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Executive Summary / Introduction

Bicycle use is being promoted for a variety of social benefits. Persons who choose to bicycle on
a regular basis for commute or other purposes receive benefits in the form of lower obesity rates
and other health improvements, and in lower transportation costs (Dill 2009; Frank et al. 2006;
Sallis et al. 2004). In addition, society as a whole benefits from an increase in cycling. As people
shift modes from automobiles to bicycles, additional capacity is available on the roadways relieving
congestion. Further, as those who choose to bicycle become healthier, they present less of a burden
on the health care system, reducing overall health care costs (Sturm 2002).

Because of the benefits associated with bicycling, jurisdictions across the central Puget Sound
region and the nation have been investing in improvements to bicycle infrastructure. The improve-
ments range from inexpensive tools such as painted sharrows on arterials and road rechannelization
projects, to more costly greenways and separated off-road facilities. While investments in bicycle
infrastructure are far less costly than traditional roadway or transit improvements, jurisdictions must
decide how to best invest limited resources.

Academic and professional literature provides a basis for generally understanding bicycling
behavior. However, less is known about the benefits of one facility type over another, or the potential
inducement of new bicycle users when a policy intervention improves bicycling conditions (Dill
and Gliebe 2008; Krizek, El-Geneidy, and Thompson 2007; Tilahun, Levinson, and Krizek 2007).
Furthermore, analytical tools aimed at assessing travel demand, benefit-cost analysis, and travel
behavior cannot be improved to capture the benefits of bicycling in the absence of 1) data on the
use of bicycling facilities, and 2) a theoretical framework for understanding cyclist route choice

decisions. This project begins to address these gaps by collecting GPS trace data for bicycle users
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in the central Puget Sound, and utilizing it for policy analysis and travel model improvements.

This project was successful in using a GPS smartphone application, CycleTracks, written by the
San Francisco County Transportation Authority to collect revealed preference GPS data represent-
ing 2,750 trips taken by 165 unique bicyclists. The collected sample has limitations that preclude
making robust, generalizable conclusions. However, in addition to validating the collection mech-
anism, this project has achieved a number of aims as it has worked toward developing a statistical
model.

This project has contributed to knowledge transfer by reviewing the literature to identify factors
important to bicyclists and their decision making; identifying from the literature an appropriate
approach to choice set generation; and selecting / beginning implementation of a robust and repeat-
able approach to the data processing that more closely integrates with the IT infrastructure of the
Puget Sound Regional Council.

As noted above, the data collection process did yield a dataset with limitations, in particular with
regards to the non-random sampling methodology, and the somewhat smaller than expected sample
size. The limitations posed by the sample could be addressed through a future data collection effort
using the CycleTracks application. A recommendation of this report is to revisit the sampling ap-
proach in the future—perhaps teaming with the organizers of a region-wide bike-to-work event for
recruitment and data collection. Finally, while the choice set generation proved more problematic
than initially anticipated, the analytical approach identified and the data processing strategies begun

in this project could be completed to carry out the analysis of such a future data set.



Chapter 1 Literature Review

This literature review considers the factors that affect a person’s choice to use a bicycle. The review
begins with a number of items that affect bicycle mode choice, but are not specific to route decisions.
There variables are, for the most part, exogenous to route-choice modeling efforts and are also
generally outside the control of engineering and urban planning interventions. This literature review
then turns its attentions to built environment and other factors that can be used within route-choice

modeling and are heavily influenced by design interventions.

1.1 Weather

Temperature and precipitation play a large role in whether people choose to use bicycles. When
it is cold or very hot outside less people will use bicycles. Similarly, as precipitation increases,
less people will use bicycles. This relationship is far more pronounced for choice users rather than
commuters (Miranda-Moreno and Nosal 2011). That is, a rainy Saturday will see fewer riders com-
pared to a sunny one as compared to a regular commute day. However, because there is generally
little variation in temperature and rain along differing routes between an origin and a destination,
weather has an affect on mode choice rather than route choice. And, for the purposes of mod-
elling, it is unlikely that aggregate travel models can account for the fluctuations in temperature

and precipitation.

1.2 Household size

The smaller the household, the more likely the persons residing there are to use bicycling as a mode

of travel (Andrade and Kagaya 2012). This finding makes intuitive sense. Smaller households,



especially those without children, do not have to make the same trips that those with children do—
i.e. there is no need to drop off children at school or soccer practice, making it more feasible to not

rely on a car.

1.3 Vehicle availability

Vehicle availability is not important in the choice for whether or not people choose to use a bicycle
(Andrade and Kagaya 2012). When households own vehicles, they tend to use them. That is not to
say that people who own vehicles may not just use them for one trip purpose and not bicycle for
other purposes—e.g. use the car for grocery shopping and the bicycle for commuting. However,
once a household has a vehicle available to them, they are more likely to use them. The likelihood
of cycling is further reduced as the number of vehicles available increases. Conversely, if you
move from areas where 100 percent of households own vehicles to places where only one in five

households does so, cycling rates are increased by 30 percent (Meng et al. 2014).

1.4 Trip end amenities

The lack of provision of trip end amenities decreases a persons propensity to use bicycles (Nkurun-
ziza et al. 2012). At a most basic level, trip end amenities include secure bicycle parking. This is
important for experienced riders who have expensive bicycles and novice riders who need encour-
agement. Additional amenities include locker facilities, at least for the purpose of stowing bicycle
related equipment—e.g. helmet and shoes. More advanced treatments include showers and locker
room, which become much more useful for people commuting over longer distances, especially if

their commute is also a part of their exercise regiment.

1.5 Attitude

People are more likely to try bicycling as a mode of transportation if there is general support for

bicycling in their city. When there is not, there can be anger and frustration from drivers and



pedestrians alike when they encounter a bicyclists in what they perceive to be their space, which can
be intimidating to new bicyclists. In promoting new bicycle infrastructure projects or pro-bicycling
programs, jurisdictions should work to normalize bicycling and work towards positive attitudes of
everyone who uses the right-of-way, not just those most interested in bicycling (Castillo-Manzano
and Sanchez-Braza 2013).

Because bicycling can have a communal aspect, and for many people a sense of self-identity
(Chatterton and Wilson 2014) group rides or other events that promote the social aspect of bicy-
cling will promote increase in bicycling across trip purposes. This is particularly important for
adolescents as their early positive experience with bicycling and other people’s attitudes regarding
bicycling around them greatly influences their propensity to ride bicycles as adults (Sigurdardot-
tir et al. 2013). And, the enjoyment of recreational cycling changes people’s behaviour, such that
bicycling becomes a habit (Schneider 2013) and a regular part of transportation options.

