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Simplified Methods of Predicting
Aircraft Rolling Moments Due to Vortex Encounters

Timothy M. Barrows*
U.S. Department of Transportation, Transportation Systems Center, Cambridge, Mass.

Computational methods svitable for fast and accurate prediction of rolling moments on aircraft encountering
wake vortices are presented. Appropriate modifications to strip theory are developed which account for the
effects of finite wingspan. It is shown that in the case of an elliptic wing the aspect ratio correction to the lift
curve slope should be based on the semispan. A reciprocal theorem is used to relate the rolling moment on a wing
in an arbitrary downwash field to that on a wing in steady rolling motion. Calcuiations are presented for a wing
encountering a vortex with a Betz velocity distribution. It is shown that the ratio of the spans of the generating
and encountering aircraft is the most significant parameter in determining the possible hazard.

Nomenclature
AR =aspect ratio
A, = Fourier coefficient, Eq. (2)
a = lift curve slope, per rad
a; = two-dimensional lift curve slope
b =wingspan
c =chord
Cab =average chord
Cy =root chord
Coi = Fourier component, Eq. (20)
c, = section lift coefficient

C, =roll moment coefficient, L/gSh
C =roll damping derivative, dC /3 (pb/2V)
D = danger coefficient, Eq. (43)
f = vortex describing function, Eq. (39)
=integral, Eq. (25)
= hazard integral, Eq. (46)
= section lift
=roll moment
=roll rate
= maximum normalized roll rate, Eq. (44)
=distance from vortex center, ft 27/b,
=2F/b,
=wing area
=tangential velocity of vortex
=wing forward velocity
= vertical velocity/ V
= horizontal displacement, ft, Eq. (41)
=2%/b,
=spanwise station, ft
=2y/b,
71 =section angle of attack measured from zero lift
= weighting function, Eq. (19)
= spanwise circulation
= spanwise position variable, Eq. (1)
=tip chord/root chord
=planform parameter, Eq. (22)
= Glauert correction factor, Eq. (15)
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e =encountering wing
g = generating wing
m,n  =Fourier subscripts
0 = conditions at wing center
v =vortex

Received Dec. 3, 1973; presented as Paper 76-61 at the AIAA 14th
Aerospace Sciences Meeting, Washington, D.C., Jan. 26-28, 1976;
revision received Jan. 4, 1977.

Index categories: Aerodynamics; Structural Design (including
Loads); Handling Qualities, Stability, and Control.

*Mechanical Engineer. Member AIAA,

I. Introduction

ECENTLY, a number of investigators have formulated

computer models with the purpose of analyzing the
dynamics of an aircraft penetrating a wake vortex. Iverson
and Bernstein' developed a three-degree-of-freedom analogue
simulation which used simple strip theory to predict rolling
moments. Harlan and Madden? produced a hybrid computer
program with a digital computation of the lift and rolling
moments. A modified strip integration is used, rather than
lifting surface theory, in order to allow the digital program to
keep up with the real-time analogue computation of aircraft
motions. To account for effects of finite span, the sectional
lift curve slope at each station along the wing is weighted in
such a way as to duplicate various known stability derivatives.
Johnson, Teper, and Redeiss® utilized a similar technique.
Nelson® performed some investigations using lifting surface
theory and concluded that strip theory is more appropriate for
the vortex encounter problem. His approach utilized a dif-
ferent aspect ratio correction for symmetric and an-
tisymmetric components of the wing lift, which as shown
herein is essential for accurate resuits. Finally, Jenkins and
Hackett” use vortex lattice theory to predict aircraft forces
and moments for use with a flight simulator. Their approach
included some important effects of induced lift on the vawing
moments. However, they too encountered some drawbacks
due to the need for real time computation; namely, the effects
of local stall had to be ignored.

These efforts all reveal a need for fast and reasonably
accurate methods of calculating forces and moments due to
vortex encounters. In this report a technique using a simple
spanwise integration is presented. The relation to strip theory
is shown, and the degree of accuracy of the method is clearly
indicated.

