 mainwarrant.h e
D.3.1 warrant.c e
D.3.2 warrant.h e

D.4 Graphicsmodule L
D.4.1 maingraphics.c

61

62

64
64
74
78

80

89

D.S main graphics.h
D.5.1 graphics.c
D.5.2 graphics.h

vi

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2

List of Figures

Microscopic, mesoscopic, and macroscopic modeling. 2
Mutual dependency between traffic flow and user behavior. 5
BPR functions with different « and S values. 7
Car following with different A values, 7'=1. 8
A typical fundamental diagram. L L Lo 10
Deriving the conservation equation. 11
Cell discretization of a trajectory diagram. 12
The trapezoidal fundamental diagram. 13
Divisionof alinkintocells. 15
Prototype diverge intersection.o 17
Prototype merge intersection. e 18
General intersection with multiple approaches and exits. 19
Four possible demand profiles. L o oL 21
Overall simulation workflow. L. 24
Dynamic traffic assignment workflow. oo o000 25
Cell transmission model workflow. 0oL 28
Dividing a link with a nonhomogeneous intersection. 30
Label calculation in time-dependent A*. 31
Parameter values for triangle profile. 32
Example image for a grid network. oL 0oL, 42
An intersection where the primary movements correspond to a turn. 45
Changing macro settingsin Excel. 46
Dashboard spreadsheet. L 47
Project Summary spreadsheet. oL 48
Links spreadsheet. 48
Node Data spreadsheet. 49
OD Matrix spreadsheet. L L 49
Intersection Data spreadsheet. 50
Node Data spreadsheet. 51
Link Summary spreadsheet., 51
Node Summary spreadsheet. L. 52
Graphics spreadsheet. L L L 52
Toy network schematic. 54
Map of the entire Casper network. Lo oL 57

Vil

4.3 Link closed between Beverly St. & C St. forwork zone. 58

4.4 Link congestion between Beverly St. & C St. before and after work zone. 58
4.5 Statewide network for Wyoming. Lo oo 59
A.1 Toy network for tutorial. L 65
A.2 Changing macro settingsin Excel. o0 L. 66
A.3 Dashboard screenshot. L 67
A.4 Toy network parameters, blank. o oL 68
A.5 Toy network parameters, completed. L. 68
A.6 Toy network link data, completed. 69
A.7 Toy network node data, completed. 70
A.8 Toy OD matrix data, completed. 70
A.9 Toy intersection data, completed. 71
A.10 File names have now appeared in the Parameters sheet. 72
A.11 Intersection types chosen by the warrant analysis. 72
A.12 Node details for node 11 from warrant analysis. 73
A.13 Modified details fornode 11. Lo 73
A.14 Link summary information for toy network. 74
A.15 Average graphics file for toy network.o oL, 75
A.16 Map of the entire Casper network. L. 76
A.17 Link closed for work zone.o 77
A.18 Statewide network for Wyoming. oL 78
B.1 Hierarchy of source files. 81
B.2 Schematic of network-related data structures. 85
B.3 Schematic of linked list data structures. 87

viil

3.1
3.2
33
34
3.5

4.1

A.l

List of Tables

Metadata fields for the parameters file.

Metadata fields for the network file.
Metadata fields for the demand matrix file.
Metadata fields for the raw demand file.

Turning movement flows before and after closure of Yellowstone Hwy.

Turning movement flows before and after closure of Yellowstone Hwy.

1X

Metadata fields for the graphics parameters file.

....... 33

...... 43

Chapter 1

Introduction

The purpose of this project was to develop a mesoscopic simulation model which can be applied
to Wyoming either at the statewide level or the level of individual cities. This report documents
the research work performed, and includes additional deliverables as appendices. This chapter
reviews the motivation behind the project, the primary research accomplishments, and describing
how this report is organized.

1.1 Motivation

Traditionally, planning and operations models used by transportation professionals use markedly
different assumptions and spatiotemporal scope. By necessity, planning models consider a large
geographic area and long-term time horizon, while operational models focus on a smaller region
(such as a single corridor and a few alternate routes). This allows the latter greater detail and
fidelity at the expense of scope. However, this difference can lead to inconsistency between these
models.

For instance, planning models generally do not account for queuing behavior from signals or
temporary congestion, and thus may produce link values which are physically implausible and
unsuitable for use in microsimulation programs without significant “tweaking” based on
engineering judgment. At the same time, microsimulation models cannot give a proper treatment
of diversion and rerouting effects, since by their nature they only focus on a portion of most trips,
and diversion depends crucially on the origin and destination, not just the portion of the trip
included in the microsimulation. This is a particularly significant issue with modeling diversion
due to network interruptions (such as work zones), and can help identify necessary changes to
traffic control and other operational strategies to mitigate the effects of these disruptions.

Mesoscopic simulation is a promising technique for bridging this gap, using a level of detail
intermediate between planning models and microsimulation. Several methods are available to
represent traffic flow, and a major part of the project involved selecting the most appropriate

Macroscopic (Planning)

Land use

| Route choice

1| Equiibrium | ! |

I I Mesoscopic
Signals

| o !

Car following

Microscopic (Operations)

Figure 1.1: Microscopic, mesoscopic, and macroscopic modeling.

model. Particularly, little attention has been paid to the best traffic representation for rural areas.
Furthermore, recent advances in computing technology now allows a very large area to be
represented in a mesoscopic simulator, even at the statewide level in states with low population
density, such as Wyoming.

Mesoscopic simulation adopts a middle ground between the extremes of macroscopic simulation
(large area, low detail) and microscopic simulation (small area, high detail), by choosing to
represent only the most significant aspects of traffic flow in a computationally efficient manner.
The resulting model combines aspects of macroscopic and microscopic modeling, using a
consistent set of modeling assumptions (Figure 1.1). Mesoscopic simulation has recently been
applied to model traffic flow in major metropolitan areas, including Atlanta, Georgia; Austin,
Texas; Dallas-Ft. Worth, Texas; and Chicago, Illinois; but application to rural areas has been
lacking even though the transformative potential is just as great, if not more so.

Successfully developing a statewide mesoscopic simulator would benefit WYDOT’s current
modeling process in several ways:

o Allowing traffic studies to include elements of traditional planning models (such as trip
generation, land use, and route choice), leading to more accurate predictions and greater
consistency.

e Allowing planning models to benefit from traffic data by serving as a calibration and
validation tool, and to generate predicted traffic counts directly from land use models,
applied consistently throughout the State.

e Providing WYDOT with a tool which can be used for analysis of policies with statewide
implications on traffic flow, such as tolling and its associated diversion effect.

e Creating opportunities for collaboration and data sharing between operations and planning
personnel, reducing data collection costs and duplication of effort.

1.2 Primary Accomplishments

In accordance with the proposal, the following primary tasks have been accomplished during the
course of this research project:

e A thorough review of the traffic flow theory literature identified the cell transmission model
as suitable for statewide, mesoscopic implementation.

e A mesoscopic simulation program has been developed using the C programming language.

e A graphical user interface for the simulator has been developed using Microsoft Excel
VBA.

e The simulation program was extended to include basic warrant analysis and signal timing.

o Two Wyoming-specific case studies have been prepared, one for the city of Casper and the
other for the entire State.

o Network files for the case studies have been created based on traffic count data and
TransCAD files.

e Training tutorials have been developed based on these case studies.

e The C and VBA source code has been documented and provided to WYDOT.

1.3 Outline

The remainder of this report is organized as follows. Chapter 2 presents the engineering concepts
underlying the mesoscopic simulator. Chapter 3 explains how these concepts were implemented,
using the C language for the simulation code and Microsoft Excel VBA for the interface.
Chapter 4 demonstrates this simulation framework, using three examples: a small “artificial”
network where all changes can be easily seen; a network representing the city of Casper, before
and after a work zone closes a major arterial; and a network representing the state of Wyoming,
before and after a toll on I-80. Finally, Chapter 5 concludes the report and identifies an
implementation strategy.

Four appendices provide additional deliverables. Appendix A packages the case studies from
Chapter 4 in a stand-alone format suitable for training materials. Appendix B provides an
overview of the source code organization and data structures, which will be useful for
programmers seeking to modify or extend the code. Finally, Appendix D contains the C the
simulator and other modules.

Chapter 2

Methodology

2.1 Overview

A mesoscopic simulator contains two equally-important components: a traffic flow model which
describes the operational nature of traffic flow and delay, and a user behavior model which
describes how travelers choose their routes. Macroscopic or microscopic simulation tends to
focus on one or the other exclusively. Microsimulation software, such as CORSIM or VISSIM,
employs a highly realistic traffic flow model, but has a very limited user behavior model,
assuming that route flows and turning proportions can be specified exogenously and do not
respond to the simulated traffic flow. Macroscopic software, such as TransCAD or VISUM, has a
sophisticated user behavioral model which can account for route choice and diversion all
throughout a network, but with a much simpler traffic flow model based on unrealistic impedance
functions. In a mesoscopic simulator, however, both components are equally important.

This raises the core challenge of mesoscopic modeling: traffic flow and user behavior are closely
connected. On the one hand, traffic conditions are determined by the routes that drivers choose to
take when they travel. On the other hand, the routes that drivers choose to take are determined by
traffic conditions. This circular dependency is indicated schematically in Figure 2.1.

As an example, consider a major maintenance project which will close one or more lanes on a
major arterial for several weeks. If no drivers were to change their routes, congestion would arise
during the peak period due to the loss of capacity. However, some drivers will divert onto parallel
routes (or take entirely different routes, based on their origin and destination). As this happens,
congestion will ease somewhat at the work zone location, and perhaps increase slightly along
these parallel routes. This in turn will ease the pressure for additional drivers to divert.

Resolving this mutual dependency is the primary methodological challenge in a mesoscopic
model. This is accomplished by seeking an equilibrium solution, that is, a mutually consistent set
of route travel times and route choices. The phrase “mutually consistent” means that the route
travel times are exactly those which would occur based on the route choices made, and the route
choices are exactly those which would occur based on the route travel times. Under the most

4

Traffic flow
Travel times depend
on route choices

Travel

Route times

choices

User behavior
Choose routes to
minimize time

Figure 2.1: Mutual dependency between traffic flow and user behavior.

common assumption — that drivers want to choose the route which minimizes their travel time —
the only possible equilibrium solution is one in which all used routes have identical travel time. If
any pair of used routes had unequal travel time, drivers would divert from the slower route to the
faster one.

This equilibrium principle was first introduced to traffic engineering by Wardrop (1952) and
Beckmann Beckmann et al. (1956)!, which eventually led to the development of macroscopic
models such as those in TransCAD or VISUM. However, the traffic flow models used here are
exceptionally simplistic, using delay functions which do not reflect the dynamic nature of traffic
flow — queues grow and shrink over time (especially at signals), and travel demand varies over
time. The main advantage of mesoscopic modeling over this early work is the use of innovative
traffic flow models which can account for these dynamics while still being simple enough to
apply on large, even statewide, scales.

Finding such an equilibrium involves iteration between the traffic flow and user behavior models.
For a given set of route choices, the traffic flow model gives updated route travel times (including
any congestion which may arise). Then, the user behavior model updates the route choices as
people seek to avoid congestion and divert onto faster routes. Control then returns to the traffic
flow model, which updates travel times yet again, and so on until an equilibrium (or
near-equilibrium) is found. Since each model must be run multiple times, efficient models are of
the utmost importance.

The remainder of this chapter explains the traffic flow model and user behavioral model in greater
detail, in Sections 2.2 and 2.3, respectively.

! Although this work was prefigured by the economist Pigou (1920)

2.2 Traffic flow model

To be suitable for the project purposes, the chosen traffic flow model must satisfy all of the
following conditions. It must be:

1. Scalable to very large regions, including metropolitan areas and statewide networks.

2. Efficient and tractable, not requiring more computational resources than is available on
desktop machines.

3. Capable of representing traffic dynamics, in particular how queues grow and dissipate.

4. Capable of representing changes in tripmaking rates over the course of the simulation
period.

5. Capable of representing diverse intersection controls (such as signals, stop signs, or
grade-separated interchanges).

6. Relatively simple in terms of data input requirements.

7. Transparent in terms of understanding exactly how traffic flow is being propagated, and
simple enough to convey to decision-makers and the public.

After a thorough review of the traffic flow literature, the cell transmission model was selected as a
model which satisfies these desiderata. The remainder of this section explains the cell
transmission model in the context of these criteria, beginning by contrasting it with other
well-known traffic flow models, and then deriving the model from the hydrodynamic
(“shockwave”) theory of traffic flow. These criteria will be repeatedly referred to throughout this
section.

2.2.1 Overview of contrasting models

This subsection provides a brief overview of macroscopic and microscopic traffic flow models, to
provide context for the description of the cell transmission model which follows.

Macroscopic equilibrium models, such as those used in TransCAD and VISUM, are based on link
performance functions which report the travel time on a roadway link as a function of the number
of vehicles on this link. One standard function was developed by the Bureau of Public Roads
(BPR), which has the following form:

t—t (1 ta (%)ﬂ> @.1)

where ¢ is the travel time on a roadway link, ¢ is the free-flow travel time, x and c are the
roadway volume and capacity, and « and (3 are parameters which can be calibrated to date.

6

2.5

a=1p6=1

1.5

a=083 B=55

1 a=0.15 B=4

Travel time:free-flow time ratio

0.5

T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
X/c ratio

Figure 2.2: BPR functions with different o and /3 values.

Figure 2.2 shows different BPR functions based on the values of a and . The most typical
choices in practice are « = 0.15 and 3 = 4.

The advantage of this formulation is that it lends itself to easy solution even on very large
networks. Consider a large network with a set of roadway links A, a set of intersection nodes /N,
and a set of centroid nodes Z C N. Let ¢;;, x;;, and ¢;; be the travel time, volume, and capacity
on each link, and d" is the travel demand from origin r € Z to destination s € Z. Let II"® be the
set of routes between centroids r and s, and A™ the number of drivers choosing route 7. Then the
equilibrium solution solves the following mathematical optimization problem Beckmann et al.
(1956):

r)rgilln Z /0 tij(z)dx (2.2)

stoomg= Y Y. W V(i,j) € A (2.3)

(r,s)eD mwell™s:(i,5)em

d*= > I" Y(r,s) € Z° (2.4)
mellrs
h™ >0 V1 € U s (2.5)
(r,s)eD

There are many algorithms which can solve this optimization program very efficiently, even for
networks with tens of thousands of links. For an overview of such algorithms, see Patriksson
(1994) or Boyles and Waller (2010).

However, the use of link performance functions as the traffic flow model has several significant
shortcomings. Referring to the list of criteria in the previous section, it fails to satisfy Criteria 3,

7

800

700

600

400 +

Position

300

200

100

Time

Figure 2.3: Car following with different A values, 7" = 1.

4, and 5: there is no concept of time dynamics in this model, either regarding the evolution of
network conditions or of travel demand. Furthermore, this model is extremely limited in how it
can reflect intersection dynamics, because the travel time functions ¢;; only depend on the flow on
that specific link. By contrast, intersection delays typically depend on the flow from conflicting
movements, depending on the control type. Perhaps more seriously, there is nothing in the model
which enforces z;; < ¢;;, that is, that volumes be less than capacity! It should be clear that such
functions cannot represent the realities of traffic flow at anything more than a very approximate
level.

Microscopic simulation, on the other hand, is usually based on the concepts of car following and
gap acceptance. Car following models describe how vehicles move in a traffic stream. Let z(¢)
describe the position of a vehicle at time ¢, and 2(¢) describe the position of the vehicle
immediately in front of it. A basic car following model is

0%z 0z 0z
g 0= (5 5) 20

where 7' is the reaction time of a driver. In other words, the acceleration of a vehicle is
proportional to the relative velocity between that vehicle and the vehicle in front of it. The
parameter A can be calibrated to data to reflect the strength of this response; see Figure 2.3
Experiments place the value of \ in practice at approximately 1/3; if T\ < 1/2, the overall stream
of traffic is stable with respect to disturbances.

More sophisticated car-following models have been proposed, taking into account potential
coupling between vehicles further ahead, the spacing, and other factors. The primary advantage
of these models is their ability to easily represent different vehicle types and driver-specific
behavior. A disadvantage is that solving these models requires either the solution of complex

8

partial differential equations, or numerical simulation which is difficult to analyze.

Models for yielding behavior at intersections or merges is generally based on the theories of gap
acceptance and queueing theory. When traffic streams intersect, as at a merge or two-way stop,
vehicles in one stream must yield the right of way to another. In such cases, vehicles in the minor
stream must wait for gaps of sufficient size to appear in the major stream. Let ¢, and ¢ denote the
critical gap and follow-up gap, respectively, both measured in seconds. The critical gap is the
smallest gap in the major stream that a vehicle is willing to accept; the follow-up gap is the
additional time required for subsequent vehicles to follow the first vehicle to move during a gap.
We generally observe £ < ¢.. Assuming that headways in the primary stream are
exponentially-distributed, one can show that the capacity on the minor approach is given by

_ wyrexp(—zate)

1 — exp(—wpty) 2.7)

In simulation, individual gaps will be tracked, and the appropriate number of vehicles moved.

While these car-following and gap-acceptance models can be used to model traffic very
realistically, like the macroscopic models they do not satisfy all of the criteria listed above. While
they can model traffic dynamics, they do not satisfy criteria 1 and 2 because they do not scale well
to larger regions. Accurate simulation using these models requires a very fine time step (typically
on the order of a tenth of a second) and knowing the exact location of every vehicle on the
network during each step.

What is needed is a model which can account for traffic dynamics, while requiring less
spatiotemporal precision than the microscopic models. The cell transmission model satisfies all
necessary criteria. Before presenting this model, the hydrodynamic theory of traffic flow is
reviewed, since this forms the theoretical basis for the cell transmission model.

2.2.2 The hydrodynamic theory

The hydrodynamic theory of traffic flow was independently derived by Lighthill and Whitham
(1955) and Richards (1956); it is often referred to as the LWR model. This theory is a continuum
model or fluid model — rather than modeling vehicles as separate, discrete entities, the LWR
model approximates traffic flow as a continuous fluid, and applies results similar to those in fluid
dynamics. There are three key variables which describe the traffic stream at any location x and
time ¢: the density k, the flow ¢ (also known as the volume), and the speed u. Density is measured
in vehicles per unit length (often vehicles per mile), and flow is measured in vehicles per unit time
(often vehicles per hour). These three variables are related by the fundamental equation q = uk,
which must hold at any point and time.

The LWR theory makes two additional postulates. The first is that the flow at a point depends
only on the density at that point, that is, that

q(z,t) = Q(k(x, 1)) (2.8)

Jam density k;

Density (k) ‘

Figure 2.4: A typical fundamental diagram.

Flow (q) ‘

for some function (). This function is known as the fundamental diagram. It is typically
continuous, concave, and has two zeros: one at k& = 0, and the other at the jam density k = k;. In
other words, there are two possible reasons for zero flow: either there are no vehicles and £ = 0,
or traffic is completely jammed and no vehicles are moving, and therefore £ = k;. A typical
fundamental diagram is shown in Figure 2.4.

The second major postulate of the LWR theory is a conservation law, which states that vehicles
cannot “appear” or “disappear” in the network (except for when departing from an origin or
arriving at a destination). To enforce this, let N (x,t) represent the cumulative count at location x
and time ¢, that is, the total number of vehicles which have passed point x from the start of the
modeling period until time ¢. Under the fluid assumption, N (x,) is a continuous function. Note
that the cumulative count is related to the flow and density. In particular

ON
q(z,t) = s (2.9)
and ON

where the negative sign in the latter equation reflects the sign convention used: x increases in the
direction of flow. Therefore, at any point x, the cumulative count increases as ¢ increases; but at
any time ¢, the cumulative count decreases as we move in the direction of increasing x. If N is
twice continuously differentiable, then

O*N 0°N
= 2.11
Oxot 0tox ()
or, substituting (2.10) and (2.9) and rearranging, we have
dq Ok
— 4+ —=0 2.12
or ot (&-12)

This is the conservation law in the LWR model.

It may not be clear why this derivation expresses the conservation of vehicles, so a geometric
argument is presented to help clarify this interpretation. Consider the region of (z,t) space in

10

(x + dx,/t)\ _ (x +dx,t +dt)
A27q + dg,k + dk

ES
w

dx

2
dt “(x,t+ dt)

2%
~=

Figure 2.5: Deriving the conservation equation.

Figure 2.5, which has duration dt¢ and spatial extent dzx. Let N (z,t) = Ny, and assume that the
values of ¢ = ¢(x,t) and k = k(x,t) are known. Similarly, let ¢(z + dz,t + dt) = ¢ + dq and
k(x + dx,t + dt) = k + dk. Then, moving to point 2, N (z,t + dt) = Ny + ¢ dt because of (2.9).
Moving from point 2 to point 3 and applying (2.10), we have

N(z +dz,t+dt) = N(x,t +dt) — (k + dk)dz = Ny + q dt — (k + dk)dx (2.13)
Moving from point 3 to point 4, we have
N(z+dz,t) = N(x +dx,t +dt) — (¢ + dq)dt = No + q dt — (k + dk)dx — (¢ + dq)dt (2.14)
And finally, moving from point 4 to point 1, we have
N(z,t) = N(x +dx,t) + k de = Ny + q dt — (k + dk)dx — (¢ + dg)dt + k dx (2.15)

But we already know N (z,t) = Ny. Therefore g dt — (k + dk)dxz — (¢ + dq)dt + k dx = 0, or

equivalently,

dq Ok
%4_5 =0 (2.16)

This equation was derived using a conservation principle: that if we move around a closed curve,
the value of NV should not change when we return, because all vehicles are accounted for.

Therefore, the LWR model can be formulated as the solution to a system of partial differential
equations: in particular, finding functions N (x,t), ¢(x,t), and k(x,t) such that

_ ON(z,1)
q(z,t) = o (2.17)
_ ON(x,t)
ko t) = === (2.18)
q(z,1) = Q(k(z,1)) (2.19)

given a set of boundary conditions (for instance, link inflow rates, or constraints on outflows due
to a signal).

11

\
T
|

Figure 2.6: Cell discretization of a trajectory diagram.

2.2.3 Cell transmission model

In general, it is difficult to solve the system of partial differential equations (2.17)—(2.19).
However, the cell transmission model (Daganzo, 1994) provides an extremely simple way to
solve this system for a particular fundamental diagram (). Furthermore, the final formulas are in
fact quite simple (keeping in mind Criterion 7) and easy to interpret in terms of physical traffic
flow. The cell transmission model involves two major steps. First, space and time are discretized
into “cells”, and the LWR model is reformulated in terms of the number of vehicles moving from
one cell to the next during a time step. Second, the fundamental diagram () is approximated as
piecewise-linear (trapezoidal).

Figure 2.6 shows how the discretization functions. The top panel of this figure shows a trajectory
diagram, in which each thin line represents the path a vehicle takes (its x coordinate at each time
t). The thick horizontal and vertical lines are drawn at regular spacings At and Az, respectively.
The bottom panel shows how the cell transmission model would represent this traffic flow: rather
than tracking the individual locations of all vehicles at all points in time, it suffices to track the
number of vehicles in each cell during each time interval; denote this by n(z, t), and let y(z,t) be
the number of vehicles flowing through cell x at time ¢.

Calculations are greatly simplified by assuming a trapezoidal fundamental diagram, as shown in
Figure 2.7. This is in keeping with Criterion 6, regarding data input requirements — a trapezoidal

12

v>

Figure 2.7: The trapezoidal fundamental diagram.

fundamental diagram is completely specified by four parameters, three of which are calculated
routinely by traffic engineers. These are u, the free-flow speed on a roadway link; ()4, the
roadway capacity; k;, the roadway jam density; and w, the speed at which backward-moving
shockwaves travel®. u; and Q). are routinely calculated using procedures such as those in the
Highway Capacity Manual (Transportation Research Board, 2010). £; is typically estimated
based a typical front bumper-to-front bumper spacing of vehicles when stopped (say, 20 ft) and
the number of lanes. Only w is difficult to calibrate, but experience shows that w is roughly 1/3 to
172 of uy. A key feature of this diagram is that travel speeds do not drop below the free-flow
speed until the roadway capacity is reached. This trapezoidal diagram can be mathematically
represented by the equation:

Q(k) = min{urk, Qmaz, w(k; — k)} (2.20)

The cell transmission model makes one further assumption, that the space and time discretizations
are related:
Azr = upAt (2.21)

that is, the length of each cell is the distance a vehicle would travel at the free-flow speed. This
simplifies calculations in two relatively intuitive ways, and in one deeper way. First, no vehicle
can ever cross more than one cell boundary between ticks; to see how many vehicles may enter a
cell during a time interval, one only need look at the cell immediately upstream. Second, if there
is no congestion, all of the vehicles in each cell can proceed to the next. More deeply, the solution
method presented next actually solves the system of partial differential equations (2.17)—(2.19)
using what is known as a Godunov scheme; for such a scheme to be numerically stable, Az and
At must satisfy the Courant-Friedrichs-Lewy condition. One can show that choosing these values
using equation (2.21) satisfies this condition, and thus proves the stability of the cell transmission
model. The interested reader is referred to Godunov (1959) and Courant et al. (1928) for more
details.

%For instance, consider a roadway where traffic is flowing at capacity. If a traffic signal turns red, the back of the
queue will travel upstream at speed w.

13

Using this discretization, n(z,t) = k(x,t)Az and y(z,t) = q(z,t)At. We can then calculate
y(x,t) as follows, introducing N (z,t) = k; Az as the maximum number of vehicles which can fit
into a cell, and 0 = w/uy as the ratio of the backward wave speed to free-flow speed (typically
1/3-1/2):

y(x,t) = q(x,t) At (2.22)
= Q k(1)) A @.23)
_ (1)
~Q (T) At (2.24)

) b , b

— min {uf"(zx) O (kj - %)}At (2.25)
= min {ufn(x, t)ﬁ—;, QmazAt, w (N(z,t) — n(z,t)) 2—;} (2.26)
= min {n(x,t), QmaAt, 0 (N(z,t) — n(z,t))} (2.27)

where the last equality is obtained using (2.21). Equation (2.27) is the key equation in the cell
transmission model, and describes how many vehicles can pass through cell x at time ¢. Despite
its somewhat intimidating appearance, the equation actually has a very intuitive interpretation.
The flow through a cell can be limited by one of three things:

1. The number of vehicles in the cell (because no vehicle can travel more than one cell at a
time).

2. The capacity of the cell.

3. The available space in the cell, if it is congested.

The three terms in the minimization in (2.21) correspond exactly to these three criteria: if the cell
is uncongested, the maximum flow is n(z, t), the number of vehicles in the cell; at all times, the
cell capacity must be obeyed, and no more than (),,,.. At vehicles may pass through; if the cell is
congested, the amount of free space N (z,t) — n(z,t) in the cell is what controls the flow. The
goal of the cell transmission model, then, is to simulate the movement of vehicles from one cell to
another, taking into account these three possible flow regimes (uncongested flow, capacity flow,
and congested flow).

2.2.4 Traffic flow on a roadway link

Each roadway link is divided into a number of cells, based on the free flow time and time
discretization. As a concrete example, consider a 30-second time discretization (At = 30 s) on a
roadway which is one mile long and has a free-flow speed of 30 mph, capacity of 2000 vehicles
per hour, and jam density of 240 vehicles per mile. At 30 mph, a vehicle can travel a quarter of a
mile in 30 seconds; therefore, this link would be divided into four cells (Figure 2.8). Let

i € {1,2,3,4} index these four cells.

14

1 mile

Cell 1 Cell 2 Cell 3 Cell 4

1/4 mile At=30s

At the 30 mph free-flow speed, vehicles can
move 1/4 mile in 30 seconds.

Figure 2.8: Division of a link into cells.

Let y;;(t) denote the number of vehicles which flow out of cell 7 and into cell j during time ¢.
(Every vehicle must always be in a cell; it cannot exit cell 7 until it enters cell j.) Let S;(¢) denote
the sending flow, that is, the maximum number of vehicles which can leave cell 7 during time
interval ¢

S;(t) = min{n(i, t), Qma At} (2.28)

and R;(t) the receiving flow, that is, the maximum number of vehicles which can enter cell ¢
during time interval ¢:

R()(t) = min {5(N (i, 1) — (i, 1)), Qmas At} (2.29)

Since a vehicle cannot flow from between cells 7 and j unless it can both be sent from ¢ and
received at j, we have

Yij(t) = min {S;(t), R;(t)} (2.30)
The number of vehicles in each cell can then easily be calculated for the next time interval:

that is, the previous number of vehicles in the cell, adding the number of vehicles which entered
from the upstream cell, and subtracting the number of vehicles which left for the downstream cell.
Note that flow into the first cell, and out of the last cell, cannot be handled by these formulas
(since the cells 7« — 1 or 7 4+ 1 are out of range). Instead, they depend on the flow model at
intersections, which is the topic of the next subsection.

2.2.5 Traffic flow at intersections

Roadway links meet at intersections, and the goal of intersection models is to move flow from the
downstream ends of incoming roadway links onto the upstream ends of outgoing roadway links,
accounting for any traffic control at the intersection (such as stop signs or traffic signals). There
are two main ways to represent intersection flow: explicit simulation and implicit simulation. In
the first method, explicit simulation, gap acceptance and the red and green indications of traffic
signals are directly simulated in the model. With implicit simulation, the “average” effect of
traffic control (given the current flow patterns and capacities) is simulated, without modeling each

15

gap and change of signal phase. As Yperman (2007) explains, there are three major disadvantages
to explicit simulation:

1. Explicit simulation can require a small value of At. For instance, if a short protected
left-turn phase only provides 5 seconds of green, then At can be no greater than 5 seconds.
Since small values of At greatly increase the computational burden of running a simulation
model, even one intersection with a short signal phase can dramatically affect memory and
time requirements (cf. Criterion 2) when using explicit simulation.

2. The main goal of mesoscopic simulation is to integrate traffic flow and driver behavior.
However, when drivers choose routes, they base their decision on the average travel times,
and do not time their departure time based on anticipated signal phases at arrival. (That is,
no driver would think “I need to leave at 8:15 and 30 seconds so I can catch the signal at
First and Main just as it turns green.”) Explicitly simulating signal phases over-optimizes
the model in the sense that it introduces more detail than drivers would actually account for
in real life, which leads to unnecessary complication and increased computational burden.

3. Field conditions exhibit stochasticity and randomness, so that even if drivers wanted to time
departures and arrivals exactly based on signal phasing, they would be unable to do so, due
to fluctuations in driver speed, vehicles turning in and out of driveways, and so forth.
Therefore it makes more sense to simulate average conditions.

For these reasons, the implicit simulation approach is preferred for mesoscopic simulation.

The remainder of this subsection describes how general intersection of any type are handled.
Diverges (one incoming link, multiple outgoing links) are first discussed, followed by merges
(multiple incoming links, one outgoing link and general intersections (with any number of
incoming and outgoing links). Diverges and merges form the “prototype” models upon which the
general intersection model is built. In all cases, the intersection models only depend on (a) the
sending flow from the downstream cell on all incoming links; (b) the receiving flow for the
upstream cells on all outgoing links; and (c) additional intersection-specific parameters (such as
cycle length).

Diverges A diverge intersection is one with only one incoming link (labeled u, for upstream),
but more than one outgoing link (here labeled 1 and 2), as in Figure 2.9. Our interest is
calculating the rate of flow from the upstream link to the downstream ones, that is, the flow rates
Yu1 and y,o.The upstream sending flow S, and downstream receiving flows R; and R, will play a
central role. For the first time, we also need to represent some model of route choice, since some
drivers may choose link 1, and others link 2. Let p; and py be the proportions of drivers choosing
these two links, respectively. Naturally, p; and p, are nonnegative, and p; + p, = 1. These values
can change with time.

There are two possibilities, one corresponding to free flow conditions at the diverge, and the other
corresponding to congestion. For the diverge to be freely flowing, both of the downstream links
must be able to accommodate the flow which seeks to enter them. The rates at which vehicles

16

Figure 2.9: Prototype diverge intersection.

want to enter the two links are p;S, and p,S,,, so if both downstream links can accommodate this,
we need p1 S, < Ry and p.S, < R». In this case we simply have 3,1 = p1S, and y,2 = p2.5,: all
of the flow which wants to leave the diverge can.

In the congested case, One common assumption is that flow waiting to enter one link at a diverge
will obstruct every other vehicle on the link (regardless of which link it is destined for). This most
obviously represents the case where the upstream link has only a single lane, so any vehicle which
has to wait will block any vehicle behind it; but this model is commonly used even in other cases.
When there is congestion, only some fraction ¢ of the upstream sending flow can move. The
assumption that any vehicle waiting blocks every vehicle upstream implies that this same fraction
applies to both of the downstream links, so y,1 = ¢p1.S, and Yo = PP2.S,.

The inflow rate to a link cannot exceeds its receiving flow, so ¢,; = ¢p1.S, < Ry and
Gua = P25y < Ry, or equivalently ¢ < R;/p1S, and ¢ < Ry/pyS,. Every vehicle which can
move will, so

) R Ry
¢ = min {—, —} (2.32)
D1 Su P2 Su
Furthermore, we can introduce the uncongested case into this equation as well, and state
) Ry, Ry }
=ming —,——,1 (2.33)
¢ { P1 Su D2 Su

regardless of whether there is congestion at the diverge or not. If the diverge is at free flow, then
¢ =1,but Ry /p1S, > 1 and Ry/p>S, > 1. Introducing 1 into the minimum therefore gives the
correct answer for free flow. Furthermore, if the diverge is not at free flow, then either

Ry/p1Sy < Lor Ry/p2S, < 1, so adding 1 does not affect the minimum value. Therefore, this
formula is still correct even in the uncongested case.

This formula easily generalizes to more than one outgoing link. If D is the set of downstream
links (indexed by d), the general diverge flow formula is

. R
Yua(t) = paS, min {p& Sdu 1} Vd e D (2.34)

where » ., ps = 1 and pg > 0 for all d.

Merges A merge intersection has only one outgoing link (labeled d, for downstream), but more
than one incoming link (here labeled 1 and 2), as in Figure 2.10. We want to calculate the rate of

17

Figure 2.10: Prototype merge intersection.

flow from the upstream links to the downstream one, that is, the flows ¥4 and y»4. The main
quantities of interest are the upstream sending flows S; and S5, and the downstream receiving
flow R4. Unlike diverges, there is no route choice here, so there are no p values.

There are three possibilities, one corresponding to free flow conditions at the merge, one
corresponding to congestion with queues growing on both upstream links, and one corresponding
to congestion on only one upstream link. For the merge to be freely flowing, both upstream links
must be able to transmit all of the flow which seeks to leave them, and the downstream link must
be able to accommodate all of this flow. Mathematically, we need S; 4+ S5 < Ry, and if this is
true then ¢4 = S1, and goq = Ss.

In the second case, there is congestion (so S; + S2 > Ry), and furthermore, flow is arriving fast
enough on both upstream links for a queue to form at each of them. Empirically, in such cases the
flow rate from the upstream links is proportional to the capacity on these links, that is,

@ _ Q?lnax

2
Yad mazr

(2.35)

Furthermore, in the congested case, all of the available downstream capacity will be used, so
Y1a + Y214 = Ra (2.36)
Substituting (2.35) into (2.36) and solving, we obtain
QT
Qe 4+ Qar
fori € {1,2}. Note that this method does not explicitly refer relative priorities, as might be given

by a yield sign or roundabout control. The reason is that repeated field data show that vehicles
tend to “take turns” merging during congestion, regardless of the rules of the road.

Yid R (2.37)

The third case is perhaps a bit unusual. The merge is congested (57 + S2 > Ry), but a queue is
only forming on one of the upstream links. This may happen if the flow on one of the upstream
links is much less than the flow on the other. In this case, the proportionality rule allows all of the
sending flow from one link to enter the downstream link, with room to spare. This “spare
capacity” can then be consumed by the other approach. Mathematically, if one link cannot send
enough flow to meet the proportionality condition, then for exactly one i € {1,2} we have

Qmax
7
anax _|’_ anax

18

Yid < R,

T
N

Figure 2.11: General intersection with multiple approaches and exits.

So, if j is the “other” link (j € {1, 2} but j # 1), the two flow rates are y;; = S; and
yja = Rq — S;: one link sends all of the flow it can, and the other link consumes the remaining
capacity.

The case of more than two upstream links is handled in a similar fashion. The objective is to
determine which approaches (if any) will have queues; the approaches without queues can move
their entire sending flow, while the approaches with queues can move sending flow in proportion
to their capacity. While it is cumbersome to write analytical formulae for these cases, an iterative
algorithm can determine these approaches quite efficiently, as described in Chapter 3.

General intersections General intersections consist of any number of incoming and outgoing
links, and the procedure for determining flows for these are now described. Figure 2.11 shows an
intersection with several incoming and outgoing links. Note that a furning movement cell has
been created for every possible movement in this intersection. (If a turning movement does not
connect an incoming link to an outgoing link, then that movement is considered forbidden, as
with a turn prohibition).

Turning movement cells are slightly different than the ordinary cells which comprise roadway
links, in several ways. First, the capacity of a turning movement cell can potentially change based
on intersection conditions, to represent turning movements which must yield to another. Second,
each turning movement has a target delay, that is, an average amount of time that vehicles are
delayed when making this turning movement, due to intersection control (signal or stop). Note
that this delay does not account for additional delay due to downstream congestion; it only
measures delay due to the intersection control itself.

Each turning movement cell has its own sending flow — the number of vehicles in that cell that
have been there longer than the target delay — and its own receiving flow, equal to the minimum
of the turning movement’s saturation flow, and that movement’s share of the downstream roadway
link’s receiving flow. The intersection algorithm proceeds as follows:

1. Calculate the sending flow for each turning movement cell.
2. For each outgoing link j:

(a) Calculate the receiving flow for link j.

(b) Treat all turning movements 25 with j as downstream link as a merge, calculate
temporary flows ;.

19

(c) Set the receiving flow of turning movement cell ij to y;;.

3. Load vehicles onto turn movement cells. Repeat the following steps for each incoming link
¥

(a) Calculate the sending flow for link <.

(b) Treating link 7 as a diverge, move vehicles onto all turning movements ¢ with ¢ as
upstream link.

4. Move vehicles out of turn movement cells:

(a) Recalculate the sending flow for each turning movement cell.
(b) For each outgoing link j:
1. Calculate the receiving flow for link 7.

ii. Treat all turning movements ¢ with 5 as downstream link as a merge, and move
vehicles.

2.3 User behavior model

In contrast to the traffic flow model, the user behavior model is relatively simple, and is based on
the principle of user equilibrium: if every driver is choosing a route that minimizes their own
travel time, then all used routes connecting the same origin and destination will have equal and
minimal travel time. Otherwise, one or more drivers would switch from a route with higher travel
time to a route with a lower travel time, and the travel times on those two routes would tend to
equalize.

Let Z denote the set of centroids, special intersections where all trips begin and end. (In software
such as VISSIM, they are called “parking lots.”) Vehicles cannot pass through a centroid unless
they are starting or ending there. Let r and s be centroids. The notation d"® denotes the total
number of vehicles departing centroid 7 for destination s during the analysis period. This value is
provided as an input, and can be generated from a travel demand model such as that used by
metropolitan planning organizations.

For mesoscopic simulation, this total demand must be profiled, or distributed, across the analysis
period. Several different profiles are possible; see Figure 2.12 for a few possibilities. In the
absence of further information, a uniform profile is a reasonable choice. In practice, field data can
be used to calibrate the profile to match observed traffic counts or travel times. This profiling
process produces values d"*(t), that is, the number of trips departing r for destination s during
time period t; naturally >, d"™(t) = d"°.

The user behavior model must now assign each of these d"*(¢) vehicles to some route connecting
centroids r and s, and do this for each time interval ¢. Using the notation from the macroscopic
equilibrium formulation, let IT"* denote the set of all routes connecting r to s, and let A" (¢) denote
the number of trips departing on path 7 at time ¢. Let 7™ (¢) denote the travel time on route 7 for

20

Uniform

Demand

Rising
Time ’
(=) ib)
Peak
Falling
o) ()

Figure 2.12: Four possible demand profiles.

travelers leaving at time ¢. Additionally define h and 7 to be the vectors of route flows and travel
times across all 7, s, and ¢.

Given any value of h, the traffic flow model can determine 7(h) — if the number of people
leaving each route at each time is determined, calculating travel times is a simple matter of
simulating the resulting traffic patterns (including any congestion) with the cell transmission
model. The question now is how to update h to move towards an equilibrium solution. Since all
drivers want to choose the route with the lowest travel time, we can define a “target” route flow
vector h*(7) in which every driver chooses the fastest route available to him or her based on
travel times 7.

Of course, if all drivers switch to these target routes, the travel times will likely change and those
routes will no longer have the fastest travel time. Instead, the solution is to switch only some
drivers from their current routes onto the target routes. For any ¢ € [0, 1], the vector

¢h* + (1 — &)h represents a set of route choice decisions intermediate between the current
choices and the target choices, with & representing the proportion of drivers switching. (If £ = 0,
no drivers switch from their current routes; if £ = 1, all drivers switch; if £ = 1/2, half of drivers
switch, and so forth.) In this way, we can avoid “overcorrecting” by moving too many people onto
the same path at the same time, before recalculating travel times using the traffic flow model and
making another route choice adjustment.

There are several compromises which must be made in choosing the right value of . If you pick a
value which is too small, very few drivers will switch paths, and the travel times will be very
similar to what they were before. Unless the solution is already very close to an equilibrium, it
will take many steps to find one, and each step will be spent simulating traffic flows very similar
to those in the previous iteration. On the other hand, a value of £ which is too large is potentially
even worse: the solution could oscillate back and forth between two non-equilibrium states, each
time overcorrecting and never settling to a stable case. The method of successive averages helps
overcome these twin difficulties. In the method of successive averages, £ changes according to the

21

iteration number. During the first iteration, £ = 1/2. During the second iteration, £ = 1/3. During
the third, £ = 1/4, and so on. In general, during iteration k, £ = 1/(1 + k). In this way, ¢ starts
relatively large, and becomes progressively smaller. From a behavioral standpoint, initially many
drivers are switching routes, while over time fewer and fewer drivers switch routes. This strategy
seeks to find an equilibrium within relatively few iterations by initially taking large steps, then
reducing the step size as the equilibrium is approached.

22

Chapter 3

Implementation

This chapter describes how the methodology presented in Chapter 2 has been implemented in a
mesoscopic simulation tool. This description is made in terms of the overall control flow of the
simulation program, referencing each step in the simulator with an appropriate section from the
methodology. This chapter does not contain a technical description of the C source code itself;
programmers interested in a guide to the source code are referred to Appendix B.

Section 3.1 describes how the simulator works at a high level, and Section 3.2 provides additional
details on the three major modules: the traffic flow (cell transmission) model; the fastest route
model, which identifies the route with the least travel time between any points in the network at
any departure time; and the route switching model, using the method of successive averages.
Section 3.3 explains how the origin-destination table is profiled across different departure times.
Section 3.4 introduces the input and output file formats; all of these are plain text files which can
be edited using a number of free or commercial text editors. Sections 3.5 and 3.6 respectively
describe the optional graphics modules (for creating image files based on simulation results).
Finally, Section 3.7 describes the Microsoft Excel interface which allows the data files to be
created, the simulation to be run, and output files to be read through a familiar user interface.

3.1 Overview

The simulator can be run either from the spreadsheet interface (by clicking on the Run button), or
from the command line, by typing

wydot_dta parameters.txt

where the actual name of the parameters file is substituted for parameters.txt.

Figure 3.1 shows the basic workflow for the simulator. When first run, the program initializes by
reading the following data files in sequence:

23

| INITIALIZATION |

| | Read input files and validate
Create cells¢and vehicles :
: Profile (}emand |
Find free-flow fastest routes |

Y
Dynamic traffic assignment

y
Write results to output files

Figure 3.1: Overall simulation workflow.

. The parameters file, which provides general information about the simulation run which is
to be performed (such as the time step At and analysis period length), along with the names
and locations of all the other input files.

. The network file, which contains a list of every roadway link in the network and its
characteristics (length, free-flow speed, etc.).

. The node coordinates file, which contains a list of every intersection and its X and Y
coordinates (which may be latitude and longitude, or another coordinate system).

. The intersection control file, which provides detailed information on each intersection,
including how it is controlled (signal, stop, etc.), which turning movements are allowed,
and any additional information needed by the traffic flow model.

. The origin-destination (OD) matrix file, which shows the total number of trips departing
from every origin to every destination during the analysis period.

Next, the program prepares the internal structures needed for simulation: each link is divided into
an appropriate number of cells, as is the list of vehicles which will eventually be assigned to the
network. The OD matrix read from the input data is then profiled in a manner specified in the
parameters file, converting it to a time-dependent ODT (origin-destination-departure time) array.

24

- — — _— — — —

| INITIALIZATION |

| Initialize DTA parameters |

v

| Create initial route sets |
Y I

| Assign vehicles to initial routes

L — — — . — —_ _

| IFERXTIO_N I
| Cell transm;ssion model - |
: Update tr;vel times :
| Time-deandent A* |

Check conivergence |
| Method of succizssive averages |
L — — - —— — — — 4

Stop if converged

Figure 3.2: Dynamic traffic assignment workflow.

(Section 3.3 describes this process in greater detail.) As the final initialization step, the fastest
route 1is calculated between every intersection and every destination, assuming free-flow
conditions everywhere — precomputing this allows the simulation to run faster, even when
network conditions are not free-flow.

After completing initialization, control switches to the main mesoscopic simulation model
(termed dynamic traffic assignment). This is the core analysis routine which finds a mutually
consistent equilibrium solution between the traffic flow and driver behavior models. The
workflow for the dynamic traffic assignment process is shown in Figure 3.2. This process
includes its own initialization procedures — setting initial travel conditions to free-flow
everywhere, generating the initial route sets for each ODT based on the fastest free-flow routes,
and assigning vehicles to these initial paths.

25

The dynamic traffic assignment process then begins in earnest, iterating through three primary
modules — the cell transmission model, finding the fastest routes under updated conditions, and
shifting some vehicles onto these routes. Each of these modules is described in detail in

Section 3.2. Two additional steps are required: (1) after the cell transmission model is run, the
travel time on each route must be recalculated, and (2) after each iteration of these three steps, a
convergence check is performed.

Travel times for a route are calculated by adding the travel times of the constituent roadway links
and turning movements. To calculate the travel time of a roadway link, the simulator makes use of
the special cumulative counts NT(¢) and N*(¢), which respectively give the total number of
vehicles which have passed the upstream and downstream ends of a link (or turn movement) by
time ¢. To calculate the travel time for a vehicle entering at time ¢, we find that vehicle’s exit time
by finding the least integer ¢’ such that N*(¢) > NT(¢), and then set the travel time to the
difference between ¢’ and ¢ (ensuring that this value is at least equal to the free-flow travel time).

The simulator uses three different convergence criteria, any or all of which can be set in the
parameters file. (If multiple convergence criteria are satisfied, the simulation terminates as soon
as any of them are reached.) These are:

Maximum time: If the simulation runs longer than a pre-specified time limit, it will terminate.

Maximum iterations: If the simulation has iterated among the three primary components more
than a pre-specified number of times, it will terminate.

Consistency: If the simulation has achieved a certain consistency level between the traffic flow
and user behavior models, it will terminate.

The first two are self-explanatory, while consistency requires further definition. Consistency is
best measured against the equilibrium principle itself: at a perfectly consistent solution, all drivers
are using the fastest routes available to them. So, if the solution is not perfectly consistent, one
can measure the degree of consistency by comparing drivers’ actual travel times to the travel
times on the fastest routes they could choose from. This simulator measures this using the
average excess cost, a metric defined in (Boyce et al., 2004) as the average difference between
these values, across all vehicles.

3.2 Primary Modules

The three major modules are: (a) the traffic flow (cell transmission) model; (b) the fastest route

model, which identifies the route with the least travel time between any points in the network at
any departure time; and (c) the route switching model, using the method of successive averages.
This section describes each of them in turn.

26

3.2.1 Cell transmission model

Sections 2.2.3-2.2.5 provided the mathematical formulation of the cell transmission model, link
propagation, and intersection propagation models. By contrast, this section shows how these
mathematical components are implemented in a computer model.

The following steps are performed in sequence, as shown in Figure 3.3:

1. Initially locate all vehicles on an artificial “origin” cell.
2. Start simulating at the initial time interval ¢ = 0.

3. Identify vehicles departing at time interval ¢, and move them from the origin cell onto the
first cell in their paths.

4. Calculate each link’s sending and receiving flow at time ¢.
5. Move vehicles within link cells using the procedure in Section 2.2.4.

6. Process each intersection using the procedure in Section 2.2.5, moving vehicles into and out
of turning movement cells.

7. If this is the last time interval, stop; otherwise increment ¢ and return to step 2.

Although the same general procedure is used to process each intersection, there are several
distinct intersection types which differ in how the target delay and capacity for each turning
movement are calculated. These intersection types are as follows: internal, diverge, merge,
four-way stop, two-way stop, signal, and interchange. Each is described as follows:

Internal: Internal intersections only have one upstream and one downstream link, are thus are
not “true” intersections. However, they can be used to divide one roadway link into two, as
in Figure 3.4. This may be useful to model a lane drop or other change in a link which does
not occur at an intersection — each roadway link must be homogeneous in terms of
capacity and jam density, so internal nodes can be used to mark internal points. Additional
information is calculated at intersections, and so internal intersections can be inserted
wherever this information would be needed. Internal intersections only have a single
turning movement, with zero target delay, and their capacity is not binding'.

Diverge: A diverge has one upstream link and multiple downstream links. Diverge turning
movements have zero target delay and their capacity is not binding.

Merge: A merge has one downstream link and multiple upstream links. Diverge turning
movements have zero target delay and their capacity is not binding.

IThat is, flow can be restricted either by the capacity of the upstream or downstream links, but the turn movement
does not impose any further restrictions

27

| INITIALIZATION |

| | Load vehicles on origin link |
| ‘ |
Set time counter t =0
L — — — I _— _— _ 4
- o

| ITERATION |

¥

| Load vehicles departing at t =+ |

'

| Calculate arc sending and |
receiving flows |

| '

| | Move vehicles within links I

' |

| Process each node

I
| v .
t = time horizon? |No; increment tl
| i Yes
—_— —_— —_— —_— —_— —_— —_— —_— —_— —_— -
Done.

Figure 3.3: Cell transmission model workflow.

28

Four-way stop: Four-way stops can have multiple upstream and downstream links. They have a
target delay specified as a simulation parameter (the default value is four seconds,
representing time lost due to deceleration and stopping, not time spent in queue), and the
capacity is specified in the intersection control file.

Two-way stop: For a two-way stop, each turn movement has two pieces of information stored
with it: a saturation flow, and a priority value, indicating its relative priority in the
intersection. Priority 1 movements do not need to yield to any other movement (for
instance, through and right turns on the major approaches). Priority 2 movements only need
to yield to Priority 1 movements (typically left turns on the major approaches); Priority 3
movements need to yield to Priority 1 and 2 movements (such as right turns on the minor
approach), and so forth. Additionally, the “minimum stop priority” and “intersection
capacity” must be specified. The minimum stop priority is the lowest priority movement
which has a stop sign. Lower priority movements have zero target delay, while higher
priority movements have the same target delay as the four way stop. When this intersection
is processed, vehicles begin moving from the Priority 1 movements. If there is intersection
capacity remaining, vehicles from Priority 2 movements can enter the intersection, and so
on. Once the intersection capacity is exhausted, no more vehicles can move during this time
interval.

Signal: For a signalized intersection, each turn movement has two pieces of information stored
with it: a saturation flow, and an effective green value. Furthermore, the cycle length must
be specified in the intersection control file. Target delays are calculated using the uniform
delay formula in the Highway Capacity Manual (Transportation Research Board, 2010):

C[/ (1-G/O)
=3 (1 — min{X, 1}G/C) G-1)

where G is the effective green, C' is the cycle length, and X is the degree of saturation
(number of vehicles in the turning movement cell divided by the saturation flow and
proportion of green time). No incremental delay component is needed because the dynamic
traffic simulation accounts for fluctuations in arrival rate during the analysis period.

Interchange: An interchange has zero target delay for any of the turning movements, which are
assumed to be grade separated. Capacities can still be specified in the intersection control
file.

3.2.2 Fastest route model

Each ODT has a set of “working routes” that its vehicles are assigned to. Initially, this set only
consists of the fastest route under free-flow conditions. At each iteration, the simulator finds the
new fastest route for this ODT, accounting for updated travel conditions. This route is then added
to the set of working routes (unless it was already there, in which case the set of working routes
remains unchanged).

29

Capacity based Capacity based
on 2 lanes on 1 lane

Figure 3.4: Dividing a link with a nonhomogeneous intersection.

To find these fastest routes, the simulator uses a time-dependent version of the A* shortest path
algorithm, which was first developed by Hart et al. (1968) as a faster version of Dijkstra’s classical
shortest path algorithm. Intuitively, Dijkstra’s algorithm searches in all directions from the origin
r until the destination s is found, while A* uses a more directed search towards the destination.
This directed search relies on having a lower bound on the travel time between any intersection
and the destination. An efficient choice for this lower bound is the free-flow travel time between
that intersection and the destination, which was calculated in one of the initialization steps.

This method proceeds using the following steps, and two additional data structures: a binary heap
H of intersections to scan, and a set C of intersections for which the fastest route from r has
already been found.

1. Initialize ‘H by inserting r, and give it a label of zero.

2. Let ¢ be the intersection in H with the least label; remove it from H.

3. Scan ¢ by performing the following steps for each intersection j directly connected to i by a
single roadway link:

(a) Calculate a temporary label temp by adding (a) the travel time on the fastest route

from r to ¢; (b) the travel time from 7 to j; and (c) the free-flow travel time from j to s.
(Figure 3.5)

(b) If 5 is not in H, insert it into H with the label temp.
(c) If j 1s already in H but its label is greater than temp, update the label of j to temp.