The remaining items discussed in the literature review all have the potential to affect bicycle

route choice and are also factors that can be influence by planning, policy and engineering.

1.6 Distance

Although not strictly a factor that affects route choice, cyclists generally avoid longer trips, espe-
cially for commute trip purposes (Broach, Dill, and Gliebe 2012). From a modelling perspective,
this has several implications. First, beyond a certain distance (likely 20 miles or more), there is little
reason to believe people will choose bicycling (except for exercise or recreation). This suggests that
origin and destination pairs beyond a threshold of 20 miles do not need to be considered. Secondly,
because more modelling efforts are concerned with a typical weekday, and, because so many of the
trips made would related to non recreational travel, it is again safe to only consider short origin and

destination pairs.



1.7 Slope

Bicyclists generally prefer flat places to ride with locations with minimal slopes being preferable to
places with steep hills (Broach, Dill, and Gliebe 2012). Similar to other variables, this preference
changes by trip purpose. Commuters generally dislike hills (Hood, Sall, and Charlton 2011). Bicy-
clists who are riding for exercise purposes may prefer to have topographical changes for increased
exertion, especially if they are training for a longer, more strenuous ride. Of course, if a trip end
is on top of a hill, novice bicyclists may switch mode to avoid the climb, but in regards to route,
would generally just attempt to find the one with smallest increase in slope.

It should be noted that flatter terrain is also preferred by other modes. In this way bicycles are
similar to trucks and buses. All three are slow to start from stop, require more effort to slow down
and have difficulty climbing hills. This is the reason that trucks are given climbing lanes on steep
roads, and why bicycles need climbing lanes while climbing hills, but can more easily mix with

traffic when traveling down a hill.

1.8 Transit

Access to transit is one of the most important influences as to whether people will take a bus or train.
If a transit stop or station is not located conveniently to people’s homes or trip ends, they are less
likely to rely on transit. It is well understood in transit planning that people generally will not walk
more that one quarter mile to a bus stop and not more that one half of a mile to a rail station. This
Last Mile problem is partially what makes bicycle share programs so attractive in settings where
there are gaps in walkable transit access and providing door-to-door service (Sayarshad, Tavassoli,
and Zhao 2012; Xu et al. 2013).

Because of the short distance people are willing to walk to transit, trip ends further away from
transit stops and stations make people more likely to use bicycles in trips where they would combine
bicycling and transit use (Andrade and Kagaya 2012). Notably, this suggests that improving bicycle

facilities will raise transit use and vice versa.



Indeed, in reviewing green infrastructure in several non-US cities, Cervero and Sullivan (2011)
found that roughly 30 percent of suburban commuter transit trips were made initially by bicycle
to get to the rail stations. Similarly Thakuriah et al. (2012) found that new bicycle facilities that
were further away from established transit lines and locations with good transit access—e.g. CBDs
were more heavily utilized and incentivize greater mode shift from single occupancy vehicle use.
It should be noted that the focus in connecting transit and bicycling is primarily for the commute
trip purpose (O’Brien, Cheshire, and Batty 2014), as other trip purposes likely do not involve a
transit hub, and, the provision of bicycle parking at transit hubs further promotes use by commuters

(especially in instances where bicycles are not allowed on transit vehicles).

1.9 Air quality

It has been demonstrated that cycling in an urban environment increases bicyclists exposure to black
carbon, a proxy for diesel emissions (Nwokoro et al. 2012). While the average bicyclist is not likely
to spend much time contemplating the exact parts per millions of noxious fumes they are inhaling,
they are likely to note that they do not enjoy being stuck behind a bus or truck at an intersection.
And, it has been shown that roadways with high truck volumes reduce bicycle level-of-service
(Robertson and Hawkins 2013).

Given the preference, cyclists would choose a facility away from the larger vehicles, which also
has other benefits in terms of increasing the perception of safety. To be fair, not all buses and trucks
are polluting and many fleets are converting to cleaner technology. Nonetheless, roadway facilities

with high volumes of larger vehicles can likely be considered poorer than with lower volumes.

1.10 Bicycle facilities

All else equal, bicyclists prefer to be on off-street paths and trails (Broach, Dill, and Gliebe 2012;
Kang and Fricker 2013). This is more true for novice bicyclists than experienced commuters be-

cause if an off-street path is heavily used by pedestrians it may be difficult to ride a bicycle around



them and easier to ride in the street with mixed traffic. Nonetheless, off-street paths are preferable
to on-street facilities.

If the bicycle facility is on the roadway, protected lanes or cycle tracks are preferable to just a
signed route, which is preferred over just being on the road in mixed traffic. In places where there is
a provision for protected lanes, higher lane widths are preferred to lower ones (Carter et al. 2013).
This is especially true in locations where you have bicyclists travelling in two directions.

Although one-directional cycle tracts have been shown to be safer than those that allow travel in
both directions, especially at intersections, both considerably improve safety and more importantly,
the perception of safety (Thomas and DeRobertis 2013). It is hard to imagine that most bicyclists
are aware of the location of bicycle incidents (with the exception of the locations of ghost bikes.
However, cyclists are aware of the places that feel safer to them, and generally those places are
facilities that are separated from vehicular traffic.

The addition of new facilities can also have a positive impact from a psychological standpoint.
People that do not regularly ride, may begin to do so if they think an improvement in infrastructure
(a new facility or safety improvements to an existing facility) have been made, this is especially
true when some sort of life event has spurred those people to try bicycling (Chatterjee, Sherwin,

and Jain 2013)

1.11 Pavement quality

Bicyclists, like motorists have a more pleasant experience and prefer to use well paved facilities
(Carter et al. 2013). However, unlike vehicles, bicyclists are much more sensitive to poor pavement
conditions because they are not insulated and even with some shocks cannot absorb the jarring

bumps of large pothole or cracks well.

1.12 Sidewalks

The presence of sidewalks and a bicyclists ability to share those facilities with pedestrians has been

shown to have a positive influence on bicycle utilization (Andrade and Kagaya 2012). In Seattle,



bicyclists are allowed to use the side walk facilities so long as they travel at slow, reasonable speeds.
As such, ceteris paribus, the presence of sidewalks on one route and not on another should make

the route with a sidewalk more attractive.

1.13  Turns

Fewer turns at intersections are preferable to routes with a greater number of turns (Broach, Dill,
and Gliebe 2012). Turns can be points of conflict for bicyclists, especially if they have to either 1)
make a left turn from being in the right lane or protected bike lane and have to move over to a center
or left lane (particularly if it is during a green light cycle) and 2) when making right turns in areas

with high pedestrian volumes or if vehicles attempt to turn right across the bicycle lane.