II. Lifting Line Analysis

Consider an unswept elliptical wing encountering a velocity
field in which the downwash varies as a function of span, as
shown in Fig. 1. This problem can be solved using the classical
approach of Prandtl and Glauert. ®

We employ the following coordinate transformation

§=(b/2)cosb M

The distribution of circulation on the wing may be written
as a Glauert series

I'= VbE A,sin nf (2)
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Fig. 1 Wing encountering arbitrary downwash field,

which guarantees that I'=0 at the wingtips as required. The
rolling moment on the wing is given by

2 + b2 bz
G2 ] ™ gy =2

e, =2\ Y A4,sin nf cost sindds
VSbJ -2 28

0

AR~
= & , 2 Aysin 76 sin26d

The integral in this expression is zero for all values of n
except n =2, which gives

Ci=7AR A;/8 (3)

Therefore, in order to predict rolling moments it is not
necessary to know all of the coefficients A4, in the series (2);
only the second term is required. This is analogous to the
more familiar result that all of the lift on the wing may be
found from the first term, A ;.

Lifting line theory® gives us the following expression for
the circulation

1 dr d
T ]

T=mcVlw(y) +az;(y)———& — X
% 4xvI dy, T (y-y))

az; is the angle of attack of each wing section, measured
from the incidence of zero lift. This term results in a sym-
metrical distribution of lift and can be neglected for purposes
of determining rolling moment. We insert Egs. (1) and (2) into
Eq. (4), and make use of the following

3:“ cosnb;df, = sin nf c=c,sind )
1]

cosf—cos;  sinf

This results in the classical algebraic form of the lifting line
equation

Y A,sin ns[;+ _ﬂ] _Tew(d) ©
! 2bsingl ~ b

We are only interested in solving the above for the coef-
ficient 4,. Multiplying both sides by sin 26 and integrating
over the interval from O to w, we obtain

s wc mc %
Ay (b= g , wsindsin26do ™
Let us define
1_,55 ;sinesinﬂiw(ﬂ}dﬂ ”
For an elliptic wing, we have
1rr.‘;fb=‘_1/'AR )
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Using Eq. (3), we obtain

" (144/AR)

(10)

![ is very informative to compare this to the result from
strip theory, which computes the rolling moment coefficient
by means of a simple spanwise integration

1 +bi2 o C;b a,
C;sl"p— S_bg i aocwydy- _85__ I; (ll}

Using the theoretical value for a, of 27, we obtain

'"S[ll[) = 1" (12}
The relation between this result and the more accurate
expression [Eq. (10)] is very simply

= Cl'sm
= o __ (13)
(1+4/AR)
This result may be interpreted as an aspect ratio correction
to the two-dimensional lift curve slope a,. That is, if we
choose

g 4
“= (I+4/AR) L
then a strip theory integration of the spanwise lift will yield a
correct value of the rolling moment. This result is applicable,
within the limits of lifting line theory, to an unswept elliptic
wing with any distribution of camber and twist encountering
any downwash field, provided that the entire wingspan
remains free of stall.

So far as could be determined, this simple result has not
been previously derived in the literature. It is curious that,
apparently by conjecture, Fung’ presented the following
aspect ratio correction for unswept wings of a general
planform

P ay
I+ (ag/mAR,) (1+7)

(15)

where

AR, =AR (for symmetrical lift distribution)

AR, =AR/2 (for antisymmetrical lift distribution)
T =correction factor computed by Glauert
7 =0 for elliptic lift distribution.

For the symmetrical case this is the classical result from
Prandtl and Glauert.® In the antisymmetric case, using the
theoretical value for a, of 2, and setting =0, we see that
Eq. (15) is identical to Eq. (14). Fung’s argument was that if
the lift is distributed antisymmetrically, with zero lift at
midspan, then each of the two halves of the distribution
appear similar to an elliptic distribution with a span equal to
half of the actual wingspan. The argument itself is not entirely
correct, since in fact the distribution of each side can vary
considerably from elliptic, depending on the nature of the
oncoming downwash field, but the end product is a result
which is correct to first order for any distribution of lift.

Unfortunately there is no theoretical basis for Fung’s
conjecture that 7, computed on the basis of an untwisted wing
at constant angle of attack, can be used to predict the effect of
a nonelliptic planform on the antisymmetric lift. The essence
of the problem is that applying Eq. (13) to a wing planform
with finite chordlength at the tip produces a lift distribution
which is likewise finite at the tip, which is in violation of the
condition that I'( £b/2)=0. Thus for the tapered wings of
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typical aircraft there is an error of unknown magnitude
associated with this violation. We find, for example, that Eq.
(13) tends to overestimate the roll damping of rectangular
wings by a considerable amount.