4. AdditoC

5. If H is empty or s was just added to C, end. Otherwise, return to step 2.

30

»-s)

/
/

Free-flow travel time
fromjtos

Exact travel time
on link (i)

—_

Exact travel time on
fastest route from rto i

Figure 3.5: Label calculation in time-dependent A*.
3.2.3 Route switching model

As stated in Section 2.3, the method of successive averages moves a fraction of vehicles from
their current paths onto the fastest path identified by the time-dependent A* algorithm. However,
the total number of vehicles in an ODT can be somewhat small, and this fractional limit can be
binding. For instance, at the fourth iteration, 1/5 of the vehicles should be moved onto the new
fastest path. If there are only 3 vehicles corresponding to this ODT, it is unclear how this move
should be performed. Therefore, the simulator uses a stochastic formula. Each vehicle moves to
its ODT’s fastest route with a probability of &, with £ given by the formulas in Section 2.3,
independent of any other vehicle’s move.

3.3 Demand Profiling

Demand profiling is the process of converting a “static” or aggregate OD matrix into a
time-dependent ODT array. That is, for every origin and destination r and s, we seek
time-dependent departure rates d"*(¢) such that) |, d"*(¢) = d"°. One important simulator
parameter is ¢, the time at which the last vehicle enters the network. After ¢, no additional
vehicles are loaded, but the simulator completes the trips of any vehicles which have been loaded
in earlier time intervals.

The simulator can profile demand automatically, using two predefined “shapes” specified in the
parameters file. The predefined shapes are as follows:

Uniform: This is the simplest profile; demand is distributed evenly between the start of
simulation and ¢ ; there is no peak, rise, or fall in the demand.

Triangle: This forms a “triangular” profile that can represent increasing, decreasing, or peaking
behavior. The triangle profile consists of two linear pieces, and requires three parameters

31

Ratio 1 = p2/p1
Ratio 2 = P3 / Po

Figure 3.6: Parameter values for triangle profile.

(Figure 3.6): the peak time t,; the first ratio R, and the second ratio R,. The slope
switches from the initial slope to the terminal slope at the peak time. Furthermore, the ratio
of the demand during the peak interval during the demand at the first interval is given by
Ry, and the ratio between the demand during the peak interval and the final loading interval
iy is given by R,. This profile is flexible: by specifying a peak time of either O or ¢4, a
linear profile can be created with slope given by R, or R, respectively.

Alternatively, a “raw ODT” file can be specified which lists ODTs and flow rates explicitly. This
option is more data-intensive, but can produce more reliable results if a precomputed profile is
already available (perhaps from an activity-based or departure-time model).

3.4 File Formats

This section documents the formats for each input and output file used by the simulator. All of
these files are plain text files to maximize ease of editing and portability. While plain text files
require more disk space than binary formats, all of these files are amenable to compression and
can be greatly reduced in size when not in use.

Many of these files use a standard metadata format; for instance, a typical line in the parameters
file is

<NETWORK FILE NAME> my_network.txt

32

The text enclosed in angle brackets is the metadata tag (in this case, NETWORK FILE NAME), and
the remainder of the line is the metadata value (my network .txt). The metadata tag is case
insensitive, but the metadata value is case sensitive. All whitespace between the metadata tag and
metadata value is stripped, but whitespace after the metadata value is retained. Metadata can be
presented in any order in the files. In files which contain both metadata and other forms of data
(such as the network file), the metadata must be presented first, and ended with a <END OF
METADATA> tag.

A tilde (~) denotes a comment; any text after a tilde on a line is ignored.

3.4.1 Parameters file

The parameters file contains general values passed to the simulation, including the names of all of
the other input and output files. The name of the parameters file is passed to the simulator as a
command-line argument. This file only consists of metadata. Table 3.1 shows all of the metadata
tags, noting which ones are required and which are optional, along with their functions. An
example of a metadata file is as follows:

<NETWORK FILE> braess.net
<DEMAND FILE> braess.ods
<NODE COORDINATE FILE> braess.nxy
<NODE CONTROL FILE> braess.icf
<COUNTS FILE> braess.sum
<TIME HORIZON> 3000

<LAST VEHICLE ON> 100

<AEC TOLERANCE> 0.1

<MAX RUN TIME> 60
<VERBOSITY LEVEL> 4

<TICK LENGTH> 10

<DEMAND PROFILE> UNIFORM
<BACKWARD WAVE RATIO> 0.5
<RANDOM SEED> 0

Table 3.1: Metadata fields for the parameters file.

Metadata tag Required? Function

NETWORK FILE Yes Provides the name (and optional path) to the network file
DEMAND FILE Yes Provides the name (and optional path) to the OD matrix
file, or to the raw ODT file if the demand profile is RAW
NODE COORDINATE FILE Yes Provides the name (and optional path) to the node coordi-
nate file
NODE CONTROL FILE Yes Provides the name (and optional path) to the file containing

intersection data

Continued on next page.

33

Metadata fields for the parameters file (continued)

Metadata tag Required? Function

COUNTS FILE

No

Provides the name (and optional path) for the file where
complete link and turning movement cumulative counts
will be reported. (This field can also be referenced with
the SUMMARY FILE metadata tag, but this usage is not rec-
ommended.)

LINK SUMMARY FILE

No

Provides the name (and optional path) for the file where
summary information for each link will be recorded.

NODE SUMMARY FILE

No

Provides the name (and optional path) for the file where
summary information for each turning movement will be
recorded.

TIME HORIZON

Yes

Provides the duration of time which will be simulated, in
seconds.

TICK LENGTH

No

Provides the length of the simulation time step At, in sec-
onds. If not provided, will default to 6 seconds.

LAST VEHICLE ON

Yes

Provides the time ¢ ; at which the last vehicle will be loaded,
in seconds.

WARM UP PERIOD

No

Provides the duration of the warm-up period, in seconds
from the start of simulation; results in this period will not
be counted in the link or node summary files. (This field is
required if either a link or node summary file is present).

COOL DOWN PERTIOD

No

Provides the duration of the cool-down period, in seconds
before the time horizon; results in this period will not be
counted in the link or node summary files. (This field is
required if either a link or node summary file is present).

AEC TOLERANCE

Average excess cost which will be used to declare the sim-
ulation sufficiently consistent (Section 3.1).

MAX RUN TIME

Maximum run time before the simulation terminates, in
seconds (Section 3.1).

MAX ITERATIONS

Maximum number of dynamic traffic assignment iterations
before the simulation terminates (Section 3.1).

DEMAND MULTIPLIER

Allows the user to scale all travel demand levels by the fac-
tor specified here. Useful for sensitivity analyses.

VERBOSITY LEVEL

Controls the amount of on-screen notifications provided by
specifying an integer from O (nothing) to 5 (complete log-
ging). The default verbosity level is 3. Warning: Spec-
ifying a verbosity level of 4 or 5 will create a number of
additional log files. These files may be very large (over 1
GB) and greatly slow the simulation. A verbosity level of
3 or lower is recommended.

Continued on next page.

34

Metadata fields for the parameters file (continued)

Metadata tag Required? Function

VEHICLE LENGTH No Average effective length of a vehicle, in feet. Default value
is 20 ft.
BACKWARD WAVE RATIO No The ratio § between the backward and forward wave speeds
(Section 3.2.1). Default value is 0.5.

RANDOM SEED No Provides a seed value for the random number generator,
useful for replicating runs exactly. Default value is the cur-
rent system time (which will generally produce slightly dif-
ferent results at each run).

DEMAND PROFILE Yes Either UNIFORM, TRIANGLE, or RAW. (Section 3.3)
PEAK DEMAND TIME No The peak time ¢, for triangle profiles (Section 3.3). Re-
quired if the demand profile is TRIANGLE
RATIO 1 No The first ratio R; for triangle profiles (Section 3.3). Re-
quired if the demand profile is TRIANGLE
RATIO 2 No The second ratio R» for triangle profiles (Section 3.3). Re-

quired if the demand profile is TRIANGLE

T At least one of the three convergence criteria must be specified, or the simulator will run forever.

3.4.2 Network file

The network file consists of two components: a set of metadata fields which describe the size of
the network (number of links, intersections, and zones), followed by a list of records, one per
roadway link, specifying its parameters. Table 3.2 describes these metadata fields. A sample

network file looks like this:

<NUMBER OF ZONES>
<NUMBER OF NODES>
<NUMBER OF LINKS>
<END OF METADATA>

~ o

Init node Term node Capacity Length (ft) u_f (mph) k_Jj(veh/mi);

1 3

o U1 W W
N oy o O O >

500
50
50
50
50
50
50

1500 30 200 ;
1500 30 200 ;
1500 30 200 ;
1500 30 200 ;
1500 30 200 ;
1500 30 200 ;
1500 30 200 ;

Following the metadata section, each roadway link record consists of one line of text, with six
numbers and a semicolon, all separated by whitespace. These six numbers indicate (1) the

35

Table 3.2: Metadata fields for the network file.

Metadata tag Required? Function

NUMBER OF NODES Yes Number of intersections in the network
NUMBER OF LINKS Yes Number of roadway links in the network
NUMBER OF ZONES Yes Number of origin and destination centroids

intersection where the link starts; (2) the intersection where the link ends; (3) the capacity of the
roadway link, in vehicles per hour; (4) the length of the link, in feet; (5) the free-flow speed uy on
the link, in miles per hour; and (6) the jam density k; in vehicles per mile. Roadway links do not
have to be listed in any particular order.

The intersections are numbered from 1 to NUMBER OF NODES, and textbfcentroid intersections
must be listed first. That is, intersections I-NUMBER OF ZONES correspond to centroids, and the
remaining intersections are regular ones.

3.4.3 Node coordinate file

The node coordinate file has no metadata, and contains a list of coordinates for each intersection.
Each intersection has one row, consisting of three numbers and a semicolon, all separated by
whitespace. These three numbers are (1) the intersection ID; (2) . Intersections do not need to be
listed in order of their ID.

“Node X Y
1 0 o
2 100 o
3 10 o
4 20 -10;
5 20 10 ;
6 30 o

3.4.4 Demand matrix

The demand matrix file specifies the d"* values, that is, the total number of vehicles departing
each origin r for each destination s during the analysis period. This file contains three optional
metadata (shown in Table 3.3), followed by <END OF METADATA>. Even if none of the optional
metadata are used, the <END OF METADATA> line must still be included prior to the beginning of
the OD matrix. This file has the following format:

<NUMBER OF ZONES> 2
<TOTAL OD FLOW> 100.0

36

Table 3.3: Metadata fields for the demand matrix file.

Metadata tag Required? Function

NUMBER OF ZONES No

Number of origin and destination centroids. If included,
it will be checked against the value in the network file for
consistency. Including this optional field can be useful to
catch errors when running simulations, in case the chosen
OD matrix and network are not from the same simulation
run.

DEMAND MULTIPLIER No

Allows the user to scale all travel demand levels by the fac-
tor specified here. Useful for sensitivity analyses. (This
will override any value provided in the parameters file.)

TOTAL OD FLOW No

Lists the total number of vehicles to be assigned to the net-
work. Providing this optional field can be useful for check-
ing that the OD matrix has been correctly specified. If
the simulation VERBOSITY is at least 3, it will report the
TOTAL OD FLOW value compared to the actual number of
vehicles shown in the OD matrix.

<DEMAND MULTIPLIER> 6
<END OF METADATA>

Origin 1
1 0.0; 2

Origin 2
1 : 5.0;

100.0;

The demand matrix is organized by origin; all of the vehicles leaving a particular origin X are
listed in the section following Origin X. Each destination corresponding to that origin is listed,
followed by colon, the number of vehicles, and a semicolon. So, in the example provided above, 0
vehicles are departing origin 1 for destination 1; 100 vehicles are departing origin 1 for
destination 2; and 5 vehicles are departing origin 2 for destination 1. Not all destinations need to
be provided; the simulator will assume a zero value for any origin-destination pairs not listed in
this file. Fractional values can be used (these values can be thought of as “average” flow rates).

An alternative specification is the raw demand file, which is provided instead of the demand
matrix file if the demand profile has Raw type. This file contains the following metadata fields,

followed by one row for each ODT:

<NUMBER OF ODTS> 3
<NUMBER OF ZONES> 7

<TOTAL OD FLOW> 5000.000000

<DEMAND MULTIPLIER> 1

37

Table 3.4: Metadata fields for the raw demand file.

Metadata tag Required? Function

NUMBER OF ODTS Yes Provides the total number of ODTs (origin-destination-
departure time combinations) in the network.
NUMBER OF ZONES No Number of origin and destination centroids. If included,

it will be checked against the value in the network file for
consistency. Including this optional field can be useful to
catch errors when running simulations, in case the chosen
OD matrix and network are not from the same simulation
run.

DEMAND MULTIPLIER No Allows the user to scale all travel demand levels by the fac-
tor specified here. Useful for sensitivity analyses. (This
will override any value provided in the parameters file.)

TOTAL OD FLOW No Lists the total number of vehicles to be assigned to the net-
work. Providing this optional field can be useful for check-
ing that the OD matrix has been correctly specified. If
the simulation VERBOSITY is at least 3, it will report the
TOTAL OD FLOW value compared to the actual number of
vehicles shown in the OD matrix.

<END OF METADATA>

" Origin Destination DepartureTime Demand

1 5 1 100
2 6 5 100
3 7 10 100

Each row contains four numbers, separated by whitespace: the origin, the destination, the
departure time, and the number of vehicles which are departing. The relevant metadata fields are
specified in Table 3.4. Note that using this file would raise a warning, because the TOTAL 0D
FLOW metadata shows 5000 vehicles, which does not match the 300 vehicles which are actually
listed in the remainder of the file. This allows errors to be caught before a simulation is run.

3.4.5 Intersection control file

The intersection control file provides detailed information on each intersection, the form of traffic
control there, and an explicit list of the turning movements associated with that intersection. An
example of such a file is below:

Node 1 : CENTROID
Node 2 : CENTROID

38

Node 3 : DIVERGE

1 > 3 -> 4 9999

1 >3 -—>5 9999
Node 4 : DIVERGE

3 >4 —>5 9999

3 >4 -—> 6 9999
Node 5 : MERGE

3 ->5->6 9999

4 —> 5 => 6 9999
Node 6: MERGE

4 -=> 6 —> 2 9999

5 ->6 ->2 9999

Each intersection is introduced as Node X : CONTROL where CONTROL is the control type for
this intersection. The allowable control types are: FOUR-WAY-STOP, INTERCHANGE,
TWO-WAY-STOP, BASIC—SIGNAL, CENTROID, MERGE, DIVERGE, tttNONHOMOGENEOUS,
and UNKNOWN. The UNKNOWN control should only be used in conjunction with the warrant analysis
module (Section 3.6). Following this is a list of all allowable turning movements at this
intersection. Every allowable movement must be listed — any movement not listed will not be
included in the simulation. Each turning movement is signified using the notation X -> Y -> 7,
which reflects turning from the link connecting intersection X to intersection Y, onto the link
connecting Y to intersection z. The specific format for each node type is slightly different.

For most forms of control, the name of each turning movement is followed simply by its
saturation flow in vehicles per hour. This holds true for all forms of control except for
TWO-WAY-STOP and BASIC-SIGNAL. For these latter two, additional information is needed on
the intersection control and on each turning movement. A sample entry for a TWO-WAY-STOP
intersection is as follows:

Node 8 : TWO-WAY—-STOP
Intersection saturation flow 4999.999809
Minimum stop priority 3

1 ->8->9 1 4999.999809
1 ->8 ->11 1 4999.999809
7 ->8 -> 9 2 4999.999809
7 ->8 —> 11 2 4999.999809
9 > 8 —> 11 3 4999.999809
11 —> 8 —> 9 3 4999.999809

Two pieces of intersection data are required: the Intersection saturation flow, giving
the maximum rate at which vehicles can pass through the intersection as a whole, and the
Minimum stop priority, the least priority movement which has to stop at the sign. For each
listed movement, two pieces of data are required: the stop priority corresponding to that
movement, and the saturation flow.

A sample entry for a BASIC-SIGNAL intersection is as follows:

39

Node 11
Cycle length 20
6 —> 11 —> 5

6 —> 11 -> 8
6 —> 11 -> 10
8 —> 11 -> 5
8 —> 11 -> 6

8 —> 11 -> 10
10 -> 11 -> 5
10 —> 11 —> 6
10 —> 11 —> 8

3
3
3
17
17
17
17
17
17

BASIC-SIGNAL

4999.
4999.

4999
4999

4999

999809
999809

.999809
.999809
4999.
4999.
4999.
4999.

999809
999809
999809
999809

.999809

Once piece of intersection data is required: the Cycle length for this signal. For each listed
movement, two pieces of data are required: the effective green time, and the saturation flow.

3.4.6 Counts file

The counts file is an output file which reports the N(¢) and N*(¢) cumulative count values and
travel times for each roadway link and turning movement at all times ¢. This file can be very
large, and is not intended to be read directly. Instead, this file stores all of the simulation
results which will be used later, either as summarized information in the node and link summary
files (Sections 3.4.8 and 3.4.7), to generate graphics, or to perform a warrant analysis.

The first half of the file reports cumulative counts and travel times for each link, and the second
half reports cumulative counts and travel times for each turning movement. This information is
presented in tabular form, with rows corresponding to a particular time interval and columns
corresponding to roadway links (in the order given in the network file). An excerpt of such a file
is shown below:

LINK CUMULATIVE COUNTS

t (1,3) Downstream Time (3,4) Downstream Time

10 2 0 50 0 0 40

20 4 0 60 0 0 40

30 6 0 70 0 0 40

2990 343 295 3010 O 0 3010

3000 344 296 3010 O 0 3010

TURN MOVEMENT CUMULATIVE COUNTS

t 1->3->5 Downstream Time 1->3->4 Downstream Time
10 O 0 0 0 0 0

20 0 0 0 0 0 0

40

Note that links are indicated by their upstream and downstream intersections (so (1, 3)) is the
link connecting intersection 1 to intersection 3, in that direction), and that turning movements are
indicated by three intersections (1 -> 3 -> 5 is the turning movement from link (1, 3) to link
3, 5). There are three columns corresponding to each link or turning movement: the first shows
the upstream count, the second the downstream count, and the third the travel time for vehicles

entering at the time corresponding to that row (which is shown in the very first column labeled t).

3.4.7 Link summary file

This output file summarizes the simulation results for each roadway link, in the order given in the
network file. For each link, the average travel time is reported in seconds, along with the average
delay in seconds (that is, the travel time in excess of the free-flow time), along with the average
density (in vehicles per mile), the average volume (in vehicles per hour) and the peak-hour factor.
These can be used as input for an operational analysis, such as that in the Highway Capacity
Manual. An excerpt of this file is shown below:

LINK SUMMARY (ALL VALUES TIME AVERAGES)

Link Travel time (s) Delay (s) Density (veh/mi) Volume (veh/hr)
(1,8) 100 0 13 86
(2,18) 346 246 66 89
(3,28) 565 465 91 89
(4,38) 575 475 86 89
(187,5) 100 0 11 73
(197,6) 100 0 8 57

3.4.8 Node summary file

This output file summarizes the simulation results for each turning movement, organized by the
intersection that the turning movements are associated with. For each movement, the average
delay is reported (in seconds), along with the average volume (in vehicles per hour) and the
peak-hour factor. These can be used as input for an operational analysis, such as that in the
Highway Capacity Manual, or for signal retiming. An excerpt of this file is shown below:

NODE SUMMARY FILE

Movement Delay (s) Volume (vph) PHF
Node 1 summary
O —-—>1 —> 8 242 82 0.50

Node 18 summary
108 -> 18 —> 118 O 33 0.50

41

PHF

O O O O o O

.53
.62
.76
.80
.47
.43

Figure 3.7: Example image for a grid network.

2 —> 18 —> 118 0 89 0.62
Node 19 summary

118 —> 19 -> 119 0 63 0.66

109 -> 19 -> 119 O 50 0.53
Node 20 summary

119 -> 20 -> 120 O 20 0.36

110 -=> 20 -> 120 O 4 0.25

3.5 Graphics Module

The graphics module produces image files corresponding to a simulation run, as shown in

Figure 3.7. Graphics can be produced either based on the average level of congestion on each
roadway link, or based on a snapshot level of congestion at each simulation tick. These graphics
files are made in the Portable Network Graphics (PNG) format, and to use this module you
must have the 1ibpng3.d11 and z1ib.d11 libraries installed on your computer. This
format stores images in a space-efficient manner using lossless compression.

To produce graphics, the graphics module must be run separately, either from the spreadsheet or
from the command line, by typing

wydot_graphics parameters.txt

where the actual name of the parameters file is substituted for parameters.txt. Furthermore,

42

Table 3.5: Metadata fields for the graphics parameters file.

Metadata tag Required? Function

IMAGE WIDTH No The width of the PNG file to create, in pixels. Default value
is 500.
IMAGE HEIGHT No The height of the PNG file to create, in pixels. Default value
1s 500.
BORDER WIDTH No Width of the black border on all sides of the image, in pixels.
Default value is 50.
NODE RADIUS No Each intersection is marked with a square, whose width (in
pixels) is twice the value given for this metadata. Default
value is 5.
LINK WIDTH No Each link is drawn as a straight line, whose width (in pixels)
is the value given for this metadata. Default value is 2.
PNG ROOT Yes The start of the filename for the PNG file; the program will
append final.png to this label.
SNAPSHOT No If this metadata tag is included, the code will generate a snap-

shot for each time interval, rather than a single “average”
graphic. (Metadata value is ignored.)

EXCLUDE ZONES No If this metadata tag is included, the code will not plot cen-
troid intersections or connectors. (Metadata value is ig-
nored).

to produce graphics, the parameters file must contain the metadata <GRAPHICS PARAMETERS
FILE>, whose corresponding metadata value is the name of the graphics parameters file, an
additional text file. This file only consists of metadata; Table 3.5 gives a complete listing of the
fields. An example of the graphics parameters file is as follows:

<IMAGE WIDTH> 800
<IMAGE HEIGHT> 800
<BORDER WIDTH> 50

<NODE RADIUS> 5

<LINK WIDTH> 3

<PNG ROOT> gridgen2_

Each image uses color to depict the level of congestion on a link. Red indicates the most
congested conditions, yellow indicates moderate congestion, and green indicates free-flow
conditions. Continuous shading is used to reflect conditions in between. Congestion is based on
the average density on each link, with jam density corresponding to red and zero density
corresponding to green. This information is obtained by reading the counts file indicated in the
parameters file.

43

3.6 Warrants Module

The warrants module uses the simulation results to determine what form of intersection control is
warranted based on predicted traffic volumes. It can be used in one of two ways: (1) to generate
an initial intersection control file when no data is available; and (2) as a post-processing step, to
recommend an updated control scheme for re-optimizing the network based on predicted flows.

This module can only be called from the command line. The two modes of operation for this
module are distinguished by the number of arguments given on the command line. For the first
usage, to perform a comprehensive warrant analysis, the following command line pattern is given
with four arguments:

wydot_warrant parametersFile networkFile initialICF finalICF

where parametersFile is the simulation parameters file, networkFile is the network file
which will be used for executing the calibration run, initialICF is the file identifying which
nodes will have the warrant analysis conducted, and £inalICF is the name of the intersection
control file which will include the warrant analysis. Only those intersections which are given
UNKNOWN control in the initialICF file will have a warrant analysis conducted. In this case, an
initial simulation is made with INTERCHANGE control at all nodes, determining the flow pattern if
there were no delay at the nodes. These volumes are then used to perform a warrant analysis.

For the second usage, the following command line pattern is used with three arguments:
wydot_warrant parametersFile nodeNumber outputFile

where parametersFile is the simulation parameters file (whose <COUNTS FILE> has the
simulation results), nodeNumber is the ID number for the intersection to analyze, and
outputFile is the name of the file into which the new control data will be written.

In both cases, the warrants in the Manual for Uniform Traffic Control Devices (Federal Highway
Administration, 2009) are used to classify each node’s control. The first step is to identify the
primary and secondary approaches to the node; this determination is made on the basis of the flow
rates from the simulation counts file. Note that the primary approaches need not correspond to a
through movement, but can correspond to a right or left turn (Figure 3.8). The appropriate form of
signal control is then determined using tables from the Manual for Uniform Traffic Control
Devices, to determine whether a signal, two-way stop, or four-way stop control is warranted. If
none of these warrants are satisfied, four-way stop control is used as default.

For signalized intersections, a basic, two-phase signal timing is created using Webster’s
formula Webster (1958):

e Calculate the degree of saturation X, for the major approach, based on the ratio of average
volume to saturation flow.

44

© @

©

Figure 3.8: An intersection where the primary movements correspond to a turn.

e Calculate the degree of saturation X,,, for the minor approach.

e (Calculate the cycle length using the formula

5
C = mi Crnaz 3.2
mm{l—XM—Xm’ } 3.2)
where C' is the calculated cycle length, and C,,,,,. is the maximum allowable cycle length. If
X+ X, >1,thenC = C,40-

e Allocate green time to the major and minor approaches in proportion to X,,, and X,,.

This procedure assumes no lost time, makes no saturation flow adjustments based on local
conditions (such as grade or the presence of parking), and does not account for pedestrian
crossing times. If this information is available, then it should be entered into the intersection
control file directly, because it cannot be calculated by the warrant module.

For two-way stops, each turn movement is classified based on whether it is a right turn or left
turn, and whether its upstream and downstream roadway links are major and/or minor. The node
coordinates are used to determine the angle for the turning movement, and to assign the correct
priority.

For four-way stops, no additional calculations are needed.

45

Excel Options Trust Center

Home Insert Pagelayout F ‘

General

= @ Help keep your documen: | Trusted Publishers Macro Settings
Save
i Formulas Trusted Locations
—— Informatio . , . bisable all macros uithout noficaton
) rotecting your privacy
) Casoftware\wyDd] | Proofing Trusted Documents € pisable all macros with notification
[Open , vacy.
P Save Miosoftcares about your privacy.For ||y s € pisable all macros sxcept digitally sianed macro
N statements.
O Close ®_Enable all macros (not recommended: ¢
< F | potentially dangerous code can run)
Language Active
an 9usg Show the Microsoft Excel privacy state | ActiveX Settings
Info] Advanced Office.com privacy statement Y S Developer Macro Settings
Protect Customer Experience Improvement Pr. -

Rewft Tl Customize Ribbon protected view [7) Trust access to the VBA project object model

Quick Access Toalbar Security & more Message Bar
New b

Add-ns Learn more about protecting your privar oo
Print j Trust Center B —— File Block Settings
Save & Send Check for Microsoft Excel Trust Center privacy Options

Issues -
The Trust Center contains security and p
Help recommend that you do not change the:
Com Y
e Y
Bepc 2
Manage
Versions -

Figure 3.9: Changing macro settings in Excel.
3.7 Spreadsheet Interface

A spreadsheet interface to the simulator has been created, using Microsoft Excel and its VBA
scripting language. To use this spreadsheet, macros must be enabled in Excel. To change the
security settings to allow macros to run, click on the File tab at the upper left of the ribbon, and
click “Excel Options.” Click on “Trust Center” at the bottom of the left panel, then choose
“Macro Settings.” Select “Enable all macros.” See Figure 3.9 (You should switch your macro
settings back to their initial settings after you have finished using the interface, by performing the
same steps and choosing a different security level.)

The interface contains a number of different worksheets. Upon first opening the interface, you
will be on the Dashboard worksheet. (Figure 3.10). The buttons on this worksheet walk you
through the steps of preparing the necessary input data for the simulator, running the simulator
itself, and then importing the simulation summary files and graphics. You can always return to the
Dashboard from any worksheet by pressing a button at the upper left.

The Project Summary worksheet is the first step in creating a new network. (Figure 3.11). On this
sheet, there is room to provide information about the analysis project, as well as the engineer
performing the analysis. The network data is specified below, including the number of nodes
(intersections), links, and zones. Simulation parameters are listed below; these will eventually be
entered into the appropriate parameters file for a simulation run. To the right is a listing of all of
the input and output files which can be created by the simulator. You do not need to enter these
manually; when you export the data, the VBA code will prompt you to enter the name of each file
in turn. Once all of the parameters have been entered, clicking the “Prepare for manual input”
button will then format the remaining sheets based on the network parameters that have been

46

= R Interfacexism - Microsoft Excel
Home Insert Page Layout Formulas Data Review View Developer

.)
& cut Calibri A1l - AN == E] ® - S wrap Text General - ﬁ
53 copy ~
Paste . A E=E=E|E &= . -9 <0 o0 | Conditional Format as
= # Format Painter B L0 - | m— E = E |4 & | B merge & center 2 oo ol Formatting = Table -
Clipboard F] Font F] Alignment F] MNumber
011 - [£
A B C D E F G H] K L
1
2 INPUT DATA MODEL RUNS ADDITIONAL MODULES
3
4 . . " " :
= Go to project summary page Perform all steps without Generate "average” graphic
stoppin
. pping
7 . . .
s Edit network links Generate graphics snapshots
9
10 .
0 Edit network nodes Export model for run
12
13 . a ; g
% Edit OD matrix Run simulation Warrant analysis (network)
15
16
= Edit intersection data Import simulation results Warrant analysis (single node)
18

Figure 3.10: Dashboard spreadsheet.

entered.

The Link Data spreadsheet allows you to enter information for each roadway link in the network.
(Figure 3.12). This file will eventually be exported to form the network file (Section 3.4.2), and
each column corresponds to the descriptions in that section. Upon entering this data, click on
“Proceed to node data.”

The Node Data spreadsheet allows you to enter the coordinates for each intersection in the
network. (Figure 3.13). This file will eventually be exported to form the node coordinates file
(Section 3.4.3), and each column corresponds to the descriptions in that section. Upon entering
this data, click on “Proceed to OD Matrix.”

The OD Matrix spreadsheet allows you to enter the coordinates for each intersection in the
network. (Figure 3.14). This file will eventually be exported to form the demand matrix file
(Section 3.4.4). Upon entering this data, click on “Proceed to intersection data.”

The Intersection Data spreadsheet allows you to enter information on each intersection’s control
type. (Figure 3.15). This spreadsheet is slightly more involved than the others. The intersection
type can be selected from a drop-down box next to each node’s ID. By default, the spreadsheet
will allow all turning movements at an intersection, except for U-turns. The columns labeled
“Forbidden movements” and ‘“Permitted movements” allow you to override these defaults:
prohibited turn movements can be entered in the “Forbidden movements” column, and if U-turns
are allowed, they can be added to the “Permitted movements” column. These movements are
indicated using the standard X -> Y —-> 7z notation, and a list of movements can be separated by
commas in these cells. Clicking on “Edit node Y details” takes you to a secondary sheet which

47

HIEEARN Interfacexdsm - Microsoft Excel c@ =
Home | Insert Pagelajowt Formuas Data Review View Developer s @o® x

@ % Calibri u A 2 » Swreprea General] Bad = B [H] ;Au{usumv 7 A
33 - - Fill ~
LS q;:::ﬁpamm B 7 U- - &-A- = | &£ &£ B Merge&Centerr | $ - % 8 ;ﬂ:ﬂéﬁ;ﬂ;‘ﬁ:&?as Good Neutral fe=ert De\vete FOrmat | Cloar « :i:r&v ST\‘::(&
Clipboard o Font o Alignment o Number o Styles | cells | Editing |
AL - I &l
A B C D E F G H |) KIE
1
; Return to dashboard Export parameters to file Export everything
4
5 Project title|
6 Analyist
7 Date
8
9 Network data
10 Number of nodes Link data
1 Number of links Node data
12 Number of zones| 0D Matrix
13 Intersection data
14 Counts file
15 Time horizon (hr)) Node summary file L
16 Last vehicle loaded (hr) Link summary file
17 Tick length () Parameters file
18 Maximum run time (min) Graphics file
19 Maximum iterations|
20 AEC threshold (min)
2 Warm-up period (hr) Prepare for manual input
2 Cool-down period (hr))
23
2
25
26
27
28
29
30
31 3
1’ M| Dashboard | Parameters ~Link data_~Node data_~OD Matrix_~ Intersection data__~ Node edtor__~ Link summary _.~ Node summary .~ Graphic] 4 M i
Ready | 3 | Eo@m s U ®

Figure 3.11: Project Summary spreadsheet.

Return to dashboard Proceed to node data Export to file

To Capacity (vph) Length (ft) Speed limit (mph) Jam density (veh/mi)
8 5000 5280 60 200
10 5000 5280 60 200
10 5000 5280 60 200
11 5000 5280 60 200
5000 5280 60 200
5000 5280 30 200
5000 5280 60 200
5000 5280 60 200
5000 5280 30 200
5000 5280 30 200
5000 5280 60 200
5000 5280 60 200
5000 5280 30 200
5000 5230 60 200
5000 5280 60 200
5000 5280 60 200
5000 5280 60 200
5000 5280 60 200

S

[

Witdi~ il ik Wi

Oiwivin wiNaibiw

Figure 3.12: Links spreadsheet.

48

Return to dashboard Proceed to OD Matrix

Node Longitude Latitude
1 10 0
20 0
30 30
20 30
10 30
0 20
0 10
10 10
20 10
20 20
10 20

2
3
4
5
5]
7
3
9

Figure 3.13: Node Data spreadsheet.

Return to dashboard Proceed to intersection data
Orig | Dest 1 2 3 4 5 6 7
1 3000
2
3 500
4 100
5
5] 500
7 200

Figure 3.14: OD Matrix spreadsheet.

49

Return to dashboard

Select intersection type Forbidden movements Permitted movements
Centroid

Edit node 1 details
Edit node 2 details
Edit node 3 details
Edit node 4 details
Edit node 5 details
Edit node 6 details
Edit node 7 details
Edit node 8 details
Edit node 9 details
Edit node 10 details
Edit node 11 details

Centroid

Centroid

Centroid

Centroid

Centroid

Centroid

Unknown

Unknown

Unknown

A C]]aja]afa]a]a]n

Unknown

Figure 3.15: Intersection Data spreadsheet.

allows you to enter additional information on each turn movement and intersection (such as cycle
lengths, movement saturation flows, green times, and priorities). (Figure 3.16). This latter sheet
also allows you to toggle movements between permitted and prohibited. Upon completion of
editing, you must click “Save information and return to intersection data” for this information to
be properly saved.

After entering all of this data, return to the Dashboard and click “Export model for run.” You will
be prompted for all the names of the files to export all of the information which has been entered
into the spreadsheets. At this point, you can click “Run simulation” to perform mesoscopic
simulation — the program will run in the same way as if it had been called from the command
line. After simulation is complete, clicking on “Import simulation results” will enter the link and
intersection summary data into their respective sheets (Figures 3.18 and 3.17), along with a
graphical illustration (Figure 3.19).

50

Save information and return to intersection data

Node details

Cycle length

Movement Permitted? Saturation flow Effective green

6->11->5 Yes h 5000 17
6->11->6 No 0 0
6->11->8 5000 17
6->11->10 5000 17
8§->11->5 5000 17
8§->11->6 5000 17
8->11->8 0 0
8->11->10 5000 17
10->11->5 5000 13
10->11->6 5000 13
10->11->8 5000 13
10->11->10 0 D

MR RN RN R RN RN RN RN RN R

Figure 3.16: Node Data spreadsheet.

5]

Travel time (s) Delay (s) Density (veh/mi) Volume (vph) PHF
60 0 1533 0.75

60 255 0.73

60 44 0.53

60 251 0.72

60 104 0.7

108 0.72
1571 0.77
0.72

[ury

60
60

W00 is] O iU s) R e

Wiwiwinitoi~Nididiw

[urs
=}

[ury
=}

[ury
=}

[y
=}

=
=

[y
=

[y
=

0
0
0
0
0
0
1]
"]
0
0
0
0
1]
"]
0
0
1

[y
[

Figure 3.17: Link Summary spreadsheet.

51

Delay (s) Volume (vph)
0 1499

2 - 0 0 161 0.72
3 ->]] 1910 0.8
3 - 10 0 249 0.71
4 -> 0 0 0 ---
4 - 10] 43 0.52
5 -> 0 0 0 ---
5] -]] 267 0.76
5] - 11 0 246 0.7
7 -> 8] 103 0.69
2] - 9 0] ---
] -> 11 0 0 ---

Figure 3.18: Node Summary spreadsheet.

Return to dashboard

Average network conditions

Figure 3.19: Graphics spreadsheet.

52

Chapter 4

Case Studies

This chapter presents three different networks as case studies for the mesoscopic simulator: a
small “toy” network, the city of Casper, and the state of Wyoming. Each case study demonstrates
a different aspect of the simulator and modules. The toy network is small enough for the impact
of its results to be immediately apparent; this further serves as a demonstration of the warrant
analysis. The Casper network represents one of Wyoming’s largest cities, and demonstrates the
applicability of the tool for quantifying traffic diversion due to a work zone closing a major
thoroughfare. The Wyoming network represents the major freeways throughout the entire state,
and forms the context for quantifying traffic diversion due to a hypothetical toll imposed on I-80.

In this chapter, the focus is mainly on the network constructions, and interpreting the result
summary and graphics files. Detailed tutorials, with step-by-step instructions for performing these
analysis, can be found in Appendix A.

4.1 Toy Network

Consider the network shown in Figure 4.1. Intersections 1-7 are centroids. Every link is 1 mile
long and has a capacity of 5000 vph and jam density 200 veh/mi; the thick shaded links have a
speed limit of 30 mph and all other links have a speed limit of 60 mph. 3000 vehicles depart from
zone 1 to zone 3; 500 vehicles from zone to 3 to zone 6; 100 from zone 4 to zone 2; 500 from 6 to
3; and 200 from 7 to 2. Assume that the node controls at intersections 8, 9, 10, and 11 is currently
unknown. This leads to the following incomplete intersection control file:

Node 1 : CENTROID
Node 2 : CENTROID
Node 3 : CENTROID
Node 4 : CENTROID
Node 5 : CENTROID
Node 6 : CENTROID

53

B A B
(5 | ‘\ 4 /‘ (3\\
< . ' 4
///é\\\ ///\\\ ,//7(\) \
(o Eem— P |
@ \I/ \t/
_ \ //>\\\ //7\\\
(7 /~—>\\8 /,;4—»1\\ 9
Y "//é\
A 4 &

Figure 4.1: Toy network schematic.

Node 7 : CENTROID
Node 8 : UNKNOWN
Node 9 : UNKNOWN
Node 10 : UNKNOWN
Node 11 : UNKNOWN

Running the warrant analysis module, volumes are calculated on a temporary basis, assuming that
each of nodes 8—11 has four-way stop control. Upon analyzing these volumes, the warrant
analysis module generates the following, completed intersection control file:

Node 1 CENTROID
Node 2 CENTROID
Node 3 CENTROID
Node 4 CENTROID
Node 5 CENTROID
Node 6 CENTROID
Node 7 : CENTROID
Node 8 : TWO-WAY-STOP

Intersection saturation flow 4999.999809
Minimum stop priority 3

1 > 8 -> 9 1 4999.999809

1 > 8 —> 11 1 4999.999809

7 -> 8 -> 9 2 4999.999809

54

7 ->8 —-> 11
9 > 8 -> 11
11 —> 8 —> 9
BASIC-SIGNAL

Node 9

Cycle length 20

2
3
3

4999
4999
4999

.999809
.999809
.999809

8 —> 9 —> 2 10 4999.999809
8 —> 9 —> 10
10 —> 9 —> 2
10 —> 9 —> 8
BASIC-SIGNAL

Cycle length 20

Node 10
3 >
3 —>
3 >
4 —>
4 —>
4 —>
9 —>
9 >
9 —>

10
10
10
10
10
10
10
10
10

->
—>

4
9
11
3
9
11
3
4
11

11 -> 10 -> 3
11 —> 10 —> 4
11 -> 10 -> 9
BASIC—-SIGNAL

Cycle length 20

Node 11
6 —>
6 —>
6 —>
8 —>
8 —>
8 —>

11
11
11
11
11
11

—>

5
8
10
5
6
10

10 —> 11 -> 5
10 => 11 -> 6
10 —> 11 -> 8

10 4999.999809

10
10

16
16
16
16
16
16
4

4
4
4
4
4

15
15
15
15
15
15
5
5
5

4999

4999.

4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.

4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.
4999.

.999809
999809

999809
999809
999809
999809
999809
999809
999809
999809
999809
999809
999809
999809

999809
999809
999809
999809
999809
999809
999809
999809
999809

Notice that a two-way stop is recommended at node 8, and signals at nodes 9, 10, and 11. Each
signal has a short cycle length (20 seconds). At node 9, the signal time is divided between the two
approaches, while nodes 10 and 11 use a less even distribution because of different approach
volumes. Running the main simulator produces the following link flows:

LINK SUMMARY

Link Time

(1,8)
(3,10)
(4,10)

6
6
6

0
0
0

Density

39
9
1

(ALL VALUES TIME AVERAGES)

Volume PHF
2357 0.92
398 0.90
81 0.85

55

and turning movement summary:

NODE SUMMARY FILE

Movement Delay (s) Volume (vph) PHF
Node 1 summary

0O ->1->80 2314 0.90
Node 2 summary

9 —> 2 -> 0 0 261 0.92
Node 3 summary

10 > 3 —> 0 0 2894 0.96

0 -> 3 -> 10 0 391 0.88

4.2 Casper

The Casper network was constructed from the TransCAD model used for long-range planning.
After making the necessary conversions to mesoscopic simulation format, this network has 304
centroids, 1014 intersections, and 2760 roadway links. The entire network is shown in Figure 4.2
— in this and similar figures, the color indicates the level of congestion on a link, based on its
density. Green indicates free-flow conditions, red congested conditions, and intermediate shades
reflect traffic conditions in between. Black indicates links with very little flow. To simulate a
work zone closure, the link representing Yellowstone Highway between Beverly St and C St is
closed (represented in the simulator by deleting its link from the network file) (Figure 4.3).

Figure 4.4 shows how roadway volume has shifted before (left) and after (right) the work zone
closure. For a more quantitative view, the node summary file shows how the flows around
intersection 436 (Yellowstone Hwy & Beverly St) have changed, as compiled in Table 4.1. Note
the substantial diversion of flow away from this intersection after the closure. This reflects
travelers choosing alternate routes to avoid the work zone and closure.

4.3 Wyoming

The Wyoming network was constructed manually, including every interstate and federal highway
in the State, along with several “external” intersections and links which represent diversion
opportunities outside the state (Figure 4.5). More details on the construction process can be found
in Saha et al. (2013). The specific policy studied here was levying a toll on I-80 between Rock
Springs and Rawlins, as suggested by Wyoming Department of Transportation (2008).

While the simulator does not directly model tolls on links, a toll can be effectively modeled by
adjusting the free-flow speed of a link, as follows: to simulate a $20 toll, we increase the free-flow
travel time on this link by an equivalent amount. This equivalency depends on travelers’ value of
time; this demonstration assumes an average $10/hr value of time, a standard figure in the tolling

56

G
CRLTS CUSCR BT TLR et |
. "

Figure 4.2: Map of the entire Casper network.

57

o e F = nost SEvansv
w I 8 § i EK 5t Pr = Pr Fd] fryan =
z ¥ &g 2 2 2 &
2 5 3 & @ 2 o
L= - w g L El
2 @ = @ =

& +) n Long Horn Dr &
Field of Dreams &
3 =
Baseball Complex ‘g,ﬁ z
a o = s EFSt
= Casper East
RV Park &

Campground

r. =
Burlington AYE 5,
UeDaHson Park E
Burlington A 0 g Jguistone oy
f He Gary.-hve
z EC St Lo ol
; % E‘{é‘ 5 3 & et s Provence G
—]
= g = Se & 2 = S i Bruhn Way ‘-‘-‘o
g jr = = B c = Y 8 £]
= F z = = @ % 5 3 oy 1] n @ =
i) = e = @ 3 a @ 2 w FEastdale et SR S
3 2 - H St z g Ea st L _ﬁ““ Gs.‘b =0 :-g iy 3
2 [] 3 %3 .~ o & = "
= o @ @ oy = @ u
;) § ;a E 1stln ;_5’ o 2 Harden Park o
Tstst £ 2 Conwell Elstst = ETst st < E
% a P(a‘:gk £ %Ne Elststz
v i 3
pE= = g r 3 £ T EzZndSt
15t~ E i i E 2nd 5t g t v é’" E 2nd St = = n Cloud'St
= i ! E =
Z S 3 £ 3 o & Hilltop - £ 2 & =
w L] % F4 @ El b 4 £ e £ E Teton St
. i w B & 3 = o Center 2 5 2 3 3
= 2
2w E3rd St ¥ @ EddSt w = E 3rd 5t b 7 N R Medicine
i = S 2 S Yagpy S
= = - ' & ~ = Gannett 5t

Figure 4.3: Link closed between Beverly St. & C St. for work zone.

Before closure After closure

Figure 4.4: Link congestion between Beverly St. & C St. before and after work zone.

58

Table 4.1: Turning movement flows before and after closure of Yellowstone Hwy.

Movement Flow before closure Flow after closure
820 -> 436 —-> 985 27 0
820 —> 436 —> 597 80 0
820 —-> 436 —> 437 105 0
597 -> 436 —-> 985 165 34
597 -> 436 —-> 820 85 5
597 -> 436 -> 437 160 39
437 -> 436 -> 985 4 1
437 -> 436 —> 820 48 1
437 -> 436 —> 597 70 24
985 -> 436 -> 820 34 5
985 -> 436 -> 597 120 45
985 -> 436 -> 437 17 14

Figure 4.5: Statewide network for Wyoming.

59

literature. This segment is 111 miles long, and has a speed limit of 75 mph. At this speed, the link
takes 1.48 hours to traverse. At $10/hr value of time, the $20 toll imposes the equivalent of two
additional hours of time, or an equivalent of 3.48 hours. This, in turn, translates to a speed of 32
mph for the 111 mile distance. Therefore, in the network file, the speed limit for I-80 was reduced
to 32 mph between Rock Springs and Rawlins to produce the same effect as a $20 toll.

Viewing the link summary file, we can quantify the amount of diversion: prior to imposing the
toll, the average annual daily traffic (AADT) count was approximately 6650 at this location, while
after the toll, the AADT count decreased to 2800. Thus, approximately 3800 vehicles diverted
onto an alternate route, primarily out-of-state traffic. This new AADT count can also be used to
forecast toll revenue.

60

Chapter 5

Summary & Conclusions

This project developed a mesoscopic simulation software capable of modeling both cities and
statewide regions. The key concepts are (1) a traffic flow model, which is realistic enough to
capture basic traffic dynamics, yet efficient and scalable to very large regions, and (2) a user
behavior model where route choice and diversion are determined endogenously, based on
simulated travel times. To this end, the cell transmission model was integrated with a user
equilibrium principle to produce an efficient, dynamic traffic assignment simulator.

This simulation software was implemented in the C programming language, with a Microsoft
Excel VBA frontend. The simulation itself proceeds in an iterative process, moving towards
consistency between the traffic flow and user behavior models. The iteration proceeds through
three primary submodules: the cell transmission model; the time-dependent A* algorithm to find
the least-cost routes for each origin, destination, and departure time; and the method of successive
averages to shift an appropriate number of vehicles from longer routes to shorter ones.

All input and output from the simulation takes the form of plain text files which are portable,
human-readable, and easy to edit. A spreadsheet interface is also provided to facilitate data entry
and analysis of results. Two additional modules were developed: a graphics module which
produces network maps showing congestion patterns, and a warrant analysis module. The latter
serves two purposes, and can overcome data limitations by developing a basic intersection control
pattern throughout the network based on engineering warrants, or alternately serve as a
postprocessing procedure to determine updated intersection control after simulation.

Case studies demonstrate this in both the Casper network, and a statewide network representing
all of Wyoming. Appendices to the main document include tutorials, a programmer’s guide to the
source code, and the C and VBA code itself.

61

References

Beckmann, M. J., C. B. McGuire, and C. B. Winston (1956). Studies in the Economics of
Transportation. New Haven, CT: Yale University Press.

Boyce, D., B. Ralevic-Dekic, and H. Bar-Gera (2004). Convergence of traffic assignments: how
much is enough? Journal of Transportation Engineering 130(1), 49-55.

Boyles, S. D. and S. T. Waller (2010). Traffic network analysis and design. In J. J. Cochran (Ed.),
Wiley Encyclopedia of Operations Research. Wiley.

Courant, R., K. Friedrichs, and H. Lewy (1928). Uber die partiellen differenzengleichungen der
mathematischen physik. Mathematische Annalen 100(1), 32-74.

Daganzo, C. F. (1994). The cell transmission model: a dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B 28(4), 269-287.

Federal Highway Administration (2009). Manual on Uniform Traffic Control Devices.
Washington, DC: US Department of Transportation.

Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution of
hydrodynamic equations. Matematicheskii Sbornik 47, 271-306.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2),
100-107.

Lighthill, M. and G. Whitham (1955). On kinematic waves. II. A theory of traffic flow on long
crowded roads. Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 317-345.

Patriksson, M. (1994). The Traffic Assignment Problem — Models and Methods. Utrecht,
Netherlands: VSP.

Pigou, A. C. (1920). The Economics of Welfare. London: Macmillan and Co.
Richards, P. (1956). Shock waves on the highway. Operations Research 4(1), 42-51.

Saha, P, R. Liu, C. Melson, and S. D. Boyles (2013). Network model for rural roadway tolling
with pavement deterioration and repair. In review, Computer-Aided Civil and Infrastructure
Engineering.

62

Transportation Research Board (2010). Highway Capacity Manual. Washington, DC: National
Research Council.

Wardrop, J. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institute
of Civil Engineers, Part 11, 325-378.

Webster, F. V. (1958). Traffic signal settings. Technical report, Her Majesty’s Stationery Office,
London. Road Research Technical Paper No. 30.

Wyoming Department of Transportation (2008). Interstate 80 tolling feasibility study. Prepared
by Parsons Brinkerhoff in association with PB Consult.

Yperman, 1. (2007). The Link Transmission Model for Dynamic Newtork Loading. Ph. D. thesis,
Katholieke Universiteit Leuven, Belgium.

63

Appendix A

Tutorials

This appendix contains in-depth tutorials for the three case studies in Chapter 4. These include:

1. A small toy network which is made from scratch, showing how to use the interface to create
and edit data files. This example also shows how to use the warrant analysis and graphics
modules as well.

2. A network representing the city of Casper. This example shows how the simulator can be
used to predict the influence of a work zone closure on traffic diversion, and on
re-optimizing signal control.

3. A network representing the state of Wyoming. This example shows how the simulator can
reflect large-scale diversion which can occur as a result of a toll on I-80. This reflects a less
conventional use of the traffic simulator and shows the flexibility of the mesoscopic
approach.

Specific instructions for the tutorial are printed in boldface, interspersed with additional
description of how the program is working.

A.1 Toy network

We want to create the network shown schematically in Figure A.1. Note that the node numberings
have been determined in advance, and are chosen so that the origin and destination centroids have
the lowest numbers (1-7), while the regular intersections 8—11 have the higher ID numbers.
Intersections 1-7 are centroids. Every link is 1 mile long and has a capacity of 5000 vph and jam
density 200 veh/mi; the thick shaded links have a speed limit of 30 mph and all other links have a
speed limit of 60 mph. According to a travel demand model which has been conducted earlier,
3000 vehicles depart from zone 1 to zone 3; 500 vehicles from zone to 3 to zone 6; 100 from zone

64

4
|

10
|

9
|
2

6 -« 11w >

y. <
|
AN
A\
y. <
|
AN
yo
’/
\
A\

T« »8 a9
1 2

/

Figure A.1: Toy network for tutorial.

65

Home Insert Page Layout
General
| save
] Formul
Informatiof | o=
B saveas
CASoftware\WyD» Proofing
[F Open
Save
[Close
) Language
A=
Info - = Advanced
Protect Customize Ribbon
Recent Workbook -
Quick Access Taolbar
New
Add-Ins
Print [j Trust Center
Save & Send Chedicioy
Issues -
Help
o
Conm)
e gD
Bepc 3
Manage
Versions -

@ Help keep your documen

Protecting your privacy

Micrasoft cares about your privacy. For
statements.

Show the Microsoft Excel privacy state
Office.com privacy statement
Customer Experience Improvement Pr.

Security & more
Learn more about protecting your privar
Microsoft Trustworthy Computing
Microsoft Excel Trust Center

The Trust Center contains security and p
recommend that you do nat change the:

Excel Options Trust Center

Trusted Publishers
Trusted Locations
Trusted Documents
Add-ins
ActiveX Settings
Macro Settings
Protected View
Message Bar
External Content
File Block Settings

privacy Options

Macro Settings

€ Disable all macros without notification
€ Disable all macros with notification

€ pisable all macros except digitallv sianed macrg
& Enable all macros (not recommended: potentially dangerous code can run) %

Developer Macro Settings

[7] Trust access to the VBA project object model

Figure A.2: Changing macro settings in Excel.

4 to zone 2; 500 from 6 to 3; and 200 from 7 to 2. Assume that the node controls at intersections
8,9, 10, and 11 is currently unknown.

Open the spreadsheet interface.x1sm with Microsoft Excel. This interface relies

extensively on Excel VBA macros, which must be enabled. If you receive a warning about

macros being disabled because of your security settings, follow these instructions: click on the
File tab at the upper left of the ribbon, and click “Excel Options.” Click on “Trust Center” at the
bottom of the left panel, then choose “Macro Settings.” Select “Enable all macros.” See
Figure A.2 (You should switch your macro settings back to their initial settings after you have
finished using the interface, by performing the same steps and choosing a different security level.)