1.14 Traffic signals

Routes with fewer traffic signals may be preferable to ones with more signals, (Broach, Dill, and
Gliebe 2012) and increase bicycle level-of-service (Robertson and Hawkins 2013). Roundabout
and other traffic calming devices allow bicyclists to continue their trip without stopping. While
stopping may increase time, a general detriment to trips, the real problems for bicyclists are the

energy exertions in starting again and having an appropriate place to stop.

1.15 Traffic volume

Routes with lower traffic volumes are preferable to ones with higher volumes (Broach, Dill, and
Gliebe 2012). The more vehicles that are on the road, there is a greater risk for conflict between the
modes. This is especially frightening for more novice bicyclists.

Vehicle volumes also are a good indicator for higher pollution levels (less healthy or enjoyable to
ride in places where you are inhaling fumes) and also for the potential of conflicts as both bicyclists

and vehicles attempt to make turns.



Similarly, a high volume of bicyclists makes a facility more attractive and can stimulate ad-
ditional cycling (Vandenbulcke et al. 2011). The notion of achieving a critical mass normalizes

cycling and makes it more inviting for new cyclists to use a route.

1.16 Traffic speed

Cyclists generally prefer facilities where vehicles travel at lower speeds, which, goes along with
roadways with fewer lanes (Hood, Sall, and Charlton 2011). It is well understood that at higher
vehicle speeds, the severity of collisions is much worse. Roadways with many lanes generally have
higher posted speed limits and higher actual speeds. Although there is a relationship between speed
limits and speeds, drivers often drive the speeds that they are most comfortable driving. Narrower
lanes and roadways with fewer lanes generally force drivers to drive more slowly, or at least closer to

the posted speed limit. Regardless, roadways with lower vehicle speeds are preferred by bicyclists.

1.17 Parking

The less on-street vehicle parking is available the better (Carter et al. 2013). Unless vehicle parking
is set up in a way that it does not conflict with a protected bicycle facility, the less parking, the more
likely a route will be used. Parking creates several problems for bicyclists. First, drivers are often
not aware of their surroundings when they exit the vehicle and occasionally door bicyclists as they
attempt to exit the vehicle and don’t notice a bicyclist next to their car.

The same is also true in locations where the bike lane is next to the sidewalk with vehicle parking
immediately next to the bike lane. In this case, instead of the driver opening the door into a moving
bicyclists, it is someone on the passenger side.

Finally, vehicles attempting to park or leave a parking space generally infringe on the bicycle
lane, especially as bicyclists may attempt to stay on the right side of the lane in cases with higher
traffic volumes.

Parking also matters at trip ends. As parking becomes more costly or is unavailable, more peo-

ple will use bicycles (Miller and Handy 2012). This phenomenon, like many of the cost decisions



generally influences mode choice far more than route choice, unless parking constraints occur in a
trip that is a part of a larger tour—e.g. if there is a choice of where to stop for coffee or groceries.
But, even in the case of mode choice, bicycles will be used for tours if the tours are related to

subsistence activities (Li et al. 2013).

1.18 Summary

Table 1.1 summarizes the variables that may affect bicycle route choice and their anticipated im-

pacts.

Table 1.1: Variables affecting bicycle route choice and their anticipated impacts

Variable Expected impact

Distance Shorter is better

Slope Less is better

Transit More than .5 mile from station or stop is
better

Air quality Being on facilities with lower truck and

Bicycle facilities

Pavement quality
Sidewalks

Turn

Traffic signals
Traffic volume
Vehicle speed
Parking

bus volumes is better

Off-street paths are better than protected
on-street, which are better than
unprotected on-street with cars; wider
bicycle lanes are preferred over narrower
ones.

Better condition stimulates use
Availability and legal use is better

Fewer turns at intersections are preferable
Fewer are better

Lower volumes are preferable

The lower the better

Fewer on-street vehicle parking locations
promote use







Chapter 2 Study Site / Data

2.1 Study Site

The study site for this project encompasses the Central Puget Sound Region, the jurisdictional
domain of the Puget Sound Regional Council. As described by the Puget Sound Regional Council
(2008):

The central Puget Sound region is one of the principal metropolitan regions in the
Pacific Northwest of the United States. It includes King, Kitsap, Pierce and Snohomish
counties and their 82 cities and towns, covering an area of nearly 6,300 square miles
(16,300 square kilometers). The region’s geography is diverse, and includes urban,
rural, and resource lands. Numerous hills, mountains, and lakes provide significant
variety to the topography of the region, which ranges in elevation from sea level at

Puget Sound to over 14,000 feet (more than 4,000 meters) at Mount Rainier.

Table 2.1 provides population numbers for the region, and Figure 2.1 provides a context map

for the region.

Table 2.1: Population of Central Puget Sound Region (Puget Sound Regional Council 2014b)

Population 2000 2010 2013
King County 1,737,000 1,931,200 1,981,900
Kitsap County 232,000 251,100 254,000
Pierce County 700,800 795,200 814,500
Snohomish County 606,000 713,300 730,500
Region Total 3,275,800 3,690,900 3,780,900
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Figure 2.1: Map of the Central Puget Sound Region (Puget Sound Regional Council 2014a)
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2.2 Data

This study made use of an original dataset containing GPS traces of bicycle trips collected by the
Puget Sound Regional Council between April, 2012 and October, 2012. During that time, 165
unique users logged a total of 2,750 trips throughout the region.

These data include characteristics of the trip (Table 2.2) and characteristics of the individual
recording the trip (Table 2.3).

Table 2.2: Trip-level variables and associated data types

Variable Type
Unique trip identifier Numeric
Unique user identifier Numeric

Trace Information (each trace is
a collection of points with the
following characteristics):

Latitude Numeric
Longitude Numeric
Altitude Numeric
Horizontal Accuracy Numeric
Vertical Accuracy Numeric
Speed Numeric
Recorded Date-time

Table 2.3: Person-level variables and associated data types

Variable Type
Unique user identifier ~Numeric
Age Numeric
Gender Factor
Home ZIP code Factor
School ZIP code Factor
Work ZIP code Factor

Cycling Frequency Factor

In addition to bicycle trip data, a number of geospatial data layers were required for further

analysis. These layers contain information about the region and are summarized in Table 2.4. The

13



majority of these layers were pre-existing, and were extracted from the regional council’s geo-

database.