A straightforward approach to the problem would consist
of computing the correction 7 association with nonelliptic
planforms for antisymmetric lift. We immediately find that 7
varies according to the oncoming downwash field, just as it
does in the symmetric case.

II1. The Reciprocal Theorem

Fortunately, we can circumvent this problem by utilizing a
reciprocal theorem developed by Heaslet and Spreiter, * which
relates the rolling moment on a wing in an arbitrary down-
wash field to that on a fictitious wing in steady rolling motion.
This theorem may be stated as follows: ‘“The rolling moment
on a wing encountering an arbitrary downwash field is equal
to the integral over the span of the product of the local angle
of attack and the sectional lift at the corresponding spanwise
station of a flat-plate wing of identical planform, which is
rollingataratep=2V/b."

Essentially, this theorem states that a modified strip in-
tegration may be used to compute the rolling moment, which
becomes

v+ hi2

L=) U)o w(5)dy (16)
—bi2

Eggleston and Diederich® have cast the corresponding
rolling moment coefficient in the form

—Cp f +
C‘:‘TLS L YOIw(dy (am
where
Yy =—[Ce)/Ci o] wey (18)

By virtue of this definition
!
E”w{y}ydy=2 (19)

The theorem in this form has been used to analyze the
problem of aircralt penetrating random turbulence. While it
is possible to ciain the weighting function v from lifting
surface theory, Weissinger theory, or any of the numerous
techniques available for wing analysis, the indeterminate
nature of random turbulence negates the usefulness of highly
refined calculations of y. Usually + is calculated from simple
theories, often by assuming an elliptic or parabolic
distribution when the wing is at a uniform angle of attack, as
has been done by Eggleston and Diederich’ and by
Franklin.'® One exception is Jackson and Wherry,!' who
went to the trouble of using Weissinger theory to compute
for gust analysis of the B-47.

The wake vortex problem is comparatively well defined, so
that the greater accuracy available from more sophisticated
theories may be useful. Fairly accurate predictions of the
rolling moment can be made if the characteristics of the
vortex generating aircraft are known. The major in-
determinant in the problem then becomes the ensuing control
action, which may be expected to vary from pilot to pilot and
according to the exact circumstances of the encounter. Thus,
the nature of the problem warrants an analysis of roll
moments which is more refined than simple strip theory but
not as complicated as a full-blown lifting surface theory.

The wing planform may be described as a harmonic series

(‘ZE c,,sinm@ (20)
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In the interest of maintaining a simple solution for the
rolling moment which can be expressed in closed form, we
consider one degree of complication beyond the elliptic wing,
in which only two terms of this series are present, and one of
these is very small

c=c;(sinf+ esin 36) (21)
e=C3/¢ (22)

Equation (6) becomes

E A ,sin n6[1+ m E €,,8in mﬂ] =20 23)
! 2b sinf " b

If we multiply this by sin 26 and integrate from 0 to = we
obtain an equation analogous to Eq. (7). We can also multiply
by sin 46, integrate, and obtain another equation. These two
equations have the form

a;A>+ea;A=1, (24a)

eay A,+anA, =1, (24b)

1= () wsin néas 25)

0 \c;

a;=(wAR/8)[1+ (4/AR) (I +¢€)] (26)
ap=m 27)
ay=m/2 (28)
a5= (TAR/8)[I + (8/AR) (1+¢€)] (29)

For steady roll ata rate p=2V/b we have
w=2y/b=cosfl (30)
This yields
Iy=mel4

If we neglect terms of order €7, the solution to the set of
Eqgs. (24) for A ; becomes very simple

A_,:!_;;'a”

Using Egs. (3), (12), and (26), the rolling moment coef-
ficient becomes

14 (4/AR) (I +e)

(31

We have not yet dealt decisively with the question of
whether we can perform a strip integration on a wing with a
finite chord at the tip, as opposed to the rounded tips obtained
from the series (21). The strip integration (11) with w =cosf
may be written as follows

T

Crorin ™~ S , €cos?fsingdf ~ S , ccosfsin26df (32

Using the product rule, we have
2sin2fcosft= sinfl + sin36
Thus

Cl\grip = “ 0 E C'mSinmﬁ(Sin3+SirL39}d3 {33)
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In this form it is clear that only the terms ¢; and ¢; make a
finite contribution. Including the infinite number of ad-
ditional Fourier components necessary to produce a squared
wingtip will not produce any net effect on the integral, which
means that we can perform our strip integration using either
the actual planform or a two-term Fourier description and
obtain identical results. For any distribution of downwash
other than solid body rotation (w=y) this statement no
longer applies, in which case the reciprocal relation may be
utilized.