You should see the dashboard shown in Figure A.3. Click on “Go to project summary page”
underneath “Input Data.” This will take you to the Parameters sheet, where you can enter in the
basic project information the interface needs to construct the remainder of the sheets.
(Figure A.4). Enter in the following information in the cells marked ‘“Network data” and

“Simulation parameters’’:

Number of nodes: 11
Number of links: 18
Number of zones: 7
Time horizon (hr): 2

Last vehicle loaded (hr):

1

66

= R Interfacexism - Microsoft Excel
Home Insert Page Layout Formulas Data Review View Developer

& cut Calibri - 11 AN == E] ® - S wrap Text General - ﬁ
B copy - ditional
Paste B f U- #H- h-A- == E|EE EMergedcCenter- $ - % » | % 2§ Conditional Formatas
° # Format Painter - - — g ’ ° =8 Formatting -~ Table -
Clipboard F] Font F] Alignment F] MNumber
011 - f

INPUT DATA MODEL RUNS ADDITIONAL MODULES

Go to project summary page Perform all steps without Generate "average” graphic
stopping

Edit network links

A B C D E F G H J K L
12

Generate graphics snapshots

Blo|e|N|auvis wine

11

Edit network nodes Export model for run
13 ; g
1 Edit OD matrix Run simulation Warrant analysis (network)

15
16
17
18

Edit intersection data Import simulation results Warrant analysis (single node)

Figure A.3: Dashboard screenshot.

Tick length (s): 10

Maximum run time (min): 10
AEC threshold (min): 5
Warm-up period (hr): 0.25

Cool-down period (hr): 0.25

For more details on what each of these parameters does, consult the relevant sections in
Chapter 3. After entering this information, the spreadsheet should appear as in Figure A.5.

Now, press the ‘“Prepare for manual input” button at the bottom of the sheet. This calls a
series of macros which format the link data, node data, OD matrix, and intersection data
spreadsheets based on the parameters specified. Pressing this button will erase anything which is
currently in these sheets, so the interface will prompt for confirmation. Since these sheets are
blank at this time, click “Yes” when prompted.

After creating these sheets, the interface will load the Link Data sheet. Enter the link parameters
shown in Figure A.6. Click on the “Proceed to node data” button, which will advance you to
the Node Data sheet. Enter the node parameters shown in Figure A.7, then click on the “Proceed
to OD Matrix” button. You should see a blank matrix with entries for each of the possible
origin-destination pairs in the network. The rows index the origin of travel, and the columns index
the destination. As was stated at the start of the section, assume that 3000 vehicles depart from

67

= Interfacexism - Microsoft Excel @ =
Home | Insert Pagelayout Formulas Data Review View Developer s @ o @ =
;;"‘pyv Calibri e [l » Swepten General B ﬂ Bad = s E ;:“"“js“'“' ﬁ(o)
P atpainter I u-|@m- Merge & Center = $ + % o | % % F(;nml:mn;\v ot Good Neutral nsert Dlete Format |\ = ;T:fv
Clipboard o Font o Alignment o Number o Styles | cells | Editing |
Al ~C £ 4]
A B C D E G H |) KIE
1
; R (o dhsime] B e Es D Export everything
4
5 Project title|
6 Analyist
7 Date
8
9 Network data
10 Number of nodes Link data
1 Number of links Node data
12 Number of zones| 0D Matrix
13 Intersection data
14 Counts file
15 Time horizon (hr)) Node summary file L
16 Last vehicle loaded (hr) Link summary file
17 Tick length () Parameters file
18 Maximum run time (min) Graphics file
19 Maximum iterations|
20 AEC threshold (min)
2 Warm-up period (hr) Prepare for manual input
2 Cool-down period (hr))
23
2
25
26
27
28
29
30
31 3
1’ M| Dashboard | Parameters ~Link data_~Node data_~OD Matrix_~ Intersection data__~ Node edtor__~ Link summary _.~ Node summary .~ Graphic] 4 M >l
Ready | 3 | [Eom s 0 ®

Figure A.4: Toy network parameters, blank.

Return to d

Project title
Analyist
Date

MNetwork data

ashboard

Number of nodes
Number of links
Number of zones

Time horizon (hr)
Last vehicle loaded (hr)
Tick length (s)

Maximum run time (min)
Maximum iterations
AEC threshold {min)
Warm-up period (hr)

Cool-down period (hr)

Figure A.5: Toy network parameters, completed.

11
18

10
10
10

68

Link data

Node data

0D Matrix
Intersection data
Counts file

MNode summary file
Link summary file
Parameters file
Graphics file

Export parameters to file

Prepare for manual input

Return to dashboard Proceed to node data Export to file

From To Capacity (vph) Length (ft) Speed limit (mph) Jam density (veh/mi)
1 8 5000 5280 60 200
10 5000 5280 60 200
10 5000 5280 60 200
11 5000 5280 60 200
5000 5280 60 200
9 5000 5280 30 200
11 5000 5230 60 200
2 5000 5280 60 200
5000 5280 30 200
5000 5280 30 200
5000 5280 60 200
5000 5280 60 200
5000 5280 30 200
5000 5280 60 200
5000 5280 60 200
5000 5230 60 200
5000 5280 60 200
5000 5280 60 200

S|

Wi~ idiih Wb

Wi ioimitei~idikiw

Figure A.6: Toy network link data, completed.

zone 1 to zone 3; 500 vehicles from zone to 3 to zone 6; 100 from zone 4 to zone 2; 500 from 6 to
3; and 200 from 7 to 2. Enter these values into the sheet, checking that your final result looks
like Figure A.8, making sure that the rows and columns haven’t been mixed up.

Click on “Proceed to intersection data,”’ the final sheet for inputting data. The dropdown boxes
in Column C indicate the different intersection control types for each intersection in the network.
Nodes 1-7 are zones, and must have Centroid type. Since we don’t know the control types for the
other intersections, give them Unknown type. Before running a simulation, these will have to be
filled in using the warrant analysis module. To do this, click on “Return to dashboard.” Once
on the dashboard, click on ‘“Warrant analysis (network).”

The first step in the warrant analysis is to export all of the information entered in the spreadsheet
into the text files which the simulator will read. (You can also edit these text files directly, if
desired.) Five dialog boxes will appear in sequence, asking you to enter the locations to save (a)
the link data file, (b) the node data file, (c) the OD matrix, (d) the intersection control file, and (e)
the parameters file. Enter the following information for each of these: (a) toy_network.txt, (b)
toy_nodes.txt, (¢) toy_demand.txt, (d) toy_control.txt, (€) toy_parameters.txt.
The warrant analysis program will then run external to Excel, with control returning to the
spreadsheet when it’s finished.

At this point, if you explore the different spreadsheets in the file, you will notice a few changes.

First, on the Parameters sheet, you will find the names of the filenames you typed (cf. Figure A.10,
keeping in mind the exact path may differ depending on the folder you saved the files into). More
importantly, on the Intersection Data sheet, you will see that nodes 8, 9, 10, and 11 no longer have

69

Return to dashboard Proceed to OD Matrix

Node Longitude Latitude
1 10 0
20 0
30 30
20 30
10 30
0 20
0 10
10 10
20 10
20 20
10 20

2
3
4
5
5]
7
3
9

Figure A.7: Toy network node data, completed.

Return to dashboard Proceed to intersection data
Orig | Dest 1 2 3 4 5 6 7
1 3000
2
3 500
4 100
5
5] 500
7 200

Figure A.8: Toy OD matrix data, completed.

70

Return to dashboard

Select intersection type Forbidden movements Permitted movements
Centroid

Edit node 1 details
Edit node 2 details
Edit node 3 details
Edit node 4 details
Edit node 5 details
Edit node 6 details
Edit node 7 details
Edit node 8 details
Edit node 9 details
Edit node 10 details
Edit node 11 details

Centroid

Centroid

Centroid

Centroid

Centroid

Centroid

Unknown

Unknown

Unknown

A C]]aja]afa]a]a]n

Unknown

Figure A.9: Toy intersection data, completed.

Unknown type. Nodes 8 and 10 are now controlled by two-way stop, Node 9 by a four-way stop,
and Node 11 by a signal, based on the warrant analysis which has been conducted. (Figure A.11).

To see more details on the signal timing chosen for node 11, click on the “Edit node 11 details”
button. You should see the Node Editor sheet for node 11. Turning movement saturation flows are
based on those of the upstream link, the cycle length was determined by Webster’s Method, and
the green times apportioned proportional to the degree of saturation for each approach. Now, let’s
edit this slightly: the green time for the approaches from link (10,11) seem very small. Change
the cycle length to 30, and the effective green times for movements 10 -> 11 -> 5,10 ->
11 -> 6,and 10 -> 11 -> 8 to 13, as shown in Figure A.13.

Now, we can run a full simulation to generate more detailed information. First, click on “Save
information and return to intersection data.” This step is very important; if you do not click
this, your changes will not be saved. Click on “Return to dashboard,” and ‘‘Perform all steps
without stopping.” This performs the following steps, in order:

1. Export the same 4 data files requested during the warrant analysis. (These files must be
re-exported, because the warrant analysis changed the file configuration.) use the same
names as during the warrant analysis.

2. Prompts you for the names of the three output files, the counts file, the node summary file,
and the link summary file. When prompted, enter toy counts. txt,
toy nodesummary.txt, and toy_linksummary.txt.

3. Export the parameters file; use the same name as during the warrant analysis.
4. Calls the mesoscopic simulation module, which run in a separate process.
5. Imports the link and node summary files.

6. Moves the user to the Link Summary spreadsheet.

71

Project title
Analyist
Date

Network data

Return to dashboard

Number of nodes
Number of links
Number of zones

Time horizon (hr)
Last vehicle loaded (hr)
Tick length (s)

Maximum run time (min)

Maximum iterations
AEC threshold (min)
Warm-up period (hr)
Cool-down period (hr)

Figure A.10

Export parameters to file

Link data
Node data |C:\Software\WyDOT_DTA\toy_node.txt
0D Matrix|C:\Software\WyDOT_DTA\toy demand.txt

Intersection data|C:\Software\WyDOT_DTA\toy control.txt
Counts file
Node summary file
Link summary file
Parameters file | C:\Software\WyDOT_DTA\toy_parameters.
Graphics file

Prepare for manual input

C:\Software\WyDOT_DTA\toy_network.txt

Export everything

Xt

: File names have now appeared in the Parameters sheet.

Select intersection type

Forbidden movements

Permitted movements

Centroid

Centroid

Centroid

Centroid

Centroid

Centroid

Centroid

Two-way stop

e e R e R B R I

Four-way stop

[ury
=

Two-way stop

Y
[

Signal

RN RN ERERERERE

Figure A.11: Intersection types chosen by the warrant analysis.

72

Save information and return to intersection data

Node details

Cycle length

Movement Permitted? Saturation flow Effective green
6->11->5 Yes hd 5000 17
6->11->6 Mo 0 0
6->11->8 Yes 5000 17
6->11->10 Yes 5000 17
8->11->5 Yes 5000 17
8->11->6 Yes 5000 17
8->11->8 Mo 0 0
8->11->10 Yes 5000 17
10->11->5 Yes 5000
10->11->6 Yes 5000
10->11->8 5000
10->11->10 0

A RN R RN ERERER RN R

Figure A.12: Node details for node 11 from warrant analysis.

Save information and return to intersection data

Node
Cycle length

Movement Permitted? Saturation flow Effective green

6->11->5 Yes b 5000 17
6->11->6 Mo 0 0
6->11->8 5000 17
6->11->10 5000 17
8->11-»5 5000 17
8->11->6 5000 17
8->11->8 0 0
8-»11->10 5000 17
10->11->5 5000 13
10->11->6 5000 13
10-»11-»8 5000 13
10-»>11->10 0 D

M RN EAEN RN RN RN ERENEN R

Figure A.13: Modified details for node 11.

73

5]

Travel time (s) Delay (s) Density (veh/mi) Volume (vph) PHF
60 0 25 1533 0.75

60 255 0.73

60 44 0.53

60 251 0.72

60 104 0.7

108 0.72
1571 0.77
0.72

[y

60
60

Wi il iU id W ind =

WD MDD 0000 i i i P

[urs
(=]

[ury
(=]

[ury
=]

[y
[==]

=
=

[y
=

[y
[

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

[y
[

Figure A.14: Link summary information for toy network.

The Link Summary spreadsheet should appear as in Figure A.14. Note that the average density,
volumes, and peak hour factors have been reported for each link in the network. Similar
information appears in the Node Summary spreadsheet for each turning movement, sorted by the
associated intersection. Finally, let’s generate a graphics file using the data already obtained.
Click on “Generate ‘average’ graphic,” and enter toy_final .png when prompted for the
image name. You should see the image in Figure A.15. This concludes the tutorial for the toy
network.

A.2 Casper

The Casper tutorial shows how the simulator can be used on the city scale to model diversion for
a work zone closure. This network is considerably larger than the toy network in the previous
section: it contains 304 centroids, 1014 intersections, and 2760 roadway links. However, the
casper.x1sm spreadsheet has the network data pre-loaded. The network and data were
constructed from the TransCAD model used for long-range planning. The entire network is shown
in Figure A.16. To simulate a work zone closure, the link representing Yellowstone Highway
between Beverly St and C St is closed (represented in the simulator by deleting its link from the
network file) (Figure A.17). Because this street is bidirectional, two links must be deleted — link
893 (connecting intersections 442 and 820) and link 2202 (connecting 820 and 442).

To examine the traffic conditions before the work zone is present, export all data, run the
simulation, and import the simulation results as was done for the toy network. Zooming in to

74

X @ 9| Interfacexism - Microsoft Excel =@ %
Home | Insert Pagelayout Formuas Data e eveloper c@o® =
rap Te

] ¥ Calori BETRRNIN General . i Fm [| = Avosum~

pe » 5 CEEE TN A

paste matpaier | B L U E & A enter - $ - % b | % F(;nmﬂ;n;\v;i;r;‘a:s Good Neutral S| Insert Delete Format | (o :L:t:rsi ;T:fv

Clipboard 1) Font Number 1) Styles Cells | Editing |

13 hd] e
A B C D E F G H |) K L ™M N o [Q R B T u E

1

2

3 Return to dashboard

4

5 Average network conditions

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2

23

2

25

2

27

28

29

30

31

1< 4> ¥| ~Parameters ~Link data_~Node data ~OD Matrix .~ Intersection data_~ Node editor _ Link summary .~ Node summary | Graphics K] w »i

Ready | B | [EEm s O——0—O

Figure A.15: Average graphics file for toy network.
node 436 (the intersection of Yellowstone Hwy & Beverly St), the flows for each turn movement
can be recorded (and are shown in Table A.1).

To delete this link from the network, perform the following steps:

1. On the Parameters sheet, decrease the number of links by 2.

2. On the Link Data sheet, delete the rows for links 893 (connecting 442 and 820) and 2202
(connecting 820 and 442). To delete these, select the entire row, and choose Delete ->
Delete Sheet Rows from the ribbon.

3. Export all data again, choosing different names to avoid overwriting the original results.
4. Run the simulation again.
5. Import the new results, and view the node summary file.

This obtains the updated flows shown in the right column of Table 4.1. Note the substantial

diversion of flow away from this intersection after the closure. This reflects travelers choosing
alternate routes to avoid the work zone and closure.

To find out how the traffic control should be revised to account for the change in flow, click on
“Warrant analysis (single node)”” on the dashboard. The single-node warrant analysis now looks
at the revised flows, and makes the appropriate change on the Intersection Data worksheet.
Clicking to this worksheet, one sees that the new recommended control at this intersection is a

75

G
CRLTS CUSCR BT TLR et |
. "

Figure A.16: Map of the entire Casper network.

76

15 AR IS

15 UoOSIBUaT K

P

15t St

w
-~

USRS

15 Aajuigap

Burlington AvE *

N Mckinley s,

15 s (3]

A3 S

15
.
el
&

15 LS yaE
15 uoybuysep

()

Field of Dreams

Baseball Complex

Dallson Park

EC 5t

=
= EASt
2
=S
B
@ Conwell
Park
3 o
5 st
(2])
2
8 £
= n
i s
]
E3rd 5t @
=
[
e

15 2Uer

Helen:5t

EK St Br 5 PrRd

: 5

@ =

o
-3

LongHarn Dr
e EFSI

Casper East

RV Park &

Campground

Burl

ington AYE

:
e
=
S
S
=
(1)
Z

EpaEL N

Vil
E\;e‘ﬂo o
& . .
z e & F / =8
i = B g = (#) g
- — = &5 3 - u o
3 i @ o g w 2 w Eastdale e % 8
g 3 ASt 2 Park B m =
E z £ S = EAst & & =
o o w 3 ﬁ‘\
= o = &
@ = 1stLn g
ElstSt— Elstst =
7 e
£ S
%] = =
‘) Jo £
o E 2nd St g 2] o 5 E Znd St
[y f1
E £ g o .9&' Hilltop =
2 4 8 = o Center = b
@ EddSt—p— = E 3rd St g
@ % z
£

Figure A.17

: Link closed for work zone.

fryan:Evansyw-

Y LLISLEI

Gary RiE
jana AvE
hnd! ’3'% Provence Ct
=z 1 Way- 2
= Bruhn ‘Way o
=
g =
- w
- = =
° § o =
g &, Y %
= Harden Park -
=]
[}
ElstSt =
=
B —o—F,2nd.5t Cloud St
g 5 5
5] (=]
.&5: 2 E = Teton St
¢l o o
7 ;.v-oJ L & Medicine
P*é.; a7l *? ;
. - Gannett 5t

Table A.1: Turning movement flows before and after closure of Yellowstone Hwy.

Movement Flow before closure Flow after closure

820 —-> 436 —> 985 27 0
820 —-> 436 —> 597 80 0
820 -> 436 -> 437 105 0
597 -> 436 -> 985 165 34
597 -> 436 —> 820 85 5
597 -> 436 —-> 437 160 39
437 -> 436 —> 985 4

437 -> 436 —-> 820 48

437 -> 436 -> 597 70 24
985 —-> 436 —-> 820 34 5
985 —-> 436 -> 597 120 45
985 —-> 436 -> 437 17 14

77

Figure A.18: Statewide network for Wyoming.

Four-Way Stop: due to diversion effects, this intersection sees much less traffic than before, and a
four-way stop is sufficient to handle the traffic volumes. (This analysis only takes into account the
traffic volume warrants. Particularly around work zones, safety factors may dictate another form
of control.)

A.3 Wyoming

The last tutorial involves the Wyoming network. Like the Casper network, a “preloaded” version
can be found in the spreadsheet wyoming.x1sx. The Wyoming network was constructed
manually, including every interstate and federal highway in the State, along with several
“external” intersections and links which represent diversion opportunities outside the state
(Figure A.18). More details on the construction process can be found in Saha et al. (2013). The
specific policy studied here was levying a toll on I-80 between Rock Springs and Rawlins, as
suggested by Wyoming Department of Transportation (2008).

While the simulator does not directly model tolls on links, a toll can be effectively modeled by
adjusting the free-flow speed of a link, as follows: to simulate a $20 toll, we increase the free-flow
travel time on this link by an equivalent amount. This equivalency depends on travelers’ value of
time; this demonstration assumes an average $10/hr value of time, a standard figure in the tolling
literature. This segment is 111 miles long, and has a speed limit of 75 mph. At this speed, the link
takes 1.48 hours to traverse. At $10/hr value of time, the $20 toll imposes the equivalent of two
additional hours of time, or an equivalent of 3.48 hours. This, in turn, translates to a speed of 32
mph for the 111 mile distance. Therefore, in the network file, the speed limit for I-80 was reduced

78

to 32 mph between Rock Springs and Rawlins to produce the same effect as a $20 toll. This
change is made on the Link Data sheet, to link 7 (connecting intersections 38 and 45) and
link 117 (connecting intersections 45 and 38).

Viewing the link summary file, we can quantify the amount of diversion: prior to imposing the
toll, the average annual daily traffic (AADT) count was approximately 6650 at this location, while
after the toll, the AADT count decreased to 2800. Thus, approximately 3800 vehicles diverted
onto an alternate route, primarily out-of-state traffic. This new AADT count can also be used to
forecast toll revenue.

79

Appendix B

Source Code Guide

This appendix describes how the source code for the simulator is organized. As the complete
source code has been provided to WYDOT, in the future WYDOT may wish to extend or modify
the simulator in a variety of ways, and this appendix helps orient programmers to the structure of
the code. Efforts have been made to make the code modular and easy to understand, using
principles of structured programming. This appendix does not provide details on the methodology
or general flow of the algorithm, which are provided in Chapters 2 and 3, respectively.

The simulator was written in C, and is compatible with the ANSI C89 standard. (Virtually any
modern C compiler should be able to compile to this standard.) The simulator code is spread
across ten source files and ten header files. These files are generally organized in a hierarchical
manner, as shown in Figure B.1, in the sense that source files call on functions or use data
structures of equal or lower hierarchy, but not functions or data structures from higher files in the
hierarchy. There are a few exceptions to this rule, where strict obedience would lead to
convoluted or confusing solutions, but in the large majority of instances the code respects this
organization. This facilitates compilation order and makefile creation.

Each file is briefly described as follows, starting from the bottom of the hierarchy and working up:

1. utils.cand utils.h: These files define basic macros and functions used throughout the
code. These include basic mathematical functions not included in the standard libraries
(e.g., maximization, minimization, and rounding), definition of a boolean data type (if not
being compiled in C++ mode), defining the verbosity levels for status messages, and
providing logging functions to display messages and warnings (based on the verbosity
level), and fatal errors (regardless of the verbosity level).

2. sampling.c and sampling.h: These files contain the code used to generate random
numbers from different distributions. The most important for the simulator are
roundStochastic, which employs stochastic rounding to convert floating-point numbers
to integers (e.g., since vehicles are modeled in a discrete fashion, fractional flows cannot be
created) and the function roundStochasticMatrix, which stochastically rounds a

80

main
dta
fileio
node
vehicle
cell
network
datastructures
sampling
utils

Figure B.1: Hierarchy of source files.

floating-point matrix to integers while preserving row and column sums to the extent
possible.

. datastructures.c and datastructures.h: These files define basic data structure
templates for singly and doubly linked lists, queues, and binary heaps. These are
general-purpose data structures, and more specific implementations are described in files
higher in the hierarchy. Additionally, custom memory allocation and deallocation routines
are provided, with optional memory-leak checking. These routines are discussed in more
detail below.

. network.c and network.h: These files establish the data structures for general network
modeling, along with standard network algorithms. This file contains the core module
TDAStar, which implements the time-dependent A* algorithm. The data structures in
this file are extremely important, and are discussed in more detail below.

. cell.cand cell.h: These files contain the data structures and routines related to the
vehicles themselves, and their propagation from one cell to another, from roadway links to
turning movements, and vice versa. Gap calculations for the convergence criteria are also
found in these files.

. vehicle.c and vehicle.h: These files contain the data structures and routines related to
the vehicles themselves, and their propagation from one cell to another, from roadway links
to turning movements, and vice versa. Gap calculations for the convergence criteria are also
found in these files.

81

7. node.c and node . h: These files contain the routines for the node processing algorithm
described in Sections 2.2.5 and 3.2.1. If users wish to modify the algorithms used for
intersection processing (or to introduce a new intersection control type), these files will be
the primary place these modifications are made.

8. fileio.cand fileio.h: These files contain the routines for reading input data files, and
writing output data files. Additional string processing routines are included here to parse
metadata tags and values, identify comments in the input line, and so forth.

9. dta.c and dta.h: These files contain the general control loop for dynamic traffic
assignment. In particular, these files contain the core modules simulateCTM and
shiftMsA, which implement the cell transmission model and method of successive
averages. Additional functions provide for allocation and deallocation of the traffic
assignment run structures.

10. main.c and main.h: These brief files handle control when the program is first run,
checking that the necessary number of parameters has been provided, and then transferring
control to the DTA processing code.

The following features of the source code warrant further documentation: the units system; the
memory allocation and deallocation system; the implementation of linked lists; and network
algorithms which function in the dual graph.

The code uses a consistent internal system of units, measuring all times in seconds and all
distances in feet. However, it is often more convenient to provide input or output in different
units. The follow macros provided in utils.h facilitate units conversion:

#define HOURS 3600.0
#define MINUTES 60.0
#define SECONDS 1.0

#define MILES 5280.0
#define KILOMETERS 3280.839895
#define METERS 3.280839895
#define FEET 1.0

#define INCHES 0.083333333

Multiplying by one of these macros converts a quantity into standard units, while dividing
converts it out of standard units. For instance, if t = 3 and t is measured in hours, then t «
HOURS will give the proper number of seconds. If u is measured in seconds (the standard unit),
but we want to report the answer in hours, then t / HOURS will give the correct number of
hours. Caution should be used when units appear in the denominator. As an example, if v is
measured in miles per hour, then converting to standard units would require v. » MILES /
HOURS, while converting v from internal units to miles per hour would require v / (MILES /
HOURS) orv x HOURS / MILES. If a programmer wishes to change the internal system of
units, all that needs to be changed are the relative values in this file, and the code will seamlessly
change. (The internal units are those corresponding to 1.0 values in this list.)

82

Memory allocation and deallocation is facilitated by the following macros, which are defined in
datastructures.h:

#define newScalar (y
#define newVector(u,y) (y =*)allocateVector (u,sizeof (y))
#define newMatrix(ul u2,y) (y *x)allocateMatrix(ul,u2,sizeof (y))

) (y x)allocateScalar(sizeof (y))

#define new3DArray (ul,u2,u3,y) (y #**=*)allocate3DArray (ul,u2,u3,sizeof (y))

#define declareScalar(y,S) y *S = newScalar (y)

#define declareVector(y,V u) y *V = newVector (u,vy)

#define declareMatrix(y,M,ul,u2) y **M = newMatrix (ul,u2,y)

#define declare3DArray(y,A,ul,u2,u3) y x*x*xA = new3DArray(ul,u2,u3,y)

) killScalar (y)

#define deleteScalar (y
v) klllVector(y)
Y
(

(
#define deleteVector (
#define deleteMatrix(
#define delete3DArray

1) killMatrix((void *x*)y,ul)
y,ul u2) kill3DArray ((void =*x*x)y,ul,u2)

These routines allow users to allocate and deallocate memory for scalars (single variables),
vectors (one-dimensional arrays), matrices (two-dimensional arrays), and three-dimensional
arrays. To use the newScalar, newVector, newMatrix, and new3DArray macros, the relevant
dimensions are specified, followed by the data type. These are used as right-hand expressions; the
left-hand side should be a pointer of the appropriate type. For instance, to allocate a vector of 5
doubles, the code

double x* = newVector (5, double)

can be used. For convenience, a more compact shorthand is available when simultaneously
declaring and allocating an array, the macros declareScalar, declareVector,
declareMatrix, and declare3DArray which are used as follows:

declareVector (double, x, 5)

which is identical to the previous code snippet.

To deallocate memory, the relevant deleteX macro can be called. For multidimensional arrays,
you must specify all dimensions except the last. All of these macros reference routines in
datastructures.c which include error checking and input validation.

The network data structure is extremely important, and forms the backbone of the cell
transmission model. As shown schematically in Figure B.2, the network_type data structure
contains the following elements:

e arc, an array storing every roadway link, of type arc_type (see description below).

83

e node, an array storing every intersection, of type node_type (see description below).

e ODT, an array storing every origin-destination-time combination, of type ODT_type (see
description below).

e paths, a linked list storing every route which has been generated during the simulation run.

e origin, an artificial arc where vehicles are placed before they depart on trips.

e destination, an artificial arc where vehicles are placed after they complete their trips.

e sink, an artificial node corresponding to the origin and destination arcs.

e staticOD, a two-dimensional array storing the demand matrix read from the file.

e A number of parameters specific to the network, such as the total number of vehicles
assigned, simulation tick length, sizes of the above arrays, and so forth.

Arcs, nodes, and ODTs form their own structures. An arc contains the following elements:

e cells, alinked list representing each of the cells the link has been divided into.

e turnMovements, a linked list containing pointers to each turning movement at the
downstream end of the link.

e upstreamMovements, a linked list containing pointers to each turning movement at the
upstream end of the link.

e tail, apointer to the node at the upstream end of the intersection.
e head, a pointer to the node at the downstream end of the intersection.

e travelTime, an array giving the integer travel time for a vehicle entering at each time
interval.

e upstreamCount, an array giving the cumulative count at the upstream end of the arc at
each time interval.

e downstreamCount, an array giving the cumulative count at the downstream end of the arc
at each time interval.

e freeFlowToDest, an array giving the free-flow travel time to each destination (used in
time-dependent A*).

e freeFlowMovement, an array storing the fastest routes at free-flow (used if the time
horizon will be exceeded).

e A number of parameters specific to the link, such as the jam density, free-flow travel time,
and so forth.

84

S8|oIysA

S]] P|UI JunoHwes}sumop
Junopwealysdn
<« feny MO|JUonEIN}eS -
MO|4BUINBIBI [v /jeansumop | —
<«— — — JdI0d mo|-4buipuss 7 v i P f
MO}
- Ayoedes | oiyweessdn |
urnuezed Kejpqiebliey
awl| [aAel} 7 SO[0IYdA i
adAy Buiuiny |
|
A 7 SJUBWIBSAO\UIN) 7
X .
E w3 al 7 Jejgesional | =
| S| B}e|o4uo0d
Wed | uonisoduiedind |o5u00 _ leigpieno; »
| | adAy"ajo1yen adA} spou - - J | | |
, A A
| f ! | ous [epou [jf oe]
| _
|
|

— — >
1

SJUBWBAO|A\UIN]

|
ﬂ syed ||

a0 | [vomsep |
uon:

7 uoneunsap ||

Figure B.2: Schematic of network-related data structures.

85

A node contains the following elements:

e forwardStar, a linked list of the arcs emanating from this node.

e reverseStar, a linked list of the arcs terminating at this node.

e turnMovements, a linked list of all turning movements corresponding to this intersection.

e intersectionControl, an enum specifying the traffic control method at the intersection.

e controlData, a data structure which may be created for particular traffic control types,
and which takes different forms based on the control type (see node . h for details).

An ODT contains the following elements:

e origin, a pointer to the origin centroid.

e destination, a pointer to the destination centroid.

e departureTime, the departure time corresponding to this ODT.
e demand, the number of vehicles corresponding to this ODT.

e vehicles, a doubly linked list containing pointers to each vehicle associated with this
ODT.

e paths, a linked list of routes which are used by vehicles from this ODT.
A turning movement contains the following elements:
e vehicles, a doubly linked list containing pointers to each vehicle in the turning movement
cell.
e upstreamArc, a pointer to the arc that the turning movement is coming from.

e downstreamArc, a pointer to the arc that the turning movement is heading to.

e travelTime, an array listing the travel time for vehicles entering the turning movement at
any time.

e upstreamCount, an array listing the upstream cumulative count N at any time.
e downstreamCount, an array listing the upstream cumulative count N* at any time.

e A number of parameters specific to the movement, such as its capacity and target delay.

86

head tail

next next next next
1 (z» 2 | > 3 | ™ 4 | "NULL

Figure B.3: Schematic of linked list data structures.

Paths, vehicles, and cells are important secondary data structures. A path primarily consists of a
linked list of turning movements — it isn’t necessary to store the specific links in the path,
because a sequence of turning movements implies the roadway links themselves. The vehicle data
structure includes the following elements:

e path, a pointer to the path the driver of the vehicle is using.

e curPathPosition, a pointer into the path’s list of turn movements, to show the current
position of the vehicle.

e 1ist, apointer to the linked list the vehicle is stored in. Every vehicle is always stored in a
vehicleDoublyLinkedList, either on the artificial origin arc, artificial destination arc, or a
link or turning movement vehicle list. Storing this pointer greatly speeds up the process of
moving vehicles.

e listElt, a pointer to the specific position within the linked list the vehicle is stored in.
Storing this pointer greatly speeds up the process of moving vehicles.

A cell includes the following elements:

e vehicles, a doubly linked list pointing to the vehicles currently in the cell.

e parentLink, a pointer to the roadway link the cell belongs to (this avoids having to
duplicate all link parameters in each cell).

e sendingFlow and receivingFlow, used in the flow propagation model (cf.
Section 2.2.4).

Many types of linked lists are used in the code, to store variable-length arrays (such as lists of
paths, vehicles, cells, and so forth). While slightly different information is stored in each type of
linked list, they all have a common form (Figure B.3). The arc linked list provides a good
example for demonstration:

87

typedef struct arcLinkedListElt_s {
arc_type =xarc;

struct arcLinkedListElt_s =xnext;

} arcLinkedListElt;

typedef struct arcLinkedList_s {
arcLinkedListElt =*head;
arcLinkedListElt =*tail;

int size;

} arcLinkedList;

where the head and tail are initialized to the NULL pointer. Notice that the linked list does not
store the arc itself, but a pointer to it. This saves memory and increases computation time. Very
frequently, the code must iterate over every element in a linked list. This is commonly done using
a for loop using the following syntax:

for (curArc = network->node[i].forwardStar->head;
curArc != NULL;
curArc = curArc->next) {

Here, network->node[i].forwardStar is an arcLinkedList storing all the arcs
emanating from intersection i. curArc iterates in turn over every element in the linked list.
Notice that curArc is not the arc element itself, but rather the list element. To access the
corresponding arc, you need to use curArc->arc.

88

Appendix C

License agreement

This software is copyrighted by The University of Texas at Austin and the Wyoming Department
of Transportation (2013), and distributed under the GPLv2 open-source license, reproduced
below:

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

89

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based on
the Program” means either the Program or any derivative work under copyright law: that is
to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

90

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

91

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

92

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it 1s up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

93

12.

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

94

— O 0 0 IO N R W

—_— —

12
13
14
15
16
17
18
19
20

21

22

Appendix D

Simulator code

D.1 Mesoscopic simulation module

D.1.1 main.c

#include "main.h"

/ *
main —-- Primary file for running mesoscopic simulation
*/

int main (int numArgs, char xargs[]) {

parameters_type run;
verbosity = FULL_NOTIFICATIONS;

#ifdef DEBUG_MODE /# Debug mode enables extra logging. Define this

macro 1in utils.h */

debugFile = openFile("logfile.txt", "w");
fendif
if (numArgs != 2) displayUsage();

initializeDTARun (&run, argsl[l]);
DTA (&run) ;

if (strlen(run.countsFileName)) writeCumulativeCounts (run.network,

run.countskFileName) ;

if (strlen(run.linkSummaryName)) writeLinkSummary (&run, run.
linkSummaryName) ;

if (strlen(run.nodeSummaryName)) writeNodeSummary (&run, run.
nodeSummaryName) ;

95

23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38

Nelie N BNe Y A SR

17
18
19
20
21
22
23
24
25
26

cleanUpDTARunN (&run) ;

#ifdef

DEBUG_MODE

fclose (debugFile);

#endif

return

J *

displayUsage —-- provides instructions to the user if the incorrect

(EXIT_SUCCESS) ;

number of command-line arguments is given.

*/

void disp

layUsage () {

fatalError ("Must provide exactly one argument (parameters file)

D.1.2 main.h

J *

Hierarchy of header files (bottom-up) :

utils.h
datastru

ctures.h

sampling.h
network.h

cell.h

vehicle.h

node.h
fileio.h
dta.h

Optional modules can be included here:

main.h

warrant.h, graphics.h

Declarations referring to lower—-level headers can use typedefs;
declarations referring to higher-level headers must use structs

*/

#include
#include
#include
#include

<stdlib.h>
"cell.h"
"fileio.h"
"utils.h"

#ifdef GRAPHICS_MODE

#inclu
#endif

de "graphics.h"

96

OF

27 #include "warrant.h"
28
29 wvoid displayUsage () ;

D.1.3 dta.c

1 #include "dta.h"

2

3 /%

4 DTA —-- controls the main DTA loop.

5 Arguments:

6 run —-- pointer to a parameters_ type containing all the DTA run
parameters

T */

8 wvoid DTA (parameters_type =*run) {

9 network_type *network = run->network;

10 bool isConverged = FALSE;

11 int iteration = 0;

12 clock_t startTime = clock();
13 double elapsedTime = 0;
14 float gap = INFINITY;

15
16 initializeTravelTimes (network); /* Initializes travel times to free-—
flow */
17 addShortestPaths (network) ; /* Add initial SPs to path set for
each ODT =/

18 initializeVehicles (network) ;

19 updateElapsedTime (startTime, &elapsedTime);

20 displayMessage (MEDIUM_NOTIFICATIONS, "Ready to start main loop.\n");

21

22

23 while (isConverged == FALSE) {

24 iteration++;

25 startTime = clock();

26

27 simulateCTM (network) ;

28 updateAllTravelTimes (network) ;

29 addShortestPaths (network) ;

30

31 updateRElapsedTime (startTime, &elapsedTime);

32 gap = averageExcessCost (network) ;

33 displayMessage (MEDIUM_NOTIFICATIONS, "Iteration %d: AEC
seconds (latest arrival %d)\n", iteration, gap, elapsedTime,
latestArrivalTime (network)) ;

34 if (gap < run—->AECtarget || iteration >= run->maxIterations
elapsedTime > run->maxRunTime) break;

35

97

36
37
38
39
40
41

42
43

44
45
46
47
48
49
50

51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71

72

73

shiftMSA (network, 1.0 / (iteration + 1));

}

}

J *

simulateCTM —- performs cell transmission model loading when all
vehicles have already been assigned paths.

Arguments:
network —-—- pointer to a network type containing the network and all

relevant parameters
Simulation works as follows:

In *increasing order of timex
1. Load vehicles onto origin movements based on #pathsx*
2. Identify each cell’s sending and receiving flow
3. Process links:
Transfer vehicles for xinterior cells.* Find the # of vehicles
, move that many from the end of upstream queue to back of
downstream queue
4. Process nodes:
Go to a splitting function based on the node type. Works based
on sending/receiving flows, also updates cumulative counts
*/
#$define CTM_REPORTING_INTERVAL 100
void simulateCTM (network_type xnetwork) {
int i, 1ij, t;
int odt = 0;
vehicleDoublyLinkedListElt =xcurVehicle;

prepareAllTrips (network); /* Load all vehicles on origin link x/
initializeCounts (network);

initializeNodes (network) ;

for (t = 0; t < network->timeHorizon; t++) {

/* Initialize new cumulative counts to old ones */
if (£t > 0) copyCounts (network, t-1, t);

/+ Load flows at origin nodes. This implementation exploits the
temporal ordering of the ODT array #*/
if (odt < network—>numODTs) ({

while (network—>ODT[odt].departureTime == t) {
for (curVehicle = network->0ODT[odt].vehicles—->head; curVehicle
!= NULL; curVehicle = curVehicle->next) {

transferVehicleToMovement (curVehicle->vehicle, & (network—>
origin), curVehicle->vehicle->curPathPosition->movement, t
)

98

74 if (++odt >= network->numODTs) break;

75 }

76 }

77

78 /* Calculate sending and receiving flows for all cells, and shift
flows within an arc #*/

79 for (ij = 0; ij < network->numArcs; ij++) {

80 calculateSendingFlows (&network—>arc([ij]);

81 calculateReceivingFlows (&network->arc[i]]);

82 movelIntralinkVehicles (&network—->arcl[i3]);

83 }

84

85 /+ Now process each node, according to its control type */

86 for (i1 = 0; 1 < network->numNodes; 1i++) {

87 processNode (network, & (network->node[i]), t);

88 }

89

90 if (t % CTM_REPORTING_INTERVAL == 0) displayMessage (

FULL_NOTIFICATIONS, "Simulated %d of %d ticks (%d%%)\zr", t,
network—->timeHorizon, 100 = t / network->timeHorizon);
91 }
92 displayMessage (FULL_NOTIFICATIONS, "Simulated %d of %d ticks (%d%%)\n
", network->timeHorizon, network—->timeHorizon, 100);
93
94 terminateAll1Trips (network); /# Clean up any vehicles still left on
the network by moving to destination and warn about incomplete

trips =/
95 }
96
97 /*
98 shiftMSA —-- Changes path choices based on method of successive averages

, using stochastic selection.
99 Arguments:

100 network ——- pointer to a network_type containing the network and all
relevant parameters
101 movingFraction —— probability to move vehicles onto the shortest

path. Generally 1/ (iteration+1), but this function can be called
with any fraction
102 x/
103 wvoid shiftMSA (network_type xnetwork, f£float movingFraction) ({
104 int odt;
105 double minPathCost;
106 vehicleDoublyLinkedListElt xcurVehicle;
107 pathLinkedListElt *curPath;
108 path_type *targetPath;
109
110 for (odt = 0; odt < network->numODTs; odt++) {

99

111
112
113

114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132

133

134
135

136
137
138
139
140

141
142
143
144

145
146

147

/% Find min—-cost path #*/

minPathCost = network->timeHorizon + 1;
for (curPath = network->ODT[odt] .paths->head; curPath != NULL;
curPath = curPath->next) {
if (curPath->path->travelTime < minPathCost) {
minPathCost = curPath->path->travelTime;

targetPath = curPath->path;

}
if (targetPath == NULL) fatalError ("No paths exist for odt %d -> %d
@ %d\n", network->ODT[odt].origin—->ID, network->ODT[odt]
destination—->ID, network->ODT [odt] .departureTime) ;
for (curVehicle = network->0ODT[odt].vehicles->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {
if (randUniform (0, 1) < movingFraction) {
curVehicle->vehicle->path->demand-—;
curVehicle->vehicle—->path = targetPath;
curVehicle->vehicle->path->demand++;

J *
cleanUpDTARun -- Deallocates memory associated with a DTA run.
Splits into deleteSchedule and deleteNetwork so the latter can be
called separately
when memory has only been partially allocated (as in warrant analysis
runs)
Arguments:
run —-- pointer to a parameters type containing all the DTA run
parameters
*/
void cleanUpDTARuUn (parameters_type *run) {
deleteSchedule (run—>network) ;
deleteNetwork (run—->network) ;
if (run->demandProfile == TRIANGLE) deleteScalar (run->
profileParameters) ;

/ *
deleteSchedule ——- Deallocates memory associated with the time-dependent
data structures of a network
Arguments:
network ——- pointer to a network_ type containing all relevant
prarameters

*/

100

148 wvoid deleteSchedule (network_type *network) {

149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182

183
184
185
186
187
188

189

int i, ij, odt;

cellDoublyLinkedListElt xcurCell;
turninglLinkedListElt *curMovement;
vehicleDoublyLinkedListElt xcurVehicle;

for (ij = 0; ij < network->numArcs; 1ij++) {
deleteVector (network—>arc[ij].travelTime);
deleteVector (network—->arc[ij] .upstreamCount) ;
deleteVector (network—->arc[ij].downstreamCount) ;
for (curCell = network->arc[ij].cells->tail; curCell != NULL;
curCell = curCell->next) {
deleteVehicleDoublyLinkedList (curCell->cell->vehicles);
deleteScalar (curCell->cell);
}
deleteCellDoublyLinkedList (network—->arc[ij].cells);
deleteVector (network—>arc[ij].freeFlowToDest) ;
deleteVector (network—->arc[ij].freeFlowMovement) ;
}
deleteVector (network->origin.travelTime) ;
deleteVector (network—>origin.upstreamCount) ;
deleteVector (network->origin.downstreamCount) ;
deleteVector (network—->destination.travelTime) ;
deleteVector (network—->destination.upstreamCount) ;
deleteVector (network—>destination.downstreamCount) ;

for (i = 0; 1 < network->numNodes; i++) {
for (curMovement = network->node[i].turnMovements->head;
curMovement != NULL; curMovement = curMovement->next) {

deleteVector (curMovement—->movement—->travelTime) ;
deleteVector (curMovement->movement->upstreamCount) ;
deleteVector (curMovement->movement —>downstreamCount) ;

for (odt = 0; odt < network—->numODTs; odt++) {
for (curVehicle = network->0ODT[odt].vehicles->head; curVehicle !=
NULL; curVehicle = curVehicle—->next) {
deleteScalar (curVehicle—->vehicle);
}
deleteVehicleDoublyLinkedList (network—>0ODT [odt] .vehicles);
deletePathlLinkedList (network—->0ODT[odt] .paths);
}
deleteVehicleDoublyLinkedList (network->origin.cells->head->cell->
vehicles);
deleteVehicleDoublyLinkedList (network—->destination.cells—->head->cell
—>vehicles);

101

190
191
192
193
194
195
196
197
198

199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219

220
221
222
223
224
225
226
227
228
229

230
231

deleteScalar (network—>origin.cells—->head->cell);
deleteScalar (network—>destination.cells->head->cell);
deleteCellDoublyLinkedList (network—->origin.cells);
deleteCellDoublyLinkedList (network—->destination.cells);
deleteVector (network—->0DT) ;

deleteNetwork —— Deallocates memory associated with the core data
structures of a network
Arguments:
network ——- pointer to a network_ type containing all relevant
prarameters
*/

void deleteNetwork (network_type *network) {

int 1, 1i73;
turningLinkedListElt *curMovement;
pathLinkedListElt xcurPath;

for (ij = 0; ij < network->numArcs; 1ij++) {
deleteTurningLinkedList (network—>arc[ij].turnMovements) ;
deleteTurninglLinkedList (network—->arc[ij].upstreamMovements) ;

for (i = 0; 1 < network->numNodes; i++) {
switch (network->node[i].control) {
case TWO_WAY STOP:
deletePriorityLinkedList (((twoWayStop_type =*) (network—->node[i

] .controlData))->priorityList);
deleteScalar (network—>node[i] .controlData);
break;

case BASTIC_SIGNAL:
deletelinkedList (((basicSignal_type =*) (network->node[i].
controlData))—->greenTime) ;
deleteScalar (network—>node[i] .controlData);
break;
case CENTROID:
case NONHOMOGENEOUS:
case DIVERGE:
case MERGE:
case FOUR_WAY_STOP:
case FANCY_SIGNAL:
case INTERCHANGE:
default: /+ Simple intersection types do not require additional
cleanup */
break;

102

232 deleteArcLinkedList (network—->node[1i].forwardStar) ;

233 deleteArcLinkedList (network->node[1i] .reverseStar);
234 for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {
235 deleteVehicleDoublyLinkedList (curMovement->movement—->vehicles)
’
236 deleteScalar (curMovement—->movement) ;
237 }
238 deleteTurningLinkedList (network—->node[i] .turnMovements) ;
239 }
240
241 for (curPath = network->paths->head; curPath != NULL; curPath =
curPath—->next) {
242 deletePath (curPath->path);
243 }
244 deleteTurningLinkedList (network—->origin.turnMovements) ;
245 deleteTurningLinkedList (network->destination.upstreamMovements) ;
246 deleteVector (network—->arc) ;
247 deleteVector (network—>node) ;
248 deletePathLinkedList (network—->paths);
249 deleteMatrix (network—>staticOD, network->numZones);
250 deleteScalar (network) ;
251 1}
252
253 /&
254 initializeDTARun —- Read all files and allocate all memory needed for a
run
255 Arguments:
256 run —-- pointer to a parameters type which will be initialized during
this function
257 parametersFileName —-—- string with the name of the parameters file to
read
258 «/

259 wvoid initializeDTARun (parameters_type =*run,char xparametersFileName) {
260 int destination;

261 network_type #*network = newScalar (network_type);

262 run->network = network;

263

264 readParametersFile (run, parametersFileName) ;

265

266 verbosity = run->verbosity;

267

268 initializeNetwork (run);

269 readNodeCoordinateFile (network, run—->coordinateFileName) ;
270 readNodeControlFile (network, run->nodeControlFileName) ;
271

272 validateNetwork (network) ;

103

273 generateSchedule (network) ;

274 readDemandFile (run) ;

275

276 generateCells (network) ;

277 generateVehicles (network) ;

278 initializeCounts (network) ;

279

280 for (destination = 0; destination < network->numZones; destination++)
{

281 calculateFreeFlowSPLabels (network, destination);

282 }

283

284 displayMessage (FULL_NOTIFICATIONS, "Finished initializing run.\n");

285 1}

286

287 /&

288 initializeNetwork —-- Read data from a network file, and initialize the

relevnat network data structuer
289 Arguments:

290 run —- polinter to a parameters_type containing the network which
will be initialized during this function.
291 This parameters_type contains the filename of the network
file.
292 +/

293 wvoid initializeNetwork (parameters_type *run) {
294 int i7j;

295 network_type *network = run->network;

296

297 network—->numZones = IS_MISSING;

298 network—->numArcs = IS_MISSING;

299 network->numNodes = IS_MISSING;

300 network->paths = createPathLinkedList ();

301

302 network->sink.ID = 0;

303 network->origin.tail = & (network->sink);

304 network->origin.head = & (network->sink);

305 network—->destination.head = & (network—->sink);

306 network->destination.tail = & (network—>sink);

307

308 readNetworkFile (network, run->networkFileName, run—>
backwardWaveRatio) ;

309 createStarLists (network) ;

310

311 network->tickLength = run->tickLength;

312 network—->timeHorizon = ceil (run—->timeHorizon / run—->tickLength); /%
Convert time horizon in seconds to clock ticks #*/

313 network—->lastVehicleOn = ceil (run—->lastVehicleOn / run->tickLength);

104

314
315
316

317

318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

for (ij = 0; ij < network->numArcs; 1ij++) {
network->arc[ij].freeFlowToDest = newVector (network->numZones, int)
;
network->arc[ij].freeFlowMovement = newVector (network->numZones,

turning_type *);

/*+%x+ Generate cell data structures ***+*/

/ *
generateCells ——- Create and allocate data structures related to cells
in a network, partitioning each link into the
right number of cells.

Arguments:

network —-—- pointer to a network type to create cells for
*/
void generateCells (network_type *network) {

int ij, c;

cell_type =xnewCell;

displayMessage (FULL_NOTIFICATIONS, "Generating cells...\n");

/* Create cells for artificial origin and destination links #*/
network->origin.cells = createCellDoublyLinkedList ();
network—->origin.numCells = 1;

network->origin.cellCapacity = INT_MAX;
network->origin.cellMaxVehicles = INT_MAX;
network->origin.waveRatio = 1;

newCell = newScalar (cell_type);

newCell->parentLink = & (network->origin);
newCell->vehicles = createVehicleDoublyLinkedList () ;
newCell->sendingFlow = 0;

newCell->receivingFlow = 0;

insertCellDoublyLinkedList (network->origin.cells, newCell, NULL);
network->destination.cells = createCellDoublyLinkedList ();
network—->destination.numCells = 1;
network->destination.cellCapacity = INT_MAX;
network—->destination.cellMaxVehicles = INT_MAX;
network—>destination.waveRatio = 1;

newCell = newScalar (cell_type);

newCell->parentlLink = & (network->destination);
newCell->vehicles = createVehicleDoublyLinkedList () ;
newCell->sendingFlow = 0;

newCell->receivingFlow = 0;

105

358

359
360
361
362

363

364

365
366
367
368
369
370
371
372

373
374
375
376
377
378
379
380
381
382

383

384

385
386
387
388
389
390
391
392
393
394
395
396

insertCellDoublyLinkedList (network—->destination.cells, newCell, NULL)

14

/+ Create cells for all other 1links #*/
for (ij = 0; ij < network->numArcs; 1j++) {
network->arc[ij] .numCells = ceil (network->arc([i]j].freeFlowTime /
network->tickLength) ;
network—->arc([ij].cellCapacity = ceil (network->arc[ij].capacity =
network->tickLength) ;

network—->arc([ij].cellMaxVehicles = ceil (network->arc[ij].length =*
network—->arc([ij].jamDensity / network->arc([ij].numCells);
network->arc([ij].cells = createCellDoublyLinkedList () ;
for (c = 0; ¢ < network->arc[ij].numCells; c++) {
newCell = newScalar (cell_type);
newCell->parentLink = & (network->arc[ij]);
newCell->vehicles = createVehicleDoublyLinkedList () ;
newCell->sendingFlow = 0;
newCell->receivingFlow = 0;

insertCellDoublyLinkedList (network—->arc[ij].cells, newCell,
network->arc[i]j].cells->tail);

displayMessage (FULL_NOTIFICATIONS, "done.\n");

/*x%x++ Network validation x*x*x*x/

J *
validateNetwork —- Ensure that the network is valid: node control 1is
appropriate based on number of
incoming and outgoing links; no duplicate turn
movements listed; network 1is
properly connected, each destination 1is reachable
from each origin.
Arguments:
network —-—- pointer to a network_ type for validation
*/

void validateNetwork (network_type xnetwork) {
displayMessage (MEDIUM_NOTIFICATIONS, "Validating network data...\n");

validateNodeControl (network) ;
checkDuplicateTurnMovements (network) ;

checkNetworkConnectivity (network) ;

displayMessage (MEDIUM_NOTIFICATIONS, "...validation complete.\n");

106

397

398 /%

399 validateNodeControl —-— Check that each node’s assigned control is
compatible with the number of

400 entering and leaving links.