Table 2.4: Supplementary geospatial data layers

Layer Type

PSRC road network (edges) Polyline

PSRC road network (junctions) Point

PSRC bicycle facilities (edges) Polyline

PSRC bicycle facilities (junctions) Point

PSRC network attributes Table only
PSRC junction elevations Table used only
PSRC edges elevations Table used only
PSRC parcel Multi-polygon

A full description of the sampling strategy, data collection methods, data collection tools, data
cleanup, and data processing can be found in Chapter 3, Methods. A description of the sample
characteristics is in Chapter 4, Results and a discussion of dataset limitations imposed by the data

set is discussed in Chapter 5.
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Chapter 3 Methods

3.1 Sampling and Recruitment

Individuals participating in the data collection effort were self-selected from a population of bicy-
clists in the Central Puget Sound region. The study was publicized through existing communica-
tions channels available to the Puget Sound Regional Council, primarily through its Bicycle and
Pedestrian Advisory Committee (BPAC). Email announcements, paper flyers, and a website were
developed describing the study goals and how people could participate. These materials, in turn,
were sent out to to BPAC members with the request to redistribute as broadly as possible.

Other publicity venues included the regional council’s Facebook and Twitter social media pages.
The study was also publicized on the widely-read Seattle Transit Blog. A similar study in San
Francisco by Hood, Sall, and Charlton (2011) had incentivized participation by offering prizes,
however no such incentive was offered for this study.

To participate in the study, individuals were directed to download a smartphone-based survey
and data collection application from either the Apple or Google application stores. Use of the

application to log one or more bicycle trips constituted participation in the study.

3.2 Data Collection

Revealed preference GPS data were collected using a smartphone-based application called Cycle-
Tracks. While investigating options to collect these data from bicyclists, PSRC discovered that a
similar bicycle route choice modeling effort by the San Francisco County Transportation Author-
ity (SFCTA) had already developed an open source smartphone-based application, CycleTracks,

that combined GPS data collection with additional survey questions. In addition, SFCTA had re-
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tained the back-end information technology services that store and query data collected from the
smartphone application.

Based on the readiness and availability of the application, the application’s zero cost to PSRC
or study participants, the pre-existing back-end IT infrastructure maintained by SFCTA, SFCTA’s
willingness to make this service accessible to PSRC for a nominal fee, and the integration of relevant
survey questions together with the tool, PSRC opted to collect these person and trip level data
using the CycleTracks application. Other trip logging software including the popular RunKeeper
application were considered, but due to a lack of associated sociodemographic, bicycling typing,
and trip purpose data, PSRC only considered data collected via CycleTracks.

CycleTracks was designed to run on smartphones running Apple’s IOS operating system as well
as smartphones running Google’s Android platform. The Android and IOS versions of CycleTracks
differed somewhat in appearance and user interface, however, both versions collected similar data
in terms of GPS traces and survey questions asked. On both platforms, as a one-time setup, users
were asked to enter several questions about themselves. Person-level variables and data types are
shown in Table 3.1.

In addition to the one-time setup of the application for personal characteristics, each trip re-
quired study participants to indicate the start of their trip (initiating GPS logging), the end of their
trip, and the purpose of their trip. A complete set of screenshots of the Android and 10S versions
of the application can be found in Appendix A.

At the conclusion of a successfully logged trip, the user’s personal information, GPS trace, and
trip purpose were uploaded to a server at SFCTA. The regional council was granted access to a web

application at SFCTA from which these data were downloaded in a delimited text format.
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Table 3.1: Person-level variables collected by CycleTracks

Variable I0OS Field Type Android Field Type

Age Short text Short text

Gender Short text Radio button (male/female)

Cycling Frequency Radio button (Less than once  Slider (Less than once per
per month, several times a month, several times a month,
month, several times per several times per week, daily)
week, daily)

Home ZIP Short text Short text

Work ZIP Short text Short text

School ZIP Short text Short text

Email Address (was optional,  Short text Short text

not used in the Puget Sound
Regional Council study)
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3.3 CycleTracks Data Cleaning and Bad Trace Identification

An early step in creating the choice set used for modeling was to clean the raw cycle tracks data and
remove traces that could not be used for analysis. We identified a number of issues with individual
traces that needed to be dropped from the dataset. In many cases, the GPS traces were relatively
clean, in that there were no clear discontinuities or other aberrations observed. These traces are
characterized by clear alignment with roadways or other facilities, and a lack of single points lying
far from others (see Figure 3.1).

In other cases, we observed traces that were nearly perfect, however appeared shifted from any
discernible roadway or bicycling facility (see Figure 3.2). We suspect that these are the result of a
facility being proximate to a hillside or other feature that may cause a reflected GPS signal. GPS
is not perfectly accurate, and so some deviation from actual facilities is to be expected. The degree
to which GPS traces are distant from facilities determines whether or not they can be included for
analysis.

The urban canyon effect is particularly evident in traces that coincide with downtown Seattle.
Reflected GPS signals results a great deal of “jumping” of GPS points (see Figure 3.3). These
traces are problematic if identification of a specific route through the central business district is
desired. The prevalence of this in downtown Seattle suggests treating a small area in downtown as
a single destination.

One issue we encountered with the Apple IOS version of the CycleTracks application was that,
at the time it was developed, IOS did not support background GPS operation. This meant that users
might start logging a trip and then put their iPhone to sleep manually. For the time that the phone
was asleep, it would not log GPS locations. As a result, many traces would start, and then jump to
a new location when the iPhone was woken back up. Figure 3.5 illustrates an otherwise clean GPS
trace with discontinuities believed to be caused by a user putting her iPhone to sleep for a portion
of the trip. Trips with significant discontinuities were deemed unusable.

Sleeping was not the only condition that created discontinuities in GPS traces. Another example

of this was when the smartphone would lose its GPS fix. Most smartphones use several mechanisms
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to locate themselves spatially including, GPS, cell tower triangulation, and proximate wi-fi access
points. When a GPS signal is lost, many smartphones will devolve to triangulating an approximate
location using cell phone tower signals. This results in short discontinuities where the user appears
to “teleport” to a new location briefly (see Figure 3.5). If the discontinuity is brief, the individual
bad points can often be removed, and the trace salvaged.

The last major case of trace issue we saw was where users started logging trips, but then imme-
diately ended the trip (see Figure 3.6). Anecdotally, a number of users told us that they had done
this out of curiosity to try out the interface of the application. These traces were dropped from the
analysis.

Operationally, we identified several criteria by which a trace can be removed from consideration

in our analysis:

1. Minimum bounding rectangle of less than 1024m?. This threshold is somewhat arbitrary but

covers the case where a user aborted logging early, but still uploaded the trip.