The roll coefficient for the case of w=y may be interpreted
as the roll damping derivative C,,p, which has been calculated
by Pearson and Jones'? for tapered wings. It is a rather
straightforward matter to calculate the Fourier coefficients of
such wings as a function of A, the ratio of the root chord to
the tip chord

c;=(2/m)(1+N)co (34)
c;=(2/m)[(3IN=1)/3]cy (35)
e=(3N=1)/3(1+N) (36)

The parameter € has a value of zero when the taper ratio is
1/3. Most commercial subsonic jets have approximately this
amount of taper, so that in practical cases of interest € is
indeed very small. (For low-speed general aviation aircraft A
is typically 0.5, giving e=1/9.) Performing the integration
indicated in Eq. (31), we obtain

_ap 1+3N AR
.

= 37
P ]2 14+ N [AR+4(1+¢€)]

Figure 2 shows a comparison of Eq. (37) with the values
computed by Pearson and Jones for various values of A and
AR, using a value for a, of 5.67.

The weighting function ¥ may be computed from the
definition Eq. (18) and the series (2)

2bY, A,sinnd

'T-.-—
—C.-pcm.

After some algebra this becomes

eAR sin4f ] (38)

T=i€[sin26+
(I+e)[AR+8(1+¢))

™

For purposes of calculating vortex encounter motions, the
second term in Eq. (38) is rarely important. Neglecting this
term has no effect on the net rolling moment if the oncoming
downwash field is in solid body rotation, but produces some
error for any other distribution. A specific example can be
chosen to illustrate when this term becomes important. For a
triangular wing planform with AR=6 in a point vortex
{(w=1/y), including the second term increases the calculated
rolling moment by 20%.

Eggleston and Deiderich? present various formulas for
based on assumed loading under constant angle of attack. We
see here that their formula for elliptic loading, identical to the
first term of Eq. (38), is by far the most applicable to typical
planforms of interest. The second term in Eq. (38) can be used
as a means of determining the degree of accuracy of the first
term alone.

The manner in which v is defined automatically contains a
first-order correction for the effects of sweep, changes in the
planform due to flaps, tip tanks, etc. (assuming the
availability of a value for C t which includes all these effects).
If it is determined that an accurate value for the second term
of Egs. (38) is desired, some modification to account for these
factors may be necessary. Wing sweep tends to distribute the
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Fig.2 Roll damping derivitive as a function of aspect ratio.

lift toward the outboard sections, thus making the second
term more positive., The magnitude of this effect can be
estimated from the work of Bird.'? Flaps only have an effect
if they change the lift curve slope, through an increase in the
effective chord. This may be accounted for by computing the
coefficients ¢; and ¢; based on the effective planform of the
wing with the flaps extended.

IV. Wake Vortex Encounter

Up to this point very little has been said about the actual
distribution of downwash which is likely to be encountered.
Perhaps the best model of a vortex structure is the one
proposed by Betz® and resurrected by Donaldson.'* An
approximation to the tangential velocity associated with this
model for an elliptically loaded wing has the following form

Vy(F) = (Ly/27F) f(r) (39)
where

fn=3r=9r7/4) " forr<2/3

firny=1 forr>2/3
=2l
_bg

and b, = span of generating aircraft.

Assuming an elliptic lift distribution on the generating
aircraft, the circulation T'; is related to the parameters of the
aircraft as follows

(15

The rolling moment coefficient induced by the vortex as
predicted by Eq. (17) becomes

yorde (G HhGInod
Y 272 \ AR g Ved —1 r

Let us now assume the vortex lies in the same horizontal
plane as the encountering wing, and is displaced by a



438 T.M. BARROWS

1.0
I(X1 =
i be/bg 1
b /b =.5
0.5 | 2
-
L SR—
. a 1 2
x, SEMISPANS OF
=05k ENCOUNTERING WING

Fig. 3  Normalized rolling moment versus lateral separation, Eq.
(46).