401 Arguments:

402 network —— pointer to a network_ type for validation

403 */

404 wvoid validateNodeControl (network_type xnetwork) {

405 int 1i;

406

407 displayMessage (FULL_NOTIFICATIONS, "Checking node control...\n");
408

409 /+ Confirm all nodes have a relevant control file entry and finite
tick length */
410 for (i = 0; i < network->numNodes; i++) {
411 if (network->node[i].control == UNKNOWN_CONTROL) fatalError ("Node %
d either missing in node control file, or unknown control type."
, i+1);
412 }
413
414 /* Check turning movement compatability with control types (not more
than one into a diverge, not more than one out of a merge, etc.)
*/
415 for (i = 0; i < network->numNodes; i++) {
416 if (i < network->numZones && network->node[i].control != CENTROID)

warning (FULL_NOTIFICATIONS, "Origin/destination %d does not have
CENTROID control.", i+1);

417 switch (network->node[i].control) {
418 case CENTROID:
419 if (i > network->numZones) warning (FULL_NOTIFICATIONS, "Centroid

node type found for node %d which is neither an origin nor a
destination.", i+l

420) ;

421 if (network->node[i].reverseStar->size == 0) warning(
FULL_NOTIFICATIONS, "No incoming links for centroid %d\n", i
+1);

422 if (network->node[i].forwardStar->size == 0) warning/(
FULL_NOTIFICATIONS, "No outgoing links for centroid %d\n", 1
+1);

423 break;

424 case NONHOMOGENEOQOUS:

425 if (network->node[i] .reverseStar->size > 1) fatalError ("
Nonhomogeneous node %d has more than one incoming link!", i+1)
’

426 if (network->node[i].forwardStar—->size > 1) fatalError ("

Nonhomogeneous node %d has more than one outgoing link!", i+1)

107

7
427 if (network->node[i].turnMovements—->size == 0) fatalError ("No
turning movements listed for non-centroid node %d", i+1);

428 break;

429 case MERGE:

430 if (network->node[i].reverseStar—->size <= 1) fatalError ("Merge
node %d needs at least two incoming links!", i+1);

431 if (network->node[i].forwardStar—->size != 1) fatalError ("Merge
node %d has more than one outgoing link!"™, i+1);

432 if (network->node[i] .turnMovements—>size == 0) fatalError ("No
turning movements listed for non-centroid node %d", i+1);

433 break;

434 case DIVERGE:

435 if (network->node[i].reverseStar—->size != 1) fatalError ("Diverge
node %d has more than one incoming link!"™, 1i+1);

436 if (network->node[i].forwardStar->size <= 1) fatalError ("Diverge
node %d needs at least two outgoing links!", i+1);

437 if (network->node[i].turnMovements—->size == 0) fatalError ("No
turning movements listed for non-centroid node %d", i+1);

438 break;

439 case TWO_WAY_STOP:

440 case FOUR_WAY_ STOP:

441 case BASIC_SIGNAL:

442 case INTERCHANGE:

443 if (network->node[i].reverseStar->size == 0) fatalError ("No

incoming links for non-centroid node %d\n", i+1);

444 if (network->node[i].forwardStar->size == 0) fatalError ("No
outgoing links for non-centroid node %d\n", i+1);

445 break;

446 case FANCY_SIGNAL:

447 warning (LOW_NOTIFICATIONS, "Not all node control types have error

checking implemented, skipping node %d.\n", i+1);

448 break;

449 case UNKNOWN_CONTROL:

450 default:

451 fatalError ("Unknown or missing node control type for node %d.", i
+1);

452 }

453 }

454

455 displayMessage (FULL_NOTIFICATIONS, "...done.\n");

456 }

457

458 /*

459 checkDuplicateTurnMovements ——- Ensure that no turn movement 1is listed

multiple times in a network.
460 Arguments:

108

461
462
463
464
465
466
467
468
469

470
471

472
473

474

475
476

477

478
479
480
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498

network ——- polinter to a network_type for validation
*/
void checkDuplicateTurnMovements (network_type xnetwork) ({
int i;
long curHash, compareHash;
turninglLinkedListElt xcurMovementElt, *compareMovementElt;
turning_ type xcurMovement, xcompareMovement;

displayMessage (FULL_NOTIFICATIONS, "Checking for duplicate turning
movements...\n");
for (i = 0; i < network->numNodes; i++) {
for (curMovementElt = network->node[i].turnMovements—->head;
curMovementElt != NULL; curMovementElt = curMovementElt->next) {
curMovement = curMovementElt->movement;
curHash = ptr2arc (network, curMovement->upstreamArc) x network->
numArcs + ptr2arc (network, curMovement->downstreamArc);
for (compareMovementElt = curMovementElt->next;
compareMovementElt != NULL; compareMovementElt =
compareMovementElt->next) {
compareMovement = compareMovementElt->movement;
compareHash = ptrZ2arc(network, compareMovement->upstreamArc) *
network->numArcs + ptr2arc(network, compareMovement->
downstreamArc) ;
if (curHash == compareHash) fatalError ("Duplicate turning
movements for node %d", i+1);

displayMessage (FULL_NOTIFICATIONS, "done.\n");

/*+%x+ Network data structure creation x+*x**/

/ *

generateSchedule —-- Dimension and allocate memory for all time-related
objects

Arguments:
network —-— pointer to the relevant network_type

*/

void generateSchedule (network_type xnetwork) {
int i, 1i73;
turninglLinkedListElt xcurMovement;

/% Dimension turning movements */

for (i = 0; i < network->numNodes; i++) {
for (curMovement = network->node[i].turnMovements—->head;

109

499

500

501

502
503
504
505
506
507
508

509

510
511
512

513

514

515

516

517
518
519
520

521

522
523
524

525
526
527
528
529
530
531

curMovement != NULL; curMovement = curMovement->next)
curMovement->movement->travelTime = newVector (network—->
timeHorizon, int);

curMovement->movement->upstreamCount = newVector (network->
timeHorizon, int);
curMovement->movement->downstreamCount = newVector (network->

timeHorizon, int);

/* Dimension all links */
for (ij = 0; ij < network->numArcs; 1ij++) {
network->arc[ij].travelTime = newVector (network->timeHorizon, int);
network->arc[ij] .upstreamCount = newVector (network->timeHorizon,
int);
network—->arc[ij].downstreamCount = newVector (network->timeHorizon,
int);
}
network->origin.travelTime = newVector (network—->timeHorizon, int);
network->origin.upstreamCount = newVector (network->timeHorizon, int)
’
network->origin.downstreamCount = newVector (network->timeHorizon,
int);
network—->destination.travelTime = newVector (network->timeHorizon,
int);
network->destination.upstreamCount = newVector (network->timeHorizon,
int);
network—>destination.downstreamCount = newVector (network—->
timeHorizon, int);

/ *
profileDemand ——- Determine the number of vehicles departing in each
time interval;
create the ODT array, which is sorted by time. This
makes 1t faster to
load vehicles during simulation.
Arguments:
thisRun —-- pointer to the parameters_type with all run parameters (
including profile type
and relevant parameters)
*/

void profileDemand (parameters_type xthisRun) {
long r, s, t, odt = 0;
long numODTs = 0, newVehicles, numVehicles = 0;
network_type xnetwork = thisRun->network;
declareVector (float, proportion, network->timeHorizon);

110

532
533
534
535
536
537

538
539
540

541
542
543
544
545
546

547
548

549
550
551
552
553
554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

572

declareVector (float, demand, network—->timeHorizon);

/* Identify demand profile */
switch (thisRun->demandProfile) {
case UNIFORM_PROFILE:
profileDemandUniform(proportion, network->lastVehicleOn, network->
timeHorizon) ;
break;
case TRIANGLE:
profileDemandTriangle (proportion, network, (triangleProfile_type
%) (thisRun->profileParameters));
break;
case PEAK:
case QUADRATIC:
fatalError ("Selected demand profile type not yet implemented.");
case RAW:
fatalError ("Code should call readRawODTFile for RAW profiles, not
profileDemand.");
default:
fatalError ("Unknown demand profile type %d.", thisRun->
demandProfile);

/* Determine amount of demand in each time interval #*/
srand (thisRun—->randomSeed) ;
for (t = 0; t < network->timeHorizon; t++) {
displayMessage (DEBUG, "Demand proportion in time interval %d is %f
\n", t, proportion[t]);

for (r = 0; r < network—->numZones; r++) {
network—->staticOD[r] [r] = O0;
for (s = 0; s < network->numZones; s++) {
demand[t] = network->staticOD[r][s] * proportion|[t];
newVehicles = stochasticRound (demand[t]);

if (newVehicles > 0) {
numVehicles += newVehicles;

numODTs++;
}
}
}
}
network—->numVehicles = numVehicles;
network->numODTs = numODTs;

network->0ODT = newVector (numODTs, ODT_type);
/#* Make second pass through OD table to generate vehicles as needed.

(Doing passes separately to save memory, must re-seed RNG) x/
srand (thisRun—->randomSeed) ;

111

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

597
598
599
600
601
602

603
604
605
606
607
608
609
610
611

612
613
614
615
616

for (t = 0; t < network—->timeHorizon; t++) {
for (r = 0; r < network->numZones; r++) {
for (s = 0; s < network->numZones; s++) {
demand[t] = network->staticOD[r][s] * proportion|[t];
newVehicles = stochasticRound (demand[t]);
if (newVehicles > 0) {
network—->0ODT [odt] .origin = & (network->nodelr]);
network—>0ODT [odt] .destination = & (network—->node[s]);
network->0ODT [odt] .departureTime = t;

network—->0ODT [odt
network—>0ODT [odt
odt++;

.vehicles = createVehicleDoublyLinkedList ();

[]
[]
network—->0DT [odt] .demand = newVehicles;
[]
[] .paths = createPathLinkedList ();

deleteVector (proportion);
deleteVector (demand) ;

J *

profileDemandUniform ——- generate a "uniform" proportions array, evenly
distributed over the time horizon

Arguments:
proportion —-—- array of floats which will be filled by this function
lastVehicleOn —-- last time interval where demand will be loaded
timeHorizon —- upper bound for all time-dimensioned arrays

*/

void profileDemandUniform(float *proportion, int lastVehicleOn, int
timeHorizon) {
int t;
fillLinearProfileDemand (proportion, 0, lastVehicleOn, 1, 1);
for (t = lastVehicleOn; t < timeHorizon; t++) {

proportion[t] = 0;
}
}
J *
fillLinearProfileDemand —- fill a (subset of a) proportions array with
proportions that change linearly with time
Arguments:
proportion —-—- array of floats which will be filled by this function
firstVehicleOn -- first time interval to fill in
lastVehicleOn ——- last time interval to fill in
firstLastRatio —-—- ratio between demand at the last interval and

112

617

618
619

620
621

622

623
624

625

626
627

628
629
630
631
632
633
634
635
636

637
638
639

640

641
642

643
644

645
646
647

first interval (>1 for increasing, =1 for constant, <1 for
decreasing)
totalProportion —-- total proportion to assign between first and last
intervals (1 for all demand, 1/2 for half of total demand, etc.)
*/
void filllinearProfileDemand (float *proportion, int firstVehicleOn, int
lastVehicleOn, float firstLastRatio, float totalProportion) {
int t = firstVehicleOn;
float base = 2 / ((lastVehicleOn - firstVehicleOn) * (1 +
firstLastRatio)) = totalProportion;
float slope = base x (firstLastRatio - 1) / (lastVehicleOn -
firstvehicleOn - 1);

if (firstLastRatio < 0) fatalError("fillLinearprofileDemand:
firstLastRatio must be nonnegative!");

if (firstVehicleOn > lastVehicleOn) fatalError ("
filllLinearProfileDemand: firstVehicleOn must be no greater than
lastVehicleOn") ;

displayMessage (FULL_DEBUG, "Drawing line with base %f and slope %f
from %d to %d\n", base, slope, firstVehicleOn, lastVehicleOn);

proportion[t++] = base;
for (; t < lastVehicleOn; t++) {
proportion[t] = proportion[t - 1] + slope;
}
}
J *
profileDemandTriangle ——- generate a "triangular" proportions array, as
specified by the arguments
Arguments:
proportion —- array of floats which will be filled by this function
network —— pointer to a network_type containing tick length (needed

to convert peak time, which is in external units, to simulation
time intervals)
parameters —— pointer to a triangleProfile type containing relevant
data for the triangle profile (ratios, peak time, etc.)
*/
void profileDemandTriangle (float *proportion, network_type xnetwork,
triangleProfile_type *parameters) ({
int t;
float a, b, c¢; /# Demand levels at initial, peak, and final time
intervals */
int lastVehicleOn = network->lastVehicleOn;
int timeHorizon = network->timeHorizon;
int peakTime = ceil (parameters->peakTime / network->tickLength);

113

648

649
650
651

652

653
654
655
656

657
658
659

660

661

662

663
664
665
666

O 00 1O B~ W~

— e e ek
Dk W = O

}

float firstRatio = parameters->ratiol, lastRatio = parameters->ratio2

14

/* Validate data x*/

if (peakTime > lastVehicleOn || peakTime < 0) fatalError ("TRIANGLE
profile: peak demand time interval %d is out of range (raw time %f
y\n", peakTime, parameters—->peakTime);

if (firstRatio < 0 || lastRatio < 0) fatalError ("TRIANGLE profile:
ratios 1 and 2 must be nonnegative.\n");

/* Convert into proper format =/

a =2/ (peakTime * (1 + firstRatio) + (lastVehicleOn - peakTime + 1)
* firstRatio * (1 + lastRatio) — 2 x firstRatio);
b = a x firstRatio;

c = b * lastRatio;
displayMessage (FULL_DEBUG, "Triangle parameters a=%f b=%f c=%f\n", a,
b, c);
displayMessage (FULL_DEBUG, "Drawing lines with total proportion $%f
and %$f\n", peakTime * (a+b)/2, (lastVehicleOn - peakTime + 1) = (
b+ c) / 2);
filllinearProfileDemand (proportion, 0, peakTime, firstRatio, peakTime
* (a + b) / 2);
filllinearProfileDemand (proportion, peakTime - 1, lastVehicleOn,
lastRatio, (lastVehicleOn - peakTime + 1) * (b + c) / 2);
for (t = lastVehicleOn; t < timeHorizon; t++) {
proportion[t] = 0;

D.14 dta.n

#ifndef _DTA_H_
##define DTA H_

#include <math.h>

#include <stdlib.h>
#include <time.h>

#include "datastructures.h"
#include "fileio.h"
#include "network.h"
#include "node.h"

#include "sampling.h"
#include "utils.h"

#include "vehicle.h"

typedef enum {

114

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41

42

43

44

45

46

47
48

49

50
51
52
53

}

}

UNKNOWN_PROFILE,

UNIFORM_PROFILE, /# UNIFORM clashes with sampling.h’s UNIFORM
distribution x/

TRIANGLE,

QUADRATIC,

PEAK,

RAW

profile_enum;

typedef enum {

MSA,
LUCE
algorithm_enum;

typedef struct parameters_type_s {

char networkFileName [STRING_SIZE];
char demandFileName [STRING_SIZE];
char coordinateFileName [STRING_SIZE];
char nodeControlFileName [STRING_SIZE];
char countsFileName [STRING_SIZE];
char linkSummaryName [STRING_SIZE];
char nodeSummaryName [STRING_SIZE];
char graphicsFileName [STRING_SIZE];
profile_enum demandProfile;
void sprofileParameters; /+ Additional optional
parameters for different profile types */
network_type *network;
algorithm_enum solutionAlgorithm;
long timeHorizon; /+* End of simulation, in *
seconds * */
long warmUpLength; /* Warm-up period, in #*secondsx*
(for summaries) */
long coolDownLength; /#* Cool-down period, in #*seconds
* (for summaries) */
long lastVehicleOn; /+ Time last vehicle enters the
network, 1in x*seconds+ */
float maxRunTime; /* Seconds
*/
int maxIterations;
float AECtarget; /+ Average excess cost
termination level */
float vehicleLength; /+ Feet
*/
float demandMultiplier;
float tickLength;
float backwardWaveRatio;
int verbosity;

115

54 int randomSeed;
55 } parameters_type ;

56

57 typedef struct triangleProfile_type_s {
58 long peakTime;

59 float ratiol;

60 float ratio?2;

61 } triangleProfile_type;

62

63 /xxx%x Core DTA routines **x%/

64

65 void DTA (parameters_type xrun);

66 wvoid simulateCTM (network_type *network);

67 wvoid shiftMSA (network_type xnetwork, f£loat movingFraction);
68 wvoid cleanUpDTARun (parameters_type xrun);

69 wvoid deleteSchedule (network_type xnetwork);

70 wvoid deleteNetwork (network_type xnetwork);

71

72 wvoid initializeDTARun (parameters_type xrun,char xparametersFileName);
73 wvoid initializeNetwork (parameters_type *run);

74 void generateCells (network_type *network);

75

76 /*%xxx Network validation *x*x*x/

77

78 wvoid validateNetwork (network_type *network);

79 wvoid validateNodeControl (network_type xnetwork);

80 wvoid checkDuplicateTurnMovements (network_type *network);

81

82 /*#++xx Network data structure creation **+*x*/

83

84 wvoid generateSchedule (network_type *network);
85

86 /*#x* Demand profiling *##*+/

87

88 wvoid profileDemand (parameters_type *thisRun);

89 wvoid profileDemandUniform(float *proportion, int lastVehicleOn, int
timeHorizon) ;

90 void fillLinearProfileDemand (float *proportion, int firstVehicleOn, int

lastVehicleOn, float firstLastRatio, float totalProportion);

91 wvoid profileDemandTriangle (float xproportion, network_type snetwork,
triangleProfile_type *parameters);

92

93 #endif

D.1.5 fileio.c

1 #include "fileio.h"

116

O 0 3 O LB W

25
26
27
28
29
30
31
32

33
34

35
36
37
38
39
40
41
42
43
44
45

/*********************

*% File processing *x*

*********************/

J *
openFile —-—- wrapper for the library fopen function with error checking
Arguments:
filename —-- name of file to open
access —— access mode for opening (same syntax as fopen)
*/
FILE *openFile(char xfilename, char xaccess) {
FILE xhandle = fopen(filename, access);
if (handle == NULL) fatalError ("File %s not found", filename);
return handle;
}
/***************************
% Reading network files x*x*
***************************/
/+ Assumptions:
All input data is in units of miles/hour; program converts to
internal units
*/
J *
readNetworkFile ——- reads a text network file for use in simulation
Arguments:
network —- pointer to network_type to read in
networkFileName ——- name of network file
backwardWaveRatio ——- default delta value to use; typically set in
parameters file
*/
void readNetworkFile (network_type *network, char snetworkFileName,

float backwardWaveRatio) {
int i, 3J;
int numParams, status;

char fulllLine[STRING_SIZE], trimmedLine[STRING_SIZE];
char metadataTag[STRING_SIZE], metadataValue[STRING_SIZE];

FILE *linkFile = openFile (networkFileName, "r");
bool endofMetadata = FALSE;

float speedLimit;
char checkChar;

117

46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67

68

69

70

71

72

73
74
75
76

77
78
79
80
81
82

int

J *
do
i

S
i
i

}

tail, head;

Read link file metadata =/

{

f (fgets(fulllLine, STRING_SIZE, linkFile) == NULL) fatalError ("
Network file %s ended before metadata complete.",
networkFileName) ;

tatus = parseMetadata(fullline, metadataTag, metadataValue);
f (status == BLANK_LINE || status == COMMENT) continue;

f (strcmp (metadataTag, "NUMBER OF ZONES") == 0) {
network—>numZones = atoi (metadataValue);

else if (strcmp (metadataTag, "NUMBER OF LINKS") == 0) {
network—->numArcs = atoil (metadataValue);

else if (strcmp (metadataTag, "NUMBER OF NODES") == 0) {
network—->numNodes = atoi (metadataValue);

else if (strcmp (metadataTag, "END OF METADATA") == 0) {
endofMetadata = TRUE;

else {

warning (MEDIUM_NOTIFICATIONS, "Ignoring unknown metadata tag %s
in parameters file %s\n", metadataTag, networkFileName) ;

} while (endofMetadata == FALSE);

/* Check input for completeness and correctness =*/

if (network->numZones == IS_MISSING) fatalError("Link file %s does
not contain number of zones.", networkFileName);

if (network->numNodes == IS MISSING) fatalError ("Link file %s does
not contain number of nodes.", networkFileName);

if (network->numArcs == IS _MISSING) fatalError ("Link file %s does

not contain number of links.", networkFileName) ;

if (network->numZones < 1) fatalError ("Link file %s does not contain
a positive number of nodes.", networkFileName) ;

if (network->numArcs < 1) fatalError ("Link file %s does not contain a
positive number of links.", networkFileName);

if (network->numNodes < 1) fatalError("Link file %s does not contain
a positive number of nodes.", networkFileName) ;

network->node = newVector (network—>numNodes, node_type);

network—->arc = newVector (network->numArcs, arc_type);

network—>staticOD = newMatrix (network—->numZones, network—>numZones,
float);

for (i = 0; i < network->numNodes; i++) {

network->node[i].ID = i + 1;
}
for (i = 0; 1 < network->numZones; i++) {

118

83 for (j = 0; Jj < network->numZones; J++) {

84 network->staticOD[i] [j] = 0;

85 }

86 }

87

88 /+ Read link data =/

89 for (i = 0; 1 < network->numArcs; i++) {

90 do {

91 if (fgets(fullLine, STRING_SIZE, linkFile) == NULL) fatalError ("

Link file %s ended before link data complete.",
networkFileName) ;

92 status = parseline (fulllLine, trimmedLine);

93 } while (status == BLANK_LINE || status == COMMENT) ;

94 numParams = sscanf (trimmedLine, "%d %d %f %$f $f %f %c",

95 &tail,

96 &head,

97 &network->arc[i] .capacity,

98 &network—->arc[i].length,

99 &speedLimit,

100 &network—>arc[i].jamDensity,

101 &checkChar) ;

102 if (numParams != 7 || checkChar != 7;’) fatalError("Link file %s
has an error in this line:\n %s", networkFileName, fullLine);

103 if (tail < 1 || tail > network->numNodes) fatalError ("Arc tail %d
out of range in network file %s.", i, networkFileName);

104 if (head < 1 || head > network->numNodes) fatalError ("Arc head %d
out of range in network file %s.", i, networkFileName);

105 /+ Create links to data structures =/

106 network->arc[i].ID = 1 + 1;

107 network—->arc[i].tail = & (network->node[tail-11]);

108 network—>arc[i] .head = & (network—->nodel[head-11]);

109 /+ Convert units to internal units. Multiply by units in the
numerator, divide by units in the denominator. Unit definitions
in dta.h #*/

110 network->arc[i].length *= FEET;

111 network->arc[i] .capacity /= HOURS;

112 speedLimit = MILES / HOURS;

113 network—->arc([i].jamDensity /= MILES;

114 /% Check for plausibility assuming trapezoidal fundamental diagram
*/

115 if (network->arc[i].length < 0) fatalError ("Arc length %d negative
in network file %s.\n%s", 1i+1l, networkFileName, fullLine);

116 if (speedLimit <= 0) fatalError ("Arc speed limit %d nonpositive in
network file %s.\n%s", i+1, networkFileName, fullLine);

117 if (network->arc(i].capacity <= 0) fatalError ("Capacity %d
nonpositive in network file %s.\n%s", i+l, networkFileName,
fullline);

119

118

119

120
121
122
123
124
125

126

127
128
129
130

131
132
133
134
135
136

137
138

139
140
141
142
143
144

145

146
147
148
149

if (network—->arc[i].jamDensity <= 0) fatalError ("Jam density %d
nonpositive in network file %s.\n%s", i+l, networkFileName,
fulllLine);

/* 1f (network->arc[i].jamDensity <= network->arc[i].capacity /
speedLimit) warning (FULL NOTIFICATIONS, "Arc jam density %d too
small to be consistent with specified capacity and speed 1in
network file %s.\n%s\nFundamental diagram for this link will be
triangular, not trapezoidal.\n", i+1, networkFileName, fullLine)

; */
network->arc([i] .freeFlowTime = network->arc[i].length / speedLimit;
network—->arc[i] .waveRatio = backwardWaveRatio;

fclose (1linkFile);

displayMessage (MEDIUM_NOTIFICATIONS, "Network has %d nodes, %d arcs,
and %d zones\n", network->numNodes, network—->numArcs, network—->
numzones) ;

displayMessage (LOW_NOTIFICATIONS, "Network file read and memory
allocated.\n");

J *
readDemandFile —- detects whether demand type is RAW or based on a
profile, and calls the appropriate function
Arguments:
run —-- pointer to parameters_type specifying demand type
*/
void readDemandFile (parameters_type *run) {
if (run—->demandProfile == RAW) {
readRawODTFile (run—->network, run->demandFileName, & (run—>
demandMultiplier));
} else ({
readStaticODFile (run—->network, run->demandFileName, & (run->
demandMultiplier));
profileDemand (run) ;

/ *

readRawODTFile —- reads a demand file in the RAW format. As a general
caution: these files only work with a particular time

discretization. The time index 1s a time #intervalx*,
not a "real" time value

Arguments:
network —- pointer to network_type which will contain demand
rawODTFileName —-—- name of RAW demand file
demandMultiplier ——- constant factor for scaling demand. Can be

120

150

provided in parameters file or in demand file

151 wvoid readRawODTFile (network_type xnetwork, char *rawODTFileName, f£float

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166

167
168
169
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184

185
186
187

*demandMultiplier) {

int orig, dest, t, odt, numVehicles, numODTs = IS_MISSING;

int numParams, status, check;

char fulllLine[STRING_SIZE], trimmedLine[STRING_SIZE];

char metadataTag[STRING_SIZE], metadataValue[STRING_SIZE];

float rawDemand, totalDemandCheck = 0, totalODFlow = IS_MISSING;
bool endofMetadata = FALSE;

FILE *rawODTFile = openFile(rawODTFileName, "r");

do {

if (fgets(fullline, STRING_SIZE, rawODTFile) == NULL) fatalError ("
Raw ODT file %s ended before metadata complete.", rawODTFileName
)
status = parseMetadata (fullline, metadataTag, metadataValue);
if (status == BLANK_LINE || status == COMMENT) continue;
if (strcmp (metadataTag, "NUMBER OF ZONES") == 0) {
check = atoi (metadataValue);
if (check != network->numZones) fatalError ("Number of zones in
network file and raw ODT file do not match.");
} else if (strcmp (metadataTag, "TOTAL OD FLOW") == 0) {
totalODFlow = atof (metadataValue);
} else if (strcmp(metadataTag, "DEMAND MULTIPLIER") == 0) {
rdemandMultiplier = atof (metadataValue);
} else if (strcmp (metadataTag, "NUMBER OF ODTS") == 0) {
numODTs = atoi (metadataValue) ;
} else if (strcmp (metadataTag, "END OF METADATA") == 0) {
endofMetadata = TRUE;
} else {
warning (MEDIUM_NOTIFICATIONS, "Ignoring unknown metadata tag %s
in trips file %s\n", metadataTag, rawODTFileName);

}

} while (endofMetadata == FALSE);
network->numODTs = numODTsS;
network—->0DT = newVector (numODTs, ODT_type);

for (odt = 0; odt < numODTs; odt++) {

do {
if (fgets(fullline, STRING_SIZE, rawODTFile) == NULL) fatalError(
"Raw ODT file %s ended before ODT data complete.",
rawODTFileName) ;
status = parseline(fullline, trimmedLine);
} while (status == BLANK_LINE || status == COMMENT) ;
numParams = sscanf (trimmedLine, "%d %d %d %$f", &orig, &dest, &t, &
rawDemand) ;

121

188

189

190

191

192

193
194
195
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213
214
215

216
217

218
219
220
221
222
223
224

if (numParams != 4) fatalError ("Raw ODT file has an error in this

line:\n%s", fulllLine);

if (orig < 1 || orig > network->numZones) fatalError ("Origin zone %
d out of range in raw ODT file.", oriqg);

if (dest < 1 || dest > network—->numZones) fatalError ("Destination
zone %d out of range in raw ODT file.", dest);

if (t < 0 || t > network->lastVehicleOn) fatalError ("Departure time

%d out of range [0, %d] in raw ODT file.", t, network—>
lastVehicleOn);
if (rawDemand < 0) fatalError ("Number of vehicles for ODT %d

d @ %d must be nonnegative in raw ODT file.", orig, dest,
network—->0ODT [odt] .origin = & (network->node[orig-1]);
network—>0ODT [odt] .destination = & (network->node[dest-11);

[
network—->0ODT [odt] .departureTime = t;
numVehicles = stochasticRound (rawDemand » *demandMultiplier);
network—>0ODT [odt] .demand = numVehicles;
network—->0ODT [odt] .vehicles = createVehicleDoublyLinkedList ();
network->0ODT [odt] .paths = createPathLinkedList ();
totalDemandCheck += rawDemand;

if (totalODFlow != IS_MISSING) displayMessage (FULL_NOTIFICATIONS,
Total demand %f compared to metadata %$f\n", totalDemandCheck,
totalODFlow) ;
network->totalODFlow = totalDemandCheck * xdemandMultiplier;
fclose (rawODTFile);
displayMessage (LOW_NOTIFICATIONS, "Trip table read.\n");

J *
readStaticODFile —-- reads a demand matrix file
Arguments:
network —-- pointer to network_type which will contain demand
staticODFileName —-- name of demand matrix file
demandMultiplier ——- constant factor for scaling demand. Can be
provided in parameters file or in demand file

*/

-> %
t);

n

void readStaticODFile (network_type xnetwork, char xstaticODFileName,

float *demandMultiplier) {
int i, 3J;
int numParams, status, check;
double demand, totalDemandCheck = 0;

char fullLine[STRING_SIZE], trimmedLine[STRING_SIZE], =*token;
char metadataTag[STRING_SIZE], metadataValue[STRING_SIZE];

122

225
226
227
228
229
230
231
232

233
234
235
236
237

238
239
240
241
242
243
244
245

246
247
248
249
250
251
252
253

254
255

256

257
258
259
260
261
262

bool endofMetadata = FALSE;
double totalODFlow IS_MISSING;

FILE *tripFile = openFile(staticODFileName, "r");

/+* Verify trip table metadata =/

do {
if (fgets(fullline, STRING_SIZE, tripFile) == NULL) fatalError ("
Trips file %s ended before metadata complete.", staticODFileName
)
status = parseMetadata (fullline, metadataTag, metadataValue);
if (status == BLANK_LINE || status == COMMENT) continue;
if (strcmp (metadataTag, "NUMBER OF ZONES") == 0) {
check = atoi (metadataValue);
if (check != network->numZones) fatalError ("Number of zones in
trip and link files do not match.");
} else if (strcmp (metadataTag, "TOTAL OD FLOW") == 0) {
totalODFlow = atof (metadataValue);
} else if (strcmp (metadataTag, "DEMAND MULTIPLIER") == 0) {
rdemandMultiplier = atof (metadataValue);
} else if (strcmp (metadataTag, "END OF METADATA") == 0) {
endofMetadata = TRUE;
} else {

warning (MEDIUM_NOTIFICATIONS, "Ignoring unknown metadata tag %s
in trips file %s\n", metadataTag, staticODFileName) ;

}
} while (endofMetadata == FALSE);

/* Now read trip table x*/
while (!feof(tripFile)) {

if (fgets(fullline, STRING_SIZE, tripFile) == NULL) break;

status = parselLine(fullline, trimmedLine);

if (status == BLANK_LINE || status == COMMENT || feof(tripFile))
continue;

if (strstr(trimmedLine, "Origin") != NULL) {

sscanf (strstr (trimmedLine, "Origin")+6,"%d", &i); /* 1 indexes
current origin */

if (i <1 || 1 > network->numNodes) fatalError ("Origin %d is out
of range in trips file %s", j, staticODFileName);
continue;
}
token = strtok (trimmedLine , ";");
while (token != NULL && strlen(token) > 1) {
numParams = sscanf (token, "% : %1f", &7j, &demand);
if (j <1 || j > network->numNodes) fatalError ("Destination %d is

out of range in trips file %s\n%s\n%s", Jj, staticODFileName,
fullLine, token);

123

263 if (numParams < 2) break;

264 network->staticOD[i-1][J-1] = demand * xdemandMultiplier;

265 if (demand < 0) fatalError ("Negative demand from origin %d to
destination %d4d", i, 3J);

266 totalDemandCheck += network->staticOD[i-1][]J-11;

267 token = strtok (NULL, ";");

268 }

269 blankInputString (trimmedLine, STRING_SIZE);

270 }

271

272 if (totalODFlow != IS_MISSING) displayMessage (FULL_NOTIFICATIONS, "

Total demand %f compared to metadata %$f\n", totalDemandCheck,
totalODFlow) ;
273 /+ Regardless of the ’check’ value, update the network totalODFlow to
the true value */
274 network—->totalODFlow = totalDemandCheck * xdemandMultiplier;
275 fclose (tripFile);

276

277 displayMessage (LOW_NOTIFICATIONS, "Trip table read.\n");
278

279 1}

280

281 /+#

282 readNodeCoordinateFile —- reads the node data file

283 Arguments:

284 network —-—- pointer to network type which contains nodes
285 coordinateFileName —— name of node coordinates file

286 x/

287 wvoid readNodeCoordinateFile (network_type =*network, char
coordinateFileName) {

288 int status;

289 char fullLine[STRING_SIZE], trimmedLine[STRING_SIZE];

290 float tempX, tempY;

291

292 FILE *coordinateFile = openFile(coordinateFileName, "xr");
293

294 int 1i;

295 for (i = 0; i < network—->numNodes; i++) {

296 network—->node[i] .X = INFINITY;

297 network—->node[i].Y = INFINITY;

298 }

299

300 while (!feof (coordinateFile)) {

301 if (fgets(fulllLine, STRING_SIZE, coordinateFile) == NULL) break;
302 status = parselLine(fulllLine, trimmedLine);

303 if (status == BLANK_LINE || status == COMMENT || feof (

coordinateFile)) continue;

124

304
305
306

307
308
309
310
311
312
313
314

315
316
317
318
319
320

321
322
323
324
325
326
327
328
329

330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345

sscanf (trimmedLine, "%d %f %f", &i, &tempX, &tempY);
if (1 <1 || i > network->numNodes) {

warning (MEDIUM_NOTIFICATIONS, "Node %d out of range in

coordinates file, skipping.\n", 1i);

continue;
}
network->node[i-1].X = tempX;

Y

network->node[i-1].Y = tempY;
}
for (i = 0; i < network->numNodes; i++) {
if (network->node[i].X == INFINITY || network—->node[i].Y ==

INFINITY) {
fatalError ("No coordinates found for node %d\n", i+1);

}

fclose (coordinateFile) ;

displayMessage (FULL_NOTIFICATIONS, "Finished reading node coordinate

file.\n");
}
J *
readNodeControlFile —-—- reads an intersection control file
Arguments:
network ——- pointer to network_type which will contain node control
nodeControlFileName —- name of intersection control file
*/

void readNodeControlFile (network_ type xnetwork, char x
nodeControlFileName) {

int curNode = IS_MISSING;

int i, status;

arcLinkedListElt =*curArc;

char fullLine[STRING_SIZE], trimmedLine[STRING_SIZE], controlText |

STRING_SIZE];

twoWayStop_type *twoWayStopControl;

turning_type *newTurningMovement;

basicSignal_type xbasicSignalControl;

FILE xnodeControlFile = openFile (nodeControlFileName, "r");
for (i = 0; i < network->numNodes; i++) {
network->node[i] .turnMovements = createTurningLinkedList ();

network—->node[1i] .control = UNKNOWN_CONTROL;
}

for (i = 0; 1 < network—->numArcs; 1i++) {
network->arc[i].turnMovements = createTurningLinkedList () ;
network->arc[i] .upstreamMovements = createTurningLinkedList ();

125

346
347
348
349
350
351
352

353
354
355
356
357

358

359

360
361

362
363
364
365
366

367

368

369
370
371
372
373
374
375
376
377
378
379

380
381
382
383

/+ Create turn movements for each origin and destination x/
network—->origin.turnMovements = createTurningLinkedList ();
network->destination.upstreamMovements = createTurningLinkedList () ;
for (i = 0; i < network->numZones; i++) {
for (curArc = network->node[i].forwardStar—->head; curArc != NULL;
curArc = curArc->next) {
newTurningMovement = newScalar (turning_type);
newTurningMovement->upstreamArc = & (network->origin);
newTurningMovement->downstreamArc = curArc->arc;
newTurningMovement->vehicles = createVehicleDoublyLinkedList ();
insertTurningLinkedList (network->node[i] .turnMovements,
newTurningMovement, NULL) ;
insertTurningLinkedList (network->origin.turnMovements,
newTurningMovement, NULL) ;
insertTurningLinkedList (curArc—->arc->upstreamMovements,
newTurningMovement, NULL);

}

for (curArc = network—->node[i].reverseStar—>head; curArc != NULL;
curArc = curArc->next) {
newTurningMovement = newScalar (turning_type);
newTurningMovement->upstreamArc = curArc->arc;
newTurningMovement->downstreamArc = & (network->destination);
newTurningMovement->vehicles = createVehicleDoublyLinkedList ();

insertTurningLinkedList (network->node[i] .turnMovements,
newTurningMovement, NULL) ;

insertTurningLinkedList (curArc—->arc—->turnMovements,
newTurningMovement, NULL) ;

insertTurningLinkedList (network—->destination.upstreamMovements,
newTurningMovement, NULL);

while (!feof (nodeControlFile)) {

if (fgets(fulllLine, STRING_SIZE, nodeControlFile) == NULL) break;
status = parseline(fullline, trimmedLine);
if (status == BLANK_LINE || status == COMMENT) continue;
if (strncmp (trimmedLine, "Node", 4) == 0) {
sscanf (trimmedLine, "Node %d : %s", &curNode, controlText);
if (curNode < 1 || curNode > network->numNodes) {
warning (FULL_NOTIFICATIONS, "Node out of range in control
file. Ignoring input line:\n%s\n", fullLine);
continue;

}

curNode——;
if (strcmp (controlText, "FOUR-WAY-STOP") == 0) {

126

384
385
386
387
388
389

390

391
392
393
394
395

396

397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413

414
415
416

417
418
419
420
421
422

network—->node[curNode] .control = FOUR_WAY_STOP;

} else if (strcmp(controlText, "INTERCHANGE") == 0) {
network—->node [curNode] .control = INTERCHANGE;
} else if (strcmp(controlText, "TWO-WAY-STOP") == 0) {

network—->node [curNode] .control = TWO_WAY_STOP;
network—->node[curNode] .controlData = newScalar (twoWayStop_type)
’
twoWayStopControl = (twoWayStop_type =) (network->node[curNode].
controlData);
twoWayStopControl->minStopPriority = IS_MISSING;
twoWayStopControl->priorityList = createPriorityLinkedList ();
} else if (strcmp(controlText, "BASIC-SIGNAL") == 0) {
network—->node [curNode] .control = BASIC_SIGNAL;
network->node[curNode] .controlData = newScalar (basicSignal_type
)i
basicSignalControl = (basicSignal_type x) (network->node][
curNode] .controlData);
basicSignalControl->cycleLength = IS_MISSING;
basicSignalControl->greenTime = createlinkedList () ;
} else if (strcmp(controlText, "FANCY-SIGNAL") == 0) {
network—->node [curNode] .control = FANCY_ SIGNAL;
warning (FULL_NOTIFICATIONS, "Fancy signal control not yet
implemented!\n");

} else if (strcmp(controlText, "CENTROID") == 0) {
network—->node[curNode] .control = CENTROID;

} else if (strcmp(controlText, "MERGE") == 0) {
network—->node [curNode] .control = MERGE;

} else if (strcmp(controlText, "DIVERGE") == 0) {
network—->node [curNode] .control = DIVERGE;

} else if (strcmp(controlText, "NONHOMOGENEQUS") == 0) {
network->node [curNode] .control = NONHOMOGENEQOUS;

} else if (strcmp (controlText, "UNKNOWN") == 0) {

network->node [curNode] .control = UNKNOWN_CONTROL;
} else {
fatalError ("Unknown control type in control file. Input line
is:\n%s", fullLine);

}

if (curNode == IS MISSING) {
warning (LOW_NOTIFICATIONS, "Non-blank, non-comment line found
before a node has been selected! Input line is:\n%s\n",
fulllLine);
continue;
}
continue;
} else {
readTurnMovement (trimmedLine, & (network->node[curNodel]));

127

423 }
424 fclose (nodeControlFile);

425

426 displayMessage (FULL_NOTIFICATIONS, "Finished reading node control
file.\n");

427 '}

428

429 /*

430 readParametersFile —— reads the parameters file before starting a run

431 Arguments:

432 thisRun —-- pointer to a parameters_type which will have all run
parameters

433 parametersFileName —-- name of node control file

434 +/

435 wvoid readParametersFile (struct parameters_type_s xthisRun, charx
parametersFileName) {

436 int status;

437 char fullLine[STRING_SIZE];

438 char metadataTag[STRING_SIZE], metadataValue[STRING_SIZE];

439 FILE xparametersFile = openFile (parametersFileName, "r");

440

441 /* Initialize (set mandatory values to missing, mandatory strings to
length zero, others to defaults) =/

442 thisRun->networkFileName[0] = "\0’;

443 thisRun->demandFileName [0] = "\0’;

444 thisRun->coordinateFileName[0] = "\0’;

445 thisRun—->countsFileName[0] = "\0’;

446 thisRun->nodeControlFileName[0] = "\0’;

447 thisRun—->graphicsFileName[0] = "\0’;

448 thisRun->1inkSummaryName[0] = "\0';

449 thisRun->nodeSummaryName [0] = "\0';

450 thisRun—->timeHorizon = IS_MISSING;

451 thisRun—->lastVehicleOn = IS_MISSING;

452 thisRun->warmUpLength = IS_MISSING;

453 thisRun->coolDownLength = IS_MISSING;

454 thisRun->AECtarget = 0;

455 thisRun->maxRunTime = INFINITY;

456 thisRun->maxIterations = INT_MAX;

457 thisRun->demandMultiplier = 1;

458 thisRun->tickLength = IS_MISSING;

459 thisRun->vehiclelLength = IS_MISSING;

460 thisRun—->backwardWaveRatio = IS_MISSING;
461 thisRun->verbosity = MEDIUM_NOTIFICATIONS;
462 thisRun->demandProfile = UNKNOWN_PROFILE;
463 thisRun->solutionAlgorithm = MSA;

464 thisRun->randomSeed = time (NULL) ;

465

128

466
467
468
469
470
471
472
473
474
475
476
4717
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

497
498
499
500
501
502
503
504
505
506
507
508
509

/% Process parameter file =/

while (!feof (parametersFile)) {

do {
if (fgets(fullline, STRING_SIZE, parametersFile) == NULL) break;
status = parseMetadata (fulllLine, metadataTag, metadataValue);

} while (status == BLANK_LINE || status == COMMENT) ;

if (strcmp (metadataTag, "NETWORK FILE") == 0) {
strcpy (thisRun—>networkFileName, metadataValue);

} else if (strcmp (metadataTag, "DEMAND FILE") == 0) {
strcpy (thisRun—->demandFileName, metadataValue);

} else if (strcmp (metadataTag, "NODE COORDINATE FILE") == 0) {

strcpy (thisRun->coordinateFileName, metadataValue);
/+ Two values for compatibility with earlier versions #*/

} else if (strcmp (metadataTag, "SUMMARY FILE") == | | strcmp (
metadataTag, "COUNTS FILE") == 0) {

strcpy (thisRun->countsFileName, metadataValue);

} else if (strcmp(metadataTag, "LINK SUMMARY FILE") == 0) {
strcpy (thisRun->1linkSummaryName, metadataValue) ;

} else if (strcmp (metadataTag, "NODE SUMMARY FILE") == 0) {
strcpy (thisRun—->nodeSummaryName, metadataValue) ;

} else if (strcmp (metadataTag, "TIME HORIZON") == 0) {
thisRun—->timeHorizon = atol (metadataValue);

} else if (strcmp (metadataTag, "TICK LENGTH") == 0) {
thisRun->tickLength = atof (metadataValue);

} else if (strcmp (metadataTag, "LAST VEHICLE ON") == 0) {
thisRun—->lastVehicleOn = atol (metadataValue);

} else if (strcmp (metadataTag, "WARM UP PERIOD") == 0) {
thisRun->warmUpLength = atol (metadataValue);

} else if (strcmp (metadataTag, "COOL DOWN PERIOD") == 0) {
thisRun->coolDownLength = atol (metadataValue);

} else if (strcmp (metadataTag, "DELTA") == 0) {

warning (LOW_NOTIFICATIONS, "Backward wave ratios now set on a
link-by-1ink basis using jam density specified in network file
Ignoring value in parameters file.\n");

} else if (strcmp (metadataTag, "AEC TOLERANCE") == 0) {
thisRun->AECtarget = atof (metadataValue);

} else if (strcmp(metadataTag, "MAX RUN TIME") == 0) {
thisRun—->maxRunTime = (float) atof (metadataValue);

} else if (strcmp (metadataTag, "MAX ITERATIONS") == 0) {
thisRun->maxIterations = atoil (metadataValue);

} else if (strcmp (metadataTag, "DEMAND MULTIPLIER") == 0) {
thisRun->demandMultiplier = (float) atof (metadataValue);

} else if (strcmp (metadataTag, "NODE CONTROL FILE") == 0) {
strcpy (thisRun->nodeControlFileName, metadataValue);

} else if (strcmp (metadataTag, "VERBOSITY LEVEL") == 0) {

thisRun->verbosity = (short) atoi (metadataValue);

} else if (strcmp (metadataTag, "VEHICLE LENGTH") 0) {

129

510 thisRun->vehiclelength = atof (metadataValue);

511 } else if (strcmp (metadataTag, "BACKWARD WAVE RATIO") == 0) {

512 thisRun->backwardWaveRatio = atof (metadataValue);

513 } else if (strcmp (metadataTag, "GRAPHICS PARAMETERS FILE") == 0) {

514 strcpy (thisRun—->graphicsFileName, metadataValue);

515 } else if (strcmp (metadataTag, "RANDOM SEED") == 0) {

516 thisRun->randomSeed = atoi (metadataValue);

517 } else if (strcmp (metadataTag, "DEMAND PROFILE") == 0) {

518 if (strcmp (metadataValue, "UNIFORM") == 0) thisRun—->

demandProfile = UNIFORM;

519 else if (strcmp (metadataValue, "PEAK") == 0) thisRun->

demandProfile = PEAK;

520 else if (strcmp (metadataValue, "TRIANGLE") == 0) {

521 thisRun—->demandProfile = TRIANGLE;

522 thisRun->profileParameters = newScalar (triangleProfile_type);

523 ((triangleProfile_type =) (thisRun->profileParameters))—>
peakTime = IS_MISSING;

524 ((triangleProfile_type =) (thisRun->profileParameters))—>
ratiol = IS_MISSING;

525 ((triangleProfile_type =) (thisRun->profileParameters))—>
ratio2 = IS_MISSING;

526 }

527 else if (strcmp (metadataValue, "QUADRATIC") == 0) thisRun—->

demandProfile = QUADRATIC;

528 else if (strcmp (metadatavValue, "RAW") == 0) thisRun—>

demandProfile = RAW;

529 else fatalError ("Unknown profile type %s\n", metadataValue);

530 } else if (strcmp (metadataTag, "SOLUTION ALGORITHM") == 0) {

531 if (strcmp (metadatavValue, "MSA") == 0) thisRun—->

solutionAlgorithm = MSA;

532 else if (strcmp (metadataValue, "LUCE") == 0) thisRun—->

solutionAlgorithm = LUCE;

533 else fatalError ("Unknown algorithm type %$s\n", metadatavValue);

534 } else if (strcmp (metadataTag, "PEAK DEMAND TIME") == 0) {

535 if (thisRun->demandProfile == TRIANGLE) {

536 ((triangleProfile_type *) (thisRun->profileParameters))—>
peakTime = atoil (metadataValue);

537 } else {

538 warning (LOW_NOTIFICATIONS, "Ignoring PEAK DEMAND TIME
parameter (must follow definition of the demand profile
type as TRIANGLE) .\n");

539 }

540 } else if (strcmp (metadataTag, "RATIO 1") == 0) {

541 if (thisRun->demandProfile == TRIANGLE) {

542 ((triangleProfile_type *) (thisRun->profileParameters))—>
ratiol = atof (metadataValue);

543 } else {

130

544

545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560

561

562

563

564

565

566

567

568

569

J *
if

if

if

if

if

if

if

if

if

if

if

if

warning (LOW_NOTIFICATIONS, "Ignoring RATIO 1 parameter (must
follow definition of the demand profile type as TRIANGLE)

.An");
}
} else if (strcmp (metadataTag, "RATIO 2") == 0) {
if (thisRun->demandProfile == TRIANGLE) {
((triangleProfile_type «) (thisRun->profileParameters))->
ratio2 = atof (metadataValue);
} else {

warning (LOW_NOTIFICATIONS, "Ignoring RATIO 2 parameter (must
follow definition of the demand profile type as TRIANGLE)

An");
}

} else {

warning (MEDIUM_NOTIFICATIONS, "Ignoring unknown metadata tag in

parameters file - %s\n", metadataTag);

}

Check mandatory elements are present and validate input =/
(strlen (thisRun—->networkFileName) == 0) fatalError ("Missing
network filel!"™);

(strlen(thisRun->demandFileName) == 0) fatalError ("Missing demand
file!™);

(strlen(thisRun->coordinateFileName) == 0) fatalError ("Missing
node coordinate file!");

(thisRun->tickLength == IS_MISSING) { thisRun->tickLength = 6;
warning (LOW_NOTIFICATIONS, "No tick length specified... using 6
seconds as default.\n"); }

(thisRun—->vehiclelLength == IS_MISSING) { thisRun->vehiclelength =

20; warning (LOW_NOTIFICATIONS, "No vehicle length specified...
using 20 ft as default.\n"); }

(thisRun->backwardWaveRatio == IS_MISSING) { thisRun->

backwardWaveRatio = 0.5; warning (LOW_NOTIFICATIONS, "No backward

wave ratio specified... using 0.5 as default.\n"); }
(thisRun->timeHorizon == IS_MISSING) fatalError ("Missing time
horizon!");

(thisRun—->lastVehicleOn == IS_MISSING) { thisRun—->lastVehicleOn =
thisRun->timeHorizon 0.9; warning (FULL_NOTIFICATIONS, "No last

vehicle on provided... setting to 90%% of time horizon.\n"); }
(thisRun—->demandProfile == UNKNOWN_PROFILE) fatalError ("Missing or
unknown demand profile!");

(thisRun—->demandMultiplier < 0) fatalError ("Negative demand

multiplier!");

(thisRun->demandMultiplier == 0) warning (LOW_NOTIFICATIONS, "
Demand multiplier is zero ——- no trips will be assigned!\n");
(thisRun->tickLength <= 0) fatalError ("Tick length must be

131

570

571

572

573
574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

positive!");

if (thisRun->timeHorizon < thisRun->lastVehicleOn) fatalError ("Last

vehicle enters after time horizon!");
if (thisRun->timeHorizon < thisRun->tickLength) fatalError ("Tick
length exceeds time horizon!");
if (thisRun->maxIterations == INT_MAX && thisRun->maxRunTime ==
INFINITY && thisRun—->AECtarget == 0) warning (LOW_NOTIFICATIONS, "
No termination criteria specified... program will run until
interrupted manually.\n");
if (thisRun->demandProfile == TRIANGLE) {
if (((triangleProfile_type *) (thisRun->profileParameters))->
peakTime == IS_MISSING) fatalError ("TRIANGLE profile requires
specification of PEAK DEMAND TIME.");
if (((triangleProfile_type *) (thisRun->profileParameters))->
ratiol == IS_MISSING) fatalError ("TRIANGLE profile requires
specification of RATIO 1.");
if (((triangleProfile_type =) (thisRun->profileParameters))->
ratio2 == IS_MISSING) fatalError ("TRIANGLE profile requires

specification of RATIO 2.");
}

if ((strlen(thisRun->linkSummaryName) > 0 || strlen(thisRun—->
nodeSummaryName) > 0)
&& (thisRun->warmUpLength == IS_MISSING || thisRun—->
coolDownLength == IS_MISSING)) {

fatalError ("Must provide warm-up and cool-down periods to
generate summary files.\n");

fclose (parametersFile);

displayMessage (FULL_NOTIFICATIONS, "Finished reading parameters file

.\l’l"),‘

void displayRunParameters (int minVerbosity, parameters_type xrun)
displayMessage (minVerbosity, "Displaying run parameters:\n\n");
displayMessage (minVerbosity, "Network file: %s\n", run—->
networkFileName) ;

{

displayMessage (minVerbosity, "Demand file: %s\n", run->demandFileName

)7

displayMessage (minVerbosity, "Node coordinate file: %s\n", run->
coordinateFileName) ;

displayMessage (minVerbosity, "Node control file: %$s\n", run—->
nodeControlFileName) ;

displayMessage (minVerbosity, "Counts file: %s\n", run->countsFileName

)
displayMessage (minVerbosity, "Node control file: %s\n", run->
nodeControlFileName) ;

132

595

596
597

598

599
600
601
602

603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620

621
622
623

624
625
626
627
628
629

630
631

632

displayMessage (minVerbosity, "Time horizon: %$1d\n", run->timeHorizon)
7

displayMessage (minVerbosity, "AEC tolerance: %f\n", run->AECtarget);

displayMessage (minVerbosity, "Max running time: %f\n", run->
maxRunTime) ;

displayMessage (minVerbosity, "Vehicle length: %$f\n", run->
vehicleLength);

/ *
writeLinkSummary —- create the link summary file after the DTA run 1is
finished (or based on a counts file)
Arguments:
run —-- pointer to a parameters_type which has all run parameters
linkSummaryName ——- name of file to write link summary data to
*/
void writelLinkSummary (parameters_type *run, char xlinkSummaryName) {
int i3, t;
int lastl5Volume, peakl5Volume, last60Volume, peak60Volume;
float time, delay, density, wvolume, PHF;

int startTime = run->warmUpLength / run->tickLength, endTime = (run—->
timeHorizon - run->coolDownLength) / run->tickLength;
int numPeriods = endTime - startTime;

int lengthl5 = 15 % MINUTES / run->tickLength;
int length60 60 » MINUTES / run—->tickLength;

network_type *network = run->network;
FILE *summaryFile = openFile (linkSummaryName, "w");
displayMessage (FULL_NOTIFICATIONS, "Writing link summary file...");

if (numPeriods < 1) {
warning (LOW_NOTIFICATIONS, "Can’t generate link summary file,
entire run is warm-up or cool-down.\n");
return;
} else if (numPeriods < length60) {
warning (LOW_NOTIFICATIONS, "Insufficient time horizon to
calculate peak—-hour factors.\n");