2. 10 or more GPS points exceed 15.65 m/s, indicating that the user spent some portion of his
trip traveling by a motorized, non-bicycle mode. 10 points is an arbitrary threshold, however
seems to be sufficiently high as to tolerate some incorrect data, but is sufficiently low as to

exclude trips with bursts of speed deemed impossible for bicyclists to achieve.

3. Fewer than 20 GPS points exceeding 4.5 m/s. Trips in which the user did not, at any time,

achieve a speed greater than 4.5 m/s were deemed most likely to be a non-bicycling trip.

4. Trips in which the time between recording GPS points exceeded 1 minutes. Many such trips
exist, believed to be the result of iPhone users pausing the logging function on their phone in

error. These traces are unusable because there are significant gaps in the record.

Appendix D provides example SQL code for the trace identification process.
In addition to the problem of bad traces, we noted that a number of users were very diligent

in logging their trips, even when trips did not differ from day to day. Often they would log their
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daily commute repeatedly, which resulted in duplicative traces. Where user, origin, destination,

and route are all the same, these are collapsed to a single record.
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Figure 3.1: A clean GPS trace
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Figure 3.2: A nearly clean GPS trace paralleling a facility
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3.4 Choice Set Generation

We chose to focus on developing a choice set based around the calibrated labeling method as pro-
posed by Broach, Gliebe, and Dill (2010). As the authors of that study noted, this method has
advantages both of computing tractability, as well as in providing results that may be more intu-
itively linked to bicyclist behavior as compared to other methods. We describe our approach in this
section with the caveat that, as of this writing, choice set generation is ongoing.

The calibrated labeling method chosen for this project identifies meaningful criteria or labels for
a given type of route. In the traditional labeled route method, routes are identified through a street
network according to a minimization or maximization of the given label. For example, a labeled
route might identify the route that maximizes the proportion of the trip ridden on on-street bicycle
facilities. Conversely, another labeled route might be identified that minimizes the proportion of
up-slope travel.

Typically these attributes of the network are included as a cost function, and routes are identified
using an algorithm such as that developed by Dijkstra (1959). However, the calibrated labeling
method extends this approach by “instead of generating a single optimal route for each attribute
label, multiple optima are generated by varying the label cost function parameter. Second, the
range over which the parameter varies is calibrated with the observed distribution of shortest path
deviations” (Broach, Gliebe, and Dill 2010, 91).

Based on our review of the literature, considerations to limit the complexity of the model, and

data availability, we identified the following set of labels for consideration:

e Minimize path distance

Minimize proportion of up-slope per trip

e Minimize mean up-slope per trip

Minimize total number of intersections

e Minimize number of left turns
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e Minimize number of right turns

Minimize share of trip up-slope

e Maximize share of trip on a bicycle facility

Maximize the degree of land use mix along the route

Minimize share of trip along commercial parcel

Procedurally, generation of the choice set entails a number of geospatial processing steps. First,
the raw CycleTracks GPS data needs to be cleaned, and individual traces matched to the roadway
network. Next, relevant characteristics of the road network must be determined, either from prop-
erties of the network itself (e.g. identification of left turns and right turns), or by combining other
data such as parcel / land use data along corridor segments. Choice sets are ultimately created
through a network process in which the labeled criteria are maximized or minimized as described
previously. In addition, the calibrated labeling method requires that additional routes are identified
by varying each of the labeled cost function parameters.

Our initial approach to generating a choice set involved a manual process using ESRI’s ArcGIS
product together with the Network Analyst toolbox. During this process we encountered several
issues that ultimately caused us to seek a new approach to the geospatial processing portions of the
choice set generation process. The first issue we encountered was related to the size of some of
our datasets. In particular, where land-use characteristics were required, this involved the spatial
intersection of roadway network segments together with the Puget Sound Regional Council’s parcel
layer, which spans four counties, and represents nearly a gigabyte of geometry data. In practice,
we found that ArcGIS would simply crash or simply not complete many of the spatial intersect
operations. The second issue we encountered was that of repeatability. Whether a defect in the
tool, differences in the computer systems, or human error, we identified discrepancies in the results
of our manual process that proved time consuming to resolve satisfactorily.

These issues, combined with a growing recognition that additional data collection might be

undertaken in the future, and a desire to more tightly integrate the bicycle modeling effort with
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other aspects of the regional council’s data processing and IT infrastructure, caused us to seek an
automated, programmatic approach to choice set generation.

The approach we explored for these operations was to code the data processing tasks in the
declarative SQL programming language, against data stored in a relational database. We chose this
approach in part because we had already resorted to using the relational geodatabase Spatialite for
those spatial intersection operations that we were not able to complete using ArcGIS. As a general
approach for data analysis, Howe and Halperin (2012) note a number of benefits of using relational
databases and specifying analyses declaratively in SQL rather than scripting procedures in other
programming languages. In our early experience with this approach, we found many common
spatial operations reasonably easy to specify. A benefit we found in this approach, is that large
intersecting operations, such as those involving the regional council’s parcel database, completed
on the order of seconds rather than minutes or hours (see Appendix E for an example of a spatial
intersection in SQL using Spatialite). These operations also appeared to yield consistent results,
fitting with our desire for improved reproducibility.

This approach to the choice set generation is also consistent with the IT infrastructure of the
regional council, and its existing geospatial data. The regional council was an early adopter of a
centralized geodatabase infrastructure, and thus they have already committed to an infrastructure
capable of these types of data processing tasks. Performing the analysis directly in the geodatabase
has the additional benefit that it simplifies the workflow by removing the need to extract data from
the geodatabase (potentially resulting in loss of topological consistency), and loading the data into
another analytical platform.

One barrier to implementing these processing tasks in the regional council’s database as it
exists currently, is that PSRC’s geodatabase is built on Microsoft SQL Server 2008, overlaid with
ESRI’s ArcSDE middleware product. Microsoft SQL Server 2008 lacks many of the standard
geospatial datatypes and spatial processing functions that exist in newer databases. Subsequent
releases of Microsoft SQL Server have adopted the Open Geospatial Consortium’s (OGC) standard

geodatabase extensions. In addition, all other major commercial and open source RDBMS vendors
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(e.g. PostGIS, Oracle) have also adopted these standards. When PSRC updates its geodatabase,
either to another vendor’s product or to a more recent version of Microsoft’'s RDBMS, the upgraded

geodatabase will almost certainly support the OGC standards.
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Chapter 4 Results

As the choice set generation and statistical modeling tasks are ongoing, this section is limited to a
presentation of results from other phases of the study.