horizontal distance X
F=p-x (1)

We nondimensionalize X by the semispan of the encountering
wing

x=2%/b, (42)

A common method of presenting the hazard associated with
an encounter is to compute D, the ratio of the vortex induced
rolling moment to the maximum control power available from
the ailerons

X

D=C,/C,. @)

When this is done we find ourselves confronted with the
following quantity

'max
This parameter is equal to the helix angle described by the
wingtips corresponding to full aileron deflection. It is readily
obtainable from flight test data and actually represents a more
convenient parameter than either C;, or C,., since it
generally shows only slight variation among different aircraft.
Perkins and Hage'® give the following for different types of
aircraft: p = .07 cargo and bomber types; p = .09 fighter types.
Our final formulation for D becomes

T 4Cy Vb,
Rl (et 2 S il 5oy 4
b ,a,(AR)g Vb, i) =
where
I (" vy flr)dy
g —_— 4
1) 2#25 -1 y—x (“46)
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and
r=(b,/b,) (y—x) (47)

The danger factor D in this form is composed of a series of
three easily recognizable nondimensional factors times the
integral /(x) which is given in Fig. 3. The weighting function
v is calculated assuming A= 1/3. The maximum value of / is
approximately 0.6 (depending on span ratio), which occurs at
x =0, corresponding to a vortex located at the center of the
wing. To develop a greater feel for the maximum value of D,
we might assume the following typical values: p=0.08;
C,=1,AR=17,V,=V,. Thisgives

Dnm\ = bulbr'

Thus for these typical parameters a following aircraft may
become uncontrollable if its span is less than that of the lead
aircraft. There are several implied assumptions associated
with this statement: 1) no decay of the vortex strength has
taken place; 2) the vortex has no core; 3) there is no effect
from the vortex shed off the opposite wingtip of the
generating aircraft; and 4) the lift distribution of the
generating wing is approximately elliptic and the shed vor-
ticity rolls into a tightly wrapped vortex as prescribed by Betz.

The decay of vortex strength with time is a complex subject
which is beyond the scope of this paper. The related subject of
core size is likewise complicated, although the Betz model
does not require the existence of a core for conservation of
energy, as does a point vortex model. Only a small
modification to the model is required in order to avoid infinite
velocities at the center, and this produces a negligible change
in the overall rolling moment.

It is a straightforward matter to compute the effect of two
vortices rather than one, essentially this is a matter of
superposition. However, there is some reason for interest in
the single vortex encounter. First, wind shear sometimes has
the effect of destroving one of the two trailing vortices,
leaving an isolated vortex which has a tendency to persist for
longer times. Second, the greatest potential hazard exists
when the aircraft is about to land. In ground effect the two
vortices tend to separate under the influence of their image
vortices, and a crosswind is required to hold one or the other
vortex stationary over the runway. Thus, in two situations of
great interest (long vortex life and greatest potential hazard)
the following aircraft could encounter a single vortex.

Finally, we come to the last assumption, that the vortex is
tightly wrapped. Calculations by Donaldson'® show that this
is indeed the case when the aircraft is cruising at altitude, but
during approach to landing, with gear and flaps deployed,
vorticity tends to shed unevenly, often forming two or more
vortices from each wing which enter a spiral pattern. The net
effect is that the vortex has a less concentrated character and
may produce rolling moments somewhat less than indicated
by Eq. (45).

V. Conclusions

For purposes of calculating global forces and moments
during wake vortex encounters it is not necessary to use time-
consuming lifting surface theories. The reciprocal theorem of
Heaslet and Spreiter® gives a recipe for doing this with a
simple spanwise integration. Ordinary strip theory can also be
used for planforms of typical subsonic jets if the aspect ratio
correction to the lift curve slope for antisymmetric loadings is
based on the semispan rather than the span.

Figure 3 may be interpreted as the normalized rolling
moment versus time seen by an aircraft as it crosses a vortex
at a shallow angle. It can be seen that the largest rolling
moments occur when the vortex lies within the tips of the
span. With the vortex only one semispan beyond the wingtip,
rolling moments are less than 10% of their maximum value.
For air traflic control purposes, lateral separation criteria will
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undoubtedly be dictated by the uncertainties of locating the
vortex rather than by the rather narrow separations which
might be safe if some precise distance from the vortex could
be guaranteed.
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