/* Output 1link cumulative counts */

fprintf (summaryFile, "LINK SUMMARY (ALL VALUES TIME AVERAGES)\n");

fprintf (summaryFile, "-——--———— \n");

fprintf (summaryFile, "Link\tTravel time (s)\tDelay (s)\tDensity (veh/
mi) \tVolume (veh/hr)\tPHF\n");

for (ij = 0; ij < network->numArcs; 1ij++) {
fprintf (summaryFile, " (%d,%d)\t", network->arc[ij].tail->ID,

network->arc[ij].head->ID);
/* Calculate link statistics =/

133

633 time = 0; delay = 0; density = 0; volume = 0; lastl5Volume = 0;
last60Volume = 0; peaklbVolume = 0; peak60Volume = 0;

634 for (t = startTime; t < endTime; t++) {

635 time += network->arc[ij].travelTimel[t];

636 delay += network—->arc[ij].travelTime[t] - network->arc[ij].
numCells;

637 density += network->arc[ij].upstreamCount[t] - network->arcl[i]
] .downstreamCount [t];

638 if (t - lengthl5 >= startTime) lastl5Volume = network->arc[i]
] .downstreamCount [t] - network->arc[ij].downstreamCount [t -
lengthl5];

639 if (t - length60 >= startTime) last60Volume = network->arc[i]
] .downstreamCount [t] - network->arc[ij].downstreamCount [t -
length60];

640 peakl5Volume = max (lastl5Volume, peakl5Volume) ;

641 peak60Volume = max (last60Volume, peak60Volume) ;

642 }

643 volume = network->arc[ij].downstreamCount [endTime] - network->arc

[1]] .downstreamCount [startTime];

644

645 /#* Normalize and convert units as necessary #*/

646 time x= network->tickLength / numPeriods;

647 delay *= network->tickLength / numPeriods;

648 density *= MILES / (network—->arc[ij].length * numPeriods);

649 volume = HOURS / (network—>tickLength * numPeriods);

650

651 fprintf (summaryFile, "%$.0f\t%.0f\t%.0f\t%.0f£\t", time, delay,

density, wvolume);

652 if (numPeriods >= length60 && peakl5Volume > 0) {

653 PHF = (float) peak60Volume / (4 * peakl5Volume);

654 fprintf (summaryFile, "%.2f\n", PHF);

655 } else {

656 fprintf (summaryFile, "—-—--\n");

657 }

658 }

659

660 fclose (summaryFile) ;

661 displayMessage (FULL_NOTIFICATIONS, "done.\n");

662 }

663

664 /*

665 writeNodeSummary ——- create the node summary file after the DTA run 1s

finished (or based on a counts file)
666 Arguments:

667 run —- pointer to a parameters_type which has all run parameters
668 nodeSummaryName ——- name of file to write node summary data to
669 x/

134

670 wvoid writeNodeSummary (parameters_type *run, char *nodeSummaryName) {
671 int 1, t;

672 int lastl5Volume, peakl5Volume, last60Volume, peak60Volume;

673 float delay, volume, PHF;

674 int startTime = run->warmUpLength / run->tickLength, endTime = (run->
timeHorizon - run->coolDownLength) / run->tickLength;
675 int numPeriods = endTime - startTime;

676 int lengthl5 = 15 % MINUTES / run->tickLength;
677 int length60 60 % MINUTES / run->tickLength;

678 network_type *network = run->network;

679 turningLinkedListElt xcurMovement;

680 FILE *summaryFile = openFile (nodeSummaryName, "w");

681

682 displayMessage (FULL_NOTIFICATIONS, "Writing node summary file...");

683 if (numPeriods < 1) {

684 warning (LOW_NOTIFICATIONS, "Can’t generate node summary file,

entire run is warm-up or cool-down.\n");

685 return;

686 } else if (numPeriods < length60) {

687 warning (LOW_NOTIFICATIONS, "Insufficient time horizon to

calculate peak—-hour factors.\n");

688 }

689

690 /* Output movement data =/

691 fprintf (summaryFile, "NODE SUMMARY FILE\n");

692 fprintf (summaryFile, "-———————————————— \n") ;

693 fprintf (summaryFile, "\tMovement\tDelay (s)\tVolume (vph)\tPHF\n");

694 for (1 = 0; 1 < network->numNodes; 1i++) {

695 fprintf (summaryFile, "Node %d summary\n", network->node[i].ID);

696 for (curMovement = network->node[i].turnMovements—->head;

curMovement != NULL; curMovement = curMovement->next) {

697 fprintf (summaryFile, "\t%d -> %d -> %d\t", curMovement->
movement->upstreamArc->tail->ID, network->node[i].ID,
curMovement->movement->downstreamArc—>head->1ID) ;

698 delay = 0; volume = 0; lastl5Volume = 0; last60Volume = O0;
peaklbVolume = 0; peak60Volume = 0;

699 for (t = startTime; t < endTime; t++) {

700 delay += curMovement->movement->travelTime[t];

701 if (t - lengthl5 >= startTime) lastl5Volume = curMovement->
movement —>downstreamCount [t] - curMovement->movement-—>
downstreamCount [t - lengthlb5];

702 if (t - length60 >= startTime) last60Volume = curMovement->
movement->downstreamCount [t] - curMovement->movement-—->
downstreamCount [t - length60];

703 peakl5Volume = max (lastl5Volume, peakl5Volume);

704 peak60Volume = max (last60Volume, peak60Volume);

705 }

135

706 /% Normalize and convert units as necessary #*/

707 volume = curMovement->movement->downstreamCount [endTime] -
curMovement->movement->downstreamCount [startTime];

708 delay *= network->tickLength / numPeriods;

709 volume = HOURS / (network—>tickLength * numPeriods);

710 PHF = (float) peak60Volume / (4 » peaklbVolume);

711 fprintf (summaryFile, "%.0f\t%.0f\t", delay, volume);

712 if (numPeriods >= length60 && peakl5Volume > 0) {

713 PHF = (float) peak60Volume / (4 » peaklb5Volume);

714 fprintf (summaryFile, "%.2f\n", PHF);

715 } else {

716 fprintf (summaryFile, "-——\n");

717 }

718 }

719 }

720

721 fclose (summaryFile) ;

722 displayMessage (FULL_NOTIFICATIONS, "done.\n");

723}

724

725 /~*

726 writeCumulativeCounts —— create the comprehensive counts file after the

DTA run is finished
727 Arguments:

728 network ——- pointer to a network_type which contains all link and
turn movement cumulative counts

729 countsFileName —-—- name of file to write counts data to

730 */

731 wvoid writeCumulativeCounts (network_type xnetwork, char *countsFileName)
{

732 int i, 173, t;

733 turninglLinkedListElt *curMovement;

734 FILE *xcountsFile = openFile (countsFileName, "w");

735

736 displayMessage (FULL_NOTIFICATIONS, "Writing counts file...");
737

738 /+ Output link cumulative counts #*/
739 fprintf (countsFile, "LINK CUMULATIVE COUNTS\n");

740 fprintf (countsFile, "-——————————————————— \n");

741 fprintf (countsFile, "t");

742 for (ij = 0; ij < network->numArcs; ij++) {

743 fprintf (countsFile, "\t (%d, %d)\tDownstream\tTime", network->arc[i]
].tail->ID, network->arc[ij].head->ID);

744 }

745 fprintf (countsFile, "\n");

746 for (t = 0; t < network->timeHorizon; t++) {

747 fprintf (countsFile, "%d", (int) ((t+1l) x network->tickLength));

136

748
749

750
751
752
753
754
755
756
757
758
759
760

761

762
763
764
765
766
767
768

769

770
771
772
773
774
775
776
777
778
779

780 /#
readCumulativeCounts ——- Reads a cumulative count file, but it must have

781

782

}

for (ij = 0; ij < network->numArcs; ij++) {
fprintf (countsFile, "\t%d\t%d\t%d", network->arcl[ij].
upstreamCount [t], network->arc[ij].downstreamCount[t], (int) (
network->arc([ij].travelTime[t] * network->tickLength)) ;
}
fprintf (countsFile, "\n");
}

fprintf (countsFile, "\n");

/* Turning movement cumulative counts */
fprintf (countsFile, "TURN MOVEMENT CUMULATIVE COUNTS\n");
fprintf (countsFile, "-———-—————————————————————————— \n");
fprintf (countsFile, "t");
for (i =

for (curMovement = network->node[i].turnMovements->head;

network—>numZones; 1 < network—->numNodes; i++) {

curMovement != NULL; curMovement = curMovement->next) {
fprintf (countsFile, "\t%d->%d->%d\tDownstream\tTime", curMovement
->movement->upstreamArc->tail->ID, 1i+1, curMovement->movement
->downstreamArc->head->1ID) ;

}

fprintf (countsFile, "\n");

for (t = 0; t < network—->timeHorizon; t++) {
fprintf (countsFile, "%d", (int) ((t+l) = network->tickLength));
for (i = network—->numZones; 1 < network->numNodes; i++) {
for (curMovement = network->node[i].turnMovements->head;
curMovement != NULL; curMovement = curMovement->next) {

fprintf (countsFile, "\t%d\t%d\t%d", curMovement->movement->
upstreamCount [t], curMovement->movement->downstreamCount[t],
(int) (curMovement->movement—->travelTime[t] * network—->
tickLength));

}

fprintf (countsFile, "\n");

fclose (countsFile);
displayMessage (FULL_NOTIFICATIONS, "done.\n");

been sxwritten by writeCumulativeCountsx*.
Unlike the other file I/0O routines, this one 1is
very picky about formatting.

783 Arguments:

137

784
785
786
787

788
789
790
791
792
793
794
795

796
797
798
799
800
801
802
803

804
805
806
807
808

809
810
811
812
813
814
815

816
817
818
819
820
821
822
823

824

network —- pointer to a network_type into which counts will be read
countsFileName —- name of file to read counts data from

*/

void readCumulativeCounts (network_type =xnetwork, char xcountsFileName)

{
int i, ij, t, checkTime;
turningLinkedListElt xcurMovement;
char fullLine[STRING_SIZE];

FILE *countsFile = openFile(countsFileName, "r");
displayMessage (FULL_NOTIFICATIONS, "Reading counts file...");
/+ Input link cumulative counts —-- skip first three lines ("LINK

CUMULATIVE COUNTS", dashes, and header) =*/
fgets (fullline, STRING_SIZE, countsFile);
fgets (fullLine, STRING_SIZE, countsFile);
do {
fgets (fullLine, STRING_SIZE, countsFile);
} while (strstr(fullLine, "\n") == NULL);
for (t = 0; t < network->timeHorizon; t++) {
fscanf (countsFile, "%d", &checkTime);
if (checkTime != (int) ((t+l) x network->tickLength)) fatalError ("
Counts file doesn’t match network.");
for (ij = 0; ij < network—>numArcs; 1ij++) {
if (fscanf (countsFile, "\t%d\t%d\t%d",
& (network->arc[ij] .upstreamCount[t]),
& (network->arc[ij].downstreamCount [t]),
&checkTime) != 3) fatalError ("Counts file doesn’t match
network.");
network->arc[ij].travelTime[t] /= network->tickLength;
}
fscanf (countsFile, "\n");

}

fscanf (countsFile, "\n");

/% Turning movement cumulative counts —--— again skip first three lines
*/
fgets (fullLine, STRING_SIZE, countsFile);
fgets(fullline, STRING_SIZE, countsFile);
do {
fgets (fullline, STRING_SIZE, countsFile);
} while (strstr(fullline, "\n") == NULL);
for (t = 0; t < network->timeHorizon; t++) {
fscanf (countsFile, "%d", &checkTime);
if (checkTime != (int) ((t+1) x network->tickLength)) fatalError ("
Counts file doesn’t match network.");
for (i = network—->numZones; 1 < network->numNodes; i++) {

138

825

826
827
828
829

830

831
832
833
834
835
836
837
838
839
840
841
842
843

844
845

846
847
848

849
850
851
852
853
854

855
856
857
858
859
860
861

862

for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {

if (fscanf (countsFile, "\t%d\t%d\tzxd",
& (curMovement—>movement—>upstreamCount [t]),
& (curMovement->movement—->downstreamCount [t]),
&checkTime) != 3) fatalError ("Counts file doesn’t

match network.");
curMovement->movement->travelTime[t] /= network->tickLength

.
r

}

fscanf (countsFile, "\n");

}

fscanf (countsFile, "\n");

fclose (countsFile);
displayMessage (FULL_NOTIFICATIONS, "done.\n");

/ *

writeNodeControlFile —- OQutputs current node control information into
an intersection control file; often used after performing warrant
analysis.

Arguments:
network —-—- pointer to a network_ type from which intersection data

will be read

nodeControlFileName ——- name of control file to write data to

*/

void writeNodeControlFile (network_type *network, char =
nodeControlFileName) {

int 1i;
FILE *nodeControlFile = openFile(nodeControlFileName, "w");
for (i = 0; i1 < network->numNodes; i++) {

writeNode (nodeControlFile, network, 1); /# Split into separate
function to allow single—-node analysis #*/

fclose (nodeControlFile);

J *
writeNode —-—- Writes control data for a specific node, depending on its

type.
Arguments:

139

863
864

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

883

884
885
886
887
888

889

890
891
892
893
894

895

896

nodeControlFileName —-- name of control file to write data to
network —-— pointer to a network_ type from which intersection data
will be read

i —— node number to write

*/

void writeNode (FILE xnodeControlFile, network_type xnetwork, int i) ({
int priority;
turninglLinkedListElt xcurMovement, *priorityMovement;
basicSignal_type xsignalData;
twoWayStop_type xstopData;
priorityLinkedListElt *curPriority;
linkedListElt *curGreen;

fprintf (nodeControlFile, "Node %d : ", i+1);
switch (network->node[i].control) {
case CENTROID:
fprintf (nodeControlFile, " CENTROID\n");
break;
case NONHOMOGENEOUS:
fprintf (nodeControlFile, " NONHOMOGENEOUS\n");
for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {
fprintf (nodeControlFile, "\t%d -> %d -> %d\t%f\n", curMovement
->movement->upstreamArc->tail->ID, i+l, curMovement->
movement->downstreamArc—->head->ID, curMovement->movement—>
saturationFlow = HOURS) ;
}
break;
case MERGE:
fprintf (nodeControlFile, " MERGE\n");
for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {
fprintf (nodeControlFile, "\t%d -> %d -> %d\t%f\n", curMovement
->movement->upstreamArc->tail->ID, i+1l, curMovement->
movement->downstreamArc->head->ID, curMovement->movement-—->
saturationFlow = HOURS) ;
}
break;
case DIVERGE:
fprintf (nodeControlFile, " DIVERGE\n");
for (curMovement = network->node[i].turnMovements->head;
curMovement != NULL; curMovement = curMovement->next) {
fprintf (nodeControlFile, "\t%d -> %d -> %d\t%f\n", curMovement
->movement->upstreamArc->tail->ID, i+l, curMovement->
movement->downstreamArc—->head->ID, curMovement->movement—>
saturationFlow = HOURS) ;

140

897
898
899
900

901

902
903
904
905
906
907

908

909

910

911
912
913
914
915
916
917
918
919
920
921
922
923

924
925

break;
case FOUR_WAY_STOP:
fprintf (nodeControlFile, " FOUR-WAY-STOP\n");
for (curMovement = network->node[i].turnMovements->head;
curMovement != NULL; curMovement = curMovement->next) {
fprintf (nodeControlFile, "\t%d -> %d -> %d\t%f\n", curMovement
->movement->upstreamArc->tail->ID, i+l, curMovement->
movement—->downstreamArc->head->ID, curMovement->movement-—>
saturationFlow » HOURS) ;
}
break;
case BASIC_SIGNAL:
fprintf (nodeControlFile, " BASIC-SIGNAL\n");
signalData = (basicSignal_type x) (network->node[i].controlData);
fprintf (nodeControlFile, "\tCycle length %d\n", signalData->
cycleLength) ;

for (curMovement = network->node[i].turnMovements->head, curGreen
= signalData->greenTime->head;
curMovement != NULL; curMovement = curMovement->next,
curGreen = curGreen—->next) {

fprintf (nodeControlFile, "\t%d -> %d -> %d\t%d\t%f\n",
curMovement->movement->upstreamArc->tail->ID, i+1,
curMovement->movement->downstreamArc->head->ID, curGreen->
value, curMovement->movement->saturationFlow = HOURS) ;
}
break;
case TWO_WAY_STOP:
fprintf (nodeControlFile, " TWO-WAY-STOP\n");
stopData = (twoWayStop_type *) (network->node[i].controlData);
fprintf (nodeControlFile, "\tIntersection saturation flow $f\n",
stopData->saturationFlow % HOURS) ;
fprintf (nodeControlFile, "\tMinimum stop priority %d\n", stopData
—>minStopPriority);
for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) ({
/* Need to search priority lists to find the right one for
this node */

for (curPriority = stopData->priorityList->head; curPriority
!= NULL; curPriority = curPriority->next) {
priority = curPriority->priorityLevel;
for (priorityMovement = curPriority->movements—>head;
priorityMovement != NULL; priorityMovement =

priorityMovement->next) {
if (priorityMovement->movement == curMovement->movement)
goto done; /* Found the right movement =/

141

926
927

928
929
930

931
932
933
934
935
936
937
938

939

940
941
942
943
944
945
946
947
948
949

950
951

952
953
954

955
956
957

958

/+ This line is only reached if no match was found above. #/

fatalError ("writeNodeControlFile: Movement %d -> %d -> %d is
not in any priority list!", curMovement->movement->
upstreamArc->tail->ID, i+1l, curMovement->movement->
downstreamArc—>head->1ID) ;

/* Otherwise, we jumped to here. */

done:

fprintf (nodeControlFile, "\t%d —-> %d -> %d\t%d\t%f\n",
curMovement->movement->upstreamArc->tail->ID, i+1,
curMovement->movement->downstreamArc->head->ID, priority,
curMovement->movement—->saturationFlow = HOURS) ;

}

break;

case FANCY_SIGNAL:
fatalError ("Fancy signals not yet implemented!");
break;

case INTERCHANGE:
fprintf (nodeControlFile, " INTERCHANGE\n");
for (curMovement = network->node[i].turnMovements->head;
curMovement != NULL; curMovement = curMovement->next) {
fprintf (nodeControlFile, "\t%d -> %d -> %d\t%f\n", curMovement
->movement->upstreamArc->tail->ID, i+l, curMovement->
movement->downstreamArc->head->ID, curMovement->movement—>
saturationFlow = HOURS) ;
}
break;
case UNKNOWN_CONTROL:
fprintf (nodeControlFile, " UNKNOWN\n");

/ *
writeParametersFile —-— Writes a parameters file. Typically used by
warrant analysis when an "artificial" run must be conducted
Arguments:
thisRun —-- pointer to a parameters_type containing parameters to
write
parametersFileName —-—- name of the parameters file to create
*/

void writeParametersFile (struct parameters_type_s xthisRun, charx
parameterskFileName) {
FILE *parametersFile = openFile (parametersFileName, "w");

fprintf (parametersFile, "<NETWORK FILE> %s\n", thisRun—>

networkFileName) ;
fprintf (parametersFile, "<DEMAND FILE> %s\n", thisRun->

142

959

960

961

962
963

964
965
966

967

968

969

970

971

972
973
974
975
976
977
978
979
980
981
982
983

984

985

986
987
988
989
990

demandFileName) ;

fprintf (parametersFile, "<NODE COORDINATE FILE> %$s\n", thisRun->
coordinateFileName) ;

fprintf (parametersFile, "<COUNTS FILE> %$s\n", thisRun->
countsFileName) ;

fprintf (parametersFile, "<TIME HORIZON> %1d\n", thisRun->timeHorizon
)i

fprintf (parametersFile, "<TICK LENGTH> %$f\n", thisRun->tickLength);

fprintf (parametersFile, "<LAST VEHICLE ON> %1d\n", thisRun—->
lastVehicleOn) ;

fprintf (parametersFile, "<AEC TOLERANCE> %f\n", thisRun->AECtarget);

fprintf (parametersFile, "<MAX RUN TIME> %f\n", thisRun->maxRunTime) ;

fprintf (parametersFile, "<MAX ITERATIONS> %d\n", thisRun->
maxIterations);

fprintf (parametersFile, "<DEMAND MULTIPLIER> %f\n", thisRun->
demandMultiplier) ;

fprintf (parametersFile, "<NODE CONTROL FILE> %$s\n", thisRun->
nodeControlFileName) ;

fprintf (parametersFile, "<VERBOSITY LEVEL> %$hd\n", thisRun->
verbosity) ;

fprintf (parametersFile, "<VEHICLE LENGTH> %$f\n", thisRun->
vehicleLength) ;

fprintf (parametersFile, "<BACKWARD WAVE RATIO> %f\n", thisRun—->
backwardWaveRatio) ;

fprintf (parametersFile, "<RANDOM SEED> %d\n", thisRun->randomSeed) ;

fprintf (parametersFile, "<DEMAND PROFILE> ");

switch (thisRun->demandProfile) {

case UNIFORM:
fprintf (parametersFile, "UNIFORM\n");
break;

case PEAK:
fprintf (parametersFile, "PEAK\n");
break;

case TRIANGLE:
fprintf (parametersFile, "TRIANGLE\n");
fprintf (parametersFile, "<PEAK DEMAND TIME> %1d", ((

triangleProfile_type «) (thisRun—->profileParameters))->peakTime
)7

fprintf (parametersFile, "<RATIO 1> S%f", (triangleProfile_type x)

(
(thisRun->profileParameters))->ratiol);
fprintf (parametersFile, "<RATIO 2> %$f", ((triangleProfile_type *)
(thisRun->profileParameters))->ratio2);
break;

case QUADRATIC:
fprintf (parametersFile, "QUADRATIC\n");
break;

case RAW:

143

991
992
993
994

995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006
1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017

1018

1019
1020

1021
1022
1023
1024
1025
1026

1027
1028
1029
1030

fprintf (parametersFile, "RAW\n");
break;
default:
fatalError ("Unknown demand profile type %$d when writing
parameters file!\n", thisRun->demandProfile);
}
fprintf (parametersFile, "<SOLUTION ALGORITHM> ");
switch (thisRun->solutionAlgorithm) {
case MSA:
fprintf (parametersFile, "MSA\n");
break;
case LUCE:
fprintf (parametersFile, "LUCE\n");
break;
default:
fatalError ("Unknown solution algorithm %d when writing parameters
file!\n", thisRun->solutionAlgorithm);

fclose (parametersFile);
displayMessage (FULL_NOTIFICATIONS, "Finished writing parameters file
A\n");

/**

% Reading control data for different nodes xx

**/

J *
readTurnMovement —— Reads a line from an intersection control file.
Because different control types have different data,
this function just serves as a switch to the right
parsing routine.
Arguments:
inputLine —— entire line of the intersection control file to pass to
appropriate routine
node ——- pointer to the node this movement belongs to
*/
void readTurnMovement (char xinputLine, node_type xnode) {
switch (node—->control) {
case CENTROID:
warning (MEDIUM_NOTIFICATIONS, "Centroid %d should not have explicit
turn movements listed.\n", node->ID);
return;
case NONHOMOGENEOUS:
case DIVERGE:
case MERGE:

144

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
1046

1047
1048
1049
1050
1051
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067

1068
1069

1070
1071

case FOUR_WAY_STOP:
case INTERCHANGE:
readBasicTurnMovement (inputLine, node);
break;
case TWO_WAY STOP:
readTwoWayStopMovement (inputLine, node);
break;
case BASIC_SIGNAL:
readBasicSignalMovement (inputLine, node);
break;
case FANCY_SIGNAL:
fatalError ("Intersection type %d not yet implemented!", node->
control);
case UNKNOWN_CONTROL:
break;
default:
fatalError ("Unknown intersection type %d for node %d", node—>
control, node->ID);

J *

readBasicTurnMovement —- Reads a turn movement from the "basic"
intersection types that do not have fancy formatting

Arguments:
inputLine —-—- entire line of the intersection control file to read
node ——- pointer to the node this movement belongs to

*/

void readBasicTurnMovement (char xinputlLine, node_type #*node) {
turning_type *newTurningMovement = newScalar (turning_ type);
int numParams;
int h, i, 3;

float s;
numParams = sscanf (inputlLine, "%d -> %d -> %d %f", &h, &i, &J, &s);
if (numParams != 4) fatalError ("Misformatted control sequence.

Current line is:\n%s", inputLine);
createMovement (newTurningMovement, h, i, Jj, node);

if (s < 0) fatalError ("Turn movement has negative saturation flow!
Current line is:\n%s", inputLine);

if (s == 0) warning (LOW_NOTIFICATIONS, "Turn movement %d -> %$d -> %d
has zero saturation flow!", h, i, J);

newTurningMovement—->saturationFlow = s / HOURS;

145

1072
1073

1074
1075
1076
1077
1078
1079
1080

1081
1082
1083
1084
1085
1086
1087
1088
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106
1107

J *

readBasicSignalMovement —-—- Reads a turn movement for a signal (looking
for cycle length, etc.)

Arguments:
inputLine —-—- entire line of the intersection control file to read
node ——- pointer to the node this movement belongs to

*/

void readBasicSignalMovement (char xinputlLine, node_type xnode) {
turning_type *newTurningMovement = newScalar (turning_ type);
basicSignal_type xsignalData = (basicSignal_type =*) (node->

controlData) ;

int numParams;
int h, i, 3;
int ¢, g;
float s;

/* Does this line contain the cycle length? */

if (strstr(inputLine, "Cycle length") != NULL) {
numParams = sscanf (inputlLine, "Cycle length %d", &c);
if (numParams != 1) fatalError ("Misformatted cycle length control

sequence in line containing:\n%s", inputLine);
if (c <= 0) fatalError ("Basic signal has non-positive cycle

length! Current line contains:\n%s", inputLine);
signalData->cyclelength = c;
return;

/* If not, it contains a turn movement with green time and
saturation flowx/

numParams = sscanf (inputlLine, "%d -> %d -> %d %d %f", &h, &i, &3j, &g
r &8);
if (numParams != 5) fatalError ("Misformatted control sequence in

line containing:\n%s", inputLine);
createMovement (newTurningMovement, h, i, J, node);

if (s < 0) fatalError ("Turn movement has negative saturation flow!
Current line contains:\n%s", inputLine);

if (s == 0) warning (LOW_NOTIFICATIONS, "Turn movement %d -> %d -> %d
has zero saturation flow!", h, i, 3J);
newTurningMovement—->saturationFlow = s / HOURS;

if (g <= 0) fatalError("Basic signal turn movement has non-positive
green time! Current line contains:\n%s", inputLine);

insertLinkedList (signalData->greenTime, g, NULL); /# This insertion
has to mirror the insertion in createMovement x/

}

146

1108
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125

1126

1127

1128

1129

1130

1131

1132
1133
1134
1135
1136
1137
1138

1139

1140
1141

J *

readIwoWayStopMovement ——- Reads a turn movement from the two-way stop
intersection type (looking out for special parameters)

Arguments:
inputLine —-—- entire line of the intersection control file to read
node ——- pointer to the node this movement belongs to

*/

void readTwoWayStopMovement (char xinputline, node_type =*node) {

turning_type *newTurningMovement;

priorityLinkedListElt xcurPriority, #*prevPriority;

twoWayStop_type =xstopData = (twoWayStop_type *) (node->controlData);
int numParams;

int h, 1, 3j, p;

float s;

/% Does this line contain an intersection parameter? #*/
if (strstr(inputline, "Minimum stop priority") != NULL) {
numParams = sscanf (inputLine, "Minimum stop priority %d", &
stopData->minStopPriority);
if (numParams != 1) fatalError ("Misformatted minimum stop
priority control sequence in line containing:\n%s", inputLine)

4

return;
} else if (strstr(inputlLine, "Intersection saturation flow") != NULL
) A
numParams = sscanf (inputlLine, "Intersection saturation flow %f",
&s) ;
if (numParams != 1) fatalError ("Misformatted intersection

saturation flow control sequence in line containing:\n%s",
inputLine);

if (s < 0) fatalError("Intersection has negative saturation flow!

Current line contains:\n%s", inputLine);

if (s == 0) warning (LOW_NOTIFICATIONS, "Intersection %d has zero
saturation flow!", node->ID);

stopData->saturationFlow = s / HOURS;

return;

/% If not, it contains a turn movement with priority level =*/

newTurningMovement = newScalar (turning_type);

numParams = sscanf (inputline, "%d -> %d -> %d %d %f", &h, &i, &j, &p
r &S);

if (numParams != 5) fatalError ("Misformatted control sequence in

line containing:\n%s", inputLine);

createMovement (newTurningMovement, h, i, J, node);

if (s < 0) fatalError ("Turn movement has negative saturation flow!
Current line contains:\n%s", inputLine);

147

1142

1143
1144
1145
1146
1147

1148
1149
1150
1151
1152

1153
1154

1155
1156
1157
1158

1159
1160
1161
1162
1163

1164
1165
1166

1167
1168
1169

1170
1171

1172
1173
1174

1175
1176
1177
1178

if (s == 0) warning (LOW_NOTIFICATIONS, "Turn movement %d -> %d —-> %d
has zero saturation flow!", h, i, J);
newTurningMovement—->saturationFlow = s / HOURS;
/* Find appropriate place in priority 1ist x/
prevPriority = NULL;
for (curPriority = stopData->priorityList->head; curPriority != NULL
; curPriority = curPriority->next) ({
if (curPriority->prioritylLevel >= p) break;
prevPriority = curPriority;
}
if (curPriority == NULL || curPriority->priorityLevel != p) {
curPriority = insertPriorityLinkedList (stopData->priorityList, p,
prevPriority);
}
insertTurningLinkedList (curPriority—->movements, newTurningMovement,
NULL) ;
}
J *
createMovement —— Initializes data structures related to a turning type
, with some error checking
Arguments:
movement —— pointer to the movement being initialized
upstreamNode —-- ID of the upstream intersection for this movement
curNode —-- ID of the intersection containing this movement
downstreamNode —-- ID of the downstream intersection for this
movement
node ——- pointer to the node this movement belongs to
*/
void createMovement (turning_type *movement, int upstreamNode, int

curNode, int downstreamNode, node_type =*xnode) {
arcLinkedListElt *curArc;

if (curNode != node—->ID) fatalError ("Turn movement %d -> %$d —-> %d
does not match node %d!\n", curNode, node—->ID);

/* Find relevant upstream and downstream arcs, insert turning
movement into relevant data structures */

movement->upstreamArc = NULL;
movement—->vehicles = createVehicleDoublyLinkedList ();
for (curArc = node->reverseStar->head; curArc != NULL; curArc =
curArc—>next) {
if (curArc->arc->tail->ID == upstreamNode) {
movement—->upstreamArc = CurArc—->arc;
break;

148

1179 }

1180 if (movement->upstreamArc == NULL) fatalError ("Upstream arc not
found for movement %d -> %d -> %d", upstreamNode, curNode,
downstreamNode) ;

1181 movement—->downstreamArc = NULL;

1182 for (curArc = node->forwardStar—->head; curArc != NULL; curArc =
curArc—>next) {

1183 if (curArc->arc->head->ID == downstreamNode) {

1184 movement->downstreamArc = curArc—>arc;

1185 break;

1186 }

1187 }

1188 if (movement->downstreamArc == NULL) fatalError ("Downstream arc not

found for movement %d -> %d -> %d", upstreamNode, curNode,
downstreamNode) ;

1189

1190 insertTurninglLinkedList (node->turnMovements, movement, NULL) ;

1191 insertTurningLinkedList (movement—->upstreamArc—->turnMovements,
movement, NULL);

1192 insertTurningLinkedList (movement->downstreamArc—->upstreamMovements,
movement, NULL);

1193 }

1194

1195 /st sk kok sk ok ok ok ok ok ok ok ok A ok ok Aok A A

1196 *+ String processing **

1197 %k Ak ko ok kK Kk ok kA Kk ok kA Ak kA A

1198

1199 /*

1200 blankInputString ——- Replaces all characters in a string with NULLS
1201 Arguments:

1202 string —- string to blank

1203 length —-- string length

1204 =/

1205 wvoid blankInputString(char *string, int length) {
1206 int i;

1207 for (i = 0; i < length; i++) string[i] = ’"\0’;

1208 }

1209

1210 /=

1211 parseMetadata —— Splits a metadata line into its metadata tag and value

Metadat tags are marked with <> signs,; whitespace between tag and
value 1is ignored.
1212 Arguments:

1213 inputLine —-- full line from the input file

1214 metadataTag —— string to store the metadata tag
1215 metadataValue —-- string to store the metadata value
1216 =/

149

1217 int parseMetadata (charx inputLine,

1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229

1230
1231

1232
1233

1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249

1250
1251

1252
1253
1254

metadataValue) {

char+ metadat

int i = 0, j = 0;

while (inputLine[i] != ’'<") {
if (inputLine[i] == ’"\0’ || inputLine[i] ==

== ’\r’) return BLANK_LINE;

if (inputLine[i] == ’"') return COMMENT;
i++;

t

1++;

while (inputLine[i] != ’\0’ && inputLine[i] !=

metadataTag[j++]
}

outputLine[j++]

toupper (inputLine[i++]);

= inputLine[i++];

150

aTag, charx

"\n’ ||

inputLine[i]

I>I) {

metadataTag[]j] = "\0’;
if (inputLine[i] == ’"\0’) fatalError ("Metadata tag not closed in
parameters file - ", metadataTaqg);
i++;
while (inputLine[i] != ’\0’ && (inputLine[i] == ' ' || inputLine[i]
== "\t’)) i++;
j = 0;
while (inputLine[i] != ’'\0’ && inputLine[i] != '\n’ && inputLine[i]
= '\r’ && inputLine[i] != "7") {
metadataValue[Jj++] = inputLine[i++];
}
metadatavalue[j] = "\0’;
return SUCCESS;
}
J *
parseLine —- Checks for comments and blank lines, and removes leading
spaces. Returns either COMMENT, BLANK LINE, or SUCCESS based on the
line
Arguments:
inputLine —-- full line from the input file
metadataTag —-- string to store the metadata tag
metadataValue —-- string to store the metadata value
*/
int parseline (charx inputLine, char* outputLine) {
int i = 0, j = 0;
while (inputLine[i] != ’\0’ && (inputLine[i] == ' ' || inputLine[i]
== '\t’)) i++;
if (inputLine[i] == ’"') return COMMENT;
if (inputLine[i] == ’"\0’ || inputlLine[i] == '\n’ || inputLine[i] == "'
\r’) return BLANK_LINE;
while (inputLine[i] != ’"\0’) {

1255
1256
1257

O 00 1N LN K~ W=

[SSERUSERUS RRUL RN (SN \S I (S (S I O I (S RN \S I \O I S I S e s e e e e e
W= OOV IANNP WD OOVOIONWN A WND—=O

34

35

36

37

outputLine[j] = "\0’;
return SUCCESS;

D.1.6 fileio.h

#ifndef FILEIO H_
##define FILEIO_H

#include <ctype.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "dta.h"
#include "network.h"
#include "sampling.h"
#include "utils.h"
#include "vehicle.h"

struct parameters_type_s;

/+* Return codes for metadata parsing #*/
enum

SUCCESS,

BLANK_LINE,

COMMENT
}i

/*********************

*% File processing *x*

*********************/
FILE *openFile(char xfilename, char xaccess);

void readDemandFile (struct parameters_type_s =*run);

void readNetworkFile (network_type xnetwork, char xnetworkFileName,
float backwardWaveRatio);

void readStaticODFile (network_type xnetwork, char xstaticODFileName,
float *demandMultiplier);

void readNodeCoordinateFile (network_type *network, char x
coordinateFileName) ;

void readNodeControlFile (network_type xnetwork, char =«
nodeControlFileName) ;

void readParametersFile (struct parameters_type_s xthisRun, charx

151

38

39
40

41
42

43
44

45
46

47

48

49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65

66
67
68
69

parametersFileName) ;
void readRawODTFile (network_type *network, char xrawODTFileName,
*demandMultiplier);

void displayRunParameters (int minVerbosity, struct parameters_type_s =

run) ;

void writeCumulativeCounts (network_type xnetwork, char xcountsFileName)

.
4

void readCumulativeCounts (network_type xnetwork, char xcountsFileName);

void writeNodeControlFile (network_type xnetwork, char =«
nodeControlFileName) ;

void writeNode (FILE xnodeControlFile, network_type xnetwork, int 1i);

void writeParametersFile (struct parameters_type_s *thisRun, charx
parametersFileName) ;

void writeLinkSummary (struct parameters_type_s *run, char =
nodeSummaryName) ;

void writeNodeSummary (struct parameters_type_s xrun, char =«
nodeSummaryName) ;

/**

% Reading control data for different nodes xx

**/

void readTurnMovement (char xinputLine, node_type =xnode);

void readBasicTurnMovement (char xinputLine, node_type =*node);

void readBasicSignalMovement (char xinputLine, node_type =xnode);

void readTwoWayStopMovement (char xinputlLine, node_type =*node);

void createMovement (turning_type *movement, int upstreamNode, int
curNode, int downstreamNode, node_type =*node);

/***********************
*% String processing x*x*
***********************/
void blankInputString(char xstring, int length);
int parseMetadata (charx inputLine, charx metadataTag, charx

metadataValue);
int parseline (charx inputLine, charx outputLine);

#fendif

D.1.7 node.c

#include "node.h"

152

[c <IN B o) RV, I SOV)

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28

29

30
31
32
33
34
35
36

37

38

39

/**%%x Calculate 1link parameters x*+x*x/

void calculateReceivingFlows (arc_type =xarc) {
cellDoublyLinkedListElt =xcurCell;

for (curCell = arc->cells->tail; curCell != NULL; curCell = curCell->
next) {
curCell->cell->receivingFlow = min (arc->waveRatio % (arc—->
cellMaxVehicles - curCell->cell->vehicles—->size), arc—>

cellCapacity);
}

arc->receivingFlow = arc->cells->tail->cell->receivingFlow;

void calculateSendingFlows (arc_type =xarc) {
cellDoublyLinkedListElt =xcurCell;

for (curCell = arc—->cells—->tail; curCell != NULL; curCell = curCell—->
next) {
curCell->cell->sendingFlow = min (curCell->cell->vehicles->size, arc
->cellCapacity);

}

arc->sendingFlow = arc->cells->head->cell->sendingFlow;

/**********************************

* PROCESSING SPECIFIC NODE TYPES =«

**********************************/

/ *

These algorithms are used to update the values of capacity and
targetDelay before calling the generic intersection processor.
These node processing algorithms xdestroyx the values of sending and

receiving flows. They should not be trusted afterwards.

*/

void processNode (network_type xnetwork, node_type *node, int t) {
switch (node—->control) {
case CENTROID:
processCentroidNode (network, node, t);
return; /x Centroid nodes are treated differently than all other
intersection types =/
case NONHOMOGENEOUS: /# Capacity and delay values for these
intersection types are constant =/

case DIVERGE: /* Therefore, there 1is no need to update their
values each iteration */
case MERGE: /+ (Initialization routines give the correct

153

40
41
42
43
44
45
46
47
48
49
50

51
52
53

54
55
56
57
58
59
60

61
62

63
64

65
66

67
68
69
70
71
72

73
74
75
76

77

values for t = 0 */
case FOUR_WAY_STOP:
case INTERCHANGE:
break;
case TWO_WAY STOP:
processTwoWayStopNode (node) ;
break;
case BASIC_SIGNAL:
processBasicSignalNode (network, node);
break;
case FANCY_SIGNAL:
fatalError ("Intersection type %d not yet implemented!", node->
control);
case UNKNOWN_CONTROL:
default:
fatalError ("Unknown intersection type %d for node %d", node->
control, node->ID);
}

processGenerallIntersection(node, t);

J *
Processing centroids.
Vehicles have already been loaded to origin movements in the main
simulateCTM loop
What remains:
Move as many vehicles in origin turn movements to downstream l1ink as
possible
Shift all incoming [sending] flows to the destination turn movement
Move all vehicles in destination turn movements to the destination
node.
*/
void processCentroidNode (network_type xnetwork, node_type *node, int t)
{
turningLinkedListElt *curMovement;
vehicle_type =*vehicle;
turning_type *movement;
int movingFlow;

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
movement = curMovement->movement;
if (movement->upstreamArc == & (network->origin)) {

/* Move vehicles from origin movement onto downstream links #*/

movingFlow = min (movement->vehicles->size, movement->
downstreamArc—>receivingFlow) ;

while (movingFlow—— > 0) {

154

78
79

80
81
82

83
84
85

86

87

88
&9

90

91
92
93
94
95
96
97
98
99

100
101
102
103

104
105
106
107
108
109
110
111
112

vehicle = movement—->vehicles—>tail->vehicle;
transferVehicleToLink (vehicle, movement, movement-—->
downstreamArc, t);
}
} else if (movement->downstreamArc == & (network—->destination)) {
/* Move vehicles from upstream link onto movement, and then to
destination */
movingFlow = movement->upstreamArc—->sendingFlow;
while (movingFlow—— > 0) {
vehicle = movement->upstreamArc->cells->head->cell->vehicles—>
tail->vehicle;
transferVehicleToMovement (vehicle, movement->upstreamArc,
movement, t);
transferVehicleTolLink (vehicle, movement, movement-—->
downstreamArc, t);
}
} else { /% Currently, we don’t allow centroids to be "through
nodes" x*/
fatalError ("Node %d is a centroid, but turning movement %d —> %d
—> %d neither loads or removes a vehicle.", node—>ID, movement
->upstreamArc->tail->ID, node->ID, movement->downstreamArc->
head->1ID) ;

/+* Get capacities by doing a forward simulation...
Set all movement capacities to 0
Set all movement sending flows to 0
For each upstream link
Search through the vehicle DLLE until you have scanned the entire
sending flow
Increase movement sending flow by 1 for each relevant vehicle
Go in order of priority list
Iterate over turn movements (when through, go back to start)

If intersection capacity remains AND movement sending flow
positive, deduct movement sending flow, increment movement
capacity

Do not change target delay. */
void processTwoWayStopNode (node_type =*xnode) {
arcLinkedListElt <*curArc;
turning_type *movement;
turninglLinkedListElt *curMovement;
vehicleDoublyLinkedListElt *curVehicle;
priorityLinkedListElt *curPriority;
twoWayStop_type =xstopData = (twoWayStop_type *) node->controlData;
int veh, remainingCapacity;

155

113
114
115
116

117
118

119
120
121
122

123

124
125
126
127
128

129
130
131
132

133
134

135

136
137

138
139

140

141
142

bool finishedPriority;

/* Step 1. Initialize */

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement—->next) {

curMovement->movement—->capacity = 0;
curMovement->movement->sendingFlow =
vehicles—>size;

curMovement->movement—>

/* Step 2. Classify sending flows by movement #*/

for (curArc = node->reverseStar->head; curArc != NULL; curArc =
curArc—->next) {
for (curVehicle

curArc—>arc—->cells—->head->cell->vehicles—>tail,

veh = 0;
curVehicle != NULL && veh < curArc->arc->sendingFlow;
curVehicle = curVehicle->prev, veh++) {
movement = curVehicle->vehicle->curPathPosition—->movement;

movement—->sendingFlow++;

displayMessage (FULL_DEBUG, "Found vehicle %d of %d for %d -> %
d —> %d\n", veh+l, curArc->arc->sendingFlow, movement->
upstreamArc->tail->ID, movement->upstreamArc->head->ID,
movement->downstreamArc—->head->ID) ;

/* Step 3. Go in order of priority list, allocating capacity as
possible */
remainingCapacity = stopData->capacity;
for (curPriority = stopData->priorityList->head; curPriority != NULL
; curPriority = curPriority->next) {
finishedPriority = FALSE;
while (finishedPriority == FALSE) {
displayMessage (FULL_DEBRUG, "Processing priority level %d;
remaining capacity is %$d\n", curPriority->priorityLevel,
remainingCapacity);
finishedPriority = TRUE;
for (curMovement = curPriority->movements->head; curMovement
= NULL; curMovement = curMovement->next) {
displayMessage (FULL_DEBUG, "Considering movement %d -> %d ->
$d with sending flow %d\n", curMovement->movement->
upstreamArc->tail->ID, curMovement->movement->upstreamArc
->head->ID, curMovement->movement->downstreamArc—>head->1ID
, curMovement->movement->sendingFlow) ;
if (curMovement->movement->sendingFlow == 0) continue;
if (remainingCapacity == 0) return; /* No more capacity
left, so we are done */

156

143
144
145
146

147
148
149
150
151
152
153

154
155
156
157

158
159
160
161

162
163

164

165

166

167
168

169
170
171
172
173

curMovement->movement->sendingFlow-—;

curMovement->movement—->capacity++;

remainingCapacity——;

displayMessage (FULL_DEBUG, "Increment capacity for %d -> %d
-> %d\n", curMovement->movement->upstreamArc->tail->ID,
curMovement->movement->upstreamArc->head->1ID,
curMovement->movement—->downstreamArc—>head->1ID) ;

finishedPriority = FALSE;

/* Get v/c by comparing vehicles in the turning movement to capacity [
will lag by one, but shouldn’t matter too much] and delay. Do not
change capacities =/

void processBasicSignalNode (network_type xnetwork, node_type *node) {
turningLinkedListElt xcurMovement;
linkedListElt *curGreenTime;
basicSignal_type xsignalData = (basicSignal_type %) node->

controlData;
float degreeOfSaturation;
float greenFraction;

for (curMovement = node->turnMovements—->head, curGreenTime =
signalData->greenTime->head;
curMovement != NULL && curGreenTime != NULL;
curMovement = curMovement->next, curGreenTime = curGreenTime->
next) {
degreeOfSaturation = ((float) curMovement->movement->vehicles—>
size) / curMovement->movement->capacity;
greenFraction = ((float) curGreenTime->value) / signalData->
cycleLength;
curMovement->movement->targetDelay = 0.5 x signalData->
cycleLength * (1 - greenFraction) / (1 - min(1,
degreeOfSaturation) * greenFraction);
curMovement->movement->targetDelay /= network->tickLength;
displayMessage (FULL_DEBUG, "Set movement %d -> %d -> %d target to
delay %d based on degree of saturation %f and green fraction $%f\
n", curMovement->movement->upstreamArc->tail->ID, node->ID,
curMovement->movement—->downstreamArc->head->ID, curMovement->
movement->targetDelay, degreeOfSaturation, greenFraction);

/********************************

CORE INTERSECTION PROCESSING #*

157

174 kk kA ko kA Kk kA Kk kA A kA A Ak A A A A A A

175
176 wvoid processGenerallntersection (node_type =*node, int t) {
177 turningLinkedListElt xcurMovement;

178 arcLinkedListElt *downstreamArc;
179 int pastTime;

180
181 if (verbosity >= FULL_DEBUG) {
182 displayMessage (FULL_DEBUG, "Processing node %d at time %d\n", node
->ID, t);

183 displayMessage (FULL_DEBUG, "Sending flows:\n", node->ID, t);

184 for (downstreamArc = node->reverseStar—->head; downstreamArc != NULL
; downstreamArc = downstreamArc->next) {

185 displayMessage (FULL_DEBUG, " (%d, %d)\t%d\n", downstreamArc->arc-—>
tail->ID, node->ID, downstreamArc->arc->sendingFlow);

186 }

187 displayMessage (FULL_DEBUG, "Receiving flows:\n", node->ID, t);

188 for (downstreamArc = node->forwardStar—->head; downstreamArc != NULL

; downstreamArc = downstreamArc—->next) {

189 displayMessage (FULL_DEBUG, " (%d, %d)\t%d\n", node->ID,
downstreamArc->arc->head->ID, downstreamArc->arc—->
receivingFlow) ;

190 }

191

192 }

193

194 /% Phase I. Move vehicles from upstream links into turn movements x/

195 moveVehiclesIntoIntersectionMovements (node, t);

196

197 /* Phase II. Recalculate necessary values and turn movement sending

flows =/

198 for (downstreamArc = node->forwardStar->head; downstreamArc != NULL;

downstreamArc = downstreamArc->next) {

199 downstreamArc—>arc—->receivingFlow = downstreamArc->arc->cells->tail

—->cell->receivingFlow;

200 }

201 for (curMovement = node->turnMovements->head; curMovement != NULL;

curMovement = curMovement—->next) {

202 pastTime = t - curMovement->movement->targetDelay;

203 pastTime = max (pastTime, O0);

204 curMovement->movement->sendingFlow = curMovement->movement—>

upstreamCount [pastTime] - curMovement->movement->downstreamCount
(tl;

205 }

206

207 /#* Phase III. Move vehicles from turn movements onto downstream 1links

*/

158

208 for (downstreamArc = node->forwardStar—>head; downstreamArc != NULL;

downstreamArc = downstreamArc->next) {

209 processMergeFlows (downstreamArc—>arc—->upstreamMovements, t);

210 }

211 1}

212

213

214 wvoid moveVehiclesIntoIntersectionMovements (node_type *node, int t) {

215 turningLinkedListElt *curMovement;

216 vehicleDoublyLinkedListElt xcurVehicle;

217 arcLinkedListElt *upstreamArc, *downstreamArc;

218 cell_type *upstreamCell;

219 turning_type *movement;

220 int veh;

221

222 /+ 1. Initialize and calculate movement sending flows from arc
sending flows #*/

223 for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {

224 curMovement->movement—>flow = 0;

225 curMovement->movement->sendingFlow = curMovement->movement—>

vehicles—->size;

226 }

227 for (upstreamArc = node->reverseStar->head; upstreamArc != NULL;
upstreamArc = upstreamArc->next) {

228 upstreamCell = upstreamArc->arc->cells->head->cell;

229 for (veh = 0, curVehicle = upstreamCell->vehicles->tail; curVehicle

!= NULL && veh < upstreamArc->arc—->sendingFlow; veh++,
curVehicle = curVehicle->prev) {

230 movement = curVehicle->vehicle->curPathPosition—->movement;

231 movement—->sendingFlow++;

232 }

233 }

234 displayMessage (FULL_DEBUG, "Movement sending flows and capacities [
size]:\n");

235 for (curMovement = node->turnMovements—->head; curMovement != NULL;
curMovement = curMovement->next) {
236 curMovement—->movement->sendingFlow = min (curMovement->movement—>
sendingFlow, curMovement->movement->capacity);
237 displayMessage (FULL_DEBUG, "%d —-> %d —> %d\t%d\t%d\t[%d]\n",

curMovement->movement—>upstreamArc->tail->ID, node—>ID,
curMovement->movement->downstreamArc->head->ID, curMovement->
movement->sendingFlow, curMovement->movement->capacity,
curMovement->movement—->vehicles—->size);

238 }
239
240 /* 2. Calculate each turning movement’s receiving flow #*/

159

241

242
243
244

245
246
247
248
249

250

251

252
253
254
255
256
257
258

259
260
261
262
263

264
265

266
267
268
269
270
271
272
273
274
275

276

for (downstreamArc = node->forwardStar->head; downstreamArc != NULL;
downstreamArc = downstreamArc->next) {
calculateMergeFlows (downstreamArc—>arc—>upstreamMovements) ;

}

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
curMovement->movement—->receivingFlow = curMovement->movement->flow;

if (verbosity >= FULL_DEBUG) {
displayMessage (FULL_DEBUG, "Calculated movement receiving flows:\n"
)i
for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
displayMessage (FULL_DEBUG, "%d -> %d —-> %d\t%d\n", curMovement->
movement->upstreamArc->tail->ID, node->ID, curMovement->
movement->downstreamArc->head->ID, curMovement->movement—->
receivingFlow) ;

/* 3. Load vehicles onto movements x/
for (upstreamArc = node->reverseStar->head; upstreamArc != NULL;
upstreamArc = upstreamArc->next) {
processDivergeFlows (upstreamArc—->arc—->turnMovements, t);

/#* Moves vehicles from an upstream link onto turning movements in a
diverge—-like fashion */

int processDivergeFlows (turningLinkedList xdivergeMovements, int t) {
arc_type *upstreamArc = divergeMovements->head->movement—>

upstreamArc;

cell_type *upstreamCell = upstreamArc->cells—->head->cell;
vehicle_type *vehicle;
turning_type *movement;

int movingFlow = upstreamArc->sendingFlow;
int vehiclesMoved = 0;
while (movingFlow—— > 0) {
vehicle = upstreamCell->vehicles->tail->vehicle;
movement = vehicle->curPathPosition->movement;
if (movement->receivingFlow > 0) { /# Load vehicle onto movement
*/

transferVehicleToMovement (vehicle, movement->upstreamArc,

160

277
278
279
280

281

282
283
284
285
286
287
288
289

290
291
292

293
294
295
296
297

298
299
300

301
302

303
304
305
306
307
308
309
310
311

movement, t);

vehiclesMoved++;

upstreamArc->sendingFlow——;

movement—>receivingFlow——;

displayMessage (FULL_DEBUG, "Moved vehicle onto movement %d —->
%$d -> %d\n", movement->upstreamArc->tail->ID, movement->
upstreamArc->head->ID, movement->downstreamArc->head->ID);

} else { /# Downstream receiving flow limits vehicle transfer;
cut off all other flowx*/
break;

return vehiclesMoved;

/#* Moves vehicles from turning movements onto a downstream link in a
merge—like fashion */
int processMergeFlows (turningLinkedList smergeMovements, int t) {
int ij, vehiclesMoved = 0;
arc_type xdownstreamArc = mergeMovements—->head->movement—>
downstreamArc;
turninglLinkedListElt *curMovement;
vehicle_type =*vehicle;

calculateMergeFlows (mergeMovements) ;

for (ij = 0, curMovement = mergeMovements->head; curMovement != NULL;
ij++, curMovement = curMovement->next) {
while (curMovement—->movement—>flow—— > 0) {
vehicle = curMovement->movement->vehicles->tail->vehicle;

transferVehicleTolLink (vehicle, curMovement->movement,
downstreamArc, t);

vehiclesMoved++;

displayMessage (FULL_DEBUG, "Moved vehicle from movement %d ->
$d —-> $d\n", curMovement->movement->upstreamArc->tail->ID,
curMovement->movement->upstreamArc->head->ID, curMovement->
movement->downstreamArc->head->1ID) ;