This study began with a literature review to identify factors influencing bicyclist route choice.
In addition to the person-level characteristics collected via the CycleTracks application, from the
list of factors identified in our literature review, we selected a set of labeled route criteria for choice
set generation that include path distance, up-slope travel, number of intersections, number and type
of turns, share of the trip on a bicycle facility, land use mix along the route, and the share of trip
along commercial parcels.

Our data collection process resulted in a dataset that includes 165 unique users and a total
of 2,750 trips, and somewhat fewer unique trips. From the outset of this study, we recognized
that we would be working from a self-selected sample, and that there would be major limitations
on our ability to generalize from our dataset. From the data collection phase of this study we
observe that our final sample does not look much like the broader population of Central Puget
Sound. Looking at the breakdown of ages and gender represented in our sample (see Figure 4.1),
our sample may arguably look more like the population of bicyclists in the region, with the notable
lack of individuals in the youngest age category. The relatively small number of female participants
also poses a problem if we consider that females are an under-represented demographic in cycling,
whose preferences may be important for policy makers wishing to expand rates of bicycling.

Also notable is that the vast majority of trips logged were either for work commuting purposes
or school commuting purposes (see Figure 4.2). This result is not unexpected, however this makes

this dataset less useful when considering facilities for recreational riding purposes.
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Figure 4.1: Population Pyramids for Central Puget Sound Region vs. CycleTracks Sample
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Figure 4.2: Breakdown of trips by purpose
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As discussed in the context of bad trace identification and removal in Section 3.3, our data col-
lection effort identified significant problems in consistency and cleanliness of the raw CycleTracks
GPS data. In order to deal with those limitations we developed routines for use with a relational
geodatabase for identifying and removing unacceptable traces.

In the process of generating a choice set for statistical modeling, we encountered issues with
the data processing tasks which resulted in us identifying a process that uses a relational database
to declaratively specify geospatial operations. We believe the identified process will result in a
bicycle model that is reproducible, and that is better integrated with the geospatial data store of the

regional council.
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Chapter S Discussion

The dataset that resulted from our data collection effort poses significant limitations for subse-
quent statistical modeling. As discussed in previous sections, the self-selected recruitment of our
sample is problematic if we intend to make generalizations from the data. In addition, the under-
representation of females and individuals in several age categories makes it impossible to satisfac-
torily answer a number of questions relevant to policy makers who wish to expand bicycling among
particular demographics.

The data collection process did, to an extent, validate the ability for a public agency to crowd-
source data using a smartphone app. A reasonably large amount of data was collected at an ex-
tremely low cost. The cost of this data collection effort was no doubt thanks to the San Francisco
County Transportation Authority’s foresight in developing a robust platform for data collection,
making the application free, and providing access to the back-end infrastructure to other govern-
ment agencies for the marginal cost of its use. In its unmodified form, the CycleTracks application
proved adequate for collecting the set of attributes that we were interested in.

One problematic aspect of the CycleTracks application was in its inability to run as a background
application on Apple’s 10S. This limitation, imposed by earlier versions of 10S, has since been
lifted. If the data collection were repeated today, with an updated version of CycleTracks, we
anticipate that we would see a better quality set of traces, given that the sleep issue was one of the
more common issues with traces.

Creating the choice set for statistical modeling proved more complicated than we initially antic-
ipated. Issues of reproducibility and dealing with data at scale forced us to abandon a more manual

ad-hoc approach to the geospatial analysis, in favor of a more robust but more technically demand-
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ing process. Nevertheless, we believe this approach offers benefits beyond reproducibility, in that
it will allow for better integration with future regional council geodatabase infrastructure. It will
also allow for procedures generated here to be used in processing future datasets, or to more easily

assess before-after performance of major new bicycling facilities.
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Chapter 6 Conclusions and Recommendations

This project set out to advance the state of bicycle model development at the Puget Sound Regional
Council through the collection of revealed preference bicycle GPS data, through the development
of a theoretical framework for for understanding bicyclist route choice decisions, and through the
creation of analytical procedures.

Through a review of the literature on bicyclist route preferences, we have identified a set of
factors that the regional council can use for future modeling tasks. This set of factors includes
the subset identified in previous chapters for use with the calibrated labeling method for choice set
generation. In addition to being supported by the literature, these factors also take into account the
availability of datasets at the regional council. We recommend that future modeling tasks consider
the factors identified in this report.

The data collection process did yield a dataset containing revealed preferences for bicyclist
route choice, however limitations in the sampling methodology will limit the usefulness of this
dataset for modeling purposes. In this regard, the data collection process is a qualified success.
The mechanisms and tools for data collection have proved successful. This is an important result
given that this is the first attempt by the regional council to crowd-source a dataset in this manner.
The choice (and the ability) to use a preexisting data collection tool such as CycleTracks was key
to collecting this data in a cost-effective and relatively problem free manner. Future studies would
do well to repeat this approach where possible.

The limitations posed by the sample could be addressed through a future data collection effort
using the CycleTracks application, where users are recruited through random sampling, perhaps

with some oversampling amongst demographics of interest. In practice, however, we would an-
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ticipate a significant non-response bias if this recruitment were not performed on an identified
population of bicyclists. One strategy for obtaining a larger (and perhaps more realistic) sample in
Central Puget Sound would be partner on a major general-audience bicycling event such as Cascade
Bicycle Club’s annual commuter challenge—perhaps augmenting CycleTracks to become a means
for participants to log their mileage.

The unexpected difficulty in creating a choice set underscores the necessity to consider repro-
ducible methods that can operate at scale, such as the one described in this report. Given our initial
successes in carrying out portions of the geospatial analysis required to build a choice set, we rec-
ommend that the regional council carry forward the approach of building these choice sets directly
in their geodatabase. Such an approach obviates exporting and reimporting geospatial data into

another platform.
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Appendix A CycleTracks Survey Tool Interface

al  ATET = 8:35 < 100% 3

Personal Info save
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y

Your typical commute 0 0 : OO : 0 0 elzfns:d
Home ZIP T gs102” OO m| 00 mph
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Work ZIP W estimated distance estimated speed
School ZIP T gs101

Your cycling frequency

Less than once a month

Several times per month

Several times per week v
Daily

> e 'y

Settings Record

(a) Collecting personal information (b) Trip recording interface

Figure A.1: Personal information and trip recording screens from IOS CycleTracks Application
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(c) Completed trip trace

Figure A.2: Lock screen, trip purpose, and trace screens from I0S CycleTracks Application
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Thanks for using CycleTracks! Please enter your user
details here. It's optional, anonymous, and will really help
us understand different people's biking preferences.