}

return vehiclesMoved;

void calculateMergeFlows (turningLinkedList *mergeMovements) {
int ij, totalCapacity;
float remainingFlow;
arc_type xdownstreamArc = mergeMovements—->head->movement->
downstreamArc;

161

312
313
314
315

316
317
318
319
320
321
322

323

324
325
326

327

328

329
330
331
332
333
334

335

336
337
338
339

340
341
342

343
344

turningLinkedListElt xcurMovement;
declareMatrix (float, mergeFlows, mergeMovements->size, 1);

for (ij = 0, curMovement = mergeMovements->head; curMovement != NULL;
ij++, curMovement = curMovement->next) {
mergeFlows[13][0] = 0;
}
do {
totalCapacity = 0;
remainingFlow = downstreamArc->receivingFlow;
for (ij = 0, curMovement = mergeMovements—->head; curMovement !=
NULL; ij++, curMovement = curMovement->next) {

if (curMovement->movement->sendingFlow > mergeFlows[i3][0])
totalCapacity += curMovement->movement->capacity;

remainingFlow —-= mergeFlows[i3][0];
}
if (totalCapacity == 0 || remainingFlow < MOVING_FLOW_EPSILON)
break; /# No additional vehicles can move #*/
for (ij = 0, curMovement = mergeMovements->head; curMovement !=
NULL; ij++, curMovement = curMovement->next) {
mergeFlows[1J][0] = min (curMovement->movement->sendingFlow,

mergeFlows[1J][0] + remainingFlow * curMovement->movement-—>
capacity / totalCapacity);
}

} while (remainingFlow > 0); /% Loop while receiving flow remains x/

if (verbosity >= FULL_DEBUG) {
displayMessage (FULL_DEBRUG, "Unrounded merge flows:\n");
for (ij = 0, curMovement = mergeMovements—->head; curMovement !=
NULL; ij++, curMovement = curMovement->next) {
displayMessage (FULL_DEBUG, "%d -> %d —> %d\t%$f\n", curMovement->
movement->upstreamArc->tail->ID, curMovement->movement->
upstreamArc->head->ID, curMovement->movement->downstreamArc->
head->ID, mergeFlows[i1i]][0]);

roundStochasticMatrix (mergeFlows, mergeMovements->size, 1,
MERGE_PRECISION) ;

displayMessage (FULL_DEBUG, "Rounded merge flows:\n");
for (ij = 0, curMovement = mergeMovements->head; curMovement != NULL;
ij++, curMovement = curMovement->next) {
curMovement->movement—->flow = mergeFlows[1]][0];
displayMessage (FULL_DEBUG, "%d -> %d —-> %d\t%d\n", curMovement->
movement->upstreamArc->tail->ID, curMovement->movement—>

162

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383
384
385

386
387

upstreamArc->head->ID, curMovement->movement->downstreamArc—>
head->ID, curMovement->movement—->flow);

deleteMatrix (mergeFlows, mergeMovements->size);

/***********************

* NODE INITIALIZATION #*

***********************/

void initializeNodes (network_type xnetwork) {
int i;
for (i = 0; 1 < network->numNodes; i++) {
switch (network->node[i].control) {
case CENTROID:
continue; /* No need to initialize centroids =/
case NONHOMOGENEOUS:
initializeNonhomogeneousNode (network, &network->nodel[i]);
break;
case DIVERGE:
initializeDivergeNode (network, &network->nodel[i]);
break;
case MERGE:
initializeMergeNode (network, &network->node[i]);
break;
case FOUR_WAY STOP:
initializeFourWayStopNode (network, &network->nodel[i]);
break;
case TWO_WAY_STOP:
initializeTwoWayStopNode (network, &network->nodel[i]);
break;
case BASIC_SIGNAL:
initializeBasicSignalNode (network, &network->nodel[i]);
break;
case INTERCHANGE:
initializeInterchangeNode (network, &network->nodel[i]);
break;
case FANCY_SIGNAL:
fatalError ("Intersection type %d not yet implemented!", network->
node[i] .control);
case UNKNOWN_CONTROL:
default:
fatalError ("Unknown intersection type %d for node %d", network->
node[i] .control, network->node[i].ID);

163

388
389
390

391
392

393

394
395
396
397
398
399
400

401

402
403
404
405
406
407
408

409

410
411
412
413
414
415
416
417
418

419

420

421

422

void initializeNonhomogeneousNode (network_type xnetwork, node_type x*

node) {
turningLinkedListElt xcurMovement;
for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement—->next) {
curMovement—->movement->capacity = ceil (curMovement->movement—>
saturationFlow % network->tickLength);
curMovement->movement->targetDelay = 0;

void initializeDivergeNode (network_type *network, node_type xnode) {
turningLinkedListElt *curMovement;

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
curMovement->movement—->capacity = ceil (curMovement->movement—>
saturationFlow x network->tickLength);
curMovement->movement->targetDelay = 0;

void initializeMergeNode (network_type xnetwork, node_type =*node) {
turningLinkedListElt xcurMovement;

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement—->next) {
curMovement—->movement->capacity = ceil (curMovement->movement—>
saturationFlow % network->tickLength);
curMovement->movement—>targetDelay = 0;

void initializeTwoWayStopNode (network_type *network, node_type xnode)
turningLinkedListElt *curMovement;
priorityLinkedListElt *curPriority;

twoWayStop_type =xstopData = (twoWayStop_type *) (node->controlData);
stopData->capacity = ceil (stopData->saturationFlow * network->
tickLength);
for (curPriority = stopData->priorityList->head; curPriority != NULL
; curPriority = curPriority->next) ({
for (curMovement = curPriority->movements->head; curMovement !=
NULL; curMovement = curMovement->next) {
curMovement->movement->targetDelay = (curPriority->
priorityLevel < stopData->minStopPriority) 2 0 : ceil(

STOP_DELAY / network->tickLength) ;

curMovement->movement->capacity = ceil (curMovement->movement—>

164

{

423
424
425
426
427

428
429

430

431

432
433
434
435

436
437

438

439
440
441
442

443
444

445

446
447
448
449
450
451
452
453
454
455
456
457
458

saturationFlow * network->tickLength);

void initializeFourWayStopNode (network_type xnetwork, node_type xnode)
{
turninglLinkedListElt *curMovement;
for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
curMovement->movement—->capacity = ceil (curMovement->movement—>
saturationFlow * network->tickLength);
curMovement->movement->targetDelay = ceil (STOP_DELAY / network->
tickLength);

void initializeBasicSignalNode (network_type xnetwork, node_type =xnode)

{

turningLinkedListElt xcurMovement;

for (curMovement = node->turnMovements—->head; curMovement != NULL;
curMovement = curMovement->next) ({
curMovement->movement->capacity = ceil (curMovement->movement—>

saturationFlow x network->tickLength);

void initializeInterchangeNode (network_type xnetwork, node_type xnode)

{

turninglLinkedListElt *curMovement;

for (curMovement = node->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {
curMovement->movement->capacity = ceil (curMovement->movement—>

saturationFlow * network->tickLength);
curMovement->movement->targetDelay = 0;

/*+4+ Intersection data structures *#***/

priorityLinkedList *createPriorityLinkedList () {
declareScalar (priorityLinkedList, newll);
newll->head = NULL;
newll->tail = NULL;
newll->size = 0;
return newll;

165

459
460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

O 0 1O DN B~ W~

11

12
13

priorityLinkedListElt xinsertPriorityLinkedList (priorityLinkedList =
list, int priorityLevel, priorityLinkedListElt *after) {
declareScalar (priorityLinkedListElt, newNode);

newNode->priorityLevel = prioritylLevel;
newNode->movements = createTurninglLinkedList ();
if (after != NULL) { /* Not inserting at head =/
newNode—->next = after->next;
if (list->tail == after) list->tail = newNode;
after->next = newNode;
} else { /+ Inserting at head =*/
newNode->next = list->head;
if (list->tail == after) list->tail = newNode;

list—>head = newNode;
t
list—->size++;
return newNode;

void deletePriorityLinkedList (priorityLinkedList x1list) {
priorityLinkedListElt *savenode, xcurnode = list->head;
while (curnode != NULL) {
savenode = curnode->next;
deleteTurninglLinkedList (curnode—->movements) ;
killScalar (curnode) ;
curnode = savenode;
}
killScalar (list);
}

D.1.8 node.n

#ifndef _NODE_H_
##define _NODE_H_

#include <limits.h>

#include "network.h"
#include "sampling.h"
#include "vehicle.h"

/#* Consider a "merge" calculation converged if 99% of flow has been
assigned (should be enough given rounding) #*/

#define MOVING_FLOW_EPSILON 0.01

/* Bits of precision to use for stochastic rounding. Experiment to
find good default value */

#define MERGE_PRECISION 3

/#* Minimum floating-point receiving flow to allow a vehicle to enter a

166

14
15
16

17
18
19
20
21
22
23

24
25
26
27

28

29

30

31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51

link =/
#define MIN_INTERSECTION RECEIVING_FLOW 0.99

/* Seconds of delay at a stop sign (in the absence of conflicting flows
) */
#define STOP_DELAY 4

/**++ Intersection—-specific structs ***x*/

typedef struct basicSignal_type_s {
int cyclelength;
linkedList xgreenTime; /# Contains each phase’s green time 1in the
same order as the node’s turningLinkedList =*/
} basicSignal_type;

typedef struct twoWayStop_type_s {
int minStopPriority; /# Lowest priority set of movements which must
stop at the sign */
float saturationFlow; /#* Maximum saturation flow #*for the entire
intersection* in natural units */
int capacity; /#* Maximum vehicles that can flow through intersection
in a simulation tick =*/
struct priorityLinkedList_s *priorityList; /» Linked list for the
number of priority levels, itself linking to a list of movements
for that priority level =/
} twoWayStop_type;

/**4+% Calculate link parameters *x*x+/

void calculateReceivingFlows (arc_type =xarc);
void calculateSendingFlows (arc_type =*arc);

/*+++ Processing specific node types x#***/

void processNode (network_type xnetwork, node_type *node, int t);

void processCentroidNode (network_type xnetwork, node_type *node, int t)
7

void processTwoWayStopNode (node_type =xnode);

void processBasicSignalNode (network_type xnetwork, node_type =*node);

/#*%xx+ Core intersection processing #x*x+/
void processGenerallntersection (node_type xnode, int t);

void moveVehiclesIntoIntersectionMovements (node_type xnode, int t);
int processDivergeFlows (turningLinkedList *divergeMovements, int t);

167

52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84

O 00 1 O DN A~ W~

int processMergeFlows (turningLinkedList *mergeMovements, int t);

void calculateMergeFlows (turningLinkedList *mergeMovements);
/*%++ Node initialization #*x*x*x*/

void initializeNodes (network_type *network);

void initializeNonhomogeneousNode (network_type *network, node_type x

node) ;

void initializeDivergeNode (network_type *network, node_type =xnode);
void initializeMergeNode (network_type xnetwork, node_type =*node);
void initializeTwoWayStopNode (network_type *network, node_type xnode)

7
void initializeFourWayStopNode (network_type *network, node_type xnode)
void initializeBasicSignalNode (network_type xnetwork, node_type xnode);
void initializeInterchangeNode (network_type *network, node_type xnode)

/*+%x* Intersection data structures *x***/

typedef struct priorityLinkedListElt_s {
int priorityLevel;
struct turningLinkedList_s xmovements;
struct priorityLinkedListElt_s xnext;
} priorityLinkedListElt;

typedef struct priorityLinkedList_s {
priorityLinkedListElt xhead;
priorityLinkedListElt xtail;
long size;

} priorityLinkedList;

priorityLinkedList =*createPriorityLinkedList ();

4

4

priorityLinkedListElt =*insertPriorityLinkedList (priorityLinkedList =

list, int priorityLevel, priorityLinkedListElt xafter);
void deletePriorityLinkedList (priorityLinkedList =1list);

#endif

D.1.9 vehicle.c

#include "vehicle.h"

/x%%+ Link motion x***x*/

void movelIntralinkVehicles (arc_type =xarc) {
int movingFlow;

cellDoublyLinkedListElt =xcurCell;

/+ If there are [1, 2, ..., n] cells, shift 1->2, 2->3,

168

4

(n—=1)->n

10

11
12

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27

28
29

30
31

32
33
34
35

36
37
38
39
40

41

42
43
44
45

*/
for (curCell
next) {

if (curCell->next

movingFlow

= arc—->cells->tail; curCell != NULL; curCell = curCell->

== NULL) break; /x Avoid OBl error x/

= min (curCell->cell->sendingFlow, curCell->next->cell->

receivingFlow) ;
while (movingFlow—- > 0) advanceVehicle (curCell);

/* Advances a vehicle to adjacent cell #within a link*. x/
void advanceVehicle (cellDoublyLinkedListElt xcurCell) {
vehicle_type *xvehicle = curCell->cell->vehicles->tail->vehicle;
deleteVehicleDoublyLinkedListElt (vehicle->1ist, vehicle->1istElt);
t = curCell->next->cell->vehicles;

vehicle->1is
vehicle->1is
vehicle,

/ *

tElt =
NULL) ;

insertVehicleDoublyLinkedList (vehicle->1ist,

Note that these transfer codes require that a vehicle’s movement be
LINK - MOVEMENT - LINK - MOVEMENT - LINK, etc.

Artificial origin and destination links help with this

Shifts vehicle from its current turn movement to the xupstream* end of

a link

*/

void transferVehicleTolLink (vehicle_type *vehicle, turning_type =

fromMovement,

arc_

type *toArc, int t) {

fromMovement—->downstreamCount [t] ++;
deleteVehicleDoublyLinkedListElt (vehicle->1ist, vehicle->1istElt);
t = toArc->cells->tail->cell->vehicles;

vehicle->11is
vehicle->11is
vehicle,

tElt =
NULL) ;

insertVehicleDoublyLinkedList (vehicle->1ist,

toArc—>upstreamCount [t] ++;
vehicle->curPathPosition = vehicle->curPathPosition—->next;

/+* Shifts vehicle from its current link to the *upstream+ end of a

turning movement */
void transferVehicleToMovement (vehicle_type =*vehicle, arc_type xfromArc

, turning_type xtoMovement, int t) {
fromArc—>downstreamCount [t]++;
deleteVehicleDoublyLinkedListElt (vehicle->1ist, vehicle->1istElt);
t = toMovement->vehicles;

vehicle—->11is
vehicle—->11is
vehicle,

tElt =
NULL) ;

insertVehicleDoublyLinkedList (vehicle->1ist,

169

46
47
48
49
50
51

52

53
54
55
56

57

58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85

toMovement—->upstreamCount [t] ++;

float averageExcessCost (network_type xnetwork) {
displayMessage (DEBUG, "Calculating AEC based on TSTT %1d and SPTT %1d
(# vehicles %1d)\n", totalSystemTravelTime (network),
shortestPathTravelTime (network), network->numVehicles);
return (totalSystemTravelTime (network) - shortestPathTravelTime (
network)) / (float) network—>numVehicles;

J/ *
Calculates total travel time if everyone were to be loaded on shortest
paths
*Assumes that travel times have not changed since last call to TDSP, 1i.
e. that the shortest path is included in the network pathset
*/
long shortestPathTravelTime (network_type xnetwork) {
long SPTT = 0;
pathLinkedListElt *curPath;
int ODTminCost;
long odt;

for (odt = 0; odt < network—->numODTs; odt++) {

ODTminCost = network->timeHorizon + 1;
for (curPath = network->ODT[odt] .paths->head; curPath != NULL;
curPath = curPath->next) {
ODTminCost = min (ODTminCost, curPath->path->travelTime);

}
SPTT += ODTminCost * network—->ODT[odt] .demand;

return SPTT % network->tickLength;

/* Calculates total travel time using actual paths. */
long totalSystemTravelTime (network_type xnetwork) {
long odt, TSTT = O0;
vehicleDoublyLinkedListElt xcurVehicle;

for (odt = 0; odt < network—>numODTs; odt++) {
for (curVehicle = network->0ODT[odt].vehicles->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {
TSTT += curVehicle->vehicle->path->travelTime;

170

86

87 return TSTT » network->tickLength;

88 }

89

90 int latestArrivalTime (network_type xnetwork) {
91 long t, odt, latestArrival = 0;

92 vehicleDoublyLinkedListElt xcurVehicle;

93

94 for (odt = 0; odt < network->numODTs; odt++) {

95 t = network->ODT [odt] .departureTime;

96 for (curVehicle = network->0ODT[odt].vehicles->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {

97 latestArrival = max(latestArrival, t + curVehicle->vehicle->path

—>travelTime) ;

98 }

99 }

100 return latestArrival x network->tickLength;

101 }

102

103 /x Generate vehicles and data structures after ODTs are complete */
104 wvoid generateVehicles (network_type xnetwork) {

105 int odt, veh;

106 vehicle_type *newVehicle;

107

108 displayMessage (FULL_NOTIFICATIONS, "Generating vehicles...");

109

110 for (odt = 0; odt < network->numODTs; odt++) ({

111 for (veh = 0; veh < network->ODT[odt].demand; veh++) {

112 newVehicle = newScalar (vehicle_type);

113 newVehicle->path = NULL;

114 newVehicle->0DT = & (network—>ODT[odt]);

115 newVehicle->1list = network->origin.cells—->head->cell->vehicles;
116 newVehicle->1istElt = insertVehicleDoublyLinkedList (network->

origin.cells->head->cell->vehicles, newVehicle, network->
origin.cells—>head->cell->vehicles—>tail);

117 insertVehicleDoublyLinkedList (network—>0ODT [odt] .vehicles,
newVehicle, network->ODT[odt].vehicles->tail);

118 }

119 }

120

121 displayMessage (FULL_NOTIFICATIONS, "done.\n");
122}

123

124 void initializeVehicles (network_type *network) {
125 int odt;

126 vehicleDoublyLinkedListElt xcurVehicle;

127 path_type xinitialPath;

171

128
129
130
131

132

133
134

135
136
137
138
139
140
141
142
143
144

145

146

147

148
149
150
151
152
153
154
155
156
157
158
159

160

161

for (odt = 0; odt < network->numODTs; odt++) {
initialPath = network->0ODT[odt].paths->head->path;
if (initialPath == NULL) fatalError ("No paths available for ODT %d
-> %d @ %d", network->ODT[odt].origin->ID, network—->ODT[odt].
destination->ID, network->ODT[odt] .departureTime);

for (curVehicle = network->0ODT[odt].vehicles—->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {
curVehicle->vehicle->path = initialPath;

curVehicle->vehicle->curPathPosition = initialPath->turnMovements
->head;

void prepareAllTrips (network_type xnetwork) {
int odt;
vehicleDoublyLinkedListElt xcurVehicle;

for (odt = 0; odt < network->numODTs; odt++) {
for (curVehicle = network->ODT[odt].vehicles->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {
curVehicle->vehicle->1listElt = insertVehicleDoublyLinkedList (
network->origin.cells->head->cell->vehicles, curVehicle->
vehicle, network->origin.cells->head->cell->vehicles->tail)

r

curVehicle->vehicle->1ist = network->origin.cells->head->cell
->vehicles;
curVehicle->vehicle->curPathPosition = curVehicle->vehicle->

path->turnMovements—>head;

void terminateAllTrips (network_type *network) {
int odt;
int remainingVehicles = 0;
vehicleDoublyLinkedListElt =*curVehicle;

for (odt = 0; odt < network->numODTs; odt++) {

for (curVehicle = network->0ODT[odt].vehicles—->head; curVehicle !=
NULL; curVehicle = curVehicle->next) {
if (curVehicle->vehicle->1list != network->destination.cells->

head->cell->vehicles) remainingVehicles++;
deleteVehicleDoublyLinkedListElt (curVehicle->vehicle->1ist,
curVehicle->vehicle—->1istElt) ;

172

162

163

164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186

187
188
189
190
191

192
193
194
195
196
197
198

curVehicle->vehicle->1listElt = insertVehicleDoublyLinkedList (
network—->destination.cells->head->cell->vehicles,
curVehicle->vehicle, network->destination.cells—->head->cell
->vehicles->tail);

curVehicle->vehicle->1ist = network->destination.cells->head->
cell->vehicles;

if (remainingVehicles > 0) warning (MEDIUM_NOTIFICATIONS, "Simulation
ended before %d vehicles left network; consider increasing time
horizon.\n", remainingVehicles);

/*#+*% Vehicle doubly linked 1iSts x*xx*/

vehicleDoublyLinkedList xcreateVehicleDoublyLinkedList () {
declareScalar (vehicleDoublyLinkedList, newdll);
newdll->head = NULL;
newdll->tail = NULL;
newdll->size 0;
return newdll;

vehicleDoublyLinkedListElt *insertVehicleDoublyLinkedList (
vehicleDoublyLinkedList x1list, vehicle_type =*value,
vehicleDoublyLinkedListElt xafter) ({
declareScalar (vehicleDoublyLinkedListElt, newNode);

newNode—>vehicle = value;
if (after != NULL) {
newNode—->prev = after;
newNode->next = after->next;
if (list->tail != after) newNode->next->prev = newNode; else list->
tail = newNode;
after->next = newNode;
} else {

newNode->prev = NULL;
newNode—>next list—->head;
if (list->tail != after) newNode->next->prev = newNode; else list->
tail = newNode;
list—->head = newNode;
}
list—->size++;
return newNode;

}

void deleteVehicleDoublyLinkedList (vehicleDoublyLinkedList =*1list) {

173

199
200
201
202
203
204

205
206

207
208
209
210

211
212
213
214
215
216

217
218

219
220

221
222
223

224

O 00 1 O WD A~ W~

—_
- O

while (list—->head != NULL)
deleteVehicleDoublyLinkedListElt (1list, list->tail);
killScalar (list);
}

void deleteVehicleDoublyLinkedListElt (vehicleDoublyLinkedList xlist,

vehicleDoublyLinkedListElt xelt) {

if (list->tail != elt) {
if (list->head != elt) elt->prev->next = elt->next;
= elt->next;
elt->next—->prev = elt->prev;
} else ({
list->tail = elt->prev;
if (list->head != elt) elt->prev->next = elt->next;

= elt->next;
}
list->size——;
killScalar (elt);
}

void displayVehicleDoublyLinkedList (int minVerbosity,
vehicleDoublyLinkedList =x1list) {
vehicleDoublyLinkedListElt xcurnode = list->head;

else list->head

else list->head

displayMessage (minVerbosity, "Start of the list: %$p\n", (void *)list

->head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p %p %p %p\n", (void *)curnode,
curnode—->vehicle, (void x)curnode->prev, (void «)curnode->next);
curnode = (*curnode) .next;

}
displayMessage (minVerbosity, "End of the list: %p\n",
tail);
}

D.1.10 vehicle.h

#ifndef _VEHICLE_H_
#define _VEHICLE_H_

#include "cell.h"

#include "datastructures.h"
#include "network.h"
#include "utils.h"

#include "vehicle.h"

typedef struct vehicle_type_s {
path_type xpath;

174

(void *)list—>

12

13
14
15

16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

turninglLinkedListElt *curPathPosition; /# A pointer to the path’s
turning movement 1list for next location #*/

ODT_type +0ODT;

/% Pointers to list vehicle is stored in (makes for fast moving)
Vehicles are #always* a member of a vehicleDoublyLinkedList,

either waitingVehicles, arrivedVehicles,

or a list associated with a link or turning movement */

struct vehicleDoublyLinkedList_s *1list;

struct vehicleDoublyLinkedListElt_s *listElt;

} vehicle_type;

void movelIntralinkVehicles (arc_type =*arc);

void advanceVehicle (cellDoublyLinkedListElt *curCell);

void transferVehicleTolLink (vehicle_type *vehicle, turning_type =
fromMovement, arc_type *toArc, int t); /* Shifts vehicle from
current location to an arc */

void transferVehicleToMovement (vehicle_type *vehicle, arc_type xfromArc
, turning_type *toMovement, int t); /# Shifts vehicle from current
location to a movement #*/

/#*4+++ Vehicle gap functions x##*x/

float averageExcessCost (network_type =xnetwork);
long shortestPathTravelTime (network_type *network);
long totalSystemTravelTime (network_type =xnetwork);
int latestArrivalTime (network_type =*network);

/*+x+ Establish vehicle data structures x**+x/

void generateVehicles (network_type xnetwork);
void initializeVehicles (network_type *network);
void prepareAllTrips (network_ type xnetwork);
void terminateAllTrips (network_type *network);

/**+%% Vehicle doubly linked 1ists *#**x/

typedef struct vehicleDoublyLinkedListElt_s {
vehicle_type *vehicle;
struct vehicleDoublyLinkedListElt_s x*next;
struct vehicleDoublyLinkedListElt_s x*prev;
} vehicleDoublyLinkedListElt;

typedef struct vehicleDoublyLinkedList_s {
vehicleDoublyLinkedListElt xhead;
vehicleDoublyLinkedListElt =xtail;
long size;

175

53
54
55
56

57

58

59

60

61
62

NN N R W -

\© o0

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24

25
26

} vehicleDoublyLinkedList;

vehicleDoublyLinkedList xcreateVehicleDoublyLinkedList ();

vehicleDoublyLinkedListElt xinsertVehicleDoublyLinkedList (
vehicleDoublyLinkedList x1list, vehicle_type =*value,
vehicleDoublyLinkedListElt xafter);

void deleteVehicleDoublyLinkedList (vehicleDoublyLinkedList x1list);

void deleteVehicleDoublyLinkedListElt (vehicleDoublyLinkedList =*list,
vehicleDoublyLinkedListElt xelt);

void displayVehicleDoublyLinkedList (int minVerbosity,
vehicleDoublyLinkedList xlist);

#endif

D.1.11 cell.c

#include "cell.h"

/r+4+%+ Cell doubly linked 1ists ###x/

J/ *

These functions mirror those in datastructures.h, but for cell doubly
linked 1ists.

*/

cellDoublyLinkedList =xcreateCellDoublyLinkedList () {
declareScalar (cellDoublyLinkedList, newdll);
newdll->head = NULL;
newdll->tail = NULL;

0;

newdll->size
return newdll;

cellDoublyLinkedListElt xinsertCellDoublyLinkedList (

cellDoublyLinkedList =*1list, cell_type =xvalue,
cellDoublyLinkedListElt xafter) {

declareScalar (cellDoublyLinkedListElt, newNode) ;

newNode->cell = value;

if (after != NULL) {
newNode->prev = after;
newNode->next = after->next;

if (list->head != after) newNode->next->prev = newNode; else list—>

head = newNode;
after->next = newNode;
} else {

176

27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44

45
46
47
48

49
50
51
52
53
54

55
56

57
58

59
60
61

62

newNode->prev = NULL;

newNode—->next = list->head;

if (list->head != after) newNode->next->prev = newNode; else list—>
head= newNode;

list—>tail = newNode;

}
list—>size++;
return newNode;

void deleteCellDoublyLinkedList (cellDoublyLinkedList x1list) {
while (list->tail != NULL)
deleteCellDoublyLinkedListElt (1list, list->head);
killScalar (list);

void deleteCellDoublyLinkedListElt (cellDoublyLinkedList =x1list,
cellDoublyLinkedListElt xelt) {

if (list->head != elt) {
if (list->tail != elt) elt->prev->next = elt->next; else list->tail
= elt->next;
elt->next->prev = elt->prev;
} else ({
list->head = elt->prev;
if (list->tail != elt) elt->prev->next = elt->next; else list->tail

= elt->next;
}
list->size——;
killScalar (elt);

void displayCellDoublyLinkedList (int minVerbosity, cellDoublyLinkedList
x1list) |
cellDoublyLinkedListElt *curnode = list->head;
displayMessage (minVerbosity, "Start of the list: %$p\n", (void «*)list
—>head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p %p %p %p\n", (void *)curnode,
curnode—->cell, (void «)curnode->prev, (void x)curnode->next);
curnode = (*curnode) .next;
}
displayMessage (minVerbosity, "End of the list: %p\n", (void =*)list->
tail);

D.1.12 cell.n

177

O 00 1O\ B~ W~

W L LW LW W W DN DN NN DN DN DN DD = = = e e e e e
N B W= OOV W=, OWOVWIONWUN P WND—~=O

36
37

38

39
40

#ifndef CELL_H_
##define _CELL_H_

#include <math.h>

#include "datastructures.h"
#include "limits.h"
#include "network.h"
#include "utils.h"

struct vehicleDoublyLinkedList_s;

typedef struct cell_type_s {
struct vehicleDoublyLinkedList_s =xvehicles;
arc_type xparentLink;
int sendingFlow;
int receivingFlow;
} cell_type;

/#**+% Cell doubly linked 1ists x*x*/

typedef struct cellDoublylLinkedListElt_s {
cell_type =xcell;
struct cellDoublyLinkedListElt_s xnext;
struct cellDoublyLinkedListElt_s xprev;
} cellDoublyLinkedListElt;

typedef struct cellDoublylLinkedList_s {
cellDoublyLinkedListElt =xhead;
cellDoublyLinkedListElt =*tailj;
long size;

} cellDoublyLinkedList;

cellDoublyLinkedList xcreateCellDoublyLinkedList () ;
cellDoublyLinkedListElt xinsertCellDoublyLinkedList (
cellDoublyLinkedList *1list, cell_type =xcell,

~after);

void deleteCellDoublyLinkedList (cellDoublyLinkedList x1list);
void deleteCellDoublyLinkedListElt (cellDoublyLinkedList =x1list,

cellDoublyLinkedListElt xelt);

void displayCellDoublyLinkedList (int minVerbosity,

*1list);

#fendif

D.1.13 network.c

178

cellDoublyLinkedListElt

cellDoublyLinkedList

O 00 1O\ B~ W~

—
o = O

13
14

15
16
17
18

19

20
21
22
23

24
25

26
27
28
29
30

31
32
33
34
35
36
37

38

#include "network.h"
/#*++% Network algorithms ##*++/

#define ODT_REPORTING_INTERVAL 1000

void addShortestPaths (network_type xnetwork) {
int odt;
pathLinkedListElt xoldPath;

for (odt = 0; odt < network->numODTs; odt++) {
path_type xnewPath = createNewPath (network);
TDAStar (network, network->ODT[odt].origin, network—->ODT[odt].
destination, network->ODT[odt].departureTime, newPath);
/+* Does this path already exist? #*/

for (oldPath = network->ODT[odt].paths->head; oldPath != NULL;
oldPath = oldPath->next) {
if (comparePaths (oldPath->path, newPath) == TRUE) break;
}
if (oldPath == NULL) { /% Path is new, add to relevant lists =*/
insertPathLinkedList (network—->paths, newPath, network->paths->
tail);

insertPathLinkedList (network->0ODT [odt] .paths, newPath, network->

ODT[odt] .paths—->tail);
} else { /» Path is a duplicate, delete */
deletePath (newPath) ;

}
if (odt % ODT_REPORTING_INTERVAL == (0) displayMessage (

FULL_NOTIFICATIONS, "Found new paths for %d of %$d ODTs (%d%$%)\r"

, odt, network->numODTs, 100 x odt / network—->numODTs) ;
}

displayMessage (FULL_NOTIFICATIONS, "Found new paths for %d of %d ODTs

(%$d%%) \n", network->numODTs, network—->numODTs, 100);

/* Time-dependent Ax x*/
void TDAStar (network_type *network, node_type xorigin, node_type =*
destination, int departureTime, path_type x*path) {
int ij, s = ptr2node(network, destination);
turningLinkedListElt xcurMovement;
int curArc, templabel;
declareVector (turning_type %, backMovement, network->numArcs);
declareVector (int, label, network->numArcs);

heap_type =*dijkstraHeap = createHeap (network->numArcs, network->
numArcs) ;

179

39

40
41
42
43
44

45
46

47

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67

68

69

70
71
72

if (origin->ID == 158 && destination—->ID == 19 && departureTime ==
0) verbosity = DEBUG;

/* Initialization #*/

for (ij = 0; ij < network->numArcs; 1ij++) {
if (network->arc[ij].tail == origin) {
dijkstraHeap—->valueFn[ij] = min(departureTime + network->arc[ij].
freeFlowToDest[s], network->timeHorizon);
label[i]j] = departureTime;
for (curMovement = network->arc[ij].upstreamMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {
if (curMovement->movement->upstreamArc == & (network->origin))
break;
}
if (curMovement != NULL) { /* curMovement would be NULL if there
are no emanating arcs from origin. checkNetworkConnectivity
assures no problems with this. */
backMovement [ij] = curMovement->movement;

insertHeap (dijkstraHeap, 1ij, dijkstraHeap->valueFn[ij]);

}

} else {
dijkstraHeap->valueFn[ij] = network->timeHorizon - 1;
label[ij] = network->timeHorizon - 1;
backMovement [1]j] = NULL;

/% Iteration =/
while (dijkstraHeap—->last != NOT_IN_HEAP) {
curArc = findMinHeap (dijkstraHeap);
displayMessage (DEBUG, "Scanning (%d, %d)\n", network->arc[curArc].
tail->ID, network->arc[curArc].head->ID);
if (network->arc[curArc].head == destination) break;
if (label[curArc] + network—->arc[curArc].freeFlowToDest[s] >=
network->timeHorizon) break;
deleteMinHeap (dijkstraHeap) ;

for (curMovement = network->arc[curArc].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {
if (curMovement->movement->downstreamArc == & (network—->
destination)) continue;

displayMessage (DEBUG, "Considering movement %$d -> %d -> %d,",
curMovement->movement->upstreamArc->tail->ID, curMovement->
movement—->downstreamArc—->tail->ID, curMovement->movement—->
downstreamArc—->head->1ID) ;

ijJ = ptr2arc(network, curMovement->movement->downstreamArc);

templabel = label[curArc];

tempLabel += network->arc[curArc].travelTime[tempLabell];

180

73
74
75
76

77
78
79
80
81

82

83
84

85
86
87
88
&9
90
91

92
93
94
95
96

97
98
99
100
101

102
103
104
105
106

107

}
if

J *

tempLabel = min (tempLabel, network->timeHorizon - 1);
tempLabel += curMovement->movement->travelTime[tempLabel];
tempLabel = min (tempLabel, network->timeHorizon - 1);

displayMessage (DEBUG, " exact label is %d vs current label %d\n",
tempLabel, labellij]l);
if (tempLabel < labellij]) {
displayMessage (DEBUG, "Noting improvement.\n");
label[ij] = tempLabel;
if (dijkstraHeap->nodeNDX[ij] == NOT_IN_HEAP) {
insertHeap (dijkstraHeap, ij, label[ij] + network->arc[ij].
freeFlowToDest [s]);
displayMessage (DEBUG, "Adding (%d,%d)\n", network->arc[i]].
tail->ID, network->arc[ij].head->ID);
} else {
decreaseKey (dijkstraHeap, ij, label[i]j] + network->arcl[ij].
freeFlowToDest [s]);
}

backMovement [1ij] = curMovement->movement;

(dijkstraHeap—->last == NOT_IN_HEAP) {
/#* warning (MEDIUM _NOTIFICATIONS, "Unusual termination for A% from
%d to %d (empty heap but not at destination). Using free-—
flow path.\n", origin->ID, destination->ID); x*/
curArc = ptr2arc(network, origin->forwardStar->head->arc);

Now recover path =/

path—->travelTime = min (label[curArc] + network->arc|[curArc].

travelTime[label [curArc]], network->timeHorizon - 1);

path->demand = 0;

cl
J *
wh

}

earTurningLinkedList (path—->turnMovements) ;
1. Segment from current arc back to origin #*/
ile (network->arc[curArc].tail != origin) {
insertTurningLinkedList (path—->turnMovements, backMovement [curArc],
NULL) ;
curArc = ptr2arc(network, backMovement [curArc]->upstreamArc);

insertTurningLinkedList (path—->turnMovements, backMovement [curArc],

J *

NULL) ;
2. Segment from current arc on to destination.
This uses the movements based on free-flow times. This is OK,
because the 2 regular termination criteria for the A+ iteration
are
—-> Destination 1s reached. In this case, we need to fill in

the terminating turn movement, which is same as free-flow

181

108

109

110
111

112

113

114

115

116
117

118
119
120
121
122
123
124
125
126
127
128

129

130
131
132

133
134
135
136
137
138
139

/ *

*/

movement
-> Time horizon is exceeded. In this case, the path consists
of the free-flow SP from here on out.
For unusual termination (Dijkstra heap being exhausted early), 1in
an attempt to recover the program will use the free-flow SP
and warn the user.
*/
curArc = ptr2arc (network, path->turnMovements->tail->movement-—>
downstreamArc) ;

while (path->turnMovements->tail->movement->downstreamlArc != & (
network—>destination)) {
if (network->arc[curArc].freeFlowMovement [s] == NULL) fatalError (

"Ax 1s unable to find a path from %d to %d at time %d\n",
origin->ID, destination->ID, departureTime) ;
insertTurningLinkedList (path—->turnMovements, network->arc[curArc
].freeFlowMovement [s], path->turnMovements->tail);
curArc = ptr2arc(network, network->arc|[curArc].freeFlowMovement[s
]->downstreamArc) ;

}

if (path->turnMovements->tail->movement->downstreamArc != & (network->
destination)) fatalError ("Path from %d to %d at time %d can’t

reach destination", origin->ID, destination->ID, departureTime);

deleteHeap (dijkstraHeap);
deleteVector (backMovement) ;
deleteVector (label);

displayMessage (DEBUG, "#xxx* Finished iteration x**xx\n");
verbosity = FULL_NOTIFICATIONS;

Calculate min-cost labels using free-flow times to generate lower
bounds for Ax

It’s essentially all-to-one label correcting in the dual graph (a
node for each arc, and an arc for each turning movement)

Assume movements have zero travel time for faster LB calculation

void calculateFreeFlowSPLabels (network_type *network, int destination)

{

arcLinkedListElt <*curArc;

arc_type xupstreamArc;
turninglLinkedListElt *curMovement;
int ij, hi;

int tempLabel;

heap_type =*dijkstraHeap = createHeap (network->numArcs, network->

182

140
141
142

143
144
145
146
147

148
149
150

151
152
153
154
155

156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178

numArcs) ;

for (ij = 0; ij < network->numArcs; 1j++) {
dijkstraHeap->valueFn[i]J] = INT_MAX; /»* value function are the node
labels. Need to be much higher than time horizon in case paths
exceed horizon. */
network—->arc[ij].freeFlowMovement [destination] = NULL;

/+ Initialize heap with links terminating at destination x/

for (curArc = network->node[destination].reverseStar->head; curArc
!= NULL; curArc = curArc->next) {
ij = ptr2arc(network, curArc->arc);
insertHeap (dijkstraHeap, 1ij, curArc->arc->numCells);
network->arc([i]j].freeFlowMovement [destination] = network->arc[ij

] .turnMovement s—>head->movement;
}
while (dijkstraHeap->last != NOT_IN_HEAP) {
ij = findMinHeap (dijkstraHeap) ;
deleteMinHeap (dijkstraHeap) ;

for (curMovement = network->arc[ij].upstreamMovements->head;
curMovement != NULL; curMovement = curMovement->next) {
upstreamArc = curMovement—->movement—->upstreamArc;
if (upstreamArc == & (network->origin)) continue;
hi = ptr2arc(network, upstreamArc);
templLabel = dijkstraHeap->valueFn[i]j] + upstreamArc->numCells;

if (templLabel < dijkstraHeap->valueFn[hi]) {
network->arc[hi].freeFlowMovement [destination] =
curMovement->movement;

if (dijkstraHeap—->nodeNDX[hi] == NOT_IN_HEAP) {
insertHeap (dijkstraHeap, hi, tempLabel);
} else {

decreaseKey (dijkstraHeap, hi, tempLabel);

for (ij = 0; 1ij < network->numArcs; 1j++) {
network->arc([i]j].freeFlowToDest [destination] = dijkstraHeap—->
valueFn[ij];

deleteHeap (dijkstraHeap);

183

179

180 /=*

181 Check zone-to-zone connectivity for OD pairs with positive demand

182 Due to turning movement structure, connectivity check is run in the x*
dual* graph (a node for each arc, and an arc for each turning
movement))

183 Node reachability checked after arc reachability is determined

184 x/

185 wvoid checkNetworkConnectivity (network_type *network) {

186 int ij, origin, destination;

187 declareVector (bool, isNodeReachable, network->numNodes) ;

188 declareVector (bool, isArcReachable, network->numArcs) ;

189 queue_type scanlList = createQueue (network->numNodes, network->numArcs

)i
190 turningLinkedListElt xcurMovement;
191
192 displayMessage (FULL_NOTIFICATIONS, "Checking network connectivity..."

)7

193

194 for (origin = 0; origin < network->numZones; origin++) {

195 /* Initialize */

196 for (destination = 0; destination < network->numNodes; destination

++) |

197 isNodeReachable[destination] = FALSE;

198 }

199 for (ij = 0; ij < network->numArcs; 1ij++) {

200 isArcReachable[ij] = FALSE;

201 }

202 for (curMovement = network->node[origin].turnMovements—->head;

curMovement != NULL; curMovement = curMovement->next) {

203 if (curMovement->movement->upstreamArc == & (network—->origin)) {

204 isArcReachable[ptr2arc (network, curMovement->movement—>
downstreamArc)] = TRUE;

205 enQueue (&scanlList, ptr2arc(network, curMovement->movement—>
downstreamArc)) ;

206 }

207 }

208

209 /+ Identify reachable arcs =/

210 while (scanlList.curelts > 0) {

211 ij = deQueue (&scanlist);

212 for (curMovement = network->arc[ij].turnMovements->head;

curMovement != NULL; curMovement = curMovement->next) {

213 if (curMovement->movement—->downstreamArc == & (network—->
destination)) continue;

214 if (isArcReachable[ptr2arc(network, curMovement->movement->
downstreamArc)] == FALSE) {

184

215

216

217
218
219
220
221
222
223

224
225
226
227
228

229
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251
252

253

isArcReachable[ptr2arc (network, curMovement->movement-—>
downstreamArc)] = TRUE;

enQueue (&scanlList, ptr2arc(network, curMovement->movement->
downstreamArc)) ;

/* Identify reachable nodes x*/

for (ij = 0; ij < network->numArcs; 1j++) {
if (isArcReachable[ij] == TRUE) isNodeReachable[ptr2node (network,
network—->arc[ij] .head)] = TRUE;

/* Warn if positive demand and disconnected graph =*/

for (destination = 0; destination < network—->numZones; destination
++) |
if (isNodeReachable[destination] == FALSE) {

if (network->staticOD[origin] [destination] > 0) fatalError ("
Origin %d and destination %d are unconnected but have
positive demand.", origin+l, destination+l);

}

deleteVector (isNodeReachable) ;
deleteVector (isArcReachable) ;
deleteQueue (&scanlList) ;

displayMessage (FULL_NOTIFICATIONS, "done.\n");
bool comparePaths (path_type xpathl, path_type xpath2) ({
turningLinkedListElt xcurMovementl, xcurMovement2;

/+ Easy case +/
if (pathHash (pathl) != pathHash (path2)) return FALSE;

curMovementl = pathl->turnMovements->head;
curMovement?2 = path2->turnMovements->head;

/+ Now have to compare movement by movement,; they must coincide at
every movement and end simultaneously */

do {
if (curMovementl == NULL && curMovement2 == NULL) return TRUE; /#*
Both end simultaneously x/
if (curMovementl == NULL || curMovement2 == NULL) return FALSE; /%

185

254

255
256
257
258
259

260
261
262
263

264
265
266
267
268

269

270
271
272
273
274
275
276
277
278
279

280

281
282
283
284

285
286
287
288
289

One ends before the other x/

if (curMovementl->movement != curMovement2->movement) return FALSE;
/+ Different movements */

curMovementl = curMovementl->next;

curMovement?2
} while (TRUE);

curMovement2->next;

/% Not all movements in common. Shouldn’t reach this point, but here
to prevent compiler warnings x/
return FALSE;

/* Calculates hashes... involves signed overflow which is undefined
behavior, but is hopefully treated deterministically #*/

long pathHash (path_type =*path) {
long hash = 0;
turningLinkedListElt *curMovement;

for (curMovement = path->turnMovements—->head; curMovement != NULL;
curMovement = curMovement->next) {
hash += (curMovement->movement->upstreamArc->head->ID » curMovement

->movement->downstreamArc—>head->1ID) ;

return hash;

/**%x+ Basic network calculations and functions x**#%/

/% Returning a value greater than the time horizon indicates out-of-
range (vehicle entering at currentTime can’t leave within time
horizon) =/

int calculatelinkTravelTime (arc_type =x1link, int currentTime, int
timeHorizon) {

int t;
if (currentTime < 0) return link->numCells;
for (t = currentTime + link->numCells; t < timeHorizon; t++) {
if (link->downstreamCount[t] >= link->upstreamCount[currentTime])
return t - currentTime;

}

return timeHorizon + 1;

int calculateMovementTravelTime (turning type xmovement, int currentTime
, int timeHorizon) {

186

290 int t;

291 if (currentTime < 0) return 0;

292 for (t = currentTime; t < timeHorizon; t++) {

293 if (movement->downstreamCount[t] >= movement->upstreamCount [
currentTime]) return t - currentTime;

294 }

295 return timeHorizon + 1;

296 1}

297

298 wvoid calculatePathTravelTime (network_type *network, path_type =*path,
int departureTime) {
299 int t;

300 turningLinkedListElt xcurMovement;

301

302 t = departureTime;

303 for (curMovement = path->turnMovements->head; curMovement != NULL;
curMovement = curMovement->next) {

304 /* Add delay from the movement x/

305 t += curMovement->movement->travelTime[t];

306 t = min(t, network->timeHorizon - 1);

307

308 /* Add delay from the next arc */

309 t += curMovement->movement->downstreamArc—->travelTime[t];

310 t = min(t, network->timeHorizon - 1);

311 }

312

313 path->travelTime = t - departureTime;

314 1}

315

316 /#

317 Copies cumulative counts from one time interval to another.

318 Most commonly used to copy current values when starting a new
simulation tick

319 ...but could be used more generally.