Start Trip!

Age

Age (" )Male (® )Female

3 saved trips:
Commute 7/12/13 8:20 AM Cycling Frequency: Several times per week
2.7 miles, 14 minutes.

Commute 5/17/13 3:56 PM -~

2.6 miles, 19 minutes. Home ZIP Work ZIP School ZIP

2.7 miles, 13 minutes.

Email address: for news and updates !!

(b) Personal information

Waiting for GPS fix...
Distance:
Time Elapsed:

Current Speed:

Max Speed: 0.0 mph

Average Speed:

(c) Trip recording

Figure A.3: Main screen, personal information, and trip recording screens from Android
CycleTracks Application

47



Finished recording. Choose a trip purpose:
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(a) Trip purpose

Figure A.4: Trip purpose and completed trace screens from Android CycleTracks Application

(b) Completed trace
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Appendix B Geospatial Data Extract Transform and Load Procedures

Geospatial data were originally provided in a variety of formats, including shapefiles and ESRI
personal geodatabases. The following shell script demonstrates the use of ogr2ogr for loading layers
from a variety of sources, transforming those layers into a consistent datum, and then loading the

layers into a geospatial database—in this case, Spatialite.

#!/bin/bash

# Extract transform and load procedures

# Make for nominal portability to PostGIS

ofmt="—f SQLite”

basepath="/Desktop/ct—postproc/data

orig=$basepath/original

opath=$basepath/cycletracks.sqlite

flags="—t_srs EPSG:3857 —a_srs EPSG:3857 —dsco SPATIALITE=YES —gt 65536 —nlt
PROMOTE_-TO_MULTI”

append=$flags” —append —update”

rm $opath

# Full PSRC roads network (TransRefEdges and TransRefJunctions)
echo "psrc network”

ogr2ogr $ofmt $opath S$orig/PSRC_Net.gdb $flags

# Bicycle facilities — FAILS (need to bring up to speed in ArcCatalog)
echo "bike facilities”

ogr2ogr $ofmt $opath S$orig/bikefacility/bikefacilities.gdb \
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21| transrefedges_bikefacil —nln bike_transrefedges $append

23l ogr2ogr $ofmt $opath $orig/bikefacility/bikefacilities.gdb \

transrefjunctions —nln bike_transrefjunctions S$append

# CycleTracks Traces. This is a little tricker. We create a virtual
27|# OGR layer in order to project WGS84 lat/lon on the fly.
vrtrace=$basepath/traces . vrt

29| echo “traces”

echo "<OGRVRTDataSource>

31 <OGRVRTLayer name=’traces >
<SrcDataSource>$orig/cycletracks/traces.csv</SrcDataSource>
33 <GeometryType>wkbPoint </GeometryType>
<LayerSRS>WGS84</LayerSRS>

>

35 <GeometryField encoding="PointFromColumns’ x=’Longitude’ y=’Latitude
>
</OGRVRTLayer>

37| </OGRVRTDataSource>" > $vrtrace

39| ogr2ogr $ofmt $opath $vrtrace Sappend
rm $vrtrace

41
# CycleTracks Trips (fake SRS again)

43l echo 7trips”

ogr2ogr $ofmt $opath \

45| $orig/cycletracks/trips.csv $append —s_srs EPSG:3857

47
# Mode attributes — table only, fake input srs
49| echo “mode attributes”

ogr2ogr $ofmt $opath Sorig/NetAtts.gdb \

51| $append —s_srs EPSG:3857 —nln network_attributes
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w

3|# Junction elevations

echo "junction elevations”
ogr2ogr $ofmt $opath $orig/network/junction_elevation.gdb \

$append —nln elevation_junctions

# TransRefEdges with elevation
echo “edges elevations”
ogr2ogr $ofmt $opath S$orig/network/peters_transrefedges.gdb \

$append —nln elevation_edges

# Parcels; appending —skipfailures , but should validate we’re not

# losing much valid data, though looks like only one geometry.

5|echo "parcels”

ogr2ogr $ofmt $opath S$orig/parcel/prcl05/prcl05.shp \
$append —skipfailures —nln parcels_2005

Spatialite, while convenient for exploratory analysis by an individual researcher may be less
reflective of an enterprise geospatial RDBMS than a client-server oriented system. The follow-
ing demonstrates the same extract transform and load procedures using PostGIS, which may more

closely mirror PSRC’s MS SQL Server deployment.

#!/bin/bash

# Extract transform and load procedures

# First drop the cycletracks database if it exists. This is a clean
# load of the data.

psql —d postgres —c “DROP DATABASE cycletracks;”

createdb cycletracks

psql —d cycletracks —c “CREATE EXTENSION postgis;”

ofmt="—f PostgreSQL PG:dbname=cycletracks ’
basepath="/Desktop/ct—postproc/data

orig=$basepath/original
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25

27

29

31

33

35

41

43

flags="—t_srs EPSG:4326 —a_srs EPSG:4326 —nlt PROMOTE_-TO_MULTI”

append=$flags

# Full PSRC roads network (TransRefEdges and TransRefJunctions)
echo ”psrc network”

ogr2ogr $ofmt $orig/PSRC_Net.gdb $flags

# Bicycle facilities
echo "bike facilities”
ogr2ogr $ofmt $orig/bikefacility/bikefacilities.gdb transrefedges_bikefacil \

—nln bike_transrefedges $flags

ogr2ogr $ofmt $orig/bikefacility/bikefacilities.gdb transrefjunctions \

—nln bike_transrefjunctions $flags

# CycleTracks Traces. This is a little tricker. We create a virtual

# OGR layer in order to project WGS84 lat/lon on the fly.

vrtrace=$basepath/traces . vrt

echo 7traces”

echo "<OGRVRTDataSource>

<OGRVRTLayer name=’traces >

<SrcDataSource>$orig/cycletracks/traces .csv</SrcDataSource>
<GeometryType>wkbPoint </GeometryType>
<LayerSRS>WGS84</LayerSRS>

[l

<GeometryField encoding="PointFromColumns’ x="Longitude’ y=’Latitude
>
</OGRVRTLayer>

</OGRVRTDataSource>" > $vrtrace

ogr2ogr $ofmt $vrtrace $flags —lco \
COLUMN_TYPES: ”enabled=boolean , latitude=numeric ,longitude=numeric , altitude=

numeric , haccuracy=numeric , vaccuracy=numeric , speed=numeric , recorded=
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timestamp”
rm $vrtrace
45
# CycleTracks Trips (fake SRS again)
471 echo 7 trips”
ogr2ogr $ofmt \
49| $orig/cycletracks/trips.csv $flags —s_srs EPSG:4326

# Mode attributes — table only, fake input srs
53l echo "mode attributes”

ogr2ogr $ofmt $orig/NetAtts.gdb \

55| $flags —s_srs EPSG:4326 —nln network_attributes

57\# Junction elevations

echo "junction elevations”

59| ogr2ogr $ofmt $orig/network/junction_elevation.gdb \
$flags —nln elevation_junctions

61
# TransRefEdges with elevation

63l echo “edges elevations”

ogr2ogr $ofmt $orig/network/peters_transrefedges.gdb \

65| $flags —nln elevation_edges

67|# Parcels; appending —skipfailures , but should validate we’re not
# losing much valid data, though looks like only one geometry.
69| echo “parcels”

ogr2ogr $ofmt $orig/parcel/prcl05/prcl05.shp \

71| $flags —skipfailures —nln parcels_2005
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Appendix C Identifying GPS traces on a roadway network

—— Clear out old versions if they exist

SELECT DisableSpatiallndex (' transrefjunctions_50m’, *Geometry’);

DROP TABLE transrefjunctions_50m;

DROP TABLE junctions_intersect_tracepoints;

—— Create a buffered version of transrefjunctions and enable RTree
— spatial index.

CREATE TABLE transrefjunctions_50m AS

SELECT psrcjunctid , ST_Buffer (Geometry, 50) Geometry

FROM transrefjunctions;

SELECT RecoverGeometryColumn(’ transrefjunctions_50m ', *Geometry’,

3857, 'POLYGON’, 2);

SELECT CreateSpatiallndex ( transrefjunctions_50m’, “Geometry’);

— Test for intersection of buffered transrefjunctions and gps points
CREATE TABLE gps_intersect_transrefjunctions_50m AS
SELECT b. trip_id trip_-id, a.psrcjunctid psrcjunctid,

b.OGC_FID OGC_FID

FROM transrefjunctions_50m a, traces b

3l\WHERE ST _Intersects (a.Geometry, b.Geometry)

AND b.ROWID IN
(SELECT ROWID FROM Spatiallndex
WHERE f_table_name = “traces” and search_frame = a.GEOMEIRY) ;
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— Get the number of GPS points by trip and intersected junction
29|CREATE VIEW points_by_trip_junction AS

SELECT trip_-id , psrcjunctid, count(OGC_FID) npoints

31|FROM gps-intersect_transrefjunctions_50m

GROUP BY trip_id , psrcjunctid;

—— Order junctions

35|CREATE TABLE ordered_junctions AS

SELECT b. trip-id trip-id, a.psrcjunctid psrcjunctid,
37 count(b.OGC_FID) npoints,

min(strftime (’%s’, b.recorded)) mintime,

39 max(strftime ('%s’, b.recorded)) maxtime

FROM transrefjunctions_50m a, traces b

41|{WHERE ST _Intersects (a.Geometry, b.Geometry)

AND b.ROWID IN

43 (SELECT ROWID FROM Spatiallndex

WHERE f_table_name = “traces” AND search_frame = a.GEOMEIRY)
45/GROUP BY b.trip_-id , a.psrcjunctid

ORDER BY mintime ;
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Appendix D Identification of Bad CycleTracks GPS Traces (Spatialite)

— Drop traces_filter table if it already exists
DROP VIEW traces_filter_mbr;

DROP VIEW traces_filter_hi_speed;

DROP VIEW traces_filter_lo_speed;

DROP VIEW traces_filter_gaps;

DROP TABLE traces_bad;

— — Remove the spatial views that have already been registered
—— DELETE FROM views_geometry_columns

— WHERE view_name = ’traces_bad ’;

— Identify those traces:

— 1.) whose minimum bounding box area is < 1,024m

— 2.) that contain > 10 points exceeding 15.65 m/s (NOTE: review

— thresholds!)

— 3.) that contain < 20 points exceeding minimum 4.5 m/s threshold
— 4.) that have gaps in the recording of points that exceed 1 minute.
CREATE VIEW traces_filter_mbr AS

SELECT trip-id , Area(Extent(Geometry)) < 1024 AS mbr_1t_1024

FROM traces

GROUP BY trip_-id;

CREATE VIEW traces_filter_hi_speed AS
SELECT trip_id , count(trip_-id) > 10 AS excess_speed
FROM traces
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27\WHERE speed > 15.65
GROUP BY trip_-id;
29
CREATE VIEW traces_filter_lo_speed AS

31| SELECT trip-id , count(trip-id) < 20 AS insufficient_speed
FROM traces

33| WHERE speed > 4.5

GROUP BY trip-id;

CREATE VIEW traces_filter_gaps AS

37| SELECT DISTINCT trip-id ,

(SELECT strftime (’%s’, b.recorded)

39 FROM traces b

WHERE b.OGC_FID = a.OGC_FID + 1

41 AND a.trip_.id = b.trip_id) — strftime(’%s’, a.recorded) > 60 gaps
FROM traces a

43|WHERE gaps = 1;

45|— Create a table containing all the misfit links for inspection
— purposes (i.e. weed out false positives)

47|CREATE TABLE traces_bad AS

SELECT a.rowid AS rowid, a.Geometry AS Geometry,

49 a.trip-id AS trip.id,

b.mbr_1t.1024 AS mbr_1t_1024 ,

51 c.excess_speed AS excess_speed,
d.insufficient_speed AS insufficient_speed ,

53 e.gaps AS gaps

FROM traces AS a

55| LEFT JOIN traces_filter_mbr AS b USING (trip-id)
LEFT JOIN traces_filter_hi_speed AS c USING (trip-id)
57\LEFT JOIN traces_filter_lo_speed AS d USING (trip_-id)
LEFT JOIN traces_filter_gaps AS e USING (trip_id)

S9WHERE b.mbr_1t.1024 = 1
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OR c.excess_speed = 1
OR d.insufficient_speed = 1

OR e.gaps = 1;

SELECT RecoverGeometryColumn(’traces_bad’,
"POINT” ,2) ;

>Geometry ’,

3857,
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Appendix E Example Spatial Intersection Operation in SQL (Spatialite)

SELECT =

FROM layerl , layer2
WHERE ST _Intersects (layerl .GEOMEIRY, layer2 .GEOMEIRY)

AND layer2 .ROWID IN (SELECT ROWID FROM Spatiallndex WHERE f_table_name="layer?2

7 AND search_frame=layerl .GEOMEIRY)
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