320 +/

321 wvoid copyCounts (network_type snetwork, int old_t, int new_t) {

322 int i, ij;

323 turningLinkedListElt *curMovement;

324

325 for (ij = 0; ij < network—->numArcs; 1ij++) {

326 network->arc[i]j].upstreamCount [new_t] = network->arc([i]].
upstreamCount [old_t];

327 network->arc[ij] .downstreamCount [new_t] = network->arc[ij].
downstreamCount [old_t];

328 }

329 for (i = 0; i < network->numNodes; i++) {

330 for (curMovement = network—->node[i].turnMovements—>head;

187

curMovement != NULL; curMovement = curMovement->next)

331 curMovement—->movement->upstreamCount [new_t] = curMovement->

movement->upstreamCount [old_t];

332 curMovement->movement—->downstreamCount [new_t] = curMovement->

movement—->downstreamCount [old_t];

333 }

334 }

335 1}

336

337 woid displayPath (int minVerbosity, path_type =*path) {

338 turningLinkedListElt xcurMovement;

339

340 for (curMovement = path->turnMovements->head; curMovement != NULL;

curMovement = curMovement->next) ({

341 displayMessage (minVerbosity, "%d -> %d -> %d", curMovement->
movement->upstreamArc->tail->ID, curMovement->movement-—>
upstreamArc->head->ID, curMovement->movement->downstreamArc—>
head->1ID);

342 if (curMovement != NULL) displayMessage (minVerbosity, ", ");

343 }

344}

345

346 wvoid initializeCounts (network_type xnetwork) {
347 int i, i3, t;
348 turningLinkedListElt *curMovement;

349

350 /+ Initialize all counts to zero */

351 for (t = 0; t < network->timeHorizon; t++) {

352 for (ij = 0; ij < network->numArcs; ij++) {

353 network->arc[ij].upstreamCount [t] = 0;

354 network—->arc[ij] .downstreamCount [t] = O0;

355 }

356 for (i = 0; i < network->numNodes; i++) {

357 for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) ({

358 curMovement—->movement->upstreamCount [t] = 0;

359 curMovement->movement—>downstreamCount [t] = 0;

360 }

361 }

362 }

363 }

364

365 wvoid initializeTravelTimes (network_type =*network) {
366 int i, 1ij, t;

367 turninglLinkedListElt *curMovement;

368

369 /% Initialize all counts to zero */

188

370 for (t = 0; t < network—->timeHorizon; t++) {

371 for (ij 0; ij < network—->numArcs; 1ij++) {

372 network->arc[ij].travelTime[t] = network->arc([ij].numCells;

373 }

374 for (i = 0; i < network—->numNodes; i++) {

375 for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {

376 curMovement->movement->travelTime[t] = 0;

377 }

378 }

379 }

380

381 for (t = 0; t < network->timeHorizon; t++) {

382 network—->origin.travelTime[t] = 0;

383 network—->destination.travelTime[t] = 0;

384 }

385 }

386

387 /# Returns arc array index from pointer to an arc */
388 int ptr2arc(network_type xnetwork, arc_type =*arcptr) {
389 return (int) (arcptr - network->arc);

390 }

391

392 /% Returns node array index from pointer to a node x/
393 int ptr2node (network_type *network, node_type *nodeptr) {
394 return (int) (nodeptr - network->node) ;

395 1}

396

397 /% Updates all 1link, movement, and path travel times */
398 #define TRAVEL_TIME_REPORTING_INTERVAL 100

399 #define ODT_REPORTING_INTERVAL 1000

400 wvoid updateAllTravelTimes (network_type *network) {

401 int i, i3, odt, t;

402 turninglLinkedListElt *curMovement;

403 pathLinkedListElt *curPath;

404

405 /+ Update 1link and movement times #*/

406 for (t = 0; t < network->timeHorizon; t++) {

407 for (ij = 0; ij < network->numArcs; 1ij++) {

408 network—->arc[ij].travelTime[t] = calculateLinkTravelTime (& (
network->arc[ij]), t, network->timeHorizon);

409 }

410 for (i = 0; i < network->numNodes; i++) {

411 for (curMovement = network->node[i].turnMovements—->head;
curMovement != NULL; curMovement = curMovement->next) {

412 curMovement->movement->travelTime[t] =

calculateMovementTravelTime (curMovement->movement, t,

189

413
414
415

416
417

418
419
420
421

422

423
424

425
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443

444
445

446

network—>timeHorizon) ;

1
if (t % TRAVEL_TIME_REPORTING_INTERVAL ==) displayMessage (
FULL_NOTIFICATIONS, "Updated link times for %d of %d ticks (%d
$%)\r", t, network->timeHorizon, 100 % t / network->timeHorizon)
7
}
displayMessage (FULL_NOTIFICATIONS, "Updated link times for %d of %d
ticks (%d%%)\n", network—->timeHorizon, network—->timeHorizon, 100);

/+ Update path labels */
for (odt = 0; odt < network->numODTs; odt++) {
for (curPath = network->ODT[odt] .paths->head; curPath != NULL;
curPath = curPath->next) {
calculatePathTravelTime (network, curPath->path, network->ODT [odt
] .departureTime) ;
}
if (odt % ODT_REPORTING_INTERVAL == () displayMessage (
FULL_NOTIFICATIONS, "Updated path times for %d of %d ODTs (%d%%)
\r", odt, network->numODTs, 100 = odt / network—->numODTSs) ;
}
displayMessage (FULL_NOTIFICATIONS, "Updated path times for %d of %d
ODTs (%d%%)\n", network—->numODTs, network->numODTs, 100);

/*+%x*+ Generate data structures #****/

/% Create forward and reverse star lists */
void createStarlLists (network_type xnetwork) {
int i, 1i73;
for (i = 0; i < network->numNodes; i++) {
network—->node[i].forwardStar = createArcLinkedList ();
network—->node[i] .reverseStar = createArcLinkedList ();
}
for (ij = 0; 1ij < network—->numArcs; 1ij++) {
insertArcLinkedList (network->arc([ij].tail->forwardStar, & (network->
arc[ij]), network->arc[ij].tail->forwardStar->tail);
insertArcLinkedList (network->arc([i]j].head->reverseStar, & (network->
arc[ij]), network->arc[ij].head->reverseStar—->tail);
}
displayMessage (FULL_NOTIFICATIONS, "Created forward and reverse star
lists.\n");

190

447
448 path_type *createNewPath (network_type *network) {

449 path_type xnewPath = newScalar (path_type);

450

451 newPath->turnMovements = createTurningLinkedList () ;
452 newPath->travelTime = network->timeHorizon + 1;
453 newPath->demand = 0;

454

455 return newPath;

456 }

457

458 wvoid deletePath (path_type =*path) {

459 deleteTurningLinkedList (path->turnMovements) ;
460 deleteScalar (path);

461 }

462

463

464 /**++ Arc linked 1lists #**x/

465

466 arclinkedList *createArclLinkedList () {

467 declareScalar (arcLinkedList, newll);

468 newll->head = NULL;

469 newll->tail = NULL;

470 newll->size = 0;

471 return newll;

472}

473

474 arcLinkedListElt *insertArcLinkedList (arcLinkedList =xlist, arc_type x
value, arcLinkedListElt *after) {

475 declareScalar (arcLinkedListElt, newNode);

476 newNode->arc = value;

477 if (after != NULL) { /# Not inserting at head #*/
478 newNode—->next = after->next;

479 if (list—->tail == after) list->tail = newNode;
480 after->next = newNode;

481 } else { /+ Inserting at head =*/

482 newNode->next = list->head;

483 if (list—->tail == after) list->tail = newNode;
484 list->head = newNode;

485 }

486 list->size++;

487 return newNode;

488 }

489

490 wvoid deleteArclLinkedList (arcLinkedList *1list) {

491 arcLinkedListElt xsavenode, xcurnode = list->head;
492 while (curnode != NULL) {

191

493
494
495
496
497
498
499
500
501
502

503
504

505
506
507

508
509
510
511
512
513
514
515
516
517
518
519
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534

savenode = curnode->next;
killScalar (curnode) ;
curnode = savenode;

}
killScalar (list);

void displayArclLinkedList (int minVerbosity, arcLinkedList =*list) {

arcLinkedListElt *curnode = list->head;
displayMessage (minVerbosity, "Start of the list: %p\n", (void x)list
—>head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p: (%d,%d) -> %$p\n", (void «*)curnode

, curnode->arc->tail->ID, curnode->arc->head->ID, (void =x)
curnode->next) ;
curnode = curnode->next;
}
displayMessage (minVerbosity, "End of the list: %p\n", (void *)list->
tail);

/*#*44 Turning movement linked 1ists ###%*/

turningLinkedList xcreateTurningLinkedList () {
declareScalar (turningLinkedList, newll);
newll->head NULL;
newll->tail NULL;
newll->size 0;
return newll;

turninglLinkedListElt *insertTurningLinkedList (turningLinkedList =1list,

struct turning_type_s xvalue, turningLinkedListElt xafter) {

declareScalar (turningLinkedListElt, newNode) ;

newNode->movement = value;

if (after != NULL) { /* Not inserting at head =/
newNode->next = after->next;
if (list—->tail == after) list—->tail
after->next = newNode;

} else { /* Inserting at head x/
newNode—->next = list->head;
if (list—->tail == after) list—->tail
list->head = newNode;

}

list—->size++;

return newNode;

newNode;

newNode;

192

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

556
557

558
559

560
561
562

563
564
565
566
567
568
569
570
571
572
573
574
575

void clearTurningLinkedList (turningLinkedList =1list) {
turninglLinkedListElt xsavenode, xcurnode = list->head;
while (curnode != NULL) {
savenode = curnode->next;
killScalar (curnode) ;
curnode = savenode;

void deleteTurningLinkedList (turningLinkedList =*1list) {
turninglLinkedListElt *xsavenode, *xcurnode = list->head;
while (curnode != NULL) {
savenode = curnode->next;
killScalar (curnode) ;
curnode = savenode;
}
killScalar (list);

void displayTurninglLinkedList (int minVerbosity, struct
turningLinkedList_s xlist) {
turningLinkedListElt xcurnode = list->head;
displayMessage (minVerbosity, "Start of the list: %$p\n", (void «*)list

->head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p: (%d,%d,%d) —-> %$p\n", (void =«)

curnode, curnode->movement->upstreamArc->tail->ID, curnode-—>
movement—->upstreamArc—->head->ID, curnode—>movement—>
downstreamArc—->ID, (void +*)curnode->next);
curnode = curnode->next;
}
displayMessage (minVerbosity, "End of the list: %p\n", (void *)list->
tail);

/*x%%x Path linked 1lists x*xx/

pathLinkedList *createPathLinkedList () {
declareScalar (pathLinkedList, newll);

newll->head = NULL;
newll->tail = NULL;
newll->size = 0;

return newll;

193

576 pathLinkedListElt xinsertPathLinkedList (pathLinkedList =*list,

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

Neolie EN BNe Y A SR

e T e T o T e S Sy S S Y
0NN N R W= O

path_type_s *value, pathLinkedListElt xafter) {
declareScalar (pathLinkedListElt, newNode) ;
newNode->path = value;
if (after != NULL) { /* Not inserting at head =/
newNode->next = after->next;
if (list->tail == after) list->tail = newNode;
after->next = newNode;
} else { /* Inserting at head x/
newNode->next = list->head;
if (list->tail == after) list->tail = newNode;
list->head = newNode;
}
list—>size++;
return newNode;

}

void deletePathlLinkedList (pathLinkedList x1list) {
pathLinkedListElt xsavenode, xcurnode = list—->head;
while (curnode != NULL) {
savenode = curnode->next;
killScalar (curnode) ;
curnode = savenode;
}
killScalar (list);
}

D.1.14 network.h

#ifndef _NETWORK_H_
#define _NETWORK_H_

#include <limits.h>
#include <math.h>

#include "datastructures.h"
#include "utils.h"

typedef enum {
UNKNOWN_CONTROL,
CENTROID,
NONHOMOGENEOUS,
DIVERGE,
MERGE,
FOUR_WAY_STOP,
TWO_WAY_ STOP,
BASIC_SIGNAL,
FANCY_SIGNAL,

194

struct

19 INTERCHANGE
20 } intersection_type;

21

22 typedef struct node_type_s {

23 struct arclLinkedlList_s *forwardStar;
24 struct arclLinkedList_s *reverseStar;
25 struct turninglLinkedList_s =*turnMovements;
26 intersection_type control;

27 int ID;

28 float X;

29 float Y;

30 void xcontrolData; /# Pointer to additional information depending on

intersection type (signal, stop, etc.) x/

31 } node_type;

32

33 /%

34 ’float’s refer to PHYSICAL link characteristics (total link length,
free flow time) 1in standard units

35 ’int’s refer to CELL characteristics in cell units (timestep, cell
length)

36 +/

37 typedef struct arc_type_s {

38 struct cellDoublyLinkedList_s xcells;

39 struct turningLinkedList_s sturnMovements;

40 struct turningLinkedList_s xupstreamMovements;

41 node_type =*tail;

42 node_type =*head;

43 int xtravelTime; /* [time] %/

44 int xupstreamCount; /% [time] */

45 int xdownstreamCount; /* [time] */

46 int *freeFlowToDest; /+ [dest] —— labels for free—-flow time to
destination, to be used in Ax %/

47 struct turning_type_s **xfreeFlowMovement; /x [dest] —-— movement for

free-flow time to destination, 1in case Ax exceeds time horizon */
48 float length;
49 float capacity;
50 float jamDensity;
51 float waveRatio;
52 float freeFlowTime;
53 int numCells;
54 int cellCapacity;
55 int cellMaxVehicles;
56 int sendingFlow;
57 int receivingFlow;
58 int ID;
59 } arc_type;
60

195

61 typedef struct turning_type_s {

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105

struct vehicleDoublyLinkedList_s =xvehicles;
arc_type xupstreamArc;

arc_type xdownstreamArc;

int *travelTime; /% [time] */

int *upstreamCount; /* [time] =/

int xdownstreamCount; /x [time] %/

int targetDelay;

int capacity; /+* simulation ticks #*/
float saturationFlow; /x real units =*/

int flow;

int sendingFlow;

int receivingFlow;

} turning_type;

typedef struct path_type_s {

struct turninglinkedList_s xturnMovements;
int travelTime;
int demand;

} path_type;

typedef struct ODT_type_s {

node_type *origin;

node_type xdestination;

int departureTime;

int demand;

struct vehicleDoublyLinkedList_s =xvehicles;
struct pathlLinkedList_s xpaths;

} ODT_type;

typedef struct network_type_s {

arc_type xarc;

node_type =*node;

ODT_type *ODT;

struct pathlLinkedList_s xpaths;

arc_type origin; /+ Artificial origin arc used to store vehicles and
as upstreamArc for originating turning moveemnts #*/

arc_type destination; /#* Artificial destination arc used to store
vehicles and as downstreamArc for arrival turning movements */

node_type sink; /# Artificial node for origin and destination arcx/

float *xstaticOD; /* [origin] [destination] */

float totalODFlow;

float tickLength;

int numArcs;

int numNodes;

int numZones;

long numVehicles;

196

106 long numODTs; /* Needs to be of size long = intx*int =/

107 int timeHorizon; /% In xclock ticks* (compare with parameters_type
which has time horizon in seconds) */
108 int lastVehicleOn; /* In xclock ticks#* (compare with parameters_type

which has last vehicle on in seconds) */

109 } network_type;

110

111

112 /*#+++ Network algorithms *##*%/

113

114 void allDestinationsTDSP (network_type *network, path_type xpath);

115 wvoid TDAStar (network_type *network, node_type *origin, node_type =*
destination, int departureTime, path_type =*path);

116 wvoid calculateFreeFlowSPLabels (network_type *network, int destination);

117 wvoid checkNetworkConnectivity (network_type »network);

118 bool comparePaths (path_type xpathl, path_type =*path2);

119 long pathHash (path_type xpath);

120

121 /#*#+% Basic network calculations and functions *x**x/

122

123 void addShortestPaths (network_type *network);

124 int calculateLinkTravelTime (arc_type =*1link, int currentTime, int
timeHorizon) ;

125 int calculateMovementTravelTime (turning_type xmovement, int
currentTime, int timeHorizon);

126 wvoid calculatePathTravelTime (network_type *network, path_type =path,
int departureTime);

127 wvoid copyCounts (network_type xnetwork, int old_t, int new_t);

128 wvoid displayPath (int minVerbosity, path_type xpath);

129 wvoid initializeCounts (network_type xnetwork);

130 void initializeTravelTimes (network_type =*network);

131 int ptr2arc(network_type =*network, arc_type =*arcptr);

132 int ptr2node (network_type xnetwork, node_type *nodeptr);

133 wvoid updateAllTravelTimes (network_type *network);

134

135 /#++#+ Network data structures ####*/

136

137 path_type *createNewPath (network_type *network);

138 wvoid createStarLists (network_type xnetwork);

139 wvoid deletePath (path_type xpath);

140

141 /*xxx Arc linked 1ists ##*#*%*/

142

143 typedef struct arcLinkedListElt_s {

144 arc_type =*arc;

145 struct arclLinkedListElt_s *next;

146 } arclinkedListElt;

197

147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190

typedef struct arcLinkedList_s {
arclLinkedListElt <xhead;
arcLinkedListElt =*tail;
int size;

} arcLinkedList;

arcLinkedList *createArcLinkedList ();

arcLinkedListElt *insertArcLinkedList (arcLinkedList xlist, arc_type =
value, arclinkedListElt xafter);

void deleteArclLinkedList (arcLinkedList =*1list);

void displayArcLinkedList (int minVerbosity, arcLinkedList =xlist);

/**%% Turning movement linked 11sSts #x*#x*/

typedef struct turninglinkedListElt_s {
turning_type *movement;
struct turningLinkedListElt_s xnext;
} turninglLinkedListElt;

typedef struct turningLinkedList_s {
turningLinkedListElt xhead;
turningLinkedListElt xtail;
int size;

} turningLinkedList;

turningLinkedList xcreateTurningLinkedList () ;

turningLinkedListElt *insertTurninglLinkedList (turningLinkedList =list,
turning_type *value, turningLinkedListElt =*after);

void clearTurningLinkedList (turningLinkedList xlist);

void deleteTurningLinkedList (turningLinkedList =*1list);

void displayTurninglLinkedList (int minVerbosity, turninglLinkedList =xlist
)i

/**++ Path linked 1isSts ##*#*%*/

typedef struct pathlLinkedListElt_s {
path_type *path;
struct pathlLinkedListElt_s xnext;
} pathLinkedListElt;

typedef struct pathLinkedList_s {
pathLinkedListElt <head;
pathLinkedListElt xtail;
int size;

} pathLinkedList;

198

191
192

193
194
195

0 ON N kW~

10

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34

pathLinkedList xcreatePathLinkedList ();

pathLinkedListElt xinsertPathLinkedList (pathLinkedList xlist, struct
path_type_s xvalue, pathLinkedListElt xafter);

void deletePathlinkedList (pathLinkedList x1list);

#endif

D.1.15 sampling.c

#include "sampling.h"

/* Factorial table to save computation =*/

long factorialf[l0] = {1, 1, 2,

6,

24, 120, 720, 5040, 40320, 362880};

/* Constants used in economized polynomial approximation x/

#define A_PRECISION 7

double A[A_PRECISION + 1] = {-0.49999999, 0.33333328, -0.25000678,
0.20001178, -0.16612694, 0.14218783, -0.13847944, 0.12500596};

double randomSample (double mean,

distribution) {
switch (distribution) {
case DETERMINISTIC:

return mean;
case UNIFORM:

return randUniform (mean -

case POISSON:
return randPoisson (mean) ;
case LOGNORMAL:

double stdev, distribution_type

stdev x 1.73205080756887729353, mean +
stdev x 1.73205080756887729353);

return randLognormalMeanStdev (mean, stdev);

case NORMAL:

return randNormal (mean, stdev);

case EXPONENTIAL:

return randExponential (1 / mean);

default:

fatalError ("Unknown distribution type %d\n", distribution);

}

return 0; /* Should never be reached; included to avoid compiler

warnings */

long randInt (long min, long max)
return min + floor (randUniform (0, max-min));

long stochasticRound (double x)

{

{

199

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64

65
66

67
68
69
70
71
72
73
74
75
76
77
78

return floor(x) +

(randUniform (O,

1)

< x - floor(x) 2 1

/#* Poisson sampling procedure from Ahrens and Dieter;
variable names and labels taken directly from their paper #*/

##define TOO_HIGH 50

long randPoisson (double mu) {
double 4, J, L, T, G, U = 0,
double bl, b2, c3, c2,
double fx, fy;
double
double
double
double
int 1i;
long K = 0;
char comingFrom;
if (mu >= 10) goto CASE_A;
else goto CASE_B;

Sy
omega,
px, PY,
delta;
v, X;
M, p,
P[36];

q, p0;

CASE_A:
s = sqgrt (mu) ;
d =6 mu x mu;

L = floor(mu — 1.1484);

/* N: Label indicated in algorithm but not
to avoid compiler warnings =/
T = randNormal (0, 1);
G =mu + s = T;
if (G >= 0) K = floor(G); else goto P;

/* I: Label indicated in algorithm but not

to avoid compiler warnings */
if (K >= L) return K;

/#* S: Label indicated in algorithm but not

to avoid compiler warnings */

U = randUniform (0, 1);

if (d » U > (mu - K) * (mu — K)
P:

omega = 0.39894228 / s;

bl = 0.0416666667 / mu;

b2 = 0.3 x bl *x bl;

c3 = 0.142857143 * bl * b2;

c2 = b2 - 15 % c3;

cl = bl - 6 * b2 + 45 % C3;

cO =1 -Db1 + 3 x b2 - 15 * c3;

c =0.1069 / mu;

if (G >= 0) { comingFrom = "P’;

cl,

E;
cO,

* (mu -

goto F;

200

Cs

used in code; commented out

used 1in code,; commented out

commented out

used 1in code;

K)) return K;

} else goto E;

79 Q:
80 if (fy » (1 - U) <= py » exp(px - fx)) return K;
81 E:

82 E = randExponential (1) ;

83 U = randUniform(0, 1);

84 U=UH+U-1;

85 T =1.8 +E % copysign(1.0, U);

86 if (T <= -0.6744) goto E;

87 K = floor(mu + s x T);

88 comingFrom = "E’;

89 goto F;

90 H:

91 if (c » fabs(U) > py * exp(px + E) - fy * exp(fx + E)) goto E;
92 return K;

93 F:

94 if (K < 10) {

95 pxX = —-mu;

96 py = pow(mu, K) / factorial[K];

97 } else {

98 delta = 0.0833333333 / K;

99 delta = delta - 4.8 = pow(delta, 3);

100 V = (mu - K) / (double) K;

101 if (fabs (V) > 0.25) {

102 px = K » log(l + V) - (mu — K) - delta;
103 } else {

104 px = A[A_PRECISION];

105 for (i = A_PRECISION - 1; i >= 0; 1i--) {
106 px = A[i] + px * V;

107 }

108 px x= K * V x V;

109 px —= delta;

110 }

111 py = 0.39894228 / sqrt (K);

112 }

113 X = (K-mu + 0.5) / s;

114 fx = -0.5 *x X % X;

115 fy = omega * (((c3 * X * X + c2) » X » X + cl) X * X + c0);
116 if (comingFrom == ’'P’) goto Q;

117 if (comingFrom == ’'E’) goto H;

118 fatalError ("randomPoisson: invalid comingFrom value");
119

120 CASE_B:

121 if (mu > 1) M = mu; else M = 1;
122 L = 0;

123 p = exp(-mu);

124 q = p;

125 p0 = p;

201

126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

double d = 1;
while (d >= 1) d

return -log(l - d)

double randUniform(double a,
(((double)

return a +

double randNormal (double

= randUniform (O,
/ lambda;

rand() - 1)

mean,

static long numSamples = 0;

static double 72;
if

((numSamples++ & 1)

U = randUniform (0, 1);
U:
K = 0;
if (U <= p0) return K;
/* T:
to avoid compiler warnings */
if (L == 0) goto C;
if (U > 0.458) {
if (L < M) J=1; else J = V;
} else {
J = 1;
}
for (K = J; K <= L; K++) {
if (U <= P[K]) return K;
}
goto U;
C:
for (K =1L + 1; K <= 35; K++) {
p =p * mu / (double) K;
q=49+ p;
P[K] = qg;
if (U <= qg) {
L = K;
return K;
}
}
L = 35;
goto U;
}
double randExponential (double lambda) {

1);

double b) {

/ RAND_ MAX)

double stdev) {

double 71, Ul, U2;
do { Ul = randUniform (0, 1); } while (Ul <=
do { U2 = randUniform (0, 1); } while (Ul <=

202

*

Label indicated in algorithm but not used in code;

(b - a);

commented out

172 Z1l = sqgrt (-2 * log(Ul)) * cos(6.28318531 » U2);

173 72 = sqrt (-2 x log(Ul)) * sin(6.28318531 » U2);

174 return mean + stdev x Z71;

175 } else {

176 return mean + stdev x Z72;

177 }

178 }

179

180 double randLognormal (double mu, double sigma) {

181 return exp (randNormal (mu, sigma));

182 }

183

184 double randLognormalMeanStdev (double mean, double stdev) {

185 return randLognormal (log(mean) - 0.5 * log(l + (stdev x stdev) / (
mean % mean)) , log(l + (stdev % stdev) / (mean * mean)));

186 }

187

188 /x Create an extra row/col with the "extra bits" left over... calculate

row/col sums then % precision */
189 woid roundStochasticMatrix (float **matrix, int numRows, int numCols,
int precision) {

190 int bit, row, col;

191 long scaleFactor = 1 << precision, sum;

192 declareMatrix (long, scaledMatrix, numRows + 1, numCols + 1);

193

194 /+* Rounding code needs integer values; multiply by appropriate power
of 2 and cast to int =*/

195 for (row = 0; row < numRows; row++) {

196 for (col = 0; col < numCols; col++) {

197 matrix[row] [col] == scaleFactor;

198 scaledMatrix[row] [col] = round2long(matrix[row] [col]);

199 }

200 }

201

202 /% Fill in "remainder" rows and colums to have integer row/column
sums */

203 for (row = 0; row < numRows; row++) {

204 sum = 0;

205 for (col = 0; col < numCols; col++) {

206 sum += scaledMatrix[row] [col];

207 }

208 scaledMatrix[row] [numCols] = scaleFactor - sum % scaleFactor;

209 }

210 for (col = 0; col < numCols + 1; col++) {

211 sum = 0;

212 for (row = 0; row < numRows; row++) {

213 sum += scaledMatrix[row] [col];

203

214 }

215 scaledMatrix[numRows] [col] = scaleFactor - sum % scaleFactor;
216 }

217

218

219 /* Now do stochastic rounding, bit by bit */

220 for (bit = 0; bit < precision; bit++) {

221 roundIntegerBit (scaledMatrix, numRows + 1, numCols + 1, bit);
222

223 }

224

225 /+ Now undo scaling #*/

226 for (row = 0; row < numRows; row++) {

227 for (col = 0; col < numCols; col++) {

228 matrix[row] [col] = scaledMatrix[row] [col] >> precision;
229 }

230 }

231

232 deleteMatrix (scaledMatrix, numRows + 1);

233}

234

235 /x What happens 1if there are an odd number of ’‘bits’ ? algo suggested
an extra row/col ???

236 Perhaps this is not an issue unless precision is super high x/

237 wvoid roundIntegerBit (long **matrix, int numRows, int numCols, int bit)

{

238 int row, col, switchRow, switchCol, parity;

239 long mask = 1 << bit;

240

241 /* Generate network structure #*/

242 declareMatrix (int, rowMatch, numRows, numCols);

243 declareMatrix (int, colMatch, numRows, numCols);

244 generateParityNetwork (matrix, rowMatch, colMatch, numRows, numCols,
mask) ;

245

246 for (row = 0; row < numRows; row++) {

247 for (col = 0; col < numCols; col++) {

248 if (matrix[row] [col] & mask) {

249 switchRow = row;

250 switchCol = col;

251 parity = rand() & 1;

252 do {

253 switch (parity) {

254 case 0: /x Set bit to zero and move row—-wisex/

255 matrix[switchRow] [switchCol] —-= mask;

256 switchRow = rowMatch[switchRow] [switchCol];

257 break;

204

258 case 1l: /* Set bit to one and move column-wise

259 matrix[switchRow] [switchCol] += mask;
260 switchCol = colMatch[switchRow] [switchCol];
261 break;

262 1

263 parity = 1 - parity;

264 } while (matrix[switchRow] [switchCol] & mask);
265 }

266 }

267 }

268

269 deleteMatrix (rowMatch, numRows) ;

270 deleteMatrix (colMatch, numRows) ;

271 1}

272

273 wvoid generateParityNetwork (long **matrix, int xxrowMatch, int
colMatch, int numRows, int numCols, long mask) {

274 int row, col, companionRow = IS_MISSING;

275 declareVector (int, companionCol, numRows) ;

276

277 for (row = 0; row < numRows; row++) {

278 companionCol [row] = IS_MISSING;

279 for (col = 0; col < numCols; col++) {

280 rowMatch[row] [col] = IS_MISSING;

281 colMatch[row] [col] = IS_MISSING;

282 }

283 }

284

285 for (col = 0; col < numCols; col++) {

286 for (row = 0; row < numRows; row++) {

287 if (matrix[row] [col] & mask) {

288 if (companionRow == IS_MISSING) {

289 companionRow = row;

290 } else {

291 rowMatch[row] [col] = companionRow;
292 rowMatch [companionRow] [col] = row;
293 companionRow = IS_MISSING;

294 }

295 if (companionCol[row] == IS_MISSING) ({
296 companionCol[row] = col;

297 } else {

298 colMatch[row] [col] = companionCol[row];
299 colMatch|[row] [companionCol [row]] = col;
300 companionCol [row] = IS_MISSING;

301 }

302 }

303 }

205

304
305
306
307

Neolie EN BNe Y A SR

[N T N T NS e e e T e T e T e T
N = O 000N DN b W =—=O

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

deleteVector (companionCol) ;

D.1.16 sampling.h

#ifndef _SAMPLING_H_
#define _SAMPLING_H_

#include <math.h>

#include <stdlib.h>
#include "datastructures.h"
#include "utils.h"

typedef enum {
DETERMINISTIC,
UNIFORM,
POISSON,
NORMAL,
EXPONENTIAL,
LOGNORMAL,
UNKNOWN_DISTRIBUTION
} distribution_type;

/% Random number generation #*/

double randomSample (double mean, double stdev, distribution_type
distribution);

long randInt (long min, long max);

long randPoisson (double mu) ;

double randExponential (double lambda);

double randUniform(double a, double Db);

double randNormal (double mean, double stdev);

double randLognormal (double mu, double sigma);

double randLognormalMeanStdev (double mean, double stdev);

long stochasticRound (double x);

/% Stochastic rounding x*/

long roundStochastic (double x);

void roundStochasticMatrix (float *x*matrix, int numRows, int numCols,

int precision); /* Preserves row and column sums with stochastic
rounding */

206

38
39

40
41

9} S W =

Neolie BEN BNe)

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

void roundIntegerBit (long *»*matrix,

int numRows,

void generateParityNetwork (long x*matrix,

colMatch, int

#fendif

numRows, int numCols,

D.1.17 datastructures.c

#include "datastr

J *

uctures.h"

int numCols, int bit);

int xxrowMatch, int x«

long mask);

This file contains implementation for commonly-used data structures,

including

singly and doubly linked lists,

allocation
and deallocation.

*/

/******************

*+ Linked 1ists

* K

******************/

/H*++ Singly linked 1ists ##**%/

linkedList #*createlinkedList () {

declareScalar (1
newll->head = N
newll->tail = N
newll->size
return newll;

O.

inkedList,
ULL;
ULL;

14

newll);

binary heaps,

linkedListElt *insertLinkedList (linkedList =list,

linkedListElt

xafter) {

declareScalar (linkedListElt, newNode);

newNode—->value

if (after != NU
newNode—>next
if (list->tai
after->next =

= value;

queues, as well as memory

int value,

LL) { /% Not inserting at head x/
= after->next;

1l == after)
newNode;

list—>tail

} else { /* Inserting at head x/
= list->head;

newNode—->next
if (list->tai
list—->head =
}
list—>size++;
return newNode;

1 == after)
newNode;

list->tail

207

newNode;

newNode;

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75

76
77
78

void deletelinkedList (linkedList +1list) {

linkedListElt *savenode, xcurnode = list->head;
while (curnode != NULL) {
savenode = curnode->next;
killScalar (curnode) ;
curnode = savenode;
}
killScalar(list);

void displayLinkedList (int minVerbosity, linkedList xlist) {

linkedListElt *curnode = list->head;
displayMessage (minVerbosity, "Start of the list: %$p\n", (void *)list
—>head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p: %d -> %$p\n", (void *)curnode,
curnode->value, (void *)curnode->next)
curnode = curnode->next;
}
displayMessage (minVerbosity, "End of the list: %p\n", (void *)list->
tail);

’

/ %%+ Doubly linked 1ists #x**#*/

doublyLinkedList *createDoublyLinkedList () {

declareScalar (doublyLinkedList, newdll);
newdll->head = NULL;

newdll->tail = NULL;

newdll->size 0;

return newdll;

doublyLinkedListElt xinsertDoublyLinkedList (doublyLinkedList *list,

double value, doublyLinkedListElt xafter) {
declareScalar (doublyLinkedListElt, newNode) ;

newNode—->value = value;
if (after != NULL) {
newNode—->prev = after;
newNode->next = after->next;
if (list->tail != after) newNode->next->prev = newNode; else list—>
tail = newNode;
after->next = newNode;
} else {

newNode->prev = NULL;

208

79
80

81
82
83
84
85
86
87
88
&9
90
91
92
93

94
95

96
97
98
99

100
101
102
103
104
105

106
107

108
109

110
111
112

113
114
115
116
117

newNode->next = list->head;

if (list->tail != after) newNode->next->prev = newNode; else list->
tail = newNode;

list->head = newNode;

}
list->size++;
return newNode;

void deleteDoublyLinkedList (doublyLinkedList xlist) {
while (list->head != NULL)
deleteDoublyLinkedListElt (1list, list->tail);
killScalar (list);

void deleteDoublyLinkedListElt (doublyLinkedList *list,
doublyLinkedListElt =*elt) {
if (list—->tail != elt) {
if (list->head != elt) elt->prev->next
= elt—->next;
elt->next—>prev = elt->prev;

elt->next; else list—->head

} else {
list->tail = elt->prev;
if (list->head != elt) elt->prev->next = elt->next; else list->head

= elt->next;
}
list—->size——;
killScalar (elt);

void displayDoublyLinkedList (int minVerbosity, doublyLinkedList x1list)

{
doublyLinkedListElt *curnode = list->head;

displayMessage (minVerbosity, "Start of the list: %$p\n", (void =*)list

—>head) ;
while (curnode != NULL) {
displayMessage (minVerbosity, "%p %f %p %p\n", (void *)curnode,

curnode->value, (void x)curnode->prev, (void x)curnode->next);
curnode = (*xcurnode) .next;

}
displayMessage (minVerbosity, "End of the list: %p\n", (void *)list->
tail);

J ko kKA kA A Ak A

*+ Queues *#*

kA A A A A A A A A

209

118

119 /*xxx Standard queue with memory *xxx/

120

121 queue_type createQueue (long size, long eltsize) {
122 long i;

123
124 queue_type queue;
125 queue.node = newVector (size, long);

126 queue.history newVector (eltsize, char);
127 queue.readptr = 0;
128 queue.writeptr = 0;

129 queue.size = size;

130 queue.curelts = 0;

131

132 for (i = 0; i < eltsize; 1i++) queue.history[i] = NEVER_IN_QUEUE;

133 for (i = 0; i < size; i++) queue.node[i] = 0;

134 return queue;

135 }

136

137 wvoid deleteQueue (queue_type xqueue) {

138 deleteVector (queue—->node) ;

139 deleteVector (queue->history);

140 }

141

142 wvoid enQueue (queue_type xqueue, long elt) {

143 if (queue->history[elt] == IN_QUEUE) return;

144 if (queue->curelts == queue->size) fatalError ("Queue not large enough
")

145 queue->curelts++;

146 gqueue->node [queue->writeptr] = elt;

147 queue->writeptr++;

148 if (queue->writeptr == queue->size) queue->writeptr = 0;

149 queue->historyl[elt] = IN_QUEUE;

150 }

151
152 wvoid frontQueue (queue_type *queue, long elt) {

153 if (queue->history[elt] == IN_QUEUE) return;

154 if (queue->readptr == 0) queue->readptr = queue->size; else queue->
readptr—-—;

155 if (queue->curelts == queue->size) fatalError ("Queue not large enough
")

156 queue—->curelts++;

157 queue->node [queue—->readptr] = elt;

158 queue->history[elt] = IN_QUEUE;

159 }

160

161 long deQueue (queue_type xqueue) {

210

162 long val = gqueue->node[queue->readptr];

163 queue->history[queue->node[queue->readptr]] = WAS_IN_QUEUE;
164 queue->readptr++;

165 queue->curelts——;

166 if (queue->readptr >= queue->size) queue->readptr = 0;

167 return val;

168 }

169

170 wvoid displayQueue (int minVerbosity, queue_type =*queue) {
171 long i;

172 for (i = 0; i < queue->size; i++) {

173 displayMessage (minVerbosity, "%1d ", queue->node([i]);

174 if (i == queue->readptr) displayMessage (minVerbosity, "R"); else
displayMessage (minVerbosity, " ");

175 if (i == queue->writeptr) displayMessage (minVerbosity, "W"); else
displayMessage (minVerbosity, " ");

176 displayMessage (minVerbosity, " %$1d %d", i, queue->historyl[i]);

177 displayMessage (minVerbosity, "\n");

178 }

179 }

180

181

182 /hk sk h sk hk ks k ko ok ok Ak A

183 *+ Binary heaps #**

184 Kok kA A kA A A kKA AR AA A A

185

186 heap_type *createHeap (int heapsize, int eltsize) {
187

188 int i;
189 declareScalar (heap_type, newHeap) ;

190 newHeap—->node = newVector (heapsize, int);
191 newHeap->nodeNDX = newVector (eltsize, int);
192 newHeap->last = NOT_IN_HEAP;

193 newHeap->valueFn = newVector (eltsize, int);
194 newHeap->maxsize = heapsize;

195 newHeap->maxelts = eltsize;

196

197 for(i = 0; i < eltsize; i++) newHeap->nodeNDX[i] = NOT_IN_HEAP;
198 return newHeap;

199 }

200

201 wvoid insertHeap (heap_type xheap, int key, int value) ({
202 int elt = ++ (heap—>last);

203 if (heap->last >= heap->maxsize) fatalError ("Heap not big enough.");
204 heap->node [heap->last] = key;

205 heap->nodeNDX [key] = heap->last;

206 heap->valueFn[key] = value;

211

207 siftUp (heap, elt);

208 '}

209

210 int findMinHeap (heap_type =*heap) {
211 return heap->node[0];

212}

213

214 wvoid deleteMinHeap (heap_type xheap) {

215 if (heap->last < 0) fatalError ("Negative heap size!");
216 heap->nodeNDX [heap->node [heap->last]] = 0;

217 heap->nodeNDX [heap->node [0]] = NOT_IN_HEAP;

218 if (heap->last > 0) swap (heap->node[0], heap->node[heap->last]);
219 heap->last-—;

220 if (heap->last >= 0) siftDown (heap, 1);

221 1}

222

223 wvoid deleteHeap (heap_type *heap) {

224 deleteVector (heap—->node) ;

225 deleteVector (heap—->nodeNDX) ;

226 deleteVector (heap->valueFn) ;

227 deleteScalar (heap);

228 }

229

230 wvoid decreaseKey (heap_type xheap, int elt, int value) {

231 heap->valueFn [heap->node [heap->nodeNDX [elt]]] = value;

232 siftUp (heap, heap->nodeNDX[elt]);

233}

234

235 wvoid increaseKey (heap_type xheap, int elt, int value) {

236 heap->valueFn [heap->node [heap->nodeNDX[elt]]] = value;

237 siftDown (heap, heap->nodeNDX[elt]);

238 1}

239

240 wvoid siftUp (heap_type xheap, int elt) {

241 while (elt > 0 && heap->valueFn[heap->node[elt]] < heap->valueFn[heap
—->node [heapPred(elt)]]) {

242 swap (heap->nodeNDX [heap->node[elt]], heap->nodeNDX[heap->node]|

heapPred(elt)]1]);

243 swap (heap->node[elt], heap->node[heapPred(elt)]);

244 elt = heapPred(elt);

245 }

246 1}

247

248 wvoid siftDown (heap_type xheap, int elt) {

249 int tmp;

250 while (heapSucc(elt) <= heap->last && heap->valueFn[heap->node[elt]]
> heap->valueFn[heap->node [minChild (heap, elt)]]) {

212

251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292
293
294

heap—->nodeNDX [heap—->node [tmp

tmp = minChild (heap, elt);

swap (heap—>nodeNDX [heap—>node [elt]],
11);

swap (heap—>node[elt], heap->nodel[tmp]);

elt = tmp;

int heapPred(int elt) {
return (elt - 1) / 2;

int heapSucc(int elt) {
return (elt « 2) + 1;

int minChild (heap_type =*heap, int elt) {
if (heapSucc(elt) == heap->last)
return heap->last;
if
node [heapSucc(elt) + 1]1)
return heapSucc (elt);
return heapSucc(elt) + 1;

void heapify (heap_type xheap) {
long i;
for heapPred (heap->last) ;
siftDown (heap, 1i);

(1 = i >= 0;

void displayHeap (int minVerbosity,
int i;
displayMessage (minVerbosity,
elements: %d %d %d\n", heap->last,
displayMessage (minVerbosity,

for (i = 0; i < heap->maxsize; i++) {
displayMessage (minVerbosity, "\n%d %d4d",
if (i == heap->last)

}

displayMessage (minVerbosity,

for (i = 1; i <= heap->maxelts;
displayMessage (minVerbosity,

i++)

displayMessage (minVerbosity,
for (i = 1; i <= heap->maxelts;
displayMessage (minVerbosity,

i++)

213

(heap->valueFn[heap->node[heapSucc(elt)]]

"HEAP current size,
heap->maxsize,
"HEAP STATUS");

displayMessage (minVerbosity, "

"\n%d %d", i,
"\nVALUE FUNCTION");

"\n%d %$f", 1,

<= heap->valueFn[heap->

i)

heap_type xrheap) {

capacity, number of
heap->maxelts);

heap->node[i]);
LAST") ;

i,

"\nNODE NDX") ;

heap->nodeNDX[1]);

heap->valueFn[i]);

295
296
297
298
299
300
301
302
303

304
305
306

307
308
309
310
311
312
313

314
315
316

317
318
319
320
321
322
323
324

325
326
327

328
329
330
331

332
333
334

/***************************

** Memory (de)allocation *x*

***************************/

void xallocateScalar(size_t size) {

void *scalar = malloc(size);
if (scalar == NULL) fatalError ("Unable to allocate memory for a
scalar.");

#ifdef MEMCHECK

memcheck_numScalars++;

if (memcheck_numScalars > MEMCHECK_THRESHOLD) { displayMessage (DEBUG,
"Now have %1d scalars.\n", memcheck_numScalars); }

#endif

return scalar;

void xallocateVector (long u, size_t size) {

void *vector = malloc(u * size);

if (vector == NULL) fatalError ("Unable to allocate memory for vector
of size %$1d.", u);

#ifdef MEMCHECK

memcheck_numVectors++;

if (memcheck_numVectors > MEMCHECK_THRESHOLD) { displayMessage (DEBRUG,

"Now have %1d vectors.\n", memcheck_numVectors); }
fendif
return vector;

void xxallocateMatrix(long ul, long u2, size_t size) {

long i;
void **matrix = malloc(ul * sizeof (void «*));
if (matrix == NULL) fatalError ("Unable to allocate memory for matrix
of size %1d x %1d.", ul, u2);
for (i = 0; 1 < ul; i++) {
matrix[i] = malloc(u2 = size);
if (matrix[i] == NULL) fatalError ("Unable to allocate memory for

matrix of size %1d x %1d.", ul, u2);

}

#ifdef MEMCHECK

memcheck_numMatrices++;

if (memcheck_numMatrices > MEMCHECK_THRESHOLD) { displayMessage (DEBUG
"Now have %1d matrices.\n", memcheck_numMatrices); }

#endif

return matrix;

}

214

335
336 void xx*allocate3DArray (long ul, long u2, long u3, size_t size) {
337 long i, j;

338 void xxxmatrix = malloc(ul * sizeof (void xx));
339 if (matrix == NULL) fatalError ("Unable to allocate 3D array of size %
1d x %1d x %1d.", ul, u2z2, u3);

340 for (1 = 0; i < ul; i++) {

341 matrix[i] = malloc (u2 * sizeof (void «));

342 if (matrix[i] == NULL) fatalError ("Unable to allocate 3D array of
size %1d x %1d x %$1d.", ul, u2, u3);

343 for (j = 0; j < u2; j++) {

344 matrix[i][Jj] = malloc(u3 * size);

345 if (matrix[i][]J] == NULL) fatalError ("Unable to allocate 3D array

of size %1d x %1d x %1d.", ul, u2, u3);

346 }

347 }

348 #ifdef MEMCHECK

349 memcheck_num3DArrays++;

350 if (memcheck_num3DArrays > MEMCHECK_THRESHOLD) { displayMessage (DEBRUG
"Now have %1d 3D arrays.\n", memcheck_num3DArrays); }
351 fendif

352 return matrix;

353 3}

354

355 woid killScalar (void xscalar) {
356 free(scalar) ;

357 #ifdef MEMCHECK

358 memcheck_numScalars——;

359 if (memcheck_numScalars > MEMCHECK_THRESHOLD) { displayMessage (DEBUG,
"Now have %1d scalars.\n", memcheck_numScalars); }
360 #endif

361 }

362

363 wvoid killVector (void xvector) {
364 free (vector) ;

365 #ifdef MEMCHECK

366 memcheck_numVectors——;

367 if (memcheck_numVectors > MEMCHECK_THRESHOLD) { displayMessage (DEBUG,
"Now have %1d vectors.\n", memcheck_numVectors); }

368 #endif

369 }

370

371 wvoid killMatrix (void **matrix, long ul) {

372 long i;

373 for (1 = 0; i < ul; i++) free(matrix[i]);

374 free (matrix);

375 #ifdef MEMCHECK

215

376 memcheck_numMatrices——;

377 if (memcheck_numMatrices > MEMCHECK_THRESHOLD) { displayMessage (DEBUG
"Now have %1d matrices.\n", memcheck_numMatrices); }

378 #endif

379 1}

380

381 wvoid kill3DArray(void *s*xarray, long ul, long u2) {

382 long i, j;

383 for (1 = 0; i < ul; i++) {
384 for (j = 0; J < u2; j++) {
385 free(array[i]1[3]);

386 }

387 free(arrayl[i]);

388 }

389 free (array) ;

390 #ifdef MEMCHECK

391 memcheck_num3DArrays—-—;

392 if (memcheck_num3DArrays > MEMCHECK_THRESHOLD) { displayMessage (DEBUG
"Now have %1d 3D arrays.\n", memcheck_num3DArrays); }

393 #endif

394 1}

D.1.18 datastructures.h

#ifndef DATASTRUCTURES_H
#define DATASTRUCTURES_H

#include <stdio.h>
#include <stdlib.h>
#include "utils.h"

0 3 ON N kW~

=]

1O kst hk stk sk hok ok ok ok Ak ok ko kK

11 **+ Linked 1ists *#*

12 %k Ak ko kK Ak kA A Ak kA K

13

14 /x#4x+ Singly linked 1ists ##x##/
15

16 typedef struct linkedListElt_s {
17 int value;

18 struct linkedListElt_s =*next;
19 } linkedListElt;

20

21 typedef struct {

22 linkedListElt =xhead;

23 linkedListElt xtail;

216

24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

long size;
} linkedList;

linkedList #*createlLinkedList ();

linkedListElt *insertLinkedList (linkedList xlist, int wvalue,
linkedListElt =xafter);

void deletelinkedList (linkedList =1list);

void displaylLinkedList (int minVerbosity, linkedList =*list);

/*#+#+% Doubly linked 1ists ###*x/

typedef struct doublylLinkedListElt_s {
double value;
struct doublyLinkedListElt_s *next;
struct doublylLinkedListElt_s xprev;
} doublyLinkedListElt;

typedef struct ({
doublyLinkedListElt «xhead;
doublyLinkedListElt =*tailj;
long size;

} doublyLinkedList;

doublyLinkedList =*createDoublyLinkedList ();

doublyLinkedListElt xinsertDoublyLinkedList (doublyLinkedList *list,
double value, doublyLinkedListElt xafter);

void deleteDoublyLinkedList (doublyLinkedList x1list);

void deleteDoublylLinkedListElt (doublyLinkedList xlist,
doublyLinkedListElt xelt);

void displayDoublyLinkedList (int minVerbosity, doublyLinkedList xlist);

J ok k kK kA Ak A

*% Queues **

* kA Ak kA A Ak A K
/*#+++ Standard queue with memory #x#**/

enum
IN_QUEUE,
WAS_IN_QUEUE,
NEVER_IN_QUEUE
bi

typedef enum {

DEQUE,
FIFO,

217

68 LIFO

69 } queueDiscipline;

70

71 typedef struct ({

72 long* node;

73 charx history;

74 long readptr;

75 long writeptr;

76 long size;

77 long curelts;

78 } queue_type;

79

80 queue_type createQueue (long size, long eltsize);
81 wvoid deleteQueue (queue_type =*queue);

82 wvoid enQueue (queue_type *queue, long elt);

83 wvoid frontQueue (queue_type *queue, long elt);

84 long deQueue (queue_type xqueue);

85 wvoid displayQueue (int minVerbosity, queue_type =xqueue);
86

T /hhk ok k Ak kk ok ok Kk ok ok kA Ak

88 *+ Binary heaps #*#*

89 k ok ko kK Ak kA A Ak A A A
90

91 #define NOT_IN_HEAP -1
92

93 typedef struct {

94 int+ node;

95 int last;

96 intx valueFn;

97 int+ nodeNDX;

98 int maxsize;

99 int maxelts;

100 } heap_type;

101

102 heap_type *createHeap (int heapsize, int eltsize);

103 wvoid insertHeap (heap_type *heap, int key, int value) ;
104 int findMinHeap (heap_type =*heap);

105 wvoid deleteMinHeap (heap_type xheap);

106 wvoid deleteHeap (heap_type =*heap);

107 wvoid decreaseKey (heap_type xheap, int elt, int value);
108 wvoid increaseKey (heap_type =*heap, int elt, int value);
109 void siftUp (heap_type xheap, int elt);

110 wvoid siftDown (heap_type xheap, int elt);

111 int heapPred(int elt);

112 int heapSucc(int elt);

113 int minChild(heap_type xheap, int elt);

114 wvoid heapify (heap_type xheap);

218

115 wvoid displayHeap (int minVerbosity, heap_type xheap);

116

117/ hok ok ok okok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok & A ok ok

118 *+ Memory (de)allocation xx

119 k ok kK ok ok kK Ak ok kA Kk kA KAk kA Ak A A

120

121

122 /% Comment out this line to disable memory leak checking #*/

123 /+ #define MEMCHECK */

124 #define MEMCHECK_THRESHOLD 1000 /* Threshold before reporting data
structure counts for memory leak checking #*/

125

126 void xallocateScalar (size_t size);

127 wvoid *allocateVector (long u, size_t size);

128 wvoid xxallocateMatrix (long ul, long u2, size_t size);

129 wvoid *+xallocate3DArray (long ul, long u2, long u3, size_t size);

130 wvoid killScalar (void xscalar);

131 woid killVector (void xvector);

132 wvoid killMatrix (void **matrix, long ul);

133 wvoid kill3DArray (void *xxarray, long ul, long u2);

134

135 #define newScalar (y) (y *)allocateScalar (sizeof (y))

136 #define newVector (u,y) (y *)allocateVector (u,sizeof (y))

137 #define newMatrix (ul,u2,y) (y **)allocateMatrix (ul,u2,sizeof (y
))

138 #define new3DArray (ul,u2,u3,y) (y **x*)allocate3DArray(ul,u2,u3,
sizeof (y))

139

140 #define declareScalar (y,S) y *S = newScalar (y)

141 #define declareVector (y,V,u) y *V = newVector (u,y)

142 #define declareMatrix(y,M,ul,u2) y **M = newMatrix (ul,u2,y)

143 #define declare3DArray(y,A,ul,u2,u3) vy #***A = new3DArray (ul,u2,u3,y)
144

145 #define deleteScalar (y) killScalar (y)

146 #define deleteVector (y) killVector (y)

147 #define deleteMatrix(y,ul) killMatrix ((void *=)y,ul)

148 #define delete3DArray (y,ul,u2) kill3DArray ((void *x*x)y,ul,u2)

149

150 #ifdef MEMCHECK

151 long memcheck_numScalars, memcheck_numVectors, memcheck_numMatrices,
memcheck_num3DArrays;

152 #endif
153
154 #endif

D.1.19 utils.c

219

O 00 1O DN B~ W~

AR W LW W LW W LW W LW W WK NN DD DNDDNDNDDND P = = = e e e e
— OO0 X0 I AN WLWND—~, OOV IDNANANRAEWND~, OOV IDNN RN WND~O

42
43
44
45
46
47

#include "utils.h"

void waitForKey () {
getchar () ;

void SWAP (void* a, voidx b, int size) {
void*x ¢ = malloc(size);
memcpy (c, a, size);
memcpy (a, b, size);
memcpy (b, c, size);
free(c);

double updateElapsedTime (clock_t startTime,
(clock() - startTime)) / CLOCKS_PER_SEC;

xrelapsedTime += ((double)
return relapsedTime;

/*********************

*+ Status messages *x*

*********************/

double xelapsedTime) {

void displayMessage (int minVerbosity, char *xformat, ...) {

va_list message;
if (verbosity < minVerbosity) return;
if (minVerbosity < DEBUG) {
va_start (message, format);
vprintf (format, message);
va_end (message) ;
fflush (stdout) ;
}
#ifdef DEBUG_MODE
va_start (message, format);

vifprintf (debugFile, format, message);

va_end (message) ;
fflush (debugFile);
#endif

—

void fatalError (char xformat, ...) {
va_list message;
va_start (message, format);
printf ("Fatal error: ");
vprintf (format, message);
va_end (message) ;
fflush (stdout) ;

220

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

#ifdef DEBUG_MODE
va_start (message, format);
fprintf (debugFile, "Fatal error: ");
vfprintf (debugFile, format, message);
va_end (message) ;
fflush (debugFile);
#endif
if (PAUSE_ON_ERROR == TRUE) waitForKey();
#ifdef DEBUG_MODE
fclose (debugFile);
#endif
exit (EXIT_FAILURE) ;

void warning(int minVerbosity, char xformat,

va_list message;
if (verbosity < minVerbosity) return;
va_start (message, format);
printf ("Warning: ");
vprintf (format, message);
va_end (message) ;
fflush (stdout);
#ifdef DEBUG_MODE
va_start (message, format);
fprintf (debugFile, "Warning: ");
vfprintf (debugFile, format, message);
va_end (message) ;
fflush (debugFile);
#endif
if (PAUSE_ON_WARNING == TRUE) waitForKey();

O 00 1O\ B~ W~

—_
o

—_
N —

D.1.20 wutils.h

#ifndef UTILS_H_
##define _UTILS_H_

#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define DEBUG_MODE /#* Uncomment this line to echo output to log file.
*/

#define IS _MISSING -1

221

13
14
15
16
17
18
19
20
21

2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#define STRING_SIZE 9999
#define PAUSE_ON_ERROR FALSE

#define PAUSE_ON_WARNING FALSE

J *

Standard units: feet, seconds

Multiplying a quantity by these values will convert it to standard

units
Dividing a quantity by these values will convert it from standard units
*/
#define HOURS 3600.0
#define MINUTES 60.0
#define SECONDS 1.0
#define MILES 5280.0
#define KILOMETERS 3280.839895
#define METERS 3.280839895
#define FEET 1.0
#define INCHES 0.083333333
#define min(x,y) (((x)<(y)) ? (x) (y))
#define max(x,y) (((x)>(y)) ? (x) (y))
#define swap (a,b) SWAP (&a, &b, sizeof(a))
#define round2int (x) (int) ((x) < 0 ? ((x) - 0.5) ((x) + 0.5))
#define round2long (x) (long) ((x) < 0 ? ((x) — 0.5) ((x) 0.5))

#ifndef _ cplusplus
typedef enum {
FALSE,
TRUE
} bool;
#fendif

#ifdef DEBUG_MODE
char debugFileName [STRING_SIZE];
FILE xdebugFile;

#fendif

enum { /x Verbosity levels for status messages #*/
NOTHING,
LOW_NOTIFICATIONS,
MEDIUM_NOTIFICATIONS,
FULL_NOTIFICATIONS,
DEBUG,
FULL_DEBUG

222

59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

W N =

O 00 3 O\ W

10

12
13
14
15
16

}i

int verbosity;

#ifdef MEMCHECK
extern long memcheck_numScalars, memcheck_numVectors,

memcheck_numMatrices;
#endif

void waitForKey () ;
void SWAP (void +*a, wvoid *b, int size);

double updateElapsedTime (clock_t startTime, double xelapsedTime);

/*********************

** Status messages **
*********************/
void displayMessage (int minVerbosity, char *format, ...);
void fatalError (char xformat, ...);
void warning (int minVerbosity, char *xformat, ...);
#endif

D.2 Warrants module

D.2.1 main warrant.c

#include "main warrant.h"

int main (int numArgs, char xargs[]) {

#ifdef DEBUG_MODE /* Debug mode enables extra logging.

macro in utils.h =*/

debugFile = openFile("logfile.txt", "w");

verbosity = DEBUG;

displayMessage (DEBUG, "Starting new run.\n");
#endif

switch (numArgs) {
case 5: /# Comprehensive warrant analysis x/

Define this

generateWarrantNodeControls (args[l], args([2], args[3], args[4]);

break;
case 4: /% Analysis of selected nodes only */

{

parameters_type run;

223

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43

44

45

46

47
48

49
50

51
52

53
54

}

FILE *controlFile = openFile(args([3], "w");

initializeDTARun (&run, argsl[1l]);
readCumulativeCounts (run.network, run.countsFileName) ;
analyzeNode (&run, atof (argsf[2]) - 1);
writeNode (controlFile, run.network, atof(args[2]) - 1);
cleanUpDTARunN (&run) ;
fclose (controlFile) ;
break;

}

default:
displayUsage () ;

#ifdef DEBUG_MODE
fclose (debugFile);
#endif

return EXIT_SUCCESS;

void displayUsage () {

}

printf ("Error in arguments —— two possible usages:\n");

printf ("\n");

printf ("Usage 1: To perform a complete run when there is no summary
file already available:\n");

printf (" warrant parametersFile networkFile initialICF finalICF\n"
)i

printf (" parametersFile - standard parameters file for
executing calibrating run\n");

printf (" networkFile - network file for executing calibration
run\n") ;

printf (" initialICF - file containing initial configuration;

UNKNOWN marks intersections for analysis\n");

printf (" finalICF - file to output final intersection
configuration\n");

printf ("\n");

printf ("Usage 2: To perform a run of a single node when a summary
file is already available:\n");

printf (" warrant parametersFile nodeNumber outputFile\n");

printf (" parametersFile - standard parameters file, with
summary file indicated\n");

printf (" nodeNumber - ID for the node to re—analyze");

printf (" outputFile - name for file to write the new control
data");

exit (EXIT_FAILURE) ;

224

0 ON N kW~

o S e S e S S S G SRS
NN W= OO

17
18
19
20
21
22
23
24
25
26
27

9}

O 00 3 N

10

D.3 main warrant.h

J/ *
Hierarchy of header files (bottom-up):

utils.h
datastructures.h
sampling.h
network.h
cell.h
vehicle.h
node. h
fileio.h
dta.h
warrant.h
main.h

Declarations referring to lower—level headers can use typedefs;

declarations referring to higher-level headers must use structs

*/

#include <stdlib.h>
#include "cell.h"
#include "dta.h"
#include "fileio.h"
#include "utils.h"
#include "warrant.h"

void displayUsage () ;

Il3;1 warrant.c

#include "warrant.h"

void generateBasicNodeControls (char *networkFileName, char =
inputNodeControlFileName, char xoutputNodeControlFileName)
network_type xnetwork = newScalar (network_type);

readNetworkFile (network, networkFileName, 1); /+ Using dummy
backward wave ratio; no simulation for the basic analysis.

sophisticated warrant analysis will change this.) #*/
createStarlLists (network) ;
network->paths = createPathLinkedList ();
readNodeControlFile (network, inputNodeControlFileName) ;
setAllNodesTo4d4WayStop (network) ;
writeNodeControlFile (network, outputNodeControlFileName);

225

(More

11

12 /% Memory cleanup (only what’s allocated in the functions called
above #*/

13 deleteNetwork (network) ;

14)

15

16 void generateWarrantNodeControls (char *parametersFileName, char x
networkFileName, char xinputNodeControlFileName, char x
outputNodeControlFileName) {

17 parameters_type trialRun;

18

19 /* Step 1: Generate temporary control file using basic controls =/

20 generateBasicNodeControls (networkFileName, inputNodeControlFileName,
TEMP_INTERSECTION_FILENAME) ;

21

22 /* Step 2: Create temporary parameters file: same as original
parameters file but with temporary control file */

23 generateTemporaryParametersFile (parametersFileName,
TEMP_INTERSECTION_FILENAME, TEMP_PARAMETERS_FILENAME) ;

24

25 /% Step 3: Perform a single run with temporary parameters file =/

26 initializeDTARun (&trialRun, TEMP_PARAMETERS_FILENAME) ;

27 DTA (&trialRun) ;

28

29 /+ Step 4: Do warrant analysis =/

30 performWarrantAnalysis (&trialRun, inputNodeControlFileName);

31 writeNodeControlFile (trialRun.network, outputNodeControlFileName) ;

32

33 /* Step 5: Clean up by deleting temporary files #*/

34 if (remove (TEMP_INTERSECTION_FILENAME)) fatalError ("Unable to delete

temporary control file %$s\n", TEMP_INTERSECTION_FILENAME) ;
35 if (remove (TEMP_PARAMETERS_FILENAME)) fatalError ("Unable to delete

temporary parameters file %$s\n", TEMP_PARAMETERS_FILENAME) ;
36 cleanUpDTARun (&trialRun) ;
37 1}
38
39 void generateTemporaryParametersFile (char xparametersFileName, char =«
newControlFileName, char *newParametersFileName) ({

40 parameters_type tempRun;

41 readParametersFile (&tempRun, parametersFileName) ;

42 strncpy (tempRun.nodeControlFileName, newControlFileName, STRING_SIZE
)

43 writeParametersFile (&tempRun, newParametersFileName);

44 3

45

46 wvoid performWarrantAnalysis (parameters_type xrun, char =«
originalControlFileName) {

226

47
48
49
50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75

76

77
78

79
80
81
82
83

84

int 1i;
network_type *network = run->network;
declareVector (bool, isUnknown, network->numNodes) ;

/* Read original node controls to see which nodes need a warrant
analysis conducted #*/

scanControlFileForUnknown (originalControlFileName, isUnknown,
network—->numNodes) ;

/+ First ensure that all centroids are properly labeled x/
for (i = 0; i < network->numZones; i++) {
network—>node[i] .control = CENTROID;

/% Now process all other nodes */
for (; 1 < network->numNodes; i++) {
if (isUnknown[i] == TRUE) {
analyzeNode (run, 1i);

deleteVector (isUnknown) ;

/+ 1 1s the node to analyze */
void analyzeNode (parameters_type *run, int i) {

network_type xnetwork = run->network;

arc_type smajorApproachl = NULL, xmajorApproach2 = NULL, =*
minorApproach = NULL;

/* First determine appropriate control type =*/

classifyApproaches (& (network->node[i]), network->timeHorizon, &
majorApproachl, &majorApproach2, &minorApproach);

network->node[i] .control = warrantedControl (& (network—->node[1]),
network->timeHorizon, run->timeHorizon, majorApproachl,
majorApproach?2, minorApproach);

/* Then perform any additional analysis needed for that control type
*/

switch (network—->node[i].control) {

case NONHOMOGENEOUS:

case FOUR_WAY_STOP: /+ Here no additional information 1s needed */
break;

case TWO_WAY_STOP: /* Here use angles to determine order of
priorities #*/
createTwoWayStop (& (network->node[i]), majorApproachl,

majorApproach?2);

227

85 break;

86 case BASIC_SIGNAL: /#* Put basic signal timing here #*/

87 createBasicSignal (& (network—->node[i]), majorApproachl,
majorApproach?2, minorApproach, network->timeHorizon, run->
timeHorizon);

88 break;

89 default:

90 fatalError ("Unknown return value %d from warrantedControl!",

network—>node[i] .control);

91 }

92 }

93

94

95 /=~

96 Creates a "two-phase" signal. Phase 1 is for majorApproachl and
ma jorApproach2. Phase 2 is for minorApproach and everything else.

97 1. For major approach: X factor is max(v/c for major approach 1 and
major approach 2)

98 For minor approach: X factor is v/c for minorApproach

99 Calculate cycle length: C = min(5/(1 - X maj — X_min), MAX_LENGTH)

100 4. Then each phase’s green time 1s proportionate X maj / (X_maj + X-
min) * C

101 This procedure IGNORES: clearance/lost time; saturation flow
adjustments (including for turning); pedestrian crossing times

W N

102 x/

103 wvoid createBasicSignal (node_type =*node, arc_type =*majorApproachl,
arc_type s*majorApproach?2, arc_type *minorApproach, int timeSteps,
float timeHorizon) {

104 int cyclelLength, majorGreenTime, minorGreenTime;

105 float majorSaturation, minorSaturation;

106 double majorApproachlvolume, majorApproach2volume,
minorApproachVolume;

107 basicSignal_type *basicSignalControl;

108 arcLinkedListElt *upstreamArc, *downstreamArc;

109

110 displayMessage (DEBUG, "Creating basic signal for node %d\n", node->
ID);

111

112 /* 1. If there are 2 approaches, make the second "major approach"
the minor approach #*/

113 if (minorApproach == NULL) {

114 majorApproach2 = majorApproachl;

115 minorApproach = majorApproach?2;

116 }

117

118 /* 2. Determine critical lane volumes, converting units as

appropriate x*/

228

119

120

121

122

123
124

125
126
127

128

129
130
131

132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147

148
149

ma j
maj
min
maj
min
dis
J *
dis

if

} e

J *

ma j

min

J *

nod
bas
bas
bas
for

orApproachlvolume = majorApproachl->downstreamCount [timeSteps -
1] / timeHorizon;

orApproach2volume = majorApproach2->downstreamCount [timeSteps -
1] / timeHorizon;

orApproachVolume = minorApproach->downstreamCount [timeSteps — 1]
/ timeHorizon;

orSaturation = max (majorApproachlvolume / majorApproachl->
capacity, majorApproach2volume / majorApproach2->capacity);
orSaturation = minorApproachVolume / minorApproach->capacity;
playMessage (DEBUG, "Major and minor saturation levels are %f and

$f\n", majorSaturation, minorSaturation);

3. Calculate cycle length using Webster’s formula */

playMessage (DEBUG, "Webster cycle length for this signal is %f\n"

, 5.0 / (1 - majorSaturation - minorSaturation));

(majorSaturation + minorSaturation > 1 - 5.0 / MAX_CYCLE_LENGTH)

{

cycleLength = MAX_ CYCLE_LENGTH;

lse {

cycleLength max (MIN_CYCLE_LENGTH, rint(5 / (1 - majorSaturation
— minorSaturation)));

4. Allocate green times */

orGreenTime = (majorSaturation / (majorSaturation +
minorSaturation)) % cyclelLength;

orGreenTime = cyclelLength - majorGreenTime;

5. Set up signal data structure; note that green times are

entered in the same order as in createAllPossibleMovements x/
e->controlData = newScalar (basicSignal_type);
icSignalControl = (basicSignal_type *) (node->controlData);
icSignalControl->cyclelLength = cyclelLength;
icSignalControl->greenTime = createlinkedList ();
(upstreamArc = node->reverseStar->head; upstreamArc != NULL;
upstreamArc = upstreamArc->next) {
for (downstreamArc = node->forwardStar->head; downstreamArc !=
NULL; downstreamArc = downstreamArc—->next) {
if (downstreamArc->arc->head->ID == upstreamArc->arc->tail->ID
) continue; /% Skip U-turns #*/
if (upstreamArc->arc == majorApproachl || upstreamArc->arc ==
majorApproach2) {
insertLinkedList (basicSignalControl->greenTime,
majorGreenTime, NULL);
} else ({
insertLinkedList (basicSignalControl->greenTime,
minorGreenTime, NULL);

229

150
151
152
153
154
155
156

157
158

159
160
161
162
163
164
165
166

167

168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184

185

J *

Two-way stop: tier 3. tier 1 is a right turn or through from major;

*/

tier 2 is a let turn from major; tier 3 1is anything else

void createTwoWayStop (node_type *node, arc_type *majorApproachl,

arc_type smajorApproach2) {

float majorAnglel, majorAngle2, trialAngle;
priorityLinkedListElt *priorityl, xpriority2, x*priority3;
twoWayStop_type xstopData;

turningLinkedListElt *curMovement;

arcLinkedListElt #*upstreamArc, xdownstreamArc;

/+ 1. Determine angles */

majorAnglel = atan2 (majorApproachl->tail->Y - node->Y,
majorApproachl->tail->X - node->X);

majorAngle2 = atan2 (majorApproach2->tail->Y - node->Y,
majorApproach2->tail->X - node->X);

/* 2. Set up stop data structure #*/
node->controlData = newScalar (twoWayStop_type);
stopData = (twoWayStop_type =*) (node->controlData);

stopData->minStopPriority = 3;

stopData->priorityList = createPriorityLinkedList();

priorityl = insertPriorityLinkedList (stopData->priorityList, 1,
)i

priority2 = insertPriorityLinkedList (stopData->priorityList, 2,
priorityl);

priority3 = insertPrioritylLinkedList (stopData->priorityList, 3,
priority2);

stopData->saturationFlow = majorApproachl->capacity;

/* 3. Assign each movement to an appropriate priority list:
major approach through/right = 1; major approach left = 2;
everything else = 3

NULL

Cycles through 1list in the same order as movements are created 1in

createAllPossibleMovements

*/

curMovement = node->turnMovements->head;

for (upstreamArc = node->reverseStar->head; upstreamArc != NULL;
upstreamArc = upstreamArc->next) {
for (downstreamArc = node->forwardStar->head; downstreamArc !

NULL; downstreamArc = downstreamArc->next) {

230

186

187
188

189
190

191

192

193
194
195
196
197

198

199
200
201
202
203

204
205

206

207

208
209
210
211

212

if (downstreamArc->arc->head->ID == upstreamArc->arc->tail->ID
) continue; /% Skip U-turns */
if (upstreamArc->arc == majorApproachl) {
trialAngle = atan2 (downstreamArc->arc->head->Y - node->Y,
downstreamArc—->arc->head->X — node->X);

if (majorAnglel <= majorAngle2) {
if (majorAnglel <= trialAngle && trialAngle <=
majorAngle2) { /* Right turn x/
insertTurningLinkedList (priorityl->movements,
curMovement->movement, NULL) ;
} else {

/* Left turn =*/
insertTurningLinkedList (priority2->movements,
curMovement—->movement, NULL) ;
}
} else {
if (majorAngle2 <= trialAngle && trialAngle <=
majorAnglel) { /# Left turn */
insertTurningLinkedList (priority2->movements,
curMovement->movement, NULL) ;
} else {

/+* Right turn =*/

insertTurningLinkedList (priorityl->movements,
curMovement->movement, NULL);

}

} else if (upstreamArc->arc == majorApproach2) {
trialAngle = atan2 (downstreamArc->arc—>head->Y - node->Y,
downstreamArc->arc->head->X - node->X);

if (majorAngle2 <= majorAnglel) {
if (majorAngle2 <= trialAngle && trialAngle <=
majorAnglel) { /# Right turn x/
insertTurningLinkedList (priorityl->movements,
curMovement->movement, NULL) ;
} else {

/* Left turn =*/
insertTurningLinkedList (priority2->movements,
curMovement->movement, NULL);
}
} else {
if (majorAnglel <= trialAngle && trialAngle <=
majorAngle2) { /* Left turn */
insertTurningLinkedList (priority2->movements,
curMovement—->movement, NULL) ;

231

213

214

215
216
217
218

219
220
221
222
223
224
225
226

227

228
229
230
231
232
233
234
235
236
237
238

239
240
241
242
243
244
245
246
247
248
249
250
251

} else {

/% Right turn */
insertTurninglLinkedList (priorityl->movements,
curMovement—->movement, NULL) ;

}
} else ({
insertTurningLinkedList (priority3->movements, curMovement->
movement, NULL);
}

curMovement = curMovement—->next;

void classifyApproaches (node_type *node, int timeSteps, arc_type *x
majorApproachl, arc_type xx*majorApproach2, arc_type xsminorApproach)
{
double majorApproachlvolume, majorApproach2volume,
minorApproachVolume, curVolume;
arcLinkedListElt *curArc;

/* Initialize search */
*majorApproachl = NULL;
*majorApproach2 = NULL;
*minorApproach = NULL;
majorApproachlvolume = —-INFINITY;
majorApproach2volume = —INFINITY;
minorApproachVolume = —-INFINITY;

for (curArc = node->reverseStar->head; curArc != NULL; curArc =
curArc—>next) {

curVolume = curArc->arc->downstreamCount [timeSteps - 1];

if (curVolume > majorApproachlvolume) {
minorApproachVolume = majorApproach2volume;
majorApproach2volume = majorApproachlvolume;
majorApproachlvolume = curVolume;
*sminorApproach = xmajorApproach?2;
*majorApproach2 = xmajorApproachl;
*majorApproachl = curArc->arc;

} else if (curVolume > majorApproach2volume) {
minorApproachVolume = majorApproach2volume;
majorApproach2volume = curVolume;

*minorApproach = xmajorApproach?2;
*majorApproach2 = curArc->arc;

232

252 } else if (curVolume > minorApproachVolume) {

253 minorApproachVolume = curVolume;

254 xminorApproach = curArc->arc;

255 }

256 }

257

258 /* Avoid compiler warning about parameter ’‘minorApproach’ set but
not used (the pointer is used by another function) x/

259 if (*minorApproach == NULL) return;

260 }

261

262 /+ Use volumes to classify approaches, and thereby determine
appropriate control type */

263 intersection_type warrantedControl (node_type *node, int timeSteps,
float timeHorizon, arc_type *majorApproachl, arc_type =
majorApproach2, arc_type sminorApproach) {

264 int majorApproachlanes, minorApproachlLanes;
265 double majorApproachVolume, minorApproachVolume, majorApproachFFS;
266
267 /+ First handle easy cases #*/
268 if (node->reverseStar—->size <= 0 || node->forwardStar—->size <= 0) {
269 fatalError ("Non-centroid node %d either has no approaches or no
exits.", node—->ID);
270 } else if (node->reverseStar->size == 1) {
271 if (node->forwardStar—->size == 1) {
272 return NONHOMOGENEOUS;
273 } else {
274 return DIVERGE;
275 }
276 } else if (node->forwardStar->size == 1) {
277 return MERGE;
278 }
279
280 /* Need to add MERGE and DIVERGE as well #*/
281 if (majorApproach2 == NULL) return NONHOMOGENEOUS;
282
283 /+ If there are 2 approaches, make the second "major approach" the
minor approach =/
284 if (minorApproach == NULL) {
285 majorApproachVolume = majorApproachl->downstreamCount [timeSteps -
11;
286 minorApproachVolume = majorApproach2->downstreamCount [timeSteps -
11;
287 majorApproachLanes = rint (majorApproachl->capacity / (
BASE_SATURATION_FLOW / HOURS)) ;
288 minorApproachLanes = rint (majorApproach2->capacity / (

BASE_SATURATION_FLOW / HOURS)) ;

233

289

290
291

292

293

294

295

296
297
298
299
300
301
302

303
304
305

306

307

308
309
310
311
312
313

314
315
316
317
318
319
320
321

}

majorApproachFFS = majorApproachl->length / majorApproachl->

freeFlowTime;
} else { /# Usual case */

majorApproachVolume = max (majorApproachl->downstreamCount [
timeSteps - 1], majorApproach2->downstreamCount [timeSteps -
11)3

minorApproachVolume = minorApproach->downstreamCount [timeSteps -
1];

majorApproachLanes = rint (max (majorApproachl->capacity,
majorApproach2->capacity) / (BASE_SATURATION_FLOW / HOURS)) ;

minorApproachLanes = rint (minorApproach->capacity / (

BASE_SATURATION_FLOW / HOURS));

majorApproachFFS = max (majorApproachl->length / majorApproachl->
freeFlowTime, majorApproach2->length/ majorApproach2->
freeFlowTime) ;

/% Convert parameters to hourly units for MUTCD */

majorApproachVolume = (HOURS / timeHorizon);

minorApproachVolume = (HOURS / timeHorizon);

majorApproachFFS /= (MILES / HOURS) ;

displayMessage (DEBUG, "Major and minor approach volumes are %f and %
f\n", majorApproachVolume, minorApproachVolume) ;

/+ Now do warrant analysis based on volumes #/

if (signalWarranted(majorApproachLanes, minorApproachLanes,
majorApproachVolume, minorApproachVolume, majorApproachFFS) ==
TRUE) return BASIC_SIGNAL;

if (fourWayStopWarranted (majorApproachVolume, minorApproachVolume)
== TRUE) return FOUR_WAY_STOP;

if (twoWayStopWarranted (majorApproachVolume) == TRUE) return
TWO_WAY_STOP;

return FOUR_WAY_ STOP; /% Default control x*/

/* Based on MUTCD volume warrant +/
bool signalWarranted (int majorLanes, int minorLanes, double majorVolume

, double minorVolume, double majorApproachFFS) ({
if (minorLanes <= 1) {
if (majorLanes <= 1) {
if (majorVolume > 500 && minorVolume > 150) return TRUE;
if (majorVolume > 750 && minorVolume > 75) return TRUE;
if (majorVolume > 600 && minorVolume > 120) return TRUE;

if (majorApproachFFS <= 40) return FALSE;

234

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

if (majorVolume > 350 && minorVolume > 105)
if (majorVolume > 525 && minorVolume > 53)
if (majorVolume > 420 && minorVolume > 84)
return FALSE;
} else { /* More than one major lane =*/

if (majorVolume > 600 && minorVolume > 150)
if (majorVolume > 900 && minorVolume > 75)
if (majorVolume > 720 && minorVolume > 120)

if (majorApproachFFS <= 40) return FALSE;

if (majorVolume > 420 && minorVolume > 105)
if (majorVolume > 630 && minorVolume > 53)
if (majorVolume > 504 && minorVolume > 84)
return FALSE;
}
} else { /+ More than one minor lane */
if (majorLanes <= 1) {
if (majorVolume > 500 && minorVolume > 200)
100)
if (majorVolume > 600 && minorVolume > 160)

\%

if (majorVolume > 750 && minorVolume

if (majorApproachFFS <= 40) return FALSE;

if (majorVolume > 350 && minorVolume > 140)

70)
if (majorVolume > 420 && minorVolume > 112)
return FALSE;

} else { /#* More than one major lane */
if (majorVolume > 600 && minorVolume > 200)
if (majorVolume > 900 && minorVolume > 100)
if (majorVolume > 720 && minorVolume > 160)

\%

if (majorVolume > 525 && minorVolume

if (majorApproachFFS <= 40) return FALSE;

if (majorVolume > 420 && minorVolume > 140)
if (majorVolume > 630 && minorVolume > 70)
if (majorVolume > 504 && minorVolume > 112)
return FALSE;

bool fourWayStopWarranted (double majorVolume, double minorVolume)

if (majorVolume > 300 && minorVolume > 200) {
return TRUE;
} else {

235

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

return TRUE;
return TRUE;
return TRUE;

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

390
391

392
393
394
395
396
397
398
399
400
401
402

403

404

405
406

407
408
409

return FALSE;

bool twoWayStopWarranted (double majorVolume) {
if (majorVolume > 750) {
return TRUE;
} else {
return FALSE;

void setAllNodesTo4dWayStop (network_type xnetwork) {

int i;
/* Take care of centroids... */
for (i = 0; i < network->numZones; i++) {

network—>node[i] .control = CENTROID;

/#+ Then generate all other possible movements, without creating U-
turns */
for (; 1 < network->numNodes; i++) {

if (network->node[i].control != UNKNOWN_CONTROL) continue; /x* Don

’t disturb known intersections #*/
network—->node[i] .control = FOUR_WAY_ STOP;
createAllPossibleMovements (& (network—>node[i]));

void createAllPossibleMovements (node_type xnode) {
arcLinkedListElt #*upstreamArc, xdownstreamArc;
turning_type *newMovement;

for (upstreamArc = node->reverseStar->head; upstreamArc != NULL;
upstreamArc = upstreamArc->next) {
for (downstreamArc = node->forwardStar->head; downstreamArc !=

NULL; downstreamArc = downstreamArc->next) {

if (downstreamArc->arc->head->ID == upstreamArc->arc->tail->ID

) continue; /% Skip U-turns */
newMovement = newScalar (turning_ type);

createMovement (newMovement, upstreamArc->arc->tail->ID, node->

ID, downstreamArc->arc->head->ID, node);
newMovement—->saturationFlow = upstreamArc->arc—->capacity;

236

410 }

411

412 wvoid scanControlFileForUnknown (char *controlFileName, bool *isUnknown,
int numNodes) {

413 int i, status;

414 char fulllLine[STRING_SIZE], trimmedLine[STRING_SIZE], controlText |
STRING_SIZE];

415 FILE *controlFile = openFile(controlFileName, "xr");

416

417 while (!feof (controlFile)) {

418 if (fgets(fulllLine, STRING_SIZE, controlFile) == NULL) break;

419 status = parselLine (fulllLine, trimmedLine);

420 if (status == BLANK_LINE || status == COMMENT) continue;

421 if (strncmp (trimmedLine, "Node", 4) == 0) {

422 sscanf (trimmedLine, "Node %d : %s", &i, controlText);

423 }

424 if (i <1 || 1 > numNodes) {

425 warning (FULL_NOTIFICATIONS, "Node out of range in control file

Ignoring input line:\n%s\n", fullline);

426 continue;

427 }

428 if (strcmp(controlText, "UNKNOWN") == 0) {

429 isUnknown[i-1] = TRUE;

430 } else {

431 isUnknown[i-1] = FALSE;

432 }

433 }

434 fclose (controlFile);

435 1}

D.3.2 warrant.h

#ifndef WARRANT H_
#define WARRANT_ H_

#include "dta.h"

#include "fileio.h"
#include "network.h"
#include "datastructures.h"
#include "utils.h"

#include <math.h>

O 00 1O B~ W~

—_—
)

#define BASE_SATURATION_FLOW 1900

—_
W N

#define MIN_CYCLE_LENGTH 20
#define MAX_CYCLE_LENGTH 120

—_
[N

237

16
17
18
19

20

21

22
23

24

25

26
27

28
29
30
31

32

33
34
35
36

37
38
39

#define TEMP_INTERSECTION_FILENAME "“TEMP.ICF"
#define TEMP_PARAMETERS_FILENAME "“TEMP_PARAMETERS.TXT"

void generateBasicNodeControls (char *networkFileName, char =«
inputNodeControlFileName, char xoutputNodeControlFileName);

void generateWarrantNodeControls (char xparametersFileName, char x
networkFileName, char xinputNodeControlFileName, char x
outputNodeControlFileName) ;

void generateTemporaryParametersFile (char xparametersFileName, char x
newControlFileName, char xnewParametersFileName) ;

void classifyApproaches (node_type *node, int timeSteps, arc_type xx*
majorApproachl, arc_type x*majorApproach?2, arc_type **minorApproach)
;

void performWarrantAnalysis (parameters_type *run, char =
originalControlFileName) ;

intersection_type warrantedControl (node_type xnode, int timeSteps,
float timeHorizon, arc_type *majorApproachl, arc_type =
majorApproach2, arc_type xminorApproach);

bool signalWarranted (int majorLanes, int minorLanes, double majorVolume
, double minorVolume, double majorApproachFFS) ;

bool fourWayStopWarranted (double majorVolume, double minorVolume) ;

bool twoWayStopWarranted (double majorVolume) ;

void createBasicSignal (node_type *node, arc_type xmajorApproachl,
arc_type *majorApproach?2, arc_type *minorApproach, int timeSteps,
float timeHorizon);

void createTwoWayStop (node_type *node, arc_type *majorApproachl,
arc_type *majorApproach?);

void setAllNodesTo4dWayStop (network_type xnetwork);
void createAllPossibleMovements (node_type xnode);
void scanControlFileForUnknown (char *controlFileName, bool *isUnknown,

int numNodes) ;

void analyzeNode (parameters_type *run, int 1i);
#fendif

D.4 Graphics module

D.4.1 main _graphics.c

#include "main_graphics.h"

238

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

/#* Primary main file for running simulation.
endif to compile this one. */
int main (int numArgs, char xargs[]) {

parameters_type run;
graphicsParameters_type graphicsParameters;

/% int t; */
verbosity = FULL_NOTIFICATIONS;

#ifdef DEBUG_MODE /* Debug mode enables extra logging.

macro 1in utils.h */

debugFile = openFile ("logfile.txt", "w");

/* verbosity = FULIL_DEBUG; */
displayMessage (DEBUG, "Starting new run.
#endif
if (numArgs != 2) displayUsage();

initializeDTARun (&run, argsl[l]);

Uncomment #if 0 and #

14

\n") ;

initializeGraphics (&graphicsParameters, &run);

readCumulativeCounts (run.network, run.countsFileName) ;

if (graphicsParameters.snapshotMode == TRUE) {
for (¢t = 0; t < run.network->timeHorizon; t++) {

generateBitmap (&graphicsParameters, run.network,

}
} else {
generateFinalBitmap (&graphicsParameters,

cleanUpDTARunN (&run) ;
cleanUpGraphics (&graphicsParameters) ;
#ifdef DEBUG_MODE
fclose (debugFile);

#endif

return (EXIT_SUCCESS);

void displayUsage () {

&run) ;

Define this

t);

fatalError ("Program requires exactly one argument - run parameters

file.");

239

0 ON N kW~

e e T e T
N W = OO

16
17
18
19
20
21
22
23
24
25
26

D.S main graphics.h

J/ *

Hierarchy of header files (bottom-up):

utils.h
datastru

ctures.h

sampling.h

network.
cell.h
vehicle.
node.h
fileio.h
dta.h
main.h

Declarations referring to lower—-level headers can use typedefs;
declarations referring to higher-level headers must use structs

h

h

*/

#include <stdlib.h>
#include "cell.h"
#include "fileio.h"
#include "utils.h"
#include "graphics.h"
#include "warrant.h"

void disp

layUsage () ;

D.5.1 graphics.c

#include
#include

"graphics.h"
"characters.h"

0 ON N kW~

/*******************************

*% Image conversion routines x*x*

*******************************/

void absolutel2relative (graphicsParameters_type *graphicsParameters,
float absoluteX, float absoluteY, int xrelativeX, int *relativey,
int minX, int minyY) {
xrelativeX = graphicsParameters->borderWidth + graphicsParameters->

imageWidth * ((absoluteX - minX) / graphicsParameters—->
absoluteXrange) ;
x*relativeY = graphicsParameters—->borderWidth + graphicsParameters-—>

240

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30
31
32
33
34
35
36

37

38
39
40
41
42
43
44
45

46
47
48
49

imageHeight = (1 - (absoluteY - minY) / graphicsParameters—>

absoluteYrange) ;

int density2red(int density, int jamDensity) {
return density * 255 / jamDensity;

int density2green (int density, int jamDensity) {
return (jamDensity — density) * 255 / jamDensity;

int density2blue (int density, int jamDensity) {
return (density > 0) ? 0 : 128;
return 0;

return 0 * (density + JjamDensity); /# Never reached, but silences

compiler warnings about unused arguments. #*/

#if O

void generateFinalNodeBitmap (graphicsParameters_type x*
graphicsParameters, parameters_type *run, node_type xnode) {
int i, 1i73;
char filename[STRING_SIZE];
network_type *network = run->network;
bitmap_type bitmap;

displayMessage (FULL_NOTIFICATIONS, "Writing image file ");

bitmap.height = graphicsParameters—>imageHeight + 2 =«
graphicsParameters—->borderWidth;

bitmap.width = graphicsParameters—->imageWidth + 2 =«
graphicsParameters—->borderWidth;

bitmap.pixels = newVector (bitmap.height % bitmap.width, pixel_type);

resetBitmap (&bitmap, 0, 0, 0);

/* Draw arcs adjacent only to a single node */
for (ij = 0; ij < network->numArcs; 1ij++) {
if (network->arc[ij].head == node) {
drawOverallArc (&bitmap, graphicsParameters, ij, run);

drawNode (&bitmap, graphicsParameters, ptr2node (network->arc[i

].tail));
}
if (network->arc[ij].tail == node) {
drawOverallArc (&bitmap, graphicsParameters, ij, run);

drawNode (&bitmap, graphicsParameters, ptr2node (network->arc[i

] .head));

241

J

J

50
51
52
53
54

55
56
57
58
59
60
61
62

63
64
65
66
67

68
69
70
71
72
73
74
75

76
77
78
79

80

81
82
83
84
85
86
87
88

&9

}
/+ Write file x/
sprintf (filename, "%s_node%d.png", graphicsParameters->graphicsRoot,
node->1D) ;
writePNG (&bitmap, filename);
deleteVector (bitmap.pixels);
displayMessage (FULL_NOTIFICATIONS, "%s complete.\n", filename);
}
#fendif
##define PLACEHOLDER_TIME O

void generateFinalBitmap (graphicsParameters_type xgraphicsParameters,

parameters_type *run) {

int i, i3, t;

int oldUpstream, oldDownstream;
int upstream, downstream;

char filename [STRING_SIZE];

int startTime = run->warmUpLength / run->tickLength, endTime = (run
->timeHorizon - run->coolDownLength) / run->tickLength;
int numPeriods = endTime - startTime;
network_type *network = run->network;

bitmap_type bitmap;

displayMessage (FULL_NOTIFICATIONS, "Writing image file ");
if (numPeriods < 1) {
warning (LOW_NOTIFICATIONS, "Can’t generate final bitmap file,
entire run is warm-up or cool-down.\n");
return;

bitmap.height = graphicsParameters—->imageHeight + 2 =«
graphicsParameters—->borderWidth;

bitmap.width = graphicsParameters->imageWidth + 2
graphicsParameters—->borderWidth;

bitmap.pixels = newVector (bitmap.height % bitmap.width, pixel_type);

resetBitmap (&¢bitmap, 0, 0, 0);

/% Draw arcs */
for (ij = 0; ij < network->numArcs; ij++) {
oldUpstream = network->arc[ij].upstreamCount [PLACEHOLDER_TIME];
oldDownstream = network->arc[ij].downstreamCount [PLACEHOLDER_TIME
17

upstream = 0; downstream = 0;

242

90
91
92
93
94

95

96

97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119

120

121
122
123
124
125
126

127
128

for

}

(t = startTime;

t < endTime; t++) {

upstream += network->arc[ij].upstreamCount[t];

downstream += network->arc[ij].downstreamCount[t];

network—->arc[ij] .upstreamCount [PLACEHOLDER_TIME] = upstream /

numPeriods;

network->arc([i]j].downstreamCount [PLACEHOLDER_TIME] =

dra

numPeriods;

wArc (&bitmap, graphicsParameters,

PLACEHOLDER_TIME) ;
network->arc([i]j] .upstreamCount [PLACEHOLDER_TIME] = oldUpstream;
network->arc([ij] .downstreamCount [PLACEHOLDER_TIME] =

oldDownstream;

/+ Draw nodes */

for

(i
dra

= network->numZones;
wNode (&bitmap, graphicsParameters,

/* Write file */

sprintf (filename,
writePNG (&bitmap,

"$s_final.png",
filename) ;

deleteVector (bitmap.pixels);

displayMessage (FULL_NOTIFICATIONS,

i3,

i);

"$s complete.\n",

network,

i < network->numNodes; i++)

downstream /

graphicsParameters—->graphicsRoot) ;

filename) ;

void generateBitmap (graphicsParameters_type *graphicsParameters,
network_type *xnetwork,

int

char filename[STRING_SIZE],

i,

ij, numbDigits =

bitmap_type bitmap;

displayMessage (FULL_NOTIFICATIONS,

int t) {

ceil (loglO (network—>timeHorizon));

formatString[STRING_SIZE];

"Writing image file

bitmap.height = graphicsParameters—->imageHeight + 2 =«
graphicsParameters—>borderWidth;
bitmap.width = graphicsParameters—->imageWidth + 2 =

resetBitmap (&bitmap,

graphicsParameters—->borderWidth;
bitmap.pixels = newVector (bitmap.height x bitmap.width, pixel_type);

/% Draw arcs =*/
3 = 0; 13 < network->numArcs; 1ij++)
(network—>arc[ij] .head->controlType

for

(i
if

arc[ij].tail->controlType

drawArc (&bitmap,

127, 127, 127);

graphicsParameters,

243

{

")

= CENTROID && network—>

!= CENTROID)

i3,

network,

t);

129
130 /% Draw nodes x/

131 for (i = network->numZones; 1 < network->numNodes; i++) {

132 drawNode (&bitmap, graphicsParameters, 1i);

133 }

134

135 /+ Write file */

136 sprintf (formatString, "%$%s%%0%dd.png", numDigits);

137 sprintf (filename, formatString, graphicsParameters->graphicsRoot, t)
4

138 writePNG (&bitmap, filename);

139 deleteVector (bitmap.pixels);

140 displayMessage (FULL_NOTIFICATIONS, "%s complete.\n", filename);

141 }

142

143 /#+#+#4 Drawing routines #+##+/

144

145 wvoid drawArc (bitmap_type xbitmap, graphicsParameters_type =*
graphicsParameters, int 1j, network_type *network, int t) {

146 int x, y, baseX, baseY;

147 int tail = ptr2node(network, network->arcl[ij].tail);

148 int head = ptr2node (network, network->arc[ij].head);

149 int red, green, blue;

150 int numVehicles = network->arc[ij].upstreamCount|[t] - network->arc|
ij].downstreamCount [t];

151 int maxVehicles = network->arc([ij].JjamDensity = network->arc[ij].
length;

152

153 displayMessage (DEBUG, "Drawing arc (%d,%d)\n", network->arc[ij].tail
->ID, network—->arc[ij].head->ID);

154 /+ Identify colors #*/

155 if (maxVehicles == 0) { /# Shade white for 1links with no allowable
vehicles =/

156 red = 127;

157 green = 127;

158 blue = 127;

159 } else {

160 red = density2red(numVehicles, maxVehicles);

161 green = density2green (numVehicles, maxVehicles);

162 blue = density2blue (numVehicles, maxVehicles);

163 }

164

165 switch (graphicsParameters—->arcSlope[ij]) {

166 case SHALLOW: /#* Iterate over x direction, finding appropriate y.
arcRelativeDX must be nonzero x/

167 if (graphicsParameters->arcRelativeDX[i]j] > 0) { /# Arc moves

from left-to-right, draw on bottom */

244

168

169
170

171

172
173
174
175
176
177
178

179

180
181
182
183
184
185

186

187
188
189

190

191
192
193
194
195
196
197

198

199

for

}

} else { /+ Arc moves from right-to-left,
= TOP_LEFT_X(tail);

for

}
break;
case STEE

(x
{
if
bas

for

(x
if
bas

for

P:

= BOTTOM_RIGHT_X(tail);

(BOTTOM_LEFT_X (head) =
eY = BOTTOM RIGHT_Y(tail) + (x — BOTTOM_RIGHT X (tail))

(BOTTOM_LEFT_Y (head)
BOTTOM_LEFT_X (head)

y—) |
setPixel (bitmap,

Xy

(TOP_RIGHT_X (head)
eY = TOP_LEFT_Y (tail)

TOP_RIGHT_Y (head)

y++) |
setPixel (bitmap,

/* Iterative over y direction,

Xy

Y

Y

= BOTTOM_RIGHT_X(tail))

x <= BOTTOM_LEFT_X (head);

— BOTTOM_RIGHT_Y (tail)) / (
— BOTTOM_RIGHT_X(tail));
(y = baseY; y >= baseY - graphicsParameters->1inkWidth;

red, green,

blue);

draw on top */
x >= TOP_RIGHT_X (head); x——) {

TOP_LEFT_X(tail)) continue;

+ (x - TOP_LEFT X(tail)) = (
- TOP_LEFT_Y (tail)) / (TOP_RIGHT_X (
head) - TOP_LEFT_X(tail));

(y = baseY; y <= baseY + graphicsParameters->1inkWidth;

red, green,

arcRelativeDY must be nonzero */

if (graphicsParameters—->arcRelativeDY[1i7]
from bottom—-to-top,

for

}
} else
for

(y
if
bas

for

{

(y
if
bas

for

= TOP_RIGHT_Y (tail);
(BOTTOM_RIGHT_Y (head)
eX = TOP_RIGHT_X(tail)

BOTTOM_RIGHT_X (head)
BOTTOM_RIGHT_Y (head)

draw on right =/

< 0)

blue);

finding appropriate Xx.

{ /+ Arc moves

y >= BOTTOM_RIGHT_Y (head); y-—-)
== TOP_RIGHT_Y (tail)) continue;
+ (y — TOP_RIGHT_Y (tail)) =* (

- TOP_RIGHT X (tail))
- TOP_RIGHT Y (tail));

/A

xX++)

continue;

{

*

(x = baseX; x >= baseX - graphicsParameters->1inkWidth;

x=) A
setPixel (bitmap,

/* Arc moves from top-to-bottom,
= BOTTOM_LEFT_Y (tail);

(TOP_LEFT_Y (head)

TOP_LEFT_X (head)

x++) |
setPixel (bitmap,

Xy

Yr

red, green,

blue);

== BOTTOM_LEFT_Y (tail))
eX = BOTTOM_LEFT_X(tail) + (y — BOTTOM_LEFT_Y (tail)) =
— BOTTOM_LEFT_X(tail)) /
head) - BOTTOM_LEFT_ Y (tail));

(x = baseX; x <= baseX + graphicsParameters—->1inkWidth;

Xy

Yr

245

red, green,

blue);

draw on left x/
y <= TOP_LEFT_Y (head); y++) {

continue;

(TOP_LEFT_Y (

(

200
201
202
203
204
205
206
207
208
209

210
211

212

213
214
215
216

217
218
219

220
221
222
223
224
225

226
227
228
229
230
231
232

233
234
235
236

237
238

}

bre

ak;

default:
fatalError ("Unknown arc slope!");

void drawNode (bitmap_type *bitmap,

graphicsParameters, int i) {
nodeRadius = graphicsParameters->nodeRadius;

int
for

}

plopLabel (bitmap, i+1, BOTTOM_LEFT_X (i),
graphicsParameters->nodeRadius,

Xy

(x = graphicsParameters—->relativeNodeX[1i]
graphicsParameters—->relativeNodeX[i]

for

Yr

(y

graphicsParameters—->relativeNodeY [i]

set

= graphicsParameters—->relativeNodeY[1i]

Pixel (bitmap, x, vy, 255, 255, 255);

+ nodeRadius;

graphicsParameters_type =*

- nodeRadius;
X++)

{

X <=

- nodeRadius; y <=

+ nodeRadius;

BOTTOM_LEFT_Y (i) +
255, 0, 0);

y++) |

void plopLabel (bitmap_type *bitmap, long label, int upperLeftX, int
upperlLeftY, int red, int green, int blue) {
int ptr = 0, digit;
int x = upperLeftX;
char buffer [STRING_SIZE];
sprintf (buffer, "%1d", label);
while (buffer[ptr] != "\0’) {
digit = buffer([ptr] - '0’; /» Assumes character encoding has
numbers sequentially after 0 #*/
plopDigit (bitmap, digit, x, upperleftY, red, green, blue);
x += CHAR_WIDTH + 1;
ptr++;
}
}
void plopDigit (bitmap_type xbitmap, int digit, int upperleftX, int

upperLeftY, int red, int green, int blue) {

int
for

Xy
(x
for

Yi

(y
if

0; x < CHAR_WIDTH; x++) {

= 0; y < CHAR_HEIGHT; y++)
(digitFont [digit] [y][x] !=
upperlLeftX, y + upperlefty,

246

{

0) setPixel (bitmap,

red, green,

blue);

X +

239
240
241

242
243
244
245
246
247
248
249
250

251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271

272
273
274
275

276
277

void resetBitmap (bitmap_type *bitmap, unsigned char red, unsigned char

green, unsigned char blue) {
int x, y;
for (y = 0; y < bitmap->height; y++) {
for (x = 0; x < bitmap->width; x++) {
setPixel (bitmap, x, y, red, green, blue);

void setPixel (bitmap_type *bitmap, int x, int y, unsigned char red,

unsigned char green, unsigned char blue) {
pixel_type #*pixel = coordZpixel (bitmap, x, V);
if (x < 0 || x >= bitmap->width || yv < 0 || y >= bitmap->height)
return;

pixel->red = red;
pixel->green = green;
pixel->blue = blue;

/**4+4% Handle graphics data structures s###*%*/

void cleanUpGraphics (graphicsParameters_type *xgraphicsParameters) {

deleteVector (graphicsParameters—->relativeNodeX) ;
deleteVector (graphicsParameters—>relativeNodeY) ;
deleteVector (graphicsParameters—->arcRelativeDX) ;
deleteVector ()

(

deleteVector (graphicsParameters—->arcSlope) ;

graphicsParameters—>arcRelativeDY);

void initializeGraphics (graphicsParameters_type *graphicsParameters,

parameters_type *run) {
int 1, 1i73;

float minX = INFINITY, maxX = —-INFINITY, minY = INFINITY, max¥ = -
INFINITY;
network_type *network = run->network;
if (strlen(run—->graphicsFileName) == 0) fatalError ("Missing graphics
parameter file!");

readGraphicsParametersFile (graphicsParameters, run->graphicsFileName
)

graphicsParameters—->relativeNodeX = newVector (network—->numNodes, int)

14

247

278

279
280
281

282
283
284
285
286
287
288
289

290
291
292
293

294
295
296
297

298

299

300
301
302
303
304
305
306
307

308
309
310
311

312

graphicsParameters—->relativeNodeY = newVector (network->numNodes, int)

14

graphicsParameters—->arcRelativeDX = newVector (network->numArcs, int);
graphicsParameters—->arcRelativeDY = newVector (network->numArcs, int);
graphicsParameters—->arcSlope = newVector (network->numArcs, slope_type
)7

for (i = 0; i < network->numNodes; i++) {

minX = min (minX, network->nodel[i].X);

maxX = max (maxX, network->node[i].X);

minY = min (minY, network->node[i].Y);

maxY = max (maxY¥, network->node[i].Y);

}

graphicsParameters->absoluteXrange = maxX — minX + 1; /# Add one to
ensure absolute ranges are at least 1 */

graphicsParameters—->absoluteYrange = maxY - minY + 1;

for (i = 0; i1 < network->numNodes; i++) {
absolute2relative (graphicsParameters, network->node[i].X, network
->node[i].Y, & (graphicsParameters->relativeNodeX[i]), &
graphicsParameters—->relativeNodeY[i]), minX, minY);

for (ij = 0; ij < network->numArcs; 1ij++) {

graphicsParameters->arcRelativeDX[ij] = graphicsParameters->
relativeNodeX [network—->arc[ij].head->ID-1] - graphicsParameters
->relativeNodeX[network->arc([i]j].tail->ID-1];

graphicsParameters—->arcRelativeDY[1i]j] = graphicsParameters—>
relativeNodeY [network—->arc[ij].head->ID-1] - graphicsParameters
->relativeNodeY [network->arc[ij].tail->ID-1];

if (abs(graphicsParameters->arcRelativeDX[1]]) > abs/(
graphicsParameters—->arcRelativeDY[i7]))
graphicsParameters—->arcSlope[ij] = SHALLOW;

else
graphicsParameters—->arcSlope[ij] = STEEP;

void readGraphicsParametersFile (graphicsParameters_type x*

graphicsParameters, char xgraphicsParametersFileName) {
int status;
char fullLine[STRING_SIZE];
char metadataTag[STRING_SIZE], metadataValue[STRING_SIZE];
FILE *graphicsParametersFile = openFile (graphicsParametersFileName, "
") ;

248

313 /* Set default parameter values */

314 graphicsParameters->imageWidth = 500;
315 graphicsParameters—>imageHeight = 500;
316 graphicsParameters—>borderWidth = 50;

317 graphicsParameters—>nodeRadius = 5;

318 graphicsParameters—->1linkWidth = 2;

319 graphicsParameters—>graphicsRoot [0] = "\0’;

320 graphicsParameters->snapshotMode = FALSE;

321

322 /* Process parameter file x*/

323 while (!feof (graphicsParametersFile)) {

324 do {

325 if (fgets(fulllLine, STRING_SIZE, graphicsParametersFile) == NULL)

break;

326 status = parseMetadata (fulllLine, metadataTag, metadataValue);

327 } while (status == BLANK_LINE || status == COMMENT) ;

328 if (strcmp (metadataTag, "IMAGE WIDTH") == 0) {

329 graphicsParameters—>imageWidth = atoi (metadataValue) ;

330 } else if (strcmp (metadataTag, "IMAGE HEIGHT") == 0) {

331 graphicsParameters—>imageHeight = atoi (metadataValue) ;

332 } else if (strcmp (metadataTag, "BORDER WIDTH") == 0) {

333 graphicsParameters->borderWidth = atoi (metadatavalue);

334 } else if (strcmp (metadataTag, "NODE RADIUS") == 0) {

335 graphicsParameters->nodeRadius = atoi (metadataValue);

336 } else if (strcmp (metadataTag, "LINK WIDTH") == 0) {

337 graphicsParameters—->1inkWidth = atoi (metadatavalue);

338 } else if (strcmp (metadataTag, "PNG ROOT") == 0) {

339 strcpy (graphicsParameters—->graphicsRoot, metadataValue);

340 } else if (strcmp (metadataTag, "SNAPSHOTS") == 0) {

341 graphicsParameters—>snapshotMode = TRUE;

342 } else {

343 warning (MEDIUM_NOTIFICATIONS, "Ignoring unknown metadata tag in

parameters file - %$s\n", metadataTag);

344 }

345 }

346

347 /* Check mandatory elements are present and validate input =/

348 if (graphicsParameters—->imageWidth <= 0) fatalError ("Image width must

be positive!");

349 if (graphicsParameters->imageHeight <= 0) fatalError ("Image height
must be positive!");

350 if (graphicsParameters->borderWidth < 0) fatalError ("Border width
must be nonnegative!");

351 if (graphicsParameters->nodeRadius <= 0) fatalError ("Node radius must

be positive!");

352 if (graphicsParameters—->1inkWidth <= 0) fatalError ("Link width must

be positive!");

249

353 if (strlen(graphicsParameters—>graphicsRoot) == 0) warning(
FULL_NOTIFICATIONS, "Graphics root is empty.");

354

355 fclose (graphicsParametersFile) ;

356 displayMessage (DEBUG, "Finished reading graphics parameters file.\n")
’

357

358 }

359

360

361 /**************************

362 *+ PNG writing routines *x*

363 kA A AR A A AR A A AR A A A A A A A A A A/

364

365 pixel_type *coord2pixel (bitmap_type *bitmap, int x, int y) {
366 return bitmap->pixels + bitmap->width » y + x;

367 }

368

369 void writePNG (bitmap_type *bitmap, char xpngFilename) {

370 int x, vy;

371 png_byte *row, **rowPtr = NULL;

372 pixel_type x*pixel;

373 FILE *pngFile = openFile (pngFilename, "wb");

374 png_structp png = png_create_write_struct (PNG_LIBPNG_VER_STRING, NULL
, NULL, NULL);

375 png_infop info = png_create_info_struct (png);

376

377 if (png == NULL || info == NULL) fatalError ("Error allocating memory
for PNG structures!");

378 if (setjmp (png_Jmpbuf (png))) fatalError ("Error writing PNG file!");

379

380 png_set_IHDR (png, info, bitmap->width, bitmap->height, DEPTH,
PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT) ;

381

382 rowPtr = png_malloc(png, bitmap->height % sizeof (png_byte *));

383 for (v = 0; y < bitmap->height; y++) {

384 row = png_malloc (png, sizeof (unsigned char) * bitmap->width =
PIXEL_SIZE) ;

385 rowPtr[y] = row;

386 for (x = 0; x < bitmap->width; x++) {

387 pixel = coord2pixel (bitmap, X, Vy);

388 xrow++ = pixel->red;

389 xrow++ = pixel->green;

390 xrow++ = pixel->blue;

391 }

392 }

250

393

394 png_init_io(png, pngFile);

395 png_set_rows (png, info, rowPtr);

396 png_write_png(png, info, PNG_TRANSFORM_IDENTITY, NULL);
397

398 for (v = 0; y < bitmap->height; y++) {
399 png_free (png, rowPtrlyl);

400 }

401 png_free (png, rowPtr);

402 png_destroy_write_struct (&png, &info);
403 fclose (pngFile);

404 1}

D.5.2 graphics.h

1 #ifndef _GRAPHICS_H_

2 #define GRAPHICS H

3

4 #include <math.h>

5 #include <png.h>

6 #include <zlib.h>

7 #include "network.h"

8 #include "utils.h"

9

10 #define PIXEL_SIZE 3

11 #define DEPTH 8

12

13 /# Relative coordinate points for a node i. To use these,
graphicsParameters must be a pointer to the relevant graphics struct

*/

14 #define TOP_RIGHT_ X (i) (graphicsParameters—->relativeNodeX[i] +
graphicsParameters—->nodeRadius)

15 #define TOP_RIGHT_ Y (i) (graphicsParameters—->relativeNodeY[i] -
graphicsParameters—->nodeRadius)

16 #define TOP_LEFT_X (1) (graphicsParameters—->relativeNodeX[i] -
graphicsParameters—->nodeRadius)

17 #define TOP_LEFT_Y (1) (graphicsParameters—>relativeNodeY[i] -

graphicsParameters—->nodeRadius)

18 #define BOTTOM_RIGHT_X (i) (graphicsParameters—->relativeNodeX[i] +
graphicsParameters—>nodeRadius)

19 #define BOTTOM_RIGHT_Y (i) (graphicsParameters—->relativeNodeY[i] +
graphicsParameters—>nodeRadius)

20 #define BOTTOM_LEFT X (1) (graphicsParameters—->relativeNodeX[i] -
graphicsParameters—->nodeRadius)
21 #define BOTTOM_LEFT_Y (1) (graphicsParameters->relativeNodeY[i] +

graphicsParameters—->nodeRadius)
22

251

23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64

typedef enum {
SHALLOW,
STEEP

} slope_type;

typedef struct graphicsParameters_s {
int imageWidth; /# Image width and height #*excludes* border */
int imageHeight;
int borderWidth;
int nodeRadius;
int linkWidth;
int *relativeNodeX; /#* Arrays containing node X and Y coordinates 1in
relative coordinates =*/
int *relativeNodeY; /% Note relative Y direction 1s reversed...
positive downwards, while absolute Y is positive upwards #*/
int +rarcRelativeDX;
int xarcRelativeDY;
slope_type *arcSlope;
char graphicsRoot [STRING_SIZE];
char graphicsParametersFilename [STRING_SIZE];
float absoluteXrange;
float absoluteYrange;
bool snapshotMode;
} graphicsParameters_type;

typedef struct ({
unsigned char red;
unsigned char green;
unsigned char blue;
} pixel_type;

typedef struct ({
pixel_type x*pixels;
int width;
int height;

} bitmap_type;

#include "fileio.h" /+ Dependencies require this to be included after
declaration of graphicsParameters_type =*/

/H**44% Image conversion routines *++##*/

void absolutel2relative (graphicsParameters_type *graphicsParameters,
float absoluteX, float absoluteY, int x*relativeX, int xrelativey,

int minX, int minY);
int density2red(int density, int jamDensity);

252

65
66
67

68

69
70
71
72

73

74

75

76

77

78
79
80
81
82

83

84
85
86
87
88
&9
90

int density2green (int density, int jamDensity);

int density2blue (int density, int jamDensity);

void generateBitmap (graphicsParameters_type *graphicsParameters,
network_type *network, int t);

void generateFinalBitmap (graphicsParameters_type xgraphicsParameters,
parameters_type *run);

/H*#+%+ Drawing routines *##*+x*/

void drawArc (bitmap_type *bitmap, graphicsParameters_type =*
graphicsParameters, int i1j, network_type =*network, int t);

void drawNode (bitmap_type *bitmap, graphicsParameters_type =*
graphicsParameters, int 1i);

void plopLabel (bitmap_type *bitmap, long label, int upperlLeftX, int
upperleftY, int red, int green, int blue);

void plopDigit (bitmap_type xbitmap, int digit, int upperleftX, int
upperleftY, int red, int green, int blue);

void resetBitmap (bitmap_type xbitmap, unsigned char red, unsigned char,
unsigned char blue);

void setPixel (bitmap_type *bitmap, int x, int y, unsigned char red,
unsigned char green, unsigned char blue);

/*%*++%* Handle graphics data structures **xx*x/

void cleanUpGraphics (graphicsParameters_type *graphicsParameters);

void initializeGraphics (graphicsParameters_type xgraphicsParameters,
parameters_type *run);

void readGraphicsParametersFile (graphicsParameters_type x*
graphicsParameters, char xgraphicsParametersFileName) ;

/*++++ PNG manipulation routines xxx*+*/

pixel_type *coord2pixel (bitmap_type xbitmap, int x, int y);
void writePNG (bitmap_type *bitmap, char *pngFilename);

#endif

253

Acknowledgements

The research described in this report owes much to a number of individuals assistance. The
following graduate and undergraduate students assisted with developing prototypes and collecting
data: Rebecca Franke, Chris Melson, Promothes Saha, Ruoyu Liu, Sadeq Safaripoor, and Ravi
Venkatraman. In particular, a substantial portion of Ruoyu Lius MS thesis was supported by this
project.

The Wyoming Department of Transportation provided valuable assistance through the help of
project advisors Lee Roadifer and Sherm Wiseman, as well as that of Chad Matthews, who
provided the TransCAD files needed to generate data for the Casper case study.

